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Abstract

Cognitive abilities allow robots to learn and reason from their environment. The gained knowledge can then be incorporated into the robot’s actions
which in turn affect the environment. Therefore, a cognitive robot is no longer a static system that performs actions based on a pre-defined set of
rules but a complex entity that dynamically adjusts over time. With this, challenges arise for production systems that need to observe and ideally
anticipate the cognitive robot’s behavior. Often, digital twins are employed to test and optimize production control systems. This paper presents
a generic approach to characterize, model and simulate learning processes and formalized knowledge in hybrid production systems assuming
different station types with learning effects. Thereby, quantitative and qualitative learning processes are mapped including knowledge sharing and
transfer across entities. A modular and parameterizable design enables the adjustment to different use cases. Eventually, the model is instantiated
as a digital twin of a real production system for product disassembly employing cognitive-autonomous robots among human operators and rigidly

automated machines. The model shows great potential to be integrated into test beds for planning and control systems of cognitive factories.
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1. Introduction

With the trend towards individualization and ever shorter
product life cycles, the number of variants in production in-
creases rapidly [1]. In remanufacturing, these challenge is com-
plemented by uncertain product conditions, quantities and yield
during end-of-life product disassembly. [2]. In such demanding
conditions, conventional automated production systems reach
their limits since adapting them to changing requirements is still
time-consuming and costly. Due to the special requirements of
remanufacturing, automation in industrial disassembly systems
could not prevail yet [3]. In fact, these systems are merely based
on manual labor due to the flexibility and the ability of a human
operator to learn and anticipate new situations [4].

With the emergence of robotics and cognitive abilities in
robotics, automated production systems might no longer be
static systems but much more dynamic systems that can adapt
over time. These systems (partially) consist of cognitive robots
that can learn and perform new tasks autonomously in a simi-
lar way human operators do. Therefore such systems can seam-
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lessly adapt to new requirements which makes them able to deal
with new products and small lot sizes at competitive costs [5].
For their productive operation, however, the dynamics of the
systems must be handled and controlled appropriately. Suitable
production planning and control (PPC) approaches must be de-
veloped to fully utilize the new-gained potential.

In this work, the problem is approached by the development
of a digital twin as a proven means of testing and optimizing
production systems even before they are launched. Focusing
on production systems that are constantly confronted with new
variants and unknown operations, the degree of gained knowl-
edge by human operators and robots has a big impact on the
systems’ performance [6]. Considering learning effects in the
planning stage is therefore considered crucial to increase ac-
curacy in PPC [7]. Because of that, a generic model is pro-
posed that accounts for diverse learning effects and knowledge
representation. Two types of learning effects are distinguished:
(1) learning curve-based processes allowing knowledge transfer
in the production system, and (2) learning processes in which
new, possibly more efficient, disassembly sequences are learned
and adopted. When instantiated, the model can cover various
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use scenarios of production systems. Furthermore, a production
control logic is deployed to be confronted with the dynamic sys-
tem. Both, the digital twin as a discrete-event simulation model
as well as the control logic are implemented in Python using
the SimPy Framework. They built on and extend an existing
shopfloor model by Kuhnle [8].

2. Related Work

While not referring to knowledge, Wright first described or-
ganizational learning curves as a connection between the de-
cline in unit labor cost for airplanes and their cumulative output
[9]. For a given level of average labor costs, the resulting cost
is the multiplication of the given labor cost with a certain fac-
tor, the so-called learning rate. The unit labor cost y for the x-th
unit is determined viay = a * x% where a is the average unit
labor cost of the first produced unit and b is a parameter for ob-
jective reduction as the cumulative output x increases [9] [10].
Variations of the learning curves exist [11] [12].

In the last decades, the number of publications on learning
curves in production and operations management increased ex-
ponentially. While numerous modeling approaches, empirical
studies and practical applications can be found, the vast major-
ity focuses on human operators and manual work [7]. In fact,
there is only one approach by Li et al. known to the authors, that
focuses on dealing with robotic learning effects from a quan-
titative perspective [6]. The authors propose a line balancing
solution considering learning effects of learning robots using
backward induction rules.

In general, the idea of production systems that combine
autonomous learning subsystems and human operators is
widely discussed. Zaeh et al. are the first to describe the
“cognitive factory” as automated technical systems with
cognitive abilities in production [13]. Bannat et al. outline
the demand for highly responsive and adaptive production
systems, motivate the paradigm of cognitive factories and
address new challenges on PPC [5]. Zaeh et al. propose an
adaptive production control approach for cognitive factories
that utilizes artificial cognitive capabilities [14]. From a more
technical perspective, Vongbunyong et al. present a concrete
approach to the utilization of cognitive robotics and learning
by demonstration for end-of-life product disassembly [15]
[16] [17]. In their demonstrator, robots learn to disassemble
LCD screens by reasoning and emulating the behavior of
human operators. No prior knowledge is assumed. The authors
prove the general concept of robotic learning, learning by
demonstration from human operators and knowledge transfer.

It can be concluded that existing work either investigates
learning effects by human operators, follows a conceptional
cognitive factory approach or focuses on enabling learning and
knowledge transfer from a process, but not a planning perspec-
tive. Learning effects of both, human operators and cognitive
robots, as well as the exchange of knowledge and possible
dependencies are not combined or investigated quantitatively.
In the future, this will be an important prerequisite for accurate

system planning and control and therefore pressure the need
for extended learning effect integration in production planning
systems.

This paper presents an approach to model various learning
effects in production systems in a quantitative way. Thereby,
conventional learning curves of human operators are comple-
mented in a model with learning effects of cognitive robots and
knowledge sharing across system entities. First, learning pro-
cesses and respective system entities are defined, categorized
and mapped generically (Section 3). Afterwards, a cognitive
disassembly system is instantiated and the approach is tested
using a plain production control logic (Section 4). Eventually,
the paper is summarized and concluded (Section 5).

3. Learning effect modelling approach

Learning is defined as a change in knowledge Aknow;, of
operation o at station s. A station is a self-contained entity, like
a manual workplace or a robot-based system that can perform
certain operations according to their capabilities and knowl-
edge. In this paper, knowledge is assumed as an abstract di-
mension and a simple representation of product and process-
specific know-how of each station focusing on the operational
effect from a quantitative planning perspective. While, from a
technical perspective, knowledge representation differs severely
across entity types, ranging from implicit experience of opera-
tors to different formalization approaches of robot skills, the
knowledge value is assumed generally applicable for each sta-
tion of each type. It is defined as an arbitrary value know;, €
[0,1] Vs € S,0 € O in this model, where S is the set of pro-
duction stations and O the set of operations. For multi-product
cases, operations are either defined exclusively for each product
or the representation is enhanced by another dimension, e.g. in-
dex p € P for the set of product types leading to know;,, .
Strikingly, a value of know;, = 0 indicates complete absence of
product or process know-how at s and the disability to perform
o respectively. This is the case if, e.g. an autonomous technical
entity has never performed and could not observe another entity
perform o or similar operations before. Vice versa, know;, = 1
indicates perfect knowledge. This means, e.g. an operator or a
learning robot figured out the optimal process and is able to
perform an operation in nominal duration. During the learning
phase, towards know;, = 1, operations are performed with par-
tial knowledge, e.g. at know,, = 0.5. In this case, product and
process knowledge is incomplete, favorable sub-processes or
there sequence are still unknown, increasing the execution time.
Knowledge-related operational failures can be caused, meaning
operations can fail due to a skill deficit.

Besides, knowledge thresholds define the minimum knowl-
edge know;, min required of a station s to be able to perform
0. On that note know,, > knows, min 1s a necessary but not a
sufficient condition for s to perform o successfully.

Two possible ways for a station to gain knowledge are con-
sidered:
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o Intra-station learning refers to the knowledge knowy,
that is gained within a station s by executing operation o.

¢ Inter-station learning describes the knowledge sharing
capability as knowledge can be transferred from one sta-
tion s’ to another s (e.g. a human operator observed by
a vision system, whose behavior and skills can be repro-
duced by a robot via imitation learning. Techniques, ex-
amples and further reading on how knowledge and skills
can be transfered from human operators to autonomous
robots are given by Billard et al. [18]).

From another perspective, two types of learning can be dif-
ferentiated: qualitative learning which refers to the gained ca-
pability to perform an operation (enabling) and quantitative
learning (intra-station and inter-station) which improves task
times, process and object knowledge or the process execution
quality. In some cases, they can become indistinct, as e.g. quan-
titative learning can lead to the qualitative process of enabling.
However, the proposed taxonomy, as displayed in Figure 1, at-
tempts to categorize and provide a general overview of how
learning types are distinguished and examined in the following.

learning types

v v
qualitative quantitative
O—r |2
1 |
v v
enabling inter-station

intra-station
may lead to i

Fig. 1: Taxonomy of learning types

3.1. General learning procedure

Generally, it is assumed that executing operations time after
time increases knowledge and decreases task times. Both are
calculated similarly using an adapted approach of a Wright
learning curve. However, since impacting failure rates and
station capabilities, the focus in the following will be on the
knowledge model.

Operation knowledge is captured by quantitative learning
and modeled via the cumulative amount of operation executions
per station s and per operation o based on an adapted version of
the Wright learning curve.

The actual knowledge know;,(x;,) of o at s after a certain
amount of trials x;, of o at s, which is bound by the maximum
of 100%, is calculated via:

know —/(’gz(b/mw)) (1)

kl’lOW‘ (,(.X\ ()) - mln(l ag 0 * Xs0

with a variable knowledge factor a’f’ﬁj’w indicating the knowl-
edge level at first execution of o at s and a given learning rate
binow- While x;, is increased by executing o at s (intra-station
learning), a"’"’W can only be manipulated by executing o at
s eS\s (1nter-stat10n learning). Given the arbitrary nature
of the knowledge definition (know,, € [0,1] Vs € S,0 € 0),
setting the initial value of knowledge is determined based on
the Wright learning curve and an externally provided estimate
of the cumulative amount of executions n,, of operation o until
a station s reaches 100% knowledge by intra-station learning.
Given the learning rate by, the initial knowledge a;, is there-
fore derived via:

know ._  10g2(brnow)
as,(),init 0 (2)

3.2. Incorporation of inter-station learning

In this approach, the impact of inter-station learning is ac-

counted by a variable a’ﬁ’fj’w that can be manipulated by gaining
knowledge at stations of different types, without interrupting
the conventional learning process according to Wright and the
possibility for discounted knowledge gains when intra-station
learning has already progressed.
Conversely ay" = al?¥. = const. can be assumed when ne-
glecting inter-station learning. The current state of knowledge
will only depend on x;,. However, if inter-station learning is
assumed on the other hand and station s receives knowledge
from a station s’, """ in equation 1 is updated according to:

5,0

know  _ _know know
s,o,new as,a Ady (3)

with Aak,"f’,w as the increase of knowledge for a (hypotheti-

cal) know; (x5, = 1). Aak"ffw is thereby a modular term that
depends on the learning interdependency of the entity pair.

In this approach we assume Aa"’”’,w to be determined by a func-
tion of the current knowledge knowﬁ”j,’ ". More particular, it is
assumed that the amount of knowledge that can be gained from
station s’ approaches 0 as know{" approaches its maximum.
Furthermore, it is assumed that the knowledge gain will not
follow a pre-determined curve but is stochastically distributed.
Therefore, a random variable X ~ N(u, 0'2) is assumed for
Aak’"’w and bound between [0, 1]. The expected value u and
standard deviation o as functions of the knowledge know{'y”
at the current level of operation trials x*" are calculated as fol-
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with a knowledge transmission effectiveness of 77; ¢ ; and a
knowledge loss modelling factor 1, ¢ ;. How Aa’;f’fi_w relates to
a‘"v is emphasized in Figure 2:

$,0,cUrr

Aaknow

0 02 04 06 08 1
know(x)

Fig. 2: Knowledge improvement effectiveness Adgpo, through inter-station
learning as a stochastic corridor

Both 7y ¢ s and 175 ¢ s are externally provided parameters with

Mys € [0,1] and ¢ s > 0. While 7 ¢  indicates how ef-
fective knowledge is collected at a station by a another re-
ceiving entity, 17, ¢ ; describes how much this effect diminishes
with prior knowledge. This approach is assumed as a simpli-
fied model of an observed manual station (s") - cognitive robot
() pair of learning entities. Besides the proposed approach for
Aaﬁfi?w, other functions can be deployed as well to map various
other types of inter-station learning effects. On a side note, in
the particular case of two or more entities of the same type with
a common knowledge base, such as two identical robots, the
mechanisms of intra-station learning apply.
Another important concept that combines inter-station with
qualitative learning is the concept of enabling. System enti-
ties that collect knowledge know;,, via inter-station learning
but require a certain amount of knowledge knowf;f(f” € [0,1]
are enabled as soon as a certain knowledge threshold know?<"
is reached, meaning know;, > knowﬁff(',”v. Some entities might
conduct intra-station learning after they have been enabled via
inter-station knowledge transfer. Different entity types might be
enabled in a binary fashion and won’t improve further, neither
through intra- nor inter-station learning, after qualification. In a
real-world application, this might be an automated station that
needs to be installed by an automation technician to be able to
execute an operation. This setup procedure will happen once a
certain level of knowledge is present in the system.

3.3. Evolving precedence relation knowledge

As a second capsuled concept, cascading qualitative learn-
ing is incorporated, i.e. introducing new operation sequences at
a certain point in time. The Petri-net-based approach (accord-
ing to [19]) determines the workflow and precedence criteria for
every product but allows for logical OR transitions where var-
ious routing options are valid. In real life, these options might
be introduced to the demonstration-based cognitive system by
trial-and-error or operation executions of human operators that
follow different workflows. Whenever such an observation is
taken by the cognitive system, it gets integrated into the knowl-
edge base (i.e. the Petri net precedence graph) of the system.
The system representation of the Petri net is therefore dynamic
as it adjusts over time.

15t demonstration 2"d demonstration

Merged demonstrations

Fig. 3: Application of Petri nets to map dynamic precedence knowledge: deriva-
tion of a master graph via fusion of two single demonstrations

Figure 3 shows three different Petri-net-based disassembly
precedence graphs for a product consisting of four components
(A, B, C, D). On the left side, there is an initial workflow that
might be known to the system from the beginning. At some
point in time, a second workflow, which is displayed in the
middle, might be introduced. Both are then merged to form a
master precedence graph by adding the corresponding places
and transitions via logical OR as displayed on the right side of
the figure.

4. Instantiation of the model and testing
4.1. System entities

Given the generic design of the approach, various station
types with individual properties can be defined to model the
specific realities of a production system and allow for scalabil-
ity. However, in the following, the approach will be instanti-
ated on a specific set of distinctive station types which collec-
tively form a coherent hybrid production system. Figure 4 gives
a graphical overview of their setup and connectivity.

Manual v Autonomous intra-
Station o l@g g Station @s(aﬁon
& * V. ;
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! =
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Fig. 4: Idealization of learning processes in the assumed production system with
three station types

1. Manual stations are stations where a human operator fol-
lows or determines a workflow. Learning by demonstration
is conducted through autonomous observation of the op-
erator’s actions via an RGB-D camera that captures used
tools and the operator’s movements to identify operations
and determine a workflow.



162 Marco Wurster et al. / Procedia CIRP 103 (2021) 158—163

2. Autonomous stations consist of cognitive robots that are
capable to learn by themselves and from others. Knowl-
edge sharing from manual stations is facilitated via the
camera system mounted to the manual station (inter-
station learning). Furthermore, these stations follow an
(exploratory) trial-and-error approach to gain knowledge
or identify new workflows on their own.

3. Automated stations are stations that are not capable of
learning on their own. In their initial state, the knowl-
edge level for these stations is 0%. They need to be set
up for each specific operation and workflow, which is pos-
sible with the exceedance of an externally defined thresh-
old level know'lci-®'*" at the autonomous station. This en-

ables the specific operation at all automated stations. The

knowledge level is set to 100%. Accordingly, the mod-
elled knowledge in the digital twin is of binary nature

(knows, € 0,1 ¥s € §nonleaming o ¢ ),

4.2. Disassembly use case

The presented approach has been tested on an instance of
a remanufacturing production system that aims at mastering
core (i.e. product that gets disassembled in remanufacturing)
disassembly with varying product conditions by utilizing au-
tonomous robots in an agile and scalable matrix production sys-
tem. The station types hosted by the system equal the setup as
defined in the previous section. Additionally, a measuring sta-
tion complements the setup. This station - without any learning
abilities - derives information on the condition of the cores and
provides it as input for the production control. Four stations,
one of each type, are assumed in the following test case. A dis-
crete event simulation is deployed as a digital twin of the system
and used to test the approach in the following.
While inter-station learning and knowledge sharing are intro-
duced in the model as peer-to-peer interactions, the digital twin
hosts a knowledge server entity, which stores the level of avail-
able knowledge. In a real production system, such an entity can
be utilized to model the proceedings in the digital twin and to
derive necessary actions, movements and tools in the real-world
production system.

4.3. Production control scope

Production control treats the returned products as shop or-
ders and sends them through various stations until they are fully
disassembled. Possible next actions are provided to the control
system by the digital twin which in turn selects one of them
for execution. Each action consists of a (s, 0)-tuple for a given
shop order in the system.To validate the proposed model, a sim-
ple random logic is deployed to show the learning processes in
an unbiased way.

4.4. Test cases and parameters
The presented approach has been validated in various simu-

lation runs. A simulation run includes the disassembly of 2,000
orders.

Only one product type is assumed as a simple assembly con-
sisting of four parts (A, B, C, D). This type of product, as intro-
duced in Figure 3, can be disassembled in two different ways.
Therefore, testing is split into two different cases. One in which
the disassembly precedence knowledge is static and complete
(case 1) and another case where the precedence knowledge is
incomplete in the beginning and evolves (1x) during run-time
(case 2).

The system entities are parameterized using by, = 0.8 and
ng, = 100Vs, 0.

Inter-station learning occurs between the manual and au-
tonomous station With 71 manauron = 0.1 and 02 man.auton = 25.
The knowledge threshold of an autonomous station is assumed

at know’Sih-®1°" = (.45 and the threshold for the automated sta-

tion at the autonomous station at know®""*°™ = 1 0.

auton,o

4.5. Results

Figure 5 shows the knowledge level per station during the
beginning of the simulation in which learning is still occurring
for an exemplary operation o;. As the manual station is enabled
from the very beginning, it follows only its own learning curve
as it conducts solely intra-station learning. The autonomous
station learns by demonstration from the manual station and is
initially bound to inter-station learning as it does not reach the
enabling threshold of knowo: ", After about 270 finished
orders, the autonomous station is enabled and can start to learn
intra-stationary. Due to the initially low value of x,pn.0, this
leads to strong learning progress as a doubling in the cumu-
lative amount of operation trials at the autonomous station
occurs more frequently. In a figurative sense, this would mean
that the autonomous station can learn faster by trying things
out for its own, rather than just by transferring knowledge
from other stations, which seems intuitively logical. Once the
autonomous station reaches a knowledge level of 100%, the
automated station gets enabled which is indicated by a change
in its knowledge level from know om0 = 0 to knowguomo = 1.

Lo Knowledge per station

0.8 1

S0
el
Q2
g P
C 0.44 == o
¥
—— Manual
0.24
Autonomous
—— Automated

0.0 T T T T T
0 50 100 150 200 250 300 350

Finished orders
Fig. 5: Knowledge development for an exemplary operation o station by sta-

tion (case 1)

Figure 6 displays the average knowledge across all offered
operations per station. Thereby the knowledge development of
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case 1 and case 2 are compared. First of all, one can observe
in both cases that enabling of the five operations is conducted
at different points in time, as every combination of operation
o and station s follows its own learning curve. A step-shaped
curve can be spotted for the knowledge development of the au-
tonomous station and, especially, for the automated station. For
the latter, the enabling steps of the automated station indicate
the moment in which the autonomous station reaches 100%
knowledge for another operation o.

By introducing new operation sequences at a later point in sim-
ulation time, learning might stall until new sequences are intro-
duced. However, this does not affect the operations which are
available to the system as they can reach 100% individually. In
the evolving case, it can be observed that the second sequence
was introduced after approximately 370 finished orders.

Average knowledge per station (all operations)

1.0

0.8 1 N

]
S 061 -
9 i
g ]
] 1
S o4 === S
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Q 1
1
1
0.2 - Manual Manual
: Autonomous — Case 1 Autonomous > Case 2
i —— Automated --- Automated
|
0.0 v r r r r r r :
0 100 200 300 400 500 600 700 800 900

Finished orders

Fig. 6: Development of the average knowledge over all operations o station-
by-station with perfect (case 1) and with evolving (case 2) precedence relation
knowledge

5. Conclusion and outlook

In the paper at hand, learning effects and knowledge sharing

are incorporated into a shopfloor model for production systems
with learning abilities. Existing learning curve models for hu-
man operators are adapted and extended to fit technical entities
that operate autonomously and can exchange knowledge with
human operators in hybrid factories. The generic model can be
used as a guideline and be deployed for various use cases, e.g. to
predict system behaviors using discrete-event simulation mod-
els to pre-test planning and control approaches virtually before
they go live.
However, before the modeling approach can be exploited, as-
sumptions should be validated. This includes empirical testing
and adjustment of formulae and parameters for learning effects
and knowledge sharing using real data. Thereafter, the approach
can be utilized as a helpful extension for simulation models to
develop suitable planning and control systems for cognitive fac-
tories.
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