
Towards a Common Classification of Changes for
Information and Automated Production Systems as

Precondition for Maintenance Effort Estimation
Birgit Vogel-Heuser, senior member IEEE, Thomas

Simon, Jens Folmer
Institute of Automation and Information Systems

Technical University of Munich
Munich, Germany

{vogel-heuser, thomas.simon, folmer}@tum.de

Robert Heinrich, Kiana Rostami, Ralf Reussner
Institute for Program Structures and Data Organization

Karlsruhe Institute of Technologies
Karlsruhe, Germany

{heinrich, rostami, reussner}@kit.edu

Abstract—Both information and automated production
systems (aPS) evolve during their lifetime, e.g. due to changes in
requirements and infrastructure. In order to estimate
maintenance effort in information systems the KAMP method is
applied. This paper discusses the necessary classification of
changes as a prerequisite to apply such a method. Aggravating aPS
consist not only of software but also include mechanics and
electric/automation hardware. Therefore, the classification has to
be enlarged to a multi-disciplinary one. The limitations of this
approach for aPS are discussed in detail and demonstrated using
three scenarios of a lab size pick and place unit. The paper closes
delivering first ideas to cope with these.

Keywords—software evolution; software maintenance;
automated production systems; classification of evolution

I. INTRODUCTION

Both information and automated production systems (aPS)
have a lifetime of several decades during which the systems
evolve and thus are modified for the purpose of correction,
improvement or adaptation [2]. For information systems (IS),
an exemplary evolution life cycle (cp. Fig. 1) begins with the
documentation of requirements and design decisions. This is
followed by a static quality analysis possibly leading to a
redesign before the system is implemented and deployed. A
dynamic quality analysis is conducted for the running system to
identify runtime issues [3] which may result in automated
adaptation or trigger a new iteration for evolutionary changes
conducted by human developers.

aPS on the other side not only consist of software but also of
mechanics and electric/automation hardware, i.e. three
disciplines are involved. These are typically unique systems
which are designed and implemented on the basis of a contract
between a customer and an aPS supplier at which the
engineering of an aPS is carried out in the form of a project [4]

[5]. Reusable (partial) solutions are developed during project
independent activities and are used during project-related
activities over the lifetime of an aPS (cp. Fig. 2), which usually
encompasses a period of decades. During their operation time
aPS are aging due to physical effects (e.g. tear and corrosion).
This leads to the replacement of components of both mechanics
and electric/automation hardware after a couple of years up to
a few decades, but with different intervals (cp. Fig. 2), e.g.
mechanics every 20-40 years, automation hardware including
electrics every 10-15 years and software once a week until once
a year [6]. Furthermore, the replacing components usually are
not identical to the original ones, because the original spare
parts are no longer available and/or a modernization is preferred
[5].

Apart from the physical effects, changing requirements, e.g.
market requirements or legal requirements, are another reason
for aging. A lot of the changes caused by this can be
implemented by software adaptions, but occur again in
comparatively short periods of time and may even be executed
during runtime. When change is required, the system may run
through the process of evolution: all new and modified or
affected requirements are gathered and/or checked for their
validity and the system design is adapted on this basis [6].

Hence, both the domain of IS and the domain of aPS face the
same challenge of their systems’ evolution. However, in aPS a
required change cannot always be assigned to one of the
disciplines explicitly. The worst case is, that a change can be
implemented in either mechanics, electric/automation hardware
or software with different side effects on and needed adaptions
in the respective other disciplines (cp. Table 1 in [6]). In order
to be able to compare the effort of two or more similar ways to
maintain or evolve a specific system, supporting the decision
which solution is more efficient and less time and cost

Fig. 1 Overview of the CoCoME Evolution Life-Cycle [1]

consuming would be beneficial not only for software in aPS. It
would be utterly beneficial to be able to answer the even more
challenging question whether a needed change should best be
conducted in mechanics, electric/automation hardware or
software or a combination of those.

In the domain of IS, methods for change impact analysis
already exist. The approaches to change propagation can be
divided into four categories [15]: (i) Task-based project
planning approaches (e.g. [7], [8]) consider software
architecture at a coarse-grained level and thus result in an
accurate impact analysis. (ii) Approaches to architecture-based
project planning (e.g. [9], [10]) and (iii) approaches to
architecture-based software evolution (e.g. [11], [12]) do not
support automated change impact analysis. And finally, (iv)
works on scenario-based architecture analysis (e.g. [9], [13],
[14]) consider only development activities and neglect the
management tasks. Compared to these existing approaches,
Karlsruhe Architectural Maintainability Prediction (KAMP)
(cp. [15]) considers all kinds of software artifacts (e.g. source
code, test cases or deployed instances). On the basis of a
classified change request as well as the meta model of the
architecture and the other artifacts, task lists for conducting the
change are generated for the maintenance effort estimation.

However, a common classification of changes/evolution
scenarios for both IS and aPS, which does not exist yet, is a
precondition for the adaption of such methods for change
impact analysis. In this paper, a first attempt for such a common
classification is made and challenges are discussed on the basis
of examples from both domains. For these examples
demonstrators of each domain, i.e. CoCoME (cp. [16], [17]) for
the domain of IS and a lab size pick and place unit (PPU) from
the domain of aPS, are presented and evolution scenarios are
described and classified.

The rest of the paper is structured as follows. Section II gives
an overview on related work, while the case studies are
introduced afterwards in section III. In section IV selected
evolution scenarios are described and classified by introduced

criteria and challenges are discussed at the same time. Finally,
section V closes with the results and an outlook.

II. RELATED WORK REGARDING CHANGE CLASSIFICATION

In this section, an overview of categorizations of
(evolutionary) changes from the domain of IS is given,
followed by a respective one for the domain of aPS.

As introduced by Lientz and Swanson [18], three types of
evolutionary change can be distinguished – corrective,
perfective and adaptive evolution. Buckley et al. [19] proposed
a taxonomy of software change consisting of 15 dimensions that
characterize the mechanisms of change and the factors that
influence these mechanisms. The dimensions can be subdivided
into four logical themes: temporal properties (when), object of
change (where), system properties (what) and change support
(how). Williams and Carver [20] proposed a software
architecture change characterization scheme based on a
systematic literature review. This scheme differs from change
classification schemes because it does not match change
requests into a particular class, but characterizes the change’s
impact with respect to a number of characteristics. Jamshidi et
al. [21] identified five classification categories: (i) type of
evolution, (ii) type of specification, (iii) type of architectural
reasoning, (iv) runtime issues, and (v) tool support. Chapin et
al. [22] propose a change classification taking into account (i)
the software, (ii) the documentation, (iii) the properties of the
software, and (iv) the customer-experienced functionality.

For aPS, a categorization of evolution is introduced in the
following which is based on Vogel-Heuser et al. [6] and allows
to distinguish different causal orders of change by which the
three disciplines involved in an aPS are affected. This is due to
different reasons for change by which evolution is initiated
(cause of evolution).

In order to fulfill both changed and unchanged functional and
non-functional requirements, which describe the desired
behavior of aPS and change over their lifetime, the systems are
undergoing various types of changes, i.e. evolution. Since all
disciplines of the aPS may be affected due to changed

Fig. 2 V-Modell XT integrated into life-cycle of different disciplines in aPS distinguishing between project-independent activities
(top) and project-related activities (bottom) [6]

requirements, the control software and/or the mechanical parts
and/or the electric/automation hardware parts may be modified
by the customer’s maintenance staff. Ideally, a model driven
approach is chosen from requirements to design,
implementation, test and start-up. Nevertheless, “a well-
managed and documented engineering procedure is not always
performed in practice when requirements change” [6]. This is
especially the case when changed requirements can be
implemented by minor software adaptions, which is when they
are usually performed instantaneously or even during runtime
to avoid standstills.

Furthermore, changes in industrial practice can occur either
during operation or a maintenance phase. These changes are
initiated on the shop floor by maintenance personnel and
necessary adaptions only affect either the software or electrical
parts or mechanical parts or both of the latter. Thus, even the
step of changing the requirements is omitted and they remain
unchanged. The time of these changes is, according to Buckley
et. al. [19], online and unanticipated, i.e. the changes are not
foreseen during development.

In many cases, evolution in aPS is characterized non-
sequentially. According to the classification proposed by
Buckley et. al. [19], parallel evolution is caused by divergent
changes. In aPS, divergent changes can occur e.g. when a plant,
a single machine or its components are used as a basis for two
or more different variants. Accordingly, divergent changes
result in variants of a machine or plant. Such divergent changes
occur frequently in industry because on the one hand in most
companies evolution is realized by modification of existing
similar components, but on different levels, i.e. sub-component
level (atomic), component level (basic) or machine/plant level
(application/facility) [23]. On the other hand, mostly non-
functional requirements, e.g., PLC and device suppliers
required by customers, control voltage depending on the
country of delivery or different operating philosophies lead to
different types of software, i.e. parallel evolution [6].

III. INTRODUCTION OF THE CASE STUDIES

In the following, both case studies, i.e. the CoCoME
demonstrator and the pick and place unit (PPU), are described.

A. Common Component Modelling Example (CoCoME)
CoCoME (cp. [16], [17]) is a case study demonstrating a

trading system which implements processes of a supermarket
chain handling sales. Processes of CoCoME include all
activities regarding processing sales (e.g. scanning products and
paying) and all enterprise-wide administrative tasks (e.g.
reporting and inventory management). It has a layered software
architecture to support distribution of the software system.
Several variants of CoCoME including various artifacts (e.g.,
test cases, requirement specifications, or architecture model)
are available, such as plain Java code, service-oriented or
hybrid cloud-based architectures [17].

B. Application example lab-size pick and place unit
A simple lab size model, the pick and place unit (PPU), is

used as a demonstrator to research methods and technologies on
evolving aPS. The PPU performs a (discrete) manufacturing
process and handles, stamps and sorts different kinds of
workpieces (cp. Fig. 3) [24]. The PPU consists of software,
electric/automation hardware and mechanical parts.

The initial scenario is the evolution scenario Sc0 where only
the stack, the crane and a slide (cp. Fig. 3, left bottom) exist.
The stack pushes a single black plastic workpiece out of the
stack into the crane’s pick-up position. At the pick-up position,
the crane picks up single workpieces by moving downwards
and using a vacuum gripper to hold the separated workpiece.
Upon rotation of 90 degrees, the crane reaches the slide’s
position, where the workpiece has to be placed. After moving
down, the vacuum gripper releases the workpiece, which then
glides down the slide.

An overview of all evolutionary changes of the PPU is
available in [6] Table II.

A set of typical parallel variations in aPS based on the PPU’s
scenario Sc15 are discussed in the following. Due to the
demand for a higher throughput of workpieces (WPs), scenario
Sc15a with a faster sorting of WPs is developed. A drive with
increased dynamics is installed to realize faster WP movement,
which entails that faster pushers are required for extruding
WPs. In parallel, a customer demands, as a non-functional
requirement, an adjusted variant of PPU’s scenario Sc15
(scenario Sc15b) which is able to handle larger and heavier
WPs. Depending on the country, a machine or plant shall be
located in, different supply and control voltage must be
supported by field devices., e.g. whereas the existing PPU is
engineered to be located in Germany, a customer requests a
PPU which can be operated with different supply and control
voltage (as used e.g. in the United States). Accordingly, all field
bus components, which are not capable to handle the desired

Fig. 3 PPU and related mechatronic configurations based on evolution
scenarios from [24]

Sc0 – Sc2 Sc3 – Sc5 Sc6 – Sc14

Sc9 – Sc14

control voltage, have to be changed (scenario Sc15c, cp. Table
I).

IV. DESCRIPTION AND CLASSIFICATION OF SELECTED
EVOLUTION SCENARIOS

In the first part of this section the evolution scenarios of the
CoCoME case study are presented together with a selection of
change/evolution criteria. This is followed by the application of
these criteria on the evolution scenarios of the PPU case study
in the second part.

A. CoCoME evolution scenarios and selected
change/evolution criteria

In the following, we describe how CoCoME is changed
during a perfective (S1), an adaptive (S2), and a self-adaptive
(S3) evolution scenario [25] (cp. Table II).

In evolution scenario S1, a new web shop is added, which
allows customers of CoCoME to order the goods online and
pick them up in an existing store. To this end, new use cases
have to be considered and the existing design decisions have to
be changed. In order to reduce the operating cost, the enterprise
server and the corresponding database are migrated to the cloud
in evolution scenario S2. In the case of increasing load, the
limited capacities of the cloud provider may lead to
performance issues of the database. In order to solve these, the
database is migrated to another cloud provider in evolution
scenario S3.

In order to classify the evolution scenarios, a selection of
change/evolution criteria, which is based on the taxonomy of
change described in the literature, is proposed. This selection of
change criteria is then applied to scenario S1-S3 (cp. Table II)
of which S1 is exemplarily described in more detail.

The cause of a change (cp. Williams and Carver [20]) is the
motivation or trigger of an evolution scenario, such as emerging
user requirements or changes in the technology stack. The type
of a change (cp. Lientz and Swanson [18]) can be adaptive,
corrective, perfective or self-adaptive whereat a corrective
change fixes bugs and design flaws. Changes in the software

environment can lead to adaptations in the software. Changes
due to new or changed requirements are called perfective
changes.

A further criterion describes whether the change is conducted
at the systems design-time (offline) or at its run-time (online)
(cp. Buckley et al. [19], Jamshidi et al. [21]). The scope
describes, what part of the IS has been modified, i.e. the context,
the platform or the software. This is further divided by the
affected entities (cp. Buckley et al. [19], Williams and Carver
[20]). Affected entities of the software can be e.g. components,
interfaces or subsystems.

Furthermore, the granularity (cp. Buckley et al. [19],
Williams and Carver [20]) describes the scale of the artifacts
that have to be changed, which encompasses coarse (e.g.
system, subsystem, composite component), medium (e.g. basic
component, class, interface) and fine granularity (e.g. variables,
method, statement). Following the definition in [26], a basic
component specifies a behavior by operations of its provided
interfaces, hence it is treated as a black box. In contrast, a
composite component is composed of basic components and
therefore is a white box. So we consider changes that refer to
composite components as coarse grained and changes that refer
to basic components as fine grained.

The change history includes all parallel or sequential
changes, that moreover can be “anticipated” or “unanticipated”
(cp. Buckley et al. [19]). The degree of automation refers to the
degree of change support and it is to be distinguished between
automated, partially automated and manual change support (cp.
Buckley et al. [19]). Finally, the degree of formality describes,
whether a change is deposited in an informal or a mathematical
formal way, e.g. in a model (cp. Buckley et al. [19]).

TABLE I
SELECTED EVOLUTION SCENARIOS OF THE PICK&PLACE UNIT

Scope

Scenario Cause of evolution
Stack Crane Stamp Slide Conveyor

Belt
Conveyor

System Realization
Me AH S Me AH S Me AH S Me AH S Me AH S Me AH S

se
qu

en
tia

l
ev

ol
ut

io
n

… … …

2 Additional processing of
metallic workpieces A A A o o o - - - o o o - - - - - - Inductive sensor for

metal
… … …

4a
Reduction in the error rate
caused by sensor
contamination

o o o o M o o o o o o o - - - - - - Replacement of crane
sensors

pa
ra

lle
l

ev
ol

ut
io

n … … …

15c Different control voltage M M o M M o M M o M M o M M o - - - Different I/O modules
required

… … …
Me – Mechanics, AH – Automation Hardware, S – Software, A – Added, M – Modified, o – no changes

Other criteria such as availability, openness and safety from
Buckley et al. [19] are rather properties of the system itself than
properties of the evolution scenario. Support activity, type of
architectural reasoning and runtime issues are introduced in
Jamshidi et al. [21]. However, support activity does not refer to
evolution scenarios. Type of architectural reasoning applies to
architectural descriptions and runtime issues refer to runtime
properties of a system. Criticality, importance, and quality
attributes from Williams and Carver [20] cannot be determined
in advance.

A detailed application of a subset of the evolution criteria (cp.
Buckley et al. [19]) to CoCoME is described in Vogel-Heuser
et al. [2]. In the following, we describe all relevant evolution
criteria based on the example of evolution scenario S1. In S1, a
web shop is added to CoCoME to fulfill emerging user
requirements. For this purpose, the software architecture needs
to be changed to include the new web shop components and the
corresponding communication interfaces at design-time. As
this change includes adding new components and interfaces and
adapting the existing ones, it is at a coarse granularity level.
Since this change can be foreseen during the design-time, it is
an anticipated change. S1 is a perfective evolution due to
changing requirements. In contrast, S2 is an adaptive evolution,

as the enterprise server and the database of CoCoME are
migrated to the cloud in order to reduce costs and improve the
flexibility and scalability. S3 is a self-adaptive evolution, since
CoCoME is automatically changed during operations.

B. Classification of selected PPU evolution scenarios
In the following, three evolution scenarios (scenario 2, 4a and

15c) of the PPU are described and characterized according to
the criteria of the information system’s domain (cp. Table II).
For all PPU scenarios changes are conducted manually (degree
of automation) and as there are no formal models for the change
scenarios they are all to be categorized as adhoc (degree of
formality).

In scenario 2 the PPU is to be retrofitted with an inductive
sensor at the stack in order to be able to distinguish and
therefore process metallic workpieces (cause of evolution). The
type of evolution is perfective as it is an enhancement of the
system required by the customer, the means of evolution is
adaptive and the evolution history is sequential. The addition of
an inductive sensor affects all three disciplines involved and the
following entities: the mechanics of the stack have to be
modified to mount the fixture of the sensor. The sensor outputs
need to be connected to the automation hardware, resulting in

TABLE II
CLASSIFICATION OF SELECTED EVOLUTION SCENARIOS OF COCOME AND THE PPU

Criteria
\

Evolution
Scenario

C
au

se
 o

f
E

vo
lu

tio
n

T
yp

e
of

E

vo
lu

tio
n

D
es

ig
n-

/R
un

-
tim

e

M
ea

ns
 o

f
E

vo
lu

tio
n

Sc
op

e

A
ffe

ct
ed

E

nt
iti

es

G
ra

nu
la

ri
ty

E
vo

lu
tio

n
H

is
to

ry

A
nt

ic
ip

at
io

n

D
eg

re
e

of

A
ut

om
at

io
n

D
eg

re
e

of

Fo
rm

al
ity

C
oC

oM
E

Adding a
Web Shop

(S1)

Emerging
User

Requirement
PF DT Architectural

Decision ApplicationSoftware
Web Shop,

Communication
Interfaces

Coarse S A Manual Adhoc

Platform
Migration

(S2)

Lower Costs,
Need for

Scalability and
Flexibitly

AD DT Architectural
Decision

Application
Software, Platform

Software

Data Layer,
Interface to

Business Layer
Coarse S UA Manual Adhoc

Database
Migration

(S3)

Increased
Usage Intesity,

Upcoming
Performance

Issue

SA RT Recon-
figuration Deployment Database

(Component)

Fine
(Component
Deployment)

S UA Auto-
mated

Formal
Meta-
model,

Adaption
Routines

PP
U

Scenario
2

Additional
processing of

metallic
workpieces

PF DT Adaptation see Tab. 1

Mechanical
fixture sensor;
wiring for I/O

and power
supply; FB for

sensor

Medium
Cross-

disciplinary
S A

Manual
besides

Self-
Healing

Adhoc

Scenario 4a

Reduction in
the error rate

caused by
sensor con-
tamination

CR DT Adaptation see Tab. 1 sensor changed Medium,
component S A

Manual
besides

Self-
Healing

Adhoc

Scenario
15c

Different
control voltage PF DT Architectural

Decision see Tab. 1

Interface to
Sensor/Actuators
changed, control
voltage changed,

mechanical
change in local

terminal

Medium,
Cross-

disciplinary
P A

Manual
besides

Self-
Healing

Adhoc

PF – Perfective, SA – Self-Adaptive, AD – Adaptive, CR – Corrective, DT – Design Time, RT – Run Time, S – Sequential, P – Parallel, A – Anticipated,
UA – Unanticipated

additional wiring and additional power supply. In case the input
terminal of the fieldbus system is already fully occupied a new
one has to be added. For being able to actually use the sensor,
an additional input in the software has to be configured, and the
logic of the function block controlling the stack has to be
enlarged to provide the output if the workpiece is metal or not.
The scope of this change scenario refers to mechanics,
automation hardware and software of the stack. The granularity
of the change will be discussed in the following to highlight the
difference of the granularity levels compared to IS. Regarding
its scale, a sensor by itself is a fine grained entity in an aPS.
However, as the interface of a sensor matters in the context of
aPS, it is to be seen as a basic component (black box) and thus
to be classified as a medium grained change regarding the
automation hardware. For the mechanics and the software, the
same applies as the mechanical fixture and the new function
block for the sensor both are basic components.

In Scenario 4a the sensors detecting the position of the crane
are replaced. The cause of evolution in this case is a desired
reduction in the error rate caused by sensor contamination and
is to be classified as a corrective type of evolution. The affected
entities of this sequential evolution scenario are the sensors and
the scope of the evolution is the automation hardware of the
crane as the sensors are replaced by identical ones. As just
described in scenario 2, a sensor is classified as a basic
component and therefore it is a matter of a change of medium
granularity, although the change effort in this scenario is much
lower compared to the one of scenario 2. The change is only
realized in one discipline and the sensors merely have to be
exchanged, but according to the classification from the domain
of IS both scenarios are to be categorized identically regarding
their granularity. Therefore, future categories need to be
adapted to include the linkage of changes across disciplines.
One idea is to remain with three different categories of
granularity, but in case there are changes in two or more
disciplines these cross-disciplinary links increase the level of
granularity by one.

An alteration of the control voltage, which is to be
categorized as a customer requirement (i.e. country specific due
to national regulations), is the cause of evolution in scenario 15c
and it is again a perfective type of evolution. In contrast to the
previous scenarios it is a matter of a parallel evolution history.
Due to an alteration of the control voltage all bus components
may be replaced and sometimes also sensors and actuators,
which are incompatible to the required voltage affecting only
the automation hardware at a first glance. But in case a sensor
or actuator supplier needs to be changed the fixture and the
software may be affected, too. According to these affected
entities, the scope of this scenario encompasses the mechanics
and the automation hardware as well as the software of all
subsystems. Regarding the mechanical fixtures, which have to
be modified and are to be classified as components, this change
is of medium granularity. The same applies for the changes in
automation hardware, as sensors and actuators are components
as well, and the resulting change in the software, i.e. a function

block. Again, this change would be classified into the same
level of granularity as the other scenarios, but results in a
tremendously bigger maintenance effort. Therefore, we can
summarize that the classification of granularity from
information systems does not fit the automation domain,
because it does not allow to reflect the maintenance effort; in
other words, the resulting information is too coarse grained to
be beneficial.

Up to now only sequential evolution and offline change, i.e.
change during design time, have been focused on. As in aPS
five levels of software granularity have been identified [27]
from several industrial case studies, the level of software
granularity shall be enlarged as well. There are partial proposals
for an architectural system model for aPS, but the entire model
is also missing.

V. RESULTS AND OUTLOOK

The paper introduced an already established and beneficial
classification of change effort in case of software maintenance
from the domain of IS and applied the fundamental
characteristics to the domain of aPS. Hereby, the approach was
enlarged by two more system aspects or disciplines, i.e.
mechanics and electric/automation hardware. The weaknesses
are explained in detail for three scenarios of a simple open
source lab size example of a pick and place unit. The
classification of granularity needs to be elaborated to allow a
more fine grained classification on the one hand and to include
cross-disciplinary aspects, e.g. by increasing the level of
granularity in case more than one discipline is included, on the
other hand. This would help to compare in our future work two
or more alternative ways to maintain a system or to implement
changes in software and facilitate the decision, whether a
change should best be conducted in software or mechanics. This
way, the alternative that is most time and cost efficient or long
term beneficial according to architectural decisions can be
chosen.

ACKNOWLEDGMENT

This work was partially supported by the DFG (German
Research Foundation) under the Priority Programme SPP 1593:
Design For Future – Managed Software Evolution (VO 937/29-
1 and RE 1674/12-1).

REFERENCES
[1] R. Heinrich, S. Gärtner, T.-M. Hesse, T. Ruhroth, R. Reussner, K.

Schneider, B. Paech, and J. Jürjens, “The CoCoME platform: A
research note on empirical studies in information system evolution,”
International Journal of Software Engineering and Knowledge
Engineering, vol. 25, no. 9, World Scientific, 2015.

[2] B. Vogel-Heuser, S. Feldmann, J. Folmer, S. Rösch, R. Heinrich, K.
Rostami, and R. Reussner, “Architecture-Based Assessment and
Planning of Software Changes in Information and Automated
Production Systems State of the Art and Open Issues,” in IEEE
International Conference on Systems, Man, and Cybernetics, pp. 687–
694, 2015.

[3] R. Heinrich, “Architectural run-time models for performance and
privacy analysis in dynamic cloud applications,” ACM SIGMETRICS
Performance Evaluation Review, vol. 43, no. 4, pp. 13-22, 2016.

[4] R. Birkhofer, G. Feldmeier, J. Kalhoff, C. Kleedörfer, M. Leidner, R.
Mildenberger, M. Mühlhause, J. Niemann, R. Schrieber, J. Wickinger,
M. Winzenick, and M. Wollschläger, Life-Cycle-Management für
Produkte und Systeme der Automation Ein Leitfaden des
Arbeitskreises Systemaspekte im ZVEI Fachverband Automation.
Frankfurt, M.: Zentralverb. Elektrotechnik- und Elektronikindustrie
Fachverb. Automation, 2010.

[5] Engineering of industrial plants - Evaluation and optimization -
Subject processes, VDI/VDE 3695, 2010.

[6] B. Vogel-Heuser, A. Fay, I. Schaefer, and M. Tichy, “Evolution of
software in automated production systems: Challenges and research
directions,” Journal of Systems and Software, vol. 110, pp. 54–84,
2015.

[7] B. Kirwan and L. K. Ainsworth, A Guide To Task Analysis The Task
Analysis Working Group. London, Philadelphia: Taylor & Francis,
2003.

[8] B. W. Boehm, Software cost estimation with COCOMO II. Upper
Saddle River, NJ: Prentice Hall PTR, 2000.

[9] D. J. Paulish, Architecture-centric software project management A
practical guide. Boston: Addison-Wesley, 2002.

[10] R. Carbon, K. Fraunhofer, D. Rombach, P. Liggesmeyer, and F.
Bomarius, Architecture-centric software producibility analysis.
Stuttgart: Fraunhofer IRB Verlag, 2012.

[11] M. Naab, Enhancing architecture design methods for improved
flexibility in long-living information systems. Berlin, Heidelberg:
Springer, 2011.

[12] D. Garlan, J. M. Barnes, B. Schmerl, and O. Celiku, “Evolution styles:
Foundations and tool support for software architecture evolution,” in
European Conference on Software Architecture, pp. 131–140, 2009.

[13] P. Clements, R. Kazman, and M. Klein, Evaluating software
architectures Methods and case studies. Boston: Addison-Wesley,
2002.

[14] P. O. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet, “Architecture-
level modifiability analysis (ALMA),” Journal of Systems and
Software, vol. 69, no. 1, pp. 129–147, 2004.

[15] K. Rostami, J. Stammel, R. Heinrich, and R. Reussner, “Architecture-
based Assessment and Planning of Change Requests,” in International
ACM SIGSOFT Conference on Quality of Software Architectures, pp.
21–30, 2015.

[16] S. Herold et al., “CoCoME - The Common Component Modeling
Example,” in LNCS, vol. 5153, pp. 16-53, 2008.

[17] R. Heinrich, K. Rostami, and R. Reussner, “The CoCoME platform for
collaborative empirical research on information system evolution,”
Karlsruhe Reports in Informatics, 2016.

[18] B. P. Lientz and E. B. Swanson, Software maintenance management
A study of the maintenance of computer application software in 487
data processing organizations. Addison-Wesley, 1980.

[19] J. Buckley, T. Mens, M. Zenger, A. Rashid, and G. Kniesel, “Towards
a taxonomy of software change,” Journal of Software Maintenance
and Evolution Research and Practice, vol. 17, no. 5, pp. 309–332,
2005.

[20] B. J. Williams and J. C. Carver, “Characterizing software architecture
changes: A systematic review,” Information and Software Technology,
vol. 52, no. 1, pp. 31–51, 2010.

[21] P. Jamshidi, M. Ghafari, A. Ahmad, and C. Pahl, “A Framework for
Classifying and Comparing Architecture-centric Software Evolution
Research,” in European Conference on Software Maintenance and
Reengineering, pp. 305–314, 2013.

[22] N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, and W.-G. Tan, “Types
of software evolution and software maintenance,” Journal of Software
Maintenance and Evolution Research and Practice, vol. 13, no. 1,
pp. 3–30, 2001.

[23] U. Katzke, B. Vogel-Heuser, and K. Fischer, “ Software
Engineering/Modeling - Analysis and state of the art of modules in
industrial automation,” Automatisierungstechnische Praxis, vol. 46,
no. 4, pp. 23–31, 2004.

[24] B. Vogel-Heuser, C. Legat, J. Folmer, and S. Feldmann, Researching
Evolution in Industrial Plant Automation Scenarios and
Documentation of the Pick and Plance Unit. München: mediaTUM,
2014.

[25] R. Heinrich, S. Gärtner, T.-M. Hesse, T. Ruhroth, R. Reussner, K.
Schneider, B. Paech, and J. Jürjens, “A Platform for Empirical
Research on Information System Evolution,” in International
Conference on Software Engineering and Knowledge Engineering
KSI Research Inc., pp. 415–420, 2015.

[26] R. Reussner, Modeling and Simulating Software Architectures The
Palladio Approach. Cambridge, London: MIT Press, 2016.

[27] B. Vogel-Heuser, J. Fischer, S. Rösch, S. Feldmann, and S. Ulewicz,
“Challenges for maintenance of PLC-software and its related hardware
for automated production systems: Selected industrial Case Studies,”
in IEEE International Conference on Software Maintenance and
Evolution (ICSME), pp. 362–371, 2015.

