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Abstract—Both information and automated production 
systems (aPS) evolve during their lifetime, e.g. due to changes in 
requirements and infrastructure. In order to estimate 
maintenance effort in information systems the KAMP method is 
applied. This paper discusses the necessary classification of 
changes as a prerequisite to apply such a method. Aggravating aPS 
consist not only of software but also  include mechanics and 
electric/automation hardware. Therefore, the classification has to 
be enlarged to a multi-disciplinary one. The limitations of this 
approach for aPS are discussed in detail and demonstrated using 
three scenarios of a lab size pick and place unit. The paper closes 
delivering first ideas to cope with these. 
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I. INTRODUCTION

Both information and automated production systems (aPS) 
have a lifetime of several decades during which the systems 
evolve and thus are modified for the purpose of correction, 
improvement or adaptation [2]. For information systems (IS), 
an exemplary evolution life cycle (cp. Fig. 1) begins with the 
documentation of requirements and design decisions. This is 
followed by a static quality analysis possibly leading to a 
redesign before the system is implemented and deployed. A 
dynamic quality analysis is conducted for the running system to 
identify runtime issues [3] which may result in automated 
adaptation or trigger a new iteration for evolutionary changes 
conducted by human developers. 

aPS on the other side not only consist of software but also of 
mechanics and electric/automation hardware, i.e. three 
disciplines are involved. These are typically unique systems 
which are designed and implemented on the basis of a contract 
between a customer and an aPS supplier at which the 
engineering of an aPS is carried out in the form of a project [4] 

[5]. Reusable (partial) solutions are developed during project 
independent activities and are used during project-related 
activities over the lifetime of an aPS (cp. Fig. 2), which usually 
encompasses a period of decades. During their operation time 
aPS are aging due to physical effects (e.g. tear and corrosion). 
This leads to the replacement of components of both mechanics 
and electric/automation hardware after a couple of years up to 
a few decades, but with different intervals (cp. Fig. 2), e.g. 
mechanics every 20-40 years, automation hardware including 
electrics every 10-15 years and software once a week until once 
a year  [6]. Furthermore, the replacing components usually are 
not identical to the original ones, because the original spare 
parts are no longer available and/or a modernization is preferred 
[5]. 

Apart from the physical effects, changing requirements, e.g. 
market requirements or legal requirements, are another reason 
for aging. A lot of the changes caused by this can be 
implemented by software adaptions, but occur again in 
comparatively short periods of time and may even be executed 
during runtime. When change is required, the system may run 
through the process of evolution: all new and modified or 
affected requirements are gathered and/or checked for their 
validity and the system design is adapted on this basis [6]. 

Hence, both the domain of IS and the domain of aPS face the 
same challenge of their systems’ evolution. However, in aPS a 
required change cannot always be assigned to one of the 
disciplines explicitly. The worst case is, that a change can be 
implemented in either mechanics, electric/automation hardware 
or software with different side effects on and needed adaptions 
in the respective other disciplines (cp. Table 1 in [6]). In order 
to be able to compare the effort of two or more similar ways to 
maintain or evolve a specific system, supporting the decision 
which solution is more efficient and less time and cost 

Fig. 1  Overview of the CoCoME Evolution Life-Cycle [1] 



consuming would be beneficial not only for software in aPS. It 
would be utterly beneficial to be able to answer the even more 
challenging question whether a needed change should best be 
conducted in mechanics, electric/automation hardware or 
software or a combination of those. 

In the domain of IS, methods for change impact analysis 
already exist. The approaches to change propagation can be 
divided into four categories [15]: (i) Task-based project 
planning approaches (e.g. [7], [8]) consider software 
architecture at a coarse-grained level and thus result in an 
accurate impact analysis. (ii) Approaches to architecture-based 
project planning (e.g. [9], [10]) and (iii) approaches to 
architecture-based software evolution (e.g. [11], [12]) do not 
support automated change impact analysis. And finally, (iv) 
works on scenario-based architecture analysis (e.g. [9], [13], 
[14]) consider only development activities and neglect the 
management tasks. Compared to these existing approaches, 
Karlsruhe Architectural Maintainability Prediction (KAMP) 
(cp. [15]) considers all kinds of software artifacts (e.g. source 
code, test cases or deployed instances). On the basis of a 
classified change request as well as the meta model of the 
architecture and the other artifacts, task lists for conducting the 
change are generated for the maintenance effort estimation. 

However, a common classification of changes/evolution 
scenarios for both IS and aPS, which does not exist yet, is a 
precondition for the adaption of such methods for change 
impact analysis. In this paper, a first attempt for such a common 
classification is made and challenges are discussed on the basis 
of examples from both domains. For these examples 
demonstrators of each domain, i.e. CoCoME (cp. [16], [17]) for 
the domain of IS and a lab size pick and place unit (PPU) from 
the domain of aPS, are presented and evolution scenarios are 
described and classified. 

The rest of the paper is structured as follows. Section II gives 
an overview on related work, while the case studies are 
introduced afterwards in section III. In section IV selected 
evolution scenarios are described and classified by introduced 

criteria and challenges are discussed at the same time. Finally, 
section V closes with the results and an outlook. 

II. RELATED WORK REGARDING CHANGE CLASSIFICATION

In this section, an overview of categorizations of
(evolutionary) changes from the domain of IS is given, 
followed by a respective one for the domain of aPS. 

As introduced by Lientz and Swanson [18], three types of 
evolutionary change can be distinguished – corrective, 
perfective and adaptive evolution. Buckley et al. [19] proposed 
a taxonomy of software change consisting of 15 dimensions that 
characterize the mechanisms of change and the factors that 
influence these mechanisms. The dimensions can be subdivided 
into four logical themes: temporal properties (when), object of 
change (where), system properties (what) and change support 
(how). Williams and Carver [20] proposed a software 
architecture change characterization scheme based on a 
systematic literature review. This scheme differs from change 
classification schemes because it does not match change 
requests into a particular class, but characterizes the change’s 
impact with respect to a number of characteristics. Jamshidi et 
al. [21] identified five classification categories: (i) type of 
evolution, (ii) type of specification, (iii) type of architectural 
reasoning, (iv) runtime issues, and (v) tool support. Chapin et 
al. [22] propose a change classification taking into account (i) 
the software, (ii) the documentation, (iii) the properties of the 
software, and (iv) the customer-experienced functionality. 

For aPS, a categorization of evolution is introduced in the 
following which is based on Vogel-Heuser et al. [6] and allows 
to distinguish different causal orders of change by which the 
three disciplines involved in an aPS are affected. This is due to 
different reasons for change by which evolution is initiated 
(cause of evolution).  

In order to fulfill both changed and unchanged functional and 
non-functional requirements, which describe the desired 
behavior of aPS and change over their lifetime, the systems are 
undergoing various types of changes, i.e. evolution. Since all 
disciplines of the aPS may be affected due to changed 

Fig. 2  V-Modell XT integrated into life-cycle of different disciplines in aPS distinguishing between project-independent activities 
(top) and project-related activities (bottom) [6] 



requirements, the control software and/or the mechanical parts 
and/or the electric/automation hardware parts may be modified 
by the customer’s maintenance staff. Ideally, a model driven 
approach is chosen from requirements to design, 
implementation, test and start-up. Nevertheless, “a well-
managed and documented engineering procedure is not always 
performed in practice when requirements change” [6]. This is 
especially the case when changed requirements can be 
implemented by minor software adaptions, which is when they 
are usually performed instantaneously or even during runtime 
to avoid standstills.  

Furthermore, changes in industrial practice can occur either 
during operation or a maintenance phase. These changes are 
initiated on the shop floor by maintenance personnel and 
necessary adaptions only affect either the software or electrical 
parts or mechanical parts or both of the latter. Thus, even the 
step of changing the requirements is omitted and they remain 
unchanged. The time of these changes is, according to Buckley 
et. al. [19], online and unanticipated, i.e. the changes are not 
foreseen during development.  

In many cases, evolution in aPS is characterized non-
sequentially. According to the classification proposed by 
Buckley et. al. [19], parallel evolution is caused by divergent 
changes. In aPS, divergent changes can occur e.g. when a plant, 
a single machine or its components are used as a basis for two 
or more different variants. Accordingly, divergent changes 
result in variants of a machine or plant. Such divergent changes 
occur frequently in industry because on the one hand in most 
companies evolution is realized by modification of existing 
similar components, but on different levels, i.e. sub-component 
level (atomic), component level (basic) or machine/plant level 
(application/facility) [23]. On the other hand, mostly non-
functional requirements, e.g., PLC and device suppliers 
required by customers, control voltage depending on the 
country of delivery or different operating philosophies lead to 
different types of software, i.e. parallel evolution [6]. 

III. INTRODUCTION OF THE CASE STUDIES

In the following, both case studies, i.e. the CoCoME 
demonstrator and the pick and place unit (PPU), are described. 

A. Common Component Modelling Example (CoCoME)
CoCoME (cp. [16], [17]) is a case study demonstrating a

trading system which implements processes of a supermarket 
chain handling sales. Processes of CoCoME include all 
activities regarding processing sales (e.g. scanning products and 
paying) and all enterprise-wide administrative tasks (e.g. 
reporting and inventory management). It has a layered software 
architecture to support distribution of the software system. 
Several variants of CoCoME including various artifacts (e.g., 
test cases, requirement specifications, or architecture model) 
are available, such as plain Java code, service-oriented or 
hybrid cloud-based architectures [17]. 

B. Application example lab-size pick and place unit
A simple lab size model, the pick and place unit (PPU), is

used as a demonstrator to research methods and technologies on 
evolving aPS. The PPU performs a (discrete) manufacturing 
process and handles, stamps and sorts different kinds of 
workpieces (cp. Fig. 3) [24]. The PPU consists of software, 
electric/automation hardware and mechanical parts. 

The initial scenario is the evolution scenario Sc0 where only 
the stack, the crane and a slide (cp. Fig. 3, left bottom) exist. 
The stack pushes a single black plastic workpiece out of the 
stack into the crane’s pick-up position. At the pick-up position, 
the crane picks up single workpieces by moving downwards 
and using a vacuum gripper to hold the separated workpiece. 
Upon rotation of 90 degrees, the crane reaches the slide’s 
position, where the workpiece has to be placed. After moving 
down, the vacuum gripper releases the workpiece, which then 
glides down the slide.  

An overview of all evolutionary changes of the PPU is 
available in [6] Table II. 

A set of typical parallel variations in aPS based on the PPU’s 
scenario Sc15 are discussed in the following. Due to the 
demand for a higher throughput of workpieces (WPs), scenario 
Sc15a with a faster sorting of WPs is developed. A drive with 
increased dynamics is installed to realize faster WP movement, 
which entails that faster pushers are required for extruding 
WPs. In parallel, a customer demands, as a non-functional 
requirement, an adjusted variant of PPU’s scenario Sc15 
(scenario Sc15b) which is able to handle larger and heavier 
WPs. Depending on the country, a machine or plant shall be 
located in, different supply and control voltage must be 
supported by field devices., e.g. whereas the existing PPU is 
engineered to be located in Germany, a customer requests a 
PPU which can be operated with different supply and control 
voltage (as used e.g. in the United States). Accordingly, all field 
bus components, which are not capable to handle the desired 

Fig. 3  PPU and related mechatronic configurations based on evolution 
scenarios from [24]
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control voltage, have to be changed (scenario Sc15c, cp. Table 
I). 

IV. DESCRIPTION AND CLASSIFICATION OF SELECTED 
EVOLUTION SCENARIOS 

In the first part of this section the evolution scenarios of the 
CoCoME case study are presented together with a selection of 
change/evolution criteria. This is followed by the application of 
these criteria on the evolution scenarios of the PPU case study 
in the second part. 

A. CoCoME evolution scenarios and selected
change/evolution criteria

In the following, we describe how CoCoME is changed 
during a perfective (S1), an adaptive (S2), and a self-adaptive 
(S3) evolution scenario [25] (cp. Table II). 

In evolution scenario S1, a new web shop is added, which 
allows customers of CoCoME to order the goods online and 
pick them up in an existing store. To this end, new use cases 
have to be considered and the existing design decisions have to 
be changed. In order to reduce the operating cost, the enterprise 
server and the corresponding database are migrated to the cloud 
in evolution scenario S2. In the case of increasing load, the 
limited capacities of the cloud provider may lead to 
performance issues of the database. In order to solve these, the 
database is migrated to another cloud provider in evolution 
scenario S3. 

In order to classify the evolution scenarios, a selection of 
change/evolution criteria, which is based on the taxonomy of 
change described in the literature, is proposed. This selection of 
change criteria is then applied to scenario S1-S3 (cp. Table II) 
of which S1 is exemplarily described in more detail. 

The cause of a change (cp. Williams and Carver [20]) is the 
motivation or trigger of an evolution scenario, such as emerging 
user requirements or changes in the technology stack. The type 
of a change (cp. Lientz and Swanson [18]) can be adaptive, 
corrective, perfective or self-adaptive whereat a corrective 
change fixes bugs and design flaws. Changes in the software 

environment can lead to adaptations in the software. Changes 
due to new or changed requirements are called perfective 
changes. 

A further criterion describes whether the change is conducted 
at the systems design-time (offline) or at its run-time (online) 
(cp. Buckley et al. [19], Jamshidi et al. [21]). The scope 
describes, what part of the IS has been modified, i.e. the context, 
the platform or the software. This is further divided by the 
affected entities (cp. Buckley et al. [19], Williams and Carver 
[20]). Affected entities of the software can be e.g. components, 
interfaces or subsystems.  

Furthermore, the granularity (cp. Buckley et al. [19], 
Williams and Carver [20]) describes the scale of the artifacts 
that have to be changed, which encompasses coarse (e.g. 
system, subsystem, composite component), medium (e.g. basic 
component, class, interface) and fine granularity (e.g. variables, 
method, statement). Following the definition in [26], a basic 
component specifies a behavior by operations of its provided 
interfaces, hence it is treated as a black box. In contrast, a 
composite component is composed of basic components and 
therefore is a white box. So we consider changes that refer to 
composite components as coarse grained and changes that refer 
to basic components as fine grained. 

The change history includes all parallel or sequential 
changes, that moreover can be “anticipated” or “unanticipated” 
(cp. Buckley et al. [19]). The degree of automation refers to the 
degree of change support and it is to be distinguished between 
automated, partially automated and manual change support (cp. 
Buckley et al. [19]). Finally, the degree of formality describes, 
whether a change is deposited in an informal or a mathematical 
formal way, e.g. in a model (cp. Buckley et al. [19]). 

TABLE I 
SELECTED EVOLUTION SCENARIOS OF THE PICK&PLACE UNIT 

Scope 

Scenario Cause of evolution 
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… … … 
Me – Mechanics, AH – Automation Hardware, S – Software, A – Added, M – Modified, o – no changes 



Other criteria such as availability, openness and safety from 
Buckley et al. [19] are rather properties of the system itself than 
properties of the evolution scenario. Support activity, type of 
architectural reasoning and runtime issues are introduced in 
Jamshidi et al. [21]. However, support activity does not refer to 
evolution scenarios. Type of architectural reasoning applies to 
architectural descriptions and runtime issues refer to runtime 
properties of a system. Criticality, importance, and quality 
attributes from Williams and Carver [20] cannot be determined 
in advance. 

A detailed application of a subset of the evolution criteria (cp. 
Buckley et al. [19]) to CoCoME is described in Vogel-Heuser 
et al. [2]. In the following, we describe all relevant evolution 
criteria based on the example of evolution scenario S1. In S1, a 
web shop is added to CoCoME to fulfill emerging user 
requirements. For this purpose, the software architecture needs 
to be changed to include the new web shop components and the 
corresponding communication interfaces at design-time. As 
this change includes adding new components and interfaces and 
adapting the existing ones, it is at a coarse granularity level. 
Since this change can be foreseen during the design-time, it is 
an anticipated change. S1 is a perfective evolution due to 
changing requirements. In contrast, S2 is an adaptive evolution, 

as the enterprise server and the database of CoCoME are 
migrated to the cloud in order to reduce costs and improve the 
flexibility and scalability. S3 is a self-adaptive evolution, since 
CoCoME is automatically changed during operations. 

B. Classification of selected PPU evolution scenarios
In the following, three evolution scenarios (scenario 2, 4a and

15c) of the PPU are described and characterized according to 
the criteria of the information system’s domain (cp. Table II). 
For all PPU scenarios changes are conducted manually (degree 
of automation) and as there are no formal models for the change 
scenarios they are all to be categorized as adhoc (degree of 
formality).  

In scenario 2 the PPU is to be retrofitted with an inductive 
sensor at the stack in order to be able to distinguish and 
therefore process metallic workpieces (cause of evolution). The 
type of evolution is perfective as it is an enhancement of the 
system required by the customer, the means of evolution is 
adaptive and the evolution history is sequential. The addition of 
an inductive sensor affects all three disciplines involved and the 
following entities: the mechanics of the stack have to be 
modified to mount the fixture of the sensor. The sensor outputs 
need to be connected to the automation hardware, resulting in 

TABLE II 
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additional wiring and additional power supply. In case the input 
terminal of the fieldbus system is already fully occupied a new 
one has to be added. For being able to actually use the sensor, 
an additional input in the software has to be configured, and the 
logic of the function block controlling the stack has to be 
enlarged to provide the output if the workpiece is metal or not. 
The scope of this change scenario refers to mechanics, 
automation hardware and software of the stack. The granularity 
of the change will be discussed in the following to highlight the 
difference of the granularity levels compared to IS. Regarding 
its scale, a sensor by itself is a fine grained entity in an aPS. 
However, as the interface of a sensor matters in the context of 
aPS, it is to be seen as a basic component (black box) and thus 
to be classified as a medium grained change regarding the 
automation hardware. For the mechanics and the software, the 
same applies as the mechanical fixture and the new function 
block for the sensor both are basic components. 

In Scenario 4a the sensors detecting the position of the crane 
are replaced. The cause of evolution in this case is a desired 
reduction in the error rate caused by sensor contamination and 
is to be classified as a corrective type of evolution. The affected 
entities of this sequential evolution scenario are the sensors and 
the scope of the evolution is the automation hardware of the 
crane as the sensors are replaced by identical ones. As just 
described in scenario 2, a sensor is classified as a basic 
component and therefore it is a matter of a change of medium 
granularity, although the change effort in this scenario is much 
lower compared to the one of scenario 2. The change is only 
realized in one discipline and the sensors merely have to be 
exchanged, but according to the classification from the domain 
of IS both scenarios are to be categorized identically regarding 
their granularity. Therefore, future categories need to be 
adapted to include the linkage of changes across disciplines. 
One idea is to remain with three different categories of 
granularity, but in case there are changes in two or more 
disciplines these cross-disciplinary links increase the level of 
granularity by one. 

An alteration of the control voltage, which is to be 
categorized as a customer requirement (i.e. country specific due 
to national regulations), is the cause of evolution in scenario 15c 
and it is again a perfective type of evolution. In contrast to the 
previous scenarios it is a matter of a parallel evolution history. 
Due to an alteration of the control voltage all bus components 
may be replaced and sometimes also sensors and actuators, 
which are incompatible to the required voltage affecting only 
the automation hardware at a first glance. But in case a sensor 
or actuator supplier needs to be changed the fixture and the 
software may be affected, too. According to these affected 
entities, the scope of this scenario encompasses the mechanics 
and the automation hardware as well as the software of all 
subsystems. Regarding the mechanical fixtures, which have to 
be modified and are to be classified as components, this change 
is of medium granularity. The same applies for the changes in 
automation hardware, as sensors and actuators are components 
as well, and the resulting change in the software, i.e. a function 

block. Again, this change would be classified into the same 
level of granularity as the other scenarios, but results in a 
tremendously bigger maintenance effort. Therefore, we can 
summarize that the classification of granularity from 
information systems does not fit the automation domain, 
because it does not allow to reflect the maintenance effort; in 
other words, the resulting information is too coarse grained to 
be beneficial. 

Up to now only sequential evolution and offline change, i.e. 
change during design time, have been focused on. As in aPS 
five levels of software granularity have been identified [27] 
from several industrial case studies, the level of software 
granularity shall be enlarged as well. There are partial proposals 
for an architectural system model for aPS, but the entire model 
is also missing. 

V. RESULTS AND OUTLOOK

The paper introduced an already established and beneficial 
classification of change effort in case of software maintenance 
from the domain of IS and applied the fundamental 
characteristics to the domain of aPS. Hereby, the approach was 
enlarged by two more system aspects or disciplines, i.e. 
mechanics and electric/automation hardware. The weaknesses 
are explained in detail for three scenarios of a simple open 
source lab size example of a pick and place unit. The 
classification of granularity needs to be elaborated to allow a 
more fine grained classification on the one hand and to include 
cross-disciplinary aspects, e.g. by increasing the level of 
granularity in case more than one discipline is included, on the 
other hand. This would help to compare in our future work two 
or more alternative ways to maintain a system or to implement 
changes in software and facilitate the decision, whether a 
change should best be conducted in software or mechanics. This 
way, the alternative that is most time and cost efficient or long 
term beneficial according to architectural decisions can be 
chosen. 
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