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A B S T R A C T   

Taking robotic patents between 1977 and 2017 and building upon the topic modeling technique, we extract their 
latent topics, analyze how important these topics are over time, and how they are related to each other looking at 
how often they are recombined in the same patents. This allows us to differentiate between more and less 
important technological trends in robotics based on their stage of diffusion and position in the space of 
knowledge represented by a topic graph, where some topics appear isolated while others are highly inter
connected. Furthermore, utilizing external reference texts that characterize service robots from a technical 
perspective, we propose and apply a novel approach to match the constructed topics to service robotics. The 
matching procedure is based on frequency and exclusivity of words overlapping between the patents and the 
reference texts. We identify around 20 topics belonging to service robotics. Our results corroborate earlier 
findings, but also provide novel insights on the content and stage of development of application areas in service 
robotics. With this study we contribute to a better understanding of the highly dynamic field of robotics as well as 
to new practices of utilizing the topic modeling approach, matching the resulting topics to external classifications 
and applying to them metrics from graph theory.   

1. Introduction 

Robots are increasingly supporting humans both at work and in their 
private life. While the use of industrial robots (IR) has a long standing 
tradition in the manufacturing industries, service robots (SR) are a more 
recent phenomenon. Latest advances in artificial intelligence and ma
chine learning enable robots to sense and respond to their environments 
so that they can also be used outside secured production environments. 

While IR still diffuse via intensified application in the manufacturing 
sector (‘automation deepening’),1 SR continuously capture new domains 
(‘automation broadening’). Not always, but often, SR are mobile. Some 
of them are fully automatic or even autonomous.2 Due to the importance 
of services in value creation and given the prevailing low level of 
automation in this field, future diffusion of SR is expected to have far- 
reaching implications for overall economic productivity. Due to the 
recent COVID-19 outbreak, this diffusion is experiencing a further boost 
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1 We use the term ‘automation deepening’ in the sense of intensified robot density, i.e. an increasing ratio of robots over employees. This is slightly different to 
Acemoglu and Restrepo (2018) who consider automation deepening as improvements of existing machinery.  
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to facilitate more physical distancing in healthcare, logistics, tourism 
and other spheres (Chen et al., 2020; Yang et al., 2020; Zeng et al., 
2020). 

In this paper we aim to obtain a comprehensive understanding ser
vice robotics and of the associated technologies enabling their evolution. 
To this end, we use patent data, the most complete description of 
technological development. In line with the recombinant growth of 
knowledge, patent texts typically are composed of many technologies 
(Youn et al., 2015). To decompose these complex documents into 
distinct technologies, we take advantage of the topic modeling tech
nique developed at the intersection of machine learning (ML) and nat
ural language processing (NLP). In particular, we use not just their short 
abstracts that are too superficial to get an understanding of technologies 
incorporated in the patent, but full patent descriptions – or more pre
cisely their non-technical summaries – in the robotic industry between 
1977 and 2017. Then we extract the latent topics capturing different 
technologies used in patents, analyze how important those topics are 
over time, and how they are related to each other through their 
co-occurrence in patents. 

In doing so we contribute to the existing literature in several ways. 
First, we apply modern methods of NLP and ML to exploit fine grained 
technological information included in unstructured textual data of pat
ent documents and identify the optimal number of topics using estab
lished criteria of perplexity, exclusivity and coherence. We end up with 
380 topics, carry out robustness checks for 190 topics and analyze how 
importance of those topics was changing over time. Second, we develop 
and apply a novel method for matching topics to SR based on an external 
text corpus provided by IFR that classifies SR technologies into 16 
application areas and 49 sub-areas. We use results of this exercise to 
classify topics to different SR areas. Third, based on the results of our 
textual analysis we construct a complex graph using cosine similarity 
between the topics and identifying significant edges in this network. 
This approach allows us to overcome the popular practice of analyzing 
topics in isolation. Instead, we can trace robotic transformation from a 
system perspective: apply metrics from graph theory, understand the 
mutual relationship of discovered topics, distinguish between central 
(enabling) and peripheral (application) topics, discover communities of 
hardware- and software-oriented topics, and how those were changing 
over time. It is important to stress that all these steps are independent 
from structured patent data (e.g., patent classes, concordances) and 
expert bias. The entire process from topic identification until matching 
to SR is data-driven and thus is unbiased by subjective expert judgment. 
Another important strength of our approach is that apart from repli
cating results that could have been achieved by applying existing met
rics (e.g. rising importance of medical robots, shift in popularity from 
hardware to software technologies), we are able to look inside the 
content of each particular topic (e.g. study technologies in surgery ro
botics) and their position in the complex space of knowledge comprised 
by robotic patents (e.g. how central they are and what topics they are 
connected to). 

The remainder of this paper is organized as follows. Section 2 pro
vides some background information on service robotics and topic 
modeling as a methodology to deal with patent data. Section 3 describes 
our data and methods. Section 4 presents the results. Section 5 discusses 
policy implications and Section 6 contains concluding remarks. 

2. Background 

2.1. The rise of service robotics 

Research on automation took off with the introduction of mass- 
production manufacturing methods. Since then, automated machines 
have been continuously transformed to today’s multipurpose industrial 
robots, i.e. robots that are able to adapt to a different application 
without alteration of the mechanical system. Until today, key drivers of 
robot diffusion have been automation deepening, i.e. an intensified use of 

robots in already automated industries (as e.g. the automotive and the 
electrical industry) or the increased penetration of robots in countries 
with hitherto still only few industries being automated. Driven by 
increased calculation power, a decline in hardware costs, the use of 
lighter materials and technological progress in complementary tech
nologies, such as cloud computing or artificial intelligence (AI), robot 
use continuously expands into new fields that until today have been 
characterized by almost complete absence of automation. 

However, most of research on robots in economics has still the focus 
on IR, mostly associated with labor market implications, task perspec
tive and addressing questions like the relationship between humans and 
machine being complementary or substitutive (e.g. Acemoglu and 
Restrepo (2019) or Graetz and Michaels (2018)), covering national 
perspectives (e.g. Dauth et al. (2018), Dauth et al. (2019) for Germany, 
Acemoglu et al. (2020) for France, Bessen et al. (2020) for the 
Netherlands). Agrawal et al. (2019) focus on prediction of labor market 
implications. A more historical dimension has been taken by Atack et al. 
(2019) or already Mansfield (1989), who analyze diffusion of robots in 
the US and Japan, and by Cheng et al. (2019) for China. Baldwin and 
Forlsid (2020) are among the few economists that also explicitly relate 
their work to services and robots in a globalized context. Autor and 
Dorn (2013) point out that it is crucial to distinguish between service 
and manufacturing occupations. However, explicitly addressing service 
robots is still rare, especially in the scientific literature. Recent robot 
patent analysis can be found by Analytics (2018) or EPO (2017), while 
Goeldner et al. (2015) are among the first who analyze patenting activity 
in a specific application field of SR, namely care. 

Modern robots are flexible, easy to operate and becoming able to 
navigate autonomously, even in unstructured environments. As a 
consequence, aside from using robots within clearly defined environ
ments such as factories, provision of services is increasingly becoming 
automated. The associated spread of robot application may be labeled as 
automation broadening providing potential for huge productivity gains 
from automation also beyond the manufacturing industries. 

According to the ISO classification, SR perform useful tasks for 
humans or equipment excluding industrial applications.3 SR are further 
differentiated into two types, namely those for private use that are 
operated by a lay person and those for professional use that are usually 
operated by a professional or properly trained operator. Due to the 
multitude of forms and structures as well as application areas of SR, it is 
not easy to delimit them from IR. Robots in logistics are a prominent 
example of such an unclear assignment. They are used in non- 
manufacturing environments, such as logistic centers, hospitals or 
warehouses but also to transport parts within factories.4 

The sketched technological transformation is being mirrored in the 
work of the IFR’s statistical department. It bridges robot classification 
from the ISO standard and robot markets by collecting data on world
wide robot investments, sales and stocks differentiated by IR and SR; the 
latter ones split up into robots for domestic and for professional use. For 
the heterogeneous domain of SR, the IFR provides a detailed technology 
breakdown covering 16 areas and 49 sub-areas (Table 1).5 In 2017 the 
most important markets of SR have been in the fields logistic systems, 
defense applications, public relation robots, field robots (especially 
milking), powered human exoskeletons and medical robots (IFR, 
2018b). According to IFR (2019), sales volumes of logistic robots have 
been the key driver of the SR markets also in 2018 followed by SR 

3 See ISO 8371:2012, 2.11 (private use; synonyms are personal or domestic 
use) and 2.13. (professional use).  

4 In 2018,7′700 units of logistic robots have been used in manufacturing 
while103′000 units have been utilized outside of factories, e.g. in warehouses, 
logistic centers and hospitals (IFR, 2019). 

5 The IFR provides information differentiating between IR and SR and cate
gorizing by application area, industrial branches, robot types or geographical 
region, and across time. 
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applied for inspection and demolition tasks or medical service, most of 
them being surgery robots. Considerable markets exist in field robotics 
(e.g. milking), and big potential is seen in the application of robots for 
plowing (agriculture). Another fast growing market is public relations 
robots which are used to provide information in public spaces or shops 
thereby also increasingly utilizing humanoid robots. SR for private use 
are dominated by sales of lawn mowers or floor- and window-cleaning 
robots, together with robotic toys and games. Technological advance
ments in robot mobility also drive the adoption of robots in the (still 
small) market for elderly and handicap assistance. Finally, SR for do
mestic use are reported separately. Their unit value is only a fraction of 
that of the many types used for professional use. Since they are produced 
for mass markets, they follow different pricing and marketing channels. 

The above summary illustrates the strong heterogeneity not only 
between IR and SR, but especially also within SR applications. They also 
differ with regard to unit price,6 life span7 and investment dynamics. 

While IFR reports reliable data on IR since 1993 onward, comparable 
time series are not available for SR. A central reason for this is incom
plete data due to the high fluctuation of providers in this dynamic 
market segment. Another problem is that the reported data is difficult to 
compare over time. Since the focus of our analysis is on the trans
formation of robot technology, data on absolute investments play only a 
minor role. Instead, the dynamics of the specific SR areas, their evolu
tion over time and their embedding within the robot technology space 
are important. In the following, we present the data on SR from IFR (IFR, 
2018b; 2019). Recent investment dynamics as well as forecasts for 
2019–2022 is approximated based on the IFR’s annual information on 
sales. visualizes this by setting the unit sales of the respective robot area 
in the year 2016 to one and showing the dynamics of factual and pre
dicted data. Fig. 1(a) reports IR investment dynamics beginning in 1993. 
Since it has a longer history and higher levels of installed units, their 
development is less dynamic and even stagnates in 2018. Investment 
dynamics of selected SR areas are displayed in Fig. 1(b) demonstrating 
SR growing many times faster than IR with the leading areas being lo
gistics and medicine. 

To better understand the future development of robotic technologies, 
we take a precise look at patenting as an early indicator of future in
vestment in the respective area. In robotics, there is a strong correlation 
between patenting and investments (Fig. 2). This correlation pattern 
also holds if one zooms into major geographical regions or robot ap
plications (like handling or soldering). It is also worthwhile to stress that 
robot patenting has been less susceptible than investment during and in 
the aftermath of the global financial crisis. These observations together 
with the aforementioned description of the transformation of robotic 
technologies is the starting point of the subsequent empirical analysis of 
patents with a special - though not exclusive – focus on emergent SR. 

2.2. Patent data analysis and use of topic modeling 

Patent data is widely considered as the most complete description of 
innovations. Patents cover a multitude of technical fields over a long 
period of time, and thus reflect structural changes in those technologies. 
There are specific criteria for an invention to be patented, which creates 
an objective standard as to what counts as an invention. Information on 
patent citations has been long used in economics as an indicator for 
patent quality (Trajtenberg, 1990), knowledge diffusion (Jaffe et al., 
1993) and its obsolescence (Jaffe and Trajtenberg, 1996). 

The use of patent citation data, however, has been always prob
lematic due to different practices of patent citation across patent offices 
with citation records being often incomplete (Michel and Bettels, 2001) 
and, most important for the reasoning of the paper at hand, the fact that 
patent examiners may have added extra citations not actually relevant 
for the inventions (see Alcácer and Gittelman (2006) for USPTO evi
dence). This bears the risk of distortions (expert bias) if one wants to 
analyze the development of technology over time. Furthermore, cita
tions are usually made on the basis of legal considerations rather than 
from a technological perspective. Besides, patent classifications change 
over time (Lafond and Kim, 2019) and are also hard to compare between 
different patent offices. All this is challenging the use of structured in
formation from the patent data, which is considered as the most 
comprehensive and accurate description on knowledge flows. What is 
most striking is that a large body of information unstructured textual 
description contained in patents) has been long disregarded in economic 
research. 

With the rising power of modern computers and availability of the 
great amount of data, however, our choice of instruments to extract 

Fig. 1. Investment dynamics for IR and for selected SR application areas. Data is normalized so that the investment level in 2016 equals one. In both panels the red 
line refers to the level of one. Data for IR dynamics (until 2018) based on IFR data base; data on SR dynamics based on IFR (2018b) and IFR (2019). Starting from 
2018 the investment data is predicted by IFR. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

6 Medical and underwater robots sometimes cost several hundred thousand 
USD (IFR, 2018b), while toy robots often only a few hundred USD 

7 For industrial robots, the average duration of use is about 11 years, un
derwater SR are utilized up to 10 years, while defense robots may have a life 
cycle of one single operation. 
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information from the textual data is rapidly growing. In this study we 
apply the so-called topic modeling (TM) approach to gain new insights 
about knowledge structure and dynamics in the robotic industry. TM is a 
clustering approach for textual data aimed to identify meaningful topics 
in text data, analyze trends in topics, (re)classify and annotate docu
ments (Blei, 2012; De Battisti et al., 2015). TM posits the idea that 
patents represent a combination of topics, where each topic is a prob
ability distribution over a fixed vocabulary. While patent texts are 
observed, the topics and their distributions are not and treated as latent 
variables. TM, thus, uncovers topics latent in a collection of patents and 
identifies which composition of them best accounts for each patent. The 
advantage of TM over, e.g., keyword analysis is that i) it allows words to 
have different meanings depending on their contexts; and ii) it is 
data-driven: one does not need to specify topics a priori but generates 
them from the data. More details on topic modeling related to our data 
set are presented and discussed in Section 3.3. 

TM has been recently applied to patent data in a number of studies. It 
has been used for patent (re)classification into product and technology 
sub-classes to later explore technological convergence and geography of 
innovation in the photovoltaic technology between the US states (Ven
ugopalan and Rai, 2015); for identification of emerging topics among 
triadic patent families (patented in the US, EU and Japan, Lee et al. 
(2015)); for detection of pioneering patents introducing new topics 
(Kaplan and Vakili, 2015); and for prediction trends in patent topics 
(Chen et al., 2017; Suominen et al., 2017). To the best of our knowledge, 

robotic industry has never been well studied with respect to the topics 
prevailing in the related patents.8 

Apart from patents, TM has been widely applied to other type of 
textual information. Many studies focus on scientific literature pub
lished either in a specific peer-reviewed journal across many themes (De 
Battisti et al., 2015; Griffith and Steyvers, 2004; Lüdering and Winker, 
2016; Savin and van den Bergh, 2021) or all economic articles stored in a 
given database (such as JSTOR, Ambrosino et al. (2018)). Furthermore, 
some studies focus specifically on literature published on the theme of 
information security (Chang, 2016) or bioinformatics (Liu et al., 2016). 
While some of these studies look on abstract only (like De Battisti et al. 
(2015)), others take full texts of the academic papers into analysis 
(Ambrosino et al., 2018). Another popular field of application for TM is 
news articles. Those can be either specialized financial news (taken, e.g., 
from Dow Jones Newswires Archive (Larsen and Thorsrud, 2019) or 
financial analyst reports (Huang et al., 2017), policy statements and 
website articles related to climate change (Farrell, 2016) or publications 
from social media like Twitter (see, e.g., Chae and Park (2018)). Finally, 
topic modeling has been recently applied to survey open-ended ques
tions (Roberts et al., 2014; Savin et al., 2021; 2020; Tvinnereim et al., 
2017). This illustrates the generality of the approach that can be applied 
to very different type of data in terms of size and content. 

3. Data and methodology 

3.1. The robotics patent data set 

We focus on robotics utility patents granted at the United States 
Patent and Trademark Office (USPTO), where we take the first filed 
patent of a family as representative.9 Our search strategy is based on 
having the truncated keyword *robot* in the title or abstract of the 
patent10 or being classified in one of the CPC classes concordant to the 

Fig. 2. Robotic patents granted at USPTO (1077–2016) and robot investment worldwide (1993–2016).  

Fig. 3. Length of patent non-technical summaries.  

8 The only exception perhaps is by Kim et al. (2016) focusing on a small 
fraction of robotic patents devoted to humanoid robots using less than 1000 
patents from USPTO and analyzing their titles and abstracts only.  

9 A family of patents refers to a group of patents that are issued in different 
countries for the same invention to obtain patent protection. We refrain from 
multiple counts of the same invention within the patent families since the size 
of the family does not affect the technical facets of the invention. If we were to 
include every family patent in the analysis, this would distort the text corpus in 
favor of the larger families.  
10 We initially applied the same search strategy on the full texts of patents at 

the USPTO database. However, when checking the result it became obvious that 
this strategy yielded too many false positives. 
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USPC class 901 (robots).11 This identification strategy resulted in22′927 
patents for the period 1977–2017 (see Fig. 2; black line for the evolution 
of patents over time). 

Patent texts consist of several parts which can be considered for 
textual analysis: title, abstract (typically less than 150 words), patent 
description and patent claim. While title and abstract are too short to get 
any comprehensive understanding of technologies incorporated in the 
patent, the claims concentrate on the differences of the technical novelty 
compared to the prior art. Claim texts are thus also with limits suitable to 
reflect the content of new technological knowledge contained in the 
patents. The patent description includes a non-technical summary as 
well as a technical description. For our analysis, we skip the latter and 
concentrate on the non-technical summary. This has the advantage that 
we avoid parts of text with too specific language and formula description 
that is less suitable for textual classification. On average, the length of 
the non-technical patent summary descriptions is 667 words (see Fig. 3 
for descriptive statistics on the data). In total, 15.3 million words are 
contained in non-technical summaries of our patent sample.12 

Besides, each patent includes some structured data including classi
fication to one or several patent classes. Existing concordances make it 
possible based on the evaluation of the CPC classes of patent specifica
tions to assign the patents to industrial classification, e.g. by means of 
NACE or ISIC concordance classifications Eurostat (2014). Similarly, 
patents can be assigned to technology fields (by means of WIPO tech
nology area concordance matrices WIPO (2008) with a strong bias to
wards manufacturing industries. Based on this information it is possible, 
for example, to visualize the development of medical instruments or the 
increasing importance of ICT components by exploiting structured in
formation of our robotic patent dataset (see Fig. A12 in A.2). Applying 
both concordances illustrates a shift over time from mechanical com
ponents to computers, an increase in medical instruments, a decline in 
machine tools while measuring, testing and navigation remains rather 
stable. We will later illustrate that our approach is capable to replicate 
this pattern. 

3.2. Patent data pre-processing 

The first step of our pre-processing pipeline is lemmatization, where 
inflected word forms are transformed to their dictionary form. Contrary 
to stemming the words (i.e. cutting words to their word stem, or root 
form), lemmatization is done by identifying the intended part of speech 
and meaning of a word in a sentence. We tried both approaches and 
while both of them have limitations, topic keywords generated after 
stemming are harder to interpret as they usually contain only parts of 
the words. Since multiple words with different meaning may be grouped 
into the same stem, using lemmatization allows us to preserve inter
pretability of our results. In particular, we use WordNetLemmatizer 
from the Natural Language Toolkit (NLTK) in the Python programming 
language. 

Second, after lemmatization, we replace acronyms by their original 
notation. This step is very important, as patents, similar to academic 
literature, contain a lot of acronyms introduced once at the beginning of 
patent description and used consistently in the document. Overall we 
find 1502 distinct acronyms, resulting in a total of18′628 replacements. 
By identifying and replacing those acronyms with their actual meaning 
we solve several problems:13 (i) we reduce the chance that the same 
acronym used in different documents and actually standing for different 
word combinations will be recognized by our approach as the same 
word. Thus, although we find 1502 acronyms, there are only 1028 
unique acronyms, meaning 474 acronyms have the same sequence of 
characters but a different meaning behind them. This implies that 
without replacing acronyms we would have biased our results by not 
distinguishing the terms with non-unique acronyms. (ii) we consider
ably increase our ability to understand the formed topics later on as 
instead of an acronym we can see the full expression. 

Third, this is followed by transforming all characters to lowercase 
and then removing stopwords (i.e. and, or, the) as well as all non- 
characters.14 This step is standard for NLP (see, e.g., Grün and Hornik 
(2011)). Note that we do that after replacing acronyms and lemmatizing 
words to minimize the amount of information that may be lost (e.g., 

Fig. 4. Data cleaning procedure .  

11 See https://www.uspto.gov/web/patents/classification/cpc/pdf/us901toc 
pc.pdf. A full list of concordant CPC classes can be found at: https://www. 
uspto.gov/web/patents/classification/cpc/html/us901tocpc.html##statTable.  
12 We also conducted our analysis on the full descriptions (both non-technical 

and technical description) as well as the technical descriptions only. With the 
same number of topics chosen the results are fairly similar concerning the topic 
content and are available upon request. However, as technical summaries 
contain more formulas and other scientific notation, by concentrating solely on 
non-technical summaries we avoid supplying our NLP analysis with non-textual 
data that is hard to clean automatically. 

13 The replacement is done by an n-gram with the words being connected in 
one with ”_” symbol.  
14 In particular, the NLTK’s list of English stopwords has been used extended 

with a set of custom stopwords we created while testing different LDA models 
(see Section B.1 for more details. 
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short acronym of two letters only).15 

Fourth, we create bi-grams out of words commonly occurring 
together. Bi-grams are created using gensim phrase module in Python. 
For each bi-gram, the normalized pointwise mutual information (NMPI) 
score has been applied (see Bouma (2009)). In simple words, the NMPI 
score measures how often any two words appear together versus how 
often they appear in text separately and forms out of those appearing 
predominantly together a bi-gram with a ”_” symbol (see Appendix B for 
the exact formula of the score and its explanation.). Specifically, a 0.5 
threshold value to form bi-grams is used. The flow of the pre-processing 
steps on our textual data is summarized in Fig. 4. 

3.3. Topic modeling 

While there have been many algorithms developed for topic 
modeling (for a recent overview see Liu et al. (2016)), in the following 
we concentrate on the most commonly used approach known as latent 
Dirichlet allocation (LDA, Blei et al. (2003)). LDA as a probabilistic 
modeling approach assumes that each word in a document is generated 
in two step process. First, assuming that each document has its own topic 
distribution, a topic is randomly drawn from that distribution (the 
Dirichlet distribution). Second, assuming that each topic has its own 
word distribution, a word is randomly drawn from this word distribution 
of the topic selected in the first step. A document is essentially a result of 
multiple repetitions of the statistical model consisting of those two steps 
the generative process defined by a joint probability distribution over 
the observed (documents and words) and hidden (topics) variables. This 
statistical model reflects the intuition that documents exhibit multiple 
topics, where each document exhibits the topics in different proportion. 
The LDA algorithm discovers the topic distribution for each document 
and the word distribution of each topic iteratively, by fitting this 
two-step procedure to the observed documents until it finds the best set 
of variables that describe the topic and word distributions. Effectively, 
LDA as a Bayesian model computes the conditional distribution of the 
hidden topics given observed data identifying the posterior distribution 
of the latent topics in a collection of documents. 

Similar to cluster and principal component analysis, LDA reduces the 
dimensionality of linguistic data from words to topics based on the co- 
location of words in a collection of documents to infer the underlying 
topics in those texts and the weight of each topic in each individual 
document. According to Blei (2012, p. 79): “This can be thought of as 
‘reversing’ the generative process - what is the hidden structure that 
likely generated the observed collection”. For a more formal description 
of LDA, see Appendix B. 

The number of topics in the model affects the interpretability of its 
results. Setting the number too low can result in topics that are too broad 
and ambiguous. Conversely, setting the number too high may introduce 
uninterpretable topics that pick out idiosyncratic word combinations 
(Griffith and Steyvers, 2004). While one can follow computational lin
guistic literature and calculate perplexity score (fitness) of the LDA 
model based on different numbers of topics (Blei et al., 2003), most of 
the time this number is chosen ad hoc and relatively small to maintain 
interpretability of results. It is by all means easier both to label and 
overview 10 and not 100 topics. 

In our study we will choose the number of topics that aims to opti
mize not just perplexity score of the model, but also semantic coherence 
and exclusivity of the topics. In simple words, the perplexity score is 
goodness of the LDA model trained on one part of the data to predict the 
word distribution on the other part of it. Semantic coherence quantifies 

the extent to which frequent words from the same topic tend to appear in 
the same patents. Exclusivity analyzes whether popular words from one 
topic have low likelihood in all other topics. Thus, we follow Roberts 
et al. (2014) in arguing that semantically interpretable topics should 
consist of words that tend to co-occur within documents, and that their 
top keywords are unlikely to overlap with keywords from other topics. 
More details on the different metrics used to determine the optimal 
number of topics are provided in Appendix B. 

Applying the topic modeling approach on the patent data results in 
two matrices. The first is the matrix of probabilities observing a word 
given the topic, while the second is the matrix of topic prevalences in 
each of the documents. The information in these two matrices is the 
basis for labeling topics, visualizing them and conducting further anal
ysis such as matching the formed topics to existing SR classification and 
analyzing mutual interdependence between topics by means of network 
analysis. These two steps of analysis we address in the following sub
sections while subsections 4.2 and 4.3 provide the corresponding results. 

To illustrate the content of each topic and evolution of their impor
tance over time, we will henceforth use word clouds and diffusion curves. 
Word clouds represent the 30 most frequent words given the topic with 
font size capturing how likely these words are given the topic. The 
lightness of the color in turn reflects how exclusive this word is 
compared to all other topics: the lighter the color, the more exclusive is 
the word. Diffusion curves represent the stage of technology adoption 
captured by our topics in the corpus of robotic patents over the period 
1977–2017. To produce such diffusion curves, we follow Lenz and 
Winker (2020) in quantifying the probability that a given topic appears 
in the corpus of patent texts for each year ensuring that that these 
probabilities for any period sum up to one. In addition, we smooth the 
curves by estimating such probabilities not just for a single year but for a 
five-year time interval around a given period (see Appendix B for more 
details). Finally, to ease reading these plots, we classify the curves into 
’rising’, ’falling’ or ’in-between’ with green, red and blue color, 
respectively, depending whether the topic between 1977 and 2017 was 
predominantly rising or falling in its prevalence, or none of the two (see 
Appendix B for details). 

3.4. Topic matching 

While methods to form topic models have seen a rapid development 
over the last two decades, labeling and interpreting topics remains 
largely an ad hoc procedure. Most studies try to provide a concise label 
consisting of frequent and exclusive words summarizing the essence of 
the topic. Apart from looking on single terms associated with the topics, 
some papers in addition take illustrative documents where the preva
lence16 of respective topics is highest to demonstrate how topic labels fit 
in the context (see Roberts et al. (2014); Savin et al. (2020); Tvinnereim 
and Fløttum (2015)). 

In a recent survey, Boyd-Graber et al. (2017) distinguish between 
labeling methods that only use internal information from the topic 
model against those that also use external knowledge sources. Labeling 
with exclusively internal information looks for phrases with high topic 
prevalence that well summarize the documents making them good 
candidates for labels. Labeling with external knowledge sources either 
aims to weight words in a topic as prospective labels putting more 
weight on words that are hypernyms17 (which is assessed through 
external word library) and that co-occur often with other words from 
that topic, or try to retrieve labels of the documents underlying the 
topics (if available), and form topics in line with those labels. Applica
tions of such automatic topic labeling are very scarce (see e.g. Newman 

15 Note that we decided against applying term-frequency inverse document 
frequency filter, as we could delete too many relevant words necessary later for 
our topic matching. Since we used for our simulations the high-performance 
computing cluster BwUniCluster https://wiki.bwhpc.de/e/Category:BwUniCl 
uster_2.0, this was feasible in terms of computational time. 

16 Related to our patent data set, topic prevalence refers to the degree (be
tween 0 and 1) to which a patent document belongs to the respective topic.  
17 Hypernyms are words which meaning includes a group of other words, e.g. 

related to the word dog a hypernym would be pet. 
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et al. (2010)) demonstrating a large room for improvement in methods 
that can objectively label topics or match them to some external 
classification. 

One of the major contributions of the paper at hand is the develop
ment of a matching algorithm that allows for automatic identification of 
SR topics, i.e. independent of subjective judgment (i.e. domain knowl
edge of experts), specifically at the level of SR sub-areas in Table 1. To 
the best of our knowledge, we are the first to propose such a method for 
topic assignment to a specific technology field based on patent data. 

For this, identification of an appropriate reference text distinguish
ing between SR areas based on textual information from the topics 
resulting from LDA is essential. In our case we rely on textual description 
of SR technologies as provided by the IFR SR report 2018 (IFR, 2018b, 
chap 3, pp. 48–270) containing a detailed textual description of SR 
technologies at the sub-area level).18 

More precisely, we have two different textual sources relevant for 

matching, one being the lists of words associated to each topic with 
different probabilities19 and the other one being the descriptions of SR 
areas from IFR, which serve as reference text. Then we look for words 
that appear both, in the topics and in the SR description, labeling them 
as ’candidate words’. Based on these words we calculate for each topic a 
’topic matching score’ for each of the existing 49 SR sub-areas capturing 
the extent to which they overlap. These topic matching scores tend to be 
higher if words from a given topic have a higher frequency (i.e. proba
bility belonging to this topic) and exclusivity (i.e. low probability of 
appearing in any other generated topics) and, symmetrically, appear 
more often in the description of the given SR sub-area and less often in 
other SR sub-areas. Furthermore, since we use only SR descriptions in 
the reference texts (and not for example, descriptions of other techno
logical fields such as IR and beyond, we additionally reduce the topic 
matching scores for those words, which are more common in the 

Fig. 5. Perplexity, coherence and exclusivity for LDA models with different number of topics.  

Fig. 6. Deriving a threshold value for topic matching. Note: The red line shows how many topics are matched in total (i.e. including the same topic being matched to 
two or more SR sub-areas) given the threshold value, while the black one shows how many topics are matched uniquely to one SR sub-area as listed in Table 1. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

18 We also tried to apply the matching procedure on the level of 16 SR areas. 
We prefer, however, to look on the less aggregated classification level to 
attribute topics more precisely. Knowing the SR sub-area, it is straightforward 
to identify the corresponding area. 

19 As was mentioned earlier, the main output of LDA is a matrix of size the 
number of topics times the number of words in the corpus, where each word is 
attributed to every topic with different probabilities. 
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scientific literature of contemporary American English.20 As a result, 
each topic belongs to each SR sub-area with a different matching 
score.21 In the final step, we derive a threshold value for these matching 

scores that allows us to uniquely classify the largest number of topics to 
SR sub-areas. This last step is data-driven, i.e. instead of choosing the 
threshold externally we let the data decide what should be the value of 
the matching score to assign a topic to any SR sub-area. In Appendix B 
we explain all steps of the matching algorithm in detail, while Section 4 
presents the results of this approach. 

3.5. Network space of topics 

Having classified the patent descriptions into topics, we can assess to 
what extent those topics are related to each other, i.e. how often these 
topics appear in the same patent descriptions. The underlying assump
tion is that the more the knowledge on technologies captured by the two 
topics are used jointly in the same patents, the more they are interde
pendent. An example can be navigation of autonomous guided vehicles 
based on the method of scanning the external environment. Capturing 
these relations between topics is important as it helps to look on the 
topics not merely in isolation which is not adequate to understand 
distinct technologies and to arrive at an overall picture of the knowledge 
space underlying the robotics industry. Therefore, the approach pre
sented below is the second methodological contribution of the present 
paper to the literature applying topic modeling to patent data. 

For this purpose, we define two topics as connected based on their 
cosine similarity, i.e. co-occurrence of those topics in the same patents 
(see Appendix B for a formal description of the measure). Measuring this 
similarity between any pair of topics we obtain a symmetric matrix with 
ones on the main diagonal as cosine similarity of two identical vectors is 
one, and all other values bounded in [0,1). These values capture the 
strength of relation between any pair of topics and can be interpreted as 
corresponding edge weights in an undirected graph between these 
topics. In particular, a high weight implies that the two topics appear in 
many patents with a high prevalence, and they are strongly linked. Since 
one patent can contain small parts of text belonging to many topics, we 
get a virtually fully connected graph, where many edges have relatively 
low weight. To simplify its analysis and visualization, we assess signif
icance of each particular edge in this weighted graph. To do so, we 
follow Saracco et al. (2015) in constructing an appropriate null model – 
its randomly generated counterpart – which displays on average the 
same degree distribution (diversification of patents) and the same 
ubiquity (weight distribution of each topic) 1000 times.22 Comparing 
the empirically observed weighted graph with their randomly generated 
counterparts we preserve only those links which weight surpasses the 
95% threshold, i.e. they fall in the 5% of most outstanding edge weights 
which could have been observed given the underlying data. The 5% 
threshold is taken as most conventional significance level observed in 
the empirical literature. Note at this point that by deleting 95% of links 
and transforming our network from weighted to unweighted one, we 
reduce the density of our topic networks to 0.05, i.e. only 5% of all 
possible links are present in our network. This, however, does not pre
clude us from analyzing other important characteristics of the topic 
network such as number of components capturing how many topics are 
isolated from other topics or network centrality accounting for the con
centration of edges on few topics (degree centralization) and the 
dependence on topics that connect many other topics (betweenness 
centralization) proposed by Freeman (1979). It is important to 
remember, however, that the absence of an edge between any pair of 
topics in our henceforth analysis does not imply that they never appear 
together in any patent, but that the extent to which they co-occur does 
not meet the bar to be considered as significant. 

Table 1 
SR applications: 16 areas (bold) and their 49 sub-areas as defined in IFR (2018b).  

Service Robotics 

for private use for professional use 

Robots for domestic task Field robotics 
Robot companions, assistants, 

humanoids 
Agriculture 

Vacuuming, floor cleaning Milking robots and livestock robotics 
Window cleaning Mining systems 
Lawn-mowing Space robots 
Pool cleaning   

Professional cleaning 
Entertainment robots Floor cleaning 
Toys and hobby robots Window and wall cleaning (incl. wall-climbing 

robots) 
Multimedia robots Tank, tube and pipe cleaning 
Education and research Hull cleaning (aircraft, vehicles, ships etc.)  

Other cleaning tasks 
Elderly and handicap 

assistance  
Robotized wheelchairs Construction and demolition 
Personal aids and assistive 

devices 
Nuclear demolition and dismantling  

Building construction 
Home security and 

surveillance 
Heavy/civil construction 

Home security and surveillance Other construction systems (road construction)  
Logistic systems  
Automated Guided Vehicles (AGVs) in 
manufacturing environments  
AGVs in non-manufacturing environments 
(indoor)  
Cargo handling, outdoor logistics  
Personal transportation  
Inspection and maintenance systems  
Facilities and plants  
Tank, tubes, pipes and sewers  
Other inspection systems (inspection robots for 
nuclear plants)  
Medical robotics  
Diagnostic systems  
Robot-assisted surgery and therapy  
Rehabilitation systems  
Other medical robots  
Rescue and security applications  
Fire- and disaster-fighting robots  
Surveillance/security robots  
Other surveillance and security robots  
Defense applications  
Demining  
Unmanned aerial vehicles (defense applications)  
Unmanned ground-based vehicles  
Unmanned Underwater Systems  
Underwater systems (civil / general use)  
Underwater systems (civil / general use)  
Powered human exoskeletons  
Powered human exoskeletons  
Mobile platforms in general use  
Mobile platforms in general use  
Public relations and joy rides  
Hotel and restaurant  
Guidance  
Marketing  
Robot joy rides  

20 To this end, the database composed by Mark Davies (https://www.wordfre 
quency.info/) has been used.  
21 Logically, if there was no candidate word appearing in the topic with a 

positive probability and in the specific SR sub-area, the corresponding matching 
score equals zero. 

22 The same approach for testing link significance has been applied, among 
others, by Napolitano et al. (2018) and Pugliese et al. (2019). 
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Table 2 
Topics from LDA model with K=380 matched to SR sub-areas.  

Topic Topic terms (30 most relevant) Matched SR sub-area  

Field Robotics  

377 platen, flat, abrasive, crop, agricultural, harvest, harvester, tractor, abrade, lapping, tree, harvesting, label, lap, fertilizer, 
farm, abrading, granite, fruit, agriculture, barcode_label, edging, farmer, queue_manager, floating_platen, hieroglyph, 
flat_surfaced, flatness, edger, contractor, 

Agriculture 

86 teat_cup, milk, animal, milking, teat, cow, milk_animal, harness, milking_animal, teat_animal, wire_harness, 
milking_parlor, udder, animal_milk, luggage, fodder, milk_parlor, udder_animal, disinfect, slotted, hind_leg, animal_udder, 
jumper, foremilking, occupation, beveling, facet, formboard, compartment, milker, 

Milking robots and livestock robotics 

330 turret, conversion, last_teat, stepper_motor, light_curtain, deactivation_threshold, dairy_animal, strain_relief, 
umbilical_cord, milking, averaging_period, duration, garage_door, exploration, mending, 
position_sensor_print_circuit_board, stairstep, intensifier, nonlinear, recirculating, nonlinear_exploration, pause, 
unprogrammed, bipedalism, historical, dependence, gunshot, sclera, touchup, obstruction, 

Milking robots and livestock robotics 

113 shift, traction, bucket, orbit, momentum, recite_claim, zmp, spacecraft, shifting, leg_hopping, upstanding, hst, midpoint, 
circumscribed, ferrule, stable, foamed_seal, insole, forwardly, shiftable, outwardly_shifts, mule, virus_strain, 
infectious_bacterial, wearable_assistive, backwardly_shift, inscribed_cylinder, outwardly_flexed, backwardly_flex, 
time_of_flight_diffraction, 

Space robots 

37 seed, sucker, hood, mat, baseplate, nutrient, tissue_explants, soil, seedling, grit, firefighting, curved_backplane, handheld, 
greenhouse, plant, loaded_filament, podium, seeding, tissue_explant, mature_plant, debridement, chimney, planting, leaf, 
sucker_revolving, harvest_crop, public_speaking, germination, presentment, suspendably_translatable, 

Agriculture 

260 course, unmanned_vehicle, truck, unmanned_dump, dump, dump_truck, topographical, foremilk, earth_sand, wherefore, 
partial, contraband, haul, travel, survey, anonymous, wherewith, twice_diffracted, loader, presence_contraband, conflict, 
wait, manned, loading, idea_underlie, quarry, dumping, site, topological_map, lashing, 

Mining systems  

Medical robotics  
83 fiducial, jog_feed, canister, stereotactic, cockpit, transformable_toy, toy_doll, craft, skull, shin, neurosurgery, preoperative, 

astronaut, fiducials, fixable, sanding, sand, neurosurgical, anatomical, tiptoe, clinch_nut, aquatic, predrilled_hole, platter, 
satellite_platter, mri, intraoperative, raster, microsurgery, intracranial, 

Robot-assisted surgery and therapy 

6 ↑  catheter, elongated, distal_end, medical, sled, elongate, handle, proximal_end, sheath, disposable, catheter_sheath, 
sterile_barrier, nose_cone, sterile, steerable_catheter, patient, ablation, knob, ablation_catheter, introducer, glass_crucible, 
sterility, catheter_introducer, electrophysiology_catheter, remote, introducer_sheath, mapping_ablation, electrophysiology, 
remotely, effective, 

Robot-assisted surgery and therapy 

191↑  surgical, surgeon, surgical_instrument, surgery, minimally_invasive, surgical_procedure, surgical_site, incision, patient, 
medical, instrument, medical_procedure, endoscope, entry, intuitive_surgical, robotic, console, system, tissue, procedure, 
vinci_surgical, trauma, endoscopic, hospital_stay, perform, inc_sunnyvale, robotically, stereoscopic, orthopedic, recovery, 

Robot-assisted surgery and therapy 

280 ↑  tissue, organ, accessory, forceps, endoscope, laparoscopic, capsule, endoscopic, trocar, laparoscope, blood_vessel, snake, 
laparoscopic_surgery, endoscopy, laparoscopy, minimally_invasive_surgical, abdomen, abdominal_cavity, continuum, 
vivo, abdominal, cavity, terminus, minimally_invasive, intracorporeal, cannula, connected, discomfort, clip_applier, 
invasive_surgical, 

Robot-assisted surgery and therapy 

167 radiation, tumor, dose, patient, diagnostic, couch, ray, therapeutic, lesion, imaging, radiation_therapy, cancer, 
radiotherapy, therapeutic_radiation, treatment, therapy, ambulatory, sighting, radiosurgery, physician, biopsy, 
compute_tomography, magnetic_resonance, shooter, rays, computed_tomography, collimator, medical, proton, linac, 

Robot-assisted surgery and therapy 

311 ↑  simulation, user, training, simulate, simulated, feedback, simulator, physical, haptic, virtual_reality, graphical, computer, 
mouse, interaction, joystick, trainee, intuitive, real, feel, sensation, train, interface, realistic, interact, amusement, 
haptic_feedback, experience, environment, graphic, assistive, 

Rehabilitation systems 

308 ↑  prosthetic, prosthesis, ankle, artificial, wearer, amputee, knee, hip, foot, gait, flexion, limb, residual_limb, powered, 
muscle, prosthetic_knee, toe, automatic_guided_vehicle, extremity, ankle_joint, amputation, flexion_extension, 
prosthetic_orthotic, damper, myoelectric, orthosis, heel, knee_joint, thigh, heel_strike, 

Rehabilitation systems  

Robots for domestic task  
130 ↑  rack, boundary, mower, lawnmower, lawn, grass, mow, mowing, saw_blade, helical_spring, mow_lawn, 

robotic_welding_assembly_device, root, geographic, traversal_launch, urls, mowable, traversal, substage_await, 
nursery_school, steeple, cubic, substage, substage_empty, photo_interrupter, rotor_steeple, young_child, unburned, 
angioplastic, playmate, 

Lawn-mowing 

284 clean, dry, wash, cleaning, rinse, bath, wet, washing, drying, chemical, foreign, residue, cleaned, solution, jet, liquid, dirty, 
pellicle_paste, impurity, immerse, remove, particle, towel, ipa, spray, diced, mop, dip, contaminate, water, 

Vacuuming, floor cleaning  

Professional cleaning  
7 pipe, piping, fuel_tank, pip, trough, circumferential, wiring_piping, diameter, worm_gear, minitube, tobacco_roll, 

circumferentially, internal_finned, crest, inner, tooth_stump, gauge, axial_direction, butt, lapse_predicted, pipes, 
levelling_bench, circumference, minitubes, society_for_biomolecular_screening, swedish_specification, fueling_pistol, 
supportive, readable, pitting, 

Tank, tubes, pipes and sewers 

218 water, tank, rock, bay, submerged, sediment, submerge, reverse_osmosis, purified_water, scavenge, ingredient, oht, pump, 
petroleum, chemical_mechanical_polish, underground, sink, borehole, purification, kitchen, buoyancy, rice, intrabay, liter, 
interbay, mpi_medium, cooking, immerse, purify, ballast, 

Tank, tubes, pipes and sewers 

223 housing, seal, sealing, bellow, inlet, outlet, opening, tight, leak, lip, sealed, interior, inner, evacuation, gland, venting, 
bellows, sealingly, diaphragm, evacuate, outer, enclose, annular, house, manifold, reactive_ion_etch_mode, rings, vent, 
inlet_outlet, closed, 

Tank, tubes, pipes and sewers  

Logistic systems  
144 ↑  shelf, automated, warehouse, inventory, automate, sort, mail, retail, shipping, fulfillment, facility, forklift, sorting, order, 

pallet, good, aisle, deadlock, retailer, logistics, management, tote, shipment, acceleration_slowdown, shelve, distribution, 
sale, depot, stock_keeping_unit, shelving, 

Automated Guided Vehicles (AGVs) in 
manufacturing environments  

Defense applications  
327 ↑  group, mission, game, weapon, surveillance, unmanned, lawn_mower, military, player, terrain, team, swarm, waist, 

soldier, helicopter, enemy, threat, reconnaissance, tactical, mobility, ugvs, squad, unmanned_air_vehicle, fly, sport, 
combat, ground, launch, drone, opponent, 

Unmanned ground-based vehicles  

Construction and demolition  
353 lay, fire, bake, explosive, containment, chill, supercritical, branch, laying, underground_pipeline, branch_pipe, detonation, 

detonate, baking, vernier, firing, rain_maker, wildfire, fire_fighter, buckle_arrestor, blasting_cap, photoresist, 
electric_discharge_machining, sewer, baked, disruption, sige, fire_fight, overlap_vernier, bake_chill, 

Heavy/civil construction 

Note: For each topic, its top 30 most relevant (i.e. with high likelihood and exclusivity, see equation (8) for formal definition) words are displayed. Up-arrows indicate 
that the diffusion of the respective topic follows a positive trend, vice versa for down-arrow. Topics within an area are sorted by their topic matching scores. 
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4. Results 

4.1. Number of topics 

As described in Section 3.3, we proceed with pre-processed texts by 
computing LDA models and plotting the corresponding scores on per
plexity, coherence and exclusivity for different numbers of topics 
ranging from 10 to 500 with an interval of 10 (Fig. 5). The best model 
should have the lowest perplexity score (i.e. lowest prediction error), 
and the highest coherence and exclusivity. As one can see, the perplexity 
score improves with the number of topics, but the improvement is 
marginally decreasing. The same pattern is observed for the exclusivity, 
while coherence tends to aggravate for the growing number of topics. 
Choosing an optimal number of topics K that would maximize all three 
dimensions in such circumstances is not possible. An additional fourth 
criterion for choosing K is model complexity implying that with more 
topics it becomes increasingly difficult to overview and interpret them. 
For that reason, observing that after approx. 300 topics the three se
lection criteria start to change much slower, we chose K to be equal to 
380 topics as for this number we observe a (small) local optimium both 
for perplexity and exclusivity. In addition, to demonstrate robustness of 
our results we henceforth report in parallel the topic model with 190 
topics, i.e. exactly half of K. We chose the alternative value to be smaller 
to increase readability of the results, as charts for networks, diffusion 
curves and word clouds tend to be simpler for smaller K. 

4.2. Matching topics to SR 

Applying our matching procedure described in Section 3.4 and 
Appendix B on the constructed topics, we generate a distribution of topic 
matching scores ranging for the case of 380 topics between 0 (i.e. no 
candidate word overlapping between IFR reference texts on SR and our 
topics was identified) and 5.62. The largest topic matching score has 
been obtained for topic 377 matched with the agriculture IFR sub-area. 
We define the threshold value maximizing the total number of uniquely 
matched topics as 1.366 (see right plot in Fig. 6a). This is illustrated with 
the intersection of the black line showing the number of topics classified 
to only one SR sub-area and the red line demonstrating total number of 
topic matches to SR sub-areas including those cases where the same 
topic has been matched to two, three or more SR sub-areas. Taking a 
threshold value below 1.366 will result in topics simultaneously 
matched to more than one SR sub-area, while a threshold value above 
1.366 would result in fewer uniquely matched topics having higher 
overlap with IFR SR descriptions. This threshold value resulted in 21 out 
of 380 topics matched to SR (see Table 3 for details on which topics have 
been matched to which SR sub-areas). Note that for 190 topics the topic 
matching scores vary between 0 and 5.59 (Fig. 6b). The largest matching 
score is again from the sub-area of agriculture for topic 105. The 
threshold value maximizing the number of uniquely matched topics is 
1.280. This results in 20 matched topics (see Table C5 in Appendix C). 
Thus, the results of applying the matching procedure for 190 and 380 
topics look very similar supporting the robustness of our results for 
different K. 

The left panels of Figs. 7 and 8 show word clouds we matched to 
service robotics among the 380 and 190 topics, respectivelyFigure C18 
and C24.23 For example, for model with 380 topics, topic 191 has words 
‘surgical’ and ‘surgeon’ both very frequent and exclusive, while the 
words ‘medical’ and ‘invasive’ are neither as frequent nor as exclusive. 
The resulting diffusion curves can be found in Figure C19 and 
C25Appendix C for the whole set of topics generated, while in right 
panels of Figs. 7 and 8 we show diffusion curves for SR topics among the 
380 and 190 topics, respectively. Inspecting and comparing the 

generated word clouds and diffusion curves for the LDA models with 190 
and 380 topics, two observations arise. First, the generated topics 
matched to SR in the two LDA models tend to strongly overlap. One 
example is the pair of topics with largest topic matching scores on 
milking robots (topics 377/380 and 105/19024). Other good examples 
are topics on vacuuming and floor cleaning robots (284/380 and 6/ 
190), robot assisted surgery (191/380 and 110/190) or tanks, tubes and 
pipes (7/380 and 134/190). Second, the topics matched to SR tend to be 
rising topics. Among 380 topics, their chances to be classified as rising 
are twice higher (38%, or 8 out of 21 topics) than for all topics con
structed on average (≈17%, or 63 out of 380 topics). For example, 
almost all of the topics matched to medicine (6, 191, 280, 308 and 311) 
have experienced a fast growth in the last ten years, while in the 1980s 
they were very small. There is also no falling topic among SR topics 
compared to 11% (41 out of 380) among all topics constructed. For 190 
topics and twenty of them being matched to SR, the situation is similar 
with 40% (8 out of 20) vs. 20% (38 out of 190) for rising topics, and 5% 
(1 out of 20 matched SR) vs. 18% (34 out of all 190 topics) for falling 
topics. 

4.3. Network perspective 

The network generated for the whole period of 41 years (1977–2017) 
as well as three equally distant time windows of five years length are 
presented in Figs. 9 and 10.25 As it was explained in Section 3.5, the 
density of our networks at any period by construction is 5%, while the 
absence of an edge between any pair of topics in our graph does not 
imply that those topics never appear together in our patent texts but that 
the frequency and prevalence with which they co-occur is not high 
enough to be considered as significant. The topics belonging simulta
neously to 10% most central topics in terms of degree centrality (i.e. 
number of edges) and betweenness centrality (i.e. how often these topics 
are located on the shortest paths connecting any random pair of nodes in 
the graph) are marked with squared node borders. One can conclude 
that these topics represent some general technologies in the field of 
robotics appearing in many different patents and connecting different 
parts of the knowledge space in robotics together. In this sense, these can 
be compared to so called ‘general purpose technologies’ (see Korzinov 
and Savin (2018) for a recent discussion) that just like electricity or 
steam engine ’enable’ development of many new inventions. Word 

Table 3 
Metrics for networks of topics .   

1977- 
2017 

1981- 
1985 

1996- 
2000 

2011- 
2015 

LDA model with 380 topics 
Number of components 51 2 4 15 
Clustering 0.41 0.26 0.32 0.36 
Mean path length in LCC 95.46 4.45 8.55 29.92 
Modularity 0.28 0.27 0.28 0.29 
Degree centralization 0.31 0.35 0.28 0.35 
Betweenness 

centralization 
0.06 0.11 0.08 0.11 

LDA model with 190 topics 
Number of components 22 3 7 16 
Clustering 0.37 0.29 0.31 0.33 
Mean path length in LCC 42.09 6.72 14.55 31.26 
Modularity 0.33 0.34 0.35 0.36 
Degree centralization 0.27 0.18 0.18 0.24 
Betweenness 

centralization 
0.13 0.10 0.08 0.14  

23 Word clouds for the whole set of topics generated in both LDA models can 
be found in Appendix C. 

24 Henceforth, for brevity reasons, we will indicate with ’/K’ the LDA model 
the topic index belongs to. 
25 Since in the latter we take into account only particular sub-periods, pres

ence of edges between topics can vary from period to period under 
consideration. 
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clouds of these topics are presented in Figs. C16 and C22 in Appendix C. 
Their visual inspection corroborates our intuition: these topics often 
deal with processing information, positioning and orientating in space, 
while words in the word clouds having dark font imply that they have a 
relatively low exclusivity. 

In contrast, the isolated topics (or so-called ’isolates’) represent parts 
of knowledge infrequently appearing together with other topics, having 
predominantly exclusive terms in their word clouds26 and capturing 
what we call specialized application areas of robotic technologies. Take 
as an example topics 37 and 377 from the LDA model with 380 topics. 
Both are matched to SR (sub-area agriculture) and are isolates in the 

network constructed for the whole period of 1977–2017. These topics 
are about technologies around seeding and harvesting (crops) using 
robots. These areas of application as such are quite specific and do not 
come often neither with general topics we mentioned earlier nor with 
other topics like those matched to SR or identified as isolates. 

The majority of topics in our graphs are naturally in between these 
two extremes (most central topics and isolates). Identifying few edges 
for them we can see what other areas of robotic knowledge they are 
closest to, which can help in their interpretation. E.g. topic 191 
(matched to SR sub-area robot-assisted surgery and therapy) in the LDA 
model for 380 topics is connected to topics 338 (containing many terms 
on telesurgery), 9 (addressing endoscopy and filtering) and 96 (manip
ulation and teleoperated machines). None of the latter three has been 
matched to SR via our matching approach. Thus, the network perspec
tive gives a broader picture on what kind of technologies tend to be 

Fig. 7. 21 SR topics in the LDA model with 380 topics.  

Fig. 8. 20 SR topics in the LDA model with 190 topics.  

26 Word clouds of these topics are presented in Figs. C17 and C23 in the 
Appendix C. 
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Fig. 9. Networks of topics for the period 1977–2017. Note: The 
size of the nodes represents the percent of the corpus of patents 
texts explained by the topic, while the presence of the edge 
captures the fact that the two topics tend to co-occur with large 
prevalence in many patent documents so that the chance to 
observe them together in a randomized null model is below 5% 
(see Section 3.5). Topics belonging to 10% most central in terms 
of degree and betweenness centrality are highlighted with 
squared frames, while topics matched to SR - with red color. 
Finally, cyan and magenta color are used to highlight the two 
clusters of topics on software and hardware, respectively. (For 
interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.)   
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Fig. 10. Networks of topics for three time windows: 1981–1985, 1996–2000 and 2011–2015 Note: The size of the nodes represents the percent of the corpus of 
patents texts explained by the topic, while the presence of the edge captures the fact that the two topics tend to co-occur with large prevalence in many patent 
documents so that the chance to observe them together in a randomized null model is below 5% (see Section 3.5). Topics belonging to 10% most central in terms of 
degree and betweenness centrality are highlighted with squared frames, while topics matched to SR - with red color. Finally, cyan and magenta color are used to 
highlight the two clusters of topics on software and hardware, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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recombined with each other in different patents to further extend the 
knowledge frontier. 

Finally, to identify communities of nodes forming strong inter
connected clusters in our graphs of topics, we apply the algorithm 
proposed by Newman (2006) based on leading eigenvector of the 
community matrix. This allows us to identify two large communities of 
nodes dominating the networks.27 Looking closer on the word clouds of 
topics forming those two communities, one can quickly realize that these 
can be interpreted as clusters of technologies concentrated around either 
hardware technologies (e.g. body, movement, energy), or software 
technologies (e.g. receiving, processing and storing information). See 
word clouds with most central topics from each of the two cluster for 
both LDA models inFigure C14Figure C15Figure C20 and C21 in 
Appendix C. We highlight these two clusters in Figs. 9 and 10 with 
different colors (magenta for hardware and cyan for software). 

Interestingly, if we sum up prevalences of topics belonging to these 
two clusters and to SR over time, we clearly see on Fig. 11 that i) the 
software cluster overtook the hardware one in the share of patent doc
uments, which confirms the rising importance of ICT; ii) service robotics 
as expected is a rapidly growing research field in the last few decades.28 

We calculate several graph indicators to quantify the generated 
networks and their development over time (Table 4). First, we see that 
the number of components, that captures how many nodes are isolated, 
increases over time. This we interpret as a sign that topics in robotics 
became more ‘independent’ and can form patentable knowledge with 
other topics. Second, The clustering coefficient of the network increases 
steadily. Apparently, the generated topics increasingly form densely 
connected cliques inside the largest connected component (LCC).29 

Third, the mean path length – measuring the average number of edges to 
connect any pair of randomly chosen topics in LCC (i.e. disregarding 
isolated topics) – clearly increased over time indicating a lack of short 
paths connecting the densely interconnected cliques. One can interpret 

that as formation of hierarchy in the knowledge network, where topics 
from one area of knowledge tend to become isolated from the topics in 
the other areas. The intuition that our constructed networks are hier
archical is further supported by themodularity measure being around 
0.3.30 Concerning the importance of different topics in the network, we 
use the concept of network centralization that is concerned not with the 
overall connectedness but with the particular structure of relations and 
relative positions of the nodes. We estimate two commonly used 
centralization metrics. The degree centralization measures the concen
tration of linkages on few nodes (1 would be a star network and 0 – a 
complete graph). The betweenness centralization (again between 0 and 1) 
indicates the dependence on nodes that connect many other nodes. Both 
measures remain rather stable over time, at least if we look on the LDA 
model with 380 topics. Stability of these measures means that the 
asymmetry between topics in their centrality does not change and most 
central topics do not become more important in more recent years.31 

5. Review, perspectives, and policy implications 

The present paper extends the existing economic literature on ro
botic research in several directions. Using unstructured patent infor
mation on robotics that covers a time span of more than four decades 
and applying a topic modeling approach we discover latent topics in 
those texts, which we later match to SR sub-areas using a novel matching 
procedure. The latter is done by identifying words that appear both, in 
the lists of words associated to each topic with different probabilities 
and the descriptions of SR areas from IFR. Then we account for the 
frequency and exclusivity of these words (also compared to scientific 
literature outside IFR descriptions), and calculate a threshold level 
necessary to be reached to be identified as SR topic, which maximizes 
the number of unique SR topic matches. This way we contribute to the 
literature on topic identification and interpretation which is rather 
nascent when it comes to an automatic topic matching and labeling. 
Another key novelty of our analysis is the embedding of topics into a 
network perspective. This allows to capture interdependencies between 
robotic technologies by demonstrating which topics appear a lot 
together over many patent documents, and which do not. This allows to 
determine the relative position of SR topics within this network, observe 

Fig. 11. Prevalence of topic clusters and SR over time. LDA model with 190 topics (left plot) and 380 topics (right plot).  

27 In fact, the algorithm identifies more than two communities, but we focus 
only on the two largest ones in terms of number of nodes disregarding the 
smaller communities. This choice is primarily motivated by their size, while all 
other communities are much smaller and hard to classify to any area.  
28 One can see that in the LDA model with 190 topics the share of texts 

belonging to SR is considerably bigger than in the LDA model with 380 topics. 
This has to do with the fact that the model with less topics is less detailed in 
disaggregating patent texts into topics. While both measures are imperfect since 
they miss topics which overlap with IFR SR classification to a smaller extent 
than our matching threshold, we believe that the results for 380 topics shall be 
considered as a more accurate one.  
29 LCC comprises all the elements of the network, where any two nodes are 

connected to each other by a sequence of edges (path). 

30 This estimate is close to the one by Valverde et al. (2007) obtained for 
computed tomography of 0.41.  
31 For 190 topics we observe an increase in both metrics of centralization in 

the last five-year window (2011–2015). Since the model with 380 topics is 
considered by us as more accurate one, we abstain from interpreting this result, 
as it may be an outcome of more rough classification of documents into smaller 
number of topics. 
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an increasing hierarchy of the network with high clustering and 
distinguish between topics that connect to many areas of knowledge 
enabling their recombination and topics that are rather isolated and 
focus on distinct application areas. Both these novelties are imple
mented in a data-driven way, independent of both experts’ idiosyncratic 
knowledge and patents’ structured information (such as concordances). 
We thus go beyond existing literature (e.g. Kreuchauff and Korzinov 
(2017)) that bases their SR patent identification strategy on expert 
judgment. Notice that patent classifications (such as International Pat
ent Classification) also rely on expert knowledge and introduce new 
classes with a considerable time delay compared to first patents filed on 
that topic, thus being inherently weak to capture emerging trends in SR. 

While examining our results, one should remember that they just as 
any other topic model are a result of stochastic optimization implying 
that running the LDA algorithm several times one can obtain every time 
(slightly) different outcome. Therefore, it is important to focus on the 
qualitative results of our analysis. To ensure their robustness, we 
compare two topic models: with 190 topics and 380 topics. Even though 
the two models have very different number of topics, the results they 
convey are very similar. First, they exhibit almost the same number of 
topics matched to SR (approx. 20). Second, predominant number of 
topics matched to SR are in field and medical robotics. Third, we find 
disproportionally large number of rising patterns among the diffusion 
curves of topics matched to SR. Fourth, very similar structural properties 
of the networks of topics (two large communities reflecting hardware 
and software, position of topics matched to SR in the periphery of the 
network, similar level and dynamics for network metrics such as clus
tering, modularity and centralization). Fifth, rising trend in the share of 
service topics and software cluster among topics on robotics. These re
sults convince us that the patterns we observe for service robotics are 
robust to alternative specification of LDA parameters. 

Our approach enables us to replicate some stylized facts of robot 
technology transformations as identified by the use of structured patent 
data and may thus be compared to analysis based on well established 
concordances (WIPO (2008) for patent-technology mapping, Eurostat 
(2014) for patent-industry mapping). Among these facts are the relative 
shift of focus in robotics technology from hardware to software, the 
increasing importance of robotics in medicine (see Table A12 in the 
Appendix), agriculture and logistics (see discussion in Section 2.1). With 
the proposed method we can look closer into specific SR sub-areas. In 
case of medical robotics we see the increasing importance of surgery and 
therapy but also - and this is not yet common knowledge - a strong trend 
of robot technologies related to rehabilitation.32 Besides, even specific 
areas of application can be identified and spotted. For example, we find 
the term ’laparoscopy’,33 which is an operation performed in the 
abdomen or pelvis using small incisions (usually 0.5-1.5 cm) with the 
aid of a camera. In the technology description of the SR report, the word 
’laparoscopic’ shows up while describing various types of operations 
carried out by robots (IFR, 2018b, 136). Associated topic 280/380 has 
been matched to medical robots (see Table 3). 

We are able to interpret results of our analysis in the light of eco
nomic theories and recent technological trends. Most importantly, we 
demonstrate automation potential materializing within services, an 
economically important sector which until today has not yet seen much 
automation. While robot adoption in manufacturing industries mostly 
has the advantage to relieve humans from dirty, dull and dangerous 
tasks, in services non-standardized human-to-human interaction pro
cesses are essential. The use of SR may help to overcome labor shortages 

in e.g. elderly care, logistics and cleaning, which is particularly impor
tant in the light of recent demographic trends in industrialized countries. 

Related to robot markets, we can link the dynamics of SR patenting 
to SR sales. Comparing sales data and diffusion curves results in a robust 
finding that SR in medicine and logistics are the leading sectors of ser
vice robotics. 

The paper at hand has several policy implications. Looking in the 
past, we see that robot patenting activity has been less susceptible to the 
financial crisis (2007–2009) than robot investment. However, in the 
light of the current COVID-19 pandemic the potential to reduce conta
gion risks might not only spur robot research but also become a driver of 
robot demand.34 It is natural to assume that this will foster sales of 
service robots also in the long term and spur private investment in ro
botic technologies. Governments could support this process by com
plementary basic research funding and subsidizing applied research in 
ares where market incentives are not strong enough to fulfill actual 
needs. 

For example, related to care, lack of qualified labor is evident. 
Increasing the automation intensity here would help to solve this 
problem. An intensified use of robots would furthermore alter the 
associated work environment as well as the skill requirements of care
takers making the job attractive for technology-oriented workers. As a 
consequence, the educational system has to be adjusted to the new needs 
and opportunities. To cope with this process in a timely and efficient 
manner, a sound understanding of SR is important. And this is where our 
study comes into play as we show that information out of patents can be 
used as early signal prior to the actual transformation. Furthermore, in 
light of the recent progress in NLP and ML methods and growing amount 
of data being produced in sensitive application areas like healthcare, 
adequate conditions related to data privacy and data security have to be 
established. The governments should especially think about how high 
quality data may be made available for independent scientists to avoid 
monopolization of this resource and thus to create a level playing field at 
the global level. 

6. Conclusions and outlook 

There is a vast amount of studies on robotics in the economic liter
ature. However, most of them are related to IR with a focus on labor 
market implications. Services, in contrast, are still rarely addressed 
although here the automation potential is huge. This gap in the litera
ture is mostly due to a lack of reliable data and the difficulties to 
quantify emerging technological fields. We shed new light here by 
applying topic modeling and graph theory to textual patent data. 
Furthermore, given that topic labeling and interpretation is a chal
lenging task lacking objective data-driven methods, we proposed and 
applied a novel approach that uses external reference texts on SR ro
botics, namely technology descriptions of SR from the IFR. 

Our results reaffirm that at present various disciplines are involved in 
technological development of robotics. Among the most prominent are 
computer science, automation control, electrical and mechanical engi
neering and bio-medicine (Analytics (2018)). Today’s robots are 
increasingly characterized by more intelligent components (e.g. smart 
grippers), greater connectivity (e.g. plug & play interfaces, cloud 
computing) and are easier to use (e.g. programming by demonstration). 
Although these technologies are also applied in IR, the future of modern 
robots happens increasingly beyond predefined environments. As a 
consequence, the areas of application also change constantly over time: 
logistics, medicine, agriculture, construction, cleaning. The rapid tech
nology advances will likely make robots applicable also in other sectors 
that until now have not yet seen much automation. These technologies 
might help to overcome a phenomenon which has become known as 

32 Within medical applications we are even able to further differentiate the 
usage of robots, e.g. the increasing role of rehabilitation systems (topic 308/ 
380) and surgery (topic 311/380 focuses more on the hardware perspective 
while topic 191/380 relates to the complementary software).  
33 From ancient Greek λαπαρα (lapara) ’flank, side’, and σκωπϵω (skopeo) ’to 

see’. 

34 Caselli et al. (2020) have recently shown that robotization indeed facilitates 
social distancing and lowers the risk of contagion. 
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’Baumol’s cost disease’35 or the phenomenon of secular stagnation, i.e. 
higher productivity in service sectors which is due to automation 
contributing to aggregate productivity growth. 

This study has a few limitations, which can also be seen as directions 
for further research. First, we could not find comparable sources of de
scriptions to automatically label the remaining (non-SR) topics. 
Applying our topic matching on a broader classification of robotics is 
therefore welcome. Second, patent data covers mainly technical side of 
technologies in robotics. One could go for a broader perspective and use 
LDA for other related data sources such as scientific publications, 
funding programs, newspapers and other media coverage. Such data 
would address societal discourses and political debates about robotics to 
elicit not technologies but cultural differences, such as arguments in 
favor and against robots as drivers or doctors. This way one could draw a 
comprehensive picture of SR acceptance including the perspectives of all 
stakeholders within the technology system. Third, we did not look on the 

position of countries in mastering those technological topics. It is 
worthwhile to assess revealed technological advantages of each country 
in different SR sub-areas and how these were changing over time. This 
would be of particular interest for policy makers to design their sup
porting measures for local companies competing within the interna
tional technology markets. Furthermore, since topic diffusion curves 
may be linked to sales dynamics, one could extend the analysis by 
building market forecasts based on the patenting activities. 
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Appendix A. Classification of robots: ISO standard and IFR operationalization 

A1. Robot categories according to standard ISO 8373:2012(en) 

(ISO 8373:2012, 2.6) A robot is an actuated mechanism programmable in two or more axes with a degree of autonomy, moving within its 
environment, to perform intended tasks. Autonomy in this context means the ability to perform intended tasks based on current state and sensing, 
without human intervention. 

(ISO 8373:2012, 2.10) A service robot is a robot that performs useful tasks for humans or equipment excluding industrial automation application. 
Note: The classification of a robot into industrial robot or service robot is done according to its intended application. 

(ISO 8373:2012, 2.11) A personal service robot or a service robot for personal use is a service robot used for a non-commercial task, usually by lay 
persons. Examples are domestic servant robot, automated wheelchair, and personal mobility assist robot. 

(ISO 8373:2012, 2.12) A professional service robot or a service robot for professional use is a service robot used for a commercial task, usually 
operated by a properly trained operator. Examples are cleaning robot for public places, delivery robot in offices or hospitals, fire-fighting robot, 
rehabilitation robot and surgery robot in hospitals. In this context, an operator is a person designated to start, monitor and stop the intended operation 
of a robot or a robot system. 

(ISO 8373:2012, 2.15) A robot system is a system comprising robot(s), end-effector(s) and any machinery, equipment, devices, or sensors sup
porting the robot performing its task. 

Fig. A12. Robot patent–industry as
signments and their relative importance 
across three time windows Note: Results 
are provided in weighted patent counts 
mapped according to the PATSTAT 
database. Color highlighting only refers 
to those industries that we address 
throughout our study. Green (orange) 
color highlighting indicates an increase 
(decrease) in relative importance over 
time, which can be seen e.g. in com
puters and peripheral equipment or 
medical and dental instruments (e.g. 
machine tools).   

35 Baumol and Bowen (1966) observed that rapid productivity growth in some sectors (e.g. in manufacturing) relative to other sectors (e.g. service industries) could 
result in a ’cost disease’ at the aggregate level if the slowly growing sectors constitute a large part of the economy. Baumol (2012) provides a recent discussion with a 
key focus on healthcare, while Aghion et al. (2017) adapt this reasoning to AI and automation. 
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A2. Robot patent-industry assignments based on PATSTAT mapping  

Appendix B. Further details on the methods used 

B1. Data pre-processing 

The following stopwords have been added to the NLTK’s list of English stopwords: ’would’, ’could’, ’figure’, ’whether’, ’wherein’, ’respecti
ve’,’primary’, ’certain’, ’etc’, ’described’, ’herein’, ’first’, ’second’, ’third’, ’fourth’, ’fifth’, ’moreover’, ’furthermore’, ’according’, ’yes’, ’present’, 
’disclosure’, ’preferably’, ’feature’, ’like’, ’embodiment’, ’comprising’, ’preferred’, ’example’, ’exhibit’, ’develop’, ’demonstrate’, ’comprise’, 
’consist’, ’prefer’, ’prefering’, ’preferred’, ’otherwise’, ’alternative’, ’alternatively’, ’discuss’, ’generally’, ’exemplary’, ’substantially’, ’typically’, 
’additional’, ’upon’, ’suitable’, ’feature’, ’aspect’, ’design’, ’employ’, ’create’, ’multiple’, ’understood’, ’non’, ’depict’, ’previously’, ’partially’, ’say’, 
’take place’, ’great’, ’suitable’, ’design’, ’generally’, ’exemplary’, ’aspect’, ’combination’, ’accordance’, ’appreciate’, ’arrangement’, ’disclose’, 
’typically’, ’understood’, ’multiple’, ’skilled’, ’configuration’, ’create’, ’employ’, ’upon’, ’direct’, ’mechanic’, ’alter’. 

The normalized pointwise mutual information (NMPI) score is calculated as follows: 

score(worda,wordb) =
log(Pr(worda,wordb)/(Pr(worda) × Pr(wordb))

− log(Pr(worda,wordb))
(1) 

This score sets the probability of two words occurring together in relation to the probability of them occurring together in case of independence. A 
score of -1 (in the limit) means two words are never occurring together, 0 in case of independence (they occur together as often as expected, based on 
their independent probability), and +1 in complete co-occurrence. In our case, two words will be merged into a bi-gram with a ”_” symbol, if the score 
is above 0.5. 

B2. Formal description of LDA and the parameters used 

More formally LDA can be described as on Fig. B13. The shaded circle represents the observed data (w(d,n), nth word in each document d). The 
unshaded circles denote latent (unobservable) variables: z(d,n) - the topic assignment for the nth word in document d (or, alternatively, the assignment 
of words to topics), θd - the topic proportions for the dth document, and ψ (1:K) - topic distributions over the vocabulary. Arrows indicate the conditional 
dependencies between variables, while frames (the boxes in the figure) refer to repetitions of sampling steps, with the variable in the lower right 
corner referring to the number of samplings: number of documents D and the number of topics K. Thus, the inner frame over z(d,n) and w(d,n) represent 
the repeated sampling of topics and words until N words have been generated for each document d; the frame surrounding θd illustrates the sampling 
of a distribution over topics for each document d for a total of D documents; the frame surrounding ψk illustrates the repeated sampling of word 
distributions for each topic assignment until the word probabilities of K topics have been generated. 

We have used the parallelized Latent Dirichlet Allocation from gensim, an open-source library for unsupervised topic modeling and natural 
language processing, using modern statistical machine learning implemented in Python. To estimate the LDA model, several simplifying assumptions 
have to be made. First, θ is assumed to be a random draw from a uniform Dirichlet distribution with scaling parameter α. Second, ψ is assumed to be a 
random draw from a Dirichlet distribution with parameter β. Following Griffith and Steyvers (2004) and the default settings of the LDA gensim 
package (https://radimrehurek.com/gensim/models/ldamodel.html), we set α = 1/K, while β as a prior is learned by LDA from the data. For T>100 β 
<< 0.01, which shall result in a fine-grained decomposition of the texts into topics that address specific areas of knowledge.36 Then, fixing the number 
of topics K ex ante and using Gibbs sampling one can iteratively approximate the hidden LDA model using the Markov Chain Monte Carlo approach 
converging to the target distribution by repeated sampling from it (Griffith and Steyvers, 2004). 

Note also that the number of documents to be used in each training chunk of the LDA algorithm (so-called ’chunksize’) was set to 1800, the number 
of passes through the corpus during training (’passes’) equal to 20 and the maximum number of iterations through the corpus when inferring the topic 
distribution of a corpus (’iterations’) equal to 1000. All other parameters were set to default values. 

Fig. B13. Graphical model representation of LDA (based on Blei et al. (2003)).  

36 In our sensitivity analysis we experimented with setting either both these parameters or just one of them to higher values that are popular in the literature, such as 
α = 0.1 or β=0.1 or β=0.01 (Chen et al., 2017; Huang et al., 2017; Kaplan and Vakili, 2015). However, those alternatives resulted in worse performance of topics in 
terms of perplexity and exclusivity (discussed later in this paper), and so we stick to the default setting. 
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B3. Determining the number of topics 

The perplexity score measures the ability of an LDA model estimated on a subset of documents (training data) to predict the word distribution in the 
remaining subset of documents (testing data). It is defined as the exponential of the negative normalized predictive likelihood under the model. A 
lower perplexity score indicates that the model has better generalization performance. Formally, for a testing data (Dtest) with T1 documents, the 
perplexity score is equal to 

perplexity score(Dtest) = e
−

∑T1
d=1

logp(wd)
∑T1

d=1
Nd , (2)  

where Nd is the number of words in document d, wd is a vector of all the words in document d, and p(wd) is the probability of observing the word vector 
wd in document d given the LDA model estimated from the training data. 

Semantic coherence is a criterion developed by (Mimno et al., 2011) and is maximized when the most probable words in a given topic frequently 
co-occur together. The authors show that the metric correlates with human judgment of topic quality. Formally, let D(v, v′

) be the number of times that 
words v and v′ appear together in the same document. Then for a list of the M most probable words in topic k, the semantic coherence for topic k is 
given as: 

Ck =
∑M

i=2

∑i− 1

j=1
log

(
D(νi, ν) + 1

D
(
νj
)

)

(3) 

A smoothing count of 1 is included to avoid taking the logarithm of zero. 
Finally, drawing on previous work on exclusivity and diversity in topic models (Bischof and Airoldi, 2012), the exclusivity of a topic measures if 

words with high probability under topic i have low probabilities under other topics. If so, we can conclude that topic i is exclusive. A topic that is both 
cohesive and exclusive is more likely to be semantically useful. More concretely, for topics Tn ∈ T and words wn ∈ Ti, we measure the exclusivity by: 

exclusivity = |T| ×
∑

T1∈T

∑

w1∈T1

∑

T2∈T\T1

∑

w2∈T2∩T1

1
weight(w1) × weight(w2)

(4)  

B4. Plotting diffusion curves for LDA topics 

To produce diffusion curves, we follow Lenz and Winker (2020) in quantifying the probability that a topic Ti appears in the corpus of patent texts C 
for a certain year t as: 

P(Ti,Ct) =

∑
d∈Ct

P(Ti, d)
Dt

, (5)  

where d stands for patent documents in which we sum the prevalences of that topic in that time period, normalized by the overall number of doc
uments in period t, Dt . Hence, at any period of time, the probabilities of all topics sum up to one. In addition, we smooth the diffusion curve by applying 
a five-year moving average window so that at any period the equation (5) is estimated not just for the year t, but also for two years preceding t and two 
years following it. 

Furthermore, to ease visual inspection of the diffusion curves, we classify the lines into three categories. To be classified as a ’rising’ topic (with 
green color), the following inequality should hold: 
∑

ΔP(Ti,Ct) =
∑

(P(Ti,Ct) − P(Ti,Ct− 1))〉υ ×
∑

|ΔP(Ti,Ct)| (6)  

where υ ∈ [0,1]. In other words, over the period of consideration the topic should predominantly rise and not fall. Reversely, to be classified as ’falling’ 
topic (with red color), the inequality in (6) must hold with the opposite sign. If none of the two conditions is fulfilled, the topic is classified as ’in- 
between’ (with blue color).37 

B5. Topic matching 

Technically, the matching procedure consists of the following steps:  

1. Define the reference texts: take IFR report on SR (IFR, 2018b). Lemmatize these texts and replace capital letters with small letters. This results in 
reference texts covering 49 sub-areas (compare Table 1).  

2. Identify ’candidate words’: search for words which appear simultaneously among 100038 

frequent words for each topic and in the SR reference texts.  
3. For each candidate word wj of topic t and a reference text q, determine a word matching score according to (7): 

37 The value of υ is chosen to be equal to 0.3 to separate the diffusion curves into the three groups to be as distinct as possible. As long as υ is positive and not very 
close to zero (to avoid classifying as rising those topics where the sum of ups and downs is approximately the same) it does not affect our later conclusions.  
38 We look on the 1000 words having highest probability to be assigned to each individual topic. Looking beyond 1000 most likely words does not improve the 

results as the probabilities of the remaining words are virtually equal to zero. 
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word matching score
(
wj, t, q

)
=

relevance
(
wj
⃒
⃒t
)

cθ− 1 × ρ
(
wj
) ×

∑n

i=1

1
i

(7)  

where  
• relevance(wj

⃒
⃒t) is the relevance of the word to the topic according to (8) Sievert and Shirley (2014), which captures how exclusive this word is in 

this topic. 
Let p(wj

⃒
⃒t) be the probability of word j in topic t as resulted by LDA and p(wj) the marginal probability of word j in the empirical distribution. 

The lift is defined as the ratio of a words’ probability in a topic to its marginal probability across the corpus, p(wj|t)
p(wj)

(Taddy, 2012). Then the 
relevance of word j for topic t is defined as 

relevance
(
wj
⃒
⃒t
)
= λ × log

(
p
(
wj
⃒
⃒t
))

+ (1 − λ) × log
(

p
(
wj
⃒
⃒t
)

p
(
wj
)

)

, λ ∈ [0, 1] (8)  

We chose λ equal 0.5, meaning equal weighting of the word’s probability for topic and its lift. The idea is to reduce the weight of words 
appearing in other topics.  

• θ ∈ [1,49] is the total number of SR sub-areas the word occurs in. This way we discriminate words appearing in multiple SR sub-areas applying a 
nonlinear penalty cθ− 1. We experimented with several scalars for c above one. Larger values of c apply a stronger penalty on words that appear in 
multiple SR sub-areas reference texts, thus radically reducing the weight of these words and thus shifting the focus to words which are more 
unique for particular SR sub-areas. We decided for c = 4 as increasing it further was not changing the results. as  

• ρ is a generality score of the word based on its frequency in the English language and derived from the word frequency database composed by 
Mark Davies, which describes how often a word appears in the English language per million words. We normalize this frequency by our corpus’ 
length and take its log to derive ρ for each word we matched.39 

This way we take into account that the reference texts represent only a fraction of all technologies (i.e. not covering IR and technologies 
outside the field robotics) and do not sufficiently penalize common words being matched by our algorithm (e.g. ’cup’).  

• n is the number of times the word appears in the same SR sub-area. Thus, every time a word appears in the same reference text, its marginal score 
will be increased with a declining margin based on the frequency it appeared.40 

Thus, the word matching scores in equation (7) are unique for each word Wj and each topic – SR sub-area pair.  
4. Determine the topic matching score of a topic t belonging to a reference text q by summing the word matching scores of all relevant candidate 

words appearing in topic t and a reference text q: 

topic matching score(t, q) =
∑

wj∈t∩q
word matching score

(
wj, t, q

)
(9)    

5. Derive a threshold for the resulting topic matching scores. To this end, consider the distribution of values for each topic and each SR sub-area and 
choose one that maximizes the number of topics classified to at most one SR sub-area. The threshold value is calculated on the interval between 
zero and max(topic matching score(t,q)), where smaller values are associated with many topics matched to several SR sub-areas simultaneously (i.e. 
not uniquely), while increasing the threshold value reduces the amount of multiple matches until eventually each matched topic may be un
equivocally be assigned to a single SR sub-area. This way, the threshold value is dependent on the distribution of topic matching scores: the higher 
the values of these matches indicating the overlap with multiple SR sub-areas, the higher the threshold value. We prefer to use this rule to define 
the threshold value as it best suits our purpose to identify as many topics capturing technologies from SR as possible, while remaining data-driven. 
Fig. 6 illustrates the derivation of the threshold value. 

B6. Network space of topics 

Remember that one of the outputs from applying LDA is a matrix of topic prevalences across the documents. Thus, each topic is a vector of weights, 
bounded between 0 and 1, of length D (number of our patents being22′927), so that cosine similarity of topics a and b is: 

Cosine similarityab =
ab

‖ a ‖ ‖ b ‖
=

∑D
i=1aibi

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑D

i=1a2
i

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑D

i=1b2
i

√ . (10)  

Appendix C. Further results 

C1. LDA model with 380 topics  

39 https://www.wordfrequency.info/. The list of around100′000 words and their forms together with the frequency of use in the academic literature of the corpus of 
contemporary American English.  
40 Thus, the first time the word appears, its score is one, whereas the n-th time the word appears, its score is 1n. 
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Fig. C14. Word clouds of 16 most central topics belonging to hardware cluster among 380 topics. Note: Topics are listed in the order of centrality. Topic 223 is 
SR topic. 

Fig. C15. Word clouds of 16 most central topics belonging to software cluster among 380 topics Note:Topics are listed in the order of centrality. Topic 191 is SR topic.  
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Fig. C16. Word clouds of 21 most central topics among 380 topics Note: Topics are listed in the order of centrality.  
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Fig. C17. Word clouds of isolated topics among 380 topics Note: Topics 37, 83, 353 and 377 belong to SR.  
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Fig. C18. Word clouds of 380 topics.  

I. Savin et al.                                                                                                                                                                                                                                    



Technological Forecasting & Social Change 174 (2022) 121280

24

Fig. C19. Diffusion curves for 380 topics .  
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C2. LDA model with 190 topics  

Table 4 
Topics from LDA model with K = 190 matched to SR sub-areas. For each topic, its top 30 most relevant (i.e. with high likelihood and exclusivity, see Eq. 8 for formal 
definition) words are displayed. Up-arrows indicate that the diffusion of the respective topic follows a positive trend, vice versa for down-arrow (which only apply for 
matches within the 190 topic model). Topics within an area are sorted by their topic matching scores.  

Topic Topic terms (30 most relevant) Matched SR sub-area  

Field Robotics  

105 test, testing, tester, crop, agricultural, plant, harvest, tested, farm, harvesting, contactor, fertilizer, prober, actor, 
nondestructive_testing, pest, retinal, nutrient, soil, retinal_ganglion, destructive_testing, stimulus, pesticide, subsurface, 
farmer, corn, flower, probers, tractor, aerial_farm, 

Agriculture 

109 box, rack, milking, milk, auxiliary, teat_cup, animal, teat, milk_animal, teat_animal, animal_milk, pinion, scraper, 
dairy_animal, automatically, talus, gouging, instructor, microbial_agent, esf, mtp, relevant, compartment, console, subtalar, 
implement, head_mount_display, rear, watch, farmer, 

Milking robots and livestock robotics 

56 steer, steering, guidance, vehicle, lane, car, run, running, road, self_propelled, parking, driver, travelling, steerable, park, 
cage, pedal, weighted_constant, race, wheel, driverless, reconfigurable_toy, droplet_ejection, passenger, amusement, 
propulsion, lateral, ahead, appraisal, brake_pedal, 

Agriculture 

40 apparatus, candidate, spatial, fruit, accord, seventh, eighth, element, ninth, discriminant_plane, trajectory, region, predicted, 
sign_language, sixth, tenth, eleventh, condition_satisfied, twelfth, move, recognize, satisfy, thirteenth, condition, possibility, 
shade, action, predict, toner, tree, 

Agriculture  

Inspection and maintenance systems  
134 pipe, pipeline, inner, filter, outer, piping, main, branch_pipe, pip, diameter, yoke, lining, pig, liner_bag, smoking_article, 

circumferential, lay, leak, oil, underground, tubular, inside, rig, wall, interferogram, liner, dig, laying, interferometry, 
flux_leakage, 

Tank, tubes, pipes and sewers 

14 ↓  seam, bead, weld, sealant, junction, pool, penetration, puddle, external_recharging, wax, seam_tracker, fusion, 
pseudo_random, quality, weldment, gas_metal_arc_welding, butt, profiler, irregularity, corrugate, join, geometry, lateral, 
molten, slag, orbital_welder, gtaw, width, toolspeed, conformation, 

Tank, tubes, pipes and sewers 

159 air, powder, tank, flow, water, duct, pump, booth, enclosure, hopper, jet, discharge, exhaust, compressed_air, blast, 
pressurized, intake, stream, decontamination, orifice, spray_booth, airflow, flow_rate, fan, blower, curtain, blasting, interior, 
cyclone, mist, 

Tank, tubes, pipes and sewers  

Construction and demolition  
129 panel, jig, side, roof, automotive, automobile, hanger, window_glass, assemble, trunk_lid, wheelchair, recovery_powder, 

fresh_powder, framing, station, retinal_vein, fender, underbody, car, preassembly, cowl, line, enhancement_understanding, 
toilet, exclusive, forcel, mule, inner, bonnet, ophthalmol, 

Heavy/civil construction  

Logistic systems  
158 container, pallet, load, station, loading, unload, unloading, transport, lift, warehouse, pack, palletizing, stock, handle, carton, 

handling, empty, truck, workstation, good, delivery, palletizer, palletized, load_unload, loaded, hoist, loading_unloading, 
shipping, shelf, beverage, 

Automated Guided Vehicles (AGVs) in 
manufacturing environments 

180 ↑  location, navigation, identify, identification, beacon, radio, cod, map, identity, rfid_tag, global_positioning_system, 
radio_frequency, antenna, indoor, determine, rfid, wireless, destination, transceiver, navigate, transponder, transmitter, 
processor, identifier, information, system, dead_reckoning, message, include, identified, 

Automated Guided Vehicles (AGVs) in 
manufacturing environments  

Medical robotics  
47 ↑  catheter, medical, distal, patient, proximal, distal_end, sled, proximal_end, sheath, lumen, heart, elongate, bed, sterile, 

flexible, catheter_sheath, diagnostic_therapeutic, sterile_barrier, cardiac, elongated, handle, nose_cone, manipulation, 
introducer, ablation, stabilizer, sterility, steerable_catheter, therapy, ventricle, 

Robot-assisted surgery and therapy 

43 panoramic, imager, laparoscope, anatomical, bypass_graft, fade, zoom, artery, coronary_artery, colon, 
secondary_containment, tract, tremor, anastomosis, swarm, insufflate_gas, heart, scissors_stapler, clamp_graspers, balloon, 
blood, endoscopy_laparoscopy, pavement, practitioner, prosthetist, bagger, surgery_endoscopy, file, pain, vital_sign, 

Robot-assisted surgery and therapy 

131 ↑  brain, tissue, tumor, neural, therapy, stereotactic, nerve, cancer, organ, mri, stimulation, biopsy, dose, clinical, 
radiation_therapy, lesion, compute_tomography, patient, nervous, prostate, vol, spinal_cord, sobot, emg, needle, skull, 
computed_tomography, multiblock, ultrasound, magnetic_resonance, 

Robot-assisted surgery and therapy 

110 ↑  instrument, surgical, surgeon, surgery, surgical_instrument, minimally_invasive, surgical_procedure, endoscope, surgical_site, 
patient, incision, tissue, medical, endoscopic, laparoscopic, medical_procedure, telesurgical, forceps, telesurgery, trocar, 
cannula, laparoscopic_surgery, procedure, abdominal_cavity, robotic, intuitive_surgical, abdominal_wall, console, entry, 
organ, 

Robot-assisted surgery and therapy 

126 ↑  virtual, simulation, interface, user, simulated, feedback, simulate, haptic, physical, simulator, virtual_reality, interaction, 
sensation, stylus, tactile, mouse, haptic_feedback, graphical, training, feel, cursor, haptic_interface, articulatable, 
environment, system, real, realistic, computer, experience, visual, 

Other medical robots  

Powered human exoskeletons  
169 ↑  joint, actuator, tendon, shoulder, actuation, muscle, wearer, rehabilitation, exoskeleton, passive, linkage, revolute_joint, 

degree_freedom, actuate, universal_joint, limb, ball_socket, jointed, artificial, human, elbow, mechanical, 
autonomous_and_remote_control_all_purpose_machine, skeletal, actuated, muscular, dofs, exercise, expansible, leg_hopping, 

Powered human exoskeletons  

Robots for domestic task  
72 path, movement, along, traverse, automatic_guided_vehicle, swath, follow, spatial, curvature, mow, implement, contour, 

refinement, optoelectronic, traversal, transformation_affine, supplementary, chess, automatic_guided_vehicles, move, mwo, 
centerpoint, prepositioning, desired, jolt, system, pas, matrix_mow, anticipated, ceramic_optoceramic, 

Lawn-mowing 

97 lens, emitter, coverage, receiver, perimeter, boundary, hydration, cliff, debris, ophthalmic_lens, lenses, eyeglass, sonar, 
polymerization, confinement, gateway, deterministic, monomer, piperazine, ester, airlaid_layer, pat_larsen, emission, mow, 
implementation, maskant, carbon_atom, spectacle_lens, acid, lawn, 

Lawn-mowing 

6 ↑  cleaning, clean, brush, floor, cleaner, collecting, waste, collect, carpet, scrub, collection, chassis, fan, dirty, bristle, 
loose_particulate, intake_port, squeegee, scrubbing, scrubber, fluid, liquid, contaminant, smear, sponge, surface, epsilon_sup, 
aft, dust, wet, 

Vacuuming, floor cleaning 

39 ↑  wheel, main_body, cleaner, chassis, dust, dock, deck, docking, docking_station, flipper, climb, caster, dust_collector, 
foreign_substance, payload_deck, omnidirectional_wheel, wheeled, axle, spoke, dirt, agitator, front, rotate, bristle_row, 
include, spacer_grid, dust_dirt, turnover, climbing, suspension, 

Vacuuming, floor cleaning  
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Fig. C20. Word clouds of nine most central topics belonging to hardware cluster among 190 topics Note: Topics are listed in the order of centrality.  

Fig. C21. Word clouds of nine most central topics belonging to software cluster among 190 topics Note: Topics are listed in the order of centrality.  
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Fig. C22. Word clouds of nine most central topics among 190 topics Note: Topics are listed in the order of centrality.  

Fig. C23. Word clouds of 21 isolated topics among 190 topics.  
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Fig. C24. Word clouds of 190 topics.  
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Fig. C25. Diffusion curves for 190 topics.  
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