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ABSTRACT

The steadily rising number of datasets is making it increasingly diffi-
cult for researchers and practitioners to be aware of all datasets, par-
ticularly of the most relevant datasets for a given research problem.
To this end, dataset search engines have been proposed. However,
they are based on user’s keywords and, thus, have difficulty deter-
mining precisely fitting datasets for complex research problems. In
this paper, we propose a system that recommends suitable datasets
based on a given research problem description. The recommenda-
tion task is designed as a domain-specific text classification task. As
shown in a comprehensive offline evaluation using various state-
of-the-art models, as well as 88,000 paper abstracts and 265,000
citation contexts as research problem descriptions, we obtain an
F1-score of 0.75. In an additional user study, we show that users in
real-world settings are 88% satisfied in all test cases. We therefore
see promising future directions for dataset recommendation.
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1 INTRODUCTION

The number of available datasets in the various scientific fields has
grown vastly and is continuously on the rise [16]. For instance,
OpenAIRE [20] contains the metadata of more than 23,000 datasets.
In addition, in recent years, large national and international initia-
tives, such as the German National Research Data Infrastructure
and the initiatives around the FAIR data principles [31], have been
established to foster the reuse of datasets [16]. In the process of ac-
cessing and reusing datasets from repositories, identifying the most
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Table 1: Example dataset recommendations.

Input text (e.g., paper abstract without dataset men- Rec.
tions) datasets
This paper presents an algorithms for tagging words whose ~ Brown
part-of-speech properties are unkown. Unlike previous Corpus
work, the algorithm categorizes word tokens in context

instead of word types.

Given a set of images with related captions, our goal is ImageNet,
to show how visual features can improve the accuracy of ~SemCor

unsupervised word sense disambiguation when the textual
context is very small, as this sort of data is common in news
and social media. We extend previous work in unsupervised
text-only disambiguation with methods that integrate text
and images. [...]

relevant datasets is often challenging for researchers and practi-
tioners [21]. Dataset search engines, such as Google Dataset Search
[2] and Zenodo [7], help users retrieve the most relevant datasets.
However, existing dataset search engines using the datasets’ meta-
data are limited in their applicability [4]. Apart from the fact that
search engines relying on metadata depend on the accuracy and
maintenance of the metadata [3], existing dataset search engines are
not suitable for the users’ specific and comprehensive information
needs (see Table 1). Chen et al. [4] found that real data needs are
most often formulated as phrases and not as keywords. The latter
case constitutes only 32% of the investigated queries. Overall, to
our knowledge, approaches beyond keyword search for retrieving
relevant datasets for a given research problem are still missing.

In this paper, we propose a new approach to dataset search that
is not based on keywords or faceted search; instead, the recommen-
dation algorithm relies on a text classification model that predicts
relevant datasets for a user’s input. The user input is a text (e.g.,
several sentences) that describes the research or task that the user
plans to conduct (see Table 1). A classifier predicts all relevant
datasets indexed in a given repository based on the entered text,
ranked by relevance if needed. The hypothesis is that the quality
of the dataset search can be considerably improved when using
a rich formulation of the research problem in natural language,
rather than relying purely on isolated keywords or attributes. In
an extensive evaluation based on almost 2,000 datasets, more than
350,000 texts, and 21 different classifiers, we show that already a
linear SVM can accurately predict suitable datasets for given prob-
lem descriptions to a high degree. Reaching up to 88% precision in
a user study, the best-performing model illustrates clearly that text
classification is a promising approach to dataset search.
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Overall, this paper’s main contributions are as follows:

e We propose machine learning-based text classification mod-
els for retrieving relevant datasets for given research problem
descriptions.!

e We provide a new evaluation dataset for dataset recommen-
dation based on research problem descriptions. It consists
of more than 353,000 texts with mentions of nearly 2,000
datasets. All datasets are linked to papers in the Microsoft
Academic Graph [30].

e We provide an evaluation of our dataset recommendation
methods and can show that besides transformer-based meth-
ods, even a linear SVM achieves promising results.?

2 RELATED WORK

Dataset search based on keywords and/or faceted search. A
detailed overview of dataset search is provided in [3]. It shows that
existing dataset search systems are mainly based on keyword or
faceted search and rely on the datasets’ metadata. Pietriga et al. [24]
propose the dataset search engine LODAtlas. The search is realized
in LODALtlas as a keyword search, whereas we allow longer texts as
input. Google Dataset Search [2] relies on metadata, too. Datasets’
metadata freely available on the web is often of poor quality [12].
Thus, in contrast to Google Dataset Search, in our approach we use
a much cleaner data basis and links to papers. In addition, Google
Dataset Search relies solely on a keyword search.

Dataset search based on text. Chen et al. [5] propose a schema
label generation model that generates possible schema labels based
on the content of a dataset table [5]. The schema labels are then
used in a ranking model to compute the similarity between a query
and a dataset. In [4], the authors show that the majority of queries
are phrases or sentences, which demonstrates the suitability of our
approach. Our approach of text classification for dataset retrieval is
similar to the tasks of dataset mention extraction and dataset classi-
fication in [27]. However, while we use the classification for dataset
search, Prasad et al. [27] use the dataset classification to identify
relations between datasets and existing scientific documents.

3 APPROACH

We model the dataset recommendation as a supervised multiclass,
multilabel text classification, because for each input text, one or
more datasets might be relevant. Consequently, we distinguish be-
tween a training phase and a testing/application phase. The training
phase can be divided into (1) training data generation, (2) text pre-
processing, and (3) text classification. The testing and application
phase can be divided into (1) text preprocessing, (2) text classifica-
tion, and (3) ranking and metadata retrieval. In the following, we
describe the steps of text preprocessing and text classification.

Text Preprocessing. We consider the following text represen-
tation methods:

o tf-idf [28], a text representation based on term frequencies;
e doc2vec [29], a way of representing an entire document;

10ur implementation and evaluation dataset is available at https://github.com/
michaelfaerber/datarec.

2A running dataset search system based on one of the best performing models is
provided online at http://data-hunter.io and described in [9].
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o fastText embeddings, pretrained word and phrase repre-
sentations achieving or even outperforming state-of-the-art
results on various tasks [22];

¢ SciBERT embeddings, a widely used language model based
on BERT and trained on scientific texts [1];

e Transformer-XL embeddings [6], based on the self-attention
model Transformer-XL that models longer-term dependency.

Text Classification. We consider the following text classifica-
tion methods. Note that the focus of this paper is to propose dataset
recommendation based on texts using state-of-the-art methods
instead of dedicated novel approaches.

(1) Classification based on tf-idf similarity: Datasets are se-
lected if the cosine similarity between the tf-idf representa-
tions of dataset and problem description exceeds a threshold.

(2) Classification based on BM25 score: This classification
method is identical to the previous one, but uses BM25 in-
stead of the cosine similarity between tf-idf representations.

(3) Linear SVM: SVMs are particularly applicable to large and
high-dimensional classification problems [13]. The linear
SVM is especially suitable for large training datasets.

(4) Random Forest: The random forest classifier considers nu-
merous decision trees and, thus, typically results in more
accurate predictions than a decision tree does.

(5) Logistic Regression: Logistic regression is particularly suit-
able and efficient for complex classification tasks and out-
performed other traditional classification methods [26].

(6) Gaussian, Multinomial, and Complement Naive Bayes:
Naive Bayes classifiers are often accurate and fast for large
datasets [14].

(7) Convolutional Neural Network (CNN): Liu et al. [17]
stated that several forms of CNNs and RNNs count to the
strongest methods for multiclass classification [18].

(8) Recurrent Neural Networks (Simple RNN, LSTM, and
BiLSTM): RNN, LSTM, and BiLSTM are widely used and are
among the strongest multiclass classifiers [17].

(9) CNN-LSTM: CNN-LSTM combines the strengths of CNN
and RNN models and has achieved excellent performance
on text classification tasks [32].

(10) fastText classification: fastText classifier’s accuracy is of-
ten on par with deep learning classifiers, while the classifier
is much faster for training and evaluation [15].

(11) Fine-tuning of SciBERT embeddings with subsequent
classification layer: Following [1, 19], we consider fine-
tuning SciBERT embeddings with an attached classification
layer as a text classifier.

4 EVALUATION

Evaluation Setting. We use an offline evaluation and a user study
to evaluate the proposed methods’ performance. The offline evalu-
ation uses labeled data in a re-prediction setting. The user study
has a similar setting to the offline evaluation, but considers user
feedback to decide whether a recommended dataset is relevant.
Evaluation Dataset. As a database for datasets, we use the Data
Set Knowledge Graph (DSKG) [12]. This up-to-date collection pub-
lished in 2021 is based on dataset entries in Wikidata and OpenAIRE.
It is characterized by rich and highly accurate metadata. All datasets
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Table 2: Offline evaluation results given (a) paper abstracts and (b) citation contexts.

are linked to papers of the Microsoft Academic Knowledge Graph
[8] containing metadata of 240 million publications. Thus, users
can also see detailed information of publications using the datasets,
which might be helpful for choosing an appropriate dataset. We
focus on computer science, resulting in a set of 1,691 datasets.

To train and evaluate our approaches, texts representing scien-
tific problem descriptions need to be linked to relevant datasets in
the DSKG. Since pure research problem descriptions are largely not
available, we use abstracts from scientific papers that contain the
given datasets as in-text mentions and, thus, as target labels. Paper
abstracts are very similar to problem descriptions, because they
both summarize in a few sentences the examined task for which a
dataset has been used or will be used. Given the diverse length of
abstracts (a few words up to 1,000 words in our collection), abstracts
exhibit a great variety of possible real-world queries. In addition,
we consider citation contexts (i.e., sentences with in-text citations)
for a supplementary evaluation. They are typically shorter than
abstracts. Overall, we argue that paper abstracts and excerpts from
papers, from which the dataset mentions were removed, are a valid
approximation of the researchers’ written information needs con-
cerning datasets. In this way, also datasets can be recommended
for already published papers.

In our evaluations, we use the paper abstracts and citation con-
texts from the Microsoft Academic Graph:

(1) Paper abstracts. We use 88,047 paper abstracts that refer-
ence 1,413 unique datasets from the field of computer sci-
ence. Most paper abstracts (75,034; 85.2%) reference only one
dataset. Up to 20 datasets are referenced per abstract.

(2) Citation contexts. We use 265,587 citation contexts that
mention a computer science dataset. Each citation context
contains only one dataset. Also here, the mentions were

(a) paper abstracts (b) citation contexts
macro weighted macro weighted

Classifier Text represent. P l R l F1 P l R l F1 P l R l F1 P l R l F1

tf-idf similarity - 0.00 | 0.40 | 0.01 0.10 | 0.38 | 0.12 | 0.00 | 0.28 | 0.01 0.10 | 0.46 | 0.13
BM25 values - 0.02 | 0.19 | 0.02 | 0.16 | 0.14 | 0.08 | 0.01 | 0.18 | 0.02 | 0.17 | 0.22 | 0.12
Linear SVM tf-idf 0.39 | 0.17 | 0.22 | 0.66 | 0.42 | 0.49 | 0.62 | 0.55 | 0.57 | 0.75 | 0.76 | 0.75
Gaussian Naive Bayes tf-idf 0.02 | 0.04 | 0.03 | 0.12 | 0.29 | 0.16 | 052 | 0.29 | 0.34 | 0.62 | 0.40 | 0.45
Multinomial Naive Bayes | tf-idf 0.00 | 0.00 | 0.00 | 0.15 | 0.10 | 0.11 0.15 | 0.04 | 0.05 | 0.53 | 0.43 | 0.35
Complement Naive Bayes | tf-idf 0.00 | 0.01 | 0.01 | 0.16 | 0.22 | 0.18 | 0.34 | 0.13 | 0.16 | 0.63 | 0.56 | 0.50
CNN tf-idf 0.00 | 0.00 | 0.00 | 0.02 | 0.13 | 0.03 | 0.00 | 0.00 | 0.00 | 0.02 | 0.15 | 0.04
Linear SVM doc2vec 0.10 | 0.04 | 0.05 | 043 | 0.20 | 0.24 | 0.24 | 0.16 | 0.17 | 0.41 | 0.46 | 0.39
Gaussian Naive Bayes doc2vec 0.04 | 0.34 | 0.06 | 0.18 | 0.73 | 0.26 | 0.14 | 0.18 | 0.13 | 0.40 | 0.29 | 0.32
CNN doc2vec 0.01 | 0.02 | 0.01 | 0.18 | 0.29 | 0.20 | 0.05 | 0.03 | 0.03 | 0.30 | 0.38 | 0.31
Linear SVM fastText 0.14 | 0.05 | 0.07 | 0.51 0.22 | 0.28 | 037 | 0.26 | 0.28 | 0.55 | 0.59 | 0.55
Gaussian Naive Bayes fastText 0.03 | 0.45 | 0.04 | 0.15 | 0.79 | 0.21 | 0.32 | 0.34 | 0.29 | 0.55 | 043 | 0.46
CNN fastText 0.01 | 0.01 0.01 | 0.18 | 0.30 | 0.21 0.07 | 0.06 | 0.05 | 0.38 | 0.46 | 0.39
Linear SVM SciBERT 0.21 | 0.17 | 0.17 | 0.50 | 032 | 036 | 0.51 | 047 | 047 | 0.69 | 0.70 | 0.69
Gaussian Naive Bayes SciBERT 0.03 | 043 | 0.04 | 0.12 | 0.82 | 0.18 | 0.13 | 0.09 | 0.07 | 0.38 | 0.08 | 0.08
CNN SciBERT 0.00 | 0.01 | 0.00 | 0.10 | 0.22 | 0.12 | 0.07 | 0.06 | 0.06 | 0.36 | 0.44 | 0.38
Linear SVM Transformer-XL | 0.19 | 0.09 | 0.11 | 0.50 | 0.22 | 0.28 | 0.40 | 0.37 | 0.37 | 0.51 0.53 | 0.51
Gaussian NB Transformer-XL | 0.03 | 0.32 | 0.03 | 0.08 | 0.67 | 0.13 | 0.07 | 0.05 | 0.04 | 0.20 | 0.04 | 0.04
CNN Transformer-XL | 0.01 | 0.01 0.00 | 0.11 0.21 0.12 | 0.02 | 0.02 | 0.01 0.16 | 0.27 | 0.17
FastText classifier - 0.11 | 0.27 | 0.15 | 038 | 0.62 | 0.46 | 055 | 047 | 049 | 0.76 | 0.75 | 0.75
SciBERT finetuning - 0.04 | 0.03 | 0.03 | 0.29 | 036 | 030 | 0.29 | 0.25 | 0.25 | 0.68 | 0.70 | 0.68
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removed in the dataset creation phase. The most common
dataset is mentioned in 40,236 citation contexts.

We see that a few datasets are referenced very often (up to approx.
14,500 times in the abstracts and 40,000 times in the citations), but
the majority of datasets is referenced between one and 100 times.
The imbalanced data makes the classification more challenging;
however, particularly the recommendation of less commonly used
datasets is our goal.

4.1 Offline Evaluation

4.1.1 Offline Evaluation Setting. As outlined in Section 3, we in-
vestigated the text representation methods (1) tf-idf, (2) doc2vec,
(3) fastText embeddings, (4) SciBERT embeddings, and (5) Trans-
formerXL embeddings. For text classification, we use one of the 11
methods listed in Section 3. Furthermore, we use 80% of the evalua-
tion dataset for training the models and 20% of the data for testing.
As evaluation metrics, we used precision, recall, and F1-score. To
take into account the quality of small classes, we also consider the
macro and weighted averages for precision, recall, and F1-score.
Cross Validation. In addition to the hold-out validation, a k-fold
stratified cross validation with k = 5 and k = 10 was performed. The
results were comparable to the settings with hold-out validation.
Sampling Strategies. We considered random oversampling and
random undersampling. Our evaluation showed that undersampling
worsens the classification quality significantly. Oversampling some-
times increased and sometimes decreased the classification quality
while the training time was more than twice as long as without
sampling. Thus, we apply neither oversampling nor undersampling.
Time Component. We wanted to ensure that the classification
quality is not deteriorated by predicted datasets that were not avail-
able in the year in which the research problem description was
written. For this reason, the false-positive predictions of several
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classification models were investigated. This analysis showed that
no items were falsely classified due to temporal reasons or that this
could not be detected because the metadata was lacking. We also
compared the classification quality for temporarily sorted train and
test data and for randomly shuffled train and test data, following
[10]. As only a marginal difference in all investigated evaluation
metrics was observed, we decided to neglect the time component.
4.1.2  Offline Evaluation Results. Table 2 shows the offline evalua-
tion results.

Basic Classification Approaches. The classifiers based on tf-
idf and BM25 perform poorly and are not able to model this classi-
fication task properly. The recall rates are considerably higher than
the precision scores. However, also the recall rates are outperformed
by other models, such as linear SVM based on tf-idf.

Traditional Text Classification Approaches. According to
our evaluation results, logistic regression and random forest are
not suitable for modeling this text classification, because they often
failed to converge or had very long training times. The best model of
the traditional classifiers for the considered database is Linear SVM,
which outperforms Naive Bayes in terms of F1-score for all text
representations. Linear SVM based on tf-idf is the model with the
best overall performance for paper abstracts and citation contexts.

Deep Learning Approaches. The fastText classification model
is the second most promising classifier due to the second highest F1-
scores for both datasets. Besides the considerably high performance,
this model is convincing because of its fast computation time that
is multiple times shorter than the training time of all other models.

The SciBERT fine-tuning model with subsequent classification
layer performs moderately for abstracts (weighted F1-score of 0.30),
and well for citation contexts (weighted F1-score of 0.68).

We observe a superior performance of the CNN in comparison
to LSTM, Simple RNN, CNN-LSTM, and BiLSTM. The results of the
CNN were always on par with or better than the results of these four
methods, whereas the computation time of the CNN was clearly
shorter. For instance, the CNN was at least 2.8 times faster than the
LSTM on all investigated text representations. This performance
persists when applying extensive parameter optimization on the
models. Thus, we excluded LSTM, Simple RNN, CNN-LSTM, and Bi-
LSTM from further evaluation and focused on the CNN model with
hyperparameter tuning. A reason for the superior performance of
the CNN in comparison to architectures including an RNN could
be that putting a strong focus on word sequences rather than the
occurrence of specific words is detrimental to classifying problem
descriptions [11]. The CNN’s overall performance is in most cases
worse than traditional classification models (e.g., Naive Bayes) and
other deep learning methods (i.e., SciBERT classifier, fastText clas-
sifier). The CNN models were outperformed by the best models,
such as Linear SVM based on tf-idf, for all text representations.

Similar to Pathak [25], we observed that Transformer-XL em-
beddings are particularly time consuming to train. However, the
classification quality for models based on Transformer-XL embed-
dings is outperformed by SciBERT embeddings. Thus, the consider-
ation of longer-term dependency does not necessarily improve the
embeddings’ quality. Furthermore, the weighted average scores are
generally higher than the macro average scores for all models. This
behavior highlights that the classification models perform better
for frequent classes than for rare classes. This issue also becomes
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Table 3: User study results.

Model Precision Precision

Abstracts  Cit. Contexts
Linear SVM (tf-idf) 0.643 0.687
fastText 0.287 0.288
Linear SVM (SciBERT) 0.637 0.881

clear when considering the confusion matrices and precision, re-
call, and F1-score for each present class. For the Linear SVM, the
differences in performance between rare and frequent classes tend
to be smaller than they are for other classifiers.

4.2 User Study

Our user study is based on user feedback, and it reviews the classi-
fication models’ performance in a real-world application. It focuses
on the offline evaluation’s most promising classification models. We
consider it as a complementary evaluation, focusing on precision.

4.2.1  User Study Setting. Similar to the offline evaluation, we used
the abstracts and citation contexts as problem descriptions. Follow-
ing [23], a sample size of 400 is chosen for the user study to ensure
the results’ statistical significance with a confidence interval of 95%.

To create the ground truth, we let two experienced researchers
judge the recommended datasets for all sample inputs (400 paper
abstracts and 400 citation contexts; judged as relevant vs. nonrele-
vant vs. unknown). The interannotator agreement using Cohen’s
kappa score is 0.443, which is moderate but acceptable.

We evaluate the classification models that were found most
promising in the offline evaluation based on the macro and weighted
averaged F1-scores. These are (1) Linear SVM based on tf-idf, (2) fast-
Text classification, and (3) Linear SVM with SciBERT embeddings.

4.2.2  User Study Results. The user study’s results are shown in
Table 3. The Linear SVM models based on tf-idf and SciBERT embed-
dings perform best and reach a precision of up to 0.881. These high
results show that dataset recommendation can indeed be helpful in
real-world settings. The user study confirms the offline evaluation’s
finding that Linear SVM with tf-idf is a well-performing model
for the considered task and database. In the user study, the Linear
SVM based on SciBERT embeddings is on par with this model given
paper abstracts, and even outperforms it given citation contexts.
For these two models, the user study’s results are on par with and
partially outperform the offline evaluation’s results and therefore
confirm the performance trends of these models.

5 CONCLUSION

In this paper, we developed a dataset search system that uses text
classification to recommend relevant datasets for a given scientific
problem description. Besides new problem descriptions, it can be
used for already published research descriptions. We evaluated var-
ious state-of-the-art classification models combined with several
text representation methods. The large-scale offline evaluation re-
vealed that suitable datasets can be re-predicted to a high degree.
Our user study confirmed that a linear SVM based on tf-idf or Sci-
BERT embeddings performs particularly well in predicting datasets
based on scientific problem descriptions.
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