
ScienceDirect

Available online at www.sciencedirect.comAvailable online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2017) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

28th CIRP Design Conference, May 2018, Nantes, France

A new methodology to analyze the functional and physical architecture of
existing products for an assembly oriented product family identification

Paul Stief *, Jean-Yves Dantan, Alain Etienne, Ali Siadat
École Nationale Supérieure d’Arts et Métiers, Arts et Métiers ParisTech, LCFC EA 4495, 4 Rue Augustin Fresnel, Metz 57078, France

* Corresponding author. Tel.: +33 3 87 37 54 30; E-mail address: paul.stief@ensam.eu

Abstract

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach.
© 2017 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018.

Keywords: Assembly; Design method; Family identification

1. Introduction

Due to the fast development in the domain of
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global
competition with competitors all over the world. This trend,
which is inducing the development from macro to micro
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1].
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find.

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical).

Classical methodologies considering mainly single products
or solitary, already existing product families analyze the
product structure on a physical level (components level) which
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this

Procedia CIRP 103 (2021) 170–175

2212-8271 © 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile manufacturing
and service operations : Lessons from COVID-19 (CIRPe 2021)
10.1016/j.procir.2021.10.027

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile manufacturing
and service operations : Lessons from COVID-19 (CIRPe 2021)

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2021) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2021 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile manufacturing and service
operations : Lessons from COVID-19 (CIRPe 2021)

9th CIRP Global Web Conference – Sustainable, resilient, and agile manufacturing and service operations :
Lessons from COVID-19

Reinforcement Learning Based Production Control of Semi-automated
Manufacturing Systems

 Leonard Overbeck*a, Adrien Huguesa, Marvin Carl Maya, Andreas Kuhnlea, Gisela Lanzaa

awbk Institute of Production Science, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany

* Corresponding author. Tel.: +49 152 3950 2641; E-mail address: leonard.overbeck@kit.edu

Abstract

In an environment which is marked by an increasing speed of changes, industrial companies have to be able to quickly adapt to new market
demands and innovative technologies. This leads to a need for continuous adaption of existing production systems and the optimization of their
production control. To tackle this problem digitalization of production systems has become essential for new and existing systems. Digital twins
based on simulations of real production systems allow the simplification of analysis processes and, thus, a better understanding of the systems,
which leads to broad optimization possibilities. In parallel, machine learning methods can be integrated to process the numerical data and discover
new production control strategies. In this work, these two methods are combined to derive a production control logic in a semi-automated
production system based on the chaku-chaku principle. A reinforcement learning method is integrated into the digital twin to autonomously learn
a superior production control logic for the distribution of tasks between the different workers on a production line.
By analyzing the influence of different reward shaping and hyper-parameter optimization on the quality and stability of the results obtained, the
use of a well-configured policy-based algorithm enables an efficient management of the workers and the deduction of an optimal production
control logic for the production system. The algorithm manages to define a control logic that leads to an increase in productivity while having a
stable task assignment so that a transfer to daily business is possible. The approach is validated in the digital twin of a real assembly line of an
automotive supplier.
The results obtained suggest a new approach to optimizing production control in production lines. Production control shall be centered directly
on the workers' routines and controlled by artificial intelligence infused with a global overview of the entire production system.

© 2021 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile
manufacturing and service operations : Lessons from COVID-19 (CIRPe 2021)

 Keywords: Machine Learning, Reinforcement Learning, Digital Twin, Production Control, Task Allocation, Productivity

1. Introduction

A dynamic environment and a shortening of product life
cycles force manufacturing to increase the flexibility of their
production systems. Semi-automated assembly cells are a
production system type that offers high flexibility with regard
to output volume, material flow and product types. Yet, the
optimal control of such a flexible system poses a challenge

given the frequently changing optimization conditions.
Classical analytical optimization methods are in many cases
too slow and costly to be repeated often. One possible solution
to automatically find and quickly adapt (after an initial learning
period) a good control strategy for each system configuration
could be the use of artificial intelligence (AI). The following
work presents the application of a specific AI-tool,

Available online at www.sciencedirect.com

ScienceDirect
Procedia CIRP 00 (2021) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2021 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile manufacturing and service
operations : Lessons from COVID-19 (CIRPe 2021)

9th CIRP Global Web Conference – Sustainable, resilient, and agile manufacturing and service operations :
Lessons from COVID-19

Reinforcement Learning Based Production Control of Semi-automated
Manufacturing Systems

 Leonard Overbeck*a, Adrien Huguesa, Marvin Carl Maya, Andreas Kuhnlea, Gisela Lanzaa

awbk Institute of Production Science, Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany

* Corresponding author. Tel.: +49 152 3950 2641; E-mail address: leonard.overbeck@kit.edu

Abstract

In an environment which is marked by an increasing speed of changes, industrial companies have to be able to quickly adapt to new market
demands and innovative technologies. This leads to a need for continuous adaption of existing production systems and the optimization of their
production control. To tackle this problem digitalization of production systems has become essential for new and existing systems. Digital twins
based on simulations of real production systems allow the simplification of analysis processes and, thus, a better understanding of the systems,
which leads to broad optimization possibilities. In parallel, machine learning methods can be integrated to process the numerical data and discover
new production control strategies. In this work, these two methods are combined to derive a production control logic in a semi-automated
production system based on the chaku-chaku principle. A reinforcement learning method is integrated into the digital twin to autonomously learn
a superior production control logic for the distribution of tasks between the different workers on a production line.
By analyzing the influence of different reward shaping and hyper-parameter optimization on the quality and stability of the results obtained, the
use of a well-configured policy-based algorithm enables an efficient management of the workers and the deduction of an optimal production
control logic for the production system. The algorithm manages to define a control logic that leads to an increase in productivity while having a
stable task assignment so that a transfer to daily business is possible. The approach is validated in the digital twin of a real assembly line of an
automotive supplier.
The results obtained suggest a new approach to optimizing production control in production lines. Production control shall be centered directly
on the workers' routines and controlled by artificial intelligence infused with a global overview of the entire production system.

© 2021 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile
manufacturing and service operations : Lessons from COVID-19 (CIRPe 2021)

 Keywords: Machine Learning, Reinforcement Learning, Digital Twin, Production Control, Task Allocation, Productivity

1. Introduction

A dynamic environment and a shortening of product life
cycles force manufacturing to increase the flexibility of their
production systems. Semi-automated assembly cells are a
production system type that offers high flexibility with regard
to output volume, material flow and product types. Yet, the
optimal control of such a flexible system poses a challenge

given the frequently changing optimization conditions.
Classical analytical optimization methods are in many cases
too slow and costly to be repeated often. One possible solution
to automatically find and quickly adapt (after an initial learning
period) a good control strategy for each system configuration
could be the use of artificial intelligence (AI). The following
work presents the application of a specific AI-tool,

 Leonard Overbeck et al. / Procedia CIRP 103 (2021) 170–175 171
2 Author name / Procedia CIRP 00 (2019) 000–000

reinforcement learning (RL), on the problem of production
control in a semi-automated production system.

2. Literature review

[1] present a successful application of RL for order
dispatching in semiconductor manufacturing. The selection of
an optimal production control agent depending on the current
situation using a digital twin is presented by [2]. [3] design a
control of dispositional orders by RL in the case of series
production, whereas [4] develop a strategy for controlling shop
floor inventories that are customer-oriented and versatile with
reinforcement learning. [5] adopt a neural reinforcement
learning approach in production planning to learn local
allocation policies. [6] use a neural network trained with RL for
a job-shop scheduling task, while [7] propose a deep
reinforcement learning method to optimize global production
scheduling in complex shops. RL is used by [8] to optimize the
throughput of a transfer line. Multi-agent reinforcement
learning methods for production control are also developed by
[9], [10] and [11]. [12] adopt the IRT approach to compare an
RL algorithm against human performance on two simple job-
shop scheduling examples. RL for AGV routing is developed
and analyzed by [13].

Although RL methods are already used for industrial
applications and in particular for production control, this field
of study is still in its infancy and no work has so far focused on
the direct optimization of worker’s tasks distribution in a semi-
automated production line. As shown, the exisiting literatur is
more generally focused on the control of resources or the
quality of order dispatching in a production system. Our work,
therefore, has the ambition to study a new control task, based
this time directly on the optimization of workers' activities in a
linear, semi-automated production line.

3. Own Approach

3.1. Problem description

In a semi-automated production system, human operators
interact with machines that require manual operations to
function. When a semi-automated production line is clocked,
the actions of the operators must be particularly coordinated
with the work rhythm of the machines to avoid losing time and
creating efficiency losses. Indeed, one of the main problems
with this type of production strategy is that the smallest
interruption can have a significant impact and generate so-
called deadlock situations that are harmful to the productivity
of the production line. The distribution of tasks between
operators must be synchronized with the machine processes in
order to maintain a fluid, smooth production and reduce
productivity losses. In order to distribute the tasks among
operators in an optimal way, the production line is modeled
with a simulation software consisting of machines, operation
principles and operators.

Based on this model, an RL method can be used to control
the distribution of workers' tasks in an optimal way, i.e. in such
a way that deadlock problems are avoided and workers'
productivity is maximized.

3.2. Reinforcement learning

Reinforcement learning is a machine learning method in
which an agent takes actions 𝑎𝑎𝑡𝑡 ∈ 𝐴𝐴 based on the state 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆
of the environment at time 𝑡𝑡, where the action space 𝐴𝐴 is the set
of all valid actions in a given environment and 𝑆𝑆 is the set of
states, and in return receives a reward 𝑟𝑟𝑡𝑡 depending on the
impact of its action that leads to the next state 𝑠𝑠𝑡𝑡+1 ∈ 𝑆𝑆. The
strategy for selecting actions is referred to as the policy 𝜋𝜋 with
the agent's objective of learning an optimal policy, i.e. one that
maximizes the cumulative reward in the long run. This
principle is based on a Markov Decision Process (MDP) model
which relies on the basic Markov property stating the absence
of memory of a process, i.e. that the probability of the future
state 𝑠𝑠𝑡𝑡+1 depends only on the present state and action 𝑠𝑠𝑡𝑡 and
𝑎𝑎𝑡𝑡 and not on past states and actions [14]. Figure 1 describes
the interaction of a reinforcement learning agent with the
environment.

Figure 1: Interaction of reinforcement learning agent with environment [19]

Thus, for using a reinforcement learning agent, it is
necessary to properly model the states of the environment, the
actions that the agent can take in this environment and also the
reward function that enables the agent to understand the quality
of the actions taken in respect to reaching the optimal policy.

3.2.1. RL for worker control
The environment is in this case an event-discrete simulation

of a semi-automated production line modeling the routines of
the workers where the different actions per worker and their
activities in the production line are controlled by the agent.
Figure 2 shows how the agent is used to control the worker’s
actions. When a new action has to be performed, it is put in a
waiting list until a worker is available. When a worker is
available, the RL agent assigns an action from the waiting list
and the worker then performs that action it was delegated from
the centralized agent. This triggers a new state in the
environment that leads to new actions in the waiting list. The
principle of using a reinforcement learning method is that the
agent learns to allocate the optimal action from the waiting list,
i.e. the one that globally helps in reaching the best productivity
of the worker by trying to maximize the reward it gets after
each allocation.

Figure 2: Agent-worker interaction

172 Leonard Overbeck et al. / Procedia CIRP 103 (2021) 170–175
 Author name / Procedia CIRP 00 (2019) 000–000 3

3.3. Selection of a reinforcement learning method

There are many algorithms implementing reinforcement
learning and the selection of an RL algorithm is an important
step when designing a reinforcement learning framework
because although based on the same principle, ease of use and
performance differ widely between different algorithms for
each use case. Two main families are known: model-based
algorithms, used for example to play chess with AlphaZero
[15], and model-free algorithms. As there is no model known
for this kind of problems, this work focuses on model-free
algorithms. Two types of algorithms constitute the family of
model-free algorithms, value-based algorithms and policy-
based algorithms.

3.3.1. Value-based algorithms
Value-based methods involve determining the optimal

policy for the reinforcement learning algorithm by optimizing
the action-value function 𝑄𝑄𝜋𝜋(𝑠𝑠𝑡𝑡, 𝑎𝑎𝑡𝑡) that gives the expected
reward after starting from state 𝑠𝑠𝑡𝑡, having taken action 𝑎𝑎𝑡𝑡 and
acting according to policy . Common value-based algorithms
include Q-learning [16] and deep Q-networks (DQN) [17].
Both methods are off-policy methods, i.e. they use different
policies for selecting actions and optimizing the optimal target
policy, which poses reliability problems. Furthermore, the use
of a DQN algorithm has shown that it is difficult to find the
ideal parameters to obtain reliable and reproducible results.
This and a bad sampling efficiency hampering the speed of the
algorithm made it easier to work with a policy-based method.

3.3.2. Policy-based algorithms
Rather than using approximations of value functions,

policy-based algorithms approximate the policy directly with a
gradient-based method and are thus a more direct way to learn
the optimal policy [14]. Algorithms using this type of method
include the vanilla policy gradient algorithm (VPG), the trusted
region policy gradient algorithm (TRPO) [18] and the proximal
policy optimization algorithm (PPO) [19]. The three algorithms
have the same operating principles, but PPO uses techniques
that solve some of the shortcomings of the other methods, such
as variance problems and computational complexity. Schulman
et al. also show that this method on a collection of benchmark
tasks outperforms both TRPO and VPG and is easier to
implement [19]. Following the various disadvantages linked to
the use of a value-based algorithm presented in the previous
paragraph, we decided to work with a policy-based algorithm
and more specifically a PPO algorithm for the rest of our study.

3.4. Design of the RL framework

This section highlights how the RL agent framework is
designed to be integrated into a simulation of a semi-automated
production system. An artificial neural network (ANN) is used
to approximate the agent's optimal policy. The first layer of the
ANN takes as input the state of the environment, then, thanks
to the policy determined by the weights of the hidden layers of
the ANN, the last layer returns the selected action, i.e. the one
with the highest activation value. Following this selection, the

state of the environment is modified by the action, and the
policy is adapted according to the reward obtained.

The following sections show how the action space and the
states of the environment are modeled as well as how the
reward function is defined to solve the worker control problem.

3.4.1. Action space representation
The action space represents all the actions that the agent can

take. Thus, its definition follows from the principle per agent
described in the RL for worker control section. The only
constraint to define the action space of the RL agent is that it
must contain a fixed number of actions that cannot vary over
time. However, in reality, the number of actions to be
performed in the production line is never identical, in particular
during the production start-up when all the machines are not
yet in use and, thus, fewer actions have to be performed by the
workers than when the production is in a steady state. To easen
this constraint all the actions that can be performed by a worker
on the production line are listed and fixed, even if it is possible
that at the moment 𝑡𝑡 an action is not actually performed.

The action space is, thus, defined by the sum of all the
actions that can be performed manually for each machine of the
production line. Let [𝑀𝑀1, … , 𝑀𝑀𝑚𝑚], 𝑚𝑚 ∈ ℕ be the set of
machines of the production line and [𝐴𝐴1, … , 𝐴𝐴𝑛𝑛], 𝑛𝑛 ∈ ℕ the set
of all possible actions that can be performed at a machine. The
action space is then the set Ω = [𝐴𝐴1𝑀𝑀1, … , 𝐴𝐴𝑛𝑛𝑀𝑀𝑚𝑚] with 𝐴𝐴𝑖𝑖𝑀𝑀𝑗𝑗
the action 𝑖𝑖 on machine 𝑗𝑗.

3.4.2. State representation
The state definition is a crucial element that influences the

learning process because it is by observing the state that the
agent selects the next action [14]. In the case of a production
line, a lot of information can be used to describe the state of the
environment. However, the more information there is, the more
difficult it is for the agent to construct a link between the chosen
action and the state of the input environment. For this reason,
the description has to be simplified as much as possible and the
environment described only by the actions that can be
performed by the workers on the same principle as the
description of the action space. The difference, however, is that
the state of the environment is used as an input vector to the
neural network and can therefore be encoded with binary
values, to facilitate data processing in the ANN.

Thus, binary values can be used here to distinguish between
actions that are actually available and those that are not
available at the time the agent selects an action. The state vector
is then represented by 𝑆𝑆 =
[𝐴𝐴1𝑀𝑀1, . . , 𝐴𝐴1𝑀𝑀𝑚𝑚, … , 𝐴𝐴𝑛𝑛𝑀𝑀1, . . , 𝐴𝐴𝑛𝑛𝑀𝑀𝑚𝑚] with 𝐴𝐴𝑖𝑖𝑀𝑀𝑗𝑗 = 1 if the
action 𝐴𝐴𝑖𝑖 on the machine 𝑀𝑀𝑗𝑗 is to be performed and 𝐴𝐴𝑖𝑖𝑀𝑀𝑗𝑗 = 0
if the action 𝐴𝐴𝑖𝑖 on the machine 𝑀𝑀𝑗𝑗 is not to be performed in the
moment the agent is called to select an action. The RL-agent
therefore knows all the actions that are available as well as
those which are not and only has to choose the best one among
the available actions. Moreover, when an action is selected by
the RL-agent, the state value of this action is reset to 0 to
indicate that it has been taken over by a worker, which allows
to show the change of state in a sufficiently transparent way.

Figure 3 gives an example of possible decisions of the agent
over time.

 Leonard Overbeck et al. / Procedia CIRP 103 (2021) 170–175 173
4 Author name / Procedia CIRP 00 (2019) 000–000

Figure 3. Visualization of the agents decisions

3.4.3. Reward function
The reward function is used to make the agent understand

whether the selected action was good or not and, thus, make the
agent adjust its selection policy according to the feedback.

The reward function must therefore be designed according
to the objectives of the RL framework. In this case, the main
objective is to define a logic control for the workers that
maximizes their productivity on the production line.

Maximizing productivity implies using the available
resources in the best possible way. In the present case of semi-
automatic assembly, machines and employees play an essential
role and can therefore be included in the development of a
control logic through the reward function. The idea is to
combine resource utilization with a well-known production
control concept, the push flow production, defined in [20]. The
principle is therefore built on using the reward function to map
the application of a central control (push) to obtain a maximum
utilization rate of the machines in the production line.

Concretely, this solution is implemented in the simulation
by rewarding the RL agent each time a machine completes a
process. The underlying idea is therefore to maximize the
number of processes that a machine performs and consequently
the number of parts that pass through this machine and finally
the number of parts produced overall in the production line.

A second possibility to design the reward function is based
on the analysis of production line modeling. When the agent
assigns an available action to be performed, the action is in fact
not always immediately feasible because the machine may still
be used by a previous part. Thus, although an action is
available, it is not always feasible and, in this case, it is said to
be non-feasible. The idea resulting from this analysis is to
punish the RL agent when the agent chooses a non-feasible
action. In fact, the less time workers waste on working on non-
feasible actions, the more efficiently they will work, resulting
in higher productivity.

To take into account the two ideas underlying the push and
action-feasibility functions a reward function that adds these
two functions together and then rewards the agent for how well
the selected action meets the objectives defined in these two
functions is used.

3.4.4. Implementation of the production system simulation
The different components describing the RL framework

presented in the previous sections have been integrated in a
simulation of a semi-automated production line built with the
python library SimPy. The simulation models the movement of
workers on the production line and the production stages of a
part, i.e. its progression through the various machines making
up the production line. The simulation has been designed in an
episodic way so that the agent can be trained by repeating the
same simulation as many times as necessary until the optimal

policy is found. The RL agent used comes from the tensorforce
library written in python and based on tensorflow.

3.5. Evaluation

3.5.1. Performance of the RL algorithm
After defining the different elements of the reinforcement

learning framework and the parameters of the PPO algorithm,
different performance criteria are evaluated, in particular the
progression, stability and convergence of the learning process.
Thus, different simulation configurations were tested to
observe the influence of the duration of a training episode, the
number of training episodes or the number of workers working
in the production line on the learning process of the RL agent.

Each time, the analysis of the evolution of the reward
received per episode is the first step. The reward should
increase as the simulation episodes progress and then stagnate
when the optimal policy is reached. In a second step, in order
to check that the reward function corresponds to our initial
objectives, the evolution of the number of pieces produced per
simulation episode is also analyzed and compared with the
result obtained without any RL-algorithm.

3.5.2. Analysis of worker’s behavior
When the algorithm has converged to an optimal policy, a

control logic for the workers can be determined from the results
obtained. The criteria for observing this control logic are the
number of worker transitions between each machine and the
percentagewise deviation between the average time spent
working on each machine per worker. These measures make it
possible to analyze how the tasks are distributed between the
workers by the agent, for example whether each worker is
responsible for a fixed number of machines or they have a
similar behavior or if they are all responsible for all the
machines.

4. Application

4.1.1. Use Case
The methodology was developed in a research partnership

between of the wbk Institute for Production Technology at the
Karlsruhe Institute of Technology (KIT) and the central
department Connected Manufacturing of the Bosch Powertrain
Solutions division with the goal to develop an agile production
system. Its application and validation are also part of this joint
research project.

The approach was implemented and tested in the simulation
model of a real world production system for car engine
components which is organized in a cell composed of two lines
facing each other. The assembly cell is semi-automated,
following the Chaku-Chaku principle. This means that the
machines perform their processes on their own and workers are
mainly required for loading and unloading of machines and
transporting parts between them. The line produces various
product types with differing material flows, processing times,
etc. The default number of workers in the production cell is 5,
but can deviate due to external factors such as vacations, sick
days, reduced customer demand, trainings, etc. For each
number of workers an optimal distribution of task between the

174 Leonard Overbeck et al. / Procedia CIRP 103 (2021) 170–175
 Author name / Procedia CIRP 00 (2019) 000–000 5

workers has to be found for each article type. There are 9
machines in the manufacturing cells and 29 possible tasks for
the worker to do.

4.1.2. Hyperparameter selection
Hyperparameters are used to adjust the RL algorithm, in this

case the PPO algorithm. Among the most important parameters
we find the following. The batch size is the number of data
points collected between each update of the ANN weights, this
parameter influences the speed and stability of the learning
process. The update frequency parameter indicates how often
the policy is updated. The learning rate corresponds to the
step size of the ANN-update. The parameter discount reduces
the anticipation of rewards that lie further in the future.
Regularization parameters like L2-regularization or entropy
regularization are additional parameters that prevent the
algorithm from overfitting the policy [21] or the policy to
become deterministic and converge to a poor policy too quickly
[22]. After a series of tests, comparisons and analysis of the
results obtained by varying the hyperparameters, those that
give the best results are presented in Table 1.

 Table 1: Hyperparameters values of the PPO-algorithm.

Hyperparameter Value
Batch size and update Frequency
Learning rate
Discount
Entropy regularization
L2-regularization

20 episodes
0.00001
0.9
0.01
0.01

5. Results

This section outlines the various results obtained by
integrating the RL framework presented in the previous
sections into the case study. Figure 3 and Figure 4 show the
evolution of the reward and the number of pieces produced per
episode as the agent's learning process progresses. The duration
of each episode is eight hours, i.e. the duration of a production
shift, and five workers are working in the production line.

Figure 4 highlights the increasing reward over the episodes
which shows that the RL agent learns to maximize it over time
and experience. This evolution is stable over time and
converges from episode 150 onwards, thus showing that the
agent can learn a policy after several training episodes.

(a) (b)

Figure 4: Evolution of the (a) reward per episode and (b) produced parts per
episode

The blue curve in Figure 4 shows that the number of parts
produced per episode also grows with the progress of the
learning process of the RL agent. Thus, the growth of the
reward can be associated with a growth of the workers'

productivity, which satisfies the initial objective. On the other
hand, the orange curve shows the results for the same
simulation run but without using the RL framework.

It can be seen that at the beginning the number of pieces
produced per episode is quite similar but while without the RL
agent this number remains stable, the RL agent significantly
improves the output. It would even seem that unlike the
evolution of the reward which seems to converge after 150
episodes, the number of produced parts still tends to potentially
evolve with a longer simulation. An improvement of 8% in the
number produced pieces is observed.

Moreover, Figure 5 illustrates that the number of workers on
the production line does not change the learning capacity of the
agent and that the number of produced parts per episode still
increases throughout the learning process.

Figure 5: Comparison of the number of produced parts per 8 hours with 3, 4

or 5 workers in the production system

Figure 6 represents the transitions of two workers between
machines during the last episode of the simulation, i.e. the one
where the largest number of parts is produced. First, the two
heatmaps are very similar, i.e. the workers perform globally the
same actions on the production line. Secondly, the transitions
are on average distributed between all the machines which
shows that the optimal configuration is the one in which all
workers work on all the machines rather than one worker being
responsible for a group of machines in particular. The
movement of workers seems to follow the same path as a part
through the production line. These movements are more regular
between the machines M1 and M5 because the transport of the
parts is manual, in contrast to the transport between the
machines M5 and M9, which is performed by conveyor.

Figure 6: Workers transitions between machines

Figure 6 also shows that many transitions occur between the
same machines, i.e. workers regularly perform several actions
in a row on the same machine before switching. However, the
heatmap does not really show the differences in work time on
each machine per worker, which is better illustrated in Figure
7, which shows the percentage deviation in work time of each
worker on each machine compared to the overall average work

 Leonard Overbeck et al. / Procedia CIRP 103 (2021) 170–175 175
6 Author name / Procedia CIRP 00 (2019) 000–000

time of workers on each machine. The maximum deviation
does not exceed 15%, i.e. the working times of each worker on
the machines are pretty similar. This maximum deviation is
reached at machine M7, where worker 0 works 15% less than
the average work time of the workers on this machine, and
worker 4 counterbalances this difference by working 15%
more. At machine M2, worker 2 offsets the work deficit on this
machine of workers 0, 3 and 4.

Figure 7: Comparison of the workers working time on each machine

6. Conclusion and Outlook

Based on a chosen PPO agent and a thorough
hyperparameter tuning a functioning RL agent is implemented
which is able to efficiently allocate tasks between workers in a
semi-automated production line. This is evaluated in a real
world assembly cell for automotive parts. It can be shown that
the RL agent improved its decision quality over time and a
stable distribution of tasks was reached for a given simulation
environment.

Further research has to investigate how the learned control
logic can be implemented in the real world, since the control of
workers on a granularity of seconds is in reality impossible.
Another line of research can be the improvement of robustness
of the agent under changing layouts of the production system.
Furthermore the agent has to be trained in different
environments to prove its versatility.

Acknowledgements

This research was funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research
Foundation) - DFG 416818066 “Planungsmethode für eine
veränderungsfähige Bandabstimmung von getakteten
Fließmontagesystemen“.

References

[1] Kuhnle, A., Schäfer, L., Stricker, N., Lanza, G., 2019.
Design, Implementation and Evaluation of Reinforcement
Learning for an Adaptive Order Dispatching in Job Shop
Manufacturing Systems. Procedia CIRP 81 (7676), 234–239.

[2] May, M. C., Overbeck, L., Wurster, M., Kuhnle, A., &
Lanza, G., 2020. Foresighted digital twin for situational
agent selection in production control. Procedia CIRP.

[3] Stegherr, F., 2000. Reinforcement-Learning zur dispositiven
Auftragssteuerung in der Variantenreihenproduktion.
Dissertation. Herbert Utz Verlag, München.

[4] Scholz-Reiter, B., Hamann, T., 2008. The behaviour of
learning production control. CIRP Annals 57 (1), 459–462.

[5] Riedmiller, S., Riedmiller, M., 1999. Riedmiller, Simone,
and Martin Riedmiller. "A neural reinforcement learning
approach to learn local dispatching policies in production
scheduling. IJCAI (2), 764–771.

[6] Zhang, W., Dietterich, T.G., 1996. High-performance job-
shop scheduling with a timedelay TD network. Advances in
neural information processing systems 8, 1024–1030.

[7] Waschneck, B., Reichstaller, A., Belzner, L., Altenmüller,
T., Bauernhansl, T., Knapp, A., Kyek, A., 2018.
Optimization of global production scheduling with deep
reinforcement learning. Procedia CIRP 72 (7540), 1264–
1269.

[8] Mahadevan, S., Theocharous, G., 1998. Optimizing
Production Manufacturing Using Reinforcement Learning.
FLAIRS Conference 372, 377.

[9] Dittrich, M.-A., Fohlmeister, S., 2020. Cooperative multi-
agent system for production control using reinforcement
learning. CIRP Annals 69 (1), 389–392.

[10] May, M.C., Kiefer, L., Kuhnle, A., Stricker, N., Lanza, G.,
2021. Decentralized Multi-Agent Production Control
through Economic Model Bidding for Matrix Production
Systems. Procedia CIRP 96, 3–8.

[11] Malus, A., Kozjek, D., 2020. Real-time order dispatching for
a fleet of autonomous mobile robots using multi-agent
reinforcement learning. CIRP Annals 69 (1), 397–400.

[12] Burggräf, P., Wagner, J., Koke, B., Bamberg, M., 2020.
Performance assessment methodology for AI-supported
decision-making in production management. Procedia CIRP
93 (7587), 891–896.

[13] Lu, C., Long, J., Wu, W., Gu, Y., Lou, J., Huang, Y., 2020.
Deep Reinforcement Learning for Solving AGVs Routing
Problem. International Conference on Verification and
Evaluation of Computer and Communication Systems, 222–
236.

[14] Sutton, R.S., Barton, A.G., 1998. Reinforcement learning:
An introduction. MIT Press, 548 pp.

[15] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Siefre, L., 2017. Mastering Chess
and Shogi by Self-Play with a General Reinforcement
Learning Algorithm. arXiv preprint (preprint
arXiv:1712.01815.).

[16] Watkins, C.J.C.H., Dayan, P., 1992. Q-Learning. Machine
Learning (8), 279–292.

[17] Mnih, V., Kavukcuoglu, K., Silver, D., Antononglou, I.,
Wierstra, D., Riedmiller, M., 2013. Playing Atari with Deep
Reinforcement Learning. arXiv preprint arXiv:1312.5602.

[18] Schulman, J., Levine, S., Moritz, P., Jordan, M., Abbeel, P.,
2015. Trust Region Policy Optimization. International
conference on machine learning, 1889–1897.

[19] Schulmann, J., Wolski, F., Dhariwal, P., Radford, A.,
Klimov, O., 2017. Proximal Policy Optimization
Algorithms. arXiv preprint arXiv:1707.06347.

[20] Westkämper, E., 2006. Einführung in die Organisation der
Produktion. Springer, Berlin Heidelberg New York, 263 pp.

[21] Wang, K., Kang, B., Shao, J., Feng, J., 2020. Improving
Generalization in Reinforcement Learning with Mixture
Regularization, in: 34th Conference on Neural Information
Processing Systems (NeurIPS 2020), Vancouver, Canada.

[22] Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi,
Dale Schuurmans, 2019. Understanding the Impact of
Entropy on Policy Optimization. International conference on
machine learning, 151–160.

