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Abstract—Traceability information is a fundamental prereq-
uisite for many essential software maintenance and evolution
tasks, such as change impact and software reusability analyses.
However, manually generating traceability information is costly
and error-prone. Therefore, researchers have developed automated
approaches that utilize textual similarities between artifacts to
establish trace links. These approaches tend to achieve low
precision at reasonable recall levels, as they are not able to
bridge the semantic gap between high-level natural language
requirements and code.

We propose to overcome this limitation by leveraging fine-
grained, method and sentence level, similarities between the
artifacts for traceability link recovery. Our approach uses word
embeddings and a Word Mover’s Distance-based similarity
to bridge the semantic gap. The fine-grained similarities are
aggregated according to the artifacts structure and participate in
a majority vote to retrieve coarse-grained, requirement-to-class,
trace links.

In a comprehensive empirical evaluation, we show that our
approach is able to outperform state-of-the-art unsupervised
traceability link recovery approaches. Additionally, we illustrate
the benefits of fine-grained structural analyses to word embedding-
based trace link generation.

Index Terms—Traceability, Traceability Link Recovery, Re-
quirements Engineering, Word Embeddings, Natural Language
Processing, Word Movers Distance

I. INTRODUCTION

Requirements traceability empowers many down stream
tasks of the software development and maintenance process.
The availability of traceability links between any type of
requirement and source code boosts the performance of tasks
such as change impact analysis, requirements validation, or
software reusability analysis [1]. For example, connecting
requirements to source code elements (that implement them)
provides insight into what has been implemented and where; it
also reveals semantic relations between source code elements.
In safety-critical systems traceability is essential to demonstrate
the functionality of the system as prescribed by regulatory
bodies [2]. However, due to the high manual effort for creating
and maintaining the trace links, traceability information is
absent or incomplete in most software projects.

Most approaches that automatically recover trace links make
use of information retrieval (IR) [3]–[9] or machine learning
(ML) [10]–[12] techniques. Since both code and requirements
consist of sequences of (natural language) words (for the greater

UC: Patient Registration

The hospital reception
registers all arriving patients.

Flow of events:

1) A patient verifies
its identity.

2) If the patient is
unknown, the reception
creates a new record.
Elsewise, it retrieves
the existing record.

class Hospital
register(ID id)
//...

class Patient
verify(){
h.register(id);
}
//...

class Reception
createRecord(
Patient p)

retrieveRecord(
Patient p)

//...

calls

Fig. 1. Example of fine-grained relations between a use case description and
source code elements.

part at least), they essentially quantify the textual similarities of
the artifacts. These approaches obtain relatively low precision
at reasonable recall levels. As they rely upon the syntactical
features of words, they struggle to determine the similarity of
artifacts that are not syntactically related. These approaches
ignore the different levels of abstraction in the wording of
source code and requirements. Apparently, there is a semantic
gap between the different artifact types that must be bridged.

In order to take semantics into account other approaches
use topic models [13] or word embeddings [10], [11], [14] but
miss the opportunity to utilize fine-grained relations between
artifacts. Instead, they create coarse-grained representations of
artifacts, mostly by combining all word embeddings of the
resp. artifact (e.g., calculating an average vector). However,
such combinations may be misleading if semantically unrelated
words or too many aspects are aggregated. If we take a look
at the example in Figure 1 simply aggregating the contained
words in the use case description or the classes might result in
vector representations in between the described aspects. This
makes it more difficult to connect the representations to their
corresponding counterparts. If the artifacts are interpreted in a
more fine-grained manner, similarities between the elements
can be derived more clearly. Additionally, coarse-grained©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
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approaches miss the opportunity to utilize fine-grained inter-
artifact relations, such as the call dependency between the
verify and register methods, which for both artifacts
hints at their shared relevance for the use case description.

To address this issue, we propose to use word embeddings
in a more fine-grained manner to recover requirements-to-code
trace links. We use fastText word embeddings [15] to calculate
similarities between methods and requirement segments (mostly
sentences) and aggregate the results by applying majority votes
to retrieve class-level trace links. Our approach makes use of
structural information in source code (e.g., call graphs) and
requirements (i.e., common use case templates). Compared to
related work, our approach obtains higher precision values (for
similar recall values). Thus, the use of fine-grained relations
leads to automated traceability link recoveries of higher quality
(regarding F1-score). Our contributions are:

1) A novel approach for traceability link recovery using
fine-grained requirements-to-code relations and word
embeddings.

2) An empirical study on the effect of different structural
information in word embedding-based traceability link
recovery.

3) A comparison to state-of-the-art traceability link recovery
approaches.

We publish the source code in our supplementary material [16].

II. RELATED WORK

Research on automated requirements traceability has been
conducted since the 1990s and achieved its first breakthrough
with IR techniques. Techniques such as vector space models
(VSM) [3], latent semantic indexing (LSI) [4], [17], or latent
dirichlet allocation (LDA) [13] have been used.

One way to improve results is to combine several techniques:
Gethers et al. [5] use a combination of VSM, Jensen-Shannon
models and relational topic models. Lohar et al. [6] combine
different preprocessing, dictionary building, and similarity
calculation techniques by applying a genetic algorithm on
an initial set of trace links. Another way to improve results is
to integrate additional knowledge sources: Hayes et al. [7], [18]
make use of domain specific information from thesauri and
Zou et al. [8] weight terms higher that occur in the requirement
glossaries. Others integrate domain and world knowledge via
ontologies [19], [20]. Recently, Moran et al. [9] employ a
hierarchical Bayesian network to combine multiple IR- and
ML-based textual similarities with developer feedback and
transitive trace links. Their tool COMET is able to select
reasonable combinations without the need of initial trace links.

IR-based approaches constituted a major step towards
automated traceability but still obtain relatively low precision
at reasonable recall levels. As most of them are based on the
probability of words and tokens, the approaches struggle to
determine similarities between syntactically unrelated artifacts.

Another research direction considers information about the
structure and dependencies of source code to determine classes
and chunks of related code. Panichella et al. [21] have shown
that utilizing call and inheritance dependencies is beneficial

for traceability link recovery. Kuang et al. [22] additionally
employ method data dependencies and show that they provide
complementary information to call dependencies. Florez [23]
proposed using a more fine-grained view of the artifacts by
identifying functional constraints in requirements and source
code, but has not reported any results yet.

Considering the underlying semantics of the requirements
presents another approach to close the semantic gap between the
artifacts. Approaches integrate different semantic information
into IR methods [24] or incorporate semantics implicitly
by utilizing word embeddings. Guo et al. [10] use word
embeddings for requirements-to-requirements traceability in
a supervised deep learning setting. Mills et al. [25] propose
another supervised approach called TRAIL to traceability link
recovery that incorporates several IR-, text quality- and artifact-
based features in a random forest classifier. One drawback
of supervised approaches is that they need a training set of
gold standard trace links. To cope with that, Mills et al. [12]
investigate with ALCATRAL how active learning can decrease
the amount of needed training data. Zhao et al. [11] apply
word embeddings in a supervised setting. Their approach WQI
uses the cosine similarity and a learning-to-rank technique.
Chen et al. [14] use document embeddings in combination
with sequential semantics to incorporate sequential information
as well. Their approach S2Trace is unsupervised. Thus, it does
not require a training set of trace links.

Embedding-based approaches still achieve low F1-scores.
They are unable to grasp fine-grained relations between the
artifacts as they aggregate information on the artifact level.
Additionally, they utilize word embedding models trained on
the dataset that might be too small to learn all relevant relations
between the words. Therefore, we investigate how fine-grained
word embedding-based similarities can improve results for
unsupervised requirements-to-code traceability link recovery.

III. BACKGROUND

Most IR-based techniques represent natural language as
high-dimensional vectors using techniques such as tf-idf or
Bag-of-Words. Since the vocabulary size is usually large in real-
world applications, these vectors are very sparse. Furthermore,
they do not take relations between words into account.

To overcome these limitations word embeddings were
introduced as a vector representation with a fixed number
of dimensions that is distinctly lower than the vocabulary size
(typically between 100 and 300). The idea of word embeddings
is to represent words by the context they occur in. Thus, the
embeddings of words that occur in the same contexts are close
in the vector space. To get vector representations that have a
lower number of dimensions an embedding matrix is learned
in an unsupervised intermediate task on a text corpus. The
most common intermediate tasks are continuous Bag-of-Words
(CBOW) and continuous skip-gram with negative sampling as
introduced by word2vec [26]. For both the text is scanned with
a sliding window. The CBOW task involves the prediction of
the word in the center of the sliding window (by taking the
other words in the window into account). In the skip-gram



task, a classifier is trained to predict whether a certain word
of positive and negative samples is one of the words in its
context window (for each word in the window center). Each
row of the embedding matrix represents the word embedding
of one of the vocabulary words.

One drawback of this approach is that it is unable to represent
a word it has not seen during training. The fastText [27]
approach overcomes this limitation: It also creates embeddings
for the character n-grams in the words. Therefore, it is able to
provide embeddings for unseen words or subwords based on the
contained character n-grams. The rationale behind this approach
is that in many cases removing pre- or suffixes of words does
not affect their meaning and words that share character n-
grams might be related. For example, fastText represents the
word prefix by the sum of the vector representations of its
character trigrams <pr, pre, ref, efi, fix, ix> and the
special sequence <prefix>. The symbols < and > are special
symbols to represent the boundaries of words. fastText uses all
character n-grams of size n = 3 to 6.

A word embedding model that can represent unseen words
allows the usage of models for texts that contain words that
were not part of the training corpus. In requirements engineering
and source code understanding this is beneficial since the
artifacts often include technical terms and abbreviations.

A. Similarity Measures
Word embeddings are designed to represent words that

occur in the same contexts close to each other in the vector
space. Thus, they can be used to calculate similarities between
words and documents. The two most commonly used similarity
measures for vector spaces are the euclidean distance and
cosine similarity. The euclidean distance is calculated between
two vectors u and v as follows:

euclid(u, v) = ∥u− v∥2 (1)

The euclidean distance can be interpreted as similarity measure:
the smaller the distance the more similar the vectors.

The cosine similarity is independent of the order of magni-
tude of the vectors; it determines the proximity by calculating
the angle ϕ between the vectors. This replicates the inner
product of the two vectors normalized to length one.

cosSim(u, v) =
u · v

∥u∥2 ∥v∥2
= cosϕ (2)

The similarity of documents can be measured with the
cosine or the euclidean similarity as well. Therefore, the words
(represented as vectors) in the documents are aggregated. One
approach is to average all word vectors in each document for
comparison; another is to calculate the similarities between
all pairs of vectors (of two documents) and interpreting the
maximum/minimum as the document similarity. However, these
approaches may oversimplify the relations between the words
by merging different aspects or merely provide upper and lower
bounds but do not consider the shared meaning.

The Word Mover’s Distance (WMD) [28] overcomes these
limitations by measuring the semantic distance of two doc-
uments. It interprets the euclidean distance of each pair

of word embeddings in the documents as their respective
semantic similarity. Then the semantic distance between the two
documents is calculated as the minimum cumulative euclidean
distance required to map each word (embedding) of document
A to a word (embedding) of document B. So each word of
document A is mapped to the nearest (most similar) word of
document B and the documents similarity is the cumulative
distance of these mappings.

IV. INFERRING TRACE LINKS WITH FINE-GRAINED WORD
EMBEDDING SIMILARITIES

Our approach Fine-grained Traceability Link Recovery
(FTLR) automatically provides requirements-to-code trace links
in an unsupervised setting. This means it recovers trace links
without the need for information about existing links (as would
be the case if applied to a project that does not have traceability
information). Without the precondition of having a training
set of existing trace links, downstream tasks on any project
can benefit (that otherwise would not have access to this
information). We propose to use fine-grained word embedding-
based similarities. Artifacts often comprise multiple aspects,
such as the flow of events in a use case description or classes
with methods serving different purposes. We assume that a
fine-grained approach enables us to distinguish these aspects
more properly. Further, the use of word embeddings enables
us to calculate similarities between artifacts that are not only
based on syntactic similarities but on semantic relatedness.

Our approach aggregates the fine-grained similarities using
majority votes. Unrelated candidates are filtered and an
overview of the artifacts aspects is provided. Additionally,
we exploit the structural information of source code, such
as method call dependencies and relations between methods
and classes, to improve candidate ranking. Similarly, we use
common use case templates to utilize structures in requirements.

In the following sections we first present the underlying
approach of our fine-grained method. Then, we investigate
additional information that may improve our basic approach.

A. Fine-grained Traceability Link Recovery

Our approach operates on requirement sentences and (source
code) methods as smallest units of representation (hereinafter
called artifact elements). The rationale behind this decision is
that (well-written) requirement sentences express a single cohe-
sive semantics and the same should hold true for methods. We
do not consider smaller units such as the contents of the method
body, as they mainly contain terms that contribute information
on the implementation level. In a preliminary experiment they
introduced more noise than valuable information.

FTLR establishes trace links between requirements and
source code using relations between sentences and methods; it
applies the following three steps:

1) Represent the artifact elements using word embeddings.
2) Calculate similarities between artifact elements.
3) Aggregate the fine-grained relations to provide trace links.



1) Representation: FTLR represents each element of both
artifact types (sentences and methods) as so-called Bag-of-
Embeddings (BoE). BoE are sets of word embeddings that
represent all words of the respective artifact element. For
requirements, we use all words of a sentence for the BoE.
On the code side, for each method, we use the method
name, parameter names and types, and the name of the
containing class. FTLR retrieves the vector representation of
each word from a pre-trained fastText word embedding model
(trained on Wikipedia and the CommonCrawl dataset) [29]. The
CommonCrawl dataset consists of all kinds of texts crawled
from the web. We use a general purpose word embedding
model because it covers most words, relations and domains.
However, this type of model may undervalue relations from
specific contexts by aggregating the relations of all senses of a
word. We leave the analyses of the potential of domain-specific
models to future work. During preprocessing we remove stop
words with NLTK [30], lemmatize words with spaCy [31] and
remove non-textual elements, such as hyperlinks, non character
tokens and numbers. For source code elements we additionally
split tokens at camel case, remove programming language
specific stop words, and filter words according to their length
(removing tokens with one or two characters)1. In addition to
programming language specific stop words, we filter common
terms in programming, such as get, set, array, and exception.

Not every method contributes equally to the purpose of
its class. The purpose of a class should be described by the
interface of the class, its publicly visible elements. Besides,
private methods are often merely helper methods and are too
implementation specific to be valuable for traceability link
recovery. Therefore, we only consider methods that are publicly
visible. This approach may lead to empty representations for
some classes. In these cases FTLR uses the class name as an
artifact element instead of the methods. Note that in all other
cases the tokens of the class name are added to the BoE of a
method. That way FTLR is able to distinguish methods with the
same name from different classes. For example, two classes
ShoppingCart and Stock have a method add(Item)
that can be easily distinguished by adding the class name.

2) Similarity Calculation: With the fine-grained represen-
tations of the artifacts at hand we can calculate the similarity
of the elements. As we use the same word embedding model
for all representations, we are able to use its characteristics.
Words that occur in the same contexts have embeddings that are
close-by (regarding their cosine angle and euclidean distance).

In subsection III-A we discussed different similarity mea-
sures for vector representations. Related work [6], [11], [18]
used the cosine similarity for this purpose. However, we would
need to aggregate the word embeddings in the BoE to retrieve
a single representation for the respective element or use the
maximum similarity. The former is based on the assumption
that averaging word embeddings of an artifact element results in
a representative vector. If multiple aspects/purposes are present,

1The rationale behind the word length filter is that token with less than
three characters most likely are abbreviations that are difficult to interpret.
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Fig. 2. Overview of FTLR approach, displaying fine-grained relations between
class methods and requirements, each method’s votes and the resulting trace
links. Thick lines indicate similarities above the majority threshold and further
similarities are omitted to ensure readability.

aggregating word embeddings results in a vector somewhere
in between the aspects that might even represent a utterly
different aspect. The latter is incapable to grasp semantics
that result from the combination of the words. Therefore, we
propose to use WMD as similarity metric to express fine-
grained similarities instead. It grasps the relatedness of two
BoEs by calculating their minimum cumulative distance. Thus,
WMD considers all words in the BoE as equally important
and can grasp the semantics of combinations of words.

For each pair of fine-grained source and target artifact
elements we define their similarity to be their WMD. A smaller
value means a higher similarity here. The possible values for
WMD with normalized word embedding vectors (max. length
= 1) reside in the range [0, 2]. However, we normalize the
values by projecting them to [0, 1].

3) Aggregation: In general, not every artifact element has
a counterpart. For example, many methods are merely helper
methods and do not provide any insights into the purpose of the
class. Vice versa, some parts of the requirements might not be
represented in the code. However, there are many fine-grained
relations between requirements and code our approach may use.
Thus, the task is to identify those fine-grained relations that
contribute the most to the overall relatedness of the artifacts.
We then aggregate these relations to establish trace links on
the artifact-level (coarse-grained).

Since an artifact may convey multiple aspects/purposes,
aggregating the similarities by averaging them or simply using
the highest similarity is not meaningful. Instead, we use the
approach depicted in Figure 2. We start with the fine-grained
relations between each requirement and source code element.
For each source code element (ce) FTLR retrieves the most



similar element of a requirement (R) (the relations on the left
side of Figure 2)2:

sim(ce,R) = min
re∈R

wmd(ce, re) (3)

This relation serves as the representative for the similarity
between a source element (fine-grained) and an entire require-
ment (coarse-grained). Thus, the relation of a method to a
requirement is defined by the most similar relation between
them. Next FTLR removes those method-to-requirement rela-
tions that have a low similarity, since they do not contribute to
the relatedness of the class. Based on a preliminary study on
a subset of the eTour, iTrust, SMOS and eAnci datasets (see
subsection V-A) we choose a threshold of 0.59 for this purpose3.
We call this threshold the majority threshold. In Figure 2 these
relations are drawn as thick green lines. To aggregate the
relations of all elements in a class FTLR uses a majority
vote. Each method votes for the requirements it is related to
after applying the majority threshold. For example, in Figure 2
method one of class A only votes for requirement B as its most
similar relations to the other requirements do not undercut the
threshold. Finally, FTLR creates a trace link candidate for those
requirements that got the most votes per class. The rationale
behind the majority vote is that we aim at using the most
prevalent purposes of a class only to increase precision. In the
example a trace link candidate is created for requirement B in
class A, requirement C in class B and requirement C in class
C. Note that if multiple requirements receive the same number
of votes we create trace link candidates for each.

The trace link candidates are filtered by another threshold
to retrieve the final trace links. The idea is that a prevalent
purpose (a voted trace link candidate) should have at least one
contributing relatedness that is higher than this final threshold
(0.44). Therefore, FTLR retrieves the most similar element that
voted for the trace link candidate. If the similarity is lower
(a higher WMD) than the threshold, the link is removed. We
also experimented with the average similarity of all voters,
but the maximum performed best. Note that, FTLR applies
two thresholds to be less restrictive before voting; thus, it
determines the best link candidate with a higher chance while
still ensuring a minimum relatedness after voting.

B. Method Comments

Another source of information on the purpose of a method
is its (documentation) comment. So far FTLR only utilizes the
method’s signature. As method comments may vary in quality
and might not be present at all, we regard this information as
an optional source of information FTLR can exploit.

We incorporate the method comments into FTLR by adding
the embedding representation of the words in a method’s
comment to the BoE of the method. Thus, the information
contributes to the fine-grained similarities between the method

2Note that each source code element has such relations to each requirement.
However, we only depict all relations for the first source code element in
Figure 2 for the sake of clarity.

3Thus, only relations are considered that have a WMD lower than 0.59.
Keep in mind that a lower WMD represents a higher similarity.

and the requirement elements. We preprocess the comments
in the way we treat the other source code elements and
additionally remove special tags, such as Javadoc tags. For
structured comments, such as Javadoc comments, we only
use the descriptive part of the comment, ignoring parameter,
return or throws descriptions, since the covered information
and wording resembles the descriptive part in the majority of
cases. We label variants of FTLR that use method comments
as source of information with +mc.

C. Method Call Dependencies

Previous approaches have shown that interpreting method call
dependencies can improve traceability link recovery [21], [22].
The methods that call the method in question and all methods
that are called by it may contribute to the interpretation of the
purpose; the calling and called methods can be regarded as the
context of the method in question. We enable FTLR to utilize
this information by integrating the relatedness of calling and
called methods into the relatedness score of a method. FTLR
establishes this context by aggregating the mean similarity
of all calling and called methods and the similarity score
of the method. We use the mean similarity to normalize the
contribution. As we want the method in question to still be the
most important source of information (regarding its purpose),
FTLR uses a weighted aggregation.

Like the consideration of comments, the use of called/-ing
methods is optional. If this option is set, FTLR updates the
similarity scores (sim) for each method as follows. We weight
the similarity of the current method (cm) to a requirement (R)
with 0.9 and the mean similarity of all called/-ing methods
(CD) with 0.1:

simCD(cm,R) = 0.9 sim(cm,R) + 0.1

∑
m∈CD sim(m,R)

|CD|
(4)

We label variants of FTLR that use method call dependencies
as additional source of information with +cd.

D. Use Case Templates

In this work we regard use case descriptions and plain re-
quirements as source artifacts and refer to them as requirements.
Since these requirements are natural language documents, they
have a structure. This structure may be defined by discourse
structure elements, such as sentences or headlines, or they are
shaped according to a template. The structure can indicate how
certain elements of the requirements have to be interpreted. For
example, a use case description can include different fields of
information (flow of events, actors, pre-/post-conditions, etc.).

In some cases it might be sufficient to let all (meaningful)
words of an artifact contribute to its representative, as they
convey the same aspect. However, in other cases, such as
use case descriptions, the different elements may contain
information on the overall aspect (use case name or description),
certain functionalities (sentences/enumerations of flow of
events) or are irrelevant for traceability link recovery (actors
or some conditions). The descriptions in the flow of events



TABLE I
THE DATASETS USED FOR EVALUATION. ALL DATASETS CONSIST OF USE CASES AS SOURCE ARTIFACTS AND SOURCE CODE AS TARGET ARTIFACTS.

Language Number of Artifacts ∅ Methods per Class Covered Artifacts Baseline

Project Domain Natural Programming Source Target Links public non-public Source Target Precision F1

eTour Tourism EN/IT Java 58 116 308 7.0 3.6 0.983 0.767 0.046 0.088
iTrust Healthcare EN Java 131 226 286 6.5 0.3 0.802 0.385 0.010 0.020
SMOS Education IT/EN Java 67 100 1044 3.5 2.5 1.000 0.684 0.159 0.274
eAnci Governance IT Java 139 55 567 5.1 0.2 0.281 1.000 0.074 0.137

might even explicitly correspond to different parts of the source
code and therefore should not be aggregated easily. Therefore,
FTLR interprets the structure of common use case templates
to improve traceability link recovery. FTLR retrieves the fields
of the template and represents them individually following the
same approach we used for full requirements. This allows us
to retrieve similarities for each of the elements and use only
the fields that most likely contribute information on potential
links. We use the name, the description, and the flow of events
(if present). As they are often not represented in the source
code, we discard actors and pre-/post-conditions.

We label variants of FTLR that consider the structure of use
case templates with +uct.

V. RESEARCH DESIGN

In order to provide insights into the performance of FTLR
we perform several experiments. First, we determine the best
performing variants of FTLR. Then we use these variants for
comparison to state-of-the-art approaches. Thus, the experi-
ments aim at answering the following questions:

RQ1: To what extent does the use of method comments,
call dependencies and knowledge of the structure of use
cases improve the performance of a word embedding-based
requirements-to-code traceability link recovery?
Previous work has shown that structural information improves
IR-based traceability link recovery approaches. We investigate
the effect of different feature configurations on the performance
of FTLR.

RQ2: How do the chosen thresholds affect the performance
of our approach?
One issue of our approach is determining the best performing
thresholds. Therefore, we analyse whether the defined thresh-
olds are generally valid and measure their impact in comparison
to the optimal thresholds for different projects.

RQ3: How does a requirements-to-code traceability link
recovery approach using fine-grained word embedding-based
relations perform in comparison to state-of-the-art approaches?
We investigate how an approach that uses word embeddings
for fine-grained artifact similarities performs on class-level
requirements-to-code traceability link recovery. Therefore, we
compare our approach to state-of-the-art automated traceability
link recovery approaches.

A. Datasets
To answer the research questions we make use of the

four datasets shown in Table I. They are provided by the

Center of Excellence for Software & Systems Traceability
(CoEST) [32] and are commonly used in automated traceability
link recovery [5], [6], [9]. We choose these datasets as they
provide trace links between natural language requirements and
object-oriented source code. Furthermore, we only use datasets
with compilable source code; this facilitates the application of
static code analyses. Note that iTrust is composed of Java and
JSP target artifacts. However, we only consider the Java target
artifacts and links here.

eTour mainly comprises natural language text written in
English except for the identifiers in the source code and
the names of the use cases, which are Italian. In contrast,
SMOS consists of Italian text for both, use cases and source
code comments. However, the identifiers are in English. To
provide a consistent language for each project one of the
authors translated the respective identifiers into the prevalent
language by dictionary. For example, the identifier cognome
was translated to surname in the eTour dataset. As our approach
is based on pre-trained word embeddings that depict similarities
between words, it depends on a consistent language. We
experimented with aligned word embedding models for Italian
and English [33] as well, but the results were slightly worse.
However, they might still pose a valuable solution for mixed
language projects where translation is too costly. We publish
the translated versions in our supplementary material [16].

The use cases of eTour, SMOS and eAnci are structured
according to commonly-used use case patterns, denoting the use
case name, the participating actors, entry and exit conditions
as well as the flow of events. eTour’s and SMOS’ use cases
additionally include a short use case description. However, the
use cases of the iTrust dataset only consist of event flows.

Table I provides information on how many source and target
artifacts are covered by the provided trace links. For iTrust and
eAnci the coverage of target and source artifacts respectively
is very low. A low coverage of the artifacts indicates that
either not all requirements are implemented in the source code,
parts of the source code are not described properly, or the
gold standard is incomplete. As many approaches consider
traceability link recovery as an IR-problem, providing link
candidates by searching the most relevant target artifacts for a
source artifact, a low coverage leads to many false positives.

Additionally, we calculated precision and F1-score for a
baseline that produces links for each possible pair of source
and target artifacts. On most datasets the results are very low.
However, on SMOS, which has a low number of artifacts that
are highly connected, the baseline F1-score is 27.4%.



TABLE II
COMPARISON OF DIFFERENT FEATURE SELECTIONS FOR FTLR. VARIANTS USING CALL DEPENDENCIES ARE LABELED WITH CD, METHOD COMMENTS

WITH MC AND USE CASE TEMPLATE STRUCTURES WITH UCT. BEST PERFORMING VARIANTS PER PROJECT ARE SET IN BOLD TYPE. p DENOTES
p-VALUES IN A PAIRED T-TEST ON THE F1 -SCORES REGARDING FTLR AS BASELINE.

eTour iTrust SMOS eAnci

Approach Pre Rec F1 MAP Pre Rec F1 MAP Pre Rec F1 MAP Pre Rec F1 MAP ∅ F1 p

FTLR .287 .455 .352 .330 .151 .297 .200 .227 .417 .140 .209 .398 .215 .125 .158 .142 .230 base
+cd .307 .445 .363 .339 .144 .255 .184 .214 .420 .138 .208 .399 .226 .127 .163 .142 .229 .9683
+mc .282 .451 .347 .275 .176 .353 .235 .266 .439 .155 .229 .420 .227 .185 .204 .148 .254 .1180
+uct .398 .620 .485 .523 .151 .297 .200 .227 .426 .277 .336 .418 .306 .194 .237 .146 .315 .0703
+mc +cd .273 .432 .335 .277 .180 .322 .231 .258 .438 .145 .217 .418 .242 .183 .209 .149 .229 .3019
+uct +cd .411 .623 .495 .516 .144 .255 .184 .214 .439 .277 .340 .421 .314 .194 .240 .146 .315 .1002
+uct +mc .390 .568 .462 .477 .176 .353 .235 .266 .443 .297 .356 .442 .270 .215 .239 .150 .323 .0291
+uct +mc +cd .405 .565 .472 .471 .180 .322 .231 .258 .451 .288 .352 .442 .294 .220 .252 .150 .327 .0278

B. Methodology

In all our experiments we use F1-score and mean average
precision (MAP) as the main metrics to evaluate our approach.
The former is the preferred metric for classification tasks and
is commonly used for traceability link recovery. It is defined
as the harmonic mean of precision and recall. In case of
traceability link recovery precision reveals how accurate an
approach proposes correct trace links. It measures the ratio of
correctly proposed links to all proposed links. Recall shows the
ability of an approach to propose all correct links. It measures
the share of expected trace links that were actually found by an
approach. High F1-scores should be the goal for all automated
traceability link recovery approaches [34], as they indicate the
approaches’ ability to produce the expected results without
missing links and producing many false positives.

As current approaches do not come close to the F1-scores
needed for fully automating traceability recovery, most ap-
proaches provide a ranked list of candidate trace links per
requirement to an expert to ease the manual trace link creation
process. To measure the quality of these lists MAP is used. It
is defined as the mean average precision across all requirement
queries. The average precision (AP) of a query is calculated
as follows:

AP =

∑|retrieved|
r=1 (precision(r) · relevant(r))

|relevantLinks|
, (5)

where |retrieved| is the number of retrieved links for a query,
r is the rank (in the list), precision(r) is the precision of the
list if truncated after rank r, relevant(r) is a binary function
that determines whether the link at rank r is valid (1) or not
(0), and |relevantLinks| is the total number of links that are
relevant for this query according to the gold standard.

To compare our approach with other approaches and to
measure whether our approach is able to put relevant links at the
top of such a list, we apply our approach without using any of
its thresholds. We then generate a ranked list per requirement by
using the most similar voter (minimum WMD of the elements)
of each class as its representative and sort the list from lowest
to highest. Thus, the lists maintain the order of our original
approach but additionally include the links we filter out. Note
that our approach only considers source code files and some

projects include a few non-source code files as gold standard
target artifacts. We add them at the end of the list.

In all experiments we either use a publicly available English
or Italian pre-trained fastText model with 300 dimensions
trained on Wikipedia and the CommonCrawl dataset [29].

VI. EMPIRICAL RESULTS

This section presents the results of our empirical studies. We
start with analyzing the effect of different feature configurations
of FTLR. Then we discuss the impact of the thresholds we
use in our approach (see subsection VI-B). Therefore, we
systematically vary the thresholds and measure the resulting
precision and recall. Finally, we compare the results of FTLR
to state-of-the-art approaches.

A. RQ1: Impact of Additional Information Sources
The first research question addresses the impact of the

additional information options on the performance of FTLR.
To determine the impact, we measured the performance of each
feature combination on the four datasets. Table II displays the
results. The results show that incorporating all three additional
information sources results in the best performing configuration
regarding average F1-score. Additionally, the results of the
paired T-test indicate that the improvement in comparison to
the basic approach is statistically significant (at the 0.05 level).
This is a promising outcome as it supports our claim that all
this information can benefit traceability link recovery.

At a closer look at the impacts of the single information
sources, it turns out that using use case template structures
clearly has the greatest impact. It improves the F1-scores the
most of the three single variants. Only on the iTrust dataset
do the results stay the same, as iTrust does not follow a use
case template. Using method comments is the second most
impactful, as it improves the performance of FTLR on three
out of four projects. Only for eTour do method comments
consistently worsen the results throughout all configurations.
Using call dependencies as the single additional source of
information improves the performance on eTour and eAnci but
worsens it on iTrust. On SMOS the results stay more or less
the same. Depending on the source code structure, a different
ratio between the weights of the current method and the call
dependencies may improve this result further.



TABLE III
COMPARISON OF THE ORIGINAL FTLR THRESHOLD COMBINATION (ORG)
TO THE OPTIMIZED CONFIGURATION PER PROJECT (OPT) ON THE FTLR

+UCT+MC+CD VARIANT. ADDITIONALLY, THE USED MAJORITY
THRESHOLDS (MAJ.) AND FINAL THRESHOLDS FOR THE OPTIMIZED

CONFIGURATION PER PROJECT ARE DISPLAYED.

Precision Recall F1-Score Threshold

Project ORG OPT ORG OPT ORG OPT Improv. Maj. Final

eTour .405 .456 .565 .516 .472 .484 +.012 .59 .42
iTrust .180 .231 .322 .273 .231 .250 +.019 .54 .44
SMOS .451 .370 .288 .455 .352 .408 +.056 .62 .48
eAnci .294 .240 .220 .282 .252 .259 +.007 .58 .48

If we take a look at the combinations of the information
sources, combining method comments and use case template
structures clearly boosts the performances (compared to being
applied individually). Only for eTour and eAnci, +uct+cd
outperforms the other two-part configurations. On the eTour
dataset it achieves the overall highest F1-score of 49.5%.

The results of the three-part combination indicate that despite
the slight decline on iTrust and SMOS the improvement that call
dependencies offer on eTour and eAnci results in a better overall
performance. However, this improvement is not considerable
(0.4 percentage points over FTLR +uct+mc) and might be
project-dependent. Overall we are confident to state that using
use case template structures on artifacts that use these templates
and method comments improve performance of our approach
in general. Therefore, we consider the combinations FTLR
+uct, FTLR +uct+mc, and FTLR +uct+mc+cd as the best
performing variants and prefer the last one since it is most
versatile across different projects and available information.

B. RQ2: Influence of Threshold Configurations

The second research question investigates whether the fixed
thresholds (as defined in section IV) are applicable across
different projects. To measure the impact of the thresholds,
we determine the ideal thresholds per dataset. Therefore, we
systematically altered the majority and final thresholds in 0.01
steps to retrieve the configuration that performs best regarding
F1-score. For the sake of brevity we exemplify the results for
our best performing variant FTLR +uct+mc+cd only.

Table III shows the performance of the resulting ideal
threshold configurations (OPT) in comparison to the thresholds
we set for FTLR (ORG). For three out of four projects the
optimized configurations improve the F1-score by less than 2
percentage points. On the eAnci dataset the improvement is
even below 0.008. Only on SMOS the optimization results in
an improvement of 5.6 percentage points. If we compare the
optimized thresholds to FTLR’s thresholds (majority = 0.59 and
final = 0.44) the differences are small. The respective deviation
in the two thresholds are 0.02 and 0.03 on average and remains
within |0.04|. This implies that our approach of normalized
WMD on fine-grained relations enables us to define thresholds
that achieve reasonable results across different projects.

Nevertheless, the results on SMOS indicate that a threshold
combination tailored to a specific project can improve the
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Fig. 3. Precision/recall curves of FTLR +uct+mc+cd on the four datasets, if
we only vary the final threshold in 0.01 steps between zero and one. ORG
and OPT show the respective results obtained with FTLR’s and the optimized
threshold combination. Horizontal lines show the ratio of positive and negative
links in the datasets as a baseline.

results. One way to refine thresholds in future settings, where
FTLR is applied to new projects, would be to determine the
ideal configuration on a set of projects with gold standard links
and use this configuration for new, unseen projects.

To visualize the impact of the final threshold we plot
the precision/recall curves achieved when varying the final
threshold in 0.01 steps between zero and one in Figure 3.
The shapes of the curves indicate that for all threshold
combinations the results of FTLR stay well above the respective
naive baselines (the horizontal lines). Especially on eTour the
achieved difference is apparent. Besides, the curves indicate
that the final threshold is more decisive for the performance
of FTLR than the majority threshold. For all datasets (except
iTrust) the best threshold combination (OPT) is close to or even
on the curve when varying only the final threshold. Note that
each of the curves ends at a certain recall level. FTLR discards
some link candidates earlier because of the majority threshold.
Therefore, our approach is unable to attain full recall.

C. RQ3: Comparison to State-of-the-Art

To answer RQ3 we use five recent approaches to compare
our results to. We limit the comparison to these approaches as
they are either closely related or we had access to their detailed
results. Unfortunately, most other related work do not provide
data or tools/code. Therefore we publish our translated datasets
and code [16]. We use all datasets introduced in subsection V-A
except for eAnci, as we had no access to detailed results of
unsupervised approaches on eAnci to compare to. We choose
the approaches WQI [11] and S2Trace [14], as they also use
embeddings for traceability link recovery. Additionally, we
compare our results to the first stage results of COMET [9], as
its unsupervised approach performs well on unseen projects4.
We use only the first stage because the further stages of COMET
include either developer feedback (not automatic) or transitive

4Note that we compare to the version of COMET using Maximum a
Posteriori (MP) estimation as it had the best F1-score on the datasets.



TABLE IV
COMPARISON OF FTLR TO STATE-OF-THE-ART APPROACHES. BRACKETS INDICATE RESULTS ON THE FULL ITRUST SOLUTION SET (INCLUDING JSP).

APPROACHES ARE DISTINGUISHED BY WHETHER THEY ARE SUPERVISED (SUP) OR UNSUPERVISED (UNSUP).

eTour iTrust SMOS

Approach Pre Rec F1 MAP Pre Rec F1 MAP Pre Rec F1 MAP

U S2Trace .101 .364 .158 (.196) (.417) (.267)
N COMETMP .412 .464 .437 .467 .361 .231 .282 .252 .166 .816 .276 .293
S FTLR +uct .398 .620 .485 .523 .151 .297 .200 .227 .426 .277 .336 .418
U FTLR +uct +mc .390 .568 .462 .477 .176 .353 .235 .266 .443 .297 .356 .442
P FTLR +uct +mc +cd .405 .565 .472 .471 .180 .322 .231 .258 .451 .288 .352 .442

S WQI .088 .415 .145 (.198) (.322) (.245)
U ALCATRAL10% .425 .427 .425 (.504) (.228) (.309) .513 .444 .476
P TRAIL .572 .650 .608 (.568) (.658) (.609) .871 .735 .797
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Fig. 4. Precision/recall curves of FTLR +uct+mc+cd in comparison to COMETMP, if we only vary the final threshold in 0.01 steps between zero and one.

links, which are not available in many projects. For COMET,
we had access to the resulting ranked list and thus were able to
additionally calculate the best F1-score and MAP (instead of
average precision only as provided by the authors). Furthermore,
we calculate their results on the reduced iTrust dataset (without
JSP files) and thus make their results comparable to ours.

Besides WQI, that uses learning-to-rank, we add TRAIL [25]
and ALCATRAL [12] as supervised approaches to the compar-
ison. The results of TRAIL are calculated by performing 50
random split runs with 90% of the gold standard as training data
each. ALCATRAL uses active learning to improve TRAIL’s
performance with less training data. We use the version of
ALCATRAL that uses only 10% of the gold standard for
training, as it is the closest to an unsupervised setting. Note
that a comparison of unsupervised to supervised approaches can
only put the unsupervised results into context but does not pose
a fair comparison. Supervised approaches are only applicable
in settings where gold standard trace links are already available
and require a significant amount of these links. In contrast,
unsupervised approaches are applicable to any project without
investing resources into creating initial links.

Table IV provides the results of FTLR in comparison to
state-of-the-art approaches. The results indicate that FTLR
outperforms unsupervised approaches in F1-score on two out of
three projects. In comparison to COMET, FTLR +uct+mc+cd
achieves an improvement in F1-score of more than three
percentage points on eTour and more than seven on SMOS.

On eTour this means that FTLR identifies 31 more correct
links than COMET. This is a promising result since FTLR
recovers 174 of the 308 expected links out of 6728 possible
links (with only 256 false positives). On SMOS the achieved
MAP of FTLR is more than 14 percentage points higher than
COMET’s, whereas on eTour they are similar. For FTLR +uct,
the results show an even wider gap in F1-score (+0.052) and
MAP (+0.056) on the eTour dataset. The higher MAP indicates
that our approach places the relevant trace link candidates
more closely to the top of the candidate list than COMET.
Thus, the fine-grained word embedding-based similarities are
able to identify relatedness between the artifacts better. For
iTrust the MAP and recall of FTLR with method comments
are higher than COMET’s. However, FTLR lacks precision.
One reason might be that the iTrust dataset only includes
the flow of events of its use case descriptions. Thus, no
information on the use case name or description can be used.
Additionally, many classes in iTrust only contain private or
protected methods. For these classes our approach only uses
the class name for comparison (which does not utilize the full
potential of our approach). If the class name is similar to many
requirements, FTLR struggles with identifying the correct links
without additional information. Additionally, if many classes
inherit from the same superclass/interface and only provide
the same methods, FTLR can solely distinguish them by their
class names. For SMOS and eAnci, which have many links
to servlet classes that only contain protected methods, this



might explain the rather low recall. If the class names are not
semantically similar to the requirements they should be linked
to, FTLR does not have sufficient information to identify the
links. In general, FTLR has difficulties with classes that should
be linked to many requirements. This is due to the decision
to only use the requirement(s) with the most votes as link
candidates. It is a trade off between precision and recall.

Figure 4 shows the precision/recall curves of the best
performing FTLR variant in comparison to COMET’s. Again
we altered the final threshold in 0.01 steps. The curves support
the insights gained from Table IV. On the SMOS dataset FTLR
performs better than COMET on all recall levels. For eTour
our approach outperforms COMET between 0.4 and 0.75 with
a more stable precision (lower decline). However, the lack in
precision on the iTrust dataset also shows in the curves.

Finally, we compare our results to supervised approaches. As
the two settings differ regarding prerequisites and applicability,
this only provides insights into how close FTLR’s performance
is to state-of-the-art approaches that require gold standard
links for training. However, the results of this comparison are
promising. On the eTour dataset all FTLR variants outperform
ALCATRAL10% and FTLR +uct achieves only 12.3 percentage
points less than TRAIL. As TRAIL uses 90% of the gold
standard for training, the manual effort to achieve this result
is enormous. An explanation for the difference might be
that supervised approaches can infer project-specific relations
from the training data which are not represented in our word
embedding model. In comparison to the embedding-based
approaches WQI and S2Trace we can state that on the eTour
dataset FTLR is superior. It outperforms both approaches by
over 30 percentage points in F1-score. We attribute this to our
different approach at using word embeddings. FTLR uses a
pre-trained fastText model instead of training a model on the
datasets itself, calculates similarities with WMD instead of
cosine similarity, and uses fine-grained relations.

VII. THREATS TO VALIDITY

In this section, we discuss potential threats to validity of
our research and experimental design.

External Validity: The first and probably most major threat
to validity of our work concerns external validity. We evaluate
our approach on a limited number of projects stemming from
academic projects. Thus, it is possible that our results are
not representative and might not generalize to other projects.
This threat is shared by automated traceability link recovery
approaches [9], [10]. However, the chosen projects are widely
used and accepted in the research community, are of different
sizes, and cover different domains.

Additionally, all datasets contain more or less well-written
requirements. Thus, our results might not be transferable to
projects that include requirements of poor quality. Especially,
the utilization of use case templates might not be applicable.
However, our word embedding-based approach itself does not
require syntactically correct sentences.

FTLR requires the word embedding model to cover the
semantic relations needed to identify the trace links. The results

indicate that the used model enables FTLR to discern relations
other approaches can not identify. Again, this might not be the
case for other projects and domains.

Internal Validity: A threat might be that one of the authors
translated the identifiers in two projects. As the translation was
performed with the goal of traceability link recovery in mind,
the translation may suffer from experimenter bias. We mitigate
this risk by publishing the translated datasets [16].

Additionally, we compare our results to results reported in
publications without reproducing their results. As COMET’s
results were released online, we were at least able to adapt their
results to the artifacts we used. However, for eTour and SMOS
we translated parts of the datasets and thus compare FTLR’s
results on the translated datasets to results of recent approaches
on the original (non-translated) datasets. This poses a potential
threat to the validity of the comparison. However, we believe
the results to be comparable because COMET, ALCATRAL,
and TRAIL use information retrieval techniques that solely rely
on the present wording (replicating their syntactic relations)
and do not use language sources (such as pre-trained word
embeddings) that rely on a consistent language usage. Same
holds true for the approaches that use embeddings, as their
embedding models are trained on the datasets themselves.

VIII. CONCLUSION

We presented the approach Fine-grained Traceability Link
Recovery (FTLR) that utilizes fine-grained requirements-to-
code relations for traceability link recovery. It uses word
embeddings and the Word Mover’s Distance to compute
similarities between artifact elements and aggregates the results
with majority votes to recover artifact-level trace links.

We performed a three-part empirical study on the projects
eTour, iTrust, SMOS and eAnci commonly used in the
community to examine FTLR’s performance. We have shown
that using method call dependencies, method comments, and
use case template structures as additional resources significantly
improves FTLR’s performance on the four test datasets. By
comparing the results of our fixed thresholds to the optimal
threshold configuration per project, we show that the thresholds
we define provide reasonable performance across different
projects. Compared against recent unsupervised traceability
link recovery approaches, FTLR performs better regarding F1-
score and MAP. It attains F1-scores of up to 49.5% on tasks
such as retrieving the 308 relevant links out of all 6728 possible
end-to-end links in eTour. However, an average F1-score of
32.7% is still far from a performance required to replace manual
trace link generation and further work is needed.

We plan to investigate possibilities to further enrich the
knowledge about the artifacts. For example, we will incorporate
underlying concepts from external knowledge bases to bridge
the semantic gap between the artifacts. Using language models,
such as BERT [35] or CodeBERT [36], could present another
approach to close the gap and improve the representation of the
artifacts. Additionally, we will explore different opportunities
to retrieve a generally applicable threshold combination.
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[22] H. Kuang, P. Mäder, H. Hu, A. Ghabi, L. Huang, J. Lü, and A. Egyed,
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