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Zum Buch

Die wirtschaftliche Globalisierung und die Entwicklung von Industrie 4.0 führen 
zu einer steigenden Wichtigkeit der digitalen Produktion, um den Problemen 
und Herausforderungen in der aktuellen VUKA-Welt (Volatilität, Unsicherheit, 
Komplexität und Ambiguität) zu begegnen. Smart Automation ist dabei eine 
vielversprechende Lösung, allerdings können Unternehmen aufgrund von 
mangelnden Ressourcen oft nicht alle Smart Automation Technologien gleichzeitig 
implementieren. 

Entsprechend trägt diese Arbeit dazu bei, eine regionalisierte Einführungsstrategie 
von Smart Automation Technologien in Montagesystemen zu ermöglichen. 
Zunächst werden die Standortfaktoren, Smart Automation Technologien und 
KPIs identifiziert. In einem zweiten Schritt werden, mit Hilfe von qualitativen und 
quantitativen Analysen, die Interdependenzen bestimmt. Anschließend werden 
diese Interdependenzen auf ein Montagesystem mittels hybrider Modellierung 
und Simulation übertragen. Im vierten Schritt wird eine regionalisierte 
Einführungsstrategie durch eine Optimierung und eine Monte-Carlo-Simulation 
abgeleitet.

Die entwickelte Methodik stellt einen neuartigen Ansatz zur Entscheidungs-
unterstützung bei der Entwicklung einer regionalisierten Einführungsstrategie 
für Smart Automation Technologien in Montagesystemen dar. Dadurch sind 
produzierende Unternehmen in der Lage, individuelle Einführungsstrategien 
für disruptive Technologien auf Basis wissenschaftlicher und rationaler Analysen 
effektiv abzuleiten.
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Vorwort des Herausgebers 

Die schnelle und effiziente Umsetzung innovativer Technologien wird vor dem Hinter-
grund der Globalisierung der Wirtschaft der entscheidende Wirtschaftsfaktor für produ-
zierende Unternehmen. Universitäten können als "Wertschöpfungspartner" einen we-
sentlichen Beitrag zur Wettbewerbsfähigkeit der Industrie leisten, indem sie wissen-
schaftliche Grundlagen sowie neue Methoden und Technologien erarbeiten und aktiv 
den Umsetzungsprozess in die praktische Anwendung unterstützen. 

Vor diesem Hintergrund soll im Rahmen dieser Schriftenreihe über aktuelle For-
schungsergebnisse des Instituts für Produktionstechnik (wbk) am Karlsruher Institut für 
Technologie (KIT) berichtet werden. Unsere Forschungsarbeiten beschäftigen sich so-
wohl mit der Leistungssteigerung von Fertigungsverfahren und zugehörigen Werkzeug-
maschinen- und Handhabungstechnologien als auch mit der ganzheitlichen Betrach-
tung und Optimierung des gesamten Produktionssystems. Hierbei werden jeweils tech-
nologische wie auch organisatorische Aspekte betrachtet. 
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Kurzfassung 

Produzierende Unternehmen in aufstrebenden Nationen wie China, sind bestrebt, die 
Produktivität der Produktion durch eine Verbesserung der Lean Produktion mit disrup-
tiven Technologien zu erreichen. Smart Automation ist dabei eine vielversprechende 
Lösung, allerdings können Unternehmen aufgrund von mangelnden Ressourcen oft 
nicht alle Smart Automation Technologien gleichzeitig implementieren. Ebenso beein-
flusst eine Vielzahl an Einflussfaktoren, wie z.B. Standortfaktoren. Dementsprechend 
herausfordernd ist die Auswahl und Priorisierung von Smart Automation Technologien 
in Form von Einführungsstrategien für produzierende Unternehmen. 

Der Stand der Forschung untersucht nur unzureichend die Analyse der Interdependen-
zen zwischen Standortfaktoren, Smart Automation Technologien und Key Performance 
Indikatoren (KPIs). Darüber hinaus mangelt es an einer Methode zur Ableitung der Ein-
führungsstrategie von Smart Automation Technologien unter Berücksichtigung dieser 
Interdependenzen. 

Entsprechend trägt diese Arbeit dazu bei, eine regionalisierte Einführungsstrategie von 
Smart Automation Technologien in Montagesystemen zu ermöglichen. Zunächst wer-
den die Standortfaktoren, Smart Automation Technologien und KPIs identifiziert. In ei-
nem zweiten Schritt werden, mit Hilfe von qualitativen und quantitativen Analysen, die 
Interdependenzen bestimmt. Anschließend werden diese Interdependenzen auf ein 
Montagesystem mittels hybrider Modellierung und Simulation übertragen. Im vierten 
Schritt wird eine regionalisierte Einführungsstrategie durch eine Optimierung und eine 
Monte-Carlo-Simulation abgeleitet. Die Methodik wurde im Rahmen des deutsch-chi-
nesischen Forschungsprojekts I4TP entwickelt, das vom Bundesministerium für Bil-
dung und Forschung (BMBF) unterstützt wird. Die Validierung wurde erfolgreich mit 
einem produzierenden Unternehmen in Beijing durchgeführt. 

Die entwickelte Methodik stellt einen neuartigen Ansatz zur Entscheidungsunterstüt-
zung bei der Entwicklung einer regionalisierten Einführungsstrategie für Smart Automa-
tion Technologien in Montagesystemen dar. Dadurch sind produzierende Unternehmen 
in der Lage, individuelle Einführungsstrategien für disruptive Technologien auf Basis 
wissenschaftlicher und rationaler Analysen effektiv abzuleiten.  
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1 Introduction 
Digitalization could create an estimated 100 trillion dollars in value over the next dec-
ade1.  Industry 4.0 and the underlying digital transformation is progressing exponentially 
(Ghobakhloo 2020). Meanwhile, Industry 4.0 is realizing the extended lean enterprise 
(Davies & Coole et al. 2017). However, adequate implementation of Industry 4.0 tech-
nologies can be a challenge for both industry representatives and countries (Da Silva 
& Kovaleski et al. 2020). To adopt the concept of Industry 4.0, one of the critical barriers 
identified is the lack of a theoretical model or procedure that best directs or assists 
managers (Schröder 2016; Orzes & Rauch et al. 2018). Thus, the success of Industry 
4.0 will depend upon a series of well-planned and strategically executed projects (Sony 
& Naik 2020). Thus far, research has not dealt with the interplay between location fac-
tors such as humans, organization and technology (Veile & Kiel et al. 2019; Schuh & 
Anderl et al. 2017). Therefore, the regionalized implementation strategy of disruptive 
technologies must be scientifically investigated to understand influence factors, navi-
gate transformation process and ensure added value for the production sector.  

1.1 Background and Motivation 
The Lean production paradigm has become the major approach to create highly effi-
cient processes in industry since the early 1990s (Dombrowski & Schulze et al. 2009; 
Dombrowski & Schmidt et al. 2008; Peter 2009; Womack & Jones et al. 1990). After the 
end of the Computer Integrated Manufacturing (CIM) era, which was doomed to fail due 
to its unmanageable complexity of the required automation technology and its short-
comings in adapting to dynamic changes in a production system (Yu & Xu et al. 2015), 
the Lean approach became successful because of its high effectiveness by reducing 
complexity and avoiding non-value-creating processes (Kolberg & Zühlke 2015). Its 
simplicity and up to 25% higher productivity are important reasons why Lean production 
has become status quo of production systems (Dickmann 2007). Although Lean pro-
duction supports a higher variety of products, its fixed sequence of production and fixed 
cycle times are not suitable for individual single-item production. Thus, the suitability of 
classical Lean methods for future shorter product life cycles and individual single-item 
production is limited (Kolberg & Zühlke 2015).  

Today, the ability of a production system to produce a special product is changing due 
to digital evolution (Reinhart & Krug et al. 2010). Increasing networking and the ubiqui-

1WEF (2018), Digital Transformation Initiative, Executive Summary, May 2018, http://reports.weforum.org 
[14.10.2020] 
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tous availability of data and services offer entirely new and promising prospects for in-
dustrial automation. Amongst others, there is the vision of adaptive, self-configuring, 
partially self-organizing and flexible production facilities. This  would revolutionize pro-
duction, offering enhancement to Lean production through shorter set-up times and op-
timized use of energy and resources, reducing waste and workload and improved deficit 
and abnormality detection (Rossini & Costa et al. 2019). This vision, presented within 
the framework of the German federal government's "Industrie 4.0" future project, is re-
ferred to as Cyber-Physical Production Systems (CPPS) (Bettenhausen & Kowalewski 
2013). Similar initiatives run in different countries under different names, as, for instance 
“Made in China 2025” in China1. 

CPPS is defined as the application of Cyber-Physical Systems (CPS) in industrial pro-
duction (Posada & Toro et al. 2015; Monostori & Kádár et al. 2016). The term CPS 
refers to a technical system that has at least one of the three following features: exten-
sive utilization of sensor technologies for analytics, connected network of multiple tech-
nical components with extensive data exchange, and autonomous operation of sub-
systems (Manzei & Schleupner et al. 2017). According to the common understanding, 
the purpose of the application of CPS is to interact with people in CPPS to support them 
with production tasks (Manzei & Schleupner et al. 2017). Since the CPPS is quite a 
broad concept, this thesis is focused on smart automation technologies in the frame-
work of CPPS.  

Smart automation describes an intelligent automatic production process that is charac-
terized by the active support of intelligent products and technologies. By means of a 
high degree of digitalization, the potentials of information technology are to be utilized 
by automated monitoring of the production process, which allows  higher flexibility and 
simultaneously higher productivity (Yang & Boev et al. 2018; Yang & Schrage et al. 
2019). Smart automation technologies can be of very different nature, including hard-
ware components, such as driverless transport vehicles or RFID chips, as well as soft-
ware components, such as digital shopfloor management or digital work instructions. 
Thus, such smart automation concepts provide the potential to enhance existing Lean 
Production Systems by capturing, storing, distributing, managing, and analyzing the in-
formation. In order to exploit this potential, however, today´s manufacturers face the 
challenge of how to effectively integrate smart automation concepts into their current 
Lean Production Systems. In particular, this involves identifying the most suitable smart 
automation for their specific purposes.  

1The State Council of People’s Republic of China, Made in China 2025, http://english.www.gov.cn/2016spe-
cial/madeinchina2025/ [19.10.2020] 
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In general, difficulties occur mainly due to differing perceptions of the principal nature 
of these new concepts, as well as the complexity of related topics (Monostori 2015; 
Schumacher & Erol et al. 2016). Additionally, the intended improvements of using a 
combination of the smart automation concepts has not yet been quantitatively analyzed 
for superior performance characteristics with regard to relevant Key Performance Indi-
cators (KPIs), such as product throughput times, production costs, and quality rates. 
Also, which specific sequential combinations of smart automation concepts companies 
could achieve optimal performance is often a complex decision. Thus, the correspond-
ing decisions regarding the integration of smart automation concepts in Lean Produc-
tion Systems cannot be effectively made (Yang & Schrage et al. 2019; Liebrecht 2020). 

Moreover, by considering the global environment, the role of location factors is very 
important for ideal preparation of production improvements (Ketokivi & Turkulainen et 
al. 2017). While the company faces challenges about the variety of improvement pos-
sibilities and limited resources regarding the smart automation application, location fac-
tors can support companies in identifying the most valuable improvement areas by con-
sidering their individual factors, such as markets and market development, cost, logis-
tics, cultural factors, political and governmental factors, legal factors, risk through dy-
namics and uncertainties, among others (Feldmann & Olhager 2013). Without consid-
eration of related location factors, the key fields of smart automation application cannot 
be appropriately identified. Therefore, it is necessary to investigate a set of location 
factors and its influence on smart automation. 

With reference to the initial situation, the identification of suitable strategies for imple-
menting Smart Automation technologies for enhancing Lean production by considering 
location factors is an increasingly important challenge in research and industrial prac-
tice.  

1.2 Scope of the Research 
The scope of the work is limited to assembly systems in China. Firstly, assembly is a 
very important process in manufacturing. Assembly of manufactured goods accounts 
for over 50% of total production time and 20% of total production cost. In the automotive 
industry, 20%-70% of the direct labor costs are spent on assembly. These statistics 
indicate the relative importance of assembly and point to the potential savings to be 
achieved by improving assembly technology and systems (Eimaraghy & Eimaraghy 
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2016). Therefore, the assembly system is one of the most important parts in a produc-
tion system and needs to be designed and operated to handle a wide variety of prod-
ucts. Thus, it is meaningful to focus on this field.  

Secondly, in terms of global production, China as an emerging country has shown much 
higher growth in its manufacturing industry than ever before, owing not only to its tradi-
tional low-cost value proposition, but also its focus and development of innovation in-
frastructure to cement the role of advanced technologies in its manufacturing future. 
According to the Global Competitiveness Report 2019 (WEF 20191), China ranks 28th 
overall, unchanged from the previous edition (see Figure 1-1). Its score increased by 
1.3 points, driven by a significant boost in Information and Communication Technolo-
gies (ICT) adoption (78.5, 18th). Despite these encouraging signs, however, growth has 
been steadily declining in recent years. While Gross Domestic Product (GDP) grew by 
10.61% in 2010, growth in 2017 was only 6.86% (IMF 20182). The manufacturing com-
panies are also facing great challenges such as increasing labor costs and high material 
costs. They are dealing with relatively low productivity and flexibility on the one hand, 
and growing customer demand regarding delivery time, product varieties and product 
quality on the other hand. Instead of continuing to serve the global demand for low-cost 
products as the "work-bench of the world", the industry is increasingly focusing on sus-
tainable, domestic market-oriented, socially balanced and innovation-driven develop-
ment. In order to achieve this without compromising growth, the productivity of domestic 
production facilities must be increased significantly (Schüller 2015). 

1World Economic Forum, The Global Competitiveness Report 2019, http://www3.wefo-
rum.org/docs/WEF_TheGlobalCompetitivenessReport2019.pdf [19.10.2020] 
2International Monetary Fund, https://www.imf.org/external/datamapper/datasets [19.10.2020] 
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Figure 1-1: Global Competitiveness of China 2019 (WEF 2019) 

Meanwhile, a strategic plan was presented in China in 2015 with an emphasis on a shift 
in Chinas manufacturing economy from quantity to quality. Operation costs, lead time 
and the defect rate in local factories are targeted to decrease by 50% by 20251 (see 
Table 1-1). To achieve this increase in productivity, the introduction of intelligent pro-
duction must be stepped up. According to a study, over 70% of Chinese industrial com-
panies are still in the observation and analysis phase, or have not even considered it 
yet, and insufficient know-how is one of the top obstacles2. 

Table 1-1: Strategic goals of manufacturing in 2020 and 20251 

Category Indicator 2013 2015 2020 2025 
Innovation 
Capability  

Internal R&D cost as a percentage of operating rev-
enue of manufacturing firms (%)  0.88 0.95 1.26 1.68 

Invention patents per billion RMB of operating reve-
nue (#)  0.36 0.44 0.70 1.10 

Quality and 
Value  Manufacturing quality competitiveness (index)  83.1 83.5 84.5 85.5 

1Kennedy, S. (2015), "Made in China 2025" Center for Strategic and International Studies. 
https://www.csis.org/analysis/made-china-2025 [09.04.2020] 
2Staufen AG (2015), "China - Industrie 4.0 Index 2015". https://www.staufen.ag [13.07.2020]. 
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Manufacturing value-added rate (% increase over 
2015)  - - 2 4 

Average manufacturing labor productivity growth 
during the 5-year Plan (%)  - - 7.5 6.5 

Integration 
of Informa-
tization and 
Industriali-
zation  

Broadband penetration (%)  37 50 70 82 

Digital R&D and design tool penetration (%)  52 58 72 84 

Key process control rate (%)  27 33 50 64 

 

As a consequence, although smart automation provides great potential and possibilities 
for realizing future goals, the adaption and adoption of smart automation in China is still 
questionable. Companies are encountering the challenge of clearly defining an imple-
mentation strategy for the most appropriate and beneficial smart automation technolo-
gies.  

1.3 Objective of the Research 
The main hypothesis remains that the efficiency of (Lean) production systems can be 
improved by the application of smart automation technologies from the domain of 
CPPS. An additional hypothesis is that existing approaches do not sufficiently consider 
the influence of location factors for implementing it into Lean production. 

The objective of this work is to establish a method for developing the regionalized im-
plementation strategy of smart automation in assembly systems. Location factors are 
exposed to intensive competition to provide the most attractive conditions for compa-
nies. Therefore, location factors play a significant role in improvement actions. Due to 
the specific development of holistic production systems in industrial companies, inter-
dependencies of smart automation technologies and location factors as well as KPIs 
are carried out and form a basis for analyzing the appropriate implementation strategy.  

Thus, there are two leading research questions: 

1. How can interdependencies among smart automation technologies, location 
factors, and KPIs be analyzed and modelled? 

2. How can the most advantageous smart automation technologies for a specific 
assembly system be selected, considering the effects of location factors? 

Thus, modeling the interdependencies are emphasized as opposed to modeling smart 
automation itself. The consideration of location factors remains the primary motivation 
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at the root of the leading questions. The questions related to the development of a 
method to support the development of an implementation strategy of smart automation 
technologies within assembly systems and considering location factors remains rele-
vant. 

1.4 Structure of this Work 
The structure of this work is composed of seven sections, which are depicted in Figure 
1-2. Following the motivation and research objective in Section 1, the essential basics 
for the understanding of the work are introduced in Section 2. In Section 3, existing 
research approaches in the literature are reviewed, which concern smart automation, 
location factors, and KPIs relevant to this work. Research deficits are derived on the 
basis of evaluation criteria. In Section 4, an approach for achieving the objectives is 
presented. Its prototypical simulation implementation and validation in the application 
area of hydraulic engineering is conducted in Section 5, followed by an evaluation of 
the approach and an outlook in Section 6. Finally, Section 7 concludes with a summary 
of the work. 
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Figure 1-2: Structure of this Work 
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2 Basics 
In this section, the basics of the author’s approach are introduced. In the context of this 
work, the assembly system is considered as the scope of application. Since the inter-
dependencies of smart automation, location factors and KPIs are key inputs for the 
derivation of an implementation strategy, it is necessary to clarify the basics of these 
three factors. Besides the two points mentioned above, uncertainty and robustness as 
well as simulation are also explained, since they are the basics for better understanding 
and analyzing the implementation strategy.  

2.1 Assembly Systems 
Assembly is the capstone process for product realization where component parts and 
subassemblies are integrated together to form the final products (Hu & Ko et al. 2011). 
It is an important step in product manufacturing and directly affect the quality of products 
(Liu & Ma et al. 2017). An assembly system is one of the subsystems in a factory, where 
the individual components of a product are joined together and thus integrated into a 
semifinished or into the final product (Butala & Mpofu 2020). The basic assembly sys-
tem representation is introduced in Figure 2-1. Additionally, assembly systems are pri-
marily classified as manual assembly lines and automated assembly lines, whereas 
hybrid assembly systems have been developed such as flexible assembly systems, 
reconfigurable assembly systems, adaptable assembly systems, and agile assembly 
systems to deal with product variety. 
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Figure 2-1: Overview of basic assembly system (Butala & Mpofu 2020) 

Assembly system design defines proper configurations and efficient management strat-
egies to maximize the assembly system performance. Furthermore, assembly system 
design has to consider the industrial environment in which the system operates (Borto-
lini & Ferrari et al. 2017). Some of the most influential management concepts have their 
origin in the organization of assembly systems, from Henry Ford’s assembly lines and 
the concept of mass production, to the more recent Toyota Production System and the 
principles of Lean manufacturing. Currently, assembly systems are experiencing dra-
matic changes imposed by shifting market conditions and profound developments in 
existing technologies (Battaïa & Otto et al. 2018).  

Modern assembly systems are comprised of a large number of entities (machines, 
transporters, buffers, data, infrastructure, etc.) and have high dimensionality, redun-
dancy, and uncertainty, and many interactions (Hu & Ko et al. 2011). The adoption of 
Industry 4.0 enabling technologies in production systems has a disruptive impact and 
improves the factory’s technical, economic and social performance. In particular, the 
integration of these technologies in the design and management of assembly processes 
leads to the here defined Assembly System 4.0 (AS40). The application of the IoT tech-
nology to assembly processes is the keystone of Assembly System 4.0 (AS40). Every 
workstation, storage location, piece of equipment, product, worker and generic entity of 



Basics 11 
 

 

the Assembly System 4.0 (AS40) is sensorized in order to communicate specific data 
in real-time (Bortolini & Ferrari et al. 2017). 

2.2 Key Performance Indicators 
Key performance indicators (KPIs) are financial and nonfinancial measures that are 
used to define and evaluate the success of an organization. KPIs differ, depending on 
the nature of the organization and the organizational strategy; they are devised to help 
evaluate the progress of an organization toward achieving its long-term goals and ful-
filling its vision (Abujudeh & Kaewlai et al. 2010). Each company has its own industry- 
and supply-dependent focus, and accordingly, the requirements for KPIs as well as the 
basic selection of data to be recorded and evaluated are different (Scholz 2017). A 
typical KPI hierarchy presented in Figure 2-2, in which KPIs are divided into three cat-
egories regarding three different orientation. 

 

Figure 2-2: Typical KPI hierarchy (AWF1) 

A production process involves several business and technical activities on and around 
the factory floor. Its effectiveness can be assessed using information hidden in a set of 
current and historical production data. The problem of extracting the relevant infor-
mation from production data for fast and accurate decision-making can be solved by 
introducing a set of production KPIs that show the operational and mid- term efficiency 
of the production (Badawy & El-Aziz et al. 2016). On the strategic management level, 

1AWF Arbeitsgemeinschaft für Wirtschaftliche Fertigung, https://www.awf.de/wp-content/up-
loads/2014/12/Kennzahlen-in-der-Produktion-awf.pdf [14.10.2020] 
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the problem of overall business efficiency in a production factory is already being solved 
with this approach (Brown & Debusk et al. 2003), while on the production management 
level, the implementation of KPIs is a rather new concept. In the field of production, 
more than 150 KPIs exist (Stricker 2016). It is challenging to select the best subset of 
KPIs to give a clear view on the system’s performance, as the selected KPIs must be 
able to indicate all possible shortfalls in the production system. At the same time, as 
few indicators as possible should be used (Stricker 2016). 

2.3 Advanced Manufacturing Concepts 
Advanced manufacturing technology (AMT) has different meanings in different situa-
tions, but it can be broadly defined as an automated production system of people, ma-
chines, and tools for the planning and control of the production process, including the 
procurement of raw materials, parts, and components, and the shipment and service of 
finished products (McDermott & Stock 1999). Industry 4.0 in many countries related to 
advanced manufacturing is becoming important. In this context, the relevant concepts 
such as lean methods, Industry 4.0, CPS and CPPS as well as smart automation will 
be introduced in the following.  

2.3.1 Lean Production 

The Toyota Production Systems (TPS) and its synonym Lean Production was devel-
oped by Toyota Motor Corporation in the 1970s (Ōno 1988; Sugimori & Kusunoki et al. 
1977). The TPS integrates a set of methods and tools with the management philosophy 
of completely eliminating the seven forms of waste (Muda, in Japanese) and to realize 
profits through cost reduction (Monden 2012). The TPS defines everything that does 
not create value as waste, including overproduction, waiting for work, transportation, 
overprocessing, inventory, motion and defects (Tsigkas 2013). 

The depicted overview of Lean Production (Figure 2-3) is the symbol for the Lean Pro-
duction principles. The triangle roof emblematizes the systematic focus on the customer 
oriented KPIs for quality (Q), delivery (D) and costs (C) (Lander & Liker 2007; Ōno 
1988). The basic approach is the  continuous improvement of production by integrating 
the following principles: 5S, Kaizen, Just in Time (JIT), Jidoka, Heijunka, Standardisa-
tion, Takt Time, Pull Production, Man-machine separation, People and Teamwork, and 
Waste Reduction (Thomopoulos 2016). 
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Figure 2-3: Overview of Lean Production (Thomopoulos 2016) 
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2.3.2 Industry 4.0 

The term “Industry 4.0 (I4.0)” was introduced in 2011 to describe the widespread inte-
gration of information and communication technology in industrial production (Schuh & 
Anderl et al. 2017; Roblek & Meško et al. 2016). Although I4.0 has already been signif-
icantly developed, it is still hard to uniquely and clearly define it. One of famous defini-
tions states that the term I4.0 stands for the fourth industrial revolution, the next stage 
in the organization and control of the entire value stream along the life cycle of a product 
(Kagermann & Wahlster et al. 2013). 

I4.0 is ongoing, with the characteristics of Cyber-Physical Systems (CPS), based on 
heterogeneous data and knowledge integration. The main roles of CPS in I4.0 are to 
fulfill the agile and dynamic requirements of production and to improve the effectiveness 
and efficiency of the entire industry. I4.0 encompasses numerous technologies and as-
sociated paradigms, including Radio Frequency Identification (RFID), Enterprise Re-
source Planning (ERP), Internet of Things (IoT), cloud-based manufacturing, and social 
product development (Lu 2017). 

The goals of Industry 4.0 are to achieve a higher level of operational efficiency and 
productivity, as well as a higher level of automatization. The five major features of In-
dustry 4.0 are digitization, optimization, and customization of production, automation 
and adaptation, human machine interaction (HMI), value-added services and busi-
nesses, automatic data exchange, and communication. These features are not only 
strongly connected with internet technologies and advanced algorithms, but they also 
indicate that Industry 4.0 is an industrial process of value adding and knowledge man-
agement (Lu 2017). 

2.3.3 Cyber-Physical Systems 

Cyber-Physical Systems (CPS) are systems of collaborating computational entities 
which are intensively connected to the surrounding physical world and its on-going pro-
cesses, simultaneously providing and using data-accessing and data-processing ser-
vices available on the internet. In other words, CPS can be generally characterized as 
physical and engineered systems whose operations are monitored, controlled, coordi-
nated, and integrated by a computing and communicating core. The interaction between 
the physical and cyber elements is of key importance (Monostori 2015).  
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CPS consist of microcontrollers that control the sensors and actuators. Data and infor-
mation are exchanged among embedded computer terminals, wireless applications, 
houses, or even clouds. The complex, dynamic, and integrated CPS in Industry 4.0 will 
integrate planning, analysis, modeling, design, implement, and maintenance in the 
manufacturing process  (Lasi & Fettke et al. 2014). Because CPS combine information 
and materials, decentralization and autonomy play important roles in improving the 
overall industrial performance, CPS are capable of increasing productivity, fostering 
growth, modifying the workforce performance, and producing higher-quality goods with 
lower costs via the collection and analysis of malicious data (Lu 2017). 

Looking at the development of computer science (CS), information and communication 
technologies (ICT), and manufacturing science and technology, a parallel development 
can be observed in Figure 2-4 (Monostori & Kádár et al. 2016). 

 

Figure 2-4: Interplay between computer science (CS), information and communication tech-
nologies (ICT) and manufacturing (Monostori & Kádár et al. 2016) 

2.3.4 Cyber-Physical Production Systems 

CPS refer to the convergence of the physical and digital worlds. When applied to pro-
duction, CPS are specialized in Cyber-Physical Production Systems (CPPS) (Posada 
& Toro et al. 2015). CPPS partly break with the traditional automation pyramid (left side 
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of Figure 2-5). Even before Industry 4.0, in 2016 Vogel-Heuser & Hess (2016) described 
how the automation pyramid, which used to be the standard for industrial and automa-
tion IT architecture, is evolving into a new kind of architecture of CPS-based automa-
tion. It consists of two main functional components by CPPS, which are shown on the 
right side of Figure 2-5. The lower one is responsible for the advanced connectivity 
which ensures real-time data acquisition from the physical world and information feed-
back from the cyber space, while the higher level one incorporates intelligent data man-
agement, analytics and computational capabilities that constructs the cyber space (Mo-
nostori & Kádár et al. 2016) 

 

Figure 2-5: Decomposition of the automation hierarchy with distributed services (Monostori & 
Kádár et al. 2016) 

2.3.5 Smart Automation 

Smart automation is a process actively supported by smart products, processing high 
levels of digitalization for automatic monitoring, aiming to take advantage of advanced 
information and technologies in order to enable flexibility and improve production per-
formance (Yang & Boev et al. 2018). It is derived from other smart concepts, such as 
smart manufacturing, smart production, smart systems, smart factory, etc. Enabling 
technologies refer to one or a series of wide and multidisciplinary characteristics applied 
in order to complete tasks (Wan & Cai et al. 2015). In this context, smart automation 
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technologies are identified by six characteristics: real time decision support, transpar-
ency, analytics and intelligence, changeability and flexibility, human machine interaction 
and connectivity. An overview of smart automation is introduced in Figure 2-6. 

 

Figure 2-6: Overview of smart automation (Yang & Boev et al. 2018) 

Smart Manufacturing and Smart Production 

Davis & Edgar et al. (2012) defined smart manufacturing as a broad manufacturing 
category, the goal of which is to optimize concept generation, production and product 
trading. While manufacturing can be defined as a multi-stage process of creating prod-
ucts using raw materials, smart manufacturing is a subset of using computer control 
and high levels of adaptability. Smart manufacturing is furthermore designed to take 
advantage of advanced information and manufacturing technologies to enable the flex-
ibility of physical processes to respond to dynamic global markets. For this flexibility 
and the use of technology rather than the specific tasks that are customary in traditional 
manufacturing. 

According to (Wang & Shih 2016), smart manufacturing technology is more common 
than ever because of continued business fragmentation and the need for overall re-
source availability. Manufacturers are competing in a global, dynamic market that re-
quires superior quality and service, throughput, innovation, production flexibility, short 
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response times to changing markets, and tight profit margins. With the increase in vi-
tality or uncertainty, manufacturing will gradually move to a distributed environment. In 
order to win competition locally or globally, the manufacturing system is intelligently 
prioritized. This leads to digital processing, networked physical system integration and 
intelligent control on the factory floor. 

Smart production is a solution to master the current challenges of today’s production by 
closing the gap between data, technology and process-oriented production design 
forms. Production refers to the interplay of production, information processing and lo-
gistics processes, which are supported by development, design, planning and service 
processes in the sense of smart production systems. The potential of smart production 
systems results from the effective combination of data-driven, technology-driven and 
process-oriented approaches. The target concept results in three areas of potential: 
quality through safety, flexibility through small control circuits and efficiency through 
minimal administration effort (Birkhahn 2007). The organization model of smart produc-
tion systems are explained by Birkhahn (see Figure 2-7) 

 

Figure 2-7: Organization model of smart production systems (Birkhahn 2007)  
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Smart Systems 

Harmon & Corno et al. (2015) conclude that smart systems should be instrumented, 
interconnected and intelligent in order to be effective. First, instrumentation makes the 
collection of timely, high-quality data through embedded sensors reliable. Furthermore, 
interconnection enables linkages among people, systems and data and enhance the 
reality of the systems. Finally, intelligence ensures better decisions and outcomes as 
well as the reactions of complex systems to emergent demands. 

Smart Factories 

Radziwon & Bilberg et al. (2014) state the definition of smart factory. In the context of 
the increasing complexity of the world, the smart factory is a manufacturing solution that 
provides flexible, adaptive production processes that solve the dynamic and rapidly 
changing boundary conditions problems that occur in production facilities. This specific 
solution could be related to automation, understood as a combination of software, hard-
ware and/or mechanics, which should give rise to optimization of manufacturing result-
ing in decrease of unnecessary labor and waste of resource, on the one hand. It can be 
viewed from the perspective of cooperation between different industrial and non-indus-
trial partners, where the smartness is derived from the formation of a dynamic organi-
zation, on the other hand. 

Summary 

The framework of interoperability of these concepts is showed in Figure 2-8. 
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Figure 2-8: Framework of interoperability of basic concepts 

2.4 Location and Process Factors 
Location theories aim to clarify and to operationalize the process of locational decision-
making, for example by analyzing and weighting locational influences and interdepend-
encies of various factors, motivations and conditions, which determine the final choice 
of location (Winkelmans 1980). Basically, the main problem to be solved is the minimi-
zation of production costs (Winkelmans 1980). 

2.4.1 Location Factors 

Location factors are the economic variables that influence and determine the choice of 
location (Eckey & Muraro 2008). They reflect the characteristics of a geographic loca-
tion and influence the attractiveness of a site for a specific process step for a product 
(Abele & Meyer et al. 2008). Location factors play a decisive role in the choice of a 
company’s location, since they can have a major impact on the success or failure of a 
company (Pongratz & Vogelgesang 2016).  
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It is complex to find one specific general overview of location factors and its classifica-
tion. However, some classification concepts are often used, such as the division of lo-
cation factors into market-related or product- and process-related types. The typical 
quantitative and qualitative location factors of these both perspectives and allocated 
them to three different consideration levels: global, regional and local (VDI 2012). Be-
sides, location factors can also be sorted into soft and hard ones. Hard factors influence 
regional dispositions for a particular economic activity with a direct impact on the profit 
of a particular economic entity. In comparison, the impact of soft factors on economic 
output is not directly measurable, but they are becoming increasingly significant, as they 
are getting closer to current trends in economic development (Jirásková 2015). 

2.4.2 Process Factors 

Abele & Meyer et al. (2008) stated that process factors are the product and production-
related factors which describe the manufacturing process and the characteristics of the 
product. Process factors can be divided into quantitative and qualitative types (see Fi-
gure 2-9). Quantitative process factors include the input factor volumes needed to man-
ufacture a product, which depend on the product characteristics and manufacturing 
technology. Quantitative process factors have a direct impact on total production and 
logistics costs, while the qualitative process factors have an indirect impact on costs 
and reveal further location-related requirements, such as a guarantee of uninterrupted 
supplies or legal safeguards. 
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Figure 2-9: Location and process factors (Abele & Meyer et al. 2008) 

2.4.3 Location Criteria 

Although some typical examples are given, process factors to be considered in practice 
should be selected according to the requirements of each specific company and specific 
production (VDI-Fachausschuss Fabrikplanung 2012). The location criteria is created 
for a clear interaction between location factors and process factors (see Figure 2-10). 
For example, labor costs will be the dominant criterion if the products are simple, stand-
ard and require labor-intensive manufacturing. However, this is not the case for high-
tech products with numerous variants and capital-intensive production equipment. The 
attraction rate of a particular location for production needs to be evaluated by the re-
quirements for a specific manufacturing step and of a specific product (Abele & Meyer 
et al. 2008). 
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Figure 2-10: Correlation between location factors and process factors (VDI-Fachausschuss 
Fabrikplanung 2012) 

2.5 Implementation Strategy 
Wildemann (1987) describes an implementation strategy as a specifically defined pro-
cedure. Temporal aspects are especially crucial. An implementation strategy includes 
concrete implementation times of the individual technologies, which aims to determine 
the optimal adjustment path from the actual to the target state that proceeds within the 
limits of the scope of action. The scope of action is specified by temporal, personnel, 
organizational and financial restrictions. 

Investment in advanced manufacturing technologies (AMT) remains a promising but 
potentially risky venture. Many firms that have adopted these new technologies have 
not been able to reap all the expected benefits. Since the technical abilities of the AMTs 
are relatively well-proven, there is a growing belief that managerial issues, from plan-
ning to implementation, present the major barrier to employing these technologies ef-
fectively (Chen & Small 1994).  

Stark (2016) proposes three different strategies from the introduction of Product Lifecy-
cle Management (PLM) methods in the field of production (see Figure 2-11). Path 1 
shows that the integration of the PLM methods takes place via continuous improvement, 
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which are already used piece by piece in production during their implementation. This 
can ensure lasting progress. The method of path 2 is implemented away from the actual 
production process, because everything changed in year n. The integration of the meth-
ods occurs in several phases with path 3. Each method is implemented sequentially 
one after the other, away from the actual production process as well. In contrast to path 
2, the introduction in actual production takes place in several phases. 

 

Figure 2-11: PLM implementation strategy (Stark 2016) 

The implementation strategy of smart automation is conceptually similar to the PLM 
implementation strategy. 

2.6 Simulation 
Simulation modeling is one of the most powerful techniques for researching large, com-
plex systems (Banks 1998). A model is a kind of description that abstracts and simplifies 
the essential parts of the actual system according to the purpose of the research and is 
an objective reflection of the system. It is used to describe the most basic structure, 
shape and information transmission of the system. It is an objective portrayal or micro-
cosm of the system. 

Simulation is the process of using the model to reproduce the procedure of the real 
system and through the experiment of the simulation model to research the existing as 
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well as designing system. Thus, a simulation is not a direct experiment on the system, 
but an indirect experimental analysis of the system by utilizing the model. According to 
VDI-3633, the procedure of simulation is divided into three phases: preparation, execu-
tion and evaluation respectively (see Figure 2-12). 

 

Figure 2-12: Procedure of simulation, according to VDI-3633 Part 1 (2014) 

Modeling is the process of producing a model (Maria 1997). A model simplifies the sys-
tem but still maintains the key performance of the system. One purpose of a model is 
to enable the analyst to predict the influence of changes to the system. On the one 
hand, a model should be a close approximation to the real system and incorporate most 
of its salient features. On the other hand, it should not be too complex to be understood 
and experimented with. Usually, it is impossible or too impractical to operate what it 
represents in the system. Nevertheless, the operation of the model can be studied, and 
hence, properties concerning the behavior of the actual system or its subsystem can be 
inferred. In this sense, the simulation is a useful tool to evaluate the performance of a 
system under variable configurations of interest and over long periods of real time (see 
Figure 2-13).  
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Figure 2-13: Simulation study schematic (Maria 1997) 

2.6.1 Hybrid Modeling and Simulation 

Borshchev & Filippov (2004)  mention that, three different modeling methods have pre-
vailed overall (see Figure 2-14). The degree of abstraction and the way in which the 
system is significantly different in each method. Hybrid modeling is intended to combine 
the different aspects of the methods to simulate different levels. Thus, complicated 
workarounds should be avoided, and the significance of a simulation model should be 
improved. However, as a rule, a larger modeling effort is required. The following are the 
three most common modeling methods presented: system dynamics, discrete event 
and agent based. Hybrid models are defined as consisting of at least two different mod-
eling techniques. 
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Figure 2-14: Overview of modeling methods (Borshchev & Filippov 2004) 

System Dynamics Simulation 

System dynamics (SD) was developed in 1958 by Forrester (1958) and is the oldest of 
the three modeling techniques. Instead of observing a system as a large number of 
individual objects, these are summarized in so-called stocks. This could be, as an ex-
ample, accumulations of material, knowledge or money. The stocks interact with each 
other via flows, which are mathematically defined by means of auxiliary variables, which 
create feedback loops that either boost or weaken a flow. System dynamics has the 
highest level of abstraction and is primarily used to analyze the relationships between 
strategic variables (Sterman 2001).  

Discrete Event Simulation 

In contrast to system dynamics, discrete event simulation (DES) considers the objects 
of a system individually rather than as a whole. Each object, such as machines and 
products, has a state that changes by an event at a discrete time and in turn causes a 
new event. Accordingly, in a Discrete Event Simulation all scheduled events are stored 
in an event list with their point-in-times. Newly added events are then dynamically added 
to the list. Since the execution of an event can influence the point-in-time and thus the 
order in the list, it will be updated after each event (see Figure 2-15). In other words, 
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the time, which simulated by an arithmetic operation in the DES, varies depending on 
the events (Bracht & Geckler et al. 2011). Source, delay, queue, decision and sink are 
important elements of the DES, this method is particularly well appropriate to production 
processes, in which the product gradually passes through individual stations (Hedtstück 
2013).  

 

Figure 2-15: Discrete event simulation (Bracht & Geckler et al. 2011; Borshchev & Filippov 
2004)  

Agent Based Simulation 

Agent Based Simulation (ABS) is the latest of the three modeling techniques. It has only 
been utilized by companies for modeling for about 15 years. The basic idea is that the 
system behavior is unknown, but the behavior of each element can be described. This 
happens with so-called statecharts. These describe the interaction of the agent with 
other agents or their environment. Transitions change the state or behavior of the agent. 
Instead of modeling each agent individually, multiple instances are created by the same 
agent.  
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2.6.2 Modular Simulation 

The term modular simulation generally refers to the utilization of interchangeable com-
ponents or modules in a model  (Muetzelfeldt & Massheder 2003). The component 
could be a single function, but it is usually a large component, for example a plant sub-
model or a soil water submodel. Its advantages include that it would enable the model-
ing process in terms of model construction, testing and reusability of components. The 
purest form is plug and play, where the interface between the module and the main 
model is predefined, for example, pins on an integrated circuit chip. What the modeler 
needs to do is load the module, which automatically becomes a part of the main model. 

Kübler & Schiehlen (2000) illustrate that the advantages of the modular modeling are 
the independent and parallel modeling of subsystems on the one hand, and the easy 
exchange of results in modules to the use of different software for each module on the 
other hand. In other words, the exchange and modification of a subsystem is independ-
ent of any other component of the main system. Each engineering discipline has differ-
ent independent software tools and the internal dynamics of the subsystem could be 
hidden during the simulation of the global system. For an overall simulation, all subsys-
tems must be coupled to achieve global system behavior. A subsystem could be 
achieved on several different levels of model description, as an example, a mechatronic 
systems has been observed. 

2.6.3 Metamodeling 

Metamodeling is a systematic modeling technique that is an abstract at a high level of 
the system, which is an approach to reducing the complexity of the simulation model 
and maintaining the validation of the simulation results. A metamodel is a definition of 
a model about the model, which is a description of building model, semantics of the 
model and integration and interoperation between models. Metamodels are more ab-
stract than general models, which make them a great performance of solving problems 
in model integration (Mao & Liu et al. 2002). A model is an abstract description of real-
world systems and processes, furthermore, a metamodel is an abstract description of 
the model. Hence, the concepts used for modeling can similarly be used for metamodel 
modeling.  

Höfferer (2007) introduced a metamodeling hierarchy in the year 2007 (see Figure 
2-16). It can be seen that subjects under consideration are represented by models. 
These are created with help of a modeling language (Favre 2005), that is described by 
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a metamodel which means that a model conforms to a metamodel. Then, metamodels 
themselves can be created using another modeling language that is described by a 
meta-metamodel. This chain of metamodels theoretically can be carried on to the n-th 
level. However, the process of creating metamodels is usually stopped at the meta-
metamodel layer due to the description of the meta-metamodeling language is reflexive 
(Höfferer 2007).  

 

Figure 2-16: Organization of metamodeling hierarchy (Höfferer 2007) 

2.6.4 Randomness in Simulations 

Simulation models are either deterministic or stochastic. In deterministic models, the 
output is "determined" as soon as the input variables and relationships are read into the 
model and the manipulated variables are defined. The execution of the sequences has 
no variance. However, many systems must be modeled in such a way that they have 
at least individual random components. For example, most queueing and inventory sys-
tems are modelled stochastically (Law 2014).  

The consideration of stochastic components requires knowledge about the type of ran-
dom distribution. For successful modeling, the correct choice of distribution function is 
extremely important. Correctness is defined by the real behavior of the component or 
system (Johnson 1987). For this purpose, the Kruskal-Willis test or tests for measuring 
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the goodness-of-fit can be used. More details on the concrete application of the two 
tests are described by Law (2014) and are not further relevant in this work. 

2.7 Uncertainty and Robustness 
Uncertainty has been considered extensively in the context of environmental and hy-
drological models for many years. In this work, the “VUCA” (Volatility, Uncertainty, Com-
plexity and Ambiguity) will be discussed, which is growing in prevalence in the business 
literature, and originates from US Military College teachings (Bennett & Lemoine 2014). 
Volatility can be considered as either the deviation from the expected or predicted 
mean, and a representation of heteroscedasticity, or the occurrence of extreme events/ 
discontinuities in a future projection (Modarres & Ouarda 2013; Ahmed & Diffenbaugh 
et al. 2009; Van Notten & Sleegers et al. 2005). Uncertainty, which is closely related to 
the first condition of the definition of deep uncertainty, considers the unknown range of 
parametric inputs (Refsgaard & van der Sluijs et al. 2007; Willows & Reynard et al. 
2003; Walker & Harremoës et al. 2003). Complexity arises when links between an in-
tervention and an impact are difficult to identify and quantify. High degrees of complexity 
are common in environmental management and decision-making. Lastly, ambiguity in 
environmental management can be significant when different stakeholders hold differ-
ing beliefs on the level of uncertainty present, the causal relationships and also the 
preference of management solutions (Maier & Guillaume et al. 2016; Dewulf & Craps 
et al. 2005). 

The meaning of the term robustness is used differently in literature. However, there is 
a common idea of robustness which builds the basis for most of the existing definitions: 
robustness describes the stability against different varying conditions (Stricker & Lanza 
2014).  
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Figure 2-17: Description of robustness according to Stricker & Lanza (2014) 

As Figure 2-17 shows, if a possible solution x to a problem leads to a stable target 
function value L(x,u) under varying conditions ∆u, it is a robust solution. Different au-
thors have different ideas on the demanded stability of the target function value and 
consider various kinds and scopes of influencing conditions. The influencing conditions 
∆u have significant effects on the deviation of the target function value L(x,u). The more 
different conditions are considered, the bigger the deviation in the target function value 
will be. The accepted thresholds in deviation of the target function depend on the au-
thor’s understanding of stability. Therefore, especially the specific understanding of sta-
bility is decisive for a categorization approach of the different ideas of robustness. For 
all approaches the absolute values of the target value function for different influencing 
conditions and/or the deviation of the target value function within all regarded influenc-
ing conditions is decisive (Stricker & Lanza 2014). 

Thus, the robustness refers to the ability of a system to withstand changes without 
adapting its initially stable structure. In this work, it means that the optimal implementa-
tion strategy does not change if input data fluctuates. 
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3 State of the Art 
This section presents a review of existing literature on the topics of location factors, 
smart automation and KPI analysis for deriving a proper implementation strategy. First, 
the requirements of the methodology are introduced (Section 3.1). Afterwards, the ap-
proaches for the assessment of Lean methods (Section 3.2), analysis of smart automa-
tion (Section 3.3), role of location factors (Section 3.4) and evaluation of operation pro-
duction system (Section 3.5) are accordingly reviewed. The research deficit (Section 
3.6) is summarized at the end of this section.  

3.1 Requirements of the Methodology 
After the knowledge of basics (Section 2), for the formalized research questions and 
target (Section 1.2), the required methodology can be characterized as follows. 

� to take into account the company-specific initial situation such as the relevant 
location factors and smart automation as well as KPIs 

� to qualitatively and quantitatively calculate the interdependencies among location 
factors, smart automation and KPIs 

� to derive an implementation strategy of smart automation technologies 

Above three requirements are taken as the criteria for evaluating the existing literatures 
which have been researched from Section 3.2 to 3.5.  

As one of hypotheses, smart automation enhances the Lean Production, it is therefore 
important to investigate whether there are the approaches for assessment of Lean 
methods, which considered integration of smart automation technologies to Lean pro-
duction, especially took influence factors such as location factors and KPIs into account 
as well (Section 3.2). In order to comprehensively define the potential of smart automa-
tion, the approaches for the analysis of smart automation should clearly reviewed, par-
ticularly in terms of interdependence (Section 3.3). Since location factors have different 
impacts on transformation of smart automation, it is required to evaluate the approaches 
for role of location factors (Section 3.4). In order to quantify benefits of transformation 
of smart automation, it is necessary to investigate whether the methods are existed to 
evaluate the effect of implementing smart automation from perspective of production 
system (Section 3.5). 
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3.2 Approaches for the Assessment of Lean Methods 
There are manifold studies dealing with the assessment of Lean methods. The ap-
proaches can be classified according to the degree of implementation based on their 
potential, as well as the effects of Lean methods. In both categories, qualitative ap-
proaches based on surveys and expert estimates, quantitative approaches and graph-
ical approaches can be distinguished. Moreover, there are some recent approaches 
dealing with enhancing Lean Production through CPPS methods. 

Qualitative approaches to assess the degree of conversion and the potential of Lean 
methods are often based on questionnaires and linguistic assessments (Klemke & 
Schulze et al. 2009; Nightingale & Mize 2002; Meier & Forrester 2002; Vinodh & Chintha 
2011; Bracci & Maran 2013; Chiarini 2014). Quantitative approaches use mostly defined 
metrics (Srinivasaraghavan & Allada 2006; Bayou & Korvin 2008). Qualitative ap-
proaches to assess the impact of the use of Lean methods are largely based on defined 
indicators such as positive or negative change (Manotas & Rivera 2007; Aull 2013). In 
the area of the quantitative assessment, there are approaches that take into account 
operational and financial effects as well as cost-time profiles (Maskell & Baggaley 2004; 
Rivera 2006; Abdulmalek & Rajgopal 2007; Rivera & Chen 2007; Anand & Kodali 2008; 
Wan & Chen 2009; Bauer & Horváth 2015; Peter 2009; Al-Aomar 2011; Gupta & 
Acharya et al. 2013; Jondral 2013; Valero & Barceló et al. 2011; Arbos & Santos et al. 
2011). 

The approaches to enhance Lean Production through CPPS methods are often focused 
on data-driven improvements such as supporting the maintenance strategy based on a 
combination of various data-sets, optimizing machine scheduling based on emergent 
data using RFID and improving the quality of information used for scheduling.  An au-
tomated process planner, however, develops service innovations through digitalization 
and CPS, as well as assists operation processes of employees’ through smart tablets 
(Monostori 2015; Reinhart & Irrenhauser et al. 2011; Nonaka & Erdős et al. 2013; 
Herterich & Uebernickel et al. 2015; Lage & Filho 2010; Lappe & Veigt et al. 2014). 
Moreover, Meudt & Metternich et al. (2017) have developed a method to visualize the 
potential of CPPS in Lean Production Systems based on value stream analysis. Wagner 
& Herrmann et al. (2017) qualitatively model the effects of different CPPS concepts on 
various Lean methods. Liebrecht & Bürgin et al. (2016) at wbk suggest an approach for 
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a combined multi-criteria evaluation of CPPS in Lean Production Systems based on a 
balanced scorecard. 

Sanders & Subramanian et al. (2017) focused on studying the possible impacts of In-
dustry 4.0 on Lean management (LM) tools which play a vital role to foster quality and 
reliability of products and services that are delivered to the customers. The LM tools 
impacted by the advent of Industry 4.0 and assisting in successful implementation of 
future smart factories will be investigated in particular focus. An interaction plot matrix 
is established to quantify the influence of LM tools on Industry 4.0. Interaction between 
these Industry 4.0 design principles and LM tools reveal several opportunities for 
achieving synergies, thus leading to successful implementation of future interconnected 
smart factories. Overall, the work serves as a guideline for industries that are under the 
transformation phase towards future smart factory and offers space for further scientific 
discussion. 

The existing approaches explained individual applications of CPPS concepts in Lean 
Production and improved Lean Production by increased information and communica-
tion technologies (ICT). However, a systematic method for the implementation of CPPS 
concepts into Lean Production, considering the influencing location factors, is still miss-
ing.  

3.3 Approaches for the Analysis of Smart Automation 
Since smart automation is part of CPPS field, the relevant research on CPPS are fo-
cused on. The following will review the existing approaches CPPS application fields, 
corresponding maturity levels in these application fields, which form CPPS maturity 
models, and approaches for interdependency research as well as approaches to design 
implementation roadmaps based on the assessment results. 

3.3.1 Industry 4.0 Readiness Model 

The Industry Readiness Model established by Lichtblau & Stich et al. (2015) accom-
plished the evaluation of the maturity level of Industry 4.0 as a basic backup for self-
assessment and comparison of companies. They are able to assess their Industry 4.0 
readiness through a series of questions about the state of implementation of Industry 
4.0. The model is divided into six dimensions: strategy and organization, smart factory, 
smart operations, smart products, data-driven services and employees. Each dimen-
sion focuses on detailed questions. To classify Industry 4.0 readiness, a six-step model 
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is developed from these six dimensions. Level 0 stands for outsider and level 5 stands 
for top performer. Accordingly, companies were divided into three groups, namely new-
comers, learners and leaders. Beside of defining readiness levels, the model also pro-
vides possible obstacles to reaching the next higher level. The consideration of simula-
tion is, regrettably, insufficient. 

Monostori & Kádár et al. (2016) established a CPS maturity model which has been 
divided into five levels: setting basics, creating transparency, increasing understanding, 
improving decision-making and self-optimizing. Particular reflections in practice are 
meanwhile mentioned for every single level in this model. At the first level, basic organ-
izational and structural conditions for the implementation is established. The represen-
tation of the four higher levels is the maturity of the realizations regarding the infor-
mation and knowledge processing and the cooperation and collaboration aspects. In-
formation generation represents the need for real-time data availability for all related 
CPS activities. The existing aggregation instruments are reflected by information pro-
cessing, which aims to deduce new knowledge. On the two highest levels, namely in-
formation linking and interacting CPS, collaboration-based adaptation of CPS pro-
cesses is emphasized. The final level is the most sophisticated, which can only be 
achieved by independent problem solving capabilities of collaborative CPS. 

Schuh & Anderl et al. (2017) generated the acatech Industry 4.0 Maturity Index, which 
separates a company’s structure into four structural areas: resources, information sys-
tems, culture and organizational structure. They identified two guiding principles along 
with the essential capabilities for each structural area. These capabilities are designed 
to achieve various stages of development and provide manufacturing companies with 
the foundation to transform themselves into agile organizations. Additionally, six value-
based development stages – computerization, connectivity, visibility, transparency, pre-
dictive capacity and adaptability – and the achievement of each stage – provide addi-
tional benefits. Schuh & Anderl et al. (2017) also describe the potential development 
goals and key organizational capabilities required to achieve these levels in different 
functional areas (development, production, logistics, services, marketing and sales) of 
the company. Furthermore, the capabilities outlined in the model are consistent with the 
company’s challenges and current activities. The application of the model is also pre-
sented through actual scenarios. 

Other maturity model and assessment models have been also summarized. For in-
stance, Toolbox Industry 4.0 was developed by VDMA in order to support companies 
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in generating new ideas in the process of Industry 4.0 implementation (Wang & Wang 
et al. 2016). The toolbox defines different fields of application of I4.0. Additionally, the 
RAMI 4.0 provided a reference framework for digitalization and introduced the most 
important aspects of I4.0 on a three-dimensional map (Platform Industry 4.0 and ZVEI). 
Lee & Bagheri et al. (2015) define the 5C architecture for the realization of Cyber-Phys-
ical Systems (CPS) which serves as a guideline for implementations and realizations of 
CPS. Furthermore, a generic system architecture was proposed to feature the strengths 
of the three isolated proposals, such as cross-enterprise data sharing, service orches-
tration, and real-time capabilities, and can be applied to a wide field of applications 
(Trunzer & Calà et al. 2019). 

3.3.2 Interdependency Research 

Brettel & Friederichsen et al. (2014) described the developments of Industry 4.0 within 
the literature and reviews the associated research streams. Eight scientific literatures 
with regards to the following research fields were analyzed: individualized production, 
end-to-end engineering in a virtual process chain and production networks. Cluster 
analysis was employed to assign sub-topics into the respective research field. Further-
more, to assess the practical implications, face-to-face interviews were conducted with 
managers from the industry as well as from the consulting business using a structured 
interview guideline. The results reveal reasons for the adaption and refusal of Industry 
4.0 practices from a managerial point of view. 

Kleemann & Glas (2017) addressed the actual impact of Industry 4.0 on business and 
explores the consequences and potentials of Industry 4.0 for the procurement, supply 
and distribution management functions. A blend of literature-based deductions and re-
sults from a qualitative study were used to conduct the research. The sample comprises 
seven industries and the qualitative method is employed (telephone and face-to-face 
interviews). The empirical findings indicate that technologies of Industry 4.0 legitimate 
the next level of maturity in procurement, and support the necessity and existence of 
the maturity level. 

Ciffolilli & Muscio (2018) investigated the comparative advantages of countries and re-
gions in the enabling technologies of Industry 4.0, using data from European participa-
tion in collaborative research projects promoted by the 7th Framework Program for re-
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search and innovation. Data were regionalized and categorized on the basis of an orig-
inal taxonomy of technologies developed with the support of a team of European ex-
perts in each technological domain. 

3.3.3 Implementation Strategy 

In current research, most authors pay attention to the implementation of I4.0 technolo-
gies on the benefits of value added chain (Bauernhansl 2017), paradigms such as the 
proper integration of employees (Deuse & Weisner et al. 2015), the implementation of 
a single technology (Ma & Xu 2017) and the design of the system infrastructure (Wang 
& Wan et al. 2016). Unfortunately, holistic research does not exist, because the intro-
duction of I4.0 presents specific challenges such as lacking of knowledge about cus-
tomer demand for new products and business models, difficulties to recognize the start-
ing point and the milestones of the planning horizon, requirements for the prioritization 
and scheduling of new product and process projects, allocation of limited resources to 
the projects and cooperation with reliable partners, and lacking of communication about 
the benefits of Industry 4.0 transformation projects via companies (Vishnevskiy & Ka-
rasev et al. (2016) (Dombrowski & Richter et al. 2015). 

Thus, in the research of (Liebrecht & Schaumann et al. 2018), various Industry 4.0 
methods were analyzed and evaluated for a better selection of those most suitable for 
a company, especially for small- and medium-sized companies. A structure model for 
classification and description of Industry 4.0 methods was first established as a foun-
dation of the procedure, containing several aspects and components such as brief de-
scription, improvement targets, risks, and internal maturity level. The subsequence in-
teraction analysis of Industry 4.0 methods was also conducted and evaluated, after 
which the final implementation roadmap can be derived to support strategic decision for 
companies. 

3.4 Approaches for Role of Location Factors on Production 
Multiple factors influence which location is best for producing a specific product. There 
is a large body of literature that has discussed location factors. Hansmann (1974) con-
sidered location factors in his work “Decision models for the location planning of indus-
trial companies.” He divided influencing factors into two categories: quantitative factors 
and qualitative factors. Quantitative factors are defined as measurable factors like 
wages and material costs, exchange rates, quantities, and delivery times (Krebs 2011). 
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Qualitative factors are often evaluated on a scale from low to high (Brieke 2009). Polit-
ical stability and educational standards are both examples of qualitative factors. 

Dunning (1980) has developed a theory in which international production is divided into 
six types: resource-based production, import substitution manufacturing, export plat-
form manufacturing, trade and distribution, ancillary services, and other miscellaneous 
production methods. Each type of international production is influenced by ownership 
advantages, location advantages, and internalization advantages. 

Blair & Premus (1987) reviewed the previous literature on location advantages and con-
cluded that, until the 1970’s, traditional location factors, including markets, labor, raw 
materials, and transportation, were seen as the dominant ones. Later, the dominance 
of these traditional factors decreased slightly, though it still remained high. Other fac-
tors, for example, productivity, education, and taxes also influence location decisions 
for industrial companies. 

Badri & Davis et al. (1995) presented an industrial location analysis in which they de-
veloped three models that supplement or complement traditional approaches of indus-
trial location analysis. The models used discriminant analysis in an attempt to reveal 
the nature of the differences between manufacturers locating in a particular industrial 
factory and manufacturers who have considered locating in that factory but ultimately 
did not. 

Holl (2004) analyzed the impact of road infrastructure on the location of new manufac-
turing establishments. It is found out that road infrastructure (in this research, specifi-
cally motorways) affect the spatial distribution of manufacturing establishments, with 
different levels of impact across sectors and space. Cities near new infrastructure tend 
to have more benefits and be more attractive for new manufacturing plants, even re-
mote from major population and industrial centers.  

Badri (2007) has developed a way to select critical factors with the participation of 2,125 
industrial firms from 23 countries. He has suggested 10 general critical factors that can 
influence location decisions: transportation, labor, raw materials, markets, industrial 
sites, utilities, government attitude, tax structure, climate, and community. He has also 
suggested four additional factors, namely political situation, global competition, govern-
mental regulation, and economic stability that must be considered when choosing an 
international location. 
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Deichmann & Lall et al. (2008) have investigated evidence indicating that location fac-
tors have an impact on decision-making regarding industrial locations in developing 
countries. This evidence implies that the benefits of agglomeration, market access, and 
infrastructure have stronger effects on location decisions in developing countries than 
other factors, such as wages and the cost of capital.  

The handbook of Abele (2008) focused on the three industries automotive engineering, 
machine tool manufacturing, and electronics. It looked at the footprint and corporate 
history of key players, market characteristics, product and production technologies, or 
cost structure to identify optimal global networks throughout the manufacturing industry. 
It is important to distinguish between location criteria and the process. 

Weiler (2010) has determined nine location-specific factors that have proven to be im-
portant for global production, which include labor costs; production equipment and tech-
nologies; personnel qualification; infrastructure of logistics; duties and taxes; cultural 
factors; worldwide coordination; legal protection, piracy and know-how outflow, and dy-
namics and uncertainties. 

Feldmann & Olhager (2013) examined the relationship between site competence bun-
dles and site location. Their research studied the interrelationships among the strategic 
reasons behind site location choices. They executed a factor analysis utilizing the prin-
cipal component method and a varimax rotation. They concluded that there are three 
factors of importance: low costs, markets, and knowledge. Low costs are a result of 
access to inexpensive energy, proximity to raw materials, and proximity to low-cost la-
bor. The market factor includes proximity to markets and proximity to transport hubs. 
Knowledge can be evaluated by examining proximity to education facilities and the so-
cio-political climate. 

Feldmann & Olhager (2013) and Ferdows (1997) researched the plant roles based on 
factor analysis and cluster analysis, considering three perspectives: site competence, 
correlations between site competence and location factors, and the impact on opera-
tional performance. They concluded that site competences can be grouped into three 
bundles: production-related, supply chain-related and development-related. Plants can 
be classified into three corresponding types, namely plants with only production-related 
competences, the ones with competences concerning both production and supply 
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chain, and the ones that possess all kinds of competences. Furthermore, the research-
ers found that the level of site competence has no significant influence on site location 
decision, but it does have an effect on the operational performance. 

Kalantari (2013) outlined location factors that can influence facility location selection for 
global manufacturing. He cited costs, labor characteristics, infrastructure, other manu-
facturing locations, regulations, economic factors, quality of life, political factors, and 
social factors as variables that may have an impact on decision-making.  

Ketokivi & Turkulainen et al. (2017) examined 35 assembly location decision cases, 
especially the ones to locate final assembly purposely in a high-cost country (high Gross 
Domestic Product (GDP) per capita), from both enterprise strategy and economic policy 
perspectives. The study examined the linkages between production and other func-
tions, such as product development, market and supply chain, using three key concepts 
from theories of organization design: formalization, specificity and coupling.  

Johansson & Olhager (2018) defined a research model and applied a theory-testing 
approach in the study, testing how the three major location factors (cost, market, and 
development competence) related to offshoring and backshoring based on confirmatory 
factor analysis and regression analyses. The results have verified that these three major 
location factors are relevant for both manufacturing offshoring and backshoring. The 
results also indicated significant differences in how these factors influence relocation 
decisions for offshoring and backshoring as well as how they affect performance. 

3.5 Approaches for Evaluation of Operations of Production Sys-
tem 

As far as the performance evaluation of production lines is concerned, many different 
techniques have been invoked, including simulation, Markov chain analysis, approxi-
mate analytical methods, and decomposition methods, among others (Liberopoulos 
2018).  

Conventional performance evaluation systems are based on accounting standards, and 
characterize information solely on financial terms. However, accounting-based meas-
urement systems have several limitations: they do not allow managers to monitor, con-
trol, and improve manufacturing systems continuously. For example, conventional 
measurement systems present information on financial reports; such data have a con-
siderable time lag and are usually outdated. Moreover, such reports only show previous 
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data and may mislead managers to pursue temporary solutions and ignore long-term 
improvement (Ghalayini & Noble et al. 1997; Liu 2009; Önüt & Kara et al. 2009). Leong 
& Snyder et al. (1990) surveyed the literature and generated a composite model for 
manufacturing performance measurement. This model includes five dimensions: qual-
ity, delivery, cost, flexibility, and innovativeness and all dimensions decompose into 37 
detailed criteria. Ghalayini & Noble et al. (1997) presented an integrated dynamic per-
formance measurement system that provides an overall view of company performance 
that helps managers identify areas in their organizations that need improvement. This 
measurement system has eight criteria: customer satisfaction, integration with custom-
ers, quality, delivery, manufacturing cycle time, cost of non-value-added activities, pro-
cess technology, and education and training. Compared with the model developed by 
Leong & Snyder et al. (1990), the model created by Ghalayini & Noble et al. (1997) 
offers broader dimensions concerned with customer relationships and human resource 
issues.  

An effective manufacturing performance measurement system should be both explicit 
and objective, and provide a means for continuously improving a system. Cost, delivery, 
flexibility, and quality are the most common dimensions utilized in performance meas-
urement models; each dimension is composed of several detailed criteria. In addition 
to these four dimensions, customer satisfaction, technology, innovativeness, productiv-
ity, inventory, safety and environment, employee morale, and education and training 
have been considered by different studies addressing specific objectives (Abdel
Maksoud 2004; Ahmad & Dhafr 2002; Chenhall 1996; Ertuğrul & Karakaşoğlu 2009; 
Lee & Chen et al. 2008; Yurdakul 2002).  

Recently, a literature review was carried out in an attempt to determine indicators that 
are most commonly used. The initial KPIs are constructed using the triple bottom line 
of sustainability consisting of environmental, economic, and social factors (Amrina & 
Vilsi 2014). Additionally, an optimization problem for KPI selection was proposed based 
on the KPI relationships. The constraints of the optimization problem ensured a holistic 
view on the production system’s performance. The determined KPI system was trans-
ferred into a quantitative measurement of robustness. From the robustness considera-
tions, various possible improvement actions have been derived and evaluated (Stricker 
2016). 
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3.6 Research Deficit  
As the previous sections on the current state of research have shown, effectively im-
plementing smart automation technologies into Lean Production is a strategically sig-
nificant challenge for companies because different factors should be taken into account 
in generating the road maps for smart automation transformation. So far, the investi-
gated research approaches only addressed the increase in efficiency by Lean methods 
and the fields and maturity level of CPPS application. They do not sufficiently consider 
the influence of location factors for the implementation of smart automation into Lean 
Production. Furthermore, it clearly indicates the lack of approach that analyzes the in-
terdependencies of location factors and smart automation technologies as well as KPIs. 
In addition, up to now, a methodology to develop an implementation strategy of smart 
automation technologies for enhancing Lean Production is still missing (see Figure 3-1). 

Therefore, the method to be developed has to take into account the company-specific 
initial situation such as the relevant location factors and KPIs. Additionally, it should 
qualitatively and quantitatively calculate the interdependencies among location factors, 
smart automation and KPIs. In this context, an implementation strategy of smart auto-
mation with in-depth analysis for enhancing Lean Production and improving key poten-
tials would be pioneering for academic research and industrial companies to be well 
prepared in a dynamic corporate environment. 
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Figure 3-1: State of the art of smart automation Implementation Strategy 
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4 Methodology 
Emerging markets are the primary source of growth in the global economy. Economists 
expect about 70% of the growth in the world economy over the next few years to come 
from emerging markets. China, as an example of emerging markets, spent more than 
$279 billion on research and development, constituting the second-largest investment 
by any single country in 2017. New technologies are creating investment opportunities 
in emerging markets, and fostering business growth by such as reducing production 
costs and creating economics of scale (Shankar & Narang 2020). 

Essentially the goal is to establish a methodology for developing the regionalized im-
plementation strategy of smart automation within assembly systems in China. The mo-
tivated and research leading question in the area of smart automation (see Section 1.2) 
and the analyzed research deficit (see Section 3.6) delivered the framework for the 
methodology which is presented in this work. Thus far, the methodology to analyze and 
model the interdependencies among location factors, smart automation, and KPIs is 
lacking. Furthermore, a method to derive the implementation strategy of smart automa-
tion for a specific assembly system does not exist. Based on this, in order to realize the 
research target, the developed methodology consists of four main elements, which are 
introduced in Section 4.1. Subsequently, the procedure of development of methodology 
is described from Section 4.2 to 4.5. 

4.1 Overview of Approach 
The approach of this work is composed of four parts (see Figure 4-1). In the first part, 
the specific location factors, smart automation technologies and KPIs, which are im-
portant for China as dynamically developing country, are identified and compiled. Uti-
lizing this information, in the second part, an analysis is defined determining the inter-
dependencies among location factors, smart automation and KPIs. Furthermore, in the 
third part, the qualitative and quantitative models are established to present the inter-
dependencies based on the hybrid modeling. Considering the outcomes so far, part four 
provides a procedure to derive an implementation strategy for smart automation for 
specific assembly systems. Meanwhile, it allows an analysis of the robustness of the 
aggregate metric of the evaluated simulations. 
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Figure 4-1: Overview of approach 

4.2 Identification of Regionalized Catalogs of Influence Factors 
This section presents a detailed description of the author’s own research approach re-
garding the identification of the regionalized catalogs, which consists mainly of three 
parts. The first part is related to a research on the analysis of the manufacturing location 
China. In the second part of the approach, a catalog of smart automation technologies 
is generated. Lastly, the important KPIs are identified according to their significance for 
China. The output are the integrated catalogs regarding location factors, smart automa-
tion technologies and KPIs, which are the core input for further analysis of interdepend-
encies in the next section. 
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4.2.1 Identification of the Catalog of Location Factors 

The aim is the identification of a set of relevant location factors, which play an important 
role when making a decision to locate a manufacturing facility or technologies invest-
ment in China. More precisely, the location factors can strongly influence the smart 
automation technologies which affect the performance of assembly system. Therefore, 
the focus of this research is on the different perspectives on relevant location factors 
for China, as an example of a highly dynamic emerging country.  

The proposed approach consists of four steps (see Figure 4-2). First, the scope of rel-
evant location factors is outlined and structured based on existing literature. Second, a 
questionnaire survey is carried out to study highly important location factors in China. 
Subsequently, the data analytics are conducted according to the collected survey. 
Lastly, expert interviews are implemented to verify and modify the output of the previous 
three steps. As result, the examined catalog of location factors are identified. 

 

Figure 4-2: Approach for identification of location factors 

Literature review of location factors 

(Abele 2008; Lanza & Ferdows et al. 2019) have proposed a framework of location 
factors in regard to global production. In their research, influencing factors are divided 
into seven aspects: markets and market development, factor costs, logistics factors, 
cultural factors, political and governmental factors, legal factors, and risks through dy-
namics and uncertainties. Each aspect consists of several elements. For example, fac-
tor costs consist of labor costs, the costs of capital, productivity, material costs and 
energy, communication, and coordination and support efforts. Logistics variables in-
clude deliverability, beside transportation costs and inventory costs. Cultural factors in-
clude language and mentalities, educational standards, and staff turnover. Political and 
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governmental factors include taxes, governmental support, trade barriers and duties, 
non-tariff trade barriers, local content, and other regulations. Legal factors are com-
prised of the definition of legal systems, the importance of compliance, piracy, know-
how protection, patent law, and corruption. Risks through dynamics and uncertainties 
consist of the effects of exchange rate fluctuation and political and economic stability 
(see Figure 4-3). 

 

Figure 4-3: Influential location factors related to global production (Lanza & Ferdows 
et al. 2019) 

In addition, several critical influencing factors have been also indicated on the manu-
facturing industry in China in the past five years, which is based on field research re-
sults and a large amount of online survey data (CAFS1). There are nine relevant fac-
tors: material costs, cost of land, energy costs, labor costs, stuff turnover, transporta-
tion costs, capital costs, Taxes and effects of exchange rate fluctuation, respectively 
(see bold marking in Table 4-1).  

To better specify the most influential location factors, the 25 items have been de-
ployed based on above mentioned literatures (see Table 4-1).  

Table 4-1: A framework of location factors 

No. Location Factors Item 
1 Market and Market development � Market size 

� Market potential 
1Chinese Academy of Fiscal Sciences, https://www.chineseafs.org/ckynewsmgr/cnpages/cn_index.jsp 
[19.10.2020] 
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� Distance to market 
2 Factor cost � Labor costs 

� Cost of capital 
� Availability of skilled workers 
� Productivity 
� Material costs 
� Energy costs 
� Cost of land 

3 Logistics � Transportation costs 
� Inventory costs 
� Deliverability 

4 Cultural factors � Language and mentality 
� Education level 
� Staff turnover 

5 Political and governmental factors � Taxes 
� Governmental support 
� Tariff barriers – duty 
� Non-tariff barriers – local content 

6 Legal factors � Definition of legal system 
� Importance of the compliance 
� Piracy, know-how protection 

7 Risks via dynamics and  
uncertainties 

� Effects of exchange rate fluctuation 
� Political and economic stability 

*The factors marked in bold are coming from CAFS.  

Questionnaire survey of location factors 

Since the work focuses on existing plants rather than setting up a new plant, the cost 
of land has not been further considered. After the literature review of location factors, 
an online survey was designed to assess important location factors. The objective of 
the questionnaire survey was to gather information from employees in the manufactur-
ing industry. The survey targets employees located in the Yangtze River Delta, the Bei-
jing-Tianjin-Hebei area, and the Pearl River Delta, all in China. These areas were cho-
sen because the industrial situation in these three areas reflects the overall state of 
industry in the country. The wenjuanwang© platform1 was selected for conducting the 
questionnaire. The location factors are identified in this questionnaire survey.  

The structure of survey consists of two parts: the basic company information and the 
ranking of location factors. With regards to the former, the questionnaire is made by 
general questions such as the complexity of the products produced by the company, 

1Wenjuanwang platform, https://www.wenjuan.com/ [19.10.2020] 
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the level of automation of assembly and the proportion of qualified staff in company, 
etc.  

For the latter, the respondents are required to rank each detailed element of seven 
aspects of location factors, such as the three detailed elements in aspect markets and 
market development. Afterwards, the seven aspects are required to be ranked by the 
respondents, too. The scale has been described in each survey question, for example, 
score 1 is the least important and 5 is the most important (see Figure 4-4). 

 

Figure 4-4: Example questions related to location factors 

To ensure that the questionnaire is target oriented, the respondents are firstly filtered 
by the following four questions: whether the respondent works in the field of mechanical 
engineering, whether the company is located in the Heibei/Beijing-Tianjin Region, the 
Yangtze Delta region or the Pearl River Delta region, whether the company is applying 
the strategy of Industry 4.0 or a similar strategy, and whether the company conducts 
the key performance indicators. The evaluation of this questionnaire only takes into 
account those respondents who answer all four questions. If one of these four questions 



Methodology 51 
 

 

is not filled, the survey ended for the respondent and the result was automatically elim-
inated. 

Secondly, the basic information regarding the company and job of the respondents was 
collected. Additionally, the process information regarding production was collected, 
which will be used to classify the company profile later. 

Seventy-nine answers were collected and useable for further investigation. Respond-
ents were asked to answer questions by considering solely their own situations. To 
confirm the effectiveness of the designed questionnaire, its reliability and validity must 
be examined (see Appendix A1). Table 4-2 shows that Cronbach’s alpha is 0.929, which 
implies that the questionnaire survey yields reliable results. Table 4-3 indicates that the 
Kaiser-Meyer-Olkin value for this questionnaire is 0.647, which is greater than 0.6. 
Meanwhile, the value derived from Bartlet’s significance test is 0, which is less than 0.5. 
These two values indicate that the data are appropriate for use in a factor analysis, 
therefore, factor analysis is proved to be qualified. 

Table 4-2: Overview of reliability of the questionnaire 

Case Processing Summary  Reliability Statistics 
  N %  Cronbach´s Alpha N of Items 
Cases Valid 79 100.0  .929 55 
 Excluded 0 .0    
 Total 79 100.0    
*Listwise deletion based on all variables in the procedure  

 

Table 4-3: Overview of validity of the questionnaire  

KMO and Bartlett´s Test   
Kaiser-Meyer-Olkin Measure of Sampling Adequacy .647 
Bartlett´s Test of Sphericity Approx. Chi-Square 2869.328 
 df (Degree of freedom) 1431 
 Sig.(Significance) .000 

 

Since the questionnaire is integrated with content of smart automation and KPIs, the 
calculation of reliability and validity is omitted in the following Sections 4.2.2 and 4.2.3. 

Data analysis of location factors 

Data obtained from questionnaires were analyzed in Microsoft ExcelTM (see Appendix 
A2). During this step, a ranking system of all 24 location factors was created (see Table 
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4-4). It is determined by considering both the rank of the seven aspects and the rank of 
the constituent items. The final score for each item was calculated by using Formula 
4.1, since the influence of seven factors is assigned a value from 1 to 7 (1=highest 
priority to 7=lowest priority). The influence of the items comprising each factor is scored 
using a 1–10 scale (1=lowest influence to 7=highest influence).  

   Formula 4.1 

 

 means final score of each item,  means the score gained of each item in its aspect, 
 is score of corresponding aspect. 

Table 4-4: The rank of all 24 location factors  

No. Location Factors Value Remarks 
1 Market size 3.866  
2 Market potential 3.731  
3 Cost of capital 3.728 Emphasized via expert interview 
4 (Labor) Productivity 3.649 Emphasized via expert interview 
5 Labor cost 3.586 Emphasized via expert interview 
6 Distance to market 3.561  
7 Material costs 3.479 Emphasized via expert interview 
8 Energy costs 3.428 Emphasized via expert interview 
9 Availability of skilled workers 3.367 Emphasized via expert interview 
10 (Deliverability) Infrastructure 1.918  
11 Taxes 1.863 Emphasized via expert interview 
12 Inventory cost 1.859  
13 Non-tariff barriers 1.803  
14 Language and mentality 1.802  
15 Transportation cost 1.782 Emphasized via expert interview 
16 Staff turnover 1.751 Emphasized via expert interview 
17 Tariff trade barriers 1.746  
18 Governmental support 1.698  
19 Education standards 1.687  
20 Compliance 1.554  
21 Political and economic stability 1.495  
22 Patent 1.452  
23 Effects of exchange rate fluctuations 1.412  
24 Definition of legal systems 1.386  

 

Expert interviews of location factors 

Expert interviews were undertaken to help verify the top location factors obtained from 
the questionnaire survey. Experts from BSH China, Siemens (SEDL), and three other 
SMEs (Jiangmen Hunglik, Wanda Foundry Group, GHH Safety Solution) were inter-
viewed. The market related location factors have not been further considered since 



Methodology 53 
 

 

China as a whole has the same market situation. Transportation costs have been high-
lighted by experts in the area of logistics factors. Staff turnover, which poses a very 
significant challenge for the industry, was also emphasized by experts. The most im-
portant location factors identified via the questionnaire were examined once again, tak-
ing into consideration suggestions from the expert interviews. In this manner, the most 
important location factors were identified (see Table 4-5). These findings are employed 
in the following analysis of interdependencies between location factors and smart auto-
mation technologies. 

Table 4-5: Catalogue of location factors  

No. Name No. Name 
1 Labor costs 6 Transport costs 
2 Cost of capital 7 Energy costs 
3 Availability of skilled workers 8 Material costs 
4 Staff turnover 9 Labor productivity 
5 Taxes   

4.2.2 Identification of the Catalog of Smart Automation Technologies 

The steps used to identify smart automation technologies are the same as those used 
to identify location factors. A literature review, questionnaire survey, data analysis, and 
expert interviews are included (see Figure 4-5). 

 

Figure 4-5: Approach for identification of smart automation 

Literature review of smart automation 

Since smart automation is within the framework of Industry 4.0 or CPPS, the literature 
review is narrowed down from Industry 4.0 to derivation of smart automation technolo-
gies. A three step approach was applied in order to select the smart automation tech-
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nologies based on literature review (see Figure 4-6:). In the first step, Industry 4.0 tech-
nology fields were identified. Second, the generated application map of CPPS was sum-
marized based on the various exemplary Industry 4.0 use-cases from the industry. 
Third, smart automation technologies, which have also been demonstrated in the 
testbed at the GAMI1 Suzhou, were selected as representative. 

 

Figure 4-6: The three steps approach for derivation of smart automation technologies 

The classification of Industry 4.0 technology fields is selected according to (Bauer & 
Schlund et al. 2014). The reason is that the industrial domain is addressed in this study 
and, hence, the proposed classification was found to be appropriate. They identified the 
following five technology fields which are expected to be highly significant in the context 
of Industry 4.0: CPS/embedded systems, smart factory, cloud computing, robust net-
works and IT Security.  

The application fields of CPPS were derived based on the study of various exemplary 
cases from the industry, and summarized in a graphical representation. According to 
Yang & Boev et al. (2018), the application map of CPPS consists of 29 applications. 
The generated CPPS application fields are divided into five clusters – manufacturing 
process, information and computing technology, big data/ cloud, research and develop-
ment, as well as logistics and supply chain management (SCM). As logistics and supply 

1GAMI, Global Advanced Manufacturing Institute, http://www.silu.asia/index.php?siteid=2 [15.02.2021]  
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chain management are closely linked to production systems, various Industry 4.0 appli-
cations for logistics and supply chain management were also generated and depicted 
in the graphical representation below. Nevertheless, the emphasis of this work is on 
application fields related to production processes and production environments. There-
fore, the generated Industry 4.0 applications for logistics and supply chain management 
will not be further taken into consideration.  

The graph below provides a complete overview of the generated CPPS application 
fields assigned to each cluster, together with Industry 4.0 applications for logistics and 
supply chain management (see Figure 4-7). The description can be found in Appendix 
A3. 



56 Methodology 
 

 

 

Figure 4-7: Application map of Cyber-Physical Production Systems (A_Boev 2017) 
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Smart automation technologies in the testbed 

Ten application fields of CPPS have been selected for deriving smart automation tech-
nologies, namely Plug-and-Work (i.e. Pick-by-Light, Smart gloves), Real-time data 
based quality management (i.e. Wireless nut runner), Virtualization (i.e. Augmented re-
ality/Virtual reality), Human machine interaction (i.e. Human Machine Interface), Inte-
gration (vertical/horizontal, i.e. Workplace carrier with RFID tags, QR-Code, ) Machine 
to Machine (i.e. Automatic torque adjustment, Intelligent screwdriver), Intelligent 
transport (i.e. Automatic Guided Vehicle), Predictive maintenance, Cloud manufactur-
ing (i.e. Cloud-technology), Automated data processing (i.e. Manufacturing Execution 
System, Digital Shopfloor Management). These application fields have also been 
demonstrated in the testbed, which consists of two innovation facilities, respectively the 
Industry 4.0 Demonstration and Innovation Center and the Artificial Intelligence Innova-
tion Factory located in GAMI Suzhou (Yang & Schrage et al. 2019). The derived 16 
smart automation technologies (see Figure 4-8) have further been classified in the six 
cluster according to Figure 2-6. Based on these smart automation technologies, a ques-
tionnaire survey was carried out. 
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Figure 4-8: Sixteen representative smart automation technologies  

Questionnaire about smart automation 

Similar as the questionnaire of location factors analysis, the questionnaire asks re-
spondents to evaluate the importance of the 16 smart automation technologies by 
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providing each with a score between 1 and 10 (1=least important to 10=most important) 
(see Figure 4-9). 

 

Figure 4-9: Question related to enabling technologies of smart automation (A_Yu 2018) 

Data analysis of smart automation 

The 79 piece of feedback were collected and analyzed. The average value of each 
smart automation technology was calculated and the results are shown in Figure 4-10. 
It is difficult to distinguish the most important smart automation technologies as there 
are only minor differences among the 16 selected. The scores of evaluation are be-
tween seven and eight. Expert interviews could be further conducted to figure out a 
catalog based on 16 smart automation technologies.  
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Figure 4-10: Evaluation of importance of smart automation technologies 

Expert interviews 

The experts for analyzing smart automation technologies were the same as for location 
factors. Similarly, the experts were required to rank 16 enabling technologies applied in 
assembly systems. Cloud technology was not further considered since it focuses on 
network level rather than assembly systems of a factory. Although predictive mainte-
nance has gained a lot of attention, it is still crucial due to the immaturity of this tech-
nology (Compare & Baraldi et al. 2020). In fact, predictive maintenance depends on 
accurate data and it needs to be empowered with data science capabilities. A false 
alarm triggered by inaccurate data can lead to incorrect actions and additional costs. 
Therefore, predictive maintenance was not taken into account in the present research. 
The virtual reality (VR) and augmented reality (AR) has been emphasized in the indus-
trial applications fora long time, however, there are many challenges yet to overcome 
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before adoption goes truly mainstream, including stability in a dynamic environment and 
latency. Thus, virtual reality (VR) and augmented reality (AR) will not be further consid-
ered either.  

By combining suggestions from experts and the results of the questionnaire survey (see 
Figure 4-10 ), the most important twelve smart automation technologies were finally 
identified as the input for the further analysis (see Table 4-6). Based on information 
collected from technology providers and the author’s own preliminary experiments, pro-
file descriptions for the technologies were generated (see Appendix A4). This will be 
used as background knowledge of research in the following Sections. 

Table 4-6: Catalogue of smart automation technologies (A_Guo 2019) 

No. Name No. Name 
T1 Pick-by-Light (PBL) T7 Automatic torque adjustment (ATA) 
T2 Human Machine Interface (HMI) T8 RFID-based C-parts management (CPM) 
T3 QR-Code (QR) T9 Workpiece carrier with RFID tags (WCR) 
T4 Intelligent screwdriver (INS) T10 Digital Shopfloor Management (DSFM) 
T5 Wireless nut runner (WN) T11 Manufacturing Execution System (MES) 
T6 Automatic Guided Vehicle (AGV) T12 Smart gloves (SG) 

 

Figure 4-11 provides an example of the technology profile regarding a Wireless nut 
runner. It consists of a picture and a brief description of the main functions and operating 
principles, as well as the category its main benefits, which help to understand the tech-
nology more clearly. Profiles of the other eleven relevant technologies are also shown 
in Appendix A4. 

 

Figure 4-11: Profile of Wireless nut runner (A_Guo 2019) 
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4.2.3 Identification of the Catalog of Key Performance Indicators 

There are four steps (see Figure 4-12) to identify the catalog of key performance indi-
cators in this Section. A KPI structure was generated from relevant production KPIs, 
which explicitly show the performance of the assembly system with an overview per-
spective, and corresponding process data, which can be directly collected from practical 
cases and be used for calculating the KPIs. In addition, related intermediate parameters 
are also integrated if needed. 

 

Figure 4-12: Approach for identification of KPIs 

Literature review of KPIs 

In the field of production, more than 150 KPIs exist. It is a challenge to select the best 
subset of KPIs in order to give a clear view of the system’s performance (Stricker 2016). 
At the same time, as few indicators as possible should be used. Considering this point, 
sixteen KPIs (see Table 4-7) have been selected based on a literature review and in-
vestigation of several industry companies like Continental, Red Lion, Volkswagen, Hui-
hong (Bauer & Hayessen 2009) (see the Appendix A5).  

Table 4-7: Sixteen selected KPIs (A_Yu 2018) 

No. Name Reasons 
1 Overall Equipment Effectiveness (OEE) Overall Equipment Effectiveness (OEE) is one 

of the most important performance measure-
ments in modern manufacturing facilities, by 
optimizing OEE, the production capacity-ty 
can be increased. 

2 Overall Labor Effectiveness (OLE) Overall Labor Effectiveness (OLE) expands 
the concept of OEE by quantifying, diagnos-
ing, and predicting not only the performance of 
the workforce and its influence on production, 
but the connection between the employees 
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and the resources needed to expand produc-
tion. 

3 Labor Productivity Labor productivity is the most commonly used 
measure which indicates the number of units 
produced relative to employee labor hours. 

4 Transparency Transparency is an essential condition for full 
availability and access to information required 
for collaboration and collective management 
decision-making. 

5 Lead time Lead time is an important factor for customer 
satisfaction. 

6 Material availability Material availability is an important factor 
which can have a lot of consequences for the 
companies, like delay, rework, increased work 
in process etc. 

7 Set-up time Set-up time is an important operation factor 
which determines how flexible a production 
process is. 

8 Cost (storage, transport, production, 
maintenance, inventory) 

Cost (storage, transport, production, mainte-
nance, inventory) is critical to any company. 

9 Flexibility Flexibility is a key factor for efficiently improv-
ing market responsiveness in the face of un-
certain future product demand. 

10 Scrap rate Scrap rate is a common KPI since it indicates 
how quality performance is. 

11 Customer satisfaction Customer satisfaction plays a crucial role to 
lead a realization of development of the com-
pany. 

12 Reaction speed Reaction speed facilitates the agility of produc-
tion operation. 

13 Machine availability Machine availability is an important factor 
which can have a lot of consequences for the 
companies, like delay, rework, increased work 
in process, etc. 

14 Return on investment (ROI) Return on investment is a useful metric for 
evaluating overall savings or revenue in-
creases. 

15 Revenue Revenue is important to justify the fixed and 
variable expenses 

16 Net cashflow Net cashflow is important to determine busi-
ness performance 

Questionnaire about KPIs 

The importance of the different 16 KPIs were structured in the questionnaire and eval-
uated with a score between 1 and 10 (1=less important, 10= very important). More de-
tails can be found in Appendix A6. 

Data analysis of KPIs 

Since the survey is combined with data from the previous sub-Sections 4.2.1 and 4.2.2, 
there are also 79 respondents for the selected KPIs. On the basis of an average score, 
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a higher number means more important KPIs for production in China within the bar chart 
(see Figure 4-13). Meanwhile, as Figure 4-13 showed, there are minor differences of 
importance among the investigated 16 KPIs. It was therefore challenging to select the 
representative KPIs out of ranking result. 

 

Figure 4-13: Ranking of KPIs by importance (A_Yu 2018) 

Selection of KPIs 

Since 16 KPIs have are related to each other, it is necessary to generate the categories 
of KPIs as the representative. Therefore, KPI categories have been introduced (see 
Figure 4-14). The Quality, Cost and Delivery (QCD) performance metrics model is pat-
terned in the process evaluation of the assembly system (Fujimoto 1999). Quality which 
includes customer satisfaction issues and product/process quality; cost, which includes 
all costs, such as administrative expenses, manufacturing costs, and productivity is-
sues; delivery, which includes manufacturing product commitments and delivery of 
products to the customer. Availability, as the fourth category, is emphasized, since it is 
one of the most important key figures and illustrates ratio of available time for produc-
tion. Availability could benefit the overall production performance and increase the com-
petitiveness of a factory. The last category, others, will not be focused on for further 
interdependency analysis with location factors and smart automation technologies, 
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since they are either representative by former four categories (e.g. OEE can be repre-
sentative by metrics from quality, cost and availability. Flexibility and transparency can 
be indirectly illustrated by quality, cost and delivery.) or closely associated with financial 
aspects rather than assembly systems (e.g., revenue), or indicators that are too com-
prehensive, such as flexibility and transparence. 

 

Figure 4-14: The categories of KPIs 

The four categories of KPIs have been selected to form the catalog of KPIs. The indi-
vidual KPI has been defined as single metrics, which belongs to different categories. 
For active control of each individual KPI, the specific process data have been proposed, 
which can be collected along the value stream analysis of assembly and actively eval-
uate the progress. The KPIs structure was created based on these three levels (see 
Figure 4-15). It is also the basis for analysis of interdependencies among smart auto-
mation technologies and KPIs in next section, since the technologies are able to directly 
influence the process data and then the impact can be transferred to KPIs via process 
data. 
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Figure 4-15: Derived KPIs structure based on KPIs Categories 

Summary 

After the investigation through literature review, questionnaire, data analytics and ex-
pert interview, the catalogs of location factors, smart automation technologies and KPIs 
have been identified for China, as a specific highly dynamic emerging country. The in-
tegrated Catalogs are summarized as below (see Figure 4-16) 
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Figure 4-16: Integration of identified catalogs of influence factors 

4.3 Interdependency Analysis 

4.3.1 Typology of Assembly System Profile 

The company profile needs to be defined before the identification of interdependencies 
between location factors and enabling technologies. Each company has its own char-
acteristics that impact the intensity of interdependencies among location factors and 
enabling technologies in the field of smart automation as well as key performance indi-
cators. 

Company profiles were identified by considering basic information, process factors, and 
current status. Basic information consists of company type, annual turnover, number of 
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employees, and other similar variables. Process factors include variables related to 
products or production, such as the complexity of products, delivery time requirements, 
employee qualifications, the degree of automation, and maintenance costs. Company 
status information, such as the company’s Wi-Fi status or OEE status, is also included 
as current status (see Figure 4-17). 

As an example, type 3 companies are foreign-owned firms with an annual turnover of 
between ¥40 million and ¥200 million and between 300 and 1,000 employees. For these 
companies, delivery time requirements range from 30 to 60 days. These companies 
mainly engage in multi-part production with complex structures. The degree of automa-
tion in these companies is high because most tasks are carried out automatically and 
only a few need to be completed manually. Fifty to seventy percent of each company is 
covered by Wi-Fi, and their OEE indexes are between 55% and 70%. 

The three different types of companies shown in Figure 4-17 are only exemplary of the 
typology of company profiles. The structure, consisting of aspects and combinations of 
them could be changed and extended for more precise research or more general appli-
cation. This work focuses on type 3, as foreign-owned companies in China usually face 
more challenges related to location factors than other types (Froese & Sutherland et al. 
2019). To narrow the scope of foreign owned companies, ones with similar process 
factors and current status will be taken into consideration. Thus, the following investi-
gation of qualitative and quantitative interdependencies among location factors, smart 
automation technologies and KPIs is based on the status of type 3 companies. 

Taking into consideration the process factors of type 3 companies, corresponding loca-
tion factors that may affect process factors are selected. For example, if machines ex-
ecute all of the tasks in a company, labor costs will not have much influence as a loca-
tion factor. Therefore, this factor will not be selected for analysis. Process factors can 
also influence the intensity of location factors. Using a similar example, if there is a high 
degree of automation (process factor) in a company, the influence of labor costs (loca-
tion factor) will not be very intense. 
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Figure 4-17: Definition of company profile (A_Guo 2019) 

Collection of process data with value stream mapping 

Value stream mapping (VSM) is a systematic methodology for the development of a 
value stream oriented company with optimal material and information processes 
(Molenda & Jugenheimer et al. 2019). Nowadays, it is used across all industry sectors 
manufacturing companies of various sizes.  

Value stream mapping comprises two components that are built on each other. In the 
first step, the value stream analysis records the current state, and in the second step, 
the value stream design creates a target-oriented state. In the value stream analysis, 
one of important steps is to map the sequence of the main processes and fill out data 
boxes, which consist of the process data such as cycle time, process time, change over 
time, utilization, number of direct labor, lot size, shift model, scrap etc. (Barring & Nafors 
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et al. 2017). Since the process data are important for measuring selected KPIs accord-
ing to Figure 4-15, the value stream analysis is applied to collect the process data of 
assembly line of testbed.  

The testbed at the GAMI, which consists of assembly line and provides the demonstra-
tion environment for smart automation technologies, was used to do the experiments 
for the interdependency analysis, especially between smart automation technologies 
and KPIs. By considering this context, the simplified value stream analysis for the as-
sembly line of the testbed was carried out (see Figure 4-18), which focuses on the col-
lection of process data.  

 

Figure 4-18: Exemplary value stream analysis for assembly line of testbed 

4.3.2 Interdependency of Location Factors and Smart Automation 

Applying new technologies can achieve improvement of performance in factories, but 
there are several barriers. (Borhani 2016). After the investigation based on the literature 
review, four major aspects were clustered to provide a basic understanding for analyz-
ing interdependency between location factors and smart automation technologies. 
These aspects include resistance to change among employees, economic conditions, 
training needs, and perception of the usefulness of technologies (see Figure 4-19) 
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Figure 4-19: Obstacles of location factors to adopting smart automation technologies 

First of all, industry is conservative and reluctant to change. As a result, applying new 
technologies may result in resistance from employees since they must change their 
ways of working and their workloads may increase. This view was echoed in the expert 
interviews. Generally, the higher productivity already is, the less a factory or employees 
will want to change. As a result of resistance to new technologies, benefits may not be 
achieved, and some factories may even decide to end their efforts to implement new 
technologies1. 

Secondly, the economic conditions of companies are important to consider since com-
panies must make investments in new technologies. If a new technology is too expen-
sive, some firms, particularly small and medium sized ones, must carefully consider the 
advantages of applying this kind of technology, as the expense comprises a greater risk. 
If the benefits may not outweigh the investment, or if the effectiveness of the technology 
cannot be proven, companies will not adopt the technology (Jacobsson & Linderoth 
2010).  

Subsequently, the usefulness of the technology must also be considered, and can be 
measured in percentage points. (Borhani 2016). 

Lastly, training needs may also affect the adoption of new technologies. If employees 
are willing to use a new technology but are not qualified to do so, they cannot success-
fully achieve benefits. In addition, if a new technology requires training, some employ-
ees may be unwilling to accept it, because their workload may increase. Training needs 
also increase the economic burden of technology for a company (Borhani 2016).  

1Friedman, E. (2015), "Wearable Technology by Industry Series. Vol. 5–Construction". EnterpriseWear Blog, 
18. https://www.brainxchange.com/blog/wearable-technology-by-industry-construction [28.01.2019]. 
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Location factors affect the adoption of enabling technologies when considering the pro-
cess factors and the above motioned four obstacles. Consequently, the qualitative in-
terdependencies will be identified. For instance, the adoption of a manufacturing exe-
cution system (MES) requires qualified employees, and the availability of skilled work-
ers (a location factor) can determine how easy it is to meet this requirement. If the 
availability of skilled workers is high, the obstacle of meeting training needs is easier to 
overcome. As a result, the availability of skilled workers has a positive effect on the 
adoption of MES. 

Qualitative Analysis 

Taking the initial background as the basis, the interdependency between location fac-
tors and smart automation technologies in type 3 companies can be analyzed via expert 
interviews, of which three in total were conducted. Experts with comprehensive indus-
trial backgrounds from the main technology providers (Rexroth, Werma, Würth) were 
chosen. Given the profiles of the sample plant (see Figure 4-20) and smart automation 
technologies as basics, experts were requested to answer the question “How will im-
plementation be affected by location factors for each smart automation technology?” 
based on the sample plant.  

 

Figure 4-20: Location factors of sample plant 



Methodology 73 
 

 

In this work, the ordinal scale of measurement is applied to present the qualitative in-
terdependency. There are three categories, respectively neutral, positive and negative, 
the corresponding meaning is introduced in Table 4.8.  

Table 4-8: Elements of ordinal scale 

Category Symbol Meaning 
Neutral / Location factors have no influence on smart automation 

technology 
Positive + Location factors have a positive influence on smart automa-

tion technology 
Negative - Location factors have a negative influence on smart auto-

mation technology 
 

Take, for example, the influence of labor costs, cost of capital and availability of skilled 
workers on the technology Pick-by-Light as shown in Figure 4-21. It indicates that labor 
costs with level 3 does not have significant influence on the implementation of Pick-by- 
Light, cost of capital with level 2 has a negative impact, and availability of skilled workers 
with level 3 has a positive impact. 

 

 

Figure 4-21: Example of qualitative interdependency location factors to smart automation 
technologies 
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Quantitative Analysis 

Based on qualitative analysis, the quantitative analysis is derived to be numerical. Ac-
cording to the comments of experts, neutral, positive and negative are respectively 
equal to 1.0, 1.1 and 0.9. The location factors and smart automation technologies met-
rics can be expressed as , where  represents for row number,  for column num-

ber and  for each expert. 

 

Three interviews results can be consequently be merged into the final matrix. The val-
ues of the final matrix  are the arithmetic average of corresponding values from ex-
pert interviews as Formula 4.2 shows. 

   Formula 4.2 

 

According to the above stated procedure, the answers from three expert interviews 
were collected (Figure 4-22 (a), (b) and (c)). Since the third expert could only provide 
information for part of the technologies, the unmentioned ones are displayed with num-
ber zero (Figure 4-22 (c)). 
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Figure 4-22: Summary of expert interview (A_Guo 2019) 
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According to the expert suggestions, two location factors have no considerable impact 
on the implementation of the listed smart automation technologies in practice: taxes 
and energy costs (marked with yellow as shown below). According to Formula 4.2, the 
final interdependency matrix of location factors and smart automation technologies 
were generated (see Figure 4-23). Values in the matrix shown in Figure 4-23 indicate 
the intensity of interdependencies. Greater ones are depicted by higher values, signify-
ing a stronger positive correlation. Conversely, if it is less than one, a lower value shows 
a stronger negative correlation. 

 

Figure 4-23: Location factors and smart automation technologies – summary of expert inter-
view 

With high local labor costs, implementing smart automation technologies would be more 
effective, as it can reduce the number of employees and increase productivity, such as 
Wireless nut runner (WN), Automatic Guided Vehicle (AGV), RFID-based C-parts man-
agement (CPM), Digital Shopfloor Management (DSFM) and Manufacturing Execution 
System (MES). Therefore, labor costs have a positive impact on these technologies. A 
medium level of cost of capital can already have negative correlations with technologies 
requiring relatively high investment, such as Intelligent screwdriver (INS), Wireless nut 
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runner (WN), and Manufacturing Execution System (MES). A high availability of skilled 
workers can positively influence all the smart automation technologies, as the more 
high-qualified employees there are, the lower the training cost investment and the better 
effectiveness by applying technologies will be. Technologies that help by increasing 
operation reliability and by reducing invested training costs show more significant effec-
tiveness when the local staff turnover is high, thus, they are positively related to it. 
Transport cost has a positive impact on technologies such as QR-Code (QR), RFID-
based C-parts management (CPM) and Digital Shopfloor Management (DSFM), which 
support for a more efficient and reliable inventory and logistics management and there-
fore can be adopted to balance the relatively high transport costs. With a high level of 
material costs, companies will expect to apply new technologies to reduce defect ratio, 
ensure production quality and trace important components to reduce total material 
costs. Consequently, material costs have a positive influence on smart automation tech-
nologies. High labor productivity from qualified workers can further amplify the effec-
tiveness of implementing the technologies and, as a result, it has positive impact on 
them. Although two location factors have no considerable impact at the present, these 
factors are still listed as possible variables by considering future uncertain situation. 

4.3.3 Interdependency of different smart automation technologies 

Smart automation technologies have also a significant influence on each other. Some 
basic technologies, for example, must be implemented as precondition before some 
others can work, and some technologies can be applied at the same time for greater 
improvement. This section presents the approach to derive an interrelation matrix of 
smart automation technologies through expert interviews.  

Expert interviews 

Firstly, four types of interdependencies between different technologies and initial corre-
sponding factor parameters were defined as shown in Table 4.9. 

Table 4-9: The overview types of interdependencies among smart automation technologies 

Type Parameter  Mark color 
Precondition 1.00 Marked with yellow 
Strong support 0.75 Marked with green 
Weak support 0.25 Marked with light green 
Neutral 0.00 White 
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Three expert interviews were conducted in total, which is similar to the previous proce-
dure. The experts were requested to answer the question regarding each technology 
“How can this technology influence the implementation of other technologies such as 
precondition, providing strong or weak support, or independent?”. Answers were then 
filled into the interrelation matrix (see Figure 4-24 as an example). 

 

Figure 4-24: Example of interrelation matrix of smart automation technologies 

In Figure 4-24, the column of T8 RFID-based C-Parts management (CPM) has been 
taken as an example. Since CPM is primarily based on Workpiece carrier with RFID 
tags (WCR) technology, WCR is seen as a precondition for CPM. With the strong sup-
port from Automatic Guided Vehicle (AGV) and Manufacturing Execution System 
(MES), CPM could enhance its benefits for the production significantly. In addition, QR-
Code (QR) can also provide weak support for CPM, meanwhile other technologies with-
out obvious impact on CPM are marked with 0. 

Elements of the interrelation matrix can be expressed as , where  represents for 

row number,  for column number and  for each expert: 
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Subsequently, data by each expert interview can be merged into the final matrix. If a 
precondition relationship has been stated at least once, the corresponding value of the 
final matrix otherwise  is the arithmetic average of corresponding values 

from expert interviews, namely: 

  Formula 4.3

 

As the above procedure introduced, answers from three expert interviews were col-
lected (see Appendix A7). According to Formula 4.3, the correlation between different 
smart automation technologies can be seen in Figure 4-25. 

 

Figure 4-25: Interdependency between different smart automation technologies (A_Guo 
2019) 

QR-Code (QR) and Workpiece carrier with RFID tags (WCR) act as important basic 
technologies and enable the problem-free operation of some other technologies such 
as Human Machine Interface (HMI), Intelligent screwdriver (INS), Wireless nut runner 
(WN), Automatic torque adjustment (ATA) and RFID-based C-Parts management 
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(CPM). Since Automatic torque adjustment (ATA) is regarded as a key function of In-
telligent screwdriver (INS) and Wireless nut runner (WN), it is a precondition for both. 
Digital shopfloor management (DSFM) is nowadays usually applied together with other 
big systems such as Customer Relationship Management, Enterprise Resource Plan-
ning, and Manufacturing Execution System (MES). Since MES could provide the relia-
ble data of production execution, it is considered as a precondition for Digital shopfloor 
management (DSFM). The technologies can be successfully applied only if the precon-
dition technologies have been fully implemented. 

Noticeably, Digital shopfloor management (DSFM) and Manufacturing Execution Sys-
tem (MES) as integrated and systematic technologies can be supported by almost all 
other technologies which are connected to them through information flow, especially 
strongly by Pick-by-light (PBL), Human Machine Interface (HMI), QR-Code (QR), Auto-
matic Guided Vehicle (AGV) and RFID-based C-Parts management (CPM), and vice 
versa. Production data generated or collected by these technologies can be transmitted 
to the two systems and used for further analysis and decision-making to improve the 
production performance. In return, the two systems also strengthen the effectiveness 
and reliability of these technologies. QR and RFID as basic technologies provide sup-
port for all other technologies. By transporting materials around on the shopfloor or in a 
warehouse, Automatic Guided Vehicle (AGV) improves the efficiency of intralogistics, 
which provides a strong support for RFID-based C-Parts management (CPM) by in-
creasing the speed of transporting empty C-part bins. Human Machine Interface (HMI) 
assists the workers to operate correctly and quickly in a more efficient way compared 
to paper-based instructions. This can help the Smart gloves (SG) to collect more valid 
motion and operation data for further analysis, which is especially beneficial in training 
cases.  

More important rules emerged when the experts reviewed the generated results. First, 
that the technology could not be both the precondition and support for the studied tech-
nology at the same time. The precondition has a higher priority than the support. Sec-
ond, the numeral results are initially used for qualitative analysis. They should be trans-
formed according to the feasibility scale for the calculation of practical influences. Here 
the ratio 3 to 1 was recommend by experts, therefore, the numerical result of matrix in 
Figure 4-25 has been adjusted (see Figure 4-26). For instance, the support impact from 
Pick-by-Light (PBL) to Human Machine Interface (HMI) has been adjusted by round up 
to 4% (0.13 is divided by ratio 3). Third, the cumulative support influence should be 
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normally maximum 25%, while it can be maximum 35% for MES and DSFM. Last the 
efforts of implementing the technologies is standardized based on number of days (see 
Table 4-10).  

Table 4-10: Base effort for the implementation of the technologies without influence of loca-
tion factors by expert suggestions 

No. Smart  
Automation 
technologies 

Efforts 
(days) 

No. Smart  
Automation 
technologies 

Efforts 
(days) 

No. Smart  
Automation 
technologies 

Efforts 
(days) 

T1 PBL 30 T5 WN 84 T9 WCR 78 
T2 HMI 144 T6 AGV 264 T10 DSFM 360 
T3 QR 108 T7 ATA 252 T11 MES 288 
T4 INS 240 T8 CPM 96 T12 SG 86 

 

Based on the modification of expert reviews, the quantitative interdependencies for 
smart automation was updated as follows (see Figure 4-26). 

 

Figure 4-26: Quantitative interdependency among smart automation technologies 



82 Methodology 
 

 

4.3.4 Interdependency between Smart Automation and KPIs 

By applying smart automation technologies, the performance of the assembly systems 
will be improved in different aspects and different degrees, which can be measured and 
presented by relevant process data. This section states the approach to derive an in-
fluence matrix of technologies and production KPIs under experimental conditions in 
the assembly line of testbed. 

As stated in Section 4.2.3, a KPI catalog was generated, in which four categories of 
production KPIs were defined, Quality, Cost, Delivery and Availability, respectively. 
Since the KPIs are abstract, the KPI structure has is introduced in Figure 4-15, respec-
tively, the KPIs category could be represented by metrics, and the metrics can be further 
measured and calculated by process data. On the one hand, the process data can be 
visualized through the value stream analysis. On the other hand, the improvement of 
process data causes by smart automation technologies can be measured experimen-
tally in the assembly line of testbed. Thus, an influence matrix between smart automa-
tion technologies and process data can be achieved, which can be a bridge between 
smart automation technologies and KPIs. Additionally, technology providers have been 
interviewed as a complementary method of gathering process data. 

As the first step, the KPIs structure has been extended (see Table 4-11) and visualized 
in the flow chart (see Figure 4-27) to represent the overview of KPIs, which is carried 
out based on the literature review and industrial expertise review. 

Table 4-11: Extended structure of KPIs 

Level Structure Name 
1 KPIs Categories 

(4) 
Quality Cost Delivery Availability 

2 Metrics 
(5) 

QR PROD LT 
 

AS, POT 

3 Process Data 
(12) 

FPY, GQC, 
SCQ 

PQ, NE, 
CT 

WIP PBT PDT 
ODT ,LDT, 
AWUBT, 

Remarks: Quality Rate (QR) / First Pass Yield (FPY) / Good Quantity Counted (GQC) 
/ Scrap Quantity (SCQ) / Productivity (PROD) / Produced Quantity (PQ) / Number of 
Employees (NE) / Cycle Time (CT) / Lead Time (LT) / Work In Process (WIP) / Avail-
able System (AS) / Planned Operation Time (POT) / Planned Busy Time (PBT) 
/Planned Down Time (PDT) / Other Down Time (ODT) / Logistic Delay Time (LDT) / 
Actual Work Unit Busy Time (AWUBT)  
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Figure 4-27: KPIs influence flow chart 
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The relevant KPIs were calculated according to following formulas. 

Quality 

As representative of quality rate, First Pass Yield (FPY) is defined as portion of manu-
factured parts that meet quality requirement after just the first run (without being 
scrapped) 

  Formula 4.4 

 

Where  is the value of First Pass Yield,  is number of produced good parts by 
first run, when the parts are not allowed to be reworked, namely there are only good 
parts or scraps.  is numer of defect parts, namely scrap quantity. Then 

  Formula 4.5 

  Formula 4.6 
 

Where  is produced quantity,  is defect rate. 

Cost 

Productivity describes the relation between number of produced good parts and total 
labor needed in the considered value stream. 

  Formula 4.7 

 

Where  is the value of productivity.  is number of employees, namely the num-
ber of operators in the assembly. If the FPY is assumed as 100%,  equals to . 
Then the relation between productivity and cycle time can be described as followed. 

  Formula 4.8 

 

  Formula 4.9 

 

Where  is cycle time.  
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Delivery 

 Considering the assembly line, the lead time  equals number of Work in Process 
(WIP) multiplied with cycle time of bottleneck. 

  Formula 4.10
 

Where  is number of Work in Process (WIP),  is the cycle time of the bottle-
neck. When the assembly line is well balanced, the  is same as  

Availability 

Available system (i.e. machine availability) can be represented by Uptime, which is per-
cent of time that equipment/machines are up and running.  

  Formula 4.11

 

  Formula 4.12
 

Where  is the machine availability,  is actual work unit busy time,  is 
planned busy time,  is logistic delay time and  is other down time.  

In this work, the investigation was conducted through experiments in the assembly sys-
tem of testbed in Yangtze Delta Zone of China, where the selected twelve technologies 
are utilized. The reason is that it is difficult to have access to factory sites and their 
facilities due to risks and safety concerns. Therefore, it was not quite feasible to choose 
a real factory to implement all smart automation technologies for collection of data. The 
testbed based experiment has been devised to down-scale and simulate the real in-
stance so that the knowledge gained from experiment can be generalized to advise real 
practice to a large extent (Hou & Wang et al. 2015). For example, the assembly work-
station and their assembly sequencing all came from real data and real drawings pro-
vided by industrial partner. As this is a demonstrated environment, certain simplifica-
tions have been made. For instance, the influence of the learning curve was not con-
sidered in the experiment.  

There is a production line for assembly valve slice in testbed. The two rounds design 
was originally planned in the experiment. One round is conventional assembly without 



86 Methodology 
 

 

applying investigated smart automation technology, the other round is with application 
of investigated smart automation technology. 32 valve slices have been assembled for 
each comparison, namely, 16 valve slices for each round. The process data as critical 
indicators were recorded, such as cycle time, working time, number of defect parts, 
number of good parts, and number of work in process (WIP). The experiment was rec-
orded using a video camera. 

Examples of experiment processes are shown in Figure 4-28. The corresponding pro-
cess data were collected and further calculated into final related production KPIs ac-
cording to Formula 4.4 – 4.12. Then, the change rates of parameters after the applica-
tion of technologies were analyzed accordingly. As one of examples, the result of Wire-
less nut runner (WN) is shown in Table 4-12. The rest of results for all twelve technolo-
gies are listed in Appendix A8. 

 

Figure 4-28: Examples of experiment processes (A_Guo 2019) 

The experiment has quantitatively and qualitatively investigated the interdependencies 
between smart automation technologies and KPIs in practical way, rather than devel-
oping a ready-to-be-applied technologies for industry. The results from the experiment 
can partially advise the impact of application smart automation technologies in assem-
bly system.  

Table 4-12: Result of Wireless nut runner (WN) (A_Guo 2019) 

Process data Unit Before:  
Electric Wrench 

After:  
Wireless nut runner 

Change Rate 

Uptime % 99.55 99.66 0.1% 
FPY % 87.5 93.75 7% 
Cycle Time s 58.5 53.5 8.5% 
WIP Pcs 1 1 0 
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Based on these results, not only can the benefits stated in the technology profiles in 
Section 4.2 be further confirmed and described more precisely, but they also help in the 
development of a KPI-oriented implementation strategy of technologies. When compa-
nies need to improve several specific aspects or KPIs of the production, this matrix can 
serve as one reference, together with the interdependency matrix between different 
technologies, for selecting the relevant technologies and to consider the priorities of 
implementation. 

4.3.5 Determination of the Interdependency of Location Factors and KPIs 

In different locations, industrial companies may place higher value on different KPIs. 
For instance, labor productivity may be considered as less important KPI metric in a 
region where the average automation degree is relatively high. In this section, a priority 
ranking of KPIs namely Quality, Cost, Delivery and Availability for three main regions in 
China, namely Peking-Tianjin-Hebei Delta, Yangtze-River Delta and Pearl River Delta, 
is generated through analysis of questionnaire surveys. 

First, based on Appendixes A2 and A6, the KPI metrics have been further analyzed, 
which are individually sorted by three delta zones (see Table 4-13).  

Table 4-13: Importance of KPIs in different regions (A_Yu 2018) 

Peking-Tianjin-Hebei Delta   Yangtze-River Delta   Pearl River Delta 
KPI Rate*   KPI Rate*   KPI Rate* 
Material availability 8.25  Cost 8.20  Material availability 8.21 
Revenue 8.25  Transparency 8.15  Reaction speed 8.21 
OEE 8.15  Lead time 8.13  Productivity 8.16 
Productivity 8.15  Reaction speed 8.13  OEE 8.11 
Customer satisfac-
tion 8.15  ROI 8.13  Net cashflow 8.11 
ROI 8.10  OEE 8.10  Lead time 8.05 
Lead time 8.00  Flexibility 8.10  ROI 8.05 

Reaction speed 7.90  
Customer satisfac-
tion 8.03  Cost 8.00 

Cost 7.85  Material availability 8.00  Revenue 8.00 
Transparency 7.75  Machine availability 7.95  Transparency 7.95 

Machine availability 7.70  Revenue 7.95  
Customer satisfac-
tion 7.95 

Flexibility 7.55  OLE 7.90  Flexibility 7.89 
OLE 7.50 Productivity 7.90 Scrap rate 7.89 
Net cashflow 7.40  Net cashflow 7.75  OLE 7.79 
Set-up time 6.95  Set-up time 7.68  Machine availability 7.74 
Scrap rate 6.65   Scrap rate 7.68   Set-up time 7.58 
*Rate is in the scale from 1 to 10, the larger the number, the more the important KPI is.  
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Secondly, according to Figure 4-14, the KPI metrics can be used to represent the im-
portance of KPI categories. The importance of KPI categories have been estimated by 
average value of importance of KPIs metrics. For example, Quality consists of scrap 
rate and customer satisfaction. The value of both of these metrics are respectively 6.65 
and 8.15 in Peking-Tianjin-Heibei Delta. Thus, the value of importance of Quality is 7.4. 
Then the rankings of KPIs for different regions can be derived in Table 4-14 (1=highest, 
4=lowest). 

The rankings present the interdependency between location factors and KPIs. It could 
simplify the analysis of implementation strategy in the preliminary phase. The most im-
portant several KPIs can be firstly considered for further analysis based on the individ-
ual situation.  

Table 4-14: Interdependency between location factors and KPIs 

KPIs  Peking-Tianjin-
Hebei Delta 

Yangtze-River 
Delta Pearl River Delta 

Quality 4 4 3 
Cost 1 2 2 
Delivery 2 1 1 
Availability 3 3 4 

 

4.3.6 Net of Bilateral Interdependencies 

Based on the identified interdependencies among location factors and smart automa-
tion technologies, smart automation technologies-smart automation technologies, 
smart automation technologies-KPIs, and location factors-KPIs, the net of bilateral in-
terdependencies can be generated, which is basic knowledge input for modeling and 
simulation of assembly systems (see Figure 4-29). 

 

Figure 4-29: Representation for net of bilateral interdependencies 
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4.4 Modeling and Simulation 
The aim of this section is to create the model and simulation of bilateral interdependen-
cies in the assembly system, which is the basis for derivation of the implementation 
strategy for specific assembly systems in the next section. It consists of three parts. 
First, the framework conditions and corresponding implications for the model are de-
rived as preparation of model (4.4.1). Subsequently, hybrid modeling is developed for 
interdependencies within assembly systems, from which the connection to the model is 
created (4.4.2). In the end, the experiments of simulation are designed accordingly 
(4.4.3). 

4.4.1 Preparation of Model 

The aim of this section is to derive framework conditions for the model. For this purpose, 
the requirements and concepts are first described, from which implications for the model 
are then derived. 

Requirements of model 

In the following, requirements relevant to the author’s approach are explained. They 
consist both of the findings drawn in Section 3 on the analysis of the state of the art and 
of the results of several workshops with industrial experts. 

1. Consideration of all interactions 
One of the fundamental findings of the literature review in Section 3 is the im-
portance of considering all relevant interactions. One of the most important inter-
actions is the interdependencies of the smart automation technologies with each 
other. The model must take into account the extent to which technologies are 
interdependent or support each other. Additionally, the influence of location fac-
tors also need to be integrated. It is important to take into account the specific 
regional circumstances when determining an implementation strategy. In addi-
tion, clear KPIs must be defined in order to make decisions efficiently. 

2. Hybrid method modeling 
The implementation strategy of smart automation technologies is characterized 
by a holistic approach to assembly systems. This means that not only production-
economical, but also strategic elements are considered during technology intro-
duction. Correspondingly, different perspectives such as strategic level (e.g., 
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management) and operational level (e.g., engineers) must also be taken into ac-
count in a simulation, which can be achieved by combining the more operational 
DES modeling and the more strategic System Dynamics technique. In addition, 
it is assumed that the simulation results are not sufficiently trusted by the compa-
nies if company specifics are only superficially considered by means of parame-
ters. It is very difficult to quantify company-specific conditions sufficiently pre-
cisely using a few variables. Accordingly, operational DES modeling of the actual 
assembly system is needed. 

3. Sequential technology implementation 
The model should be kept as simple as possible, so that it can be implemented 
without a great deal of previous knowledge. The same applies to the simulation 
results, which must be intuitively comprehensible. Accordingly, it is necessary to 
clearly limit the complexity. In this work, this is done by considering only sequen-
tial technology implementations. This means that technologies are not imple-
mented at the same time, but always one after the other.  

4. Intelligent reduction 
A sequential implementation has a complexity of n! (i.e. n-faculty = 1*2*3*...*n) 
different possibilities (März & Krug et al. 2011). n stands for the number of tech-
nologies to be implemented. So, if ten technologies are implemented in a com-
pany, there are over 3.5 million different sequences. Especially the use of a DES 
model, which usually requires longer computing times, would make the use of a 
classic optimization algorithm considerably more difficult. Consequently, a suita-
ble "ranking & selection" approach is needed to limit the various implementation 
options and to find a solution that comes as close as possible to the optimum. 

5. Variability of the selected technologies 
The latest smart automation technologies are able to be considered at all times. 
Accordingly, the model must be structured so that other technologies can be 
added without major effort. The selection of technologies must also be adapted 
with regard to this variability and should be made for strategic reasons. 

6. Adaptation of the models for different applications and continuous im-
provement 
An important requirement is that the model is continuously developed. Conse-
quently, as many parts of the process model as possible should be standardized 
to make the improvement process efficient. That means the model should be 
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structured as much as necessary in sub-models, so that these can be used on 
other fields. In addition, the data basis should be continuously improved and prac-
tical experience should be integrated. 

Implications 

This section considers the requirements presented above and derives implications. The 
goal is to develop a framework for the model. 

System Dynamics (SD) is especially suitable for strategic considerations of a system. 
In addition, this modeling technique allows for the easy representation of interactions 
by means of rates and feedback loops. Discrete-event simulation (DES), in turn, acts 
much better at the operational level. The representation of a production system and its 
chains can be best implemented with DES. Accordingly, this division is also suitable for 
use in this work. With the exception of (Peter 2009), the literature in the section State 
of the Art has concentrated on only one of the two types of modeling and thus has left 
out important aspects with regard to the question of this work.  

One difficulty lies in linking the two modeling techniques. Most interdependencies inter-
act with the technologies, which should therefore be modelled in System Dynamics. It 
is important that new technologies can be added variably and that the models can be 
reused for other use cases. These two requirements cannot be met if the technologies 
are modeled operationally with DES, because otherwise they would have to be strongly 
integrated into the production system and its interactions. For example, if an AGV is 
implemented, it is not possible to model itself in the production system. Instead, the 
effect that an AGV would have is simulated, such as reducing transport time. This cre-
ates a clear interface between the two models. In addition, by quantifying the effect, 
new technologies can be added to the model without much effort. This probably reduces 
the accuracy of the simulation, but in contrast to Aull (2013) and Liebrecht (2020), the 
actual production system is still simulated and not simply the effect of the technologies 
on the key figures is estimated. Correspondingly, a suitable level of accuracy can be 
assumed with good quantification. 

Overall framework of modeling and simulation 

The overall framework of modeling and simulation is displayed in Figure 4-30. The 
timely change of process parameter during the implementation of smart automation 
technologies and its own support as well as prerequisite will be simulated with the 
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method of System Dynamics. The Discrete Event Simulation will be put into use, in 
order to simulate the production line of the production system. There should be several 
workstations in the production line, which should be simulated by means of Agent 
Based Simulation. Because of the similarity of every single workstation, the modular 
module represented workstations could be added or removed with drag and drop, so 
that the reconfiguration and flexibility of the model has been enhanced. 

 

Figure 4-30: Overall framework of modeling and simulation (A_Schrage 2019; A_Ding 2019) 

According to the VDI-3633, creating and verifying simulation model needs to be con-
ducted before planning of simulation studies. The modeling of interdependencies with 
System Dynamics (SD) is first introduced and the modeling of assembly systems is 
described afterwards. Then, the connection of models is explained followed by the in-
troduction of modeling of KPIs. 

4.4.2 Modeling of Interdependencies of the Technologies with System Dy-
namics 

The SD model depicts the technologies and their interdependencies. In the SD model, 
the technologies and their interactions are mapped. The implementation effort is meas-
ured in days and each technology has a number of days for the entire implementation. 
How much effort must be invested in the implementation of a technology is examined 
through technology provider (see Table 4.10). In reality, technologies often have an 
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impact on production already during their implementation (Aull 2013). How the effect of 
a technology relates to its degree of implementation is first considered in the following, 
before the interdependencies with regard to potential linkages are then analyzed in 
more detail. Additionally, the initial implementation level of technologies are considered. 

Curve of the technology implementation 

In reality, the effect of the technologies is not linear with the degree of implementation. 
Particularly at the beginning of a technology introduction, there are various obstacles 
that inhibit its effect (see Section 4.3.2). By considering these obstacles, it is possible 
to illustrate the relationship between implementation and effect using purposeful, delib-
erate mathematical formulas (Formula 4.13 – 4.15). Formula 4.13 is based on the sig-
moid function and corresponds to the previously derived curve. 

The curves of the technology implementation are extended to the additionally two 
curves, which are depicted with linear function and multi slope function. The linear func-
tion explains the implementation of a technology based on a timeline. The definition of 
the multi slope function is that the implementation and effect are with different ratios. It 
is assumed that for the first 25% of a technology implementation, the curve is with the 
slope that effect level can be reached to 25%. In the middle 50% of the implementation 
process, 10% of the effect level is gained. The remaining 65% of the effect level is 
finished during the last 25% of the implementation. For example, it is assumed that for 
a technology that needs 100 days to finish the implementation, the effect level reaches 
30% while it is on the 50th implementation day, according to multi slope function. The 
functions of three process curve are as follows: 

Sigmoid function:   

  Formula 4.13

 

Linear function: 

  Formula 4.14
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Multi Slope function: 

  Formula 4.15 

 

Thereinto,  stands for the number of days already spent for the technology  and  
stands for the total days the technology needs to be entirely implemented.  stands for 
the implementation effect level. The formulas have been visualized through graphs (see 
Figure 4-31).  

 

Figure 4-31: Visualization of three different formulas through graphs 

Linking the interdependencies of technology 

In Section 4.3, the relevant interdependencies among the technologies were defined. 
One technology can either be a prerequisite for another or supports another technology 
or have no interaction at all.  
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A prerequisite means that even if the dependent technology has already been imple-
mented, it will not have any effect unless the prerequisite technology has also been 
implemented. If three technologies in a chain are dependent on each other as prereq-
uisites, the last technology only has an effect if the first technology has also been im-
plemented. In the case of support, however, the question of concatenation is not so 
clear-cut. Support means that a dependent technology becomes more effective by im-
plementing another technology. If one technology supports another by 25%, the de-
pendent technology has an effect of 1.25 once both are implemented. But how does 
the value change if there is another technology that supports the supporting technology 
by 10%? If series connection is not taken into account, this has no impact on the effect 
of the last technology in the chain. Otherwise, the support of the first technology carries 
over to the third. Since series connection in supporting interdependencies significantly 
increases the complexity of the model and requires very careful data collection, this has 
not been done. Otherwise, realistic behavior of the support factor cannot easily be en-
sured. Especially if circular chains are created, control would be significantly more dif-
ficult. It is also recommended to use an upper limit for the support factor. This should 
be technology specific and should be determined in consultation with the technology 
supplier and the technical expert. 

In summary, in this work, chains are taken into account in the case of preconditions, 
but not in the case of support in order to simplify data collection. 

Initial implementation level of technologies 

The current level of the technologies could be modified by company input. The process 
of implementations consists of two elements: one flow and one stock. When the value 
of the stock reaches the number of days of the entire implementation, it will automati-
cally switch to implement the next technology. Therefore, the key to the modification of 
the initial implementation level is to set the initial value of the stock. It can be imported 
from external Excel file, so that it is changed automatically in the model when the value 
has been changed in the Excel file by company. The simulation software Anylogic® is 
applied to interface with the properties of stock  

As V&V technology for the System Dynamics (SD) model, monitoring is a good choice. 
The degree of implementation and the efficiency of each technology is displayed on a 
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graph and the changes during the simulation run are checked with regard to the pre-
condition and support. Thus, the logical consistency of the SD model and its interde-
pendencies can be quickly ensured. 

4.4.3 Modeling of Assembly Systems with Discrete Event Simulation 

According to (Jondral 2013), Discrete Event Simulation (DES) models generally require 
more computing capacity and thus longer computing time. This is due to the operation-
ally-oriented view of the system. Since the model is quite complex for the implementa-
tion strategy of smart automation technologies, the computing time of model needs to 
be taken into consideration. According to (Lütjen & Scholz-Reiter et al. 2014), the com-
puting time required increases disproportionately with the level of detail of the model (x-
axis) without, however, achieving significant increases in accuracy (see Figure 4-32). 
The optimal model complexity is given with a maximum discrepancy between compu-
tation time and accuracy. However, this point cannot be determined exactly either math-
ematically or experimentally. Therefore, it must be approximated. For this purpose, VDI 
standard 3633 proposes two different approaches: the top-down and the bottom-up. 

 

Figure 4-32: Dependence between the level of detail of the model and the expected result ac-
cording to Lütjen and Herrmann (2014) 

The top-down approach starts abstractly and gradually increases the complexity of the 
model. This requires a high level of abstraction on the part of the model creator and 
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often leads to additional costs due to overly broad system boundaries. The bottom-up 
approach, on the other hand, synthesizes the whole thing step by step, starting with the 
details. This means that substructures are combined, thus reducing the complexity of 
the model. Since the starting point in this work is the value stream analysis (see Section 
4.3.1), which breaks down the production system to the operative process level, the 
bottom-up approach is recommended. By measurements at the input and output of the 
respective subsystems, the process data and their probability distributions for the sub-
system can be determined taking into account stochastic elements. Thus, the level of 
abstraction can be increased or the level of detail can be reduced. This facilitates the 
use of the bottom-up approach. 

Modeling of workstation in Anylogic 

By considering the context of assembly systems, there are three main elements of pro-
gram to model the assembly process: Seize, Delay and Release. Seize represents the 
process of setting-up pallet for workpiece to the corresponding workstations. It can be 
connected to resource pool, which represents the process machines. Delay introduces 
the cycle time of the workstations. When the pallet is processed, Release represents 
the procedure of releasing the pallets from workstation. Restricted Area Start and Re-
stricted Area End together with Queue are used to ensure only one piece of pallet could 
be processed by the workstation at one time. Subsequently, the select output simulates 
first pass yield procedure with the connection of two sinks, which stand for the waste 
and finished pallets (see Figure 4-33 ).  

 

Figure 4-33: Modeling of workstation in Anylogic® 

Metamodel based on Agent Based Simulation (ABS) 

The ABS could be used to create the metamodel so that the developer can simply re-
alize drag and work for further extension of the assembly system. As an example of the 
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workstation, the agent Workstation could be created as the first layer model (see Sec-
tion 2.6.3). This method of greatly improving work efficiency and shortening modeling 
time is therefore also called modular modeling. 

For building a modular model in this part, it could be divided into following three parts 
(see Figure 4-34). 

 

Figure 4-34: Metamodel of workstation in Anylogic® 

In term of inside building of metamodel (part 1), all the model steps mentioned in above 
DES should be mapped inside the metamodel together. The icon of the metamodel is 
as a symbol to display the appearance of itself and could be considered as a normal 
DES element in the model level.  

Regarding input data setup (part 2), the seven parameters (cycle time, uptime, first pass 
yield, inventory, MTTF, MTTR and number of operators) have been mapped at the met-
amodel layer. Under this precondition, these parameters could be modified individually 
in the properties of the metamodel agent. In addition, it could be controlled with the help 
of database as well. For outside connection to the metamodel (Part 3), there is invaria-
bly a source at the beginning and two sinks at the end of the Discrete Event Simulation 
(DES) model. Connected in the middle are the required workstations, of which quantity 
is not limited. 

A verification and validation (V&V) technique for the DES and ABS model is monitoring 
and animation. In the latter case, the production sequence is graphically displayed in 
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two dimensions using the simulation software and can be validated for accuracy to-
gether with the company's experts. 

Modeling of KPIs 

Once the assembly system has been modelled using DES, the selected and weighted 
KPIs in Section 4.3.2 can be integrated. The concrete calculation depends on the KPIs 
and the mapping in the company. A KPIs structure is generated in the previous and 
there are four aspects to be considered, which are explained below. 

One of the difficulties in using KPIs is the choice of a suitable calculation period. Be-
cause several months or years are simulated for the implementation strategies, it is 
particularly important to choose the correct calculation period. If all values are included 
in the KPIs calculation from the start of the simulation, past values gain disproportion-
ately in weight with longer simulation, which means that the key figure does not ade-
quately reflect the current status. The effects of the introduction of new technologies 
are also less visible. If the period of time is too short, stochastic effects have a dispro-
portionate influence on the key figure, which is expressed by a jumpy graph  
(Mauergauz 2016). Since the implementation of the technologies is measured in days 
and their effect is of primary importance for the study, it is recommended to consider 
only values of the last one or two weeks for the key figures.  

Since key figures often have different characteristics, they cannot be offset against each 
other in a multi-criteria optimization, but must first be standardized on a comparable 
scale. The Formula 4.16 is used for the normalization of an individual key figure . 
However, since  and  should not describe the theoretical, but the realistic min-
imum and maximum values of the key figure, these must be determined beforehand. 
According to (Weigert & Rose 2010), a rough estimate is sufficient. DES simulation can 
be used for this purpose by experimentally modifying the process data and thus building 
up an understanding of the key figure behavior. Together with the company's experts, 

 and  can then be roughly defined. 

  Formula 4.16

 

In addition, the Pareto sets should be displayed graphically (Weigert & Rose 2010). 
This can be done in two or three dimensions using Excel tables. If more than three key 
figures should be considered in the objective function, it is advisable to compare all 
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possible subsets of key figures with each other in Pareto sets using several graphs. The 
objective of Pareto sets is a logical check of the weights. The weights should be ad-
justed so that the solution function is as close as possible to the center of all Pareto 
sets without changing the target value (see Figure 4-35). 

 

Figure 4-35: Optimal compromise with two target values  and  depending on the 
weighting vector (Weigert & Rose 2010)  

The goal of the simulation study is to determine a strategy that will achieve the best 
possible improvement in production over the implementation period. In the long run it is 
not important which technology is introduced first. For the introduction period itself, this 
is again of great importance. Since this corresponds to several months to years, it is 
strategically important to choose an optimal implementation sequence, even if the result 
is the same at the end of the simulation. For this reason, the target value should be 
cumulated over the entire simulation period in order to take sufficient account of the 
change. 

Finally, the implemented measures should be verified and validated. The key figures 
are graphically displayed in an overview over time and the curve is checked by the 
technical and simulation experts for its conclusiveness. 
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4.4.4 Hybrid Modeling with Process Data 

The system analysis should enable the SD modeling of interdependencies and DES 
modeling of the assembly system. A value stream analysis is suitable for this purpose. 
According to its definition, a value stream comprises “”all activities (both value-adding 
and non-value-adding) that are necessary to move a product through the main flows 
that are critical to a product. The production flow from the raw material to the customer’s 
hands” (Rother & Shook 2018). The goal of value stream analysis is to identify and 
display the actual state of the production process with graphical support. The VSM pro-
vides not only the detailed process data, but also the system overview. A detailed de-
scription of the procedure for a value stream analysis is not included in this work. It 
should be noted that the complete value stream does not necessarily have to be mod-
elled, but only the considered area and the respective previous and subsequent process 
step. 

The process data (see Figure 4-25) can be as an interface to connect the SD model 
and the DES model. The DES model should map the process data as a parameter and 
read in the initial situation as well as its change through the effect of smart automation 
technologies (see Figure 4-36) 

 

Figure 4-36: Process data as an interface in the hybrid model (A_Schrage 2019; A_Ding 
2019) 

Cycle time ( ), Uptime ( ) and first pass yield ( ) are chosen as the interfaces. 
The defect rate has been applied to represent the first pass yield. Figure 4-37 shows 
the map of process data as interfaces. As an example, the dynamic variable smart au-
tomation_CycleTime is a variable with initial value of 1. Function impact_Calculation 
reads the input data of process impact from Excel table and calculate the current smart 
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automation_CycleTime, which is decreased in the process of technology implementa-
tion yet always greater than 0. Then the Event update-impact make update the latest 
value and return it to smart automation_CycleTime. 

 

Figure 4-37: Process data as an interface in the hybrid model (A_Schrage 2019) 

In addition, the runtime must be defined. This is the covered period by the simulation 
and consists of three modules. Usually, models are not initialized in more detail, so that 
they do not sufficiently represent reality at the start. As a result, buffer stores are often 
still empty and machines are not occupied. Accordingly, a certain amount of time should 
be allotted at the beginning, depending on the production system, which is necessary 
for the transient oscillation. Until the model is filled and represents a realistic state of 
the production system. During this time no technologies should be implemented in the 
model. In addition, the cumulative implementation time for the runtime must be taken 
into account. Taking into account the location criteria, how long does it take to imple-
ment all technologies regardless of their sequence? Finally, a phase-out duration must 
be considered in the runtime. If the simulation stops after the last technology has been 
implemented, the effects will not have time to unfold. It is recommended to equate the 
phase-out time with the longest smoothing period of a key figure (Drusinsky & Shing et 
al. 2005). 

The sequence in which the technologies are introduced into the SD model is used as 
the control variable for the overall model. For later use as well as for verification and 
validation (V&V), an interface for simplified input of the manipulated variables should 
be created (Hechl 1995). Two methods are available as V&V techniques. One is moni-
toring by changing the sequence of introduction and logically tracing the influence on 
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the key figures, and the other is a cause-and-effect analysis. In the latter, individual 
elements are changed and the consequences of the change are logically outlined step 
by step up to the key figures. Subsequently, it can be checked in the simulation whether 
the change affects the key figures as derived. 

4.4.5 Experiment Design of Simulation 

By considering of experiment design from Aull (2013), all simulations with the model 
created run according to the following procedure (see Figure 4-38). First, the freely se-
lectable parameters (see Table 4-15) are entered into the input area. After starting a 
simulation run, the entered data are then transferred to the System Dynamics model. 
The start of each simulation is set to the current date, the simulation can be ended after 
10 years or when the KPIs no long change, so that a sufficient period is simulated. Each 
simulation year is based on a twelve-month calendar with 30 days per month, and the 
time increment of the simulation is one day. Starting from the defined initial state, an 
approximate value for all variables in the simulation model is calculated for each simu-
lation step size, which in turn represents the new initial state for the following simulation 
step. At the end of the simulation, the historical diagram of smart automation implemen-
tation and change of the KPIs are the final results displayed by the model. 
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Figure 4-38: Flow chart of the experiment design of simulation (A_Zhang 2019) 

Table 4-15: Setting of freely selectable parameter 

No. Parameter Value Remarks 
1 Implementation Rank [#] 1-14 12 smart automation technologies 

and 2 wildcard for further potential 
technologies. Additionally, the maxi-
mum value can be increased by add-
ing more wildcard. It depends on the 
number of technologies. 

2 Initial level [%] 0-100 The initial value is between 0 (the 
smart automation technology is not 
used at all) and 100 (the technology is 
perfectly implemented). 

3 Curve of implementation Sigmoid, 
Linear, 
Multi 
slope

Gradient of implementation. Further-
more, the curves could be also se-
lected during the implementation of 
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the simulation. That means, develop-
ers can switch anyone of the three 
curves during the simulation, the im-
plementation process will be automat-
ically updated according to the current 
selection after the switch actions. 

 

Summary 

The creation of the hybrid model was introduced in this section, which happens in par-
allel and in close coordination with the data collection. The production system can be 
represented in a DES model. At the same time, the technologies, their interdependen-
cies and their implementation can be mapped in an SD model. Finally, the two models 
can be connected via the initially determined process data to a hybrid model. 

4.5 Derivation of Implementation Strategy 

4.5.1 Description of Company Specific Assembly System in Simulation 

To identify the specific assembly systems in simulation, the input data which make the 
assembly system distinctive need to be gathered. In this work, the input data are com-
posed of five aspects: the specific location, status quo of assembly process, current 
situation of implemented technologies, important KPIs, and restrictions which need to 
be considered. 

The specific location needs to be figured out. Afterwards, the location criteria can be 
adapted by combining the process factors which is defined by typical company in Sec-
tion 4.3.1. Subsequently, the influence of location criteria on the smart automation tech-
nologies can be further analyzed. The specific adaption of interdependencies data 
based on Section 4.3.2 will be illustrated.  

The data of assembly process needs to be reviewed as the basic input to create the 
assembly system in DES simulation. In this section, the data of value stream analysis 
are essential components. 

The current status of implemented technologies must be analyzed, since some of the 
technologies have in many cases been partly implemented in the assembly system, 
such as RFID technologies. The initial implementation maturity degree will be consid-
ered by simulation, so that the simulated implementation strategy is more suitable to 
the specific assembly system. 
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Since the KPIs are a critical part for the assembly system, the specific KPIs need to be 
prioritized based on the company’s concern. For example, a company may consider 
quality to be more important than cost or delivery time. 

Regarding the constraints, the important factors will be specifically identified, such as 
the investment time limitation, and cost, which will be used to choose appropriate solv-
ers. 

After collecting the necessary data of a specific assembly system, the simulation can 
be adapted accordingly and provide the specific implementation strategy. 

4.5.2 Optimization of Implementation Strategy of Smart Automation 

After the input data were collected and outlined in Section 4.5.1, the object of this sec-
tion is to derive an appropriate implementation strategy for the companies.  

In order to make the decisions support, a deterministic model of binary linear program-
ming is established. In this model, some basic assumptions have been made. First of 
all, all information that an enterprise can learn is accurate and remained. Specifically, 
the amount of capital, requiring time, the costs and benefits of technology can be seen 
as given values when a company makes decisions. These values will not change with 
time and conditions. This assumption is also consistent with the actual situation that 
companies take into account when working out plans. When making plans, companies 
usually make predictions on various indicators and ignore the changes of these indica-
tors. In addition, it is assumed that there is no parallel implementation of technology 
development, which is required for the stability of the company's production process. 

The decision binary variables can be defined as follow:  means technology . 

 if technology  is selected,
 otherwise  Formula 4.17 

 

Considering company objectives, the KPI has been taken into consideration when it 
comes to the objective function. The investment on enabling technology can certainly 
bring advantages of KPI for companies, but it will accordingly have certain costs. There-
fore, companies should consider the relationship between them comprehensively when 
making decisions. Specifically, in terms of KPIs, Quality (QUA), Cost (Cost), Delivery 
(DEL) and Availability (AVA) have been selected. According to the KPI structure, the 
following form of objective function can be obtained: 
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  Formula 4.18
 

where, 

  Formula 4.19

 

  Formula 4.20

 

  Formula 4.21

 

  Formula 4.22

 

 is the total amount of technology available and  represents the mutual incen-
tive coefficients between  and .  is corresponding weight for KPIs. 
There are interdependencies between technologies, which is also mentioned by (Aull 
2013). One of the interdependencies can be incentive, which means that the effective-
ness or efficiency of the supported technology is improved by the implementation of the 
other. Therefore, the influence of different technologies on KPI indicators is not simply 
superimposed, but mutually reinforcing. This coefficient is determined by the character-
istics of technology itself. 

Next, the constraints are considered. The constraints faced by companies are more 
complex, but in general, most companies face the following constraints, as can be de-
duced based on the input of Section 4.5.1. 

1) The total investment does not exceed a predetermined value.  

2) The implementation days do not exceed a predetermined value. 

These constraints are easy to understand. The capital a company can use is limited, so 
the total number of technologies it chooses, and the total investment have an upper 
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bound. Meanwhile, when making a plan, time is the first thing that a company will take 
into consideration, so the implementation days must be predetermined.  

The above constraints can be written as a linear function of decision variables. The 
formulas are as followed: 

  Formula 4.23 

 

  Formula 4.24 

 

where  and  are all constant values that represent the maximal 

amount of investment and the requiring implement days respectively.  describes im-
plementation days and  represents investment cost of individual technology. 
These could be identified by specific company. 

4.5.3 Evaluation of Implementation Strategy 

A large part of the interactions was quantified in Section 4.3 using expert interviews. 
Accordingly, it is necessary to ensure that the previously selected sequence of imple-
mentation remains stable in the event of deviations in the data. A suitable tool to perform 
a sensitivity analysis for such cases is the Monte Carlo simulation. 

Monte Carlo simulations can be used for various purposes in which individual quantities 
are to be varied with a probability distribution. Accordingly, it can also be used for the 
sensitivity analysis of the selected sequence. Sensitivity means how much the output 
changes when there are deviations in the input. Robustness, on the other hand, would 
mean that similar results can be obtained with little adjustment of the model, should 
deviations occur. Therefore, the lowest possible sensitivity is desired (Zio 2013).  

First of all, it is necessary to determine which parameters have to be varied. Theoreti-
cally, all values occurring in the model could be changed with Monte Carlo simulation. 
However, this would lead to a fuzziness of the results, since it is not obvious what 
caused the deviation of the output. Furthermore, there is a large amount of data empir-
ically collected in the production system for which a deviation outside their already de-
fined probability distributions is unlikely. Accordingly, the three data sets are focused 
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since they were quantified by expert interviews and therefore have the highest degree 
of uncertainty. They include: the influence of location factors on technology implemen-
tation, the mutual support of technologies and the influence of technologies on process 
data. Based on (Kaiser 2014), it is assumed that expert estimates may well contain 
quantitative inaccuracies, but are qualitatively very precise. Consequently, only those 
values in the three data sets are varied for which there are correlations according to the 
experts. This means that values that are one or zero have no correlation or support and 
are therefore not changed in the Monte Carlo simulation. For this reason, no prerequi-
sites are varied, since these are qualitative in nature. 

After the parameters to be varied have been determined, the variation range must be 
defined. Since only limited information is available about the realistic distribution of the 
parameters, a symmetrical triangular distribution is recommended. The previously used 
value represents the mean value of the distribution and the deviation of the expert esti-
mation is a maximum of 10% in both directions. In addition, it is necessary to determine 
how many simulation runs with differently varied parameters should take place. As a 
rule of thumb, the number of runs should at least correspond to the number of varying 
parameters (Rubinstein & Kroese 2016). It is also important that the seed is not fixed, 
otherwise the sensitivity analysis will only be performed on a single probability instance 
of the production system. 

The result is a distribution of the target value. For detailed analyses, it is advisable to 
vary the three data sets both together and separately in a Monte Carlo simulation. The 
latter allows the identification of critical data with a large influence on the output values. 
The analysis can be done with simple statistical means. Doubilet & Begg et al. (1985)  
recommend the use of the mean value and the standard deviation. The mean value 
should correspond as closely as possible to the value previously determined in Section 
4.3.2 and the standard deviation should be as small as possible. In order to evaluate 
the latter, the probability that the current order is better than the second-best order de-
termined in Section 4.5.2, despite deviations, can be determined using the probability 
distribution determined. 
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5 Validation 
In this section, the practical application of the approach defined in the previous section 
takes place. As already mentioned, the simulation model under investigation serves the 
evaluation and development of regionalized smart automation implementation strate-
gies. 

The practical applicability of the method must be proven and enabled in the validation. 
Therefore, the validation is carried out in cooperation and coordination with an industrial 
company. 

5.1 Validation Setup and Procedure 
This section is dedicated to the setup of the validation of the approach for regionalized 
smart automation implementation strategies. The aim is to describe a successive pro-
cedure for comprehensive verification of correctness and suitability as well as for sim-
ultaneous further development and improvement of the approach. The focus is primarily 
on the inclusion of expert opinions and the use of real data from a manufacturing com-
pany. Furthermore, the adaption of the simulation model's functionality according to the 
requirements of industrial companies to ensure its suitability for practical use plays also 
an important role within the developed approach. 

Hence, besides on-site visiting to collect necessary basic data such as data of value 
stream mapping in terms of assembly systems, the validation consists of three major 
phases. First, the regionalized catalog is reviewed and subsequently, the interdepend-
encies between the location factors, smart automation technologies and process data 
are discussed with experts from the company in the second phase. The third phase 
revolves around updating the model’s functionality according to their specific needs and 
characteristics. Last, in the fourth phase, the model is conducted based on the com-
pany’s input a suitable smart automation implementation strategy is formulated. The 
results are discussed with the company’s management. Figure 5-1 illustrates the vali-
dation procedure. 
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Figure 5-1: Procedure of the Validation (A_Thiele 2020) 

5.2 Pilot Application with an International Manufacturing Busi-
ness in China 

The Beijing plant manufactures hydraulic pumps, motors and transmissions. The site in 
Beijing has about 1300 employees and produces in shifts. Part of the strategy of the 
Beijing plant is to become a leading user of Industry 4.0 applications and solutions. To 
achieve this goal, several solutions have already been implemented and documented 
(see Figure 5-2). One example is the use of RFID for replenishment in the production 
of pumps and motors, which has reduced the time needed to replenish the pumps from 
six to four hours.  

As a result, the choice of this location as a support and information source offers an 
excellent opportunity to incorporate the experiences of the implementation process 
into the investigation. At the same time, the Beijing plant can also be seen as a poten-
tial user to develop the implementation strategy of smart automation technologies as 
part of an intelligent production strategy. Accordingly, the application of the proposed 
method is being carried out in close cooperation with the company and reflects the 
wishes and requirements of the company. 
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Figure 5-2: Overview of I4.0 Project Navigation at Beijing Plant 

Object of validation 

The assembly system of a control block is taken as the pilot in the validation. The reason 
is that the control block (see Figure 5-3) and the pump form the powerful heart of the 
excavator and t is also the point where further development of the flow sharing system 
starts. Therefore, the control block plays an important role in the product cluster. The 
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research of its assembly system has a significant impact on the plant. Additionally, this 
kind of control block has also been demonstrated in GAMI test bed, where the experi-
ments of the initial data collection were conducted. 

 

Figure 5-3: Control block for compact excavators 

In terms of control block, the production process starts with the delivery of the raw ma-
terials and the production of the individual valve slice. During this process the blocks 
are milled and washed, and holes are drilled. Before the slices are sent to the assembly 
line, an optical quality inspection is carried out using an endoscope. In the assembly 
line, the assembly process of the individual slice to form a valve block is divided into 
the sections of slice assembly, block assembly and water bath leakage testing. After a 
functional test, the blocks are painted and finally packed and shipped. Since only the 
assembly process of the individual slice is of importance for this research, the pro-
cesses are focused accordingly from the assembly of the slice and the composition to 
a block (see Figure 5-4). 
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Figure 5-4: The overview of production process of control block 

Problem definition 

As Figure 5-2 showed, the I4.0 project navigation has already been developed in this 
plant. The technologies have been listed in the matrix compose with different perspec-
tive IT systems, logistics, and production on the one hand, available, ongoing and plan-
ning on the other hand. The advantage of I4.0 project navigation is to bring the overview 
of current and future advanced technologies. Nevertheless, it cannot provide a clear 
implementation strategy regarding the implementation sequence of technologies for the 
plant, especially for the assembly system of the control block, which is currently chal-
lenging the decision-makers. In terms of smart automation, the underlying problem is 
the difficulty of formulating a suitable implementation strategy for twelve selected smart 
automation technologies by considering the location factor influence of Beijing. For ex-
ample, according to the plant manager, the introduction of an AGV is only worthwhile if 
the wage level in the region under consideration is above average and thus hiring work-
ers is more expensive than an AGV. Furthermore, the impact of individual technologies 
and isolated solutions on specific applications can be assessed well. The integration of 
a whole range of technologies and their effects on the overall performance of the as-
sembly system are more difficult to predict, especially because of the interdependences 
of technologies already mentioned. 
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5.2.1 Review of the Regionalized Catalogs 

According to the output of Section 4.2, the identified catalogs were discussed with five 
experts from different departments of the Beijing plant. The experts agreed that taxes 
and energy costs do not play an important role for their plant since the ration between 
revenue and taxes is stable for the foreseeable future. The energy cost itself is not 
critical, but energy consumption by considering environment and sustainability is. In 
Beijing, there is strict regulation on the reduction of CO2 emissions to protect the envi-
ronment. For this purpose, an energy efficiency team has been organized in the plant 
with aim to reduce CO2 emissions year after year. In term of the KPI catalog, the experts 
have agreed that the quality, cost and delivery as well as availability should be taken 
into account.  

As the result, the identified catalog is agreed by experts. The reviewed catalog is intro-
duced as followed (see Figure 5-5). 

 

Figure 5-5: Revision of regionalized catalogs 
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5.2.2 Adaption of Interdependencies 

As illustrated in Section 4.3.1, the company profile needs to be defined before the re-
searcher can identify interdependencies between location factors and smart automation 
technologies. The Beijing plant is identified as Type 3, which is the focus type of this 
work. 

Regarding the interdependency between location factors and smart automation tech-
nologies, further analysis of company profile is conducted for Beijing plant. The updating 
of the site profile using real data was done via interviews with experts and representa-
tives of the site. With the help of employees from the controlling department, the location 
profile of Beijing plant is shown in Figure 5-6.  

 

Figure 5-6: Comparison between Beijing plant and sample company 

Figure 5-7 demonstrates the difference between Beijing plant and the sample plant 
(benchmarking) in Section 4.3.2. The labor costs, the availability of skilled workers, staff 
turnover, transport costs, and material costs are lower, while the cost of capital is higher 
than benchmarking. For transferring to quantity value, benchmarking is taken as refer-
ence standard and given the threshold value 1.0. Based on the different level, the vari-
able value could be 0.95 or 0.90 on the one hand, and 1.05 or 1.10 on the other hand. 
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Therefore, the qualitative comparison with the sample company is converted to the 
quantitative value (see Table 5-1), which will be calculated as the influence on smart 
automation technologies in the model. In the Table 5-1, the quantitative value of location 
profile for the Beijing plant are marked with green. The results indicate that except the 
cost of capital, the Beijing plant has lower cost than the sample plant in the fields of 
labor cost, transport cost, and material cost. Meanwhile, the Beijing plant has lower staff 
turnover and availability of skilled workers.  

Table 5-1: Location profile with quantitative value of Beijing plant (A_Thiele 2020) 

Location 
Factors Indicator Level 1 Value Level 2 Value Level 3 Value 

Labor costs 
Average 

annual wage 
[RMB] 

<60,000 0.90 60,000-
100,000 0.95 >100,000 1.0 

Cost of  
capital 

Weighted-
financing 
cost [%] 

<6% 1.05 6%-6.5% 1.0 >6.5% 0.95 

Availability 
of skilled 
workers 

 Low 0.90 Medium 0.95 High 1.0 

Staff  
turnover [%] <10% 0.90  10%-20% 0.95  >20% 1.0 

Transport 
costs 

Transport 
cost/Turn-
over [%] 

<3% 0.95 3%-10% 1.0 >10% 1.05 

Material 
costs 

Regional raw 
material cost 

[bn.RMB] 
<5 0.90 5-10 0.95 >10 1.0 

Labor 
productivity  Low 0.90 Medium 0.95 High 1.0 

 

Based on the Table 5-1, the adaptive influence between location factors to smart auto-
mation technologies can be derived in Figure 5-7 based on the result of the sample 
plant in Section 4.3.2. For instance, the value of influence from Labor costs to QR-Code 
is 0.98, which equals to 1.03 (value of Sample company in section 4.3.2) multiplies 0.95 
(value of Beijing plant by comparison with Sample company in Table 5-1). 

The total influence can be determined by column multiplication. For example, the com-
prehensive influence of QR-Code technology is 0.91, which means the product of influ-
ence numbers in column T3 of Figure 5-7. This is done before the model is executed 
and the values are to be saved in an Excel spreadsheet. When the model is executed, 
for each technology that is modeled as an agent, the base effort is offset against the 
total influence of the location factors. 
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Figure 5-7: Adaption of interdependencies between location factors and smart automation 
technologies 

In terms of interdependency among smart automation technologies, the experts of the 
Beijing plant illustrated the situation in their domain. It can be seen here that the indi-
vidual technologies in particular support data-driven technologies such as Manufactur-
ing Execution System (MES) or Digital Shopfloor Management (DSFM). Furthermore, 
the model is programmed in such a way that supporting and prerequisite dependencies 
are mutually exclusive. Considering that the experts are representative of different de-
partments, it is not possible to give the specific weight for calculation of support ration 
among smart automation technologies. Thus, the average value according to the expert 
feedback is adopted. For instance, support ration from Pick by light (PBL) to Individual 
working instruction (HMI) is 10% based on one group of experts, while the other group 
of experts recommend the support ration could be 30%. Therefore, the value of support 
ration, which is used for further simulation, is decided as 20%. In addition, the maximum 
cumulative support is limited to 25 percent. The only exceptions here are the MES and 
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DSFM technologies, where the technology support can assume a maximum of 50 per-
cent. Meanwhile, the experts shared the knowledge regarding technology prerequisite. 
For example, the QR Code (QR) is prerequisite for implementing individual working 
instruction (HMI) by the complex assembly systems. Similarly, Individual working in-
struction (HMI) is prerequisite for Intelligent screwdriver (INS). The adaption of interde-
pendencies among technologies are introduced in Figure 5-8. 

 

Figure 5-8: Adaption of interdependencies among smart automation technologies 

The basic expenditure of the technology implementation was also carried out within the 
framework of the validation in dialogue with experts from the company. The results of 
the interviews are shown in Table 5-2. The numbers marked in red indicate that the 
experts at the Beijing plant provided a different value in comparison with experts by 
technology providers in Section 4. More specifically, the lower values for INS and ATA 
are particularly striking. This is due to the fact that by considering specific industry do-
main, these technologies are supplied and implemented in advance and are part of the 
equipment of the assembly line. 

The expert interviews and shop floor inspection also provide data on the initial imple-
mentation levels of smart automation technologies. The assembly line features the in-
telligent screwdriver (INS) in combination with the automatic torque adjustment (ATA) 
and is fully utilized. Therefore, an implementation level of 100 percent can be assigned 
to these technologies. The Workpiece carrier with RFID tags (WCR) and Human Ma-
chine Interface (HMI) have been installed from hardware perspective, nevertheless the 
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integration of software is needed, and therefore the initial level is 50%. The QR-Code 
(QR) is just in the beginning phase, so the initial level is around 10%. 

Table 5-2: Adaption of base effort for the implementation of the technologies without influ-
ence of location factors (A_Thiele 2020) 

No. Smart  
Automation 

Efforts 
[days] 

Initial implemen-
tation level [%] 

No. Smart  
Automation 

Efforts 
[days] 

Initial implemen-
tation level [%] 

T1 PBL 60 0 T7 ATA 90 100 
T2 HMI 180 50 T8 CPM 96 0 
T3 QR 120 10 T9 WCR 78 50 
T4 INS 90 100 T10 DSFM 365 0 
T5 WN 84 0 T11 MES 288 0 
T6 AGV 264 0 T12 SG 180 0 

 

In order to obtain real data for the characterization of the assembly system, a value 
stream analysis was carried out with subsequent inspection and visit to the assembly 
line on the shop floor (see Figure 5-9). 

 

Figure 5-9: The layout of assembly system in Beijing plant 

The assembly process takes place at six direct workstations in the line layout and can 
be provided with a different number of workers depending on the workload. The work-
pieces are transferred according to the FIFO principle and without intermediate storage. 
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The cycle time for the assembly of eight slices, which are then joined to form a block, 
is 14.8 minutes. Divided among the eight slices, this results in a cycle time of 111 sec-
onds per slice. The cycle time for block assembly is 12 minutes and it results in a cycle 
time of 90 seconds per slide (see Figure 5-10).  

 

Figure 5-10: Value stream analysis of assembly system of Beijing plant 

Based on further expert interviews with employees from the quality and maintenance 
areas, times for MTTF and MTTR can be determined. The uptime has been calculated 
and equals 90%. The value for the first pass yield (FPY) of the assembled blocks, i.e. 
the proportion of good parts to all parts, can be calculated using the rejection rate during 
quality inspection and is 94.4 percent. Table 5-3 summarizes all process data that re-
sulted from the value stream analysis, shop floor inspection and the expert interviews. 
This also corresponds to the format in which the values are read into the simulation 
model and must also be subjected to a consistency check. For this reason, the units in 
which the data are available are also shown in Table 5-3.
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Table 5-3: The process data based on Value Stream Mapping (VSM)  

Station 
[No.] 

WIP 
[Pcs] 

Cycle time 
[Sec.] 

FPY 
[Percent] 

Operator 
[Quantity] 

MTTF 
[Day] 

MTTR 
[Day] 

Uptime 
[Percent] 

1 1[24] 110 100 1 6.42 0.07 90 
2 1 110 100 1 6.42 0.07 90 

3 1 110 100 1 6.42 0.07 90 

4 1 110 100 1 6.42 0.07 90 

5 1 110 100 1 6.42 0.07 90 

6 1 90 94.44 1 6.42 0.07 90 
 

The effects of the data on the performance of the assembly system are obtained by 
modeling the influence of the implemented technologies on the process data. These 
are of high relevance for the interface between the technology implementation and the 
assembly system. The collection of these data was carried out by means of experiments 
and was subsequently verified and validated by means of expert interviews with the 
Beijing plant (see Table 5-4). Finally, the cycle time, uptime and FPY are as key process 
data for further analysis. 

Table 5-4: Influence of Smart Automation Technologies on Process Data 

 

According to the interdependencies between location factors and KPIs that were deter-
mined in Section 4.3.5, the experts of Beijing Plant emphasize Quality (on the other way 
is improvements in FPY), Cost (on the other way is savings in cycle time), Delivery (on 

Influence of Smart Automation technologies on Process Data 
Smart Automation  
technologies 

Cycle Time Uptime FPY 

PBL -0.02 0.03 0.33 
HMI -0.08 0.11 0.05 
QR -0.05 0.09 0.05 
INS 0.00 0.00 0.33 
WN -0.07 0.03 0.33 
AGV 0.00 0.10 0.05 
ATA -0.04 0.05 0.05 
CPM 0.00 0.00 0.05 
WCR -0.06 0.08 0.00 
DSFM -0.05 0.05 0.10 
MES -0.04 0.06 0.00 
SG -0.05 0.00 0.10 
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the other way is reduction in WIP) and Availability (on the other way is improvements in 
uptime) are top four KPIs, which need to be focused on the validation. Since one fierce 
flow has been already implemented in the assembly of Beijing plant (see Figure 5-10), 
the WIP can actually be not changed. However, it is good to visualize the WIP in the 
simulation model by request. The connection between process data and these four KPIs 
plays an important role in analyzing the implementation strategy of smart automation.  

Thus, the bilateral interdependencies are adapted based on the expert interviews at the 
Beijing plant, and these data are necessary input data for the modeling and simulation 
in the next step. 

5.2.3 Adjustments to the Model 

The basic structure and functionality of the simulation model has already been ex-
plained in detail in Section 4.4. A more detailed analysis, in which the technical imple-
mentation is discussed in particular, is provided in Section 5.2.3 (see Figure 5-11). 
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Figure 5-11: The framework of modeling and simulation for assembly system in Beijing 
(A_Thiele 2020) 

Establishment of the simulation model 

In this step the simulation model for the assembly system of the Beijing plant is de-
scribed and modularized. The individual modules are examined in more detail. All data 
and functions used are listed within this Section. 

For the Beijing plant, the simulation model is implemented in the AnyLogic© simulation 
environment. Its graphical user interface and the large selection of different libraries 
allow intuitive operation and adaptation of the model. When executing the model, the 
user is asked to define the ranking of the technologies and to determine the course of 
the implementation. The implementation process is implemented using system dynamic 
modeling. The technologies themselves are programmed as individual instances of an 
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agent type. This enables the inclusion of the various interactions with other technologies 
and the location factors. The assembly system with its individual workstations is 
mapped using agent-based modeling. The processes and procedures within the indi-
vidual workstations are represented by event-discrete sequence chains. System dy-
namic modeling is used to link the technology implementation and the assembly sys-
tem. The performance of the assembly system is measured by means of various key 
figures, which are visualized in curve diagrams together with the implementation pro-
gress and the effect of the different technologies. Figure 5-12 gives an overview of the 
simulation model implemented in AnyLogic. A more detailed analysis of the individual 
components will follow later in this section. 
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Figure 5-12: Overview of the simulation model 



Validation 127 
 

 

The input part includes the parameters of the selected technologies, which must be 
entered in the input mask during model execution, as well as the process data for the 
individual workstations of the assembly line and the characteristics of the various loca-
tion factors. The data is linked to the model in various ways or implemented directly. All 
functions implemented in AnyLogic as well as the stored matrices for calculating the 
interactions between technologies, location factors and process data are part of the 
functionality. This section represents the largest part of the simulation model. The inter-
face between the different agents and the system-dynamically or event-discretely sim-
ulated areas of the model is with particular importance. The calculation and the repre-
sentation of the key figures, however, belong to the output part. 

Analysis of the input part 

The main components of the input part have already been identified. These include the 
catalogs of influence factors, the process data of the assembly system, the net of inter-
dependencies of influence factors, the basic effort, the initial implementation levels and 
implementation curves of smart automation technologies, as well as the optimized se-
quence based on analysis of weighting of KPIs and constraints. Figure 5-13 provides 
an overview of the input part of the model and shows both the data sources and the 
links between the data and the simulation model. 

First, the process data can be collected by means of a value stream analysis and expert 
interviews and should be saved in a Microsoft Excel™ spreadsheet so that it can be 
read in automatically by the simulation software. For each process step, the initial val-
ues for working in process (WIP), cycle time (CT), first pass yield (FPY), number of 
operators (#OP), mean time between failures (MTBF), mean time to repair (MTTR), and 
uptime should be recorded. Second, the net of interdependencies should also be saved 
in an Excel spreadsheet. Third, the data on the implementation status and effort of each 
technology must also be adjusted before the model is executed. The basic efforts for 
implementing the technologies are given in the number of days, while the initial imple-
mentation levels of the individual technologies in percent need to be recorded. In addi-
tion, the implementation curves can be determined according to the preference of plant. 
Finally, the initial sequence in which the technologies are to be implemented are ran-
domly figured out at first. 
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Figure 5-13: Input part of the model (A_Thiele 2020) 

Analysis of the functioning 

The investigation of the mode of operation essentially includes the presentation and 
implementation of the cause-effect relationships. This includes the three matrices, 
which contain the interactions between technologies, location factors and process data. 
Furthermore, the control and mapping of the assembly system and the systematics of 
key figure measurement form an elementary part of the mode of operation.  

The first correlation within the functioning of the model is the impact of the location 
factors on the effect and implementation of smart automation technologies. The com-
prehensive influence can be determined by column multiplication (see Figure 5-7). This 
is done before the model is executed and the values are to be saved in an Excel spread-
sheet, as already described in the input part. When the model is executed, for each 
technology that is modeled as an agent, the base effort from Table 5-2 is offset against 
the total influence of the location factors. 
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Another significant influence on the effect of the technologies is created by their combi-
nation. The model distinguishes two types of interdependence (see Figure 5-8). First, 
one technology can be regarded as a prerequisite for the effectiveness of another tech-
nology, whereby the dependent technology only develops its effect when the prerequi-
site technology is implemented. Secondly, the support means that a dependent tech-
nology becomes more effective by implementing another technology. 

The effects of the data on the performance of the assembly system are obtained by 
modeling the influence of the implemented technologies on the process data (see Table 
5-3). These are of high relevance for the interface between the technology implemen-
tation and the assembly system.  

The mapping of all interdependencies between technologies, location factors and pro-
cess data in the simulation model is done by means of hybrid modeling. The interde-
pendencies between the technologies are implemented by agent-based modeling 
(ABS). Figure 5-14 shows the instance of such a technology agent. The number of days 
required for the complete implementation is calculated by the model based on the basic 
effort and the influence of the location factors. The parameter “precondition_level” ex-
presses whether a prerequisite technology has already been implemented. Further-
more, the supporting effect of other technologies on the considered technology is in-
cluded by the parameter “supporting_level”. Together with the parameter “implementa-
tion_level”, which represents the current progress of the implementation, the total influ-
ence of the technology is calculated. 
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Figure 5-14: Modeling of smart automation technology based on agent-based modeling ABS 

The assembly system in which the smart automation technologies are to be imple-
mented is also modeled on an agent-based and discrete event basis (shown in Figure 
5-15). Here, each processing station is an instance of the workstation agent as meta-
model, within which an event-discrete process chain is defined, which is represented 
by different modules of a modeling library within the simulation software. At the begin-
ning of this process chain, the workpieces are waiting to be machined. This is followed 
by the setting up of the machine, the actual work process and the release from the 
machine. The workpiece is delivered to the subsequent quality inspection and the result 
of the inspection determines the first pass yield (FPY). Faultless parts move on to the 
next station, whereas defective parts are sorted out from the simulation. 
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Figure 5-15: Modeling of assembly process based on ABS and DES 

Also modeled within this agent, is the link between the technological influences and the 
process data and thus the effect on the performance of the assembly system. The func-
tion “impact_Calculation” calculates the new cycle time “SmAu_CycleTime” caused by 
the smart automation technologies, which then flows into the calculation of the new 
processing time for the workstation. The same logic is applied to both uptime and quality 
rate. The system dynamic relationships shown in the middle of Figure 5-15 are therefore 
used to control the performance of the assembly system. Here the lower dynamic vari-
ables “procTimeQC”(the time for visual check inside of assembly process), “proc-
Time”(the time for pure assembly activities), “upTime” and “defectRate” are directly 
linked to the corresponding blocks of the event-discrete process chain within the mod-
eled station, In this work the procTimeQC is negligible, since only a very short time for 
visual check are spent. 

Control and progress of the implementation of the technologies are achieved by means 
of system dynamic modeling. Two stocks simulate the implementation effort of the tech-
nologies. The limit of the receiving stock corresponds to the number of days influenced 
by the location factors. Once a technology is fully implemented, the implementation of 
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the next technology will start according to the initial sequence previously defined by the 
user. The parameters and events required to control the implementation are shown in 
Figure 5-16. 

Figure 5-16: Modeling of Implementation of smart automation based on System Dynamics 
(SD) (A_Thiele 2020) 

Analysis of the output part 

The output part of the simulation model is made up of various key figures that reflect 
the performance and operational behavior of the assembly system. These key figures 
are calculated in the simulation model using dynamic variables that obtain their values 
from the modeled assembly line. The calculation logic of the key figures is shown in 
Figure 5-17. The key figure “Quality_Change” calculates the improvement in the quality 
rate over time, whereby the quality rate after the one-week settling phase is divided by 
the current quality rate during the technology implementation. The rest key figures fol-
lows the similar calculation logic as the key figures Quality.  
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Figure 5-17: Modeling of KPIs calculation 

Verification and validation of models 

The verification and validation (V&V) of models composes of three major aspects, 
namely the input part, the functioning and the output part. Since the input part has been 
already mentioned in Section 5.2.2, the other two aspects are illustrated in the following. 

In term of functioning, the methodology of dry run (testing) in combination with monitor-
ing creates the possibility to recalculate the implementation of a technology on paper 
and then to verify the result with an isolated experiment in the simulation model. In this 
way, the correctness of the model can be specifically checked. Using the Wireless nut 
runner (WN) and Pick-by-Light (PBL) technologies as examples, the individual aspects 
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of the functioning of the model can now be verified. From the location characteristics of 
the Beijing site, a value of 0.79 is obtained for the Wireless nut runner (WN) technology 
(see Figure 5-7). The basic effort is 84 days (see Table 5-2). Consequently, this results 
in an adjusted implementation time of 106.33 days. In the simulation model, the imple-
mentation period is 106.09 days. Without the conditional technology Automatic torque 
adjustment (ATA), the Wireless nut runner (WN) technology should not have any influ-
ence on the key figures or the implementation of another technology. This becomes 
clear if the Pick-by-Light (PBL) technology is implemented directly afterwards. The spe-
cial feature of the Pick-by-Light (PBL) technology is that it has no conditional technolo-
gies, which means that its effects can be seen regardless of its ranking. Although Wire-
less nut runner (WN) should actually support the Pick-by-Light (PBL) technology by a 
factor of 0.1 (see Figure 5-8), the overall effect of Pick-by-Light (PBL) without the fulfilled 
precondition of Wireless nut runner (WN) remains at 1. This effect relationship is also 
represented in the model correctly.  

The event validity test can be used to further refine the previous experiment. Since 
Workpiece carrier with RFID tags (WCR) represents the prerequisite technology for Au-
tomatic torque adjustment (ATA) and ATA in turn conditions Wireless nut runner (WN), 
the effect of Wireless nut runner (WN) would only have to unfold with the implementa-
tion of Workpiece carrier with RFID tags (WCR). An experiment with the sequence Au-
tomatic torque adjustment (ATA), Wireless nut runner (WN), Workpiece carrier with 
RFID tags (WCR) should prove this connection. Automatic torque adjustment (ATA) 
and Wireless nut runner (WN) can only develop their effect when the event of Work-
piece carrier with RFID tags (WCR) implementation occurs. This should also occur lin-
early in the context of a linear implementation curves. Figure 5-18 contains the result of 
the event validity test. Here it is clearly evident that the effect of the technologies is only 
generated with the implementation of Workpiece carrier with RFID tags (WCR). The 
figure also shows that the verification and validation (V&V) measures are applied in 
combination. Thus, the animation and cause-effect graphs support the V&V process. 
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Figure 5-18: Event validity test of smart automation technologies (A_Thiele 2020) 

Another meaningful V&V measure is the limit and error implementation test. The two 
limits of the implementation strategies to be tested by the simulation model are the 
implementation of no technology or all technologies at the same time. Consequently, it 
would be expected that in the first case, there would be no effect on the performance 
of the assembly system due to the technologies. In the second case, it is to be expected 
that all technologies will have their full effect approximately simultaneously and that the 
simulation model will be automatically terminated after a period of 60 days of settling of 
the simulation model, the longest implementation period and a subsequent 60-day sta-
ble phase. According to theoretical calculations, this should be the MES technology with 
an implementation period of 360 days (Basic effort days 288 in Table 5-2 is divided by 
comprehensive Influence of location factors 0.8 in Figure 5-7). Consequently, the sim-
ulation model would have to terminate automatically after 480 simulated days. Figure 
5-19 shows the results of the two limit tests and confirms the assumptions made, 
thereby increasing confidence in the correctness of the model. 
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The measure of the targeted error implementation can be recognized by the calculation 
of the implementation efforts. For example, if a value of 0.5 is assumed for the site-
specific support factor, the implementation time would have to be doubled. A simple 
isolated experiment on the WCR technology reflects this constructed fact. Instead of 
the basic implementation period of 78 days, it is now 156 days. This finding also helps 
to prove the correctness of the model. 
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Figure 5-19: Limit test for implementation strategy 
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The V&V of the output part mainly comprises the verification of the KPIs generated by 
the model. Since the KPI structure is the basis for decisions on an implementation strat-
egy by the management of the company, the correct calculation of the key figures and 
their suitability is of particular relevance (see Figure 5-20).  

 

Figure 5-20: Limit test for KPIs 

Experiment Design of Simulation 

Based on the Section 4.4.5, the experiment design of simulation for the Beijing plant is 
illustrated as follows. 

It is possible to consider more than the 12 technologies already identified. In principle, 
the simulation model is designed in such a way that the twelve technologies can be 
exchanged at will. However, this requires some renaming of variables and instructions 
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in the code. The data used in the matrices must also be collected for the new technol-
ogies and entered in the corresponding Excel tables. In order to prevent the adjust-
ments in the program code, but still be able to include new technologies in the model, 
two placeholder technologies are modeled. These are implemented in the program 
code as wildcard_1 and wildcard_2 and can be assigned any new smart automation 
technologies. The run indices and variable fields within the program code must be 
adapted accordingly. For the user of the model, only the data for the input part and the 
functionality of the model need to be entered into the Excel tables. Thus far, a total of 
14 technologies can be considered within the model, but it can be easily extended by 
adding the new “wildcard_x”.  

The KPIs are based on the Quality Cost Delivery Availability (QCDA) framework of the 
industrial company. Quality, Cost and Availability have been measured by quality rate, 
cycle time, and uptime, respectively. Delivery is represented by the amount of Work In 
Process (WIP), which can be automatically calculated in the simulation model. In addi-
tion, the model's settling phase has been increased to 60 simulated days. At the end of 
the 60 days, the current values of the key figures are stored. This happens at time .  

The quality is still recorded via the First Pass Yield (FPY) and is calculated from the 
proportion of parts found to be good in relation to all parts produced. The influence of 
smart automation technologies on machining times is measured and mapped by the 
sum of the shortened cycle times, which consist of cycle times for machining and quality 
control (visual inspection). For this purpose, the individual times from each station must 
be added together. A cost rate can be applied to the cycle time saved, which converts 
the time saved into savings in operating costs. The delivery improvement is represented 
by reduction of Work In Process (WIP). Additionally, the availability rate of the assembly 
system is represented by uptime. The increased availability is based on improvement 
of uptime. 

All KPIs have in common that they are recorded after the settling phase and thus before 
the first implementation of the technologies, in order to reflect the status quo. In the 
further curve of the implementation of the technologies, the absolute change progres-
sions of the four key indicators are shown in curve diagrams. A further curve diagram 
also shows the rate of change of the four key indicators in relation to the status quo. 
This enables the visualization of the influence of the technologies on the key figures in 
comparison to a scenario without implemented smart automation technologies. After all 
technologies are fully implemented, the current values of the KPIs are stored in static 
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variables. This happens at time . A direct comparison with the variables at time  
enables an exact calculation of the effects of the smart automation technologies on the 
KPIs. Figure 5-21 shows the key figure structure including the visualization using the 
example of a randomly selected implementation strategy.  

 

Figure 5-21: Structure and visualization of KPIs (A_Thiele 2020) 

5.2.4 Derivation of Implementation Strategy for the Beijing Plant 

Description of Specific Assembly System in Simulation 

According to the procedure in Section 4.5.1, the input data for the specific assembly 
system for control block SX12 are gathered, which are composed of five aspects. 

The specific location and location criteria have been achieved. The interdependencies, 
in particular, the impacts among location factors, smart automation technologies and 
KPIs were adapted. 
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The data of assembly process, which are used for simulation model, were obtained 
through on-site value stream mapping analysis. 

The current status of implemented technologies were analyzed. The smart automation 
technologies, such as Intelligent screwdriver (INS) and Automatic torque adjustment 
(ATA), were well implemented. Thus, the initial level was 100%. The Workpiece carrier 
with RFID tags (WCR) and Human Machine Interface (HMI) were installed from the 
hardware perspective, nevertheless the software needs to be integrated, therefore, the 
initial level is 50%, the QR-Code (QR) is just in the beginning phase, so the initial level 
are around 10%. Additionally, the initial level of the remaining smart automation tech-
nologies that have not been started so far is zero. 

According to the management board of the Beijing plant, the KPIs such as Quality, Cost, 
Lead Time and Availability are significant indicators with same priority. Therefore, the 
weight for these four indicators are equal. 

The constraints have also been analyzed and listed. The total investment and the im-
plementation days are two important constraints. The set-up cost of smart automation 
technologies as investment are carried out based on the input by technology providers 
(see Table 5-5). The implementation days are relevant to base efforts of smart automa-
tion technologies according to Figure 5-7 and Table 5-2. 

Table 5-5: Set-up costs of smart automation technologies 

Smart Automation technologies ↓ 
 

Unit  
(technology solution) 

Set-up Cost 
(RMB) 

Pick-by-Light (PBL) 1 2400 
Human Machine Interface (HMI) 1 25,000 
QR-Code (QR) 1 11,000 
Intelligent screwdriver (INS) 1 100,000 
Wireless nut runner (WN) 1 120,000 
Automatic Guided Vehicle (AGV) 1 200,000 
Automatic torque adjustment (ATA) 1 35,000 
RFID-based C-parts management (CPM) 1 100,000 
Workpiece carrier with RFID tags (WCR) 1 57,500 
Digital Shopfloor Management (DSFM) 1 700,000 
Manufacturing Execution System (MES) 1 400,000 
Smart gloves (SG) 1 80,000 
 

Optimization of implementation strategy of smart automation technologies 
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Following a step by step process for turning a problem statement into a mathematical 
statement, the optimization model will be adapted specifically to the assembly system 
of the Beijing plant.  

According to Section 4.5.2, the problem is that Beijing plant could not derive the proper 
implementation sequence for smart automation technologies so as to efficiently max-
imize the improvement of KPIs. The challenges lie in the analysis of the complex impact 
of smart automation technologies on assembly system by considering location factors. 
The goal is to derive the implementation strategy to achieve the maximum improvement 
of KPIs. The decision variables are such as improvement rate of significant KPIs. The 
constraints have been just explained namely total investment of capital and the imple-
mentation days of technologies. There are two scenarios considered which are decided 
by the Beijing plant. In the first scenario, the total investment and the implementation 
days are relatively sufficient to avoid the infeasible implementation due to the con-
straints. In the second scenario, the investment budget is limited to 1.5 million RMB and 
the implementation duration is maximus 1400 days. In this work, the first scenario has 
been explained in the following. The second scenario has been summarized in Appen-
dix A9. The actual inputs are gathered according to previous sub-Sections of 5.2. Sub-
sequently, all quantities have been specified mathematically. The optimization model is 
completed and correctness test is conducted.  

The collected equations in the optimization model are summarized according to Section 
4.5.2. The separate bounds, linear equalities, linear inequalities have been identified. 
Through the optimization tool (see Figure 5-22) based on Visual Basic for Application©, 
the optimized sequence is presented as followed (see Table 5-6). The Intelligent screw-
driver (INS) and Automatic torque adjustment (ATA) were not considered in the optimi-
zation of implementation sequence since they are well implemented in the Beijing plant. 
The implementation sequence for the remaining 10 of 12 technologies have been opti-
mized. 
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Figure 5-22: The optimization tool of implementation sequence of smart automation technolo-
gies 

Table 5-6: The ranking (top 5) of implementation sequence of smart automation technologies 

i PBL HMI QR WN AGV CPM WCR DSFM MES SG 
1 1 5 3 2 8 10 4 7 6 9 
2 1 5 3 2 8 9 4 7 6 10 
3 2 5 3 1 8 10 4 7 6 9 
4 2 5 3 1 8 9 4 7 6 10 
5 1 5 4 2 8 10 3 7 6 9 
… … … … … … … … … ... … 
Initial  
sequence 10 5 7 6 1 2 4 8 3 9 

 

Evaluation of implementation Strategy 

The results in the form of changes in the key figures are shown in Figure 5-23. At first 
glance, it can be seen that the reduction in production-time-related costs was achieved 
much earlier with a coordinated strategy than with the initial strategy (see Figure 5-24). 
The same applies to improving the availability of the plants. This can be explained, 
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among other things, by the interdependencies between the technologies and the con-
ditional requirements. The most important goal for the industrial company is the im-
provement of the quality of the manufactured parts. Here, the coordinated strategy 
shows a final quality rate of 98.2 percent.  

 

Figure 5-23: The optimal implementation strategy and its impact 

The use of the simulation model reveals the advantage of coordinated smart automation 
strategies in that the advantages of these technologies can be realized at an optimal 
time and thus significant productivity increases can be made early (see Figure 5-24). 
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Figure 5-24: The KPIs improvement by optimal- and initial implementation strategy (A_Thiele 
2020) 

According to Section 4.5.3, the result of Monte-Carlo simulation in a histogram is intro-
duced in Figure 5-25. Since the INS and ATA have been implemented in Beijing Plant, 
the implementation is starting with PBL at the rank 3. The mean value of the target 
reach 0.496 which is lower than the optimal value (0.502) in the previous simulation. 
However, it still shows the relative stable values by differences in expert input if more 
iterations are conducted. 
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Figure 5-25: The result of Monte-Carlo simulation for optimal implementation strategy 

It follows by optimization results that sequence  is the best implementation strategy 
for the Beijing plant, in terms of key indicators and stability in terms of data. Figure 5-26 
illustrates the implementation strategy in a Gantt Chart starting from September of year 
2020 and ending in 2026. It is assumed that the technologies are not simultaneously 
implemented, but only one technology at a time. 
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Figure 5-26: Overview of implementation strategy based on Gantt Chart 

The implementation can be divided into three phases. The first phase primarily aims at 
either the implementation of all important prerequisite technologies, or the technologies 
with strong impact of KPIs without prerequisite technologies. PBL, WN, QR, WCR and 
HMI are implemented. This phase lasts about one and half years and allows the imple-
mentation of various other technologies later on. In the second phase, MES and DSFM 
is able to be implemented and it takes about almost two years on the one hand. The 
MES system, on the other hand, must be implemented for a functioning DSFM. Finally, 
in the third phase, due to the small impact of AGV, SG and CPM, they will only be 
introduced towards the end.  
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6 Evaluation and Outlook 
Two major aspects are focused on in this section. First, the evaluation of the developed 
method is illustrated (Section 6.1) and subsequently, the future research is suggested 
(Section 6.2). 

6.1 Evaluation 
The proposed approach for developing a regionalized implementation strategy of smart 
automation within assembly systems applies the qualitative and quantitative analysis 
for interdependencies among location factors, smart automation and KPIs and derives 
the optimized implementation strategy enabled by hybrid modeling and simulation. The 
method is now evaluated according to the requirements defined in Section 3: 

1. to take into account the company-specific initial situation such as the relevant 
location factors and smart automation as well as KPIs 

2. to qualitatively and quantitatively calculate the interdependencies among location 
factors, smart automation and KPIs 

3. to derive an implementation strategy of smart automation technologies 

The approach accomplished the first requirement by applying a three-step method, 
namely literature review, questionnaire and expert interview. As a result of an extensive 
literature research, the long catalog, which consists of location factors, smart automa-
tion and KPIs was generated. The catalog was further carried out by prioritizing of long 
list through 79 useable samples of questionnaire from focused three economic areas of 
China. The finalized catalog was modified on the basis of expert interviews from the 
industrial domain. As a consequence, the significant location factors, the enabling tech-
nologies of smart automation and important KPIs were identified. These catalogs 
helped to better understand the corporate environment in the specific country, China in 
this context. 

The second requirement of the research was accomplished by investigating the net of 
interdependencies among location factors, smart automation and KPIs. The data were 
gathered from both questionnaire and expert interviews. The correlations were modeled 
in the qualitative way by positive, neutral and negative influences with different levels, 
such as strong or weak impact. The qualitative results were further transferred to quan-
titative results by expert interview, particularly the experts from technology providers 
and experiments based on testbeds at the GAMI. The former provided the detailed data 
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for smart automation technologies based on their professional knowledge and the latter 
collected the specific data for the interdependencies between smart automation and 
KPIs. The data by the experiments were able to reflect real production since the testbed 
provided a real production environment and demonstrated the enabling technologies in 
the assembly system sufficiently well. By analysis, the interdependencies among loca-
tion factors, smart automation and KPIs from experiments, expert interview and ques-
tionnaire, the influence mechanisms were worked out, which provided initial input for 
further modeling and simulation of implementation strategies.  

The third requirement of the research was accomplished by hybrid modeling and simu-
lation. System Dynamics (SD) models were used to represent the interdependencies. 
Since SD models did not take company-specific circumstances into account sufficiently, 
the modeling of Discrete Event Simulation (DES) was used to model the production 
system itself. Due to high complexity, the behavior and impact of smart automation 
technologies were modeled through Agent Based Simulation (ABS). The modular mod-
eling enables production line simulated by means of DES can be simply modified with 
drag and drop, and three different process curves of technology implementation could 
be chosen before or during simulation. In addition, the process data such as number of 
operations, mean time to failure and the initial implementation level of the smart auto-
mation technologies were considered in the presented model, which uses process data 
to describe production systems which provides both systematical and process perspec-
tives. Optimization and evaluation were conducted, which is crucial for derivation of the 
optimal and robust implementation strategy. Through the optimization, the implementa-
tion strategy was tailored to the specific framework conditions customer concerns, 
which increased the feasibility of implementation.  

6.2 Outlook 
Although the existence of interdependencies among location factors, smart automation 
and KPIs were investigated and the derivation of an implementation strategy based on 
hybrid modeling and simulation was demonstrated, there are still several interesting 
directions for future research. 

First, additional efforts would be also necessary to widen the scope of location factors 
and smart automation technologies as well as KPIs considered in the analysis of inter-
dependencies. The prototypical smart automation technologies studied are fewer than 
the number of existing application fields of CPPS and particularly Artificial Intelligence 
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applications in production. Due to new customer values and legislative initiatives, the 
consideration of environmental and sustainability-related aspects is moving more into 
the focus of manufacturing companies. An extension of the model to the simulation of 
the effects of smart automation on the reduction of environmental emissions can create 
considerable benefits for companies.  

Moreover, future research is encouraged to investigate such interdependencies at a 
more detailed level. For instance, whether a certain location factor affects a smart au-
tomation technology only at a certain maturity level can be studied. This would provide 
valuable knowledge with regard to the problem related to achieving of “perfect” maturity. 

Furthermore, the integration of CO2 emissions as one of KPIs in future research is 
suggested. Additionally, intangible KPIs, such as company image and customer rela-
tionships also need to be considered in the future. The customer looks forward to co-
operating with the partner, who is engaged to keep continuous improvement by applying 
the innovative technologies. The implementation of smart automation can bring intan-
gible benefits to the Beijing plant, according to the feedback of experts. 

In addition, as the focus of this work was set on highly dynamic emerging countries, in 
particular, China, additional research will be needed to understand whether the ob-
tained results also hold for highly industrialized countries such as Germany. 

Last but not least, the influence regarding the role of factories in term of global produc-
tion networks could be also addressed for developing regionalized and synergistic im-
plementation strategies as part of future research. 
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7 Summary 
With the concept of Industry 4.0 and the development of economic globalization, digital 
manufacturing is one of the world’s leading production trends to solve the challenge 
caused of an environment characterized by volatility, uncertainty, complexity and ambi-
guity (VUCA). The industrial companies, especially small and medium-sized firms in the 
emerging countries such as China, are eager to increase productivity through enhanc-
ing Lean Production through digital technologies. Smart automation is one of promised 
solutions aiming to take advantage of advanced manufacturing technologies to enable 
flexibility and improve production performance. However, the companies often cannot 
implement all technologies of smart automation at the same time under resource con-
straints, and it is extremely time and cost consuming to find out which smart automation 
technologies should be given priority to be implemented due to a large amount of vari-
ables, such as location factors and influences on specific production systems. Many of 
the operations that are performed within the company depend strongly on the location 
factors by considering access to customers, skilled labors, transportation, etc. There-
fore, a proper implementation strategy of smart automation by considering influence of 
location factors is expected. 

Through the literature review, the current research approaches only addressed the in-
crease in efficiency by Lean methods and the fields and maturity level of CPPS appli-
cation. The influence of location factors for implementing smart automation into Lean 
Production has not been sufficiently considered. Moreover, the investigation on analysis 
of the interdependencies among location factors and smart automation as well as KPIs 
is still lacking. Furthermore, it is missing a method to derive the implementation strategy 
of smart automation technologies for enhancing Lean Production considering those in-
terdependencies. 

The objective of this research is to develop regionalized implementation strategy of 
smart automation within assembly system. The method has to take into account the 
company-specific initial situation such as the relevant location factors. The interdepend-
encies among location factors and smart automation as well as KPIs need to be figured 
out. The regionalized implementation strategy is to be derived to improve the KPIs.  

In the first part, the specific location factors, smart automation technologies and KPIs, 
which are important for China as dynamically developing country, were identified and 
merged together based on the literature review, questionnaires and expert interviews. 
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In the second part, qualitative and quantitative analysis of interdependencies were con-
ducted to determine the net of impact among location factors, smart automation and 
KPIs by experiments in a testbed at the GAMI and expert interviews of technology pro-
viders. In the third part, the interdependencies were transferred to the company specific 
assembly system based on hybrid modeling and simulation. Subsequently, in the fourth 
part, the regionalized implementation strategy was derived based on the specific con-
ditions of the industrial companies with support by optimization and Monte Carlo eval-
uation. The methodology was developed in the framework of the Sino-German research 
project I4TP (“Sino German Industry 4.0 Factory Automation Platform”) which is sup-
ported by the German Federal Ministry of Education and Research (BMBF). The vali-
dation was successfully conducted with an industrial company in Beijing. 

The leading research questions and requirements have been generally considered, 
nevertheless, there are still some potentials which need to be further studied in so that 
the methodology is able to meet the requirements of the future.  

The developed methodology introduces a novel approach to make decision support by 
developing the regionalized implementation strategy of smart automation within assem-
bly systems. By applying this methodology the industrial companies are able to effec-
tively derive the tailored implementation sequence of disruptive technologies based on 
scientifical and rational analysis. 
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Appendix 

 

A1 Theory of Reliability and Validity of Survey 
To confirm the effectiveness of the designed questionnaire, its reliability and validity has 
to be examined. If a measuring instrument delivers measurement results that are as 
identical as possible after repeated use under constant conditions, this means high ac-
curacy. The extent of this accuracy is called the reliability (Dreier 1994). Usually the 
internal consistency of a test is used to indicate the level of confidence in the test (Chai 
2010), the reliability of the test is affected by random errors. In general, the more con-
stant the result of two tests, the smaller the error rate and the higher reliability of the 
test. Therefore, reliability describes the quality of measurement (Trochim 20061).  

Taking into account the practical functioning of the retest reliability law and its limita-
tions, the Cronbach’s Alpha methods with the help of the Statistical Package for the 
Social Science (SPSS) software are used to check the reliability of the questionnaire. 
The following Table 0-1 evaluates the result using the rule of thumb to interpret the 
alpha values (George & Mallery 2003). 

Table 0-1: Rule of thumb for interpreting the alpha values (George & Mallery 2003) 

 Meaning 
>0,9 Excellent 
>0,8 Good 
>0,7 Acceptable 
>0,6 Questionable 
>0,5 Bad 
<=0,5 Unacceptable 

 

The validity of a measurement is given when an empirical measurement matches a 
logical measurement concept, the validity describes the degree of this agreement 
(Lienert & Raatz 1998). The purpose of the questionnaire is to get meaningful and exact 
measurements and conclusions. The higher validity indicates that the result of the ques-
tionnaire can represent the higher degree of truth of the test to be carried out. More 
goals of the questionnaire are achieved, the more correct and effective the question-
naire will be. There are two types of validity. One of them is the content validity, which 

�

1Trochim, W. M. (2006), "Types of reliability. Research methods knowledge base" Conjoint.ly. http://www.soci-
alresearchmethods.net/kb/reltypes.php [07.06.2020]. 
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is checked by expert interviews in the later sub-Section. The other is construct validity, 
which is checked by factor analysis in SPSS (Chai 2010). In order to carry out the factor 
analysis, the Bartlett test for sphericity is first carried out to determine the Kaiser-Meyer-
Olkin (KMO) value. The KMO value provides information about the quality of the factor 
analysis, as can be seen from the following Table 0-2. 

Table 0-2: Evaluation of quality of the factor analysis 

KMO value Suitability of the data for factor analysis 
>0,9 Very good 
0,8-0,9 Good 
0,7-0,79 Medium 
0,6-0,69 Pass 
0,5-0,59 Bad 
<0,5 Not suitable for factor analysis 

 

If the KMO value is greater than 0.6 and the result of the Bartlett test for sphericity 
p<0.05, this means that the data are suitable for a factor analysis. Then the factor anal-
ysis is carried out to check the validity of the questionnaire. 

Additionally, if a measure´s scores are unreliable, it is difficult to know whether they 
have results meriting further investigation. The Cronbach´s Alpha provides a measure 
of the internal consistency of a test or scale. It is expressed as a number between 0 
and 1. Internal consistency describes the extent to which all the items in a test measure 
the same concept or construct and hence it is connected to the inter-relatedness of the 
items within the test. 

 

A2 The Questionnaire and Results of Location Factors 
Questionnaire survey 

1. your working area is?  (  * ) 

 ○ Internet   

 ○ Manufacturing   

 ○ Service   

 ○ Finance   

 ○ Other   
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2. location of your company?  (  * ) 

 ○ Beijing-Tianjin-Hebei   

 ○ Yangtze River Delta   

 ○ Pearl River Delta   

 ○ Southwest   

 ○ Others   

 
3. How do you evaluate the degree of implementation regarding smart manufacturing (or Industry 4.0) in your com-

pany? 4.0  (  * ) 

 ○ Smart manufacturing strategy (industry 4.0) is not available    

 ○ We have some ideas about smart manufacturing (industry 4.0), but still not mature

  

 ○ We are planning to execute smart manufacturing strategy (industry 4.0) 4.0   

 ○ We are executing smart manufacturing strategy (industry 4.0) 4.0   

 ○ Strategy is already achieved 4.0   

79

Internet

Manufacturing industry

Service

Financial industry

Others

20

40

19

0
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10
15
20
25
30
35
40
45
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4. In which sort of company do you work?  (  * ) 

 ○ State-owned enterprise   

 ○ Private enterprise   

 ○ Wholly foreign-owned enterprise   

 ○ Joint ventures   

 ○ Other   

 

5. How many employees does your company have?  (  * ) 

 ○ 1-20  

 ○ 20-300  

 ○ 300-1000  

 ○ 1000-5000  

 ○ 5000  

0

38

30

10
1

Smart manufacturing
strategie(industrie 4.0)  is not
available

We have  some ideas about
Smart manufacturing strategie
(industry 4.0), but still not
maturewe are planning to execute
Smart manufacturing strategie
(industry 4.0)

we are executing Smart
manufacutring strategy (industry
4.0)

11

45

14

9

0

State-owned company

Private enterprise

Foreign-owned
enterprises

Joint ventures

Others
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6. Which industrial sector does your company mainly belong to?  (  * ) 

 ○ Automotive industry   

 ○ Home appliances   

 ○ Machinery and equipment building   

 ○ Electronics / electrical engineering /   

 ○ Other   

 

7. Please estimate your company’s annual turnover.  (  * ) 

 ○ Less than 3 million CNY 300   

 ○ 3million to under 20 million CNY 300 2000   

 ○ 20 million to under 40 million CNY 2000 4000   

 ○ 40 million than 200 million CNY 4000 2   

 ○ More than 200 million CNY 2   

0

19

36

17

7

1-20

20-300

300-1000

1000-5000

5000

12

12

27

15

13
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Household appliances
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others
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8. What type of products are designed / produced by your company?  (  * ) 

 ○ Industrial products (e.g. equipment, components, materials)   

 ○ Mass consumption products (e.g. automobile)   

 ○ Other   
 

9. In which position are you now?  (  * ) 

 ○ Decision maker (CEO CFO GM…) CEO   

 ○ Admin.   

 ○ Technical specialist   

 ○ Production   

 ○ Other   

 
10. According to the number of components, please assess the complexity of the products designed/ produced by your 

company.  (  * ) 

 ○ Simple(few components, e.g. corkscrew)    

 ○ General (a few components, e.g. sensors)   

 ○ Complex (multiple components, e.g. appliances)   

 ○ Very complex (many components, e.g. airplanes)    

 ○ Not applicable   

0

18

2126

14
Less than 3 million yuan

3 million to 20 million
yuan

20 million to 40 million
yuan

40 million to 200 million
yuan

moren than 20 million
yuan

11

2537
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11. Please estimate the level of automation of assembly in your company?  (  *

) 

 ○ Completely manual assembly   

 ○ Predominant manual assembly   

 ○ Predominant automated assembly   

 ○ Completely automated assembly   

 

12. What is the proportion of company´s technical staff?  (  * ) 

 ○ 15%  

 ○ 15%-25%  

 ○ 25%-35%  

 ○ 35%-45%  

 ○ 45%-55%  

 ○ 55%  
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38

0

2

Simple (consists of a small
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General (partial components, eg
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Complex (multi-component, eg
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Very complicated (example:
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13. How long is the delivery time for the A class product (mainly, select one type)? A

 (  * ) 

 ○ 30   

 ○ 30-60   

 ○ 60-90   

 ○ 90-120   

 ○ 120   

 

14. What is the ratio of equipment maintenance cost to total costs?  (  * ) 

 ○ 3%  

 ○ 3%-5%  

 ○ 5%-10%  

 ○ 10%-20%  

 ○ 20%  
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2

0

<20%

20%-40%

40%-60%

60%-80%

>80%
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15. Howls the attention to smart automation or smart factory in your company? 

 (  * ) 

 ○ Not interested   

 ○ A little   

 ○ Common   

 ○ High   

 ○ No idea   
 

16. How important are the following Market related location factors to your company? (1is the least important and 10 is 
the most important.) Market. 1-10 1 - 10 -

 (  1-10  * ) 

Market size  _____ 

Market potential  _____ 

Distance to market  _____ 

 
17. How important are the following Costs related location factors to your company? (1 is the least important and 10 is 

the most important.) Costs. 1-10 1 - 10 -

 (  1-10  * ) 

Labor costs  _____ 

Cost of capital  _____ 

1
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42

8
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<3%

3%-5%

5%-10%

10%-20%

>20%

0 10 20 30 40 50
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Availability of skilled workers  _____ 

Material costs  _____ 

Productivity  _____ 

Energy-and other costs  _____ 

 
18. How important are the following Logistics related location factors to your company? (1 is the least important and 5 

is the most important.) Logistics. 1-5 1 - 5 -

 (  1-5  * ) 

Transportation costs  _____ 

Inventory costs  _____ 

Infrastructure (such as railway, airport, roads and telecommunication)  
_____ 

 
19. How important are the following Culture related location factors to your company? (1 is the least important and 5 is 

the most important.) Culture. 1-5 1 - 5 -

 (  1-5  * ) 

Language and mentality  _____ 

Education standards  _____ 

Staff turnover  _____ 

8.05

7.85

8.08

7.72

7.87
7.82

7.5

7.6

7.7

7.8
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workers
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cost

Producivity Energy cost
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airport etc.)



XVIII Appendix 
 
 

 

 
20. How important are the following Politics and Government related location factors to your company? (1 is the least 

important and 5 is the most important.) Political and governmental factor. 

1-5 1 - 5 -  (  1-5  * ) 

Taxes  _____ 

Governmental support  _____ 

Non-tariff trade barriers-local content  _____ 

Trade barriers-duties  _____ 

 
21. How important are the following Legal related location factors to your company? (1 is the least important and 5 is 

the most important.) Legal factor. 1-5 1 - 5 -

 (  1-5  * ) 

Definition of legal systems  _____ 

Piracy, know-how protection, patent law  _____ 

Importance of legal compliance  _____ 
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22. How important are the following Risks related location factors to your company? (1 is the least important and 5 is 

the most important.) Risks. 1-5 1 - 5 -

 (  1-5  * ) 

Effects of exchange rate fluctuation  _____ 

Political and economic stability  _____ 

 

23. Please rank the following location factors in the order of importance. 1-7, from strong influence to weak influ-

ence  1-7  (  1-7  * ) 

_____Market   

_____Factor costs   

_____Logistics   

_____Culture factors   

_____Political and governmental factors   

_____Legal factors   

_____Risks   

7.62
7.65

7.87

7.4

7.5

7.6

7.7

7.8

7.9
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systems

Priacy, know-how
protection, patent law
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 1. 
place 

2. 
place 

3. 
place 

4. 
place 

5. 
place 

6. 
place 

7. 
place 

Average 
position 

Factor market 35 22 11 5 2 4 0 2.10 

Factor costs 25 27 12 8 4 1 2 2.37 

Factor logistics 6 13 13 10 15 16 6 4.10 

Factor culture 4 9 12 15 9 12 18 4.57 

Political and governmental 
factors 

8 5 12 15 22 10 7 4.22 

Legal factors 1 2 8 15 18 20 15 5.11 

Factor risks 0 1 11 11 9 16 31 5.53 

Number of respondents 79    
 

    

 

A3 Description of the Generated Application Fields of 
CPPS 

Table 0-3: Description of the generated application fields of CPPS 

Application field of CPPS Description 

Manufacturing 
process 

Plug-and-Work Capability to flexibly adapt production systems to changing re-
quirements by adding or removing individual modules without 
changing the design of the remaining production system 
(Vogel-Heuser & Hess 2016) 

Simulation-based 
control of produc-
tion processes 

Capability to create simulation models and virtual plant models 
by creating a virtual copy of the physical world including their 
characteristics, functionalities, behavior, etc. (Wang & Wang 
2016) 

Context aware-
ness 

Capability of objects (e.g. machines, other facilities and equip-
ment) to “actively” participate in processes (e.g. recognition, 
analysis, interpretation of plans and intentions of objects, 
knowledge about own situation, status and options for action) 
(Monostori 2014) 
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Flexibility (batch 
size one) 

Capability of manufacturing of small batch sizes in a cost-effi-
cient way (i.e. mass customization) (Olhager 1993) 

Human-machine 
interaction 

Capability of interaction/ collaboration between humans and 
objects (e.g. machines, other facilities and equipment) 
(Gorecky & Schmitt et al. 2014) 

Individualization Capability of manufacturing of fully customized products, i.e. 
according to individual customer requirements  (Koren & 
Shpitalni et al. 2015) 

Integration (verti-
cal/ horizontal) 

� Horizontal integration: capability to integrate various 
systems or business planning processes including the 
exchange of materials, energy and information both 
within a company or between different business units in 
the manufacturing network (Liu & Chen et al. 2015)  

� Vertical integration: capability to integrate various sys-
tems at different hierarchical levels (e.g. production 
management, manufacturing and execution, planning) 
(Liu & Chen et al. 2015)  

Machine-to-ma-
chine 

Capability of machines or other facilities  to communicate/ in-
teract/ cooperate with each other (Kim & Lee et al. 2014) 

AGV The use of automated guided vehicles (AGV) for the support or 
execution of tasks such as transport of materials, weightlifting, 
etc. (Vis 2006) 

Predictive mainte-
nance 

Capability to generate forecasts with regard to the condition of 
objects (e.g. machines, other facilities and equipment)  using 
previously identified patterns (Schuh & Stich et al. 2017)  

Real-time data 
based quality man-
agement 

Capability to perform quality-related tasks (e.g. KPI tracking, 
estimation of deviations) based on real-time data (Oks & 
Fritzsche et al. 2017)  

Self-X (self-config-
ure, self-aware, 
self-predict, self-
compare, self- or-
ganize) 

Capability of objects (e.g. machines, other facilities and equip-
ment) to autonomously (i.e. without intervention) execute ac-
tions/ tasks or make decisions depending on the analysis of 
various data (e.g. considering their current state, environment, 
etc.) (Onori & Semere et al. 2011) 

Virtualization (Aug-
mented reality/ Vir-
tual reality) 

The application of augmented reality (e.g. sending repair in-
structions over mobile devices)/ virtual reality (e.g. virtual pro-
totyping, web-based virtual machining, fault diagnosis, etc.) in 
production (Demartini & Tonelli et al. 2017)  

Big Data, 
Cloud 

Cloud manufactur-
ing 

The use of manufacturing services from the cloud (e.g. Design 
as a Service, Manufacturing as a Service (MFaaS), Experimen-
tation as a Service (EaaS), Simulation as a Service (SIMaaS), 
Management as a Service (MANaaS), Maintain as a Service 
(MAaaS), Integration as a Service (INTaaS)) (Zhang & Luo et 
al. 2014) 

Data analytics Capability of analyzing (huge amounts of) data using advanced 
data analytics methods and extracting valuable knowledge 
from it (Elgendy & Elragal 2014) 

Real-time capabil-
ity 

Capability of objects (e.g. machines, other facilities and equip-
ment) to immediately use/ analyze data  and to adapt in time to 
unpredicted circumstances  (Smit & Kreutzer et al. 2016)stark 

Servitization Capability to provide services via the internet, based on a ser-
vice oriented reference architecture (SOA) (Vogel-Heuser, et 
al., 2016) 
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Information 
and Computing 
Technology 
(ICT) 

Automated data 
processing 

Capability to automatically gather/ process data (Yamashita & 
Hirata et al. 2018) 

Intelligent network-
ing 

Interconnection and interaction between objects (e.g. ma-
chines, other facilities and equipment) with “smart” capabilities 
(e.g. context awareness, self-x, etc.) as well as with humans 
using standardized interfaces (Siepmann & Graef 2016) 

Intelligent produc-
tion management 

Capability to ensure automated and optimal influx of production 
material and other resources into production processes based 
on the analysis of multiple data from both past and current plan-
ning periods (e.g. performance-related data, current outstand-
ing orders, potential future orders, capacity utilization, etc.) 
(Oks & Fritzsche et al. 2017) 

Research and 
Development 

Intelligent product 
development 

Capability to integrate data from individual life cycle of products 
into the product development (e.g. by integrating sensors for 
data acquisition in products) (Oks & Fritzsche et al. 2017) 

Logistics and 
SCM 

Automated e-pro-
curement 

Capability to automatically perform tasks, such as calculation 
of optimal order quantity, based on both internal data (e.g. real-
time data from production, warehousing, incoming orders) and 
external data (e.g. market trends and price developments) (Oks 
& Fritzsche et al. 2017) 

Automated ware-
housing 

Capability to automatically execute tasks such as transport of 
materials, weightlifting and warehousing (e.g. by the use of 
AGV or other technical solutions) (Wang & McIntosh et al. 
2010) 

Autonomous logis-
tics subsystems 
(transport, order 
processing, turno-
ver handlings) 

The use of objects or systems with “smart” capabilities (e.g. 
context awareness, self-x, etc.) in logistics processes such as 
transport, order processing, turnover handlings (Timm & Lorig 
2015) 

Digital/ virtual pick-
ing 

The application of digital solutions for augmented reality/ virtual 
reality (e.g. selecting parts using smart glasses) in the order 
picking (Demartini & Tonelli et al. 2017)  

Integration of sup-
ply chain 

Capability to integrate and optimize various systems or busi-
ness planning processes including the exchange of materials 
and information along the entire supply chain network (Flynn & 
Huo et al. 2010) 

Intelligent material 
labeling 

Digital labeling of material or carriers which allows for commu-
nication with other logistics and production resources and au-
tonomously transmitting information considering their state and 
location (Digital in NRW) 

Real-time localiza-
tion and tracking 

Capability to track and localize transport units in real-time 
(Ratosi & Simon 2018) 

Simulation-based 
control of supply 
chain 

Capability to create simulation models and virtual supply chain 
models by creating a virtual copy of the physical world including 
all parties involved, their characteristics, functionalities, behav-
ior, etc. (Wang & Wang 2016)  
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A4 Description of Smart Automation 
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A5 Investigation of KPIs  
AWF (https://www.awf.de/wp-content/uploads/2014/12/Kennzahlen-in-der-Produktion-
awf.pdf) states that KPIs regarding production can be chosen or defined very differently 
according to the target of a company. Usually, the important indicators of production 
can be divided into seven categories: Personnel, Time, Costs, Quality, Flexibility of Or-
ganization, Logistics and Environment, each with several sub-elements (see Figure 0-1). 

 

Figure 0-1: Indicators of production 
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Continental Tire in Germany  

 

Figure 0-2: KPIs of Continental Tire Germany (Salokat 2012) 

Case study in China 

 

Figure 0-3: KPIs of Huihong in Nantong (in Yangtze Delta Zone) 
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A6 Ranking of KPIs by Importance  
Table 0-4: Ranking of KPIs by Importance according to the questionnaire 

KPIs 1 2 3 4 5 6 7 8 9 10 Avg. 

OEE 0 0 0 0 1 6 12 33 18 9 8.11 

Material availability 0 0 0 2 1 5 14 22 26 9 8.11 

ROI 0 0 0 1 1 9 12 23 21 12 8.10 

Reaction speed 0 0 0 0 0 8 12 31 21 7 8.09 

Lead time 0 0 0 2 3 3 13 29 16 13 8.08 

Cost 0 0 0 1 2 7 11 22 32 4 8.06 

Customer satisfaction 0 0 0 1 2 3 18 28 17 10 8.04 

Revenue 0 0 0 0 2 6 16 23 27 5 8.04 

Productivity 0 0 0 0 4 6 15 18 31 5 8.03 

Transparency 0 0 0 0 1 6 18 27 21 6 8.00 

Flexibility 0 0 1 0 2 5 21 21 23 6 7.91 

Machine availability 0 0 0 0 5 5 16 30 18 5 7.84 

OLE 0 0 0 1 1 9 18 28 19 3 7.77 

Net income cashflow 0 0 0 1 2 11 16 27 16 6 7.75 

Set-up time 0 0 1 2 2 8 22 30 13 1 7.47 

Scrap rate 0 1 1 3 1 15 13 24 15 6 7.47 
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A7 Interdependency among Different Smart Automation 
Technologies  

 

Figure 0-4: Expert review result 1 
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Figure 0-5: Expert review result 2 
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Figure 0-6: Expert review result 3 

 

A8 Result of Experiments in Testbed 
Pick-by-Light (PBL) 

Process data Unit Before:  
without PBL 

After:  
with PBL 

Change Rate 

Uptime % 100 100 - 
FPY % 81,3 87,5 8% 
Cycle Time s 56 55 2,00% 
WIP Pcs 4 4 - 

 

Human Machine Interface (HMI) 

Process data Unit Before:  
without HMI 

After:  
with HMI 

Change Rate 

Uptime % 99,8 99,8 - 
FPY % 87,5 93,8 7% 
Cycle Time s 61 56 8,00%
WIP Pcs - - - 
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QR-Code (QR) 

Process data Unit Before:  
without QR 

After:  
with QR 

Change Rate 

Uptime % 99,8 99,8 - 
FPY % 87,5 93,8 - 
Cycle Time s 61 56 8,00% 
WIP Pcs 4 4 - 

 

Intelligent screwdriver (INS) 

Process data Unit Before:  
without INS 

After:  
with INS 

Change Rate 

Uptime % 100 100 - 
FPY % 81,3 87,5 8% 
Cycle Time s - - - 
WIP Pcs 4 4 - 

 

Automatic Guided Vehicle (AGV) 

Process data Unit Before:  
without AGV 

After:  
with AGV 

Change Rate 

Uptime* % - - 10% 
FPY % - - 5% 
Cycle Time s - - - 
WIP Pcs - - - 

*reference value provided by technology provider 

Automatic torque adjustment (ATA) 

Process data Unit Before:  
without ATA 

After:  
with ATA 

Change Rate 

Uptime % 99,6 99,8 - 
FPY % 87,5 93,8 7% 
Cycle Time s 58 56 4,00% 
WIP Pcs 4 4 - 

 

RFID-based C-parts management (CPM) 

Process data Unit Before:  
without CPM 

After:  
with CPM 

Change Rate 

Uptime % - - - 
FPY* % - - 5% 
Cycle Time s - - - 
WIP* Pcs - - - 

*reference value provided by technology provider  

Workpiece carrier with RFID tags (WCR) 
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Process data Unit Before:  
without WCR 

After:  
with WCR 

Change Rate 

Uptime % 99,8 99,8 - 
FPY % 93,8 93,8 - 
Cycle Time s 59 56 5% 
WIP Pcs 4 4 - 

 

Digital Shopfloor Management (DFSM) 

Process data Unit Before: 
without DFSM 

After:  
with DFSM 

Change Rate 

Uptime % - - - 
FPY % - - - 
Cycle Time* s 1800 600 67% 
WIP Pcs 1 1 0 

*Time for data collection 

Manufacturing Execution System (MES) 

Process data Unit Before: 
without MES 

After:  
with MES 

Change Rate 

Uptime % 99,6 99,8 - 
FPY % 93,8 93,8 - 
Cycle Time s 59 56 4% 
WIP Pcs - - - 

 

Smart gloves (SG) 

Process data Unit Before: 
without SG 

After:  
with SG 

Change Rate 

Uptime % - - - 
FPY % - - - 
Cycle Time s 85,5 35,2 59% 
WIP Pcs - - - 

 

A9 Optimization Result of Implementation Sequence 
The constraint condition is implementation time is less than 1400 days and the invest-
ment budget is less than 1.5 Million RMB. The top 20 rankings have been summarized 
in the following. The number marked with blue means that both constraints have been 
met by implementation this technology. The number marked with red means that the 
constraint of implementation time has been reached.  
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Table 0-5: The optimization result with the constraint conditions 

i PBL HMI QR WN AGV CPM WCR DSFM MES SG 
1 1 5 3 2 8 10 4 7 6 9 
2 1 5 3 2 8 9 4 7 6 10 
3 2 5 3 1 8 10 4 7 6 9 
4 2 5 3 1 8 9 4 7 6 10 
5 1 5 4 2 8 10 3 7 6 9 
6 1 5 4 2 8 9 3 7 6 10 
7 1 5 2 3 8 10 4 7 6 9 
8 1 5 2 3 8 9 4 7 6 10 
9 2 5 4 1 8 10 3 7 6 9 

10 2 5 4 1 8 9 3 7 6 10 
11 1 5 3 2 9 10 4 7 6 8 
12 1 5 3 2 9 8 4 7 6 10 
13 2 5 3 1 9 10 4 7 6 8 
14 3 5 2 1 8 10 4 7 6 9 
15 3 5 2 1 8 9 4 7 6 10 
16 2 5 3 1 9 8 4 7 6 10 
17 1 5 4 2 9 10 3 7 6 8 
18 1 5 4 2 9 8 3 7 6 10 
19 1 5 2 3 9 10 4 7 6 8 
20 2 5 1 3 8 10 4 7 6 9 

 



Band 0
Dr.-Ing. Wu Hong-qi

Adaptive Volumenstromregelung mit Hilfe von drehzahlgeregelten 
Elektroantrieben 

Band 1
Dr.-Ing. Heinrich Weiß

Fräsen mit Schneidkeramik - Verhalten des System 
Werkzeugmaschine-Werkzeug-Werkstück und Prozessanalyse 

Band 2
Dr.-Ing. Hans-Jürgen Stierle

Entwicklung und Untersuchung hydrostatischer Lager für die 
Axialkolbenmaschine 

Band 3
Dr.-Ing. Herbert Hörner

Untersuchung des Geräuschverhaltens druckgeregelter Axialkolbenpumpen 

Band 4
Dr.-Ing. Rolf-Dieter Brückbauer

Digitale Drehzahlregelung unter der besonderen Berücksichtigung 
von Quantisierungseffekten 

Band 5
Dr.-Ing. Gerhard Staiger

Graphisch interaktive NC-Programmierung von Drehteilen im Werkstattbereich 

Band 6
Dr.-Ing. Karl Peters

Ein Beitrag zur Berechnung und Kompensation von Positionierfehlern an 
Industrierobotern

Forschungsberichte aus dem wbk
Institut für Produktionstechnik 
Karlsruher Institut für Technologie (KIT)

Bisher erschienene Bände:



Band 7
Dr.-Ing. Paul Stauss

Automatisierte Inbetriebnahme und Sicherung der Zuverlässigkeit und 
Verfügbarkeit numerisch gesteuerter Fertigungseinrichtungen

Band 8
Dr.-Ing. Günter Möckesch

Konzeption und Realisierung eines strategischen, integrierten 
Gesamtplanungs- und -bearbeitungssystems zur Optimierung der 
Drehteilorganisation für auftragsbezogene Drehereien 

Band 9
Dr.-Ing. Thomas Oestreicher

Rechnergestützte Projektierung von Steuerungen 

Band 10
Dr.-Ing. Thomas Selinger

Teilautomatisierte werkstattnahe NC-Programmerstellung im Umfeld einer 
integrierten Informationsverarbeitung 

Band 11
Dr.-Ing. Thomas Buchholz

Prozessmodell Fräsen, Rechnerunterstützte Analyse, Optimierung 
und Überwachung 

Band 12
Dr.-Ing. Bernhard Reichling

Lasergestützte Positions- und Bahnvermessung von Industrierobotern 

Band 13
Dr.-Ing. Hans-Jürgen Lesser

Rechnergestützte Methoden zur Auswahl anforderungsgerechter  
Verbindungselemente 

Band 14
Dr.-Ing. Hans-Jürgen Lauffer

Einsatz von Prozessmodellen zur rechnerunterstützten Auslegung  
von Räumwerkzeugen 

Band 15
Dr.-Ing. Michael C. Wilhelm

Rechnergestützte Prüfplanung im Informationsverbund moderner  
Produktionssysteme 



Band 16
Dr.-Ing. Martin Ochs

Entwurf eines Programmsystems zur wissensbasierten Planung 
und Konfigurierung 

Band 17
Dr.-Ing. Heinz-Joachim Schneider

Erhöhung der Verfügbarkeit von hochautomatisierten 
Produktionseinrichtungen mit Hilfe der Fertigungsleittechnik 

Band 18
Dr.-Ing. Hans-Reiner Ludwig

Beanspruchungsanalyse der Werkzeugschneiden beim Stirnplanfräsen 

Band 19
Dr.-Ing. Rudolf Wieser

Methoden zur rechnergestützten Konfigurierung von Fertigungsanlagen 

Band 20
Dr.-Ing. Edgar Schmitt

Werkstattsteuerung bei wechselnder Auftragsstruktur 

Band 21
Dr.-Ing. Wilhelm Enderle

Verfügbarkeitssteigerung automatisierter Montagesysteme 
durch selbsttätige Behebung prozessbedingter Störungen 

Band 22
Dr.-Ing. Dieter Buchberger

Rechnergestützte Strukturplanung von Produktionssystemen 

Band 23
Prof. Dr.-Ing. Jürgen Fleischer

Rechnerunterstützte Technologieplanung für die flexibel 
automatisierte Fertigung von Abkantteilen

Band 24
Dr.-Ing. Lukas Loeffler

Adaptierbare und adaptive Benutzerschnittstellen 

Band 25
Dr.-Ing. Thomas Friedmann

Integration von Produktentwicklung und Montageplanung durch neue  
rechnergestützte Verfahren 



Band 26
Dr.-Ing. Robert Zurrin

Variables Formhonen durch rechnergestützte Hornprozesssteuerung 

Band 27
Dr.-Ing. Karl-Heinz Bergen

Langhub-Innenrundhonen von Grauguss und Stahl mit einem 
elektromechanischem Vorschubsystem 

Band 28
Dr.-Ing. Andreas Liebisch

Einflüsse des Festwalzens auf die Eigenspannungsverteilung und die  
Dauerfestigkeit einsatzgehärteter Zahnräder 

Band 29
Dr.-Ing. Rolf Ziegler

Auslegung und Optimierung schneller Servopumpen 

Band 30
Dr.-Ing. Rainer Bartl

Datenmodellgestützte Wissensverarbeitung zur Diagnose und 
Informationsunterstützung in technischen Systemen 

Band 31
Dr.-Ing. Ulrich Golz

Analyse, Modellbildung und Optimierung des Betriebsverhaltens von  
Kugelgewindetrieben 

Band 32
Dr.-Ing. Stephan Timmermann

Automatisierung der Feinbearbeitung in der Fertigung von 
Hohlformwerkzeugen 

Band 33
Dr.-Ing. Thomas Noe

Rechnergestützter Wissenserwerb zur Erstellung von Überwachungs- und 
Diagnoseexpertensystemen für hydraulische Anlagen 

Band 34
Dr.-Ing. Ralf Lenschow

Rechnerintegrierte Erstellung und Verifikation von Steuerungsprogrammen 
als Komponente einer durchgängigen Planungsmethodik 



Band 35
Dr.-Ing. Matthias Kallabis

Räumen gehärteter Werkstoffe mit kristallinen Hartstoffen 

Band 36
Dr.-Ing. Heiner-Michael Honeck

Rückführung von Fertigungsdaten zur Unterstützung einer 
fertigungsgerechten Konstruktion 

Band 37
Dr.-Ing. Manfred Rohr

Automatisierte Technologieplanung am Beispiel der Komplettbearbeitung 
auf Dreh-/Fräszellen 

Band 38
Dr.-Ing. Martin Steuer

Entwicklung von Softwarewerkzeugen zur wissensbasierten
Inbetriebnahme von komplexen Serienmaschinen 

Band 39
Dr.-Ing. Siegfried Beichter

Rechnergestützte technische Problemlösung bei der 
Angebotserstellung von flexiblen Drehzellen 

Band 40
Dr.-Ing. Thomas Steitz

Methodik zur marktorientierten Entwicklung von Werkzeugmaschinen mit 
Integration von funktionsbasierter Strukturierung und Kostenschätzung 

Band 41
Dr.-Ing. Michael Richter

Wissensbasierte Projektierung elektrohydraulischer Regelungen 

Band 42
Dr.-Ing. Roman Kuhn

Technologieplanungssystem Fräsen. Wissensbasierte Auswahl von Werkzeugen, 
Schneidkörpern und Schnittbedingungen für das Fertigingsverfahren Fräsen
 
Band 43
Dr.-Ing. Hubert Klein

Rechnerunterstützte Qualitätssicherung bei der Produktion von 
Bauteilen mit frei geformten Oberflächen 



Band 44
Dr.-Ing. Christian Hoffmann

Konzeption und Realisierung eines fertigungsintegrierten Koordinaten-
messgerätes 

Band 45
Dr.-Ing. Volker Frey

Planung der Leittechnik für flexible Fertigungsanlagen 

Band 46
Dr.-Ing. Achim Feller

Kalkulation in der Angebotsphase mit dem selbsttätig abgeleiteten  
Erfahrungswissen der Arbeitsplanung 

Band 47
Dr.-Ing. Markus Klaiber

Produktivitätssteigerung durch rechnerunterstütztes Einfahren 
von NC-Programmen 

Band 48
Dr.-Ing. Roland Minges

Verbesserung der Genauigkeit beim fünfachsigen Fräsen von Freiformflächen 

Band 49
Dr.-Ing. Wolfgang Bernhart

Beitrag zur Bewertung von Montagevarianten: Rechnergestützte Hilfsmittel zur 
kostenorientierten, parallelen Entwicklung von Produkt und Montagesystem 

Band 50
Dr.-Ing. Peter Ganghoff

Wissensbasierte Unterstützung der Planung technischer Systeme: 
Konzeption eines Planungswerkzeuges und exemplarische Anwendung 
im Bereich der Montagesystemplanung

Band 51
Dr.-Ing. Frank Maier

Rechnergestützte Prozessregelung beim flexiblen Gesenkbiegen durch  
Rückführung von Qualitätsinformationen 

Band 52
Dr.-Ing. Frank Debus

Ansatz eines rechnerunterstützten Planungsmanagements für die Planung  
in verteilten Strukturen 



Band 53
Dr.-Ing. Joachim Weinbrecht

Ein Verfahren zur zielorientierten Reaktion auf Planabweichungen in der 
Werkstattregelung 

Band 54
Dr.-Ing. Gerd Herrmann

Reduzierung des Entwicklungsaufwandes für anwendungsspezifische  
Zellenrechnersoftware durch Rechnerunterstützung 

Band 55
Dr.-Ing. Robert Wassmer

Verschleissentwicklung im tribologischen System Fräsen: Beiträge 
zur Methodik der Prozessmodellierung auf der Basis tribologisher  
Untersuchungen beim Fräsen 

Band 56
Dr.-Ing. Peter Uebelhoer

Inprocess-Geometriemessung beim Honen 

Band 57
Dr.-Ing. Hans-Joachim Schelberg

Objektorientierte Projektierung von SPS-Software 

Band 58
Dr.-Ing. Klaus Boes

Integration der Qualitätsentwicklung in featurebasierte CAD/CAM-Prozessketten 

Band 59
Dr.-Ing. Martin Schreiber

Wirtschaftliche Investitionsbewertung komplexer Produktions- 
systeme unter Berücksichtigung von Unsicherheit 

Band 60
Dr.-Ing. Ralf Steuernagel

Offenes adaptives Engineering-Werkzeug zur automatisierten 
Erstellung von entscheidungsunterstützenden Informationssystemen 

Band 62
Dr.-Ing. Uwe Schauer

Qualitätsorientierte Feinbearbeitung mit Industrierobotern: Regelungsansatz 
für die Freiformflächenfertigung des Werkzeug- und Formenbaus 



Band 63
Dr.-Ing. Simone Loeper

Kennzahlengestütztes Beratungssystem zur Verbesserung der
Logistikleistung in der Werkstattfertigung 

Band 64
Dr.-Ing. Achim Raab

Räumen mit hartstoffbeschichteten HSS-Werkzeugen 

Band 65, 
Dr.-Ing. Jan Erik Burghardt

Unterstützung der NC-Verfahrenskette durch ein bearbeitungs- 
elementorientiertes, lernfähiges Technologieplanungssystem 

Band 66
Dr.-Ing. Christian Tritsch

Flexible Demontage technischer Gebrauchsgüter: Ansatz zur Planung und 
(teil-)automatisierten Durchführung industireller Demontageprozesse

Band 67
Dr.-Ing. Oliver Eitrich

Prozessorientiertes Kostenmodell für die entwicklungsbegleitende Vorkalkulation 

Band 68
Dr.-Ing. Oliver Wilke

Optimierte Antriebskonzepte für Räummaschinen - Potentiale zur Leistungs-
steigerung 

Band 69
Dr.-Ing. Thilo Sieth

Rechnergestützte Modellierungsmethodik zerspantechnologischer Prozesse 

Band 70
Dr.-Ing. Jan Linnenbuerger

Entwicklung neuer Verfahren zur automatisierten Erfassung der geometri-
schen Abweichungen an Linearachsen und Drehschwenkköpfen 

Band 71
Dr.-Ing. Mathias Klimmek

Fraktionierung technischer Produkte mittels eines frei beweglichen  
Wasserstrahlwerkzeuges 



Band 72
Dr.-Ing. Marko Hartel

Kennzahlenbasiertes Bewertungssystem zur Beurteilung der 
Demontage- und Recyclingeignung von Produkten 

Band 73
Dr.-Ing. Jörg Schaupp

Wechselwirkung zwischen der Maschinen- und Hauptspindelantriebsdynamik 
und dem Zerspanprozess beim Fräsen 

Band 74
Dr.-Ing. Bernhard Neisius

Konzeption und Realisierung eines experimentellen Telemanipulators  
für die Laparoskopie 

Band 75
Dr.-Ing. Wolfgang Walter

Erfolgsversprechende Muster für betriebliche Ideenfindungsprozesse. 
Ein Beitrag zur Steigerung der Innovationsfähigkeit 

Band 76
Dr.-Ing. Julian Weber

Ein Ansatz zur Bewertung von Entwicklungsergebnissen in virtuellen Szenarien 

Band 77
Dr.-Ing. Dipl. Wirtsch.-Ing. Markus Posur

Unterstützung der Auftragsdurchsetzung in der Fertigung durch  
Kommunikation über mobile Rechner 

Band 78
Dr.-Ing. Frank Fleissner

Prozessorientierte Prüfplanung auf Basis von Bearbeitungsobjekten für die 
Kleinserienfertigung am Beispiel der Bohr- und Fräsbearbeitung 

Band 79
Dr.-Ing. Anton Haberkern

Leistungsfähigere Kugelgewindetriebe durch Beschichtung 

Band 80
Dr.-Ing. Dominik Matt

Objektorientierte Prozess- und Strukturinnovation (OPUS) 



Band 81
Dr.-Ing. Jürgen Andres

Robotersysteme für den Wohnungsbau: Beitrag zur Automatisierung des 
Mauerwerkabaus und der Elektroinstallation auf Baustellen 

Band 82
Dr.-Ing. Dipl.Wirtschaftsing. Simone Riedmiller

Der Prozesskalender - Eine Methodik zur marktorientierten 
Entwicklung von Prozessen 

Band 83
Dr.-Ing. Dietmar Tilch

Analyse der Geometrieparameter von Präzisionsgewinden auf der Basis einer 
Least-Squares-Estimation 

Band 84
Dr.-Ing. Dipl.-Kfm. Oliver Stiefbold

Konzeption eines reaktionsschnellen Planungssystems für Logistikketten auf 
Basis von Software-Agenten 

Band 85
Dr.-Ing. Ulrich Walter

Einfluss von Kühlschmierstoff auf den Zerspanprozess beim Fräsen: Beitrag 
zum Prozessverständniss auf Basis von zerspantechnischen Untersuchungen 

Band 86
Dr.-Ing. Bernd Werner

Konzeption von teilautonomer Gruppenarbeit unter Berücksichtigung  
kultureller Einflüsse 

Band 87
Dr.-Ing. Ulf Osmers

Projektieren Speicherprogrammierbarer Steuerungen mit Virtual Reality 

Band 88
Dr.-Ing. Oliver Doerfel

Optimierung der Zerspantechnik beim Fertigungsverfahren 
Wälzstossen: Analyse des Potentials zur Trockenbearbeitung 

Band 89
Dr.-Ing. Peter Baumgartner

Stufenmethode zur Schnittstellengestaltung in der internationalen Produktion



Band 90
Dr.-Ing. Dirk Vossmann

Wissensmanagement in der Produktentwicklung durch Qualitäts- 
methodenverbund und Qualitätsmethodenintegration

Band 91
Dr.-Ing. Martin Plass

Beitrag zur Optimierung des Honprozesses durch den Aufbau einer  
Honprozessregelung 

Band 92
Dr.-Ing. Titus Konold

Optimierung der Fünfachsfräsbearbeitung durch eine kennzahlen- 
unterstützte CAM-Umgebung 

Band 93
Dr.-Ing. Jürgen Brath

Unterstützung der Produktionsplanung in der Halbleiterfertigung durch 
risikoberücksichtigende Betriebskennlinien 

Band 94
Dr.-Ing. Dirk Geisinger

Ein Konzept zur marktorientierten Produktentwicklung 

Band 95
Dr.-Ing. Marco Lanza

Entwurf der Systemunterstützung des verteilten Engineering mit Axiomatic Design 

Band 96
Dr.-Ing. Volker Hüntrup

Untersuchungen zur Mikrostrukturierbarkeit von Stählen durch das Ferti-
gungsverfahren Fräsen 

Band 97
Dr.-Ing. Frank Reinboth

Interne Stützung zur Genauigkeitsverbesserung in der Inertialmesstechnik: 
Beitrag zur Senkung der Anforderungen an Inertialsensoren 

Band 98
Dr.-Ing. Lutz Trender

Entwicklungsintegrierte Kalkulation von Produktlebenszykluskosten auf 
Basis der ressourcenorientierten Prozesskostenrechnung 



Band 99
Dr.-Ing. Cornelia Kafka

Konzeption und Umsetzung eines Leitfadens zum industriellen 
Einsatz von Data-Mining 

Band 100
Dr.-Ing. Gebhard Selinger

Rechnerunterstützung der informellen Kommunikation in verteilten  
Unternehmensstrukturen 

Band 101
Dr.-Ing. Thomas Windmüller

Verbesserung bestehender Geschäftsprozesse durch eine 
mitarbeiterorientierte Informationsversorgung 

Band 102
Dr.-Ing. Knud Lembke

Theoretische und experimentelle Untersuchung eines bistabilen 
elektrohydraulischen Linearantriebs 

Band 103
Dr.-Ing. Ulrich Thies

Methode zur Unterstützung der variantengerechten Konstruktion von  
industriell eingesetzten Kleingeräten 

Band 104
Dr.-Ing. Andreas Schmälzle

Bewertungssystem für die Generalüberholung von Montageanlagen      – Ein 
Beitrag zur wirtschaftlichen Gestaltung geschlossener Facility- Managment-
Systeme im Anlagenbau 

Band 105
Dr.-Ing. Thorsten Frank

Vergleichende Untersuchungen schneller elektromechanischer 
Vorschubachsen mit Kugelgewindetrieb 

Band 106
Dr.-Ing. Achim Agostini

Reihenfolgeplanung unter Berücksichtigung von Interaktionen: 
Beitrag zur ganzheitlichen Strukturierung und Verarbeitung von
Interaktionen von Bearbeitungsobjekten 



Band 107
Dr.-Ing. Thomas Barrho

Flexible, zeitfenstergesteuerte Auftragseinplanung in segmentierten 
Fertigungsstrukturen 

Band 108
Dr.-Ing. Michael Scharer

Quality Gate-Ansatz mit integriertem Risikomanagement 

Band 109
Dr.-Ing. Ulrich Suchy

Entwicklung und Untersuchung eines neuartigen Mischkopfes für das Wasser 
Abrasivstrahlschneiden 

Band 110
Dr.-Ing. Sellal Mussa

Aktive Korrektur von Verlagerungsfehlern in Werkzeugmaschinen 

Band 111
Dr.-Ing. Andreas Hühsam

Modellbildung und experimentelle Untersuchung des Wälzschälprozesses 

Band 112
Dr.-Ing. Axel Plutowsky

Charakterisierung eines optischen Messsystems und den Bedingungen des 
Arbeitsraums einer Werkzeugmaschine 

Band 113
Dr.-Ing. Robert Landwehr

Konsequent dezentralisierte Steuerung mit Industrial Ethernet und offenen 
Applikationsprotokollen 

Band 114
Dr.-Ing. Christoph Dill

Turbulenzreaktionsprozesse 

Band 115
Dr.-Ing. Michael Baumeister

Fabrikplanung im turbulenten Umfeld 

Band 116
Dr.-Ing. Christoph Gönnheimer

Konzept zur Verbesserung der Elektromagnetischen Verträglichkeit (EMV) in 
Produktionssystemen durch intelligente Sensor/Aktor-Anbindung 



Band 117
Dr.-Ing. Lutz Demuß

Ein Reifemodell für die Bewertung und Entwicklung von Dienstleistungs-
organisationen: Das Service Management Maturity Modell (SMMM) 

Band 118
Dr.-Ing. Jörg Söhner

Beitrag zur Simulation zerspanungstechnologischer Vorgänge mit Hilfe der 
Finite-Element-Methode 

Band 119
Dr.-Ing. Judith Elsner

Informationsmanagement für mehrstufige Mikro-Fertigungsprozesse 

Band 120
Dr.-Ing. Lijing Xie

Estimation Of Two-dimension Tool Wear Based On Finite Element Method

Band 121
Dr.-Ing. Ansgar Blessing

Geometrischer Entwurf mikromechatronischer Systeme 

Band 122
Dr.-Ing. Rainer Ebner

Steigerung der Effizienz mehrachsiger Fräsprozesse durch neue 
Planungsmethoden mit hoher Benutzerunterstützung 

Band 123
Dr.-Ing. Silja Klinkel

Multikriterielle Feinplanung in teilautonomen Produktionsbereichen – Ein 
Beitrag zur produkt- und prozessorientierten Planung und Steuerung 

Band 124
Dr.-Ing. Wolfgang Neithardt

Methodik zur Simulation und Optimierung von Werkzeugmaschinen in der 
Konzept- und Entwurfsphase auf Basis der Mehrkörpersimulation 

Band 125
Dr.-Ing. Andreas Mehr

Hartfeinbearbeitung von Verzahnungen mit kristallinen diamantbeschichteten 
Werkzeugen beim Fertigungsverfahren Wälzstoßen 



Band 126
Dr.-Ing. Martin Gutmann

Entwicklung einer methodischen Vorgehensweise zur Diagnose von 
hydraulischen Produktionsmaschinen 

Band 127
Dr.-Ing. Gisela Lanza

Simulative Anlaufunterstützung auf Basis der Qualitätsfähigkeiten von 
Produktionsprozessen 

Band 128
Dr.-Ing. Ulf Dambacher

Kugelgewindetrieb mit hohem Druckwinkel 

Band 129
Dr.-Ing. Carsten Buchholz

Systematische Konzeption und Aufbau einer automatisierten 
Produktionszelle für pulverspritzgegossene Mikrobauteile 

Band 130
Dr.-Ing. Heiner Lang

Trocken-Räumen mit hohen Schnittgeschwindigkeiten 

Band 131
Dr.-Ing. Daniel Nesges

Prognose operationeller Verfügbarkeiten von Werkzeugmaschinen unter 
Berücksichtigung von Serviceleistungen 

Im Shaker Verlag erschienene Bände:

Band 132
Dr.-Ing. Andreas Bechle

Beitrag zur prozesssicheren Bearbeitung beim Hochleistungs- 
fertigungsverfahren Wälzschälen

Band 133
Dr.-Ing. Markus Herm

Konfiguration globaler Wertschöpfungsnetzwerke auf 
Basis von Business Capabilities



Band 134
Dr.-Ing. Hanno Tritschler

Werkzeug- und Zerspanprozessoptimierung beim Hartfräsen 
von Mikrostrukturen in Stahl

Band 135
Dr.-Ing. Christian Munzinger

Adaptronische Strebe zur Steifigkeitssteigerung 
von Werkzeugmaschinen

Band 136
Dr.-Ing. Andreas Stepping

Fabrikplanung im Umfeld von Wertschöpfungsnetzwerken und 
ganzheitlichen Produktionssystemen

Band 137
Dr.-Ing. Martin Dyck

Beitrag zur Analyse thermische bedingter Werkstückdeformationen 
in Trockenbearbeitungsprozessen

Band 138
Dr.-Ing. Siegfried Schmalzried

Dreidimensionales optisches Messsystem für eine effizientere 
geometrische Maschinenbeurteilung

Band 139
Dr.-Ing. Marc Wawerla

Risikomanagement von Garantieleistungen

Band 140
Dr.-Ing. Ivesa Buchholz

Strategien zur Qualitätssicherung mikromechanischer Bauteile 
mittels multisensorieller Koordinatenmesstechnik

Band 141
Dr.-Ing. Jan Kotschenreuther

Empirische Erweiterung von Modellen der Makrozerspanung 
auf den Bereich der Mikrobearbeitung

Band 142
Dr.-Ing. Andreas Knödel

Adaptronische hydrostatische Drucktascheneinheit



Band 143
Dr.-Ing. Gregor Stengel

Fliegendes Abtrennen räumlich gekrümmter Strangpressprofile mittels 
Industrierobotern

Band 144
Dr.-Ing. Udo Weismann

Lebenszyklusorientiertes interorganisationelles Anlagencontrolling

Band 145
Dr.-Ing. Rüdiger Pabst

Mathematische Modellierung der Wärmestromdichte zur Simulation 
des thermischen Bauteilverhaltens bei der Trockenbearbeitung

Band 146
Dr.-Ing. Jan Wieser

Intelligente Instandhaltung zur Verfügbarkeitssteigerung 
von Werkzeugmaschinen

Band 147
Dr.-Ing. Sebastian Haupt

Effiziente und kostenoptimale Herstellung von Mikrostrukturen durch 
eine Verfahrenskombination von Bahnerosion und Laserablation

Band 148
Dr.-Ing. Matthias Schlipf

Statistische Prozessregelung von Fertigungs- und Messprozess zur 
Erreichung einer variabilitätsarmen Produktion mikromechanischer Bauteile

Band 149
Dr.-Ing. Jan Philipp Schmidt-Ewig

Methodische Erarbeitung und Umsetzung eines neuartigen 
Maschinenkonzeptes zur produktflexiblen Bearbeitung räumlich 
gekrümmter Strangpressprofile

Band 150
Dr.-Ing. Thomas Ender

Prognose von Personalbedarfen im Produktionsanlauf
unter Berücksichtigung dynamischer Planungsgrößen



Band 151
Dr.-Ing. Kathrin Peter

Bewertung und Optimierung der Effektivität von Lean Methoden 
in der Kleinserienproduktion

Band 152
Dr.-Ing. Matthias Schopp

Sensorbasierte Zustandsdiagnose und -prognose von Kugelgewindetrieben

Band 153
Dr.-Ing. Martin Kipfmüller

Aufwandsoptimierte Simulation von Werkzeugmaschinen

Band 154
Dr.-Ing. Carsten Schmidt

Development of a database to consider multi wear mechanisms 
within chip forming simulation

Band 155
Dr.-Ing. Stephan Niggeschmidt

Ausfallgerechte Ersatzteilbereitstellung im Maschinen- und Anlagenbau  
mittels lastabhängiger Lebensdauerprognose

Band 156
Dr.-Ing. Jochen Conrad Peters

Bewertung des Einflusses von Formabweichungen in der 
Mikro-Koordinatenmesstechnik

Band 157
Dr.-Ing. Jörg Ude

Entscheidungsunterstützung für die Konfiguration 
globaler Wertschöpfungsnetzwerke

Band 158
Dr.-Ing. Stefan Weiler

Strategien zur wirtschaftlichen Gestaltung der globalen Beschaffung

Band 159
Dr.-Ing. Jan Rühl

Monetäre Flexibilitäts- und Risikobewertung



Band 160
Dr.-Ing. Daniel Ruch

Positions- und Konturerfassung räumlich gekrümmter Profile auf Basis 
bauteilimmanenter Markierungen

Band 161
Dr.-Ing. Manuel Tröndle

Flexible Zuführung von Mikrobauteilen mit piezoelektrischen
Schwingförderern

Band 162
Dr.-Ing. Benjamin Viering

Mikroverzahnungsnormal

Band 163
Dr.-Ing. Chris Becke

Prozesskraftrichtungsangepasste Frässtrategien zur schädigungsarmen
Bohrungsbearbeitung an faserverstärkten Kunststoffen

Band 164
Dr.-Ing. Patrick Werner

Dynamische Optimierung und Unsicherheitsbewertung der lastabhängigen 
präventiven Instandhaltung von Maschinenkomponenten

Band 165
Dr.-Ing. Martin Weis

Kompensation systematischer Fehler bei Werkzeugmaschinen durch
self-sensing Aktoren

Band 166
Dr.-Ing. Markus Schneider

Kompensation von Konturabweichungen bei gerundeten Strangpressprofilen 
durch robotergestützte Führungswerkzeuge

Band 167
Dr.-Ing. Ester M. R. Ruprecht

Prozesskette zur Herstellung schichtbasierter Systeme mit integrierten
Kavitäten



Band 168
Dr.-Ing. Alexander Broos

Simulationsgestützte Ermittlung der Komponentenbelastung für die
Lebensdauerprognose an Werkzeugmaschinen

Band 169
Dr.-Ing. Frederik Zanger

Segmentspanbildung, Werkzeugverschleiß, Randschichtzustand und
Bauteileigenschaften: Numerische Analysen zur Optimierung des
Zerspanungsprozesses am Beispiel von Ti-6Al-4V

Band 170
Dr.-Ing. Benjamin Behmann

Servicefähigkeit 

Band 171
Dr.-Ing. Annabel Gabriele Jondral

Simulationsgestützte Optimierung und Wirtschaftlichkeitsbewertung
des Lean-Methodeneinsatzes

Band 172
Dr.-Ing. Christoph Ruhs

Automatisierte Prozessabfolge zur qualitätssicheren Herstellung von
Kavitäten mittels Mikrobahnerosion

Band 173
Dr.-Ing. Steven Peters

Markoffsche Entscheidungsprozesse zur Kapazitäts- und Investitionsplanung
von Produktionssystemen

Band 174
Dr.-Ing. Christoph Kühlewein

Untersuchung und Optimierung des Wälzschälverfahrens mit Hilfe von
3D-FEM-Simulation – 3D-FEM Kinematik- und Spanbildungssimulation

Band 175
Dr.-Ing. Adam-Mwanga Dieckmann

Auslegung und Fertigungsprozessgestaltung sintergefügter Verbindungen
für μMIM-Bauteile



Band 176
Dr.-Ing. Heiko Hennrich

Aufbau eines kombinierten belastungs- und zustandsorientierten Diagnose-
und Prognosesystems für Kugelgewindetriebe

Band 177
Dr.-Ing. Stefan Herder

Piezoelektrischer Self-Sensing-Aktor zur Vorspannungsregelung in
adaptronischen Kugelgewindetrieben

Band 178
Dr.-Ing. Alexander Ochs

Ultraschall-Strömungsgreifer für die Handhabung textiler Halbzeuge
bei der automatisierten Fertigung von RTM-Bauteilen

Band 179
Dr.-Ing. Jürgen Michna

Numerische und experimentelle Untersuchung zerspanungsbedingter
Gefügeumwandlungen und Modellierung des thermo-mechanischen
Lastkollektivs beim Bohren von 42CrMo4

Band 180
Dr.-Ing. Jörg Elser

Vorrichtungsfreie räumliche Anordnung von Fügepartnern auf Basis
von Bauteilmarkierungen

Band 181
Dr.-Ing. Katharina Klimscha

Einfluss des Fügespalts auf die erreichbare Verbindungsqualität beim Sinterfügen

Band 182
Dr.-Ing. Patricia Weber

Steigerung der Prozesswiederholbarkeit mittels Analyse akustischer Emissionen 
bei der Mikrolaserablation mit UV-Pikosekundenlasern

Band 183
Dr.-Ing. Jochen Schädel

Automatisiertes Fügen von Tragprofilen mittels Faserwickeln



Band 184
Dr.-Ing. Martin Krauße

Aufwandsoptimierte Simulation von Produktionsanlagen durch Vergrößerung 
der Geltungsbereiche von Teilmodellen

Band 185
Dr.-Ing. Raphael Moser

Strategische Planung globaler Produktionsnetzwerke
Bestimmung von Wandlungsbedarf und Wandlungszeitpunkt mittels
multikriterieller Optimierung

Band 186
Dr.-Ing. Martin Otter

Methode zur Kompensation fertigungsbedingter Gestaltabweichungen für die 
Montage von Aluminium Space-Frame-Strukturen

Band 187
Dr.-Ing. Urs Leberle

Produktive und flexible Gleitförderung kleiner Bauteile auf phasenflexiblen 
Schwingförderern mit piezoelektrischen 2D-Antriebselementen

Band 188
Dr.-Ing. Johannes Book

Modellierung und Bewertung von Qualitätsmanagementstrategien in globalen 
Wertschöpfungsnetzwerken

Band 189
Dr.-Ing. Florian Ambrosy

Optimierung von Zerspanungsprozessen zur prozesssicheren Fertigung nanokri-
stalliner Randschichten am Beispiel von 42CrMo4

Band 190
Dr.-Ing. Adrian Kölmel

Integrierte Messtechnik für Prozessketten unreifer Technologien am Beispiel der 
Batterieproduktion für Elektrofahrzeuge

Band 191
Dr.-Ing. Henning Wagner

Featurebasierte Technologieplanung zum Preforming von textilen Halbzeugen



Band 192
Dr.-Ing. Johannes Gebhardt

Strukturoptimierung von in FVK eingebetteten metallischen 
Lasteinleitungselementen

Band 193
Dr.-Ing. Jörg Bauer

Hochintegriertes hydraulisches Vorschubsystem für die Bearbeitung kleiner 
Werkstücke mit hohen Fertigungsanforderungen

Band 194
Dr.-Ing. Nicole Stricker

Robustheit verketteter Produktionssysteme
Robustheitsevaluation und Selektion des Kennzahlensystems der Robustheit

Band 195
Dr.-Ing. Anna Sauer

Konfiguration von Montagelinien unreifer Produkttechnologien am Beispiel der 
Batteriemontage für Elektrofahrzeuge

Band 196
Dr.-Ing. Florian Sell-Le Blanc

Prozessmodell für das Linearwickeln unrunder Zahnspulen
Ein Beitrag zur orthozyklischen Spulenwickeltechnik

Band 197
Dr.-Ing. Frederic Förster

Geregeltes Handhabungssystem zum zuverlässigen und energieeffizienten 
Handling textiler Kohlenstofffaserzuschnitte

Band 198
Dr.-Ing. Nikolay Boev

Numerische Beschreibung von Wechselwirkungen zwischen Zerspanprozess und 
Maschine am Beispiel Räumen

Band 199
Dr.-Ing. Sebastian Greinacher

Simulationsgestützte Mehrzieloptimierung schlanker und ressourceneffizienter 
Produktionssysteme



Band 200
Dr.-Ing. Benjamin Häfner

Lebensdauerprognose in Abhängigkeit der Fertigungsabweichungen  
bei Mikroverzahnungen

Band 201
Dr.-Ing. Stefan Klotz

Dynamische Parameteranpassung bei der Bohrungsherstellung in 
faserverstärkten Kunststoffen unter zusätzlicher Berücksichtigung 
der Einspannsituation

Band 202
Dr.-Ing. Johannes Stoll

Bewertung konkurrierender Fertigungsfolgen mittels Kostensimulation und 
stochastischer Mehrzieloptimierung
Anwendung am Beispiel der Blechpaketfertigung für automobile Elektromotoren

Band 203
Dr.-Ing. Simon-Frederik Koch

Fügen von Metall-Faserverbund-Hybridwellen im Schleuderverfahren
ein Beitrag zur fertigungsgerechten intrinsischen Hybridisierung

Band 204
Dr.-Ing. Julius Ficht

Numerische Untersuchung der Eigenspannungsentwicklung für sequenzielle 
Zerspanungsprozesse

Band 205
Dr.-Ing. Manuel Baumeister

Automatisierte Fertigung von Einzelblattstapeln in der Lithium-Ionen-
Zellproduktion

Band 206
Dr.-Ing. Daniel Bertsch

Optimierung der Werkzeug- und Prozessauslegung für das Wälzschälen von 
Innenverzahnungen



Band 207
Dr.-Ing. Kyle James Kippenbrock

Deconvolution of Industrial Measurement and Manufacturing Processes 
for Improved Process Capability Assessments

Band 208
Dr.-Ing. Farboud Bejnoud

Experimentelle Prozesskettenbetrachtung für Räumbauteile am Beispiel 
einer einsatzgehärteten PKW-Schiebemuffe

Band 209
Dr.-Ing. Steffen Dosch

Herstellungsübergreifende Informationsübertragung zur effizienten Produktion 
von Werkzeugmaschinen am Beispiel von Kugelgewindetrieben

Band 210
Dr.-Ing. Emanuel Moser

Migrationsplanung globaler Produktionsnetzwerke
Bestimmung robuster Migrationspfade und risiko-effizienter Wandlungsbefähiger

Band 211
Dr.-Ing. Jan Hochdörffer

Integrierte Produktallokationsstrategie und Konfigurationssequenz in 
globalen Produktionsnetzwerken

Band 212
Dr.-Ing. Tobias Arndt

Bewertung und Steigerung der Prozessqualität in globalen 
Produktionsnetzwerken
 
Band 213
Dr.-Ing. Manuel Peter

Unwuchtminimale Montage von Permanentmagnetrotoren durch modellbasierte 
Online-Optimierung
 
Band 214
Dr.-Ing. Robin Kopf

Kostenorientierte Planung von Fertigungsfolgen additiver Technologien



Band 215
Dr.-Ing. Harald Meier

Einfluss des Räumens auf den Bauteilzustand in der Prozesskette 
Weichbearbeitung – Wärmebehandllung – Hartbearbeitung

Band 216
Dr.-Ing. Daniel Brabandt

Qualitätssicherung von textilen Kohlenstofffaser-Preforms mittels 
optischer Messtechnik

Band 217
Dr.-Ing. Alexandra Schabunow

Einstellung von Aufnahmeparametern mittels projektionsbasierter Qualitäts-
kenngrößen in der industriellen Röntgen-Computertomographie

Band 218
Dr.-Ing. Jens Bürgin

Robuste Auftragsplanung in Produktionsnetzwerken
Mittelfristige Planung der variantenreichen Serienproduktion unter Unsicherheit 
der Kundenauftragskonfigurationen

Band 219
Dr.-Ing. Michael Gerstenmeyer

Entwicklung und Analyse eines mechanischen Oberflächenbehandlungs-
verfahrens unter Verwendung des Zerspanungswerkzeuges

Band 220
Dr.-Ing. Jacques Burtscher

Erhöhung der Bearbeitungsstabilität von Werkzeugmaschinen durch  
semi-passive masseneinstellbare Dämpfungssysteme

Band 221
Dr.-Ing. Dietrich Berger

Qualitätssicherung von textilen Kohlenstofffaser-Preforms mittels prozess-
integrierter Wirbelstromsensor-Arrays



Band 222
Dr.-Ing. Fabian Johannes Ballier

Systematic gripper arrangement for a handling device in lightweight 
production processes

Band 223
Dr.-Ing. Marielouise Schäferling, geb. Zaiß 

Development of a Data Fusion-Based Multi-Sensor System for Hybrid 
Sheet Molding Compound

Band 224
Dr.-Ing. Quirin Spiller

Additive Herstellung von Metallbauteilen mit dem ARBURG Kunststoff-
Freiformen

Band 225
Dr.-Ing. Andreas Spohrer

Steigerung der Ressourceneffizienz und Verfügbarkeit von Kugelgewinde-
trieben durch adaptive Schmierung

Band 226
Dr.-Ing. Johannes Fisel

Veränderungsfähigkeit getakteter Fließmontagesysteme
Planung der Fließbandabstimmung am Beispiel der Automobilmontage

Band 227
Dr.-Ing. Patrick Bollig

Numerische Entwicklung von Strategien zur Kompensation thermisch 
bedingter Verzüge beim Bohren von 42CrMo4

Band 228
Dr.-Ing. Ramona Pfeiffer, geb. Singer

Untersuchung der prozessbestimmenden Größen für die anforderungsgerechte 
Gestaltung von Pouchzellen-Verpackungen

Band 229
Dr.-Ing. Florian Baumann

Additive Fertigung von endlosfaserverstärkten Kunststoffen mit dem  
ARBURG Kunststoff-Freiform Verfahren



Band 230
Dr.-Ing. Tom Stähr

Methodik zur Planung und Konfigurationsauswahl skalierbarer Montage-
systeme – Ein Beitrag zur skalierbaren Automatisierung

Band 231
Dr.-Ing. Jan Schwennen

Einbringung und Gestaltung von Lasteinleitungsstrukturen für im RTM- 
Verfahren hergestellte FVK-Sandwichbauteile

Band 232
Dr.-Ing. Sven Coutandin

Prozessstrategien für das automatisierte Preforming von bebinderten textilen 
Halbzeugen mit einem segmentierten Werkzeugsystem

Band 233
Dr.-Ing. Christoph Liebrecht

Entscheidungsunterstützung für den Industrie 4.0-Methodeneinsatz
Strukturierung, Bewertung und Ableitung von Implementierungsreihenfolgen

Band 234
Dr.-Ing. Stefan Treber

Transparenzsteigerung in Produktionsnetzwerken
Verbesserung des Störungsmanagements durch verstärkten 
 Informationsaustausch

Band 235
Dr.-Ing. Marius Dackweiler

Modellierung des Fügewickelprozesses zur Herstellung von leichten 
Fachwerkstrukturen

Band 236
Dr.-Ing. Fabio Echsler Minguillon

Prädiktiv-reaktives Scheduling zur Steigerung der Robustheit in der  
Matrix-Produktion

Band 237
Dr.-Ing. Sebastian Haag

Entwicklung eines Verfahrensablaufes zur Herstellung von Batteriezellsta-
peln mit großformatigem, rechteckigem Stapelformat und kontinuierlichen 
Materialbahnen



Band 238
Dr.-Ing. Raphael Wagner

Strategien zur funktionsorientierten Qualitätsregelung in der 
S erienproduktion

Band 239
Dr.-Ing. Christopher Ehrmann

Ausfallfrüherkennung von Ritzel-Zahnstangen- Trieben mittels 
Acoustic Emission

Band 240
Dr.-Ing. Janna Hofmann 

Prozessmodellierung des Fünf-Achs-Nadelwickelns zur Implementierung 
einer trajektoriebasierten Drahtzugkraftregelung

Band 241
Dr.-Ing. Andreas Kuhnle 

Adaptive Order Dispatching based on Reinforcement Learning
Application in a Complex Job Shop in the Semiconductor Industry

Band 242
Dr.-Ing. Andreas Greiber 

Fertigung optimierter technischer Oberflächen durch eine 
 Verfahrenskombination aus Fliehkraft-Tauchgleitschleifen und Laserablation
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