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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

One of the most complex and agile production environments is semiconductor manufacturing, especially wafer fabrication, as products require
more than several hundred operations and remain in Work-In-Progress for months leading to complex job shops. Additionally, an increasingly
competitive market environment, i.e. owing to Moore’s law, forces semiconductor companies to focus on operational excellence, resiliency and,
hence, leads to product quality as a decisive factor. Product-specific time constraints comprising two or more, not necessarily consecutive, opera-
tions ensure product quality at an operational level and, thus, are an industry-specific challenge. Time constraint adherence is of utmost importance,
since violations typically lead to scrapping entire lots and a deteriorating yield. Dispatching decisions that determine time constraint adherence
are as a state of the art performed manually, which is stressful and error-prone. Therefore, this article presents a data-driven approach combining
multi-variate time-series with centralized information to predict time constraint adherence probability in wafer fabrication to facilitate dispatching.
Real-world data is analyzed and different statistical and machine learning models are evaluated.
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1. Introduction

Wafer fabrication is among the most complex industrial en-
vironments as products require several hundred operations to be
produced. It is associated with many process-related challenges
leading to complex job shops [22]. An increasingly competi-
tive market environment forces semiconductor companies to fo-
cus on operational improvements to realize necessary cost and
cycle time reductions and makes quality a decisive competi-
tive factor [21]. One industry-specific challenge emerges from
product-related time constraints, which are imposed for qual-
ity and yield purposes [16]. A time constraint is defined by two
operations Olr, Ols with r < s that are linked by a lot-specific
time limit tlrs, which restricts the maximum time allowed be-
tween the completion of operation Olr and start of operation
Ols for lot l [10]. Additionally, multiple time constraints might
be nested or directly succeeding one another resulting in com-
plex time constraints [28]. Violations of time constraints lead to

scrapping or rework of an entire lot [2]. Thus, time constraint
adherence is of utmost importance.

Dispatching decisions on an operational level heavily influ-
ence time constraint adherence and are often based on the oper-
ators’ experience and therefore require additional manual effort
and are error-prone [16]. Data availability increases manifold
and, thus, this article presents a data-driven approach apply-
ing multivariate time series analysis to predict time constraint
adherence probability in wafer fabrication dispatching. Real-
world data is analyzed and different statistical and machine
learning models are comparatively evaluated.

Therefore, modeling different types of time constraints is
reviewed in Section 2. Section 3 introduces the modeling ap-
proach, which consists of a point estimator and a correspond-
ing prediction interval. In Section 4, a case study is presented,
whose results are subsequently discussed in Section 5. This pa-
per concludes with an outlook and indications for further re-
search in Section 6.

2212-8271© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile manufacturing and service
operations : Lessons from COVID-19 (CIRPe 2021).

Available online at www.sciencedirect.com

Procedia CIRP 00 (2021) 000–000 www.elsevier.com/locate/procedia

9th CIRP Global Web Conference – Sustainable, resilient, and agile manufacturing and service operations :
Lessons from COVID-19

Multi-variate time-series for time constraint adherence prediction in
complex job shops

Marvin Carl May*a,, Lukas Behnena, Andrea Holzerb, Andreas Kuhnlea, Gisela Lanzaa

awbk Institute of Production Science, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
bInfineon Technologies AG, Wernerwerkstraße 2, 93049 Regensburg, Germany

* Corresponding author. Tel:+49-1523-950-2624; Fax:+49-721-60845005. E-mail address: marvin.may@kit.edu

Abstract

One of the most complex and agile production environments is semiconductor manufacturing, especially wafer fabrication, as products require
more than several hundred operations and remain in Work-In-Progress for months leading to complex job shops. Additionally, an increasingly
competitive market environment, i.e. owing to Moore’s law, forces semiconductor companies to focus on operational excellence, resiliency and,
hence, leads to product quality as a decisive factor. Product-specific time constraints comprising two or more, not necessarily consecutive, opera-
tions ensure product quality at an operational level and, thus, are an industry-specific challenge. Time constraint adherence is of utmost importance,
since violations typically lead to scrapping entire lots and a deteriorating yield. Dispatching decisions that determine time constraint adherence
are as a state of the art performed manually, which is stressful and error-prone. Therefore, this article presents a data-driven approach combining
multi-variate time-series with centralized information to predict time constraint adherence probability in wafer fabrication to facilitate dispatching.
Real-world data is analyzed and different statistical and machine learning models are evaluated.

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile manufac-
turing and service operations : Lessons from COVID-19 (CIRPe 2021).

Keywords: Production Planning and Control; Time Constraints; Data Analytics; Time Series Analysis; Machine Learning

1. Introduction

Wafer fabrication is among the most complex industrial en-
vironments as products require several hundred operations to be
produced. It is associated with many process-related challenges
leading to complex job shops [22]. An increasingly competi-
tive market environment forces semiconductor companies to fo-
cus on operational improvements to realize necessary cost and
cycle time reductions and makes quality a decisive competi-
tive factor [21]. One industry-specific challenge emerges from
product-related time constraints, which are imposed for qual-
ity and yield purposes [16]. A time constraint is defined by two
operations Olr, Ols with r < s that are linked by a lot-specific
time limit tlrs, which restricts the maximum time allowed be-
tween the completion of operation Olr and start of operation
Ols for lot l [10]. Additionally, multiple time constraints might
be nested or directly succeeding one another resulting in com-
plex time constraints [28]. Violations of time constraints lead to

scrapping or rework of an entire lot [2]. Thus, time constraint
adherence is of utmost importance.

Dispatching decisions on an operational level heavily influ-
ence time constraint adherence and are often based on the oper-
ators’ experience and therefore require additional manual effort
and are error-prone [16]. Data availability increases manifold
and, thus, this article presents a data-driven approach apply-
ing multivariate time series analysis to predict time constraint
adherence probability in wafer fabrication dispatching. Real-
world data is analyzed and different statistical and machine
learning models are comparatively evaluated.

Therefore, modeling different types of time constraints is
reviewed in Section 2. Section 3 introduces the modeling ap-
proach, which consists of a point estimator and a correspond-
ing prediction interval. In Section 4, a case study is presented,
whose results are subsequently discussed in Section 5. This pa-
per concludes with an outlook and indications for further re-
search in Section 6.

2212-8271© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 9th CIRP Global Web Conference – Sustainable, resilient, and agile manufacturing and service
operations : Lessons from COVID-19 (CIRPe 2021).



56	 Marvin Carl May  et al. / Procedia CIRP 103 (2021) 55–60
M.C. May et al. / Procedia CIRP 00 (2021) 000–000 2

2. Related Work

Dispatching, together with Scheduling, belongs to produc-
tion control in the context of semiconductor manufacturing
[22]. The former assigns lots waiting to be processed to re-
sources dynamically in a minute-by-minute manner, while the
latter prescribes a plan that assigns lots well into the future.
Both can follow multiple objectives, typically aiming at de-
creasing cycle times, maximizing throughput or minimizing
cost or time constraint violations. If retaining time constraints
is targeted, dispatching is advantageous as sudden statistical re-
alizations such as machine failures can be incorporated [20].
Hence, the following research focuses on dispatching in the
context of time constraints. Thereby, a gate-keeping decision
determining whether or not a waiting lot is processed is made.

2.1. Literature Review

Although priority-based dispatching rules (heuristics) lack a
global perspective and are oversimplified, they are still widely
used in practice due to the computational limitations of schedul-
ing approaches. Regarding time constraints, there are several
studies that evaluate the robustness of different dispatching
heuristics and propose new procedures to reduce violations as
summarized in Table 1.

The modeling approaches can be categorized in Mixed In-
teger Programming (MIP), dynamic decision models based on
Markov Decision Problems (MDP), experiment analyses as
well as graph or queuing theory based approaches. Heuristic
approaches prevail, focusing on several stage policies, which
integrate batching and dispatching [2, 4, 23]. Throughput ori-
ented heuristics are based on (Work-In-Progress) WIP levels
[12] or capacity thresholds [18] as well as queuing theory based
approaches [31]. However, the heuristically regarded problems
are limited, i.e. to wet etch - furnace operations or implantation

Modeling Solution Objective Ref.

MIP
heuristics & neu-
ral network

max. throughput, min.
time constraint violations

[13]

heuristic control min. avg. cycle time [4]
Queuing
Theory

heuristic reduce setup times [31]

MDP
RL increase utilization [1]
decomposition-
based opt.

max. production rate &
min. scrap rate

[27]

value iteration al-
gorithm

min. inventory holding &
scrap costs

[30, 29]

Disjunct.
graph

sampling-based
heuristic

estimate adherence prob-
ability

[15, 14,
17, 24]

Experiments

plan-based
heuristic

min. violation ratio &
max. avg. cycle time

[33]

heuristic
min. violations [12]
multi-objective [2, 11,

23, 26]
simulations max. machine utilization [25]
data analysis min. violations [20]

Table 1. Classification of the relevant literature at a dispatching level based on
objective, modeling approach and solution technique

[4, 31] and reducing cycle time violations is typically secondary
to throughput maximization [2], cycle time minimization [4] or
utilization maximization [31]. In a similar vein simulations are
used to identify recommendations to reduce the time constraint
impact [25] or to identify and verify heuristics [33]. Yet, their
limited scope impede transferability to the real world.

Data-based dispatching based on a MDP regards two-stage
production and batching [30], but only recently addressed a
simplified production system [1] or multiple products [29].
Time constraints are implicitly regarded in the objective func-
tion as costs [1, 30]. Algorithms are found on value iteration
[30, 29], decomposition [27] and deep Reinforcement Learning
(RL) [1]. Depending on the problem size, traditional heuristic
approaches are outperformed [1], but high training effort and
low generalization [27] preclude real world application.

Few studies try to predict the probability of time constraint
violations to support the gate keeping decision in dispatch-
ing. Probabilistic, disjunctive graph model approaches deal
with complex, nested time constraints involving a randomized
list scheduling algorithm [24], improved dispatching policies
[14, 17] and decision support for nested time constraints [15].
The violation probability on order release can be based on
conservative queue time predictions and time limit comparison
[28]. In contrast to these studies, real world data is used to learn
a dispatching rule in form of a neural network [13] or predict
WIP levels and arrival rates at tool groups to reduce the WIP
level based on tool allocation [6], which is beneficial for time
constraint adherence, but on a planning level. Real world data
from a large fab is analyzed with a single-variate time-series ap-
proach [20] outperforming traditional and manual approaches.

2.2. Research agenda

The literature review reveals a plethora of approaches to deal
with time constraints in semiconductor manufacturing in dis-
patching. Multi-variate approaches and the study of entire pro-
ductions systems with real world data are neglected. Due to the
strong assumptions applied in optimization, simplifications in
heuristic solutions and applied simulation as well as the limited
scope of single-variate learning, practical application in real
world production systems is hindered. Thus, this paper presents
a multi-variate machine learning based approach to accurately
predict time constraint violations in wafer fabs, validated with
extensive real world data.

3. Modeling Approach

In order to support the operators in their gate-keeping deci-
sion for simple time constraints at a dispatching level, a data-
driven model is developed to predict time constraint adherence
probability. A simple time constraint as depicted in Figure 1 in-
volves two consecutive process steps that are linked by a time
limit du such that the operation at the downstream equipment
m2 has to start within the prescribed time limit after the opera-
tion at the upstream equipment m1 is completed.

2
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Fig. 1. Simple time-constrained transitions

The modeling approach is based on predictions of the tran-
sition time for each job from one equipment to another, which
is supplemented by a prediction interval in order to derive the
adherence probability, in similar vein to May et al. [20]. A pre-
diction interval is a statistical interval, which specifies the range
a future value is expected to lie in with a prescribed probability,
called confidence level [5]. In order to evaluate the probability
of not exceeding the imposed time limit, a one-sided prediction
interval is constructed as follows:

( −∞, ŷ + tn−1,1−α ·
√

Var(e)
]

(1)

with ŷ being the point estimator, tn−1,1−α the 1−α-quantile of the
student’s t-distribution and Var(e) the prediction error variance.

3.1. Point Estimators

Different point estimators for the prediction of transition
time are implemented and comparatively evaluated. These
models are centered around a transition time autocorrelation,
first exploited by a previous study May et al. [20].

Autoregressive integrated moving average (ARIMA)
models are linear, univariate statistical models that are defined
by the three components Autoregression (AR), Moving Aver-
age (MA) and an integration operator I, which transforms the
time series so that it is stationary by differencing. Once a sta-
tionary time series is obtained, an ARMA model combining a
p-th order Autoregressive process with a q-th order Moving Av-
erage process is fitted and derives a prediction of the current
value Xt, according to Equation 2, based on the weighted sum
of the past p observations and q error terms plus a constant c
and an error term εt obtained from a white noise process.

xt = c + εt +
p∑

i=1

φi xt−i +

q∑
j=1

θ jεt− j (2)

Appropriate selection of the two hyperparameters p, q rep-
resenting the order of the Autoregressive or respectively, the
Moving Average process is crucial for the model’s perfor-
mance. The weight parameters φt−p, ..., φt−1 and θt−q, ..., θt−1 are
estimated through least square minimization.

Neural networks are increasingly gaining attention in time
series analysis as they are able to incorporate exogenous vari-
ables by design and allow for end-to-end modeling and auto-
matic feature extraction. In contrast to ARIMA models, neu-
ral networks are data-driven and non-parametric, which makes
them less dependent on assumptions about the underlying data

generating process [32]. Artificial neural networks are able
to solve complex tasks by non-linear combinations of inputs,
which are passed through the network from an input layer
through one or multiple hidden layers to an output layer. The in-
volved weights and bias parameters are learned from backprop-
agation minimizing a loss function. However, common feed-
forward neural networks are limited in terms of processing se-
quential time series data as they require a fixed input size, im-
peding modeling variable sequence lengths or long-term depen-
dencies. Furthermore, parameter sharing is infeasible.

Recurrent neural networks (RNNs) are particularly suit-
able to sequential time series analysis due to their recurrent
architecture. An internal, hidden state ht is maintained and up-
dated at each time step t and passed on to the next time step t+1,
which allows information to persist over time. Thereby, model-
ing of long-term dependencies becomes feasible and parameter
sharing is enabled by reusing the same weight matrices. How-
ever, RNNs suffer from the vanishing-gradient problem, since
backpropagation over time involves repeated gradient multipli-
cations. Long Short-Term Memory (LSTM) networks, as an
extension of standard RNNs, use more complex, gated cells and
maintain two separate hidden states to deal with the vanishing
gradient problem, which enables them to model long term de-
pendencies [8].

3.2. Prediction Interval construction

According to Equation 1, a point estimator ŷ, the correspond-
ing quantile of the student’s t-distribution as well as the vari-
ance of the prediction error Var(e) are required to construct a
prediction interval. A prediction ŷ for the next value is, for ex-
ample, obtained by applying the models presented in Section
3.1. Computation of the variance of the prediction error Var(e)
is less trivial and derived in the following.

Since an observed target ti is composed of a signal yi and
inherent noise εi, the prediction error ei, given a point forecast
ŷi is computed as follows [9]:

ei = (yi − ŷi) + εi. (3)

Assuming independence of both terms in Equation 3, the
variance of the prediction error can be decomposed into the two
components epistemic or model uncertainty σ2

ŷi
and aleatoric

uncertainty or inherent noise σ2
ε̂i

as shown in Equation 4 [9].

Var(e) = σ2
ŷi
+ σ2

ε̂i
(4)

For ARIMA models, an analytically derived formula is used
for the computation of the variance of the prediction error and
is, for one-step ahead predictions, given by:

3
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Var(e) = σ2
e(1 + k

1
n

), (5)

where σ2
e quantifies the inherent noise, which can be estimated

on an independent hold-out dataset [5]. The second term ac-
counts for the model uncertainty from weight parameter estima-
tion through least square minimization, which decreases with
increasing data size n.

For neural networks however, a general formula cannot be
derived. While the inherent noise can also be estimated on an
independent hold-out dataset, estimation of the model uncer-
tainty component in Equation 4 requires empirical techniques.
Bayessian neural networks, where a probability distribution is
placed over the network’s parameters have a strong mathemati-
cal foundation for uncertainty quantification, but they require
immense computational effort [9]. However, an approximate
Bayesian approach for a Gaussian process, called Monte-Carlo
dropout, exists [7]. By applying dropout to each hidden layer at
inference and performing B stochastic forward passes through
the network for a specific input i, multiple predictions are sam-
pled. Model uncertainty can be approximated by the sample
variance according to Equation 6.

σ̂2
ŷi
=

1
B − 1

B∑
b=1

(yi − ŷb
i )2 (6)

Monte-Carlo dropout quickly provides model uncertainty
estimates and is easy to implement, since it is directly appli-
cable to different existing neural network architectures [34].

3.3. Derivation of the time constraint adherence probability

The goal is to estimate the time constraint adherence proba-
bility for each transition individually based on a one-sided pre-
diction interval given in Equation 1. At confidence level 1 − α,
the time constraint is not violated if the upper bound of the pre-
diction interval is less than or equal to the lot-specific time limit
du illustrated in Figure 2.

ŷ + tn−1,1−αVar(e) ≤ du. (7)

By transforming Equation 7, the time constraint adherence
probability can be derived from the cumulative density function
of the student’s t-distribution for the result of Equation 8.
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4. Case Study

The proposed modeling approach combining a point estima-
tor for time-constrained transition times with a prediction inter-
val in order to derive the time constraint adherence probability
is applied to real historical wafer fabrication data. The analyzed
transactional log data queried from the Manufacturing Execu-
tion System, which documents the lot progress and provides
further relevant information, is used to reconstruct the highly
right-skewed transition times [20]. The minority of transitions
takes extremely long and, thus, the data is logartihmically trans-
formed to reduce the extreme range [20]. Hence, the dataset is
also extremely imbalanced in terms of the ratio of time con-
straint violations to non-violated ones, motivating the regres-
sion modeling approach with uncertainty quantification.

Since ARIMA models require little computational effort and
solely rely on previous observations, a separate ARIMA model
is fitted to the sequence of transition times for each type of time-
constrained transition defined by two consecutive equipments.

Regarding learning approaches, models are trained for all
types of transitions using the following additional features,
which are selected based on domain knowledge and data ex-
ploration:

• Current queue at time constraint’s ending equipment [19]
• Time since the last downstream equipment breakdown
• Indicator features: e.g. work centers, operations, equip-

ment, downstream equipment type & weekday.

A feed-forward neural network, an LSTM network and a
model combining LSTM and fully-connected layers are trained.
Dropout is applied to each hidden layer to estimate the model
uncertainty using Monte-Carlo dropout. The most important
hyperparameters such as the number of neurons and the dropout
rates are optimized using Bayesian hyperparameter tuning [3].

4.1. Performance evaluation

The implemented models are evaluated in terms of the qual-
ity of the point forecasts and the resulting prediction intervals.
While the transition time predictions are assessed on a hold-
out dataset using common regression performance metrics such
as the mean squared error (MSE) and visual examination, the
prediction interval evaluation involves a trade-off between cov-
erage and interval size.
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Var(e) = σ2
e(1 + k

1
n

), (5)

where σ2
e quantifies the inherent noise, which can be estimated
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ŷi
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ARIMA feed-forw. NN. LSTM LSTM & Dense
MSE 1.9640 1.0578 1.2254 1.2009
PICP 0.8953 0.9325 0.9328 0.9472
MPIW 9.6331 9.6485 9.6783 9.7900

Table 2. Summary of performance metrics of the different models

Coverage, measured by the prediction interval coverage
probability (PICP) in Equation 9, refers to the number of tar-
get values ti of a test dataset of size n that are comprised by
the corresponding upper bound Ui of the one-sided prediction
interval and should be equal to or higher than the prescribed
nominal confidence level 1 − α [9].

PICP =
1
n

n∑
i=1

ci, where ci =


1, ti ≤ Ui

0, else
(9)

The PICP is directly related to the size of the upper bounds,
as arbitrary large, but not meaningful, prediction intervals can
achieve a coverage of 1 [9]. Thus, the (mean) prediction inter-
val width (MPIW) has to be taken into account, which can be
measured according to Equation 10 by the mean of the upper
bounds on a test dataset.

MPIW =
1
n

n∑
i=1

Ui (10)

A final evaluation is carried out in terms of the resulting clas-
sification of time-constrained transitions into adhered and vio-
lated ones based on Equation 7 at different confidence levels
1 − α.

4.2. Results

Performance results are summarized in Table 2 and indicate
that the learning-based approaches provide better predictions of
the transition times than the simple ARIMA model. The neural
networks’ prediction intervals, however, tend to be wider, which
is shown by the corresponding performance metrics computed
for a confidence level of 90%.

In terms of the resulting classification, however, ARIMA
models are already able to correctly detect all time constraint
violations using a threshold of 70% and achieve an overall ac-
curacy of 96.31%. While accuracy and recall are high, preci-
sion of 11.73% is low due to the highly imbalanced data, which
corresponds to a high false alarm rate. Increasing the thresh-
old reduces precision and overall accuracy even further as pre-
diction intervals become wider leading to a higher false alarm
rate. Classifications based on the prediction intervals of neural
networks are worse, especially at low thresholds due to wide
prediction intervals leading to more falsely detected violations.

5. Discussion

Although ARIMA models are simplistic and their point esti-
mates of transition times are worse than all learning-based ap-
proaches, they ultimately yield the best results in terms of clas-
sifying time-constrained transitions into violated and adhered
ones, which might seem contradictory, but can be explained by
the much higher number of parameters in neural networks lead-
ing to a higher model uncertainty. As a result, prediction in-
tervals become wide and many transitions are falsely classified
as violations. The performance metrics in Table 2 confirm this
finding as the models containing more parameters have a higher
average upper bound and an actual coverage that is higher than
the nominal level of 90%.

6. Outlook

The proposed model addressing simple time constraints
combines a point estimator with a prediction interval to de-
rive the adherence probability of simple time constraints aim-
ing at detecting potential violations in advance and is applied
to real-world manufacturing data of an entire wafer fab. The
results are promising as simple ARIMA models are able to de-
tect all time constraint violations. However, precision is low,
since many transitions are falsely classified as a violation. Fur-
thermore, the prediction intervals of learning-based approaches,
which provide better transition time forecasts, become too wide
as a result of the model uncertainty quantification using Monte-
Carlo dropout, resulting in worse classifications.

One major problem for modeling is the heterogeneity of ob-
served transition time sequences depending on the involved
equipment due to the extremely complex manufacturing en-
vironment and diversity of process steps in wafer fabrication.
Therefore, future research can focus on decomposing the prob-
lem, for example by work areas and constructing area-specific
features to improve the prediction of transition times. Further-
more, a more detailed equipment type consideration is neces-
sary. While the constructed features significantly influence tran-
sitions ending at cluster or single tools, other factors seem to
be decisive for batch equipment. Instead of decoupling predic-
tion interval construction from the network training, prediction
intervals can be modeled end-to-end instead. Future research
shall also extend this modeling approach to more complex time
constraints comprising multiple process steps.
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