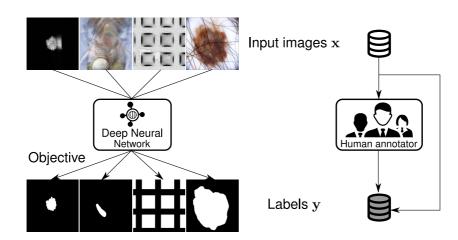


Label Assistant: A Workflow for Assisted Data Annotation in Image Segmentation Tasks

31st Workshop Computational Intelligence, Berlin

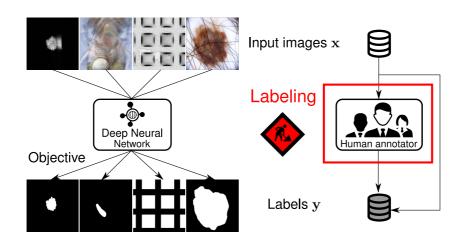
M. P. Schilling, L. Rettenberger, F. Münke, H. Cui, A. A. Popova, P. A. Levkin, R. Mikut, M. Reischl | 26th November 2021

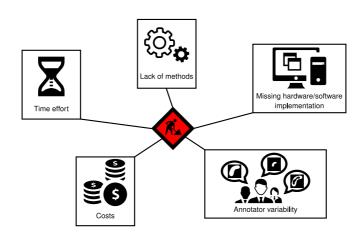
Outline



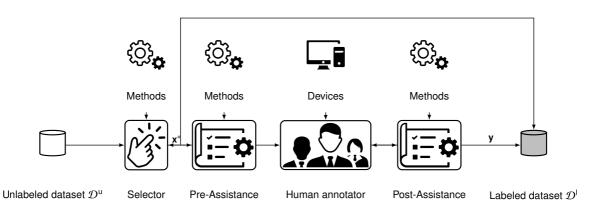
- Introduction
- Workflow
 - Selector
 - Pre-Assistance
 - Post-Assistance
- Implementation
- Datasets
- Results
- Conclusion and Outlook

2/14


Introduction - Labeling

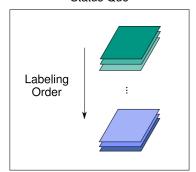

Introduction - Labeling

Introduction - Challenges

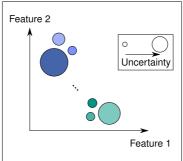


→ **© Objective:** Workflow for assistance to enhance labeling process [1, 2]

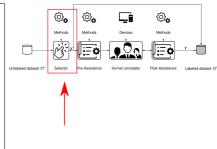
Workflow



Selector

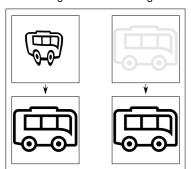


Status Quo



 \rightarrow Squential sampling can be sub-optimal

Selector (Deep Active Learning)


→ Use selection strategy (uncertainty, heterogenity, ...)

Pre-Assistance

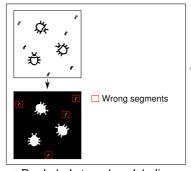
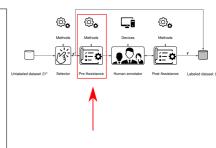


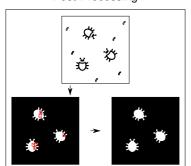
Image Pre-Processing



 \rightarrow Prepare image to simply labeling for annotators

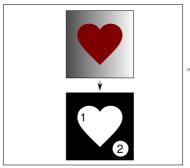
Pre-Labeling

→ Pre-Labels to reduce labeling effort

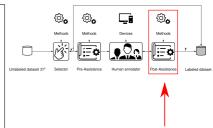

2021-11-26

Datasets

Post-Assistance

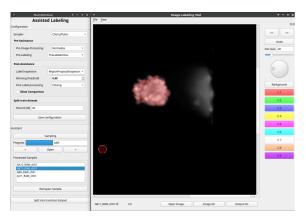


Post-Processing



 \rightarrow Post-Processing to improve label quality

Label Inspection



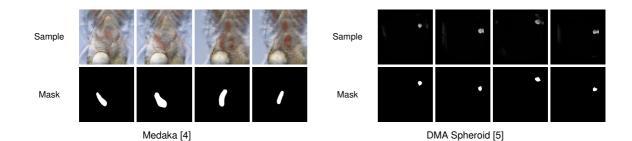
→ User warning based on defined criteria to enhance label quality

Implementation

GUI [3]

Support of different devices (tablet, laptop)/operating systems

Available soon (Git repository https://git.scc.kit.edu/sc1357/kaida)


Implementation

Datasets

Introduction

Datasets

Performance comparison: Different selection strategies to obtain labeled subset in contrast to labeling complete dataset (baseline)

	Configurations					
	Sequential	Random	Sequence-aware ¹	Baseline		
$ \mathcal{D}_{train}^I $ DSC_{test} in %	32	32	32	400		
DSC _{test} in %	46.50	77.67	80.63	82.70		

Pre-Labeling via trained U-Net [6] on small dataset

		Pre-Label				
Sample	Mask	$\mid \mathcal{D}_{\text{train}}^{I}\mid = 8$	$\mid \mathcal{D}_{train}^{I} \mid = 16$	$\mid \mathcal{D}_{train}^{I} \mid = 24$	$\mid \mathcal{D}_{train}^I \mid = 32$	
	ł	1		•	•	
	DSC in %	44.82	35.57	70.92	77.29	

Datasets

2021-11-26

Results

¹Selection of one random sample per sequence

Result excerpts - DMA Spheroid

Image Pre-Processing

Pre-processed

Pre-Labeling via Otsu thresholding

80.18 %

Sample

Mask

Pre-Label

DSC (Mask, Pre-Label)

2021-11-26

Conclusion and Outlook

Conclusion

- Presentation of a generic workflow combing and extending various ideas of labeling enhancement
- Template for community usage in deep learning projects
- Software prototype which implements proposed workflow

Outlook

- Extension of methods depicted in each assistance module
- Integration of other tasks (e.g. classfication) in Label Assistant
- Open-source deployment of software prototype as pip package for community usage²

²Git repository https://git.scc.kit.edu/sc1357/kaida

Many thanks for your attention!

Introduction Workflow Implementation Datasets Results Conclusion and Outlook

References I

- [1] Davood Karimi et al. "Deep Learning with Noisy Labels: Exploring Techniques and Remedies in Medical Image Analysis". In: *Medical Image Analysis* 65.5 (2020), p. 101759.
- [2] Niall O' Mahony et al. "Deep Learning vs. Traditional Computer Vision". In: *Advances in Computer Vision*. 2019, pp. 128–144.
- [3] Andreas Bartschat. *Image Labeling Tool.* Accessed: 2021-05-31, Available: https://bitbucket.org/abartschat/imagelabelingtool. 2019.
- [4] Mark Schutera et al. "Machine Learning Methods for Automated Quantification of Ventricular Dimensions". In: Zebrafish 16.6 (2019), pp. 542–545.
- [5] Anna A. Popova et al. "Facile One Step Formation and Screening of Tumor Spheroids Using Droplet-Microarray Platform". In: Small 15.25 (2019), p. 1901299.
- [6] O. Ronneberger, P.Fischer, and T. Brox. "U-Net: Convolutional Networks for Biomedical Image Segmentation". In: Medical Image Computing and Computer-Assisted Intervention (MICCAI). 2015, pp. 234–241.