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Abstract

Investment decisions in competitive power markets are based upon thorough
profitability assessments. Thereby, investors typically show a high degree of
risk aversion, which is the main argument for capacity mechanisms being
implemented around the world. In order to investigate the interdependencies
between investors’ risk aversion and market design, we extend the agent-based
electricity market model PowerACE to account for long-term uncertainties.
This allows us to model capacity expansion planning from an agent per-
spective and with different risk preferences. The enhanced model is then
applied in a multi-country case study of the European electricity market. Our
results show that assuming risk-averse rather than risk-neutral investors leads
to slightly reduced investments in dispatchable capacity, higher wholesale
electricity prices, and reduced levels of resource adequacy. These effects are
more pronounced in an energy-only market than under a capacity mechanism.
Moreover, uncoordinated changes in market design may also lead to negative
cross-border effects.
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1 Introduction

In competitive power markets, investment decisions are based upon thorough prof-

itability assessments. Thereby, investors typically show a high degree of risk aversion

due to the capital intensity of large-scale generation and storage facilities, and the

corresponding long-term investment horizons (Vàzquez et al., 2002). The significant

increase of renewable electricity generation in countries around the world further ex-

acerbates the situation. Even under very high shares of renewables, a certain amount

of dispatchable capacity will still be required to compensate for the intermittency of

solar and wind power. Yet, the small number of (expected) operating hours as well

as price volatility increase the risk of investments in the required firm capacity.

Against this background, capacity remuneration mechanisms (CRMs) have been

implemented in several regions of the world as an extension to an energy-only market

(EOM), in which capacity providers are solely compensated for the amount of elec-

tricity they sell on the markets (Bublitz et al., 2019). CRMs aim to reduce the risks

for new investments by offering capacity providers supplementary income on top of

the earnings from selling electricity on the market. The additional firm capacity is

then expected to help improve resource adequacy, i.e., avoid shortage situations.

These developments illustrate that the interdependencies between investors’ risk

aversion and market design are crucial when analyzing transformation pathways

of electricity systems. However, existing capacity expansion planning1 models do

not cover all aspects relevant for a realistic representation of real-world electricity

markets, which are amongst others characterized by heterogeneous risk-averse actors

1In the literature, the term generation expansion planning is often used to describe models that
aim to determine a future generation technology mix subject to the future electricity demand, renew-
able feed-in and cross-border transmission capacities. Since we also consider a model-endogenous
expansion of storage capacities, we use the more generic term capacity expansion planning.
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and – particularly in the European case – cross-border effects of asymmetrical market

design implementations.

In our article, we therefore extend the agent-based electricity market model

PowerACE to account for long-term uncertainties, such that capacity expansion

planning can be carried out from an agent perspective and with diversified risk

preferences. For this purpose, we construct model-endogenous scenario trees and

implement a new decision metric that comprises the expected profitability and the

corresponding conditional value at risk (CVaR) of a potential investment. The en-

hanced model is then applied in a case study covering multiple interconnected market

areas with diverging market designs. This allows us to quantify the impact of risk

aversion on capacity expansion, wholesale electricity prices, and resource adequacy

for both, a European EOM design as well as asymmetrical CRM implementations.

The remainder of the article is structured as follows. In Section 2, we briefly

review the relevant existing literature and outline how it is complemented by our

analysis. Section 3 introduces the applied simulation model as well as all relevant

extensions carried out for this article. We then describe the data and major as-

sumptions of our case study in Section 4. The subsequent Section 5 presents and

discusses the results of our simulations. Finally, Section 6 concludes and derives

policy implications of our analysis.

2 Literature Review and Research Gap

Capacity expansion planning is one of the traditional problems in electricity system

design which is reflected by the several review papers available in the literature (e.g.,

Sadeghi et al., 2017; Koltsaklis and Dagoumas, 2018; Babatunde et al., 2019). In the

following, we first summarize previous work on the role of risk aversion in capacity
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expansion planning. We then define several requirements for models that aim to

represent real-world electricity markets in a realistic fashion. Based on this, we

outline in what sense existing approaches fail to meet these criteria and how our

work therefore complements the literature.

Originally, optimization models from the perspective of a central planner that

aims to maximize social welfare by minimizing total system cost were mostly applied

for capacity expansion planning. Over time, this model class was extended to con-

sider uncertainties (e.g., Swider and Weber, 2007; Spiecker et al., 2013; Fürsch et al.,

2014; Scott et al., 2021) and even risk aversion (e.g., Möbius et al., 2021). However,

such optimization models are not able to adequately represent competitive electricity

markets, where investment decisions are made by individual market players based on

market price expectations under imperfect information (Weber et al., 2021; Anwar

et al., 2022).

For this reason, equilibrium models have recently gained popularity. In these

models, the individual profit maximization problems faced by the different market

players are simultaneously solved in order to find an equilibrium with no incentive

for any of the actors to unilaterally deviate. Equilibrium models generally allow

to represent uncertainties (e.g., Schröder et al., 2013) as well as risk aversion (e.g.,

Ehrenmann and Smeers, 2011; Fan et al., 2012; Mays et al., 2019). However, this type

of models is particularly challenging to solve, so typically only small-scale systems

can be investigated (Anwar et al., 2022).

The computational challenges of equilibrium models can be mitigated by moving

to other model types, such as system dynamics (e.g., Petitet et al., 2017) or agent-

based simulations (e.g., Botterud et al., 2007; Anwar et al., 2022). However, while

the mentioned articles consider uncertainties and risk aversion, none of them features

a geographical scope covering more than a single country.
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Existing research shows that both, the flexibility of an electricity system (Möbius

et al., 2021) and the market design (Ehrenmann and Smeers, 2011; Petitet et al.,

2017) may decide on how big a role risk aversion plays in capacity expansion plan-

ning. Thus, given the European Commission’s goal of creating an Internal Electricity

Market, cross-border effects between interconnected market areas are a major aspect

to be considered in European electricity market models. Moreover, several Euro-

pean countries have recently opted to introduce CRMs (Bublitz et al., 2019), which

may come along with substantial cross-border effects. Finally, when investigating

electricity market designs, it is important to model system transformation pathways

in order to account for path dependencies and lock-in effects arising from long in-

vestment horizons. Considering multiple investment decision periods is therefore

preferable over using a limited number of milestone years as typical for optimization

and equilibrium models.

To the best of our knowledge, there exists no approach in the literature that

fulfills all of these requirements (cf. Table 1). In this article, we therefore enhance

an existing agent-based simulation model, which allows us to adequately represent a

dynamic capacity expansion planning in a deregulated market structure with hetero-

geneous and risk-averse actors. We then apply our approach in a case study covering

multiple interconnected market areas with diverging market designs.

3 Methodology

In the following sections, we describe the methodological approach of this article.

To start with, Section 3.1 introduces the applied electricity market simulation model

PowerACE and provides some details on the previously developed algorithm for

capacity expansion planning from the perspective of individual agents. We then
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Table 1: Existing modeling studies considering uncertainties in capacity expansion
planning. Our article is the first to cover several important features of real-world electricity
systems at the same time.

Model type/ Agent Risk Cross-border Transformation Market
Reference perspective aversion effects pathway design

Stochastic optimization model

Fürsch et al. (2014) x (x)
Möbius et al. (2021) x x (x)
Scott et al. (2021) (x)
Spiecker et al. (2013) x (x)
Swider and Weber (2007) x

Equilibrium model

Ehrenmann and Smeers (2011) x x x
Fan et al. (2012) x x
Mays et al. (2019) x x x
Schröder et al. (2013) x x (x)

Simulation model

Anwar et al. (2022) x x x
Botterud et al. (2007) x x x
Petitet et al. (2017) x x x x

This article x x x x x

focus on the extensions to the existing approach that are required in order to account

for uncertainties and risk aversion. For this purpose, Section 3.2 describes how the

considered long-term uncertainties are modeled, whereas Section 3.3 concentrates on

the decision making of the agents under consideration of their risk aversion.

3.1 Overview of the Simulation Model PowerACE

The methodological basis for this work is the established PowerACE model, which

has previously been applied for various long-term scenario analyses of the European

electricity markets (e.g., Keles et al., 2016; Bublitz et al., 2017; Ringler et al., 2017;

Fraunholz et al., 2021a,b; Zimmermann et al., 2021). The focus of PowerACE lies
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on the simulation of interconnected day-ahead markets and different CRMs, with

the relevant market participants – e.g., utility companies, regulators, consumers –

represented by agents. In particular, the modeled utility companies decide on the

short-term dispatch of their conventional power plants and storage units as well as

long-term capacity expansions. Ultimately, the development of the markets emerges

from the simulated behavior of all agents. The simulation model is continuously

enhanced with new features. A detailed description of the current functionalities can

be found in Fraunholz (2021).

PowerACE is a detailed bottom-up simulation model with a time horizon typ-

ically covering 30–40 years at a high temporal resolution of 8760 h/a. In order to

adequately account for cross-border effects, the model currently covers a total of

ten interconnected European market areas. Thus, PowerACE requires substantial

amounts of input data, including a database of existing conventional power plants

and investment candidates with their respective techno-economic characteristics, as-

sumptions on the future development of fuel and carbon prices as well as hourly time

series for renewable feed-in and electricity demand. The major model output com-

prises hourly day-ahead electricity prices, the corresponding electricity generation by

technology as well as long-term changes of the conventional power plant fleets and

utility-scale storage capacities for all simulated market areas. The future technol-

ogy mix emerges from the model-endogenous capacity expansion planning algorithm,

which is carried out at the end of each simulation year. In Fig. 1, the principles of

this algorithm are sketched and a brief description is provided in the following. For

more details, we refer the reader to the original work by Fraunholz et al. (2019).

The modeled investors base their decisions on expectations regarding future elec-

tricity prices. These prices are in turn affected by the investment decisions of all

investors in all interconnected market areas. Thus, in order to find a stable solution
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Start

Update forecast of future
prices p̂m including all

planned investments J∗
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all investment options

j ∈ Jm and market areas m

Further
profitable options
left in any set Jm?

Add most profitable
option j∗ to the set of
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Other planned
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Remove unprofitable
planned investments

from the set J∗
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yes
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Figure 1: Simplified overview of the capacity expansion planning algorithm developed
by Fraunholz et al. (2019). Starting with an initial model-endogenous long-term price fore-
cast, the profitability of all investment candidates is evaluated. Potential investments are then
gradually added to and removed from the – initially empty – set of planned investments until
a Nash-equilibrium has been found. In order to extend the previous deterministic approach to
a stochastic one, the subprograms highlighted in blue need to be modified.

to the capacity expansion planning problem, a Nash-equilibrium is determined in an

iterative process. The algorithm terminates as soon as all planned investments are

expected to be profitable, while at the same time none of the investors is able to

increase their profit by carrying out additional or fewer investments. This situation

satisfies the definition of a Nash-equilibrium, as there exists no incentive for any

investor to unilaterally deviate from the determined equilibrium.
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In a first step, a model-endogenous forecast of the future electricity prices p̂m,y,h

in all market areas m is carried out for multiple future years y and all hours of

the year h. In the previous model versions, the price forecasts are determined by

assuming a single weather year that realizes repeatedly throughout the investment

horizon. Methodologically, the price forecast is implemented as a time-coupled linear

optimization problem with the objective to minimize the total cost of electricity

generation across all market areas. The forecast further assumes myopic foresight

regarding the development of the future electricity demand and renewable feed-in as

well as construction and decommissioning of conventional power plants.

Based on the expected hourly electricity prices, yearly contribution margins and

finally net present values are computed for all investment options j available to the

agents. In order to account for the technology specific investment horizons, the

net present values are converted to annuities (Konstantin and Konstantin, 2018).

These annuities are used as a metric to evaluate the profitability of a potential

investment. Across all market areas, the most profitable investment option j∗ is

then chosen and added to the set of planned investments J∗. If other previously

planned investments now become unprofitable, they are gradually removed from the

set of planned investments. The whole process is carried out in multiple iterations

with the price forecast being updated numerous times in order to account for the price

effect of the currently planned investments. Finally, the algorithm terminates when

no more profitable investment options remain in any of the market areas. In this

Nash-equilibrium situation, all planned investments in set J∗ are carried out. As the

investments are evaluated against the forecasted prices without taking into account

the impact of one investment on the profitability of the other portfolio elements of the

investors, the obtained equilibrium also corresponds to a competitive equilibrium.
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While the described algorithm assumes an EOM design, several European coun-

tries have recently implemented CRMs (Bublitz et al., 2019). Since these mechanisms

have a substantial impact on the capacity expansion planning, centralized capacity

auctions can optionally be activated in each market area. For this purpose, the

methodology developed by Renz et al. (2014) is used. At the end of each simulation

year, descending clock auctions are carried out in order to contract a specific amount

of secured generation, and storage capacity. Subsequently, the previously described

usual capacity expansion planning procedure is run while taking into account the

investment decisions resulting from the centralized capacity auctions.

The previous version of the capacity expansion planning algorithm can be char-

acterized as a deterministic approach with myopic foresight. However, in reality,

investors carry out their capacity expansion planning under uncertainty and con-

sider their individual risk preferences. In order to account for these essential and

previously neglected aspects, we modify and extend some parts of the previous algo-

rithm (highlighted in blue in Fig. 1). Firstly, we construct multiple scenarios for the

price forecast instead of relying on a single and deterministic one (Section 3.2). This

allows us to compute an empirical distribution function of the profitability metric

rather than using a single expected profitability value. Secondly, we construct a new

decision rule for the profitability evaluation, which takes into account the uncertainty

and adequately considers the risk aversion of the investors (Section 3.3).

3.2 Modeling of Long-Term Uncertainties

The uncertainties influencing investment decisions in competitive power markets are

multifaceted and include the installed capacities and generation volumes of renew-

ables, the load level and patterns, policy changes, commodity prices, and emission
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regulations, to name just a few. Scott et al. (2021) suggest a holistic consideration

of all relevant uncertainties in order to depict their interactions and joint impact on

the investment decisions. However, such a consideration can result in inadequate

computational efforts and hardly interpretable results, especially if the modeling

framework is comparably complex. Thus, as shown in the literature review of Anwar

et al. (2022), a small set of uncertainties is often considered in isolation.

In our case study, we exemplary focus on fluctuations in solar and wind power

generation as well as electricity demand patterns by considering different weather

years. According to the literature review by Sadeghi et al. (2017), those are the

most commonly assessed uncertainties in capacity expansion planning. Moreover,

these aspects gain in importance given their influence on the realized short-term

electricity prices (Lago et al., 2018). Finally, the influence of these drivers will also

increase further due to both, the rising share of volatile electricity generation and

new electrical applications, e.g., in the transport and heating sector.

Importantly, choosing weather years as uncertainty source also comes along with a

crucial methodological benefit. Since the realization of a weather year is independent

from previous realizations, we avoid path dependencies in the scenario tree (see

below) and can construct thousands of scenarios with limited computational effort2.

Apart from the unacceptable computational burden, our developed approach would

in principle also allow us to consider further uncertainties like market design changes,

capacity expansion of renewables, development of the annual electricity demand or

commodity prices. Alternatively, the role of these uncertainties can at least be

2For example, if we consider n different weather years over a time horizon of 10 years, we
can construct n10 sequences of weather years (i.e, scenarios), while the computational effort only
increases by a factor of n compared to the case of a single weather year. In contrast, if we were
to consider n carbon price pathways, the computational effort would also increase by a factor of n,
while we would only obtain n different scenarios.

11



w1

· · ·
wref wref

· · ·
wref

p1
w2p2

w3

· · · · · · · · · · · ·p3

w4

p4

w5

· · ·
wref wref

· · ·
wref

p5

Investment
decision in y

Forecast
for y + 1

Forecast
for y + 2

· · · Forecast
for y + 10

Forecast
for y + 11

· · · Forecast
for y + T

Figure 2: Developed scenario tree to consider the uncertainty induced by weather years
in the capacity expansion planning. The figure shows possible sequences of weather years
that could materialize over the lifetime of a potential investment.

considered via additional simulation runs – an approach that we choose for the

electricity market design configuration in the modeled countries.

In order to take into account the uncertainty introduced by different weather

years, we develop a scenario tree for each simulation year y and consider that different

sequences of weathers years wi could occur in the subsequent years (Fig. 2). The

tree spans over the whole lifetime T of an investment option. However, in order to

reduce the computational complexity, we only depict a full-factorial combination of

all weather years in the scenario set until y+10 and use a representative – in our case

the most probable – weather year wref thereafter (for a similar approach see Petitet
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et al., 2016). Please note that since the probability of a given weather year can by

approximately derived from historical data (see below), we are also able to assign an

individual probability to each scenario path. This might not be easily feasible for

uncertainty sources other than weather years.

For each scenario path, a price forecast and profitability assessment of the invest-

ment options is carried out as described in Sections 3.1 and 3.3. In order to do so,

time series for the electricity demand and renewable feed-in as well as the probability

of occurrence pi needs to be determined for each weather year wi. For this purpose,

we use five different weather years (2015–2019) and derive their respective probability

of occurrence using a k-means clustering of the historical weather years 1980–2014.

For details on the data sources and processing, please refer to Appendix A.1. While

the investors carry out their capacity expansion planning under uncertainty regard-

ing the sequence of weather years that will be realized, we use the probabilities of

each weather year to construct a distinct sequence of weather years that is used for

the day-ahead market simulation (see also Appendix A.1).

3.3 Decision Making of the Agents under Uncertainty

Based on the constructed scenario tree and the probability ps for each scenario s

to realize, we can now compute the profitability πm,j,s of each investment option

j ∈ Jm and for all market areas m ∈ M . The empirical distribution function

and the empirical cumulative distribution function (ECDF) of the profitability of a

specific investment option can then be used to derive various decision calculi, which

allow for a consideration of both, expected profitability and risk exposure.
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To start with, we define the expected profitability E as the expected value of the

profitability distribution in Eq. (1).

E (πm,j,s) =
∑
s

ps · πm,j,s ∀m ∈M , j ∈ Jm (1)

In order to include risk aversion when taking decisions under uncertainty, it is

typically quantified by means of risk measures. Based on the empirical distribution

function, risk measures can be defined in various ways: by descriptive statistics of

the distribution (e.g., the variance), by the probability to fall below defined thresh-

old values (e.g., the shortfall probability), or by figures based on quantiles of the

distribution (Conejo et al., 2010).

Prominently, the value at risk (VaRα) defined in Eq. (2) – with P (s|∗) as the

cumulative probability of all scenarios s for which condition ∗ is satisfied – provides

information on the (1 − α)-quantile of a distribution. However, this risk measure

neglects information about potential fat tails and fails to meet the conditions of

coherent risk measures3. Therefore, based on the VaRα, the conditional value at risk

(CVaRα) defined in Eq. (3) depicts the expected value of the ECDF if the value falls

below the VaRα. The CVaRα is a coherent and state-of-the-art risk measure that is

deployed in many studies dealing with decisions under uncertainty in the electricity

market context (e.g., Morales et al., 2010; Laur et al., 2018; Wozabal and Rameseder,

2020; Kraft et al., 2021; Möbius et al., 2021; Russo et al., 2021).

VaRα (πm,j,s) = max {η : P (s|πm,j,s < η) ≤ 1− α} ∀α ∈ (0, 1),m ∈M , j ∈ Jm

(2)

3Coherent risk measures satisfy the conditions of monotonicity, sub-additivity, homogeneity, and
translational invariance.
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CVaRα (πm,j,s) = E
(
πm,j,s|πm,j,s ≤ VaRα (πm,j,s)

)
∀α ∈ (0, 1),m ∈M , j ∈ Jm

(3)

To combine the objectives of profitability and risk management, the mentioned

papers model a linear combination of the expected value E and the CVaRα – typically

with α = 95 %, i.e., considering the 5 % worst cases for the risk measure. We follow

this approach and define the profitability metric π∗
m,j as a linear combination with

weights λ and (1− λ) as shown in Eq. (4). Here, λ indicates the investor’s risk

aversion and can take values between 0 (risk-neutral) and 1 (highly risk-averse).

π∗
m,j = (1− λ)·E (πm,j,s)+λ·CVaRα (πm,j,s) ∀α ∈ (0, 1),λ ∈ [0, 1],m ∈M , j ∈ Jm

(4)

In the simulation, the agents use the described calculus to evaluate competing

investment options and eventually derive investment decisions (see Section 3.1). An

investment option j in market area m is considered profitable if π∗
m,j > 0 holds.

Further, when comparing two investment options, option 1 is considered more prof-

itable than option 2, if π∗
m,1 > π∗

m,2 holds. Given the ECDF of competing investment

options in a market area m, the risk aversion of an investor can thus be decisive in

determining whether and which investment option is realized.

The agent-based simulation, with the help of the introduced decision calculus,

stands out as it enables us to diversify the risk aversion for each agent, investment

option, and market area. In particular, different risk attitudes could be implemented

for different technologies or market areas to assess the development of the electricity

system. However, to ensure comparability of the results and due to a lack of reliable
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data for parametrization, we do not apply such a diversification in our case study,

but rather evaluate simulations for fixed α = 95 % and varying λ ∈ {0.0, 0.5, 1.0} in

terms of investment behavior, electricity prices, and resource adequacy.

4 Data and Assumptions

In the following, we provide an overview of the data and assumptions used in our

simulation study. Section 4.1 focuses on the general model input data. In Section

4.2, we then define the different market design configurations and risk attitudes that

are analyzed.

4.1 Overview of the Required Model Input Data

As previously mentioned, substantial amounts of input data need to be prepared

to run the detailed bottom-up simulation model PowerACE. Table 2 provides an

overview of the main model inputs and the respective data sources. The invest-

ment options comprise combined cycle gas turbines (CCGT), open cycle gas turbines

(OCGT) as well as lithium-ion and redox-flow batteries for all market areas, whereas

investments in nuclear and coal-fired power plants are only eligible in selected coun-

tries – following the respective real-world regulations at the time of writing. In

contrast to conventional power plants and utility-scale storage units, the develop-

ment of the renewable generation capacities is not determined endogenously, but

follows exogenously defined expansion pathways. Some details on the input data are

provided in Appendix A.
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Table 2: Overview of the input data used in all simulations carried out with PowerACE.

Input data type Resolution Sources and comments

Conventional power plants unit level S&P Global Platts (2015), and own assumptions
(cf. Appendix A.2)

Fuel prices yearly ENTSOG and ENTSO-E (2020); IEA (2020)
Carbon prices yearly de Vita et al. (2016), scaled to reach

150 EUR/tCO2 in 2050
Investment options yearly Louwen et al. (2018); Schröder et al. (2013),

and own assumptions (cf. Appendix A.3)
Transmission capacities yearly ENTSOG and ENTSO-E (2020)
Electricity demand hourly,

market
area

historical time series from ENTSO-E (2021),
yearly volumes from ENTSOG and ENTSO-E
(2020); Eurostat (2021), and own assumptions
(cf. Appendix A.1)

Renewable feed-in hourly,
market
area

historical time series from ENTSO-E (2021),
installed capacities from ENTSOG and
ENTSO-E (2020); Eurostat (2021); IRENA
(2021), and own assumptions (cf. Appendix A.1)

4.2 Definition of Market Design Configurations and Risk At-

titudes

Since the electricity market design has a strong impact on the distribution of risk

among investors and society, we run simulations with two different market design

configurations. In doing so, we model ten interconnected European market areas,

which represent a significant portion of the European electricity market. The tradi-

tional electricity market design in Europe is an EOM, in which upfront investment

costs are only recovered through operation margins in the energy market. Therefore,

as shown in Fig. 3a, we first consider a European EOM design. However, several

countries have implemented CRMs over the past few years. These mechanisms typ-

ically aim to reduce the risks for new investments by offering capacity providers

supplementary income on top of the earnings from selling electricity on the market.
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(a) European EOM (b) National CRM policies

Energy-only market Capacity remuneration mechanism

Figure 3: Regional scope of PowerACE and assumed electricity market designs. In
configuration (a), all countries rely on an EOM, while configuration (b) reflects the current
real-world setting with CRMs implemented in some of the countries. Abbreviations: CRM—
capacity remuneration mechanism, EOM—energy-only market.

However, in case of asymmetrical – i.e., uncoordinated national – implementations,

CRMs may come along with both positive and negative cross-border effects. We

therefore compare the EOM setting to a configuration with national CRM policies

corresponding to the current real-world setting (Fig. 3b).

For both of these market design configurations, we analyze the impact of different

risk perceptions and attitudes by varying the parameter λ in Eq. (4). As previously

mentioned, we refrain from defining individual risk aversions for each agent, invest-

ment option, and market area to ensure comparability of the results and due to a

lack of reliable data for parametrization. Instead, we first run benchmark simula-

tions with both market designs and where all investors are assumed to behave risk

neutral (λ = 0.0). This parametrization implies that investors base their decisions

solely on the expected profitability across all considered scenarios. We then compare
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the results to those of a setting with a high degree of risk aversion by assuming

λ = 1.0 and α = 0.95 for all investors. Thus, the investors only consider the CVaR,

while the expected profitability across all scenarios is not taken into account. Ad-

ditional results for a moderate risk aversion (λ = 0.5 and α = 0.95 – i.e., both the

expected profitability and the CVaR are considered with equal weight) are included

in Appendix B.

5 Results and Discussion

The subsequent sections present and discuss the results of our simulation study. We

first focus on the installed conventional generation and storage capacities that emerge

from the capacity expansion planning (Section 5.1). Next, we show the impact of

these investment decisions on wholesale electricity prices (Section 5.2), and resource

adequacy (Section 5.3). Please note that all results are evaluated in aggregated form,

but separately for the countries using CRMs (group A) and those relying on EOMs

(group B) in the national CRM policies. This allows us to isolate the effects of

market designs and the investors’ risk aversion.

5.1 Conventional Generation and Storage Capacities

The future technology mix emerges from (1) the model-endogenous expansion plan-

ning for conventional power plants and storage units, (2) exogenous decommissioning

of conventional power plants based on their technical lifetime, and (3) exogenous

pathways for the expansion of renewables. Since the exogenous assumptions are not

affected by market design and risk attitudes, we concentrate on the results of the

endogenous capacity expansion in the following.
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Fig. 4 illustrates the development of installed conventional power plant capacities

and utility-scale storage units for both market design configurations assuming risk-

neutral investors. Overall, substantial requirements for firm capacity remain despite

the assumed strong expansion of renewables up to 2050. Moreover, a significant fuel

switch from nuclear and coal to gas-fired power plants can be observed, which is

mostly driven by the exogenous carbon price path (cf. Table 2).

In the configuration with national CRM policies, the introduction of CRMs in

the countries of group A fosters substantial investments in dispatchable capacity

in these countries. This is particularly relevant towards the end of the simulation

period, where the high share of renewables reduces the expected operating hours

of conventional power plants, rendering such investments unprofitable in an EOM

design. Contrary to country group A, significantly fewer investments are realized in

the countries of group B, which continue to rely on an EOM in the configuration

with national CRM policies. These results stand in line with previous research

that has shown the distorting market impact of asymmetrical CRM implementations

(Bucksteeg et al., 2019; Fraunholz et al., 2021a).

Let us now move on to the impact of an increased investors’ risk aversion. In Fig.

5, we compare the deltas of installed capacities in the settings with highly risk-averse

investors to the respective risk-neutral settings (Fig. 4). Under a European EOM

design, a higher risk aversion of the investors leads to fewer investments and thus

reduced amounts of installed capacities in both country groups. Again, the effects

are most pronounced towards the end of the simulation period. This follows intuition

given the increasing shares of renewables that also make the expected profitability

of investments more dependent on the respective sequence of weather years. Con-

sequently, investments are exposed to higher risk towards 2050 and might not be

carried out anymore in the case of highly risk-averse investors.
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Figure 4: Aggregated conventional power plant and utility-scale storage capacities in
(a) country group A and (b) country group B with risk-neutral investors. The bottom
parts of the figure show the deltas of installed capacities between the national CRM policies
and the European EOM design. Abbreviations: CCGT—combined cycle gas turbine, CRM—
capacity remuneration mechanism, EOM—energy-only market, OCGT—open cycle gas turbine.
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Figure 5: Aggregated conventional power plant and utility-scale storage capacities
in (a) country group A and (b) country group B with highly risk-averse investors.
The figure shows the deltas of installed capacities as compared to the respective risk-neutral
setting depicted in Fig. 4. Abbreviations: CCGT—combined cycle gas turbine, CRM—capacity
remuneration mechanism, EOM—energy-only market, OCGT—open cycle gas turbine.
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In the period between 2035 and 2040, we can also observe that postponed in-

vestments are overcompensated, since the expected capacity deficits – which would

induce scarcities – trigger new investments. Temporarily, this effect even leads to

slightly higher amounts of installed capacity compared to the case with risk-neutral

investors. Overall, the effects of risk aversion are rather small with risk-averse deci-

sion making by investors leading to less than 3 % fewer installed capacities compared

to the case with risk-neutral investors. Importantly, this finding stands well in line

with the theory of peak load pricing in an EOM which states that a certain amount

of scarcity situations is required to refinance all cost of the generation capacities

– particularly those of the most expensive unit in the merit order. However, such

scarcity situations can already occur if only one power plant unit less than required to

cover the demand is being built. The resulting scarcity prices would then positively

affect the economics of all generation and storage units in the market (Cramton and

Ockenfels, 2012). Thus, even when assuming highly risk-averse investors, the total

installed capacities are only slightly reduced as compared to the setting with risk-

neutral investors. Moreover, cross-border electricity exchange dampens the impact

of fluctuations in renewable feed-in and demand caused by different weather years.

In the case of national CRM policies, we find substantial differences between

countries with CRMs (group A) and countries with EOMs (group B). Since the in-

troduction of CRMs implies that minimum capacity targets for the respective coun-

tries are met, even high risk aversion of the investors only has a marginal impact

on the installed generation capacities. Contrary, in country group B, the effects of

high risk aversion remain comparably strong and are – particularly in the first half

of the simulation period – even more pronounced than in the European EOM config-

uration. These results confirm again that an asymmetrical implementation of CRMs
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does not only affect the countries implementing these mechanisms, but also other

interconnected market areas that remain with an EOM.

5.2 Wholesale Electricity Prices

The amount of dispatchable capacity in each market area has an immediate impact

on the wholesale electricity prices. Against this background, Fig. 6 depicts the

simulated development of the volume-weighted average electricity prices in country

groups A and B for both market designs assuming risk-neutral investors.

In all settings, we observe strong price fluctuations even between subsequent

simulation years. These are mostly driven by the exogenously defined sequence

of weather years (see Appendix A.1), which affects the patterns of both, renewable

electricity generation and electricity demand. For both market design configurations,

country group A starts from a lower price level compared to country group B. This

relation changes through the course of the simulation due to the exogenously defined

higher renewable shares in country group B towards 2050.

Yet, the most relevant finding when comparing the settings with risk-neutral

investors is the impact of the market design on the mean prices in the two country

groups (bottom part of Fig. 6). Whereas the national CRM policies lead to a

reduction of prices in the countries with CRMs (group A), the countries with EOMs

(group B) are affected by negative cross-border effects of these abroad market design

changes and face an increase of electricity prices. These findings are directly related

to the previously described impact of the market design on the expansion of firm

generation and storage capacities.

In addition to the role of market design, Fig. 7 illustrates the development of the

electricity prices assuming highly risk-averse investors compared – ceteris paribus –
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Figure 6: Volume-weighted day-ahead electricity prices in country group A and country
group B with risk-neutral investors. The bottom part of the figure shows the delta of prices
between the national CRM policies and the European EOM design. Abbreviations: CRM—
capacity remuneration mechanism, EOM—energy-only market.
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Figure 7: Volume-weighted day-ahead electricity prices in country group A and country
group B with highly risk-averse investors. The figure shows the deltas of prices as com-
pared to the respective risk-neutral setting depicted in Fig. 6. Abbreviations: CRM—capacity
remuneration mechanism, EOM—energy-only market.

with risk-neutral investors. In the European EOM configuration (top part of Fig.

7), the higher degree of risk aversion leads to a slight increase in electricity prices

which follows a similar pattern in both country groups. Again, these developments

are a direct outcome of the lower amounts of firm generation and storage capacities

as compared to the cases with risk-neutral investors.

The picture changes when looking at the national CRM policies (bottom part of

Fig. 7). Clearly, the higher risk aversion plays a less pronounced role in country

group A due to the introduction of CRMs that assure certain firm capacity targets.
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In contrast, the changes in market design have negative cross-border effects and

render investments in country group B even more risky than in the European EOM

setting. Consequently, the higher degree of the investors’ risk aversion results in a

stronger price increase as compared to country group A and also as compared to the

European EOM configuration.

5.3 Resource Adequacy

Apart from the electricity prices, the amount of firm generation and storage capacities

also plays a major role for the ability of the electricity system to meet the demand

at all times, often referred to as resource adequacy. A comprehensive analysis of the

resource adequacy requires a Monte Carlo simulation with several combinations of

weather years and power plant outages. Since the focus of this article is on capacity

expansion planning, such an analysis is out of our scope. Instead, our simulation

of the day-ahead markets relies on a deterministic sequence of weather years and

constant power plant availability throughout the course of a year. Nevertheless, we

can draw some conclusions regarding resource adequacy by comparing the energy not

served (ENS) volumes arising from scarcity situations for the different market design

configurations and risk attitudes of the investors. Fig. 8 displays the cumulative

ENS volumes for both market designs and country groups up to the year 2050.

In the European EOM setting (top part of Fig. 8) we can observe that despite

the rather small impact of risk aversion on the capacity expansion planning (see

Section 5.1), the cumulative ENS volumes increase strongly when assuming highly

risk-averse rather than risk-neutral investors. This stands in line with the findings

presented for the wholesale electricity prices and is true in both, country group A
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Figure 8: Energy not served volumes in country group A and country group B with
risk-neutral versus highly risk-averse investors. The figure shows the cumulative volumes
from 2020 up to the respective simulation year. Abbreviations: CRM—capacity remuneration
mechanism, EOM—energy-only market.
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(with an increase of the cumulative volumes from roughly 200 to 350 GWh) and

country group B (increase from roughly 200 to 450 GWh).

When looking at the national CRM policies (bottom part of Fig. 8), we observe

substantial differences between the two country groups. In the countries with CRMs

(group A), scarcity situations do not occur at all, since the implemented CRMs

– by definition of the capacity requirement – guarantee sufficient amounts of firm

generation and storage capacity to be installed. Consequently, the higher degree of

the investors’ risk aversion also does not affect the ENS volumes. This stands in

strong contrast to the countries with EOMs (group B). Here, the cumulative ENS

volumes are already twice as high (roughly 400 vs. 200 GWh) under the national

CRM policies with risk-neutral investors as compared to the respective European

EOM setting. Assuming investors with a high degree of risk aversion leads to a

further strong increase in the cumulative ENS volumes to roughly 800 GWh. In

conclusion, both the degree of the investors’ risk aversion and the market design –

either directly or through negative cross-border effects – have a strong impact on the

frequency and severity of scarcity situations. This finding is again strongly related to

the capacity expansion planning in the different settings and underlines the benefits

that our novel approach offers.

6 Conclusion and Policy Implications

In this article, we developed a novel approach to consider risk aversion and market

design in capacity expansion planning. For this purpose, we extended the agent-

based simulation model PowerACE by constructing model-endogenous scenario trees

and implementing a new decision metric that comprises the expected profitability

and the corresponding CVaR of a potential investment. As an exemplary source
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of uncertainty, we considered the impact of different weather years on the feed-in of

renewables and electricity demand. The enhanced model was then applied in a multi-

country case study of the European electricity market. We carried out simulations

with different degrees of investors’ risk aversion as well as two market designs, namely

a European EOM and asymmetrical CRM implementations.

For the case of risk-neutral investors, we find substantially higher investment

incentives in the countries using CRMs, while the remaining countries relying on

EOMs are confronted with negative cross-border effects. As a direct consequence

of the model-endogenous capacity expansions, wholesale electricity prices decrease

slightly in the countries with CRMs and the levels of resource adequacy increase.

Rather obviously, the opposite is true for the countries without CRMs.

Assuming risk-averse investors proves to affect the capacity expansion planning

by slightly reducing investments. Interestingly, we find the impact of risk aversion to

be substantially higher in an EOM compared to a CRM. This finding stands in line

with previous results from the literature. However, our simulations also illustrate

that while CRMs dampen the impact of risk aversion in the countries using these

mechanisms, neighboring countries without CRMs are affected by negative cross-

border effects and risk aversion becomes even more relevant there than in the case

of a European EOM. This is reflected by higher wholesale electricity prices as well

as a lower level of resource adequacy in these countries.

Based on our findings, we strongly recommend that policymakers and regulators

consider the impact of risk aversion when evaluating different market design options.

While an EOM and a CRM may lead to similar outcomes under rather strong theoret-

ical assumptions, this may no longer be the case when considering the characteristics

of real-world electricity markets with risk-averse actors. Moreover, particularly in

the European setting, it is crucial to account for cross-border effects of a market
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design. Consequently, decisions on national market designs should always consider

the design of the interconnected market areas.

While we have concentrated on a single source of uncertainty in this article, we

would like to delve further into potential cross-impacts of different uncertainties in

future work. In particular, regulatory uncertainties such as carbon pricing or bid-

ding zone reconfigurations seem worthwhile to investigate, although the related path

dependencies bring along new methodological challenges. Moreover, we have so far

focused on the supply side of the electricity system and made simplifying assump-

tions regarding the development of the total electricity demand and the respective

flexibility potential. While this is unlikely to change the general relations of our

results, the magnitude of the found effects might indeed be affected. Analyzing this

aspect in more detail could be another interesting direction for future research. Fi-

nally, it may also be promising to analyze the risk attitudes of real-world investors

in order to better parametrize our model. For this purpose, laboratory experiments

with experienced professionals from the energy sector could be carried out.
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A Input Data

A.1 Time Series for Fluctuating Renewable Feed-In and

Electricity Demand

As a data basis for the hourly profiles, we use the feed-in and demand data of

the years 2015–2019 from the ENTSO-E Transparency Platform (ENTSO-E, 2021),

which are processed and supplemented to fill data gaps. Since the total amount of

electricity generation per year and technology as well as the total electricity demand

of individual countries from ENTSO-E (2021) greatly differ from other established

sources, the hourly profiles are scaled to the yearly volumes provided by Eurostat

(2021). The capacity factors for each renewable technology are then derived from

the linearly interpolated capacities stated in IRENA (2021). Accordingly, at the

end of data preparation process, hourly time series of the electricity demand and

the capacity factors per renewable technology are available for each of the modeled

countries and each weather year in the range 2015–2019.

Apart from the described data, our modeling approach also requires information

on the probabilities of occurrence for each weather year. These are defined by com-

paring the German feed-in profiles for solar and wind from 2015 to 2019 with those

generated for the period 1990–2014 by Pfenninger and Staffell (2016) and Staffell

and Pfenninger (2016). More specifically, we use a k-means clustering based on the

hours that the capacity factor of one technology lies with in a predefined interval.

Hence, the clustering maps the weather years 1990–2014 to the years 2015–2019. As

a result, we obtain the probabilities of occurrence for each year between 2015 and

2019 that are shown in Table 3. Moreover, the table shows how the historical weather

years were mapped to the years 2015–2019.
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Table 3: Determined probabilities of occurrence for the modeled weather years as
derived from the k-means clustering.

Weather year Probability Assigned historical weather years

2015 17.5 % 1981, 1990, 1994, 1995, 2000, 2002
2016 20.0 % 1982, 1987, 1996, 1997, 2003, 2010, 2013
2017 37.5 % 1980, 1983, 1986, 1988, 1989, 1992, 1993,

1998, 1999, 2004, 2007, 2008, 2011, 2012
2018 15.0 % 1985, 1991, 2001, 2006, 2014
2019 10.0 % 1984, 2005, 2009

For each of the modeled scenarios, the solar and wind power feed-in is then

determined by multiplying the capacity factors of the time series – which depend on

the respective weather year – with the installed capacities according to the assumed

expansion pathways from the current Ten-Year Network Development Plan (TYNDP

– ENTSOG and ENTSO-E, 2020). The TYNDP also provides information on the

development of the total yearly electricity demand. The weather years do not only

affect the renewable generation profiles, but also the electricity demand patterns,

leading to slightly varying total demand quantities. Thus, the hourly demand profiles

are scaled with respect to the quantities of the TYNDP, such that the average of the

five years 2015–2019 equals the total demand quantity of the TYNDP. Since the data

from the TYNDP only covers the period up to 2040, we use an own extrapolation

for the remaining simulation years up to 2050.

While the investors carry out their capacity expansion planning under uncertainty

regarding the sequence of weather years that will be realized, we use the probabilities

of each weather year to construct a distinct sequence of weather years that is used for

the day-ahead market simulation (Table 4). For this sequence of weather years, Fig.

9 shows the total yearly electricity demand and renewable feed-in by technology.
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Table 4: Sequence of weather years applied for the day-ahead market simulation. In
order to construct this randomized sequence, the probabilities for each weather year as shown
in Table 3 are used.

Simulation year Weather year

2020 2016
2021 2018
2022 2015
2023 2019
2024 2017
2025 2017
2026 2017
2027 2017
2028 2017
2029 2017
2030 2016
2031 2019
2032 2017
2033 2016
2034 2017
2035 2018
2036 2015
2037 2018
2038 2017
2039 2018
2040 2017
2041 2016
2042 2015
2043 2017
2044 2019
2045 2015
2046 2019
2047 2016
2048 2017
2049 2015
2050 2016
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Figure 9: Assumed renewable electricity generation and electricity demand in (a) coun-
try group A and (b) country group B using the sequence of weather years defined
in Table 4. Source: own illustration based on data from ENTSO-E (2021); ENTSOG and
ENTSO-E (2020); Eurostat (2021); IRENA (2021), and own calculations/assumptions.
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A.2 Conventional Power Plant Fleets

Contrary to the model endogenous expansion planning, decommissioning of existing

power plants is exogenously defined based on the respective age and technical lifetime

of the generation units, which remain unchanged for all simulations. Fig. 10 shows

the remaining capacities until 2050 without additional investments on a technology

aggregated level.

A.3 Investment Options

An overview of the techno-economic characteristics of the different investment op-

tions modeled in PowerACE is provided in Tables 5 and 6.
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Figure 10: Assumed conventional power plant capacities in (a) country group A and (b)
country group B without additional new investments. Source: own illustration based on
data from S&P Global Platts (2015), and own assumptions. Abbreviations: CCGT—combined
cycle gas turbine, OCGT—open cycle gas turbine.
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Table 5: Conventional power plant investment options modeled in PowerACE with
their respective techno-economic characteristics. Source: Schröder et al. (2013); Louwen
et al. (2018), own assumptions.

Technol-
ogy

Block
size

CCS Net effi-
ciency1

Life-
time

Build-
ing
time

Specific
investment
(2015–2050)1

O&M
costs
fixed

O&M
costs
var.2

[MWel] [%] [a] [a] [EURkWel
] [ EUR

kWel a
] [ EUR

MWhel
]

Nuclear 1600 – 33–34 60 4 6000 42 12

Coal 600
no 45–48

40 4
1800

60
6

yes 36–41 3143–2677 30

Lignite 800
no 43–47

40 4
1500

30
7

yes 30–33 3840–3324 34

CCGT 400
no 60–62

30 4
800

20
5

yes 49–52 1216–1078 18
OCGT 400 no 40–42 30 2 400 15 3

Abbreviations: CCGT—combined cycle gas turbine, CCS—carbon capture and storage, OCGT—open
cycle gas turbine, O&M—operation and maintenance

1 Resulting from technological learning, the net efficiency is assumed to increase over time. Since
conventional power plants can generally be regarded as mature technologies, it is further assumed
that only the specific investments of the CCS-technologies are declining.

2 Including variable costs for carbon capture, transport and storage, where applicable.
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Table 6: Electricity storage investment options modeled in PowerACE with their re-
spective techno-economic characteristics. Source: Louwen et al. (2018), own assumptions.

Technology Block
size

Storage
capacity1

Round-
trip
efficiency2

Life-
time2

Build-
ing
time

Specific
investment
(2015–2050)2

O&M
costs
fixed2

[MWel] [MWhel] [%] [a] [a] [EURkWel
] [ EUR

kWel a
]

Li-ion
battery

300
1200

85–95 20–30 2
3149–572 63–11

3000 7643–1388 153–28
RF battery 300 3000 75–85 20–30 2 4206–892 84–18

Abbreviations: O&M—operation and maintenance, RF battery—redox-flow battery

1 For RF batteries, a substantial share of the investment expenses is related to the converter units.
Consequently, for economic reasons, only higher storage capacities of 3000 MWhel are eligible as
investment options for this technology.

2 Resulting from technological learning, round-trip efficiency and lifetime are assumed to increase
over time for the emerging storage technologies. Analogously, specific investments and fixed costs
for O&M are assumed to decline.
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B Additional Results

Figs. 11–13 provide additional model results for the case of moderately risk-averse

investors. Generally, these results lie in between those for risk-neutral and highly

risk-averse investors presented in Section 5 of the main article.
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Figure 11: Aggregated conventional power plant and utility-scale storage capacities in
(a) country group A and (b) country group B with moderately risk-averse investors.
The figure shows the deltas of installed capacities as compared to the respective risk-neutral
setting depicted in Fig. 4. Abbreviations: CCGT—combined cycle gas turbine, CRM—capacity
remuneration mechanism, EOM—energy-only market, OCGT—open cycle gas turbine.
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Figure 12: Volume-weighted day-ahead electricity prices in country group A and coun-
try group B with moderately risk-averse investors. The figure shows the deltas of prices
as compared to the respective risk-neutral setting depicted in Fig. 6. Abbreviations: CRM—
capacity remuneration mechanism, EOM—energy-only market.
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Figure 13: Energy not served volumes in country group A and country group B with risk-
neutral versus moderately risk-averse investors. The figure shows the cumulative volumes
from 2020 up to the respective simulation year. Abbreviations: CRM—capacity remuneration
mechanism, EOM—energy-only market.
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