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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

In an environment which is marked by an increasing speed of changes, industrial companies have to be able to quickly adapt to new market 
demands and innovative technologies. This leads to a need for continuous adaption of existing production systems and the optimization of their 
production control. To tackle this problem digitalization of production systems has become essential for new and existing systems. Digital twins 
based on simulations of real production systems allow the simplification of analysis processes and, thus, a better understanding of the systems, 
which leads to broad optimization possibilities. In parallel, machine learning methods can be integrated to process the numerical data and discover 
new production control strategies. In this work, these two methods are combined to derive a production control logic in a semi-automated 
production system based on the chaku-chaku principle. A reinforcement learning method is integrated into the digital twin to autonomously learn 
a superior production control logic for the distribution of tasks between the different workers on a production line. 
By analyzing the influence of different reward shaping and hyper-parameter optimization on the quality and stability of the results obtained, the 
use of a well-configured policy-based algorithm enables an efficient management of the workers and the deduction of an optimal production 
control logic for the production system. The algorithm manages to define a control logic that leads to an increase in productivity while having a 
stable task assignment so that a transfer to daily business is possible. The approach is validated in the digital twin of a real assembly line of an 
automotive supplier.  
The results obtained suggest a new approach to optimizing production control in production lines. Production control shall be centered directly 
on the workers' routines and controlled by artificial intelligence infused with a global overview of the entire production system. 
 
© 2021 The Authors. Published by ELSEVIER B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile 
manufacturing and service operations : Lessons from COVID-19 (CIRPe 2021) 

 Keywords: Machine Learning, Reinforcement Learning, Digital Twin, Production Control, Task Allocation, Productivity 

 
1. Introduction 

A dynamic environment and a shortening of product life 
cycles force manufacturing to increase the flexibility of their 
production systems. Semi-automated assembly cells are a 
production system type that offers high flexibility with regard 
to output volume, material flow and product types. Yet, the 
optimal control of such a flexible system poses a challenge 

given the frequently changing optimization conditions. 
Classical analytical optimization methods are in many cases 
too slow and costly to be repeated often. One possible solution 
to automatically find and quickly adapt (after an initial learning 
period) a good control strategy for each system configuration 
could be the use of artificial intelligence (AI). The following 
work presents the application of a specific AI-tool, 
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reinforcement learning (RL), on the problem of production 
control in a semi-automated production system. 

2. Literature review 

[1] present a successful application of RL for order 
dispatching in semiconductor manufacturing. The selection of 
an optimal production control agent depending on the current 
situation using a digital twin is presented by [2]. [3] design a 
control of dispositional orders by RL in the case of series 
production, whereas [4] develop a strategy for controlling shop 
floor inventories that are customer-oriented and versatile with 
reinforcement learning. [5] adopt a neural reinforcement 
learning approach in production planning to learn local 
allocation policies. [6] use a neural network trained with RL for 
a job-shop scheduling task, while [7] propose a deep 
reinforcement learning method to optimize global production 
scheduling in complex shops. RL is used by [8] to optimize the 
throughput of a transfer line. Multi-agent reinforcement 
learning methods for production control are also developed by 
[9], [10] and [11]. [12] adopt the IRT approach to compare an 
RL algorithm against human performance on two simple job-
shop scheduling examples. RL for AGV routing is developed 
and analyzed by [13]. 

Although RL methods are already used for industrial 
applications and in particular for production control, this field 
of study is still in its infancy and no work has so far focused on 
the direct optimization of worker’s tasks distribution in a semi-
automated production line. As shown, the exisiting literatur is 
more generally focused on the control of resources or the 
quality of order dispatching in a production system. Our work, 
therefore, has the ambition to study a new control task, based 
this time directly on the optimization of workers' activities in a 
linear, semi-automated production line. 

3. Own Approach 

3.1. Problem description  

In a semi-automated production system, human operators 
interact with machines that require manual operations to 
function. When a semi-automated production line is clocked, 
the actions of the operators must be particularly coordinated 
with the work rhythm of the machines to avoid losing time and 
creating efficiency losses. Indeed, one of the main problems 
with this type of production strategy is that the smallest 
interruption can have a significant impact and generate so-
called deadlock situations that are harmful to the productivity 
of the production line. The distribution of tasks between 
operators must be synchronized with the machine processes in 
order to maintain a fluid, smooth production and reduce 
productivity losses. In order to distribute the tasks among 
operators in an optimal way, the production line is modeled 
with a simulation software consisting of machines, operation 
principles and operators. 

Based on this model, an RL method can be used to control 
the distribution of workers' tasks in an optimal way, i.e. in such 
a way that deadlock problems are avoided and workers' 
productivity is maximized. 

3.2. Reinforcement learning  

Reinforcement learning is a machine learning method in 
which an agent takes actions 𝑎𝑎𝑡𝑡 ∈ 𝐴𝐴 based on the state 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆 
of the environment at time 𝑡𝑡, where the action space 𝐴𝐴 is the set 
of all valid actions in a given environment and 𝑆𝑆 is the set of 
states, and in return receives a reward 𝑟𝑟𝑡𝑡  depending on the 
impact of its action that leads to the next state 𝑠𝑠𝑡𝑡+1 ∈ 𝑆𝑆. The 
strategy for selecting actions is referred to as the policy 𝜋𝜋 with 
the agent's objective of learning an optimal policy, i.e. one that 
maximizes the cumulative reward in the long run. This 
principle is based on a Markov Decision Process (MDP) model 
which relies on the basic Markov property stating the absence 
of memory of a process, i.e. that the probability of the future 
state 𝑠𝑠𝑡𝑡+1 depends only on the present state and action 𝑠𝑠𝑡𝑡 and 
𝑎𝑎𝑡𝑡 and not on past states and actions [14]. Figure 1 describes 
the interaction of a reinforcement learning agent with the 
environment.  

Figure 1: Interaction of  reinforcement learning agent with environment [19] 
 

Thus, for using a reinforcement learning agent, it is 
necessary to properly model the states of the environment, the 
actions that the agent can take in this environment and also the 
reward function that enables the agent to understand the quality 
of the actions taken in respect to reaching the optimal policy.   

3.2.1. RL for worker control  
The environment is in this case an event-discrete simulation 

of a semi-automated production line modeling the routines of 
the workers where the different actions per worker and their 
activities in the production line are controlled by the agent. 
Figure 2 shows how the agent is used to control the worker’s 
actions. When a new action has to be performed, it is put in a 
waiting list until a worker is available. When a worker is 
available, the RL agent assigns an action from the waiting list 
and the worker then performs that action it was delegated from 
the centralized agent. This triggers a new state in the 
environment that leads to new actions in the waiting list. The 
principle of using a reinforcement learning method is that the 
agent learns to allocate the optimal action from the waiting list, 
i.e. the one that globally helps in reaching the best productivity 
of the worker by trying to maximize the reward it gets after 
each allocation. 

 
 
 
 
 
 
 
 
 

Figure 2: Agent-worker interaction 
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3.3. Selection of a reinforcement learning method 

There are many algorithms implementing reinforcement 
learning and the selection of an RL algorithm is an important 
step when designing a reinforcement learning framework 
because although based on the same principle, ease of use and 
performance differ widely between different algorithms for 
each use case. Two main families are known: model-based 
algorithms, used for example to play chess with AlphaZero 
[15], and model-free algorithms. As there is no model known 
for this kind of problems, this work focuses on model-free 
algorithms. Two types of algorithms constitute the family of 
model-free algorithms, value-based algorithms and policy-
based algorithms. 

3.3.1. Value-based algorithms 
Value-based methods involve determining the optimal 

policy for the reinforcement learning algorithm by optimizing 
the action-value function 𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡)  that gives the expected 
reward after starting from state 𝑠𝑠𝑡𝑡, having taken action 𝑎𝑎𝑡𝑡 and 
acting according to policy . Common value-based algorithms 
include Q-learning [16] and deep Q-networks (DQN) [17]. 
Both methods are off-policy methods, i.e. they use different 
policies for selecting actions and optimizing the optimal target 
policy, which poses reliability problems. Furthermore, the use 
of a DQN algorithm has shown that it is difficult to find the 
ideal parameters to obtain reliable and reproducible results. 
This and a bad sampling efficiency hampering the speed of the 
algorithm made it easier to work with a policy-based method.  

3.3.2. Policy-based algorithms 
Rather than using approximations of value functions, 

policy-based algorithms approximate the policy directly with a 
gradient-based method and are thus a more direct way to learn 
the optimal policy [14]. Algorithms using this type of method 
include the vanilla policy gradient algorithm (VPG), the trusted 
region policy gradient algorithm (TRPO) [18] and the proximal 
policy optimization algorithm (PPO) [19]. The three algorithms 
have the same operating principles, but PPO uses techniques 
that solve some of the shortcomings of the other methods, such 
as variance problems and computational complexity. Schulman 
et al. also show that this method  on a collection of benchmark 
tasks outperforms both TRPO and VPG and is easier to 
implement [19]. Following the various disadvantages linked to 
the use of a value-based algorithm presented in the previous 
paragraph, we decided to work with a policy-based algorithm 
and more specifically a PPO algorithm for the rest of our study. 

3.4. Design of the RL framework 

This section highlights how the RL agent framework is 
designed to be integrated into a simulation of a semi-automated 
production system. An artificial neural network (ANN) is used 
to approximate the agent's optimal policy. The first layer of the 
ANN takes as input the state of the environment, then, thanks 
to the policy determined by the weights of the hidden layers of 
the ANN, the last layer returns the selected action, i.e. the one 
with the highest activation value. Following this selection, the 

state of the environment is modified by the action, and the 
policy is adapted according to the reward obtained. 

The following sections show how the action space and the 
states of the environment are modeled as well as how the 
reward function is defined to solve the worker control problem. 

3.4.1. Action space representation 
The action space represents all the actions that the agent can 

take. Thus, its definition follows from the principle per agent 
described in the RL for worker control section. The only 
constraint to define the action space of the RL agent is that it 
must contain a fixed number of actions that cannot vary over 
time. However, in reality, the number of actions to be 
performed in the production line is never identical, in particular 
during the production start-up when all the machines are not 
yet in use and, thus, fewer actions have to be performed by the 
workers than when the production is in a steady state. To easen 
this constraint all the actions that can be performed by a worker 
on the production line are listed and fixed, even if it is possible 
that at the moment 𝑡𝑡 an action is not actually performed.  

The action space is, thus, defined by the sum of all the 
actions that can be performed manually for each machine of the 
production line. Let [𝑀𝑀1, … , 𝑀𝑀𝑚𝑚], 𝑚𝑚 ∈  ℕ  be the set of 
machines of the production line and [𝐴𝐴1, … , 𝐴𝐴𝑛𝑛], 𝑛𝑛 ∈ ℕ the set 
of all possible actions that can be performed at a machine. The 
action space is then the set  Ω =  [𝐴𝐴1𝑀𝑀1, … , 𝐴𝐴𝑛𝑛𝑀𝑀𝑚𝑚] with 𝐴𝐴𝑖𝑖𝑀𝑀𝑗𝑗 
the action 𝑖𝑖 on machine 𝑗𝑗. 

3.4.2. State representation 
The state definition is a crucial element that influences the 

learning process because it is by observing the state that the 
agent selects the next action [14]. In the case of a production 
line, a lot of information can be used to describe the state of the 
environment. However, the more information there is, the more 
difficult it is for the agent to construct a link between the chosen 
action and the state of the input environment. For this reason, 
the description has to be simplified as much as possible and the 
environment described only by the actions that can be 
performed by the workers on the same principle as the 
description of the action space. The difference, however, is that 
the state of the environment is used as an input vector to the 
neural network and can therefore be encoded with binary 
values, to facilitate data processing in the ANN.  

Thus, binary values can be used here to distinguish between 
actions that are actually available and those that are not 
available at the time the agent selects an action. The state vector 
is then represented by 𝑆𝑆 =
[𝐴𝐴1𝑀𝑀1, . . , 𝐴𝐴1𝑀𝑀𝑚𝑚, … , 𝐴𝐴𝑛𝑛𝑀𝑀1, . . , 𝐴𝐴𝑛𝑛𝑀𝑀𝑚𝑚]  with 𝐴𝐴𝑖𝑖𝑀𝑀𝑗𝑗 = 1  if the 
action 𝐴𝐴𝑖𝑖 on the machine 𝑀𝑀𝑗𝑗 is to be performed and 𝐴𝐴𝑖𝑖𝑀𝑀𝑗𝑗 = 0 
if the action 𝐴𝐴𝑖𝑖 on the machine 𝑀𝑀𝑗𝑗 is not to be performed in the 
moment the agent is called to select an action. The RL-agent 
therefore knows all the actions that are available as well as 
those which are not and only has to choose the best one among 
the available actions. Moreover, when an action is selected by 
the RL-agent, the state value of this action is reset to 0 to 
indicate that it has been taken over by a worker, which allows 
to show the change of state in a sufficiently transparent way. 

Figure 3 gives an example of possible decisions of the agent 
over time. 



 Leonard Overbeck  et al. / Procedia CIRP 103 (2021) 170–175 173
4 Author name / Procedia CIRP 00 (2019) 000–000 

 
Figure 3. Visualization of the agents decisions 

3.4.3. Reward function 
The reward function is used to make the agent understand 

whether the selected action was good or not and, thus, make the 
agent adjust its selection policy according to the feedback.  

The reward function must therefore be designed according 
to the objectives of the RL framework. In this case, the main 
objective is to define a logic control for the workers that 
maximizes their productivity on the production line. 

Maximizing productivity implies using the available 
resources in the best possible way. In the present case of semi-
automatic assembly, machines and employees play an essential 
role and can therefore be included in the development of a 
control logic through the reward function. The idea is to 
combine resource utilization with a well-known production 
control concept, the push flow production, defined in [20]. The 
principle is therefore built on using the reward function to map 
the application of a central control (push) to obtain a maximum 
utilization rate of the machines in the production line. 

Concretely, this solution is implemented in the simulation 
by rewarding the RL agent each time a machine completes a 
process. The underlying idea is therefore to maximize the 
number of processes that a machine performs and consequently 
the number of parts that pass through this machine and finally 
the number of parts produced overall in the production line. 

A second possibility to design the reward function is based 
on the analysis of production line modeling. When the agent 
assigns an available action to be performed, the action is in fact 
not always immediately feasible because the machine may still 
be used by a previous part. Thus, although an action is 
available, it is not always feasible and, in this case, it is said to 
be non-feasible. The idea resulting from this analysis is to 
punish the RL agent when the agent chooses a non-feasible 
action. In fact, the less time workers waste on working on non-
feasible actions, the more efficiently they will work, resulting 
in higher productivity.  

To take into account the two ideas underlying the push and 
action-feasibility functions a reward function that adds these 
two functions together and then rewards the agent for how well 
the selected action meets the objectives defined in these two 
functions is used. 

3.4.4. Implementation of the production system simulation 
The different components describing the RL framework 

presented in the previous sections have been integrated in a 
simulation of a semi-automated production line built with the 
python library SimPy. The simulation models the movement of 
workers on the production line and the production stages of a 
part, i.e. its progression through the various machines making 
up the production line. The simulation has been designed in an 
episodic way so that the agent can be trained by repeating the 
same simulation as many times as necessary until the optimal 

policy is found. The RL agent used comes from the tensorforce 
library written in python and based on tensorflow. 

3.5. Evaluation 

3.5.1. Performance of the RL algorithm 
After defining the different elements of the reinforcement 

learning framework and the parameters of the PPO algorithm, 
different performance criteria are evaluated, in particular the 
progression, stability and convergence of the learning process. 
Thus, different simulation configurations were tested to 
observe the influence of the duration of a training episode, the 
number of training episodes or the number of workers working 
in the production line on the learning process of the RL agent. 

Each time, the analysis of the evolution of the reward 
received per episode is the first step. The reward should 
increase as the simulation episodes progress and then stagnate 
when the optimal policy is reached. In a second step, in order 
to check that the reward function corresponds to our initial 
objectives, the evolution of the number of pieces produced per 
simulation episode is also analyzed and compared with the 
result obtained without any RL-algorithm.  

3.5.2. Analysis of worker’s behavior  
When the algorithm has converged to an optimal policy, a 

control logic for the workers can be determined from the results 
obtained. The criteria for observing this control logic are the 
number of worker transitions between each machine and the 
percentagewise deviation between the average time spent 
working on each machine per worker. These measures make it 
possible to analyze how the tasks are distributed between the 
workers by the agent, for example whether each worker is 
responsible for a fixed number of machines or they have a 
similar behavior or if they are all responsible for all the 
machines. 

4. Application 

4.1.1. Use Case 
The methodology was developed in a research partnership 

between of the wbk Institute for Production Technology at the 
Karlsruhe Institute of Technology (KIT) and the central 
department Connected Manufacturing of the Bosch Powertrain 
Solutions division with the goal to develop an agile production 
system. Its application and validation are also part of this joint 
research project. 

The approach was implemented and tested in the simulation 
model of a real world production system for car engine 
components which is organized in a cell composed of two lines 
facing each other. The assembly cell is semi-automated, 
following the Chaku-Chaku principle. This means that the 
machines perform their processes on their own and workers are 
mainly required for loading and unloading of machines and 
transporting parts between them. The line produces various 
product types with differing material flows, processing times, 
etc. The default number of workers in the production cell is 5, 
but can deviate due to external factors such as vacations, sick 
days, reduced customer demand, trainings, etc. For each 
number of workers an optimal distribution of task between the 
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workers has to be found for each article type. There are 9 
machines in the manufacturing cells and 29 possible tasks for 
the worker to do. 

4.1.2. Hyperparameter selection 
Hyperparameters are used to adjust the RL algorithm, in this 

case the PPO algorithm. Among the most important parameters 
we find the following. The batch size is the number of data 
points collected between each update of the ANN weights, this 
parameter influences the speed and stability of the learning 
process. The update frequency parameter indicates how often 
the policy is updated. The learning rate  corresponds to the 
step size of the ANN-update. The parameter discount  reduces 
the anticipation of rewards that lie further in the future. 
Regularization parameters like L2-regularization or entropy 
regularization are additional parameters that prevent the 
algorithm from overfitting the policy [21] or the policy to 
become deterministic and converge to a poor policy too quickly 
[22]. After a series of tests, comparisons and analysis of the 
results obtained by varying the hyperparameters, those that 
give the best results are presented in Table 1. 

    Table 1: Hyperparameters values of the PPO-algorithm. 

Hyperparameter Value 
Batch size and update Frequency 
Learning rate  
Discount  
Entropy regularization 
L2-regularization 

20 episodes 
0.00001 
0.9 
0.01 
0.01 

5. Results 

This section outlines the various results obtained by 
integrating the RL framework presented in the previous 
sections into the case study. Figure 3 and Figure 4 show the 
evolution of the reward and the number of pieces produced per 
episode as the agent's learning process progresses. The duration 
of each episode is eight hours, i.e. the duration of a production 
shift, and five workers are working in the production line. 

Figure 4 highlights the increasing reward over the episodes 
which shows that the RL agent learns to maximize it over time 
and experience. This evolution is stable over time and 
converges from episode 150 onwards, thus showing that the 
agent can learn a policy after several training episodes. 

 
(a)    (b) 

Figure 4: Evolution of the (a) reward per episode and (b) produced parts per 
episode 

The blue curve in Figure 4 shows that the number of parts 
produced per episode also grows with the progress of the 
learning process of the RL agent. Thus, the growth of the 
reward can be associated with a growth of the workers' 

productivity, which satisfies the initial objective. On the other 
hand, the orange curve shows the results for the same 
simulation run but without using the RL framework.  

It can be seen that at the beginning the number of pieces 
produced per episode is quite similar but while without the RL 
agent this number remains stable, the RL agent significantly 
improves the output. It would even seem that unlike the 
evolution of the reward which seems to converge after 150 
episodes, the number of produced parts still tends to potentially 
evolve with a longer simulation. An improvement of 8% in the 
number produced pieces is observed. 

Moreover, Figure 5 illustrates that the number of workers on 
the production line does not change the learning capacity of the 
agent and that the number of produced parts per episode still 
increases throughout the learning process.  

  
Figure 5: Comparison of the number of produced parts per 8 hours with 3, 4 

or 5 workers in the production system 

Figure 6 represents the transitions of two workers between 
machines during the last episode of the simulation, i.e. the one 
where the largest number of parts is produced. First, the two 
heatmaps are very similar, i.e. the workers perform globally the 
same actions on the production line. Secondly, the transitions 
are on average distributed between all the machines which 
shows that the optimal configuration is the one in which all 
workers work on all the machines rather than one worker being 
responsible for a group of machines in particular. The 
movement of workers seems to follow the same path as a part 
through the production line. These movements are more regular 
between the machines M1 and M5 because the transport of the 
parts is manual, in contrast to the transport between the 
machines M5 and M9, which is performed by conveyor.  

 
Figure 6: Workers transitions between machines 

Figure 6 also shows that many transitions occur between the 
same machines, i.e. workers regularly perform several actions 
in a row on the same machine before switching. However, the 
heatmap does not really show the differences in work time on 
each machine per worker, which is better illustrated in Figure 
7, which shows the percentage deviation in work time of each 
worker on each machine compared to the overall average work 
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time of workers on each machine. The maximum deviation 
does not exceed 15%, i.e. the working times of each worker on 
the machines are pretty similar. This maximum deviation is 
reached at machine M7, where worker 0 works 15% less than 
the average work time of the workers on this machine, and 
worker 4 counterbalances this difference by working 15% 
more. At machine M2, worker 2 offsets the work deficit on this 
machine of workers 0, 3 and 4.  

 
Figure 7: Comparison of the workers working time on each machine 

6. Conclusion and Outlook 

Based on a chosen PPO agent and a thorough 
hyperparameter tuning a functioning RL agent is implemented 
which is able to efficiently allocate tasks between workers in a 
semi-automated production line. This is evaluated in a real 
world assembly cell for automotive parts. It can be shown that 
the RL agent improved its decision quality over time and a 
stable distribution of tasks was reached for a given simulation 
environment. 

Further research has to investigate how the learned control 
logic can be implemented in the real world, since the control of 
workers on a granularity of seconds is in reality impossible. 
Another line of research can be the improvement of robustness 
of the agent under changing layouts of the production system. 
Furthermore the agent has to be trained in different 
environments to prove its versatility. 
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