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ABSTRACT: 

 

Urban areas struck by disasters such as earthquakes are in need of a fast damage detection assessment. A post-event SAR image often 

is the first available image, most likely with no matching pre-event image to perform change detection. In previous work we have 

introduced a debris detection algorithm for this scenario that is trained exclusively with synthetically generated training data. A 

classification step is employed to separate debris from similar textures such as vegetation. In order to verify the use of a random forest 

classifier for this context, we conduct a performance comparison with two alternative popular classifiers, a support vector machine and 

a convolutional neural network. With the direct comparison revealing the random forest classifier to be best suited, the effective 

performance on the prospect of debris detection is investigated for the post-earthquake Christchurch scene. Results show a good 

separation of debris from vegetation and gravel, thus reducing the false alarm rate in the damage detection operation considerably. 

 

 

 

 

1. INTRODUCTION 

Natural disasters, in particular earthquakes, cause a strong 

demand for a fast and reliable detection of structural damages. 

Due to the independence of weather and lighting conditions and 

the consequentially ensured image availability, many approaches 

are based on SAR imagery, occasionally in combination with 

ancillary data (Tao, 2016). However, the likely and rather 

challenging case of having neither a pre-event image nor 

additional data available is treated less often (Balz, 2010; Gong, 

2016). 

 

In SAR imagery, the most prominent indication for structural 

damages is the signature caused by heaps of debris surrounding 

the buildings. Due to its coarse texture, debris can be separated 

rather well from other signatures caused by urban formations. 

There are several sources, though, most importantly high 

vegetation and gravel, that feature a very similar texture in SAR 

images and thus make the debris detection approach considerably 

more difficult. 

 

Previous work addressed the search for suitable textural features 

to describe these types of textures and the advantages of using 

simulated data as training samples for classification purposes. 

Essentially, this entails the prospect of creating generic samples, 

which are unaffected by random factors and independent from 

the actual SAR image that is to be investigated. The chosen 

feature set was described in (Kuny, 2015) and consists of 

Haralick features and some statistics of the first order. It was 

demonstrated by means of a multidimensional scaling that there 

is but some extent of overlap in the feature space regarding the 

signatures of debris, vegetation and gravel, and that the chosen 

feature set is rather capable to distinguish between the classes 

(Kuny, 2016a). Using a TerraSAR-X High Resolution Spotlight 

image of the post-earthquake Christchurch (New Zealand) scene 

as test data, it was shown that the major sites of debris, e.g. caused 

by a collapsed building, can be detected via a screening process 

(Kuny, 2014). Preliminary work on the classification of debris 

and vegetation demonstrated promising results using a random 

forest classifier (Kuny, 2016b). 

 

The aim of this paper is to verify the use of a random forest 

classifier for the separation of the signatures of debris and 

vegetation in view of a simulation based training environment. 

For this purpose, two alternative popular classifiers, a support 

vector machine (SVM) and a convolutional neural network 

(CNN), are deployed and compared regarding their classification 

performance.  

2. DATA 

The data set used in this study consists of a High Resolution 

Spotlight 300MHz TerraSAR-X image, with a pixel size of 

45.47 cm x 85.72 cm and an incidence angle of 47.38° (see 

Figure 1). It was recorded 32 hours after the February 2011 

earthquake took place, destroying large parts of the inner city.  

 

 

Figure 1. TerraSAR-X image of Christchurch, New Zealand. 
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Figure 2. Reference map regarding classes debris (red: ground-

level debris, orange: higher-level debris), vegetation (green) and 

gravel (blue). 

A reference map was generated based on an airborne orthophoto 

with a resolution of 10 cm (Land Information New Zealand), 

taking into account the classes debris, vegetation and gravel. 

Since the debris detection algorithm is carried out on the slant 

range image, the geometry needs to be taken into account in the 

reference map. Image registration is achieved by rasterisation of 

the reference map and a subsequent tie point based 

transformation into slant range geometry. The fact that areas of 

higher-level debris as well as high vegetation are projected 

towards near-range, is taken into account by a corresponding 

component shift in the case of vegetation versus a component 

stretch for higher-level debris. The final reference map is 

depicted in Figure 2. 

 

For the evaluation process a shadow mask was generated using a 

LoD2.5 3d city model of the Central Business District of 

Christchurch and the SAR simulator CohRaS®. The model was 

generated by PLW Modelworks using optical imagery from 

2010, thus providing pre-event conditions. 

 

Test data 

The test samples were acquired by manual extraction of 14 

verified debris sites and several vegetation areas from the test 

area of the TerraSAR-X image, using both the reference image 

and visual verification to make sure there is no blockage due to 

neighbouring buildings. Corresponding to the training data these 

areas were then parcelled into 11 x 11 pixel samples, resulting in 

a test set of 1000 samples each for debris and vegetation. For the 

assessment of the classification performance, class gravel was 

not included for two reasons: The test area does not provide 

enough areas of reference signatures; secondly and more 

importantly, feature space has proven that debris and vegetation 

are much more entwined and thus classification performance is 

up to the separation of these two classes.  

 

3. DEBRIS DETECTION ALGORITHM 

Previously, a debris detection algorithm for a single post-event 

HR SAR image was developed using exclusively synthetic 

training samples. The general workflow of the algorithm is 

visualised in Figure 3, showing the consecutive processing steps. 

A screening step achieves the localisation of all debris-like 

texture in the post-event image, which - it was found - also 

involves the texture of vegetation and gravel. Consecutively, 

these classes are separated by a classification process. For a more 

detailed description of the algorithm we refer to (Kuny, 2016b). 

 

Figure 3. Workflow of the debris detection algorithm. 

 

4. CLASSIFIER TRAINING 

Depending on the classification problem, factors such as the 

choice of classifier can have a large impact on the performance. 

To validate the use of a random forest for differentiating debris 

from similar textures, a performance comparison between the 

chosen random forest classifier and two alternative classifiers 

(SVM and CNN) is conducted. It was refrained from including 

gravel as a debris-like texture, since the results on the test scene 

suggest vegetation to be the far more challenging factor. 

 

The training of the classifiers is conducted using synthetic 

samples exclusively so as to remain conform with the damage 

detection approach, and thus providing for a data set that is 

unaffected by random factors, indefinitely expandable, and 

independent from the actual SAR image that is to be investigated. 

The process of simulating generic, radiometrically correct SAR 

textures employing the SAR simulation tool CohRaS® (Hammer, 

2009) was already described in previous studies (Kuny, 2016a). 

 

In order to obtain a large enough data basis for the training 

process, various 3d models were generated and simulated for 

several aspect angles. Subsequently, 11 x 11 pixel samples were 

extracted. Since surrounding signatures in real SAR imagery are 

random and thus cannot be simulated, there was made a point of 

using mainly sample windows located fully inside the signature, 

thus relying fully on the texture characteristics. Note that the use 

of synthetically generated training samples facilitates the 

establishment of a perfectly uniform class representation.  

 

The effective training data set consists of 1000 simulated 

samples, 500 for each class, which is considered sufficient for the 

training of the random forest and the SVM. However, since the 

training of a CNN requires significantly more data, the set was 

extended by additional simulations to a total of 14.000 samples 

for the training of this classifier exclusively. It was found that 

both SVM and CNN benefit strongly from an energy 

normalisation of the input samples. Hence, both training and test 

data were normalised as specified by 

𝑓𝑛𝑜𝑟𝑚 =
𝑓

√∑ 𝑓2
 . 

Since there is no observable benefit for the random forest 

classification, though, and also to provide a comparability to the 

debris detection approach, the original input samples are used for 

the random forest classification.  

 

In the following, specifics on the implementation and the training 

process regarding the three classifiers are described. 
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4.1 Support Vector Machine 

As is to be expected the used feature set (21 features: Haralick 

and first order statistics) prove to be correlated to some extent. 

Depending on the classifier, redundant features 

(multicollinearity) and irrelevant features may cause overfitting 

and reduce the model performance, as well as lead to an 

unnecessarily high computational load. A random forest is robust 

to redundancy in the feature set; however, in the case of an SVM, 

the concept of feature reduction is crucial. Hence an impartial 

discriminant analysis was conducted. For the performance 

assessment a reduced set of 6 features was chosen based on the 

results of a sequential feature selection using Mahalanobis 

distances.  

 

Further, SVM algorithms are not scale invariant as are for 

example tree based algorithms, which leads to an unbalanced 

feature influence in cases that individual features do not have a 

similar range of values. For that reason, the features are 

standardised before they are fed to the SVM, which involves a 

scaling to have zero-mean and unit-variance. Also, an energy 

normalisation of the feature vectors is conducted. 

 

For the performance comparison a Radial Basis Function (RBF) 

kernel SVM is employed, which consists of a two-step SVM 

developed at Fraunhofer IOSB. Firstly, 2-class SVMs are used to 

discriminate all pairs of classes (a pre-classification) and 

secondly 1-class SVMs determine the class memberships based 

on the resulting new feature vector. It is a rather universal tool, 

where much of its power consists of the aptitude to handle more 

than two classes, which for the problem at hand is non-relevant. 

For a detailed description of the method see (Middelmann, 2006). 

 

The RBF kernel, which is defined as 

 

𝑘(𝑥, 𝑦) = 𝑒
−

‖𝑥−𝑦‖2

𝜎2  , 
 

where 𝑥 and 𝑦 denote sample data (support vectors) and 𝜎 is the 

standard deviation, maps the sample data to a high dimensional 

space. By maximising the minimal distance between the 

supporting vectors and the separating hyper plane the ideal kernel 

parameter  is identified. The SVM mainly uses three hyper-

parameters: the kernel parameter 𝜎2 of the 2-class SVMs, the 

kernel parameter 𝜎1 of the 1-class SVMs and a reject threshold. 

To identify the ideal values for the hyper-parameters 𝜎1 and 𝜎2 a 

grid search is conducted aiming to locate the global maximum. 

Figure 4 a) visualises the grid search including the located 

maximum. For comparison, Figure 4 b) demonstrates the grid 

search using Fast Fourier Transform-based features instead of the 

selected texture features. However, the maximal reached 

accuracy cannot compete. 

 

a) b) 

Figure 4. Grid search of the RBF kernel SVM with a) using the 

defined feature set and b) using Fast Fourier Transform-based 

features. 

4.2 CNN 

For many fields of application CNNs prove to be the most 

powerful tool available, and hence need to be considered for the 

task at hand. A notable difference to the described classification 

approach with random forest or SVM is the input data. Whereas 

random forest and SVM classification are based on the 

introduced set of extracted texture features, the CNN, as a feature 

extractor of its own, is fed with the image samples. 

 

The nature of the problem under consideration suggests a rather 

shallow architecture model, thus focussing on models with no 

more than two convolution layers. Deeper structures were tested, 

however, the performance was bad, also due to the involved 

substantial overfitting of the model. Pooling can be a means to 

reduce overfitting. However, in this case an abundant use of 

pooling layers is not an option, since the 11 x 11 pixel sample 

size is very small to begin with and further sub-sampling would 

result in a significant loss of information. Other measures against 

overfitting include the use of dropout layers or simplifying the 

model. Both methods were explored, with the conclusion that a 

shallow structure without dropout layers leads to a good training 

and simultaneously prevents overfitting. 

 

The best results were achieved with an architecture as follows. 

Two 2-d convolutional layers are employed using 10/20 filters of 

size 3 x 3 and a stride (step size for roaming the input) of 1. Also 

included is a zero padding, which implies the padding of the 

borders to enforce a preservation of the input size. Further, one 

maxpooling layer with a 2 x 2 pooling region and a stride of 2 

was installed. It operates by breaking down the input into 

rectangular sectors and returning each maximal value. The 

architecture concludes with two fully-connected layers and the 

application of a softmax-function to the output. Finally, the 

classification layer computes the cross entropy loss. 

 

Regarding the process of training, 95% of the 14.000 simulated 

samples were employed as training data whereas the remaining 

5% were used for validation purposes. An initial learning rate of 

0.1 with a gradual decay every 25 epochs proved to be suitable. 

The training iterations were conducted using a number of 256 

mini-batches and was continued until the mini-batch loss dropped 

to a value of 0.0001. The development of the mini-batch 

accuracies throughout the training can be observed in Figure 5. 

 

4.3 Random Forest 

For reasons of comparability, the proceedings and settings 

regarding the training of the random forest classifier correspond 

to those described in previous works (Kuny, 2016b). Out-of-bag 

Error (OOB) estimates are employed as measure of prediction 

error, thus avoiding the need for an independent validation 

dataset. Tuning showed a minimum OOB error for a number of 

17 features. 

 

 

Figure 5. CNN training accuracies per epochs. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIII-B1-2021 
XXIV ISPRS Congress (2021 edition)

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-45-2021 | © Author(s) 2021. CC BY 4.0 License.

 
47



 

For the classification fully grown trees are used since the 

computational load is manageable, however, it was found that 

reducing tree depth moderately does not decrease the 

classification performance. It was also revealed that a number 

larger than approximately 60 trees does not improve the model 

performance. 

5. RESULTS 

5.1 Classifier Performance 

Since the introduced test classes are perfectly balanced, accuracy 

(ACC) is a valid measure in this case and hence can be used as 

evaluation criterion. Table 1 shows the classification results for 

classes debris (CD) and vegetation (CV) attained by the three 

different classifiers, whereas corresponding performance 

measures are listed in Table 2.  

 

  Random 

Forest 

SVM CNN 

  CD CV CD CV CD CV 

T
es

t CTD 967 33 935 65 483 517 

CTV 432 568 414 586 130 870 

Table 1. Confusion matrices regarding classification results of 

test data. 

 ACC [%] TPR [%] PPV [%] 

Random Forest 76.8 96.7 69.1 

SVM 76.1 93.5 69.3 

CNN 67.7 48.3 78.8 

Table 2. Classifier performance. 

The classification results show a good performance for both 

random forest and SVM, with 76.8% and 76.1% ACC 

respectively. Considering the limits of the selected set of texture 

features with regard to a separability of the two classes (Kuny, 

2016a) this is a satisfactory result. Since both classifiers were fed 

with a feature set of the same information content, the similar 

results seem conclusive.  

 

The CNN approach achieved an ACC of 67.7%, which is rather 

poor in comparison. Considering the impressive performance of 

CNNs in other fields of application this result initially is quite 

unexpected. However, the power of a CNN stems from learning 

the entirety of a target, including its form and 

borders/surroundings. Bearing this in mind, the action of limiting 

the input to 11 x 11 pixel samples containing exclusively debris 

texture, limits the CNNs feature extraction capacity severely. 

This is assumed to be the main reason for the rather poor results 

of the CNN approach. In summary, these results can verify the 

aptitude of a random forest classifier in the context of this 

damage detection approach. 

 

Note that this performance analysis is based on the pixel-wise 

classification, hence the resulting classification rates are rather 

conservative. It stands to reason that a component-wise 

classification would result in distinctly better classification rates. 

However, since the main aspect here is to establish a comparison 

to alternative classifiers, a pixel-wise classification was 

considered solid.  

 

Figure 6. Assessment of shadowing rate: shadow mask (black) 

overlayed with ground-level reference debris (red) in slant range 

geometry (yellow denotes overlapping areas). 

5.2 Damage detection performance 

The typically flat incidence angle (θ = 47.38°) of the TerraSAR-

X image acquisition leads to a considerable amount of 

shadowing, particularly in areas of high building development 

such as in the test scene. As a consequence, there are many debris 

occurrences that are located partly or entirely in the shadow of a 

building. The reference map, however, as independent data set, 

does not provide this information. To approximate the extent of 

shadowing in the test scene, or rather to estimate the rate of debris 

occurrences that are not in line of sight of the sensor, the shadow 

mask of the inner city of Christchurch is introduced. As a matter 

of course, this approach neglects the case of reduced shadowing 

due to the collapse of buildings. However, quantitatively, these 

incidences are considered scarce enough to be disregarded here. 

 

Since the 3d city model covers the test scene only partially, a 

representative cut-out of the scene (approximately 0.3 km2 ) was 

defined for an assessment of the shadowing rate regarding 

ground-level debris occurrences. The shadow mask for this area 

reveals that for the acquisition geometry in question, the shadow 

coverage amounts to a total of 38.0 % of the cut-out scene. 

Figure 6 shows the shadow mask (black) of this cut-out of the test 

scene overlayed with the reference mask of the ground-level 

debris (red), thus marking areas (yellow) that refer to debris 

occurrences located in the shadow areas. According to this, a total 

of 54.7% of the ground-level reference debris occurrences are not 

in line of sight of the sensor, and consequently cannot be detected 

using this acquisition geometry. For the quantitative evaluation, 

the consequences are bound to be significant. It is to be expected 

that an approximate of 55% of the reference ground-level debris 

components cannot be detected in the screening process. 

 

With the confirmation that the random forest is a suitable choice, 

the damage detection algorithm is assessed on the Christchurch 

test area. The screening step, isolating debris-like texture, 

narrows down the working area to less than 7% of the test area. 

The random forest classification, applied on the screening mask, 

yields the predicted classes debris, vegetation and gravel. Figure 

7 depicts the final component-wise classes after post-processing 

operations with component-wise majority voting. The predicted 

class debris contains a total of 822 components with class 

vegetation and class gravel comprising 1059 and 19 components, 

respectively. 
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Figure 7. Christchurch test area: predicted classes debris (red), 

vegetation (green) and gravel (blue) for a closed world scenario. 

 

The following provides a detail analysis of exemplary points of 

interest: The first example contains a large debris site pictured in 

Figure 8 a). The site is in full line of sight of the SAR sensor and 

is the result of a fully collapsed building. According to the 

reference map, the site covers almost 2000 m2 (3474 pixels) with 

almost no remaining vertical elements at the scene. Examining 

the screening and classification results versus the reference map 

in Figure c), d), and e) several observations can be made. The 

algorithm results for this area show that the major part of this 

large debris site was found in the screening process, also catching 

some of the surrounding smaller debris sites. Apart from these 

areas, the screening result contains also several areas that belong 

to non-debris sources, most prominently the vegetation area in 

the upper right corner. The predicted classes show that these 

areas of high vegetation are distinguished rather well by the 

trained classifier, even separating single trees that are located 

adjacent to debris. While a certain loss regarding actual debris 

can be observed, most of the large debris site is classified 

correctly, as well as the elongated site on the opposite side of the 

road, representing heaps of debris in front of a still standing 

building. 

 

The second example specifies a rectangular park area framed by 

high trees and surrounded by residential housing (see Figure 9). 

 

a) 

b) c) 

d) e) 

Figure 8. Exemplary debris site: a) Optical image, b) SAR 

image, c) reference map, d) screening result, and e) 

classification result. 

a) 

b) c) 

d) e) 

Figure 9. Exemplary area of vegetation: a) Optical image, b) 

SAR image, c) reference map, d) screening result, and e) 

classification result. 

It can be observed that large enough vegetation, such as the park 

area, is almost entirely included in the screening mask, but can 

be separated effectively by the classifier. Further, this area can 

demonstrate the two main difficulties involving residential areas. 

As is common for residential areas, there is much vegetation that 

is rather small but wide-spread. Secondly, there are many small-

scale constructions, such as balconies and backyard structures, 

which for the resolution at hand can lead to a texture similar to 

that of debris. These incidences located in close proximity result 

in screening components that are large enough not to be 

disregarded in the filtering step. Consequently, this results in a 

large amount of screening components, which due to the closed 

world assumption without reject option cannot be classified 

correctly. 

 

For a direct assessment of the random forest performance, a 

confusion matrix is analysed, which is based on the components 

of the screening matrix. Table 3 shows this confusion matrix 

regarding the true classes debris (CTD), vegetation (CTV), gravel 

(CTG) and other (CTO), where other denotes areas that are 

unspecified in the reference map, thus appertaining to signatures 

of unknown source. Since the true classes of the screening map 

areas are highly imbalanced, with 150 debris instances, 1254 

vegetation instances and only 7 gravel instances ACC is not an 

ideal evaluation measure and as such is not included in the table. 

A far more useful depiction of the confusion matrix is given by 

the true positive rate (TPR), the positive predictive value (PPV) 

and the F1 score. The TPR of the classes debris and vegetation 

shows (with 72.7 % and 71.1 %) a rather high percentage of 

correctly classified instances, whereas the PPV values reflect the 

fact that a significant number of vegetation instances was falsely 

classified as debris. The rather low number of 13.3% PPV for 

class debris, however, is condoned in order to have a high TPR 

value in return since the cost of misclassified debris instances is 

ranked much higher than cost of instances falsely classified as 

debris. Though the rates for class gravel seem rather low and are 

debatable due to the very low number of gravel instances, it is to 

be noted that misclassification cases seem to predominate 

between the classes gravel and vegetation, whereas the separation 

from debris is successful. 

 

  Predicted Class   

  CD CV CG TPR PPV 

True 

CTD 109 41 0 72.7% 13.3% 

CTV 356 899 10 71.1% 84.9% 

CTG 0 4 2 33.3% 10.5% 

CTO 357 115 7   

Table 3. Classification performance: confusion matrix. 
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A screening detection rate is computed regarding the set of 282 

debris components of the reference map (see Figure 2). 

Effectively, the screening mask includes 128 of these 

components, which amounts to 45.5%. Considering the estimated 

55% shadowing rate of ground-level debris occurrences, this is a 

fairly satisfactory rate. Hence it is warranted, that the screening 

mask provides a good coverage of debris occurrences in line-of-

sight of the sensor. The classification of these 128 components 

led to 85.2% being classified correctly as debris, which 

corresponds to 37.7% of the entire set of reference debris 

components. Figure 10 shows the location of these detected 

components (black) versus the components that were not detected 

(grey), whereas Table 4 summarises the reference components 

and their detection rates regarding the process of screening and 

classification. 

 

The quantitative results demonstrate a good performance of 

separating vegetation and gravel from the signature of debris, 

thus reducing the false alarms in the damage detection operation 

markedly. 

 

 Components  

 detected undetected rate [%] 

Screening 128 154 45.5 

Classification 109 173 37.7 

Table 4. Detection rate of reference debris components. 

 

 

Figure 10. Reference debris components subdivided into those 

that were detected (black) and those that were not (grey). 

 

6. CONCLUSION 

The aim of this paper was to verify the use of a random forest 

classifier for the separation of the signatures of debris and 

vegetation. For this purpose, two alternative popular classifiers, 

a support vector machine (SVM) and a convolutional neural 

network (CNN), were deployed and compared regarding their 

classification performance. In the course of this, classifier 

specific requirements were taken into account. Results show that 

the random forest, though the most straightforward of the 

classifiers, performs better than either SVM or CNN in this 

specific case. Whereas the SVM, fed with the same set of 

statistical texture features as the random forest classifier, reaches 

similar classification accuracies (about 76%), the CNN results 

show distinctly lower rates (67%). 

 

With the conclusion that the random forest classifier is the most 

suitable, this paper also presented the most recent results on the 

prospect of debris detection for the post-earthquake Christchurch 

scene. This includes a quantitative evaluation on the basis of 

reference data that is derived from an RGB orthophoto and as 

such does not represent the shadowing conditions of the post-

event SAR image. In this context, a simulated shadow mask of 

the scene was employed since it enables an assessment of the 

extent of shadowing present in the test scene. We also provided 

detail analyses of some exemplary points of interest. The 

quantitative results demonstrate a good performance of 

separating vegetation and gravel from the signature of debris, 

thus reducing the false alarms in the damage detection operation 

markedly.  
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