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Abstract
We consider the (1 + 1)-dimensional quasi-linear wave
equation 𝑔(𝑥)𝑤𝑡𝑡 − 𝑤𝑥𝑥 + ℎ(𝑥)(𝑤3𝑡 )𝑡 = 0 on ℝ × ℝ that
arises in the study of localized electromagnetic waves
modeled by Kerr-nonlinear Maxwell equations. We are
interested in time-periodic, spatially localized solutions.
Here 𝑔 ∈ 𝐿∞(ℝ) is even with 𝑔 ≢ 0 and ℎ(𝑥) = 𝛾 𝛿0(𝑥)
with 𝛾 ∈ ℝ∖{0} and 𝛿0 the delta-distribution supported
in 0. We assume that 0 lies in a spectral gap of the oper-
ators 𝐿𝑘 = −

d2

d𝑥2
− 𝑘2𝜔2𝑔 on 𝐿2(ℝ) for all 𝑘 ∈ 2ℤ + 1

together with additional properties of the fundamental
set of solutions of 𝐿𝑘. By expanding 𝑤 into a Fourier
series in time, we transfer the problem of finding a suit-
ably defined weak solution to finding a minimizer of a
functional on a sequence space. The solutions that we
have found are exponentially localized in space. More-
over, we show that they can be well approximated by
truncating the Fourier series in time. The guiding exam-
ples, where all assumptions are fulfilled, are explic-
itly given step potentials and periodic step potentials
𝑔. In these examples, we even find infinitely many dis-
tinct breathers.
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1 INTRODUCTION ANDMAIN RESULTS

We study the (1 + 1)-dimensional quasi-linear wave equation

𝑔(𝑥)𝑤𝑡𝑡 − 𝑤𝑥𝑥 + ℎ(𝑥)(𝑤
3
𝑡 )𝑡 = 0 for (𝑥, 𝑡) ∈ ℝ × ℝ, (1)

andwe look for real-valued, time-periodic, and spatially localized solutions𝑤(𝑥, 𝑡). Such solutions
are also called breathers. At the end of this introduction, we give a motivation for this equation
arising in the study of localized electromagnetic wavesmodeled by Kerr-nonlinearMaxwell equa-
tions. We also cite some relevant papers. To the best of our knowledge for (1) in its general form,
no rigorous existence results are available. A first result is given in this paper by taking an extreme
case where ℎ(𝑥) is a spatial delta distribution at 𝑥 = 0. Our basic assumption on the coefficients
𝑔 and ℎ is the following:

𝑔 ∈ 𝐿∞(ℝ) even, 𝑔 ≢ 0 and ℎ(𝑥) = 𝛾𝛿0(𝑥) with 𝛾 ≠ 0, (C0)

where 𝛿0 denotes the delta-distribution supported in 0. The special form of ℎ enables us to reduce
(1) to a linear wave equation with a nonlinear Neumann boundary condition (18). We then use in
Section 2 a special series ansatz for the solution where each term directly solves the linear wave
equation. To satisfy the nonlinear Neumann boundary condition, it remains to determine the free
multiplicative coefficients in the series by minimizing a suitable energy functional.
We have two prototypical examples for the potential 𝑔: a step potential (Theorem 1) and a peri-

odic step potential (Theorem 2). The general version is given in Theorem 3 below.

Theorem 1. For 𝑎, 𝑏, 𝑐 > 0, let

𝑔(𝑥) ∶=

{
−𝑎, if |𝑥| > 𝑐,
𝑏, if |𝑥| < 𝑐.

For every frequency 𝜔 such that
√
𝑏𝜔𝑐

2

𝜋
∈
2ℕ+1

2ℕ+1
and 𝛾 < 0 there exist infinitely many nontrivial,

real-valued, spatially localized and time-periodic weak solutions of (1) with period 𝑇 = 2𝜋

𝜔
. For each

solution 𝑤, there are constants 𝐶, 𝜌 > 0 such that |𝑤(𝑥, 𝑡)| ≤ 𝐶e−𝜌|𝑥|.
Theorem 2. For 𝑎, 𝑏 > 0, 𝑎 ≠ 𝑏 and Θ ∈ (0, 1), let

𝑔(𝑥) ∶=

{
𝑎, if |𝑥| < 𝜋Θ,
𝑏, if 𝜋Θ < |𝑥| < 𝜋,
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and extend 𝑔 as a 2𝜋-periodic function toℝ. Assume in addition√
𝑏

𝑎

1 − Θ

Θ
∈
2ℕ + 1

2ℕ + 1
. (2)

For every frequency 𝜔 such that 4
√
𝑎𝜃𝜔 ∈

2ℕ+1

2ℕ+1
, there exist infinitely many nontrivial, real-valued,

spatially localized and time-periodic weak solutions of (1) with period 𝑇 = 2𝜋

𝜔
. For each solution 𝑤,

there are constants 𝐶, 𝜌 > 0 such that |𝑤(𝑥, 𝑡)| ≤ 𝐶e−𝜌|𝑥|.
Weak solutions of (1) are understood in the following sense. We write𝐷 ∶= ℝ × 𝕋𝑇 and denote

by 𝕋𝑇 the one-dimensional torus with period 𝑇.

Definition 1. Under the assumption (C0), a function𝑤 ∈ 𝐻1(ℝ × 𝕋𝑇)with 𝜕𝑡𝑤(0, ⋅) ∈ 𝐿3(𝕋𝑇) is
called a weak solution of (1) if for every 𝜓 ∈ 𝐶∞𝑐 (ℝ × 𝕋𝑇)

∫
𝐷

−𝑔(𝑥)𝜕𝑡𝑤 𝜕𝑡𝜓 + 𝜕𝑥𝑤 𝜕𝑥𝜓d(𝑥, 𝑡) − 𝛾 ∫
𝑇

0

(𝜕𝑡𝑤(0, 𝑡))
3𝜕𝑡𝜓(0, 𝑡)d𝑡 = 0. (3)

Theorem 1 and Theorem 2 are special cases of Theorem 3, which applies to much more gen-
eral potentials 𝑔. In Section A.1 and Section A.2 of the Appendix, we will show that the special
potentials 𝑔 from these two theorems satisfy the conditions (C1) and (C2) of Theorem 3. The basic
preparations and assumptions for Theorem 3 will be given next.
As we are looking for time-periodic solutions, it is appropriate to make the Fourier ansatz

𝑤(𝑥, 𝑡) =
∑
𝑘∈ℤ𝑜𝑑𝑑

𝑤𝑘(𝑥)e
i𝑘𝜔𝑡 withℤ𝑜𝑑𝑑 ∶= 2ℤ + 1. The reason for dropping even Fourier modes

is that the 0-mode belongs to the kernel of the wave operator 𝐿 = 𝑔(𝑥)𝜕2𝑡 − 𝜕
2
𝑥. The restriction

to odd Fourier modes generates 𝑇∕2 = 𝜋∕𝜔-antiperiodic functions 𝑤, and is therefore compati-
ble with the structure of (1) and in particular the cubic nonlinearity. Notice the decomposition
(𝐿𝑤)(𝑥, 𝑡) =

∑
𝑘∈ℤ𝑜𝑑𝑑

𝐿𝑘𝑤𝑘(𝑥)e
i𝑘𝜔𝑡 with self-adjoint operators

𝐿𝑘 = −
𝑑2

𝑑𝑥2
− 𝑘2𝜔2𝑔(𝑥) ∶ 𝐻2(ℝ) ⊂ 𝐿2(ℝ) → 𝐿2(ℝ). (4)

Clearly, 𝐿𝑘 = 𝐿−𝑘 so that is suffices to study 𝐿𝑘 for 𝑘 ∈ ℕ𝑜𝑑𝑑. Our first assumption is concerned
with the spectrum 𝜎(𝐿𝑘):

∀ 𝑘 ∈ ℕ𝑜𝑑𝑑, 0 ∉ 𝜎ess(𝐿𝑘) ∪ 𝜎D(𝐿𝑘), (C1)

where by 𝜎D(𝐿𝑘) we denote the spectrum of 𝐿𝑘 with an extra Dirichlet condition at 0, that is,
the spectrum of 𝐿𝑘 restricted to {𝜑 ∈ 𝐻2(ℝ) | 𝜑(0) = 0}. This is the same as the spectrum of 𝐿𝑘
restricted to functions that are odd around 𝑥 = 0.

Lemma 1. Under the assumption (C0) and (C1), there exists for every 𝑘 ∈ ℕ𝑜𝑑𝑑 a function Φ𝑘 ∈
𝐻2(0,∞) with 𝐿𝑘Φ𝑘 = 0 on (0,∞) and Φ𝑘(0) = 1.

Proof. We have either that 0 is in the point spectrum (but not the Dirichlet spectrum) or that 0 is
in the resolvent set of 𝐿𝑘. In the first case, there is an eigenfunction Φ𝑘 ∈ 𝐻2(ℝ) with 𝐿𝑘Φ𝑘 = 0



4 KOHLER and REICHEL

and w.l.o.g. Φ𝑘(0) = 1. In the second case 0 ∈ 𝜌(𝐿𝑘) so that there exists a unique solution Φ̃𝑘 of
𝐿𝑘Φ̃𝑘 = 1[−2,−1] on ℝ. Clearly, if restricted to (0,∞), the function Φ̃𝑘 solves 𝐿𝑘Φ̃𝑘 = 0 on (0,∞).
Moreover, Φ̃𝑘(0) ≠ 0 since otherwise we could reflect Φ̃𝑘|[0,∞) in an odd way toℝ and thus obtain
an odd 𝐻2(ℝ)-eigenfunction of 𝐿𝑘 that is excluded due to 0 ∈ 𝜌(𝐿𝑘). Thus, a suitably rescaled
version of Φ̃𝑘 satisfies the claim of the lemma. ■

Our second set of assumptions concerns the structure of the decaying fundamental solution
according to Lemma 1.

There exist 𝜌,𝑀 > 0 such that for all 𝑘 ∈ ℕ𝑜𝑑𝑑 ∶ |Φ𝑘(𝑥)| ≤ 𝑀𝑒−𝜌𝑥 on [0,∞). (C2)

We see that the existence of the decaying fundamental solution follows from (𝐶0). Whether or
not (𝐶2) is fulfilled depends on the potential 𝑔 in (1). In the examples in Theorems 1 and 2, this is
the case.
Nowwe can formulate our thirdmain theoremas a generalization of Theorem 1 andTheorem 2.

The fact that the solutions which we find can be well approximated by truncation of the Fourier
series in time is explained in Lemma 7 below. Moreover, a further extension yielding infinitely
many different solutions is given in Theorem 7 in Section 4.

Theorem 3. Assume (C0), (C1), and (C2) for a potential 𝑔 and a frequency 𝜔 > 0. Then (1) has a
nontrivial, 𝑇-periodic weak solution 𝑤 in the sense of Definition 1 with 𝑇 = 2𝜋

𝜔
, provided that

(i) 𝛾 < 0 and the sequence (Φ′
𝑘
(0))𝑘∈ℕ𝑜𝑑𝑑 has at least one positive element,

(ii) 𝛾 > 0 and the sequence (Φ′
𝑘
(0))𝑘∈ℕ𝑜𝑑𝑑 has at least one negative element.

Moreover, there is a constant𝐶 > 0 such that |𝑤(𝑥, 𝑡)| ≤ 𝐶e−𝜌|𝑥| for all (𝑥, 𝑡) ∈ ℝ2 with 𝜌 as in (C2).
Remark 1. (a) It turns out that the above assumptions can be weakened as follows: it suffices to
verify (C1) and (C2) and (i), (ii) for all integers 𝑘 ∈ 𝑟 ⋅ ℤ𝑜𝑑𝑑 for some 𝑟 ∈ ℕ𝑜𝑑𝑑. We will prove this
observation in Section 4.
(b) Our variational approach also works if we consider (1) with Dirichlet boundary conditions

on a bounded interval (−𝑙, 𝑙) instead of the real line. There are many possible results. For illus-
tration purposes, we just formulate the simplest one. For example, if we assume that 𝜔𝑙

𝜋
∈
ℕ𝑜𝑑𝑑

4ℕ
,

then

𝑤𝑡𝑡 − 𝑤𝑥𝑥 + 𝛾𝛿0(𝑥)(𝑤
3
𝑡 )𝑡 = 0 on (−𝑙, 𝑙) × ℝ with 𝑤(±𝑙, 𝑡) = 0 for all 𝑡 (5)

has a nontrivial, real-valued time-periodic weak solution with period 𝑇 = 2𝜋

𝜔
both for 𝛾 > 0 and

𝛾 < 0. The operator 𝐿𝑘 = −
𝑑2

𝑑𝑥2
− 𝜔2𝑘2 is now a self-adjoint operator on𝐻2(−𝑙, 𝑙) ∩ 𝐻10(−𝑙, 𝑙). The

assumption 𝜔𝑙

𝜋
∈
ℤ𝑜𝑑𝑑

4ℤ
guarantees (C1) for all 𝑘 ∈ ℤ𝑜𝑑𝑑. The functions Φ𝑘 are given by Φ𝑘(𝑥) =

sin(𝜔𝑘(𝑙−𝑥))

sin(𝜔𝑘𝑙)
so that Φ′

𝑘
(0) = −𝜔𝑘 cot(𝜔𝑘𝑙). The assumption 𝜔𝑙

𝜋
∈
ℕ𝑜𝑑𝑑

4ℕ
now guarantees that the

sequence {cot(𝜔𝑘𝑙) | 𝑘 ∈ ℤ𝑜𝑑𝑑} is finite and does not contain 0 or ±∞. Moreover, 𝜔𝑙
𝜋
=
2𝑝−1

4𝑞
for

𝑝, 𝑞 ∈ ℕ yields Φ′
𝑘
(0)Φ′

𝑘+2𝑞
(0) < 0, that is, we also have the required sign-change that allows for

both signs of 𝛾.



KOHLER and REICHEL 5

We observe that the growth of (Φ′
𝑘
(0))𝑘∈ℤ𝑜𝑑𝑑 is connected to regularity properties of our solu-

tions.

Theorem 4. Assume (C0), (C1), and (C2) and additionally Φ′
𝑘
(0) = 𝑂(𝑘). Then the weak solution

𝑤 from Theorem 3 belongs to𝐻1+𝜈𝑝𝑒𝑟 (𝕋𝑇, 𝐿
2(ℝ)) ∩ 𝐻𝜈𝑝𝑒𝑟(𝕋𝑇,𝐻

1(ℝ)) for any 𝜈 ∈ (0, 1
4
).

Here, for 𝜈 ∈ ℝ, the fractional Sobolev spaces of time-periodic functions are defined by

𝐻𝜈𝑝𝑒𝑟(𝕋𝑇, 𝐿
2(ℝ)) ∶=

{
𝑢(𝑥, 𝑡) =

∑
𝑘∈ℤ

𝑢̂𝑘(𝑥)e
i𝜔𝑘𝑡

|||| ∑
𝑘∈ℤ

(
1 + |𝑘|2)𝜈‖𝑢̂𝑘‖2𝐿2(ℝ) < ∞

}
, (6)

𝐻𝜈𝑝𝑒𝑟(𝕋𝑇,𝐻
1(ℝ)) ∶=

{
𝑢(𝑥, 𝑡) =

∑
𝑘∈ℤ

𝑢̂𝑘(𝑥)e
i𝜔𝑘𝑡

|||| ∑
𝑘∈ℤ

(
1 + |𝑘|2)𝜈‖𝑢̂𝑘‖2𝐻1(ℝ) < ∞

}
. (7)

We shortlymotivate (1) and give some references to the literature. ConsiderMaxwell’s equations
in the absence of charges and currents

∇ ⋅ 𝐃 = 0, ∇ × 𝐄 = − 𝜕𝑡𝐁, 𝐃 =𝜀0𝐄 + 𝐏(𝐄), (8)

∇ ⋅ 𝐁 = 0, ∇ × 𝐇 =𝜕𝑡𝐃, 𝐁 =𝜇0𝐇. (9)

We assume that the dependence of the polarization𝐏 on the electric field𝐄 is instantaneous and it
is the sum of a linear and a cubic term given by 𝐏(𝐄) = 𝜀0𝜒1(𝐱)𝐄 + 𝜀0𝜒3(𝐱)|𝐄|2𝐄with 𝐱 ∈ ℝ3, cf.
Ref. 1, Section 2.3 (for simplicity, more general cases where instead of a factor multiplying |𝐄|2𝐄
one can take 𝜒3 as an 𝐱-dependent tensor of type (1,3) are not considered here). Here 𝜀0, 𝜇0 are
constants such that 𝑐2 = (𝜀0𝜇0)−1 with 𝑐 being the speed of light in vacuum and 𝜒1, 𝜒3 are given
material functions. By direct calculations, one obtains the quasi-linear curl-curl-equation

0 = ∇ × ∇ × 𝐄 + 𝜕2𝑡
(
𝑉(𝐱)𝐄 + Γ(𝐱)|𝐄|2𝐄), (10)

where 𝑉(𝐱) = 𝜇0𝜀0(1 + 𝜒1(𝐱)) and Γ(𝐱) = 𝜇0𝜀0𝜒3(𝐱). Once (10) is solved for the electric field 𝐄,
the magnetic induction 𝐁 is obtained by time integration from ∇ × 𝐄 = −𝜕𝑡𝐁 and it will satisfy
∇ ⋅ 𝐁 = 0, provided that it does so at time 𝑡 = 0. By construction, the magnetic field 𝐇 = 1

𝜇0
𝐁

satisfies ∇ ×𝐇 = 𝜕𝑡𝐃. To complete the full set of nonlinear Maxwell’s equations, one only needs
to check Gauss’s law ∇ ⋅ 𝐃 = 0 in the absence of external charges. This will follow directly from
the constitutive equation𝐃 = 𝜀0(1 + 𝜒1(𝐱))𝐄 + 𝜀0𝜒3(𝐱)|𝐄|2𝐄 and the two different specific forms
of 𝐄 given next:

𝐄(𝐱, 𝑡) = (0, 𝑢(𝑥1 − 𝜅𝑡, 𝑥3), 0)
𝑇 polarized wave traveling in 𝑥1-direction, (11)

𝐄(𝐱, 𝑡) = (0, 𝑢(𝑥1, 𝑡), 0)
𝑇 polarized standing wave. (12)

In the first case, 𝐄 is a polarized wave independent of 𝑥2 traveling with speed 𝜅 in the 𝑥1 direction
and with profile 𝑢. If additionally𝑉(𝐱) = 𝑉(𝑥3) and Γ(𝐱) = Γ(𝑥3), then the quasi-linear curl-curl-



6 KOHLER and REICHEL

equation (10) turns into the following equation for 𝑢 = 𝑢(𝜏, 𝑥3) with the moving coordinate 𝜏 =
𝑥1 − 𝜅𝑡:

−𝑢𝑥3𝑥3 + (𝜅
2𝑉(𝑥3) − 1)𝑢𝜏𝜏 + 𝜅

2Γ(𝑥3)(𝑢
3)𝜏𝜏 = 0. (13)

Setting 𝑢 = 𝑤𝜏 and integrating once w.r.t. 𝜏, we obtain (1).
In the second case,𝐄 is a polarized standingwave that is independent of𝑥2, 𝑥3. If we assume fur-

thermore that 𝑉(𝐱) = 𝑉(𝑥1) and Γ(𝐱) = Γ(𝑥1), then this time the quasi-linear curl-curl-equation
(10) for 𝑢 = 𝑤𝑡 turns (after one time integration) directly into (1).
In the literature, (10) has mostly been studied by considering time-harmonic waves 𝐄(𝐱, 𝑡) =

𝐔(𝐱)𝑒i𝜅𝑡. This reduces the problem to the stationary elliptic equation

0 = ∇ × ∇ ×𝐔 − 𝜅2
(
𝑉(𝐱)𝐔 + Γ(𝐱)|𝐔|2𝐔)

in ℝ3. (14)

Here 𝐄 is no longer real-valued. This may be justified by extending the ansatz to 𝐄(𝐱, 𝑡) =
𝐔(𝐱)𝑒i𝜅𝑡 + 𝑐.𝑐. and by either neglecting higher harmonics generated from the cubic nonlinearity
or by assuming the time-averaged constitutive relation 𝐏(𝐄) = 𝜀0𝜒1(𝐱)𝐄 + 𝜀0𝜒3(𝐱)

1

𝑇
∫ 𝑇
0

|𝐄|2 𝑑𝑡𝐄
with 𝑇 = 2𝜋∕𝜅, cf. Refs. 2, 3. For results on (14), we refer to Refs. 4 and 5 and in particular to the
survey.6 Time-harmonic traveling waves have been found in a series of papers.2,7,8 The number of
results for monochromatic standing polarized wave profiles𝑈(𝐱) = (0, 𝑢(𝑥1), 0)with 𝑢 satisfying
0 = −𝑢′′ − 𝜅2(𝑉(𝑥1)𝑢 + Γ(𝑥1)|𝑢|2𝑢) onℝ is too large to cite, so we restrict ourselves to Cazenave’s
book.9
Our approach differs substantially from the approaches by monochromatic waves described

above. Our ansatz 𝑤(𝑥, 𝑡) =
∑
𝑘∈ℤ𝑜𝑑𝑑

𝑤𝑘(𝑥)e
i𝑘𝜔𝑡 with ℤ𝑜𝑑𝑑 ∶= 2ℤ + 1 is automatically polychro-

matic because it couples all integer multiples of the frequency 𝜔. A similar polychromatic
approach is considered in Ref. 10. The authors seek spatially localized traveling wave solutions
of the 1+1-dimensional quasi-linear Maxwell model, where in the direction of propagation, 𝜒1
is a periodic arrangement of delta functions. Based on a multiple scale approximation ansatz,
the field profile is expanded into infinitely many modes that are time-periodic in both the fast
and slow time variables. As the periodicities in the fast and slow time variables differ, the field
becomes quasi-periodic in time. To a certain extent, the authors of Ref. 10 analytically deal with
the resulting system for these infinitely many coupled modes through bifurcation methods, with
a rigorous existence proof still missing. However, numerical results from Ref. 10 indicate that spa-
tially localized traveling waves could exist.
With our case of allowing 𝜒1 to be a bounded function but taking 𝜒3 to be a delta function at

𝑥 = 0, we consider an extreme case. On the other hand, our existence results (possibly for the first
time) rigorously establish localized solutions of the full nonlinear Maxwell problem (10) without
making the assumption of either neglecting higher harmonics or of assuming a time-averaged
nonlinear constitutive law.
The existence of localized breathers of the quasi-linear problem (1) with bounded coefficients

𝑔, ℎ remains generally open. We can, however, provide specific functions 𝑔, ℎ for which (1) has a
breather-type solution that decays to 0 as |𝑥|→∞. Let

𝑏(𝑥) ∶= (1 + 𝑥2)−1∕2, ℎ(𝑥) ∶=
1 − 2𝑥2

1 + 𝑥2
, 𝑔(𝑥) ∶=

2 + 𝑥4

(1 + 𝑥2)2
(15)
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and consider a time-periodic solution 𝑎 of the ordinary differential equation

−𝑎′′ − (𝑎
′3)′ = 𝑎 (16)

with minimal prescribed period 𝑇 ∈ (0, 2𝜋). Then 𝑤(𝑥, 𝑡) ∶= 𝑎(𝑡)𝑏(𝑥) satisfies (1). Note that ℎ is
sign-changing and𝑤 is not exponentially localized.We found this solution by inserting the ansatz
for 𝑤 with separated variables into (1). We then defined 𝑏(𝑥) ∶= (1 + 𝑥2)−1∕2 and set 𝑔(𝑥) ∶=
−𝑏′′(𝑥)∕𝑏(𝑥) and ℎ(𝑥) ∶= −𝑏′′(𝑥)∕𝑏(𝑥)3. The remaining equation for 𝑎 then turned out to be the
above one.
The paper is structured as follows: In Section 2, we develop the variational setting and give

the proof of Theorem 3. The proof of the additional regularity results of Theorem 4 is given in
Section 3. In Section 4, we give the proof of Theorem 7 on the existence of infinitelymany different
breathers. In Section 5, we show that our breathers can be well approximated by truncation of the
Fourier series in time. Finally, in the Appendix, we give details on the background and proof of
Theorem 1 (Section A.1) and Theorem 2 (Section A.2) as well as a technical detail on a particular
embedding of Hölder spaces into Sobolev spaces (Section A.3).

2 VARIATIONAL APPROACH AND PROOF OF THEOREM 3

The main result of our paper is Theorem 3 that will be proved in this section. It is a consequence
of Lemma 5 and Theorem 5 below.
Formally, (1) is the Euler–Lagrange equation of the functional

𝐼(𝑤) ∶= ∫
𝐷

−
1

2
𝑔(𝑥)|𝜕𝑡𝑤|2 + 12 |𝜕𝑥𝑤|2d(𝑥, 𝑡) − 14𝛾 ∫ 𝑇

0

|𝜕𝑡𝑤(0, 𝑡)|4d𝑡 (17)

defined on a suitable space of 𝑇-periodic functions. Instead of directly searching for a critical
point of this functional, we first rewrite the problem into a nonlinear Neumann boundary value
problem under the assumption that𝑤 is even in 𝑥. In this case, (1) amounts to the following linear
wave equation on the half-axis with nonlinear Neumann boundary conditions:{

𝑔(𝑥)𝑤𝑡𝑡 − 𝑤𝑥𝑥 = 0 for (𝑥, 𝑡) ∈ (0,∞) × ℝ,
2𝑤𝑥(0+, 𝑡) = 𝛾

(
𝑤𝑡(0, 𝑡)

3
)
𝑡

for 𝑡 ∈ ℝ,
(18)

where solutions 𝑤 ∈ 𝐻1([0,∞) × 𝕋𝑇) with 𝜕𝑡𝑤(0, ⋅) ∈ 𝐿3(𝕋𝑇) of (18) are understood in the sense
that

2∫
𝐷+

−𝑔(𝑥)𝜕𝑡𝑤 𝜕𝑡𝜓 + 𝜕𝑥𝑤 𝜕𝑥𝜓d(𝑥, 𝑡) − 𝛾 ∫
𝑇

0

(𝜕𝑡𝑤(0, 𝑡))
3𝜕𝑡𝜓(0, 𝑡)d𝑡 = 0 (19)

for all 𝜓 ∈ 𝐶∞𝑐 ([0,∞) × 𝕋𝑇) with 𝐷+ = (0,∞) × 𝕋𝑇 . It is clear that evenly extended solutions 𝑤
of (19) also satisfy (3). To see this, note that every 𝜓 ∈ 𝐶∞𝑐 (ℝ × 𝕋𝑇) can be split into an even and
an odd part 𝜓 = 𝜓𝑒 + 𝜓𝑜 both belonging to 𝐶∞𝑐 (ℝ × 𝕋𝑇). Testing with 𝜓𝑜 in (3) produces zeroes in
all spatial integrals due to the evenness of 𝑤 and also in the temporal integral since 𝜓𝑜(0, ⋅) ≡ 0
due to oddness. Testing with 𝜓𝑒 in (3) produces twice the spatial integrals appearing in (19). In the
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following, we concentrate on finding solutions of (18) for the linear wave equation with nonlinear
Neumann boundary conditions.
Motivated by the linear wave equation in (18), we make the ansatz that

𝑤(𝑥, 𝑡) =
∑

𝑘∈ℤ𝑜𝑑𝑑

𝛼̂𝑘
𝑘
Φ𝑘(|𝑥|)𝑒𝑘(𝑡), (20)

where 𝑒𝑘(𝑡) ∶=
1√
𝑇
ei𝜔𝑘𝑡 denotes the 𝐿2(𝕋𝑇)-orthonormal Fourier base of𝕋𝑇 , andwhereΦ𝑘 are the

decaying fundamental solutions Φ𝑘 of 𝐿𝑘 (cf. Lemma 1). Such a function 𝑤 will always solve the
linear wave equation in (18) and we will determine real sequences 𝛼̂ = (𝛼̂𝑘)𝑘∈ℤ𝑜𝑑𝑑 such that the
nonlinear Neumann condition is satisfied as well. The additional factor 1

𝑘
is only for convenience,

because 𝜕𝑡 generates a multiplicative factor i𝜔𝑘.
The convolution between two sequences 𝑧̂, 𝑦̂ ∈ ℝℤ is defined pointwise (whenever it con-

verges) by (𝑧̂ ∗ 𝑦̂)𝑘 ∶=
∑
𝑙∈ℤ
𝑧̂𝑙𝑦̂𝑘−𝑙.

To obtain real-valued functions 𝑤 by the ansatz (20), we require the sequence 𝛼̂ to be real
and odd in 𝑘, that is, 𝛼̂𝑘 ∈ ℝ and 𝛼̂𝑘 = −𝛼̂−𝑘. As (20) already solves the wave equation in (18),
it remains to find 𝛼̂ such that

2𝑤𝑥(0+, 𝑡) = 2
∑

𝑘∈ℤ𝑜𝑑𝑑

𝛼̂𝑘
𝑘
Φ′
𝑘
(0)𝑒𝑘(𝑡) =

1

𝑇

∑
𝑘∈ℤ𝑜𝑑𝑑

𝛾𝜔4𝑘(𝛼̂ ∗ 𝛼̂ ∗ 𝛼̂)𝑘𝑒𝑘(𝑡) = 𝛾(𝑤𝑡(0, 𝑡)
3)𝑡, (21)

where we have used Φ𝑘(0) = 1. As the above identity needs to hold for all 𝑡 ∈ ℝ, we find

(𝛼̂ ∗ 𝛼̂ ∗ 𝛼̂)𝑘 =
2𝑇Φ′

𝑘
(0)

𝛾𝜔4𝑘2
𝛼̂𝑘 for all 𝑘 ∈ ℤ𝑜𝑑𝑑. (22)

This will be accomplished by searching for critical points 𝛼̂ of the functional

𝐽(𝑧̂) ∶=
1

4
(𝑧̂ ∗ 𝑧̂ ∗ 𝑧̂ ∗ 𝑧̂)0 +

𝑇

𝛾𝜔4

∑
𝑘

Φ′
𝑘
(0)

𝑘2
𝑧̂2
𝑘
, (23)

defined on a suitable Banach space of real sequences 𝑧̂ with 𝑧̂𝑘 = −𝑧̂−𝑘. Indeed, computing (for-
mally) the Fréchet derivative of 𝐽 at 𝛼̂, we find

𝐽′(𝛼̂)[𝑦̂] = (𝛼̂ ∗ 𝛼̂ ∗ 𝛼̂ ∗ 𝑦̂)0 +
2𝑇

𝛾𝜔4

∑
𝑘

Φ′
𝑘
(0)

𝑘2
𝛼̂𝑘𝑦̂𝑘. (24)

Let us indicate how (24) amounts to (22). For fixed 𝑘0 ∈ ℤ𝑜𝑑𝑑, we define the test sequence 𝑦̂ ∶=
(𝛿𝑘,𝑘0 − 𝛿𝑘,−𝑘0)𝑘∈ℤ𝑜𝑑𝑑 that has exactly two nonvanishing entries at 𝑘0 and at −𝑘0. Thus, 𝑦̂ belongs
to the same space of odd, real sequences as 𝛼̂ and can therefore be used as a test sequence in
𝐽′(𝛼̂)[𝑦̂] = 0. After a short calculation using 𝛼̂𝑘 = −𝛼̂−𝑘, Φ′𝑘 = Φ

′
−𝑘
, we obtain (22) for 𝑘0.

It turns out that a real Banach space of real-valued sequences that is suitable for 𝐽 can be given
by

(𝐽) ∶= {
𝑧̂ ∈ ℝℤ𝑜𝑑𝑑 || |||𝑧̂||| < ∞, 𝑧̂𝑘 = −𝑧̂−𝑘} where |||𝑧̂||| ∶= ‖𝑧̂ ∗ 𝑧̂‖ 12

𝑙2
. (25)
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The relation between the function 𝐼 defined in (17) and the new functional 𝐽 is formally given by

𝐼

( ∑
𝑘∈ℤ𝑜𝑑𝑑

𝑧̂𝑘
𝑘
Φ𝑘(|𝑥|)𝑒𝑘(𝑡)) = −𝛾𝜔4𝑇 𝐽(𝑧̂). (26)

Lemma 2. The space ((𝐽), |||⋅|||) is a separable, reflexive, real Banach space and isometrically
embedded into the real Banach space 𝐿4(𝕋𝑇, iℝ) of purely imaginary-valued measurable functions.
Moreover, for 𝑢̂, 𝑣, 𝑤̂, 𝑧̂ ∈ (𝐽), we have

(𝑢̂ ∗ 𝑢̂ ∗ 𝑢̂ ∗ 𝑢̂)0 = |||𝑢̂|||4, (27)

|(𝑢̂ ∗ 𝑣 ∗ 𝑤̂ ∗ 𝑧̂)0| ≤ |||𝑢̂||| |||𝑣||| |||𝑤̂||| |||𝑧̂|||, (28)

‖𝑧̂‖𝑙2 ≤ |||𝑧̂|||. (29)

Proof. We first recall the correspondence between real-valued sequences 𝑧̂ ∈ 𝑙2 with 𝑧̂𝑘 = −𝑧̂−𝑘
and purely imaginary-valued functions 𝑧 ∈ 𝐿2(𝕋𝑇, iℝ) by setting

𝑧̂𝑘 ∶= ⟨𝑧, 𝑒𝑘⟩𝐿2(𝕋𝑇) and 𝑧(𝑡) ∶=
∑
𝑘∈ℤ

𝑧̂𝑘𝑒𝑘(𝑡). (30)

Parseval’s identity provides the isomorphism ‖𝑧‖𝐿2(𝕋𝑇) = ‖𝑧̂‖𝑙2 . The following identity
𝑇‖𝑧‖4

𝐿4(𝕋𝑇)
= 𝑇 ∫

𝑇

0

𝑧(𝑡)4 𝑑𝑡 = (𝑧̂ ∗ 𝑧̂ ∗ 𝑧̂ ∗ 𝑧̂)0 = ‖𝑧̂ ∗ 𝑧̂‖2
𝑙2
= |||𝑧̂|||4 (31)

shows that |||⋅||| is indeed a norm on (𝐽) and it provides the isometric embedding of (𝐽) into
a subspace of 𝐿4(𝕋𝑇, iℝ). By Parseval’s equality and Hölder’s inequality, we see that

‖𝑧̂‖𝑙2 = ‖𝑧‖𝐿2(𝕋𝑇) ≤ 𝑇 14 ‖𝑧‖𝐿4(𝕋𝑇) = |||𝑧̂||| (32)

so that(𝐽) is indeed a subspace of 𝑙2. Finally, for any 𝑢̂, 𝑣, 𝑤̂, 𝑧̂ ∈ (𝐽), we see that

|(𝑢̂ ∗ 𝑣 ∗ 𝑤̂ ∗ 𝑧̂)0| = 𝑇|||||∫
𝑇

0

𝑢(𝑡)𝑣(𝑡)𝑤(𝑡)𝑧(𝑡) 𝑑𝑡
||||| ≤ 𝑇‖𝑢‖𝐿4‖𝑣‖𝐿4‖𝑤‖𝐿4‖𝑧‖𝐿4

= |||𝑢̂||| |||𝑣||| |||𝑤̂||| |||𝑧̂|||. (33)

This finishes the proof of the lemma. ■

For 𝑇
2
-antiperiodic functions 𝜓 ∶ 𝐷 → ℝ of the space-time variable (𝑥, 𝑡) ∈ 𝐷, we use the nota-

tion

𝜓(𝑥, 𝑡) =
∑

𝑘∈ℤ𝑜𝑑𝑑

𝜓̂𝑘(𝑥)𝑒𝑘(𝑡) =
∑

𝑘∈ℤ𝑜𝑑𝑑

1

𝑘
Ψ𝑘(𝑥)𝑒𝑘(𝑡) (34)
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with 1

𝑘
Ψ𝑘(𝑥) = 𝜓̂𝑘(𝑥) ∶=< 𝜓(𝑥, ⋅), 𝑒𝑘 >𝐿2(𝕋𝑇). The Parseval identity and the definition of |||⋅|||

immediately lead to the following lemma.

Lemma 3. For 𝜓 ∶ 𝐷 → ℝ as in (34) the following holds:

(i) ‖𝜓𝑥‖2𝐿2(𝐷) = ∑
𝑘

1

𝑘2
‖Ψ′

𝑘
‖2
𝐿2(ℝ)

,
(ii) ‖𝜓𝑡‖2𝐿2(𝐷) = 𝜔2∑𝑘

‖Ψ𝑘‖2𝐿2(ℝ),
(iii) 𝑇‖𝜓𝑡(0, ⋅)‖4𝐿4(𝕋𝑇) = 𝜔4|||𝑦̂|||4 where 𝑦̂𝑘 = Ψ𝑘(0) for 𝑘 ∈ ℤ𝑜𝑑𝑑.
The next result gives some estimates on the growth of norms of Φ𝑘. It serves as a preparation

for the proof of regularity properties for functions 𝑤 as in (20) stated in Lemma 5.

Lemma 4. Assume (C0), (C1), and (C2). Then

‖Φ𝑘‖𝐿2(0,∞) = 𝑂(1), ‖Φ′
𝑘
‖𝐿2(0,∞) = 𝑂(𝑘), ‖Φ′

𝑘
‖𝐿∞(0,∞) = 𝑂(𝑘 32 ). (35)

In particular, |Φ′
𝑘
(0)| = 𝑂(𝑘 32 ).

Proof. The first part of (35) is a direct consequence of (C2).
We multiply 𝐿𝑘Φ𝑘 = 0 first with Φ𝑘 and then with Φ′𝑘, integrate both times from 𝑎 ≥ 0 to ∞

and, respectively, get

∫
∞

𝑎

−𝜔2𝑘2𝑔(𝑥)Φ𝑘(𝑥)
2 + Φ′

𝑘
(𝑥)2 𝑑𝑥 = −Φ𝑘(𝑎)Φ

′
𝑘
(𝑎), (36)

∫
∞

𝑎

−2𝜔2𝑘2𝑔(𝑥)Φ𝑘(𝑥)Φ
′
𝑘
(𝑥) 𝑑𝑥 = −Φ′

𝑘
(𝑎)2. (37)

Applying the Cauchy–Schwarz inequality to (37) and using the first part of (35), we find

‖Φ′
𝑘
‖2
𝐿∞(0,∞)

≤ 𝑂(𝑘2)‖Φ′
𝑘
‖𝐿2(0,∞) (38)

and from (36) and (38), we get

‖Φ′
𝑘
‖2
𝐿2(0,∞)

≤ 𝑂(𝑘2) + ‖Φ𝑘‖𝐿∞(0,∞)‖Φ′𝑘‖𝐿∞(0,∞) (39)

≤ 𝑂(𝑘2) + ‖Φ𝑘‖𝐿∞(0,∞)𝑂(𝑘)‖Φ′𝑘‖ 12𝐿2(0,∞). (40)

The 𝐿∞-assumption in (C2) leads to

‖Φ′
𝑘
‖2
𝐿2(0,∞)

≤ 𝑂(𝑘2) + 𝑂(𝑘)‖Φ′
𝑘
‖ 12
𝐿2(0,∞)

≤ 𝑂(𝑘2) + 𝐶𝜖𝑂(𝑘
4

3 ) + 𝜖‖Φ′
𝑘
‖2
𝐿2(0,∞)

, (41)
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where we have used Young’s inequality with exponents 4∕3 and 4. Taking, for example, 𝜖 = 1

2
this

implies the second inequality in (35). Inserting this into (38), we obtain the third inequality in
(35). ■

Lemma 5. Assume (C0), (C1), and (C2). For 𝛼̂ ∈ (𝐽) and𝑤 ∶ 𝐷 → ℝ as in (20), we have𝑤𝑥,𝑤𝑡 ∈
𝐿2(𝐷), 𝑤𝑡(0, ⋅) ∈ 𝐿4(𝕋𝑇) and there are values 𝐶 > 0 and 𝜌 > 0 such that |𝑤(𝑥, 𝑡)| ≤ 𝐶e−𝜌|𝑥|.
Remark 2. The lemma does not require 𝛼̂ to be a critical point of 𝐽. The smoothness and decay of
𝑤 as in (20) is simply a consequence of 𝛼̂ ∈ (𝐽) and (C2).
Proof. Weuse the characterization from Lemma 3 as well as (29) from Lemma 2. Let us begin with
the estimate for ‖𝜕𝑡𝑤‖𝐿2(𝐷). By Lemma 4, we have sup𝑘 ‖Φ𝑘‖𝐿2(0,∞) < ∞ so that

‖𝜕𝑡𝑤‖2𝐿2(𝐷) = 2𝜔2∑
𝑘

𝛼̂2
𝑘
‖Φ𝑘‖2𝐿2(0,∞) ≤ 2𝜔2(sup

𝑘
‖Φ𝑘‖𝐿2(0,∞))2‖𝛼̂‖2𝑙2 (42)

≤ 2𝜔2(sup
𝑘

‖Φ𝑘‖𝐿2(0,∞))2|||𝛼̂|||2 < ∞, (43)

which finishes our first goal. Next, we estimate ‖𝜕𝑥𝑤‖𝐿2(𝐷). Here, we use again Lemma 4 to find
‖𝜕𝑥𝑤‖2𝐿2(𝐷) = 2∑

𝑘

𝛼̂2
𝑘

𝑘2
‖Φ′

𝑘
‖2
𝐿2(0,∞)

≤ 𝐶‖𝛼̂‖2
𝑙2
≤ 𝐶|||𝛼̂|||2 < ∞, (44)

which finishes our second goal. Next, we show that𝑤𝑡(0, ⋅) ∈ 𝐿4(𝕋𝑇). UsingΦ𝑘(0) = 1, we observe
that

𝑇‖𝑤𝑡(0, ⋅)‖4𝐿4(𝕋𝑇) = 𝑇 ∫ 𝑇

0

( ∑
𝑘∈ℤ𝑜𝑑𝑑

i𝜔𝛼̂𝑘Φ𝑘(0)𝑒𝑘(𝑡)
)4
d𝑡 (45)

= 𝜔4|||𝛼̂|||4 < ∞. (46)

Finally, we show the uniform-in-time exponential decay of 𝑤. By construction 𝑤 is even in 𝑥,
hence we only consider 𝑥 > 0. By (C2), we see that

|𝑤(𝑥, 𝑡)| ≤ ∑
𝑘

|𝛼̂𝑘||𝑘| |Φ𝑘(𝑥)| =∑
𝑘

|𝛼̂𝑘||𝑘| 𝐶𝑒−𝜌𝑥 ≤ ‖𝛼̂‖𝑙2(∑
𝑘

1

𝑘2

)1∕2
𝐶𝑒−𝜌𝑥 ≤ 𝐶̃𝑒−𝜌𝑥, (47)

which finishes the proof of the lemma. ■

In the following result, we will show that minimizers of 𝐽 on (𝐽) exist, are solutions of (22),
and indeed correspond to weak solutions of (1).

Theorem 5. Assume (C0), (C1), and (C2). Then the functional 𝐽 is well defined on its domain(𝐽),
Fréchet-differentiable, bounded from below, and attains its negative minimum provided
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(i) 𝛾 < 0 and the sequence (Φ′
𝑘
(0))𝑘∈ℕ𝑜𝑑𝑑 has at least one positive element, or

(ii) 𝛾 > 0 and the sequence (Φ′
𝑘
(0))𝑘∈ℕ𝑜𝑑𝑑 has at least one negative element.

For every critical point 𝛼̂ ∈ (𝐽), the corresponding function 𝑤(𝑥, 𝑡) ∶= ∑
𝑘∈ℤ𝑜𝑑𝑑

𝛼̂𝑘

𝑘
Φ𝑘(|𝑥|)𝑒𝑘(𝑡) is

a nontrivial weak solution of (1).

Proof. For the existence of a minimizer, we refer to Ref. [11, Theorem 1.2, Chapter I] where
a coercive, sequentially weakly lower semicontinuous functional on a reflexive Banach space
is shown to have a minimizer. Note that 𝐽(𝑧̂) = 1

4
|||𝑧̂|||4 + 𝐽1(𝑧̂), where 𝐽1(𝑧̂) ∶= ∑

𝑘
𝑎𝑘𝑧̂

2
𝑘
with

𝑎𝑘 ∶=
𝑇Φ′

𝑘
(0)

𝛾𝜔4𝑘2
. By Lemma 4, the sequence (𝑎𝑘)𝑘 is converging to 0 as |𝑘|→∞, so, in particular, it

is bounded. Due to (29), one finds that 𝐽 is well defined and continuous on (𝐽), and moreover,
that for 𝑧̂ ∈ (𝐽)

𝐽(𝑧̂) ≥ 1
4
|||𝑧̂|||4 − sup

𝑘
|𝑎𝑘|∑

𝑘

𝑧̂2
𝑘
≥ 1
4
|||𝑧̂|||4 − sup

𝑘
|𝑎𝑘||||𝑧̂|||2. (48)

This implies that 𝐽 is coercive and bounded from below. The weak lower semicontinuity of 𝐽
follows from the convexity and continuity of the map 𝑧̂ ↦ |||𝑧̂|||4 and the weak continuity of 𝐽1.
To see the latter take an arbitrary 𝜖 > 0. Then there is 𝑘0 ∈ ℕ such that |𝑎𝑘| ≤ 𝜖 for |𝑘| > 𝑘0 and
this implies the inequality

|𝐽1(𝑧̂) − 𝐽1(𝑦̂)| ≤ sup
𝑘

|𝑎𝑘| ∑
|𝑘|≤𝑘0 |𝑧̂2𝑘 − 𝑦̂2𝑘| + 𝜖(‖𝑧̂‖2𝑙2 + ‖𝑦̂‖2

𝑙2
) ∀ 𝑧̂, 𝑦̂ ∈ (𝐽). (49)

Since ((𝐽), |||⋅|||) continuously embeds into 𝑙2 any weakly convergent sequence in ((𝐽), |||⋅|||)
also weakly converges in 𝑙2 and in particular pointwise. This pointwise convergence together with
the boundedness of the sequence and (49) yields the weak continuity of 𝐽1 and thus the weak
lower semicontinuity of 𝐽. As a consequence (cf. Theorem 1.2 in Ref. 11), we get the existence of
a minimizer.
To check that the minimizer is nontrivial, it suffices to verify that 𝐽 attains negative values.

Here we distinguish between cases (i) and (ii) in the assumptions of the theorem. In case (i) when
𝛾 < 0, we find an index 𝑘0 such that Φ′𝑘0(0) > 0. In case (ii) when 𝛾 > 0, we choose 𝑘0 such that
Φ′
𝑘0
(0) < 0. In both cases, we obtain that Φ′

𝑘0
(0)∕𝛾 < 0. If we set 𝑦̂ ∶= (𝛿𝑘,𝑘0 − 𝛿𝑘,−𝑘0)𝑘∈ℤ𝑜𝑑𝑑 , then

𝑦̂ has exactly two nonvanishing entries, namely, +1 at 𝑘0 and −1 at −𝑘0. Hence, 𝑦̂ ∈ (𝐽). Using
the property Φ′

𝑘0
= Φ′

−𝑘0
, we find for 𝑡 ∈ ℝ

𝐽(𝑡𝑦̂) = 𝑡4
1

4
|||𝑦̂|||4 + 2𝑡2 𝑇Φ′𝑘0(0)

𝛾𝜔4𝑘20
, (50)

which is negative by the choice of 𝑘0, provided that 𝑡 > 0 is sufficiently small. Thus, inf(𝐽) 𝐽 < 0
and every minimizer 𝛼̂ is nontrivial.
Next, we show for every critical point 𝛼̂ of 𝐽 that 𝑤(𝑥, 𝑡) ∶=

∑
𝑘∈ℤ𝑜𝑑𝑑

𝛼̂𝑘

𝑘
Φ𝑘(|𝑥|)𝑒𝑘(𝑡) is a weak

solution of (1). The regularity properties𝑤 ∈ 𝐻1(ℝ × 𝕋𝑇), 𝜕𝑡𝑤(0, ⋅) ∈ 𝐿4(𝕋𝑇) and the exponential
decay have already been shown in Lemma 5. The proof that 𝐽 ∈ 𝐶1((𝐽), ℝ) and that its Fréchet-
derivative is given by (24) is straightforward from the definition (cf. Ref. [12, Chapter 1]).We skip it
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and just give two comments. First, as |||𝑦̂|||4 is a fourfold convolution and convolution is commu-
tative, its derivative is four times a triple convolution that explains the first term of 𝐽′. Second, as
the second term of 𝐽 is a quadratic form, its derivative will be twice the corresponding (symmetric)
bilinear form. We will show that (3) holds for any 𝜓 as in (34) with even functions Ψ𝑘 ∈ 𝐻1(ℝ),
Ψ𝑘 = −Ψ−𝑘 such that 𝜓𝑥, 𝜓𝑡 ∈ 𝐿2(𝐷) and 𝜓𝑡(0, ⋅) ∈ 𝐿4(𝕋𝑇) as described in Lemma 3. We begin by
deriving expressions and estimates for the functionals

𝐻1(𝜓)∶=∫
𝐷

𝑔(𝑥)𝑤𝑡𝜓𝑡 𝑑(𝑥, 𝑡), 𝐻2(𝜓)∶=∫
𝐷

𝑤𝑥𝜓𝑥 𝑑(𝑥, 𝑡), 𝐻3(𝜓)∶=∫
𝑇

0

𝑤𝑡(0, 𝑡)
3𝜓𝑡(0, 𝑡) 𝑑𝑡.

(51)

In a first step, we assume that the sum in (34) is finite to justify the exchange of summation and
integration in the following. Then, starting with𝐻1, we find

𝐻1(𝜓) = −𝜔
2 ∫
𝐷

𝑔(𝑥)
∑
𝑘,𝑙

𝛼̂𝑘Φ𝑘(|𝑥|)Ψ𝑙(|𝑥|)𝑒𝑘(𝑡)𝑒𝑙(𝑡)d(𝑥, 𝑡) (52)

= −2𝜔2
∑
𝑘

𝛼̂𝑘 ∫
∞

0

𝑔(𝑥)Φ𝑘(𝑥)Ψ−𝑘(𝑥)d𝑥 (53)

= 2𝜔2
∑
𝑘

𝛼̂𝑘 ∫
∞

0

𝑔(𝑥)Φ𝑘(𝑥)Ψ𝑘(𝑥)d𝑥, (54)

|𝐻1(𝜓)| ≤ 2𝜔2‖𝑔‖𝐿∞(ℝ)(∑
𝑘

𝛼̂2
𝑘
‖Φ𝑘‖2𝐿2(0,∞)) 1

2
(∑
𝑘

‖Ψ𝑘‖2𝐿2(0,∞)) 1

2
= ‖𝑔‖𝐿∞(ℝ)‖𝑤𝑡‖𝐿2(𝐷)‖𝜓𝑡‖𝐿2(𝐷),

(55)

and similarly for𝐻2, we find

𝐻2(𝜓) = ∫
𝐷

∑
𝑘,𝑙

𝛼̂𝑘
𝑘
Φ′
𝑘
(|𝑥|)1

𝑙
Ψ′
𝑙
(|𝑥|)𝑒𝑘(𝑡)𝑒𝑙(𝑡)d(𝑥, 𝑡) (56)

= 2
∑
𝑘

𝛼̂𝑘
−𝑘2 ∫

∞

0

Φ′
𝑘
(𝑥)Ψ′

−𝑘
(𝑥)d𝑥 (57)

= 2
∑
𝑘

𝛼̂𝑘
𝑘2 ∫

∞

0

Φ′
𝑘
(𝑥)Ψ′

𝑘
(𝑥)d𝑥 (58)

= 2𝜔2
∑
𝑘

𝛼̂𝑘 ∫
∞

0

𝑔(𝑥)Φ𝑘(𝑥)Ψ𝑘(𝑥)d𝑥 − 2
∑
𝑘

𝛼̂𝑘
𝑘2
Φ′
𝑘
(0)Ψ𝑘(0), (59)

where in the last equality we used 𝐿𝑘Φ𝑘 = 0 on (0,∞) and integration by parts. Thus we obtain

|𝐻2(𝜓)| ≤ 2(∑
𝑘

𝛼̂2
𝑘

𝑘2
‖Φ′

𝑘
‖2
𝐿2(0,∞)

) 1

2
(∑
𝑘

1

𝑘2
‖Ψ′

𝑘
‖2
𝐿2(0,∞)

) 1

2
= ‖𝑤𝑥‖𝐿2(𝐷)‖𝜓𝑥‖𝐿2(𝐷).
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Moreover, considering𝐻3 and setting 𝑦̂𝑘 ∶= Ψ𝑘(0) for 𝑘 ∈ ℤ𝑜𝑑𝑑 one sees

𝐻3(𝜓) = 𝜔
4 ∫

𝑇

0

(∑
𝑘

𝛼̂𝑘𝑒𝑘(𝑡)
)3(∑

𝑙

Ψ𝑙(0)𝑒𝑙(𝑡)
)
d𝑡 (60)

=
𝜔4

𝑇
(𝛼̂ ∗ 𝛼̂ ∗ 𝛼̂ ∗ 𝑦̂)0, (61)

|𝐻3(𝜓)| ≤ 𝜔4𝑇 |||𝛼̂|||3|||𝑦̂||| = ‖𝑤𝑡(0, ⋅)‖3𝐿4(𝕋𝑇)‖𝜓𝑡(0, ⋅)‖𝐿4(𝕋𝑇). (62)

Note that the estimates on 𝐻1,𝐻2,𝐻3 only depend on the 𝐿2(𝐷)-norm of 𝑤𝑡, 𝑤𝑥, 𝜓𝑡, 𝜓𝑥 and the
𝐿4(𝕋𝑇)-norm of 𝑤𝑡(0, ⋅), 𝜓𝑡(0, ⋅). As finite sums are dense in the Banach-space 𝑍 of functions 𝜓
of the form (34) with ‖𝜓𝑡‖𝐿2(𝐷), ‖𝜓𝑥‖𝐿2(𝐷), ‖𝜓𝑡(0, ⋅)‖𝐿4(𝕋𝑇) < ∞, we see that 𝐻1,𝐻2, and 𝐻3 are
bounded linear functionals on 𝑍. For such 𝜓, we use the above formulas for𝐻1,𝐻2,𝐻3 and com-
pute the linear combination

−𝐻1(𝜓) + 𝐻2(𝜓) − 𝛾𝐻3(𝜓) = −2
∑
𝑘

𝛼̂𝑘
𝑘2
Φ′
𝑘
(0)Ψ𝑘(0) −

𝛾𝜔4

𝑇
(𝛼̂ ∗ 𝛼̂ ∗ 𝛼̂ ∗ 𝑦̂)0 = 0 (63)

due to the Euler–Lagrange equation for the functional 𝐽, that is, the vanishing of 𝐽′(𝛼̂)[𝑦̂] in (24)
for all 𝑦̂ ∈ (𝐽). The last equality implies that 𝑤 is a weak solution of (1). ■

3 FURTHER REGULARITY

Here we prove Theorem 4. We observe first that in the example of a periodic step potential in

Theorem 2,we find that not onlyΦ′
𝑘
(0) = 𝑂(𝑘

3

2 )holds (as Lemma 4 shows) but evenΦ′
𝑘
(0) = 𝑂(𝑘)

is satisfied. It is exactly this weaker growth that we can exploit to prove additional smoothness of
the solutions of (1). We begin by defining for 𝜈 > 0 the Banach space of sequences

ℎ𝜈 ∶=
{
𝑧̂ ∈ 𝑙2 s.t. ‖𝑧̂‖2

ℎ𝜈
∶=

∑
𝑘

(1 + 𝑘2)𝜈|𝑧̂𝑘|2 < ∞}
. (64)

Moreover, we use the isometric isomorphism between ℎ𝜈 and

𝐻𝜈(𝕋𝑇) =
{
𝑧(𝑡) =

∑
𝑘

𝑧̂𝑘𝑒𝑘(𝑡) s.t. 𝑧̂ ∈ ℎ𝜈
}

(65)

by setting ‖𝑧‖𝐻𝜈 ∶= ‖𝑧̂‖ℎ𝜈 . We also use the Morrey embedding 𝐻1+𝜈(𝕋𝑇)↪𝐶0, 12+𝜈(𝕋𝑇) for 𝜈 ∈
(0, 1∕2) and the following embedding: 𝐶0,𝜈(𝕋𝑇)↪𝐻𝜈̃(𝕋𝑇) for 0 < 𝜈̃ < 𝜈 ≤ 1, cf. Lemma A1 in the
Appendix. The latter embedding means that 𝑧̂ ∈ ℎ𝜈̃ provided 𝑧 ∈ 𝐶0,𝜈(𝕋𝑇) and 0 < 𝜈̃ < 𝜈 ≤ 1.
Theorem 6. Assume (C0), (C1), and (C2) and in addition Φ′

𝑘
(0) = 𝑂(𝑘). For every 𝛼̂ ∈ (𝐽) with

𝐽′(𝛼̂) = 0, we have 𝛼̂ ∈ ℎ𝜈 for every 𝜈 ∈ (0, 1∕4).
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Proof. Let 𝛼̂ ∈ (𝐽) with 𝐽′(𝛼̂) = 0. Recall from (22) that

(𝛼̂ ∗ 𝛼̂ ∗ 𝛼̂)𝑘 = 𝜂𝑘𝛼̂𝑘 where 𝜂𝑘 ∶=
2𝑇Φ′

𝑘
(0)

𝛾𝜔4𝑘2
for 𝑘 ∈ ℤ𝑜𝑑𝑑 (66)

so that |𝜂𝑘| ≤ 𝐶∕𝑘. If we define the convolution of two 𝑇-periodic functions 𝑓, 𝑔 ∈ 𝐿2(𝕋𝑇) on the
torus 𝕋𝑇 as

(𝑓 ∗ 𝑔)(𝑡) ∶=
1√
𝑇 ∫

𝑇

0

𝑓(𝑠)𝑔(𝑡 − 𝑠)d𝑠, (67)

and if we set

𝛼(𝑡) ∶=
∑
𝑘

𝛼̂𝑘𝑒𝑘(𝑡), 𝜂(𝑡) ∶=
∑
𝑘

𝜂𝑘𝑒𝑘(𝑡), (68)

then the equation

𝛼3 = 𝛼 ∗ 𝜂 (69)

for the 𝑇-periodic function 𝛼 ∈ 𝐿4(𝕋𝑇) is equivalent to Equation (66) for the sequence 𝛼̂ ∈ (𝐽).
We will analyze (69) with a bootstrap argument.

Step 1: We show that 𝛼 ∈ 𝐶0,
1

6 (𝕋𝑇). The right-hand side of (69) is an𝐻1(𝕋𝑇)-function since

‖𝛼 ∗ 𝜂‖2
𝐻1(𝕋𝑇)

= ‖𝛼̂𝜂‖2
ℎ1

≤ ∑
𝑘∈ℤ𝑜𝑑𝑑

(1 + 𝑘2)𝛼̂2
𝑘

𝐶2

𝑘2
≤ 2𝐶2‖𝛼̂‖2

𝑙2
< ∞. (70)

Therefore, using (69), we see that 𝛼3 ∈ 𝐻1(𝕋𝑇) and by theMorrey embedding that 𝛼3 ∈ 𝐶
0,
1

2 (𝕋𝑇).

As the inverse of the mapping 𝑥 ↦ 𝑥3 is given by 𝑥 ↦ |𝑥|−23 𝑥, which is a 𝐶0, 13 (ℝ)-function, we
obtain 𝛼 ∈ 𝐶0,

1

6 (𝕋𝑇).
Step 2: We fix 𝑞 ∈ (0, 1) and show that if 𝛼 ∈ 𝐶0,𝜈𝑛 (𝕋𝑇) for some 𝜈𝑛 ∈ (0, 1∕2) solves (69), then

𝛼 ∈ 𝐶0,𝜈𝑛+1(𝕋𝑇) with 𝜈𝑛+1 =
𝑞𝜈𝑛

3
+
1

6
. For the proof, we iterate the process from Step 1 and we

start with 𝛼 ∈ 𝐶0,𝜈𝑛 (𝕋𝑇). Then, according to LemmaA1 of the Appendix, 𝛼 ∈ 𝐻𝑞𝜈𝑛(𝕋𝑇) and hence
𝛼̂ ∈ ℎ𝑞𝜈𝑛 . Then as before the convolution of 𝛼with 𝜂 generates onemore weak derivative, namely,

‖𝛼 ∗ 𝜂‖2
𝐻1+𝑞𝜈𝑛 (𝕋𝑇)

= ‖𝛼̂𝜂‖2
ℎ1+𝑞𝜈𝑛

≤ ∑
𝑘

(1 + 𝑘2)1+𝑞𝜈𝑛 𝛼̂2
𝑘

𝐶2

𝑘2
≤ 𝐶2‖𝛼̂‖ℎ𝑞𝜈𝑛 < ∞. (71)

Hence, by (69), we conclude 𝛼3 ∈ 𝐻1+𝑞𝜈𝑛 (𝕋𝑇) and by the Morrey embedding 𝛼3 ∈ 𝐶
0,
1

2
+𝑞𝜈𝑛 (𝕋𝑇)

provided 𝑞𝜈𝑛 ∈ (0, 1∕2). As in Step 1, this implies 𝛼 ∈ 𝐶0,𝜈𝑛+1(𝕋𝑇) with 𝜈𝑛+1 =
1

6
+
𝑞𝜈𝑛

3
.

Startingwith 𝜈1 = 1∕6 fromStep 1, we see by Step 2 that 𝜈𝑛 ↗
1

2(3−𝑞)
. As 𝑞 ∈ (0, 1) can be chosen

arbitrarily close to 1, this finishes the proof. ■

With this preparation, the proof of Theorem 4 is now immediate.
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Proof of Theorem 4. Let 𝑤(𝑥, 𝑡) =
∑
𝑘∈ℤ𝑜𝑑𝑑

𝛼̂𝑘

𝑘
Φ𝑘(|𝑥|)𝑒𝑘(𝑡) with 𝛼̂ ∈ (𝐽) such that 𝐽′(𝛼̂) = 0.

Recall from assumption (C2) that 𝐶 ∶= sup𝑘 ‖Φ𝑘‖2𝐿2(0,∞) < ∞. Likewise, from Lemma 4, we have‖Φ′
𝑘
‖2
𝐿2(0,∞)

≤ 𝐶̃𝑘2 for all 𝑘 ∈ ℤ𝑜𝑑𝑑 and some 𝐶̃ > 0. Therefore, using Theorem 6, we find for all

𝜈 <
1

4

‖𝜕1+𝜈𝑡 𝑤‖2
𝐿2(𝐷)

= 2𝜔2+2𝜈
∑
𝑘

𝛼̂2
𝑘
|𝑘|2𝜈‖Φ𝑘‖2𝐿2(0,∞) ≤ 2𝜔2+2𝜈𝐶‖𝛼̂‖2ℎ𝜈 < ∞ (72)

and likewise

‖𝜕𝜈𝑡 𝑤𝑥‖2𝐿2(𝐷) = 2𝜔2𝜈∑
𝑘

𝛼̂2
𝑘
|𝑘|2𝜈−2‖Φ′

𝑘
‖2
𝐿2(0,∞)

≤ 2𝜔2𝜈𝐶̃‖𝛼̂‖2
ℎ𝜈
< ∞. (73)

This establishes the claim. ■

4 EXISTENCE OF INFINITELYMANY BREATHERS

In this section, we extend Theorem 3 by the following multiplicity result.

Theorem 7. Assume (C0), (C1), and (C2). Then (1) has infinitely many nontrivial, 𝑇-periodic weak
solutions 𝑤 in the sense of Definition 1 with 𝑇 = 2𝜋

𝜔
, provided that

(i) 𝛾 < 0 and there exists an integer 𝑙− ∈ ℕ𝑜𝑑𝑑 such that for infinitely many 𝑗 ∈ ℕ, the sequence
(Φ′
𝑚⋅𝑙

𝑗
−

(0))𝑚∈ℕ𝑜𝑑𝑑 has at least one positive element,
(ii) 𝛾 > 0 and there exists an integer 𝑙+ ∈ ℕ𝑜𝑑𝑑 such that for infinitely many 𝑗 ∈ ℕ, the sequence

(Φ′
𝑚⋅𝑙

𝑗
+

(0))𝑚∈ℕ𝑜𝑑𝑑 has at least one negative element.

Remark 3. In the above theorem, conditions (C1) and (C2) can be weakened: instead of requiring
them for all 𝑘 ∈ ℕ𝑜𝑑𝑑, it suffices to require them for 𝑘 ∈ 𝑙𝑗−ℕ𝑜𝑑𝑑, 𝑘 ∈ 𝑙

𝑗
+ℕ𝑜𝑑𝑑, respectively. We

prove this observation together with the one in Remark 1 at the end of this section.

We start with an investigation about the types of symmetries that are compatible with our
equation. The Euler–Lagrange equation (22) for critical points 𝛼̂ ∈ (𝐽) of 𝐽 takes the form
(𝛼̂ ∗ 𝛼̂ ∗ 𝛼̂)𝑘 = 𝜂𝑘𝛼̂𝑘 with 𝜂𝑘 ∶=

2𝑇Φ′
𝑘
(0)

𝛾𝜔4𝑘2
for 𝑘 ∈ ℤ𝑜𝑑𝑑. Next, we describe subspaces of (𝐽) that

are invariant under triple convolution and pointwise multiplication with (𝜂𝑘)𝑘∈ℤ𝑜𝑑𝑑 . It turns out
that these subspaces are made up of sequences 𝑧̂where only the 𝑟𝑡ℎ entry modulus 2𝑟 is occupied.

Definition 2. For 𝑟 ∈ ℕ𝑜𝑑𝑑, 𝑝 ∈ ℕ𝑒𝑣𝑒𝑛 with 𝑟 < 𝑝, let

(𝐽)𝑟,𝑝 = {𝑧̂ ∈ (𝐽) ∶ ∀ 𝑘 ∈ ℤ, 𝑘 ≠ 𝑟 mod 𝑝 ∶ 𝑧̂𝑘 = 0}. (74)

Lemma 6. For 𝑟 ∈ ℕ𝑜𝑑𝑑, 𝑝 ∈ ℕ𝑒𝑣𝑒𝑛 with 𝑟 < 𝑝 and 𝑝 ≠ 2𝑟, we have(𝐽)𝑟,𝑝 = {0}.
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Proof. Let 𝑧̂ ∈ (𝐽)𝑟,𝑝. For all 𝑘 ∉ 𝑟 + 𝑝ℤ, we have 𝑧̂𝑘 = 0 by definition of (𝐽)𝑟,𝑝. Let therefore
𝑘 = 𝑟 + 𝑝𝑙1 for some 𝑙1 ∈ ℤ. Then−𝑘 = −𝑟 − 𝑝𝑙1 ∉ 𝑟 + 𝑝ℤ because otherwise 2𝑟 = −𝑝(𝑙1 + 𝑙2) =
𝑝|𝑙1 + 𝑙2| for some 𝑙2 ∈ ℤ. Since by assumption 𝑝 > 𝑟, we get |𝑙1 + 𝑙2| < 2. But clearly |𝑙1 + 𝑙2| ∉
{0, 1} since 𝑟 ≠ 0 and 𝑝 ≠ 2𝑟 by assumption. By this contradiction, we have shown −𝑘 ∉ 𝑟 + 𝑝ℤ
so that necessarily 0 = 𝑧̂−𝑘 = −𝑧̂𝑘. This shows 𝑧̂ = 0. ■

In the following, we continue by only considering𝑟 ∶= (𝐽)𝑟,2𝑟 for 𝑟 ∈ ℕ𝑜𝑑𝑑.
Proposition 1. Let 𝑟 ∈ ℕ𝑜𝑑𝑑 .

(i) The elements 𝑧̂ ∈ 𝑟 are exactly those elements of(𝐽) that generate 𝑇
2𝑟
-antiperiodic functions∑

𝑘∈ℤ𝑜𝑑𝑑

𝑧̂𝑘

𝑘
Φ𝑘(𝑥)𝑒𝑘(𝑡).

(ii) If 𝑧̂ ∈ 𝑟, then (𝑧̂ ∗ 𝑧̂ ∗ 𝑧̂)𝑘 = 0 for all 𝑘 ∉ 𝑟 + 2𝑟ℤ.
Proof.

(i) An element 𝑧̂ ∈ (𝐽) generates a 𝑇

2𝑟
-antiperiodic function 𝑧(𝑥, 𝑡) =

∑
𝑘∈ℤ𝑜𝑑𝑑

𝑧̂𝑘

𝑘
Φ𝑘(𝑥)𝑒𝑘(𝑡) if

and only if 𝑧(𝑥, 𝑡 + 𝑇

2𝑟
) = −𝑧(𝑥, 𝑡). Comparing the Fourier coefficients, we see that this is the

case if for all 𝑘 ∈ ℤ𝑜𝑑𝑑 we have 𝑧̂𝑘
(
exp(

i𝜔𝑘𝑇

2𝑟
) + 1

)
= 0, that is, either 𝑘 ∈ 𝑟 + 2𝑟ℤ or 𝑧̂𝑘 = 0.

This is exactly the condition that 𝑧̂ ∈ 𝑟.
(ii) Let 𝑧̂ ∈ 𝑟 and assume that there is 𝑘 ∈ ℤ such that 0 ≠ (𝑧̂ ∗ 𝑧̂ ∗ 𝑧̂)𝑘 = ∑

𝑙,𝑚
𝑧̂𝑙𝑧̂𝑚−𝑙𝑧̂𝑘−𝑚. So,

there is 𝑙0,𝑚0 ∈ ℤ𝑜𝑑𝑑 such that 𝑧̂𝑙0 , 𝑧̂𝑚0−𝑙0 , 𝑧̂𝑘−𝑚0 ≠ 0, which means by the definition of 𝑟
that 𝑙0,𝑚0 − 𝑙0, 𝑘 − 𝑚0 ∈ 𝑟 + 2𝑟ℤ. Thus, 𝑘 = 𝑙0 + 𝑚0 − 𝑙0 + 𝑘 − 𝑚0 ∈ 3𝑟 + 2𝑟ℤ = 𝑟 + 2𝑟ℤ.

■

Proof of Theorem 7. We give the proof in case (i); for case (ii) the proof only needs a trivial mod-
ification. Let 𝑟 = 𝑙𝑗 where 𝑗 is an index such that the sequence (Φ′

𝑘⋅𝑙𝑗
(0))𝑘∈ℕ𝑜𝑑𝑑 has a positive

element (we have changed the notation from 𝑙− to 𝑙 for the sake of readability). As 𝑟 is a closed
subspace of(𝐽), we have as before in Theorem 5 the existence of a minimizer 𝛼̂(𝑟) ∈ 𝑟, that is,
𝐽(𝛼̂(𝑟)) = min𝑟 𝐽 < 0. Moreover, 𝛼̂(𝑟) satisfies the restricted Euler–Lagrange equation

0 = 𝐽′
(
𝛼̂(𝑟)

)
[𝑥̂] =

(
𝛼̂(𝑟) ∗ 𝛼̂(𝑟) ∗ 𝛼̂(𝑟) ∗ 𝑥̂

)
0
+
2𝑇

𝛾𝜔4

∑
𝑘

Φ′
𝑘
(0)

𝑘2
𝛼̂
(𝑟)
𝑘
𝑥̂𝑘 ∀ 𝑥̂ ∈ 𝑟. (75)

Weneed to show that (75) holds for every 𝑧̂ ∈ (𝐽). If for an arbitrary 𝑧̂ ∈ (𝐽), we define 𝑥̂𝑘 ∶= 𝑧̂𝑘
for 𝑘 ∈ 𝑟 + 2𝑟ℤ and 𝑥̂𝑘 ∶= 0 else then 𝑥̂ ∈ 𝑟. If we furthermore define 𝑦̂ ∶= 𝑧̂ − 𝑥̂, then 𝑦̂𝑘 = 0
for all 𝑘 ∈ 𝑟 + 2𝑟ℤ. This implies, in particular, that

∑
𝑘

Φ′
𝑘
(0)

𝑘2
𝛼̂
(𝑟)
𝑘
𝑦̂𝑘 = 0 (76)
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and by using (ii) of Proposition 1 also

(𝛼̂ ∗ 𝛼̂ ∗ 𝛼̂ ∗ 𝑦̂)0 =
∑
𝑘

(
𝛼̂(𝑟) ∗ 𝛼̂(𝑟) ∗ 𝛼̂(𝑟)

)
𝑘
𝑦̂−𝑘 = 0. (77)

This implies 𝐽′(𝛼̂(𝑟))[𝑦̂] = 0 and since by (75) also 𝐽′(𝛼̂(𝑟))[𝑥̂] = 0, we have succeeded in proving
that 𝐽′(𝛼̂(𝑟)) = 0.
It remains to show the multiplicity result. For this purpose, we only consider 𝑟 = 𝑙𝑗𝑚 for 𝑗𝑚 →

∞ as𝑚 → ∞where 𝑗𝑚 is an index such that the sequence (Φ′𝑙𝑗𝑚𝑘(0))𝑘∈ℕ𝑜𝑑𝑑 has a positive element.
First, we observe that𝑙𝑗𝑚 ⊋ 𝑙𝑗𝑚+1 . Assume for contradiction that the set {𝛼̂(𝑙𝑗𝑚 )} is finite. Then
we have a subsequence (𝑗𝑚𝑛)𝑛∈ℕ such that 𝛼̂ = 𝛼̂

(𝑙𝑗𝑚𝑛 ) is constant. But then

𝛼̂ ∈
⋂
𝑛∈ℕ

𝑙𝑗𝑚𝑛 =
⋂
𝑗∈ℕ

𝑙𝑗 = {0}. (78)

This contradiction shows the existence of infinitely many distinct critical points of the function 𝐽
and finishes the proof of the theorem. ■

Proof of Remark 1 and Remark 3. The proof of Theorem 7 works on the basis that it suffices to
minimize the functional 𝐽 on 𝑟. In this way, a 𝑇

2𝑟
-antiperiodic breather is obtained. For 𝑧̂ ∈ 𝑟,

only the entries 𝑧̂𝑘 with 𝑘 ∈ 𝑟ℤ𝑜𝑑𝑑 are nontrivial, whereas all other entries vanish. Therefore, (C1)
and (C2) and the values of Φ′

𝑘
(0) are only relevant for 𝑘 ∈ 𝑟ℤ𝑜𝑑𝑑. In the special case of Remark 3,

we take 𝑟 = 𝑙𝑗±. ■

5 APPROXIMATION BY FINITELYMANYHARMONICS

Here we give some analytical results on finite-dimensional approximation of the breathers
obtained in Theorem 3. The finite-dimensional approximation is obtained by cutting off the ansatz
(20) and only considering harmonics of order |𝑘| ≤ 𝑁. Here a summand in the series (20) of the
form Φ𝑘(|𝑥|)𝑒𝑘(𝑡) is a called a harmonic because it satisfies the linear wave equation in (18). We
will prove that 𝐽 restricted to spaces (𝐽(𝑁)) of cutoff ansatz functions still attains its minimum
and that the sequence of the corresponding minimizers converges up to a subsequence to a min-
imizer of 𝐽 on(𝐽).
Definition 3. Let 𝑁 ∈ ℕ𝑜𝑑𝑑. Define

𝐽(𝑁) ∶= 𝐽|(𝐽(𝑁)), (𝐽(𝑁)) ∶= {
𝑧̂ ∈ (𝐽) || ∀ |𝑘| > 𝑁 ∶ 𝑧̂𝑘 = 0}. (79)

Lemma 7. Under the assumptions of Theorem 3, the following holds:

(i) For every𝑁 ∈ ℕ𝑜𝑑𝑑 sufficiently large, there exists 𝛼̂(𝑁) ∈ (𝐽(𝑁)) such that 𝐽(𝛼̂(𝑁)) = inf 𝐽(𝑁) <
0 and lim𝑁→∞ 𝐽(𝛼̂(𝑁)) = inf 𝐽.
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(ii) There is 𝛼̂ ∈ (𝐽) such that up to a subsequence (again denoted by (𝛼̂(𝑁))𝑁), we have
𝛼̂(𝑁) → 𝛼̂ in (𝐽) (80)

and 𝐽(𝛼̂) = inf 𝐽.

Remark 4. The Euler–Lagrange equation for 𝛼̂(𝑁) reads:

0 = 𝐽′
(
𝛼̂(𝑁)

)
[𝑦̂] =

(
𝛼̂(𝑁) ∗ 𝛼̂(𝑁) ∗ 𝛼̂(𝑁) ∗ 𝑦̂

)
0
+
2𝑇

𝛾𝜔4

∑
𝑘

Φ′
𝑘
(0)

𝑘2
𝛼̂
(𝑁)
𝑘
𝑦̂𝑘 ∀ 𝑦̂ ∈ (𝐽(𝑁)). (81)

This amounts to satisfying (3) in Definition 1 for functions𝜓(𝑥, 𝑡) =
∑
𝑘∈ℤ𝑜𝑑𝑑,|𝑘|≤𝑁 𝜓̂𝑘(𝑥)𝑒𝑘(𝑡)with

𝜓̂𝑘 ∈ 𝐻
1(ℝ). Clearly, in general, 𝛼̂(𝑁) is not a critical point of 𝐽.

Proof.

(i) We choose 𝑁 ∈ ℕ𝑜𝑑𝑑 so large, such that we have the assumed sign of the one element in
(Φ′
𝑘
(0))|𝑘|≤𝑁 . The restriction of 𝐽 to the 𝑁+1

2
-dimensional space (𝐽(𝑁)) preserves coerciv-

ity. The continuity of 𝐽(𝑁) therefore guarantees the existence of a minimizer 𝛼̂(𝑁) ∈ (𝐽(𝑁)).
As before we see that 𝐽(𝛼̂(𝑁)) = inf 𝐽(𝑁) < 0, so in particular 𝛼̂(𝑁) ≠ 0. Next, we observe that
(𝐽(𝑁)) ⊂ (𝐽), that is, 𝐽(𝛼̂(𝑁)) ≥ inf 𝐽 = 𝐽(𝛽) for a minimizer 𝛽 ∈ (𝐽) of 𝐽. Let us define
𝛽
(𝑁)
𝑘
= 𝛽𝑘 for |𝑘| ≤ 𝑁 and 𝛽(𝑁)

𝑘
= 0. As the Fourier series 𝛽(𝑡) =

∑
𝑘
𝛽𝑘𝑒𝑘(𝑡) converges in

𝐿4(𝕋), cf. Theorem 4.1.8 in Ref. 13, we see that 𝛽(𝑁) → 𝛽 in (𝐽). By the minimality of
𝛼̂(𝑁) ∈ (𝐽(𝑁)) and continuity of 𝐽, we conclude

inf(𝐽) 𝐽 ≤ 𝐽(𝛼̂(𝑁)) ≤ 𝐽(𝛽(𝑁))⟶ 𝐽(𝛽) = inf(𝐽) 𝐽. (82)

Hence lim𝑁→∞ 𝐽(𝛼̂(𝑁)) = inf 𝐽 as claimed.
(ii) Since (𝐽(𝑁)) ⊂ (𝐽(𝑁+1)) ⊂ (𝐽), we see that 𝐽(𝛼̂(𝑁)) ≥ 𝐽(𝛼̂(𝑁+1)) ≥ inf 𝐽 so that in partic-

ular the sequence (𝐽(𝛼̂(𝑁)))𝑁 is bounded. By coercivity of 𝐽, we conclude that (𝛼̂(𝑁))𝑁 is
bounded in (𝐽) so that there is 𝛼̂ ∈ (𝐽) and a subsequence (again denoted by (𝛼̂(𝑁))𝑁)
such that

𝛼̂(𝑁) ⇀ 𝛼̂ in (𝐽). (83)

By part (i) and weak lower semicontinuity of 𝐽, we obtain

inf 𝐽 = lim
𝑁→∞

𝐽(𝛼̂(𝑁)) ≥ 𝐽(𝛼̂), (84)

that is, 𝛼̂ is a minimizer of 𝐽. Recall that 𝐽(⋅) = 1

4
|||⋅|||4 + 𝐽1(⋅) where 𝐽1 is weakly continuous, cf.

proof of Theorem 5. Therefore, since 𝛼̂(𝑁) ⇀ 𝛼̂ and 𝐽(𝛼̂(𝑁)) → 𝐽(𝛼̂), we see that |||𝛼̂(𝑁)|||→ |||𝛼̂|||
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as 𝑁 → ∞. As (𝐽) is strictly uniformly convex, we obtain the norm-convergence of (𝛼̂(𝑁))𝑁 to
𝛼̂. ■
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APPENDIX A
A.1 Details on exponentially decreasing fundamental solutions for step potentials
Here we consider a second-order ordinary differential operator

𝐿𝑘 ∶= −
𝑑2

𝑑𝑥2
− 𝑘2𝜔2𝑔(𝑥) (A1)

with 𝑔 as in Theorem 1. Clearly, 𝐿𝑘 is a self-adjoint operator on 𝐿2(ℝ) with domain𝐻2(ℝ). More-
over, 𝜎𝑒𝑠𝑠(𝐿𝑘) = [𝑘2𝜔2𝑎,∞). By the assumption on 𝜔, we have√

𝑏𝜔𝑐
2

𝜋
=
𝑝

𝑞
with 𝑝, 𝑞 ∈ ℕ𝑜𝑑𝑑. (A2)

Hence, with 𝑘 ∈ 𝑞ℕ𝑜𝑑𝑑, 𝑘
√
𝑏𝜔𝑐 is an oddmultiple of 𝜋∕2. In the following, we see that 0 is not an

eigenvalue of 𝐿𝑘 for 𝑘 ∈ 𝑞ℕ𝑜𝑑𝑑 so that (C1) as in Remark 1 is fulfilled. A potential eigenfunction
𝜙𝑘 for the eigenvalue 0 would have to look like

𝜙𝑘(𝑥) =

⎧⎪⎨⎪⎩
−𝐴 sin(𝑘𝜔

√
𝑏𝑐)𝑒𝑘𝜔

√
𝑎(𝑥+𝑐), 𝑥 < −𝑐,

𝐴 sin(𝑘𝜔
√
𝑏𝑥) + 𝐵 cos(𝑘𝜔

√
𝑏𝑥), −𝑐 < 𝑥 < 𝑐,

𝐴 sin(𝑘𝜔
√
𝑏𝑐)𝑒−𝑘𝜔

√
𝑎(𝑥−𝑐), 𝑐 < 𝑥,

(A3)

with𝐴, 𝐵 ∈ ℝ to be determined. Note that we have used cos(𝑘𝜔
√
𝑏𝑐) = 0. The 𝐶1-matching of 𝜙𝑘

at 𝑥 = ±𝑐 (which is due to the embedding𝐻2(ℝ) ↪ 𝐶1(ℝ)) leads to the two equations

−𝐵𝑘𝜔
√
𝑏 sin(𝑘𝜔

√
𝑏𝑐) = −𝐴𝑘𝜔

√
𝑎 sin(𝑘𝜔

√
𝑏𝑐), (A4)

𝐵𝑘𝜔
√
𝑏 sin(𝑘𝜔

√
𝑏𝑐) = −𝐴𝑘𝜔

√
𝑎 sin(𝑘𝜔

√
𝑏𝑐), (A5)

and since sin(𝑘𝜔
√
𝑏𝑐) = ±1, this implies 𝐴 = 𝐵 = 0 so that there is no eigenvalue 0 of 𝐿𝑘. Next

we need to find the fundamental solution 𝜙𝑘 of 𝐿𝑘 that decays to zero at +∞ and is normal-
ized by 𝜙𝑘(0) = 1. Here we can use the same ansatz as in (A3) and just ignore the part of 𝜙𝑘 on
(−∞, 0). Now the normalization 𝜙𝑘(0) = 1 leads to 𝐵 = 1 and the 𝐶1-matching at 𝑥 = 𝑐 leads to

𝐴 =

√
𝑏

𝑎
𝐵 =

√
𝑏

𝑎
so that the decaying fundamental solution is completely determined. We find

https://doi.org/10.1111/sapm.12455
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that

|𝜙𝑘(𝑥)| ≤ ⎧⎪⎨⎪⎩
𝐴 + 𝐵, 0 ≤ 𝑥 ≤ 𝑐
𝐴, 𝑐 < 𝑥 ≤ 2𝑐
𝐴𝑒

−
1

2
𝑘𝜔

√
𝑎𝑥
, 𝑥 > 2𝑐

(A6)

so that |𝜙𝑘(𝑥)| ≤ (𝐴 + 𝐵)𝑒−𝜌𝑘𝑥 ≤ 𝑀𝑒−𝜌𝑥 on [0,∞) with 𝜌𝑘 = 1

2
𝑘𝜔

√
𝑎, 𝜌 = 1

2
𝜔
√
𝑎 and 𝑀 = 𝐴 +

𝐵. This shows that (C2) also holds. Finally, since 𝜙′
𝑘
(0) =

𝑏𝑘𝜔√
𝑎
> 0, the existence of infinitely many

breathers can only be shown for 𝛾 < 0. At the same time, due to |𝜙′
𝑘
(0)| = 𝑂(𝑘), Theorem4 applies.

A.2 Details on Bloch modes for periodic step potentials
Here we consider a second-order periodic ordinary differential operator

𝐿 ∶= −
𝑑2

𝑑𝑥2
+ 𝑉(𝑥) (A7)

with 𝑉 ∈ 𝐿∞(ℝ) which we assume to be even and 2𝜋-periodic. Moreover, we assume that 0 does
not belong to the spectrum of 𝐿 ∶ 𝐻2(ℝ) ⊂ 𝐿2(ℝ) → 𝐿2(ℝ). We first describe what Bloch modes
are and why they exist. Later we show that the specific periodic potential from Theorem 2 meets
the assumptions of Theorem 3 , that is, we verify conditions (C1) and (C2).
A function Φ ∈ 𝐶1(ℝ) that is twice almost everywhere differentiable such that

𝐿Φ = 0 a.e. in ℝ, Φ(⋅ + 2𝜋) = 𝜌Φ(⋅), (A8)

where 𝜌 ∈ (−1, 1) ⧵ {0} is called the (exponentially decreasing for𝑥 → +∞) Blochmode of 𝐿 and 𝜌
is called the Floquet multiplier. The existence ofΦ is guaranteed by the assumption that 0 ∉ 𝜎(𝐿).
This is essentially Hill’s theorem, cf. 14. Note that Ψ(𝑥) ∶= Φ(−𝑥) is a second Bloch mode of 𝐿,
which is exponentially increasing for 𝑥 → +∞. The functionsΦ andΨ form a fundamental system
of solutions for the operator 𝐿 on ℝ. Next we explain how Φ is constructed, why it can be taken
real-valued and why it does not vanish at 𝑥 = 0 so that we can assume w.l.o.g. Φ(0) = 1.
According to Ref. [14, Theorem 1.1.1], there are linearly independent functions Ψ1,Ψ2 ∶ ℝ → ℂ

and Floquet-multipliers 𝜌1, 𝜌2 ∈ ℂ such that 𝐿Ψ𝑗 = 0 a.e. on ℝ and Ψ𝑗(⋅ + 2𝜋) = 𝜌𝑗Ψ𝑗(⋅) for 𝑗 =
1, 2. We define 𝜙𝑗 , 𝑗 = 1, 2 as the solutions to the initial value problems{

𝐿𝜙1 = 0,

𝜙1(0) = 1, 𝜙′1(0) = 0,
and

{
𝐿𝜙2 = 0,

𝜙2(0) = 0, 𝜙′2(0) = 1,
(A9)

and consider the Wronskian

𝑊(𝑥) ∶=

(
𝜙1(𝑥) 𝜙2(𝑥)

𝜙′1(𝑥) 𝜙
′
2(𝑥)

)
(A10)

and the monodromy matrix

𝐴 ∶= 𝑊(2𝜋) =

(
𝜙1(2𝜋) 𝜙2(2𝜋)

𝜙′1(2𝜋) 𝜙
′
2(2𝜋)

)
. (A11)
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Then det𝐴 = 1 is the Wronskian determinant of the fundamental system 𝜙1, 𝜙2 and the Floquet
multipliers 𝜌1,2 =

1

2
(tr(𝐴) ±

√
tr(𝐴)2 − 4) are the eigenvalues of 𝐴 with corresponding eigenvec-

tors 𝑣1 = (𝑣1,1, 𝑣1,2) ∈ ℂ2 and 𝑣2 = (𝑣2,1, 𝑣2,2) ∈ ℂ2. Thus,Ψ𝑗(𝑥) = 𝑣𝑗,1𝜙1(𝑥) + 𝑣𝑗,2𝜙2(𝑥). By Hill’s
theorem (see Ref. 14), we know that

0 ∈ 𝜎(𝐿) ⇔ |tr(𝐴)| ≤ 2. (A12)

Due to the assumption that 0 ∉ 𝜎(𝐿), we see that 𝜌1, 𝜌2 are real with 𝜌1, 𝜌2 ∈ ℝ ⧵ {−1, 0, 1} and
𝜌1𝜌2 = 1, that is, one of the two Floquet multipliers has modulus smaller than 1 and the other one
has modulus bigger than 1. W.l.o.g. we assume 0 < |𝜌2| < 1 < |𝜌1|. Furthermore, since 𝜌1, 𝜌2 are
real and 𝐴 has real entries, we can choose 𝑣1, 𝑣2 to be real and so Ψ1,Ψ2 are both real-valued. As
a result, we have found a real-valued Bloch mode Ψ2(𝑥) that is exponentially decreasing as 𝑥 →
+∞ due to |𝜌2| < 1. Let us finally verify that Ψ2(0) ≠ 0 so that we may assume by rescaling that
Ψ2(0) = 1. Assume for contradiction thatΨ2(0) = 0. As the potential𝑉(𝑥) is even in 𝑥, this implies
that Ψ2 is odd and hence (due to the exponential decay at +∞) in 𝐿2(ℝ). But this contradicts that
0 ∉ 𝜎(𝐿).
Now we explain how the precise choice of the data 𝑎, 𝑏 > 0,Θ ∈ (0, 1) and 𝜔 for the step-

potential 𝑔 in Theorem 2 allows to fulfill the conditions (C1) and (C2). Let us define

𝑔(𝑥) ∶=

{
𝑎, 𝑥 ∈ [0, 2Θ𝜋),

𝑏, 𝑥 ∈ (2Θ𝜋, 2𝜋),
(A13)

and extend 𝑔 as a 2𝜋-periodic function toℝ. Then 𝑔(𝑥) = 𝑔(𝑥 − Θ𝜋), and the corresponding expo-
nentially decaying Bloch modes 𝜙̃𝑘 and 𝜙𝑘 are similarly related by 𝜙̃𝑘(𝑥) = 𝜙𝑘(𝑥 − Θ𝜋). For the
computation of the exponentially decaying Bloch modes, it is, however, more convenient to use
the definition 𝑔 instead of 𝑔.
Nowwe will calculate the monodromymatrix𝐴𝑘 from (A11) for the operator 𝐿𝑘. For a constant

value 𝑐 > 0, the solution of the initial value problem

−𝜙′′(𝑥) − 𝑘2𝜔2𝑐𝜙(𝑥) = 0, 𝜙(𝑥0) = 𝛼, 𝜙′(𝑥0) = 𝛽 (A14)

is given by (
𝜙(𝑥)

𝜙′(𝑥)

)
= 𝑇𝑘(𝑥 − 𝑥0, 𝑐)

(
𝛼

𝛽

)
(A15)

with the propagation matrix

𝑇𝑘(𝑠, 𝑐) ∶=

(
cos(𝑘𝜔

√
𝑐𝑠)

1

𝑘𝜔
√
𝑐
sin(𝑘𝜔

√
𝑐𝑠)

−𝑘𝜔
√
𝑐 sin(𝑘𝜔

√
𝑐𝑠) cos(𝑘𝜔

√
𝑐𝑠)

)
. (A16)

Therefore, we can write the Wronskian as follows:

𝑊𝑘(𝑥) =

{
𝑇𝑘(𝑥, 𝑎) 𝑥 ∈ [0, 2Θ𝜋]

𝑇𝑘(𝑥 − 2Θ𝜋, 𝑏)𝑇𝑘(2Θ𝜋, 𝑎) 𝑥 ∈ [2Θ𝜋, 2𝜋]
(A17)
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and the monodromy matrix as

𝐴𝑘 = 𝑊𝑘(2𝜋) = 𝑇𝑘(2𝜋(1 − Θ), 𝑏)𝑇𝑘(2Θ𝜋, 𝑎). (A18)

To get the exact form of 𝐴𝑘, let us use the notation

𝑙 ∶=

√
𝑏

𝑎

1 − Θ

Θ
, 𝑚 ∶= 2

√
𝑎Θ𝜔. (A19)

Hence

𝐴𝑘 = sin(𝑘𝑚𝑙𝜋) sin(𝑘𝑚𝜋)

⋅

⎛⎜⎜⎜⎝
cot(𝑘𝑚𝑙𝜋) cot(𝑘𝑚𝜋) −

√
𝑎

𝑏

1

𝑘𝜔
√
𝑎
cot(𝑘𝑚𝑙𝜋) +

1

𝑘𝜔
√
𝑏
cot(𝑘𝑚𝜋)

−𝑘𝜔
√
𝑏 cot(𝑘𝑚𝜋) − 𝑘𝜔

√
𝑎 cot(𝑘𝑚𝑙𝜋) −

√
𝑏

𝑎
+ cot(𝑘𝑚𝑙𝜋) cot(𝑘𝑚𝜋)

⎞⎟⎟⎟⎠ (A20)

and

tr(𝐴𝑘) = 2 cos(𝑘𝑚𝑙𝜋) cos(𝑘𝑚𝜋) −
(√𝑎

𝑏
+

√
𝑏

𝑎

)
sin(𝑘𝑚𝑙𝜋) sin(𝑘𝑚𝜋). (A21)

To verify (C1), we aim for |tr(𝐴𝑘)| > 2. However, instead of showing |tr(𝐴𝑘)| > 2 for all 𝑘 ∈ ℤ𝑜𝑑𝑑,
we may restrict to 𝑘 ∈ 𝑟 ⋅ ℤ𝑜𝑑𝑑 for fixed 𝑟 ∈ ℕ𝑜𝑑𝑑 according to Remark 1. Next we will choose
𝑟 ∈ ℤ𝑜𝑑𝑑. Due to the assumptions from Theorem 2, we have

𝑙 =
𝑝̃

𝑞
, 2𝑚 =

𝑝

𝑞
∈
ℕ𝑜𝑑𝑑
ℕ𝑜𝑑𝑑

. (A22)

Therefore, by setting1 𝑟 = 𝑞𝑞, we obtain cos(𝑘𝑚𝜋) = cos(𝑘𝑚𝑙𝜋) = 0 and sin(𝑘𝑚𝜋), sin(𝑘𝑚𝑙𝜋) ∈

{±1} for all 𝑘 ∈ 𝑟 ⋅ ℤ𝑜𝑑𝑑. Together with 𝑎 ≠ 𝑏 this implies |tr(𝐴𝑘)| =√
𝑎

𝑏
+

√
𝑏

𝑎
> 2 so that (C1)

holds and 𝐴𝑘 takes the simple diagonal form

𝐴𝑘 =

⎛⎜⎜⎜⎝
−
√
𝑎

𝑏
sin(𝑘𝑚𝑙𝜋) sin(𝑘𝑚𝜋) 0

0 −

√
𝑏

𝑎
sin(𝑘𝑚𝑙𝜋) sin(𝑘𝑚𝜋)

⎞⎟⎟⎟⎠ . (A23)

In the following, we assume w.l.o.g. 0 < 𝑎 < 𝑏, that is, the Floquet exponent with modulus less
than 1 is 𝜌𝑘 = −

√
𝑎

𝑏
sin(𝑘𝑚𝑙𝜋) sin(𝑘𝑚𝜋). Note that |𝜌𝑘| =√

𝑎∕𝑏 is independent of 𝑘. Further-
more, the Bloch mode 𝜙̃𝑘 that is decaying to 0 at +∞ and normalized by 𝜙̃𝑘(Θ𝜋) = 1 is deduced

1 Instead of 𝑟 = 𝑞𝑞, we may have chosen any odd multiple of 𝑞𝑞, for example, 𝑟 = (𝑞𝑞)𝑗 for any 𝑗 ∈ ℕ. This is important
for the applicability of Theorem 7 to obtain infinitely many breathers.
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from the upper left element of the Wronskian, that is,

𝜙̃𝑘(𝑥) =
1

cos(𝑘𝜔
√
𝑎Θ𝜋)

⎧⎪⎨⎪⎩
cos(𝑘𝜔

√
𝑎𝑥), 𝑥 ∈ (0, 2Θ𝜋),

cos(𝑘𝜔
√
𝑏(𝑥 − 2Θ𝜋)) cos(𝑘𝜔

√
𝑎2Θ𝜋)

−
√
𝑎

𝑏
sin(𝑘𝜔

√
𝑏(𝑥 − 2Θ𝜋)) sin(𝑘𝜔

√
𝑎2Θ𝜋), 𝑥 ∈ (2Θ𝜋, 2𝜋),

(A24)

and on shifted intervals of lengths 2𝜋, one has 𝜙̃𝑘(𝑥 + 2𝑚𝜋) = 𝜌𝑚𝑘 𝜙̃𝑘(𝑥). Notice that
by (A22), the expression 𝑘𝜔

√
𝑎Θ𝜋 = 𝑘

𝑝

𝑞

𝜋

4
is an odd multiple of 𝜋∕4 since 𝑘 ∈ 𝑞𝑞ℤ𝑜𝑑𝑑

and hence | cos(𝑘𝜔√𝑎Θ𝜋)| = 1∕√2. Therefore, ‖𝜙𝑘‖𝐿∞(0,∞) = ‖𝜙̃𝑘‖𝐿∞(Θ𝜋,∞) ≤ ‖𝜙̃𝑘‖𝐿∞(0,2𝜋) ≤√
2(1 +

√
𝑎∕𝑏). Thus, we have shown that |𝜙𝑘(𝑥)| ≤ 𝑀𝑒−𝜌𝑥 for 𝑥 ∈ [0,∞) with 𝑀 > 0 and 𝜌 =

1

4𝜋
(ln 𝑏 − ln 𝑎) > 0. Finally, let us compute

𝜙′
𝑘
(0) = 𝜙̃′

𝑘
(Θ𝜋) = −𝑘𝜔

√
𝑎 tan(𝑘𝜔

√
𝑎Θ𝜋) ∈ {±𝑘𝜔

√
𝑎}. (A25)

This shows that |𝜙′
𝑘
(0)| = 𝑂(𝑘) holds which allows to apply Theorem 4. It also shows that the esti-

mate |𝜙′
𝑘
(0)| = 𝑂(𝑘 32 ) from Lemma 4 can be improved in special cases. To see that 𝜙′

𝑘
(0) is alter-

nating in 𝑘, observe that moving from 𝑘 ∈ 𝑟ℤ𝑜𝑑𝑑 to 𝑘 + 2𝑟 ∈ 𝑟ℤ𝑜𝑑𝑑 the argument of tan changes
by 2𝑟𝜔

√
𝑎Θ𝜋 that is an odd multiple of 𝜋∕2. Since tan(𝑥 + ℤ𝑜𝑑𝑑

𝜋

2
) = −1∕ tan(𝑥), we see that

the sequence 𝜙′
𝑘
(0) is alternating for 𝑘 ∈ 𝑟ℤ𝑜𝑑𝑑. This shows, in particular, that for any 𝑗 ∈ ℕ,

the sequence (𝜙′
ℎ𝑟𝑗
(0))ℎ∈ℕ𝑜𝑑𝑑 contains infinitely many positive and negative elements, and hence,

Theorem 7 for the existence of infinitely many breathers is applicable. This concludes the proof
Theorem 2 because we have shown that the potential 𝑔 satisfies the assumptions (C1) and (C2)
from Theorem 3.

A.3 Embedding of Hölder-spaces into Sobolev-spaces
For 0 < 𝑠 < 1, recall the definition of the Slobodeckij-seminorm for a function 𝑧 ∶ 𝕋𝑇 → ℝ

[𝑧]𝑠 ∶=

(
∫
𝕋𝑇

∫
𝕋𝑇

|𝑧(𝑡) − 𝑧(𝜏)|2|𝑡 − 𝜏|1+2𝑠 d𝑡d𝜏
)1∕2

. (A26)

Lemma A1. For 0 < 𝜈̃ < 𝜈 < 1, the embedding 𝐶0,𝜈(𝕋𝑇) ↪ 𝐻𝜈̃(𝕋𝑇) is continuous.

Proof. Let 𝑧(𝑡) =
∑
𝑘
𝑧̂𝑘𝑒𝑘(𝑡) be a function in 𝐶0,𝜈(𝕋𝑇). We need to show the finiteness of the spec-

tral norm ‖𝑧‖𝐻𝜈̃ . For this, we use the equivalence of the spectral norm ‖ ⋅ ‖𝐻𝜈̃ with the Slobodeckij
norm, cf. Lemma A2. Therefore, it suffices to check the estimate

∫
𝕋𝑇

∫
𝕋𝑇

|𝑧(𝑡) − 𝑧(𝜏)|2|𝑡 − 𝜏|1+2𝜈̃ d𝑡d𝜏 ≤ ‖𝑧‖2
𝐶𝜈(𝕋𝑇) ∫

𝕋𝑇
∫
𝕋𝑇

|𝑡 − 𝜏|−1+2(𝜈−𝜈̃)d𝑡d𝜏 ≤ 𝐶(𝜈, 𝜈̃)‖𝑧‖2
𝐶𝜈(𝕋𝑇)

, (A27)

where the double integral is finite due to 𝜈 > 𝜈̃. ■

Lemma A2. For functions 𝑧 ∈ 𝐻𝑠(𝕋𝑇), 0 < 𝑠 < 1, the spectral norm ‖𝑧‖𝐻𝑠 = (∑𝑘
(1 +

𝑘2)𝑠|𝑧̂𝑘|2)1∕2 and the Solobodeckij norm |||𝑧|||𝐻𝑠 ∶= (‖𝑧‖2𝐿2(𝕋𝑇) + [𝑧]2𝑠 )1∕2 are equivalent.
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Proof. The Solobodeckij space and the spectrally defined fractional Sobolev space are bothHilbert
spaces. Hence, by the openmapping theorem, if suffices to verify the estimate |||𝑧|||𝐻𝑠 ≤ 𝐶‖𝑧‖𝐻𝑠 .
By direct computation, we get

∫
𝕋𝑇

∫
𝕋𝑇

|𝑧(𝑡) − 𝑧(𝜏)|2|𝑡 − 𝜏|1+2𝑠 d𝑡d𝜏 = ∫
𝑇

0
∫
𝑇−𝜏

−𝜏

|𝑧(𝑥 + 𝜏) − 𝑧(𝜏)|2|𝑥|1+2𝑠 d𝑥d𝜏 (A28)

= ∫
𝑇

0

(
∫
𝑇−𝜏

0

|𝑧(𝑥 + 𝜏) − 𝑧(𝜏)|2
𝑥1+2𝑠

d𝑥 + ∫
𝑇

𝑇−𝜏

|𝑧(𝑥 + 𝜏) − 𝑧(𝜏)|2
(𝑇 − 𝑥)1+2𝑠

d𝑥

)
d𝜏 (A29)

= ∫
𝑇

0
∫
𝑇

0

|𝑧(𝑥 + 𝜏) − 𝑧(𝜏)|2
𝑔(𝑥, 𝜏)1+2𝑠

d𝑥d𝜏 (A30)

with

𝑔(𝑥, 𝜏) =

{
𝑥 if 0 ≤ 𝑥 ≤ 𝑇 − 𝜏,
𝑇 − 𝑥 if 𝑇 − 𝜏 ≤ 𝑥 ≤ 𝑇. (A31)

Since 𝑔(𝑥, 𝜏) ≥ dist(𝑥, 𝜕𝕋𝑇) and due to Parseval’s identity, we find

∫
𝕋𝑇

∫
𝕋𝑇

|𝑧(𝑡) − 𝑧(𝜏)|2|𝑡 − 𝜏|1+2𝑠 d𝑡d𝜏 ≤ ∫
𝕋𝑇

‖ ˆ𝑧(⋅ + 𝑥) − 𝑧̂‖2
𝑙2

dist(𝑥, 𝜕𝕋𝑇)1+2𝑠
d𝑥 (A32)

= ∫
𝕋𝑇

∑
𝑘

| exp(i𝑘𝜔𝑥) − 1|2|𝑧̂𝑘|2
dist(𝑥, 𝜕𝕋𝑇)1+2𝑠

d𝑥 (A33)

= 4∫
𝑇∕2

0

∑
𝑘

1 − cos(𝑘𝜔𝑥)

𝑥1+2𝑠
|𝑧̂𝑘|2d𝑥 (A34)

≤ 4𝐶̃∑
𝑘

𝑘2𝑠|𝑧̂𝑘|2 (A35)

with 𝐶̃ = ∫ ∞
0

1−cos(𝜔𝜉)

𝜉1+2𝑠
d𝜉. This finishes the proof. ■
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