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Abstract
The nonlinear frequency response analysis (NFRA) can be
seen as an extension of electrochemical impedance spec-
troscopy. NFRA gives a full and detailed representation of the
system response and can establish a connection between
model parameters and the experimentally observed phenom-
ena. In this article, different theoretical NFRA approaches and
the most recent application examples are discussed. A simple
electrochemical example is used to showcase the benefits and
disadvantages of analyzing the system response by using
different approaches. In addition, it was shown how to extract
experimental harmonic values and analyze them.
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Electrochemical systems are inherently nonlinear.
Therefore, linear frequency response analysis leads to
the loss of important information on system dynamics, a

problem that is well-recognized in the case of electro-
chemical impedance spectroscopy (EIS). As demon-
strated in different publications, an extension of
dynamic analysis to the nonlinear range provides full
information for proper system diagnostics [1e4]. In
www.sciencedirect.com
addition, nonlinear analysis is highly beneficial for the
analysis of reaction mechanisms, model discrimination,
and parameter determination [2].

Thenonlineardynamic analysis is termeddifferentlywithin

the electrochemical community. It is known as faradaic
rectification (FR) [5,6], nonlinear EIS (NLEIS), total
harmonic distortion (THD) [3,7], or nonlinear frequency
response analysis (NFRA, NFR analysis) [1,2,8]. In all
these methods, a single input change was used. If multiple
inputs (e.g. at different input frequencies) are imple-
mented, the nonlinear dynamic analysis is termed inter-
modulated differential immittance spectroscopy [9]. The
term NLEIS is most often used focusing on either
nonlinearity at fundamental frequency [10] or non-
linearities in the second andhigher-order harmonics [4,11].

The popularity of this term can be explained by the rela-
tionship/similarity of an experimental procedure to EIS,
therefore this method is considered as an extension of EIS
to the nonlinear range. But as discussed by some authors
[12], the response function ‘impedance’ has meaning only
for the fundamental frequency and higher-order response
functions cannot be defined in the sameway as impedance.
Therefore, for contributions at higher frequencies, a more
general term is better suited. THD adds up all higher
harmonics and relates them to the fundamental harmonic,
thus merging and losing detailed information [7]. NFRA

aims to describe the full nonlinear response including the
nonperiodic part of the response (FR in older publications),
nonlinear contributions at the fundamental frequency, as
well as nonlinear contributions at higher harmonic fre-
quencies [13,14]. In addition, NFRA can treat multiple
inputs and describe intermodulated contributions (the
focus of intermodulated differential immittance spectros-
copy), see for example [15]. While NLEIS and NFRA
constrain the extent of the input amplitude to control the
number of higher-order harmonics in the response, THD
does not impose such restrictions.

Since the 1950s, different groups have studied various
aspects of nonlinearities in electrochemical measure-
ments [5,16]. However, there is still no consensus in the
theoretical and experimental analysis of data obtained
by high input amplitude studies. Therefore, in this
article, theoretical backgrounds, followed by experi-
mental determination of nonlinear part of the response
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and recent application examples are discussed. The
focus is on a single input/single output case.
Theoretical backgrounds
To analyze experimental NFR data, apart from
phenomenological correlations [17,18], numerical [19]
and analytical approaches [13,14,20] have been sug-
gested in the literature. Both approaches build on
mechanistic models. To support a comparative discus-
sion of these approaches, a simple model of an electro-
chemical interface is introduced:
Figure 1

Comparison of numerical and analytical approaches of NFR and overview of
tained potential output (a), numerical second and third harmonics for different
(c) and phase (d) of analytical (Eq. (12)) and numerical second order FRFs an
calculated for is = 374 A m−2 (corresponds to Es = 0.1 V), cDL = 0.2 F m−2, io
F = 96,485 C mol−1. NFR, nonlinear frequency response; FRF, frequency res
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cDL
dEðtÞ ¼ iðtÞ � iFðtÞ (1)

dt

where cDL is the double layer capacity, EðtÞ is potential, iðtÞ
is the cell current density, and iFðtÞ is the faradaic current

defined according to ButlereVolmer equation:

iFðtÞ ¼ io,
h
eaA,f,EðtÞ � eaC,f,EðtÞ

i
(2)

With aA, aC being anode and cathode transfer co-
efficients, io exchange current, f ¼ F=ðRTÞ with F
different types of data presentation. Fourier transform of numerically ob-
amplitude values, expressed in % of steady state current is (b), amplitude
d analytical first (e) and second order (f) FRF in Nyquist plot. All data are
= 55.5 A m−2, aA = aC = 0.5, R = 8.314 J mol−1 K−1, T = 293.15 K,
ponse function.
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Nonlinear Frequency Response Analysis Vidakovi�c-Koch et al. 3
being the Faraday constant, R the universal gas constant,
and T temperature.

In general, the NFR of a weakly nonlinear system to a
periodic input deflection,

uðtÞ ¼ usþA , cosðu , tÞ ¼ usþA

2
,
�
ej,u,t þ e�j,u,t� (3)

Can be represented in form of a Fourier series:

yqsðtÞ�ys ¼ yDCþHIðu;AÞ,ej,u,tþHIð�u;AÞ,e�j,u,t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hIðtÞ

þHIIð2u;AÞ,ej,2u,tþHIIð�2u;AÞ,e�j,2u,t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hIIðtÞ

þHIIIð3u;AÞ,ej,3u,tþHIIIð�3u;AÞ,e�j,3u,t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
hIIIðtÞ

þ.

(4)

where uðtÞ is either potential or current, A is the amplitude

of input change around its steady-state value us, yqsðtÞ is the
periodic quasi-steady state of the output (current or

potential), ys the steady-state value of the output, yDC the

DC contribution of the NFR (FR in older publications), and

hi; Hi ði ¼ I; II;.;NÞ the harmonics of the NFR in the

time and frequency domain, respectively. In the numerical

NFR approach [8,19], the nonlinear system response (Eq.

(4)) is mapped into the frequency domain via a discrete

Fourier transformation (Figure 1a). In Figure 1b, second and

third harmonics as a function of frequency and input signal

amplitude are shown. Wolff et al. [19] showed that the

second and third harmonics contain important information

on the reaction kinetics/mass transfer and react differently

to a change in a steady-state, (usÞ, and an asymmetry of the

kinetics, that is, aA, aCs0:5 (see discussion in the

following). This high sensitivity to kinetics and surface may

be used for battery state diagnosis [8].

While the numerical approach determines only
amplitude-dependent harmonics [19], the analytical
Table 1

Overview of different inputs/outputs and theoretical frequency respo

Output/Input Theoretical frequency respons

iðtÞ / EðtÞ
G1ðuÞ ¼ cDLju+

1
R1

G2ðu;uÞ ¼ f
R2

G2ðu; � uÞ ¼ f
R2

www.sciencedirect.com
approach gives input-amplitudeeindependent analyt-
ical expressions of higher-order frequency response
functions (FRFs) [13]. The analytical approach based
on the Volterra series and the Fourier transform is
explained here in more detail [1,2,21,22]. A somewhat
similar approach was suggested by McDonald and Adler
[23] and used also by others [20].

One can show that the terms in Eq. (4) can be expressed
as [24]:

yDC ¼ 2,

�
A

2

�2

,G2ðu;�uÞþ6,

�
A

2

�4

,G4ðu;u;�u;�uÞ

þ.

(5)

HIðu;AÞ ¼
�
A

2

�
,G1ðuÞþ 3 ,

�
A

2

�3

,G3ðu;u; �uÞ þ.

(6)

HIIð2u;AÞ ¼
�
A

2

�2

,G2ðu;uÞþ4,

�
A

2

�4

,G4ðu;u;u;�uÞ

þ.

(7)

With the leading terms, G2ðu;�uÞ being asymmetrical
2nd-order FRF, G1ðuÞ the 1st-order FRF, and G2ðu;uÞ
the symmetrical 2nd-order FRF. The procedure for the
theoretical derivation of FRFs is straightforward and

well-documented in the literature [1,2,21,22]. The
FRFs derived for the simple electrochemical interface
(Eqs. (1) and (2)) and different output/input combi-
nations are summarized in Table 1. For simplicity, only
expressions for G1ðuÞ, G2ðu; uÞ, and G2ðu;�uÞ are
shown. Other FRFs can be obtained by following the
same methodology.

In Table 1, R1 equals:
nse functions.

e function Unit Eq.

A m2 V−1 8

A m2 V−2 9

A m2 V−2 10

(continued on next page)
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Table 1 (continued )

Output/Input Theoretical frequency response function Unit Eq.

EðtÞ / iðtÞ
G1ðuÞ ¼ R1

R1,cDL,j,u+1
V A−1 m2 11

G2ðu;uÞ ¼
� f
R2�

2,cDL,j,u+
1
R1

�
,

�
cDL,j,u+

1
R1

�2

V A−2 m4 12

G2ðu; � uÞ ¼
f
R2

1
R1

,

"
ðcDL,j,uÞ2 �

�
1
R1

�2
#

V A−2 m4 13

iðtÞ / Einput ðtÞ
G1ðuÞ ¼

cDL,j,u+
1
R1

1+RU

�
cDL,j,u+

1
R1

�
A m2 V−1 14

G2ðu;uÞ ¼
f
R2�

1+RU

�
cDL,j,u+

1
R1

��2�
1+RU

�
2cDL,j,u+

1
R1

��
A m2 V−2 15

G2ðu; � uÞ ¼
f
R2"�

1+
RU

R1

�2

� ðcDL,j,RU,uÞ2
#�

1� RU

R1

�
A m2 V−2 16
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R1 ¼ 1

io,½aA,eaA,f,Es þ aC,e�aC,f,Es �,f (17)

And R2:

R2 ¼ 2

io,
�
a2A,e

aA,f,Es � a2C,e
�aC,f,Es

�
,f

(18)

R1, R2 are related to coefficients of the Taylor series
approximation of Eq. (2). R1 is defined as a linear charge
transfer resistance, while R2 is the nonlinear resistance
(for potential input) (Eqs. (9) and (10)). G1ðuÞ for the
same output/input combination correspond to the
reciprocal value of each other, admittance (Eq. (8))
versus impedance (Eq. (11)). This is no longer true for
the second-order FRFs. In general, G2ðu;uÞ and

G2ðu;�uÞ contain different information, but in some
cases, they can be identical (Eqs. (9) and (10), Table 1).
In a symmetrical system aA ¼ aC and for equilibrium
conditions (Es ¼ 0), G2ðu;uÞ and G2ðu;�uÞ will be
zero. Similar was shown numerically [15], and also
analytically [23]. This simple case visualizes that non-
linearities are caused by nonlinear kinetics [10,25], but
they also depend on steady-state conditions. One of the
conclusions of many previous studies is that the second-
order FRF is free of double-layer capacitance and Ohmic
resistance contributions because these effects are

largely linear [25]. Although this reasoning appears
Current Opinion in Electrochemistry 2021, 30:100851
straightforward, it is not correct. In general, double-layer
capacitance and the Ohmic resistance influence second
and higher-order FRFs. This is because the input po-

tential always contains Ohmic drop contribution (please
note that for the derivation of Eqs. (8)e(10), it was
assumed that RU ¼ 0) in accordance to:

DEinputðtÞ ¼ DEðtÞ þ RUDiðtÞ (19)

where RU is the Ohmic resistance. It follows that potential

(DEðtÞ) is no longer an ideal cosine input (Eq. (3)), but an

auxiliary output containing contributions of higher-order

harmonics. An addition of Eq. (19) makes an original

model (Eqs. (1) and (2)) complex, therefore one can show

that Eq. (8) will modify to

G1ðuÞ ¼
	
cDLjuþ 1

R1



G1;EðuÞ (20)

where

G1;EðuÞ ¼ 1� RUG1ðuÞ (21)

Is an auxiliary output, obtained from Eq. (19) after
substitution of inputs and outputs and application of the
harmonic probing (please see steps 5 and 6 in the Sup-
plementary Information). As one can see an addition of
further model equations (Eq. (22)) complicates the
original model, therefore, the G1ðuÞ function will now
be calculated from Eqs. (20) and (21) (please see
www.sciencedirect.com
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Table 1 for the final expression). Similarly, the expres-
sions for other FRFs can be obtained (Table 1). One can
easily see that both G2ðu;uÞ and G2ðu;�uÞ will be
influenced by double-layer capacitance and Ohmic layer
resistance (Table 1 Eqs.(15) and (16)). All theoretical
FRFs (Table 1) are derived assuming no mass transfer
limitations. In presence of mass transfer limitations, the
original dynamic model of the system should be

extended by mass balance equations, as shown in our
previous publications [1,13]. As a consequence, new
auxiliary outputs (for concentration changes) will be
defined, increasing the size of the system of equations
to be solved. The detailed procedure and the analytical
expressions for FRFs, including mass transfer effects, as
well as Ohmic resistances, can be seen in our previous
publications [1,13]. As has been shown, mass transfer
limitations will cause additional nonlinearities in the
system response [1,13].

As the higher-order FRFs contain kinetic parameters in
different combinations than the first-order FRF, NFRA
allows identifying more kinetic parameters than EIS. In
addition, the shapes of G2ðu;uÞ [13] and G2ðu;�uÞ
[14] are often unique for a certain mathematical model.
Therefore, higher-order FRFs and higher-order har-
monic responses will be more sensitive to model
discrimination [2,13]. G2ðu;�uÞ is a dominant part of
yDC (Eq. (5)). Positive G2ðu;�uÞ values result in higher
reaction rate values, that is, current, under periodic
operation than steady-state operation [14].

The amplitude and phase of G2ðu;uÞ for current as the
input (Eq. (12), Table 1) are visualized in Figure 1c and
d. To compare analytical expressions with numerically
calculated data (Figure 1b), it was assumed that
G2ðu;uÞ is the dominant part of the second harmonic
(see Eq. (7)). Then one can write:

G2ðu;uÞ ¼ 2,HIIð2u;AÞ
A2

(22)

This assumption is satisfied at low input amplitude
values (5 and 10% of the steady-state value, Figure 1c.
At higher input amplitudes (90%), the contributions
of higher harmonics become significant. In general,
when using numerical data, sufficient discretization of
the time signal is required to avoid disturbance of the

frequency response by noise especially at high fre-
quencies; this also applies to experiments. Besides
Bode plots, Nyquist diagrams are also common
(Figure 1e) [20].

The derivation of FRFs for models of higher
complexity is straightforward, but it requires both
time and specific mathematical skills from the user,
thus making its application unappealing to beginners.
Here, a purely numerical approach may be used (see
www.sciencedirect.com
above). Alternatively, software for automatic derivation
of analytical FRFs; the so-called computer-enhanced
NFR (cNFR) was introduced by Zivkovic et al. [26].
The feasibility of the cNFR method was already
demonstrated for experimental identification of the
oxygen reduction reaction (ORR) [8]. This software
enables fast and automatic derivation of all analytical
FRFs of interest through a user-friendly modeling

interface. Most importantly, cNFR generated FRF
files allow for smooth integration with existing nu-
merical algorithms, the result of which is fast param-
eter estimation for the competing reaction
mechanisms, and optimization of the operating vari-
ables [27].
Experimental determination
Providing that one can obtain experimental current or
potential output signal in the time domain [4,13], the

harmonics in the output, as well as the aperiodic term,
can be gained by Fast Fourier transform. Alternatively,
some frequency response analyzers offer harmonics
directly [24]. In the latter case, there is no information
on the aperiodic part of the response. In the numerical
NFR approach, harmonics from the output are directly
compared with harmonics from experiments [28].
Experimental FRFs can be also determined from
aperiodic contribution and first- and higher-order har-
monics and compared with theoretical descriptions
(Table 1). The procedure for G2ðu; uÞ is already
explained in an example of numerical data (Eq. (22)).

Similarly, assuming that leading terms in Eqs. (5) and
(6) are dominant ones, G2ðu;�uÞ and G1ðuÞ can be
obtained from experimental data according to the study
by Panic et al. [24], Lin and Ng [29]:

G2ðu; �uÞ ¼ 2,yDC
A2

(23)

G1ðuÞ ¼ HIðu;AÞ
A

(24)

where yDC the aperiodic contribution appears at zero fre-

quency in the Fast Fourier transform spectra together with

the steady-state part of the response.

Recent NFR applications
The recent focus of NFR analysis is on kinetic studies
and batteries. Kandaswamy et al. [13] and Zivkovic et al.
[14] studied ORR on silver in alkaline solutions. It was
shown that the simple kinetics (first electron transfer as
a rate-determining step and mass transport limitations)
describes ORR in 0.1 M NaOH solution well. Good
qualitative agreement between theoretical and experi-
mental FRFs was observed for the first-order FRF G1ðuÞ
(Figure 2a and b) and second-order FRF G2ðu;uÞ
(Figure 2b and c) [13], as well as for DC components

(Figure 2d) [14]. In a very concentrated alkaline
Current Opinion in Electrochemistry 2021, 30:100851
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Figure 2

Comparison of the analytically derived (solid line), and experimentally obtained FRFs (symbols), (a) magnitude of the 1st-order FRF; (b) phase of the 1st-
order FRF; (c) magnitude of the symmetrical 2nd-order FRF; (d) phase of the symmetrical 2nd-order FRF; (e) the asymmetrical 2nd-order FRF. Input is
potential, and output is current density at two different NaOH concentrations: 0.1 M and 11 M NaOH (black and red, respectively). Redrawn based on data
in the study by Kandaswamy et al. [13] and Zivkovic et al. [14]. FRF, frequency response function.

6 Electrochemical Materials and Engineering (2021)
solution (11 M NaOH), the simple kinetics describes
well, the linear region (Figure 2a and b), but in the
second-order FRF, the agreement is not so good

(Figure 2c and d). Therefore a more advanced model
representation is required for the description of ORR
kinetics in concentrated alkaline solution. Zivkovic et al.
[14] studied theoretically the potential of different
inputs (potential, rotation rate) concerning process
Current Opinion in Electrochemistry 2021, 30:100851
intensification. The positive value of G2ðu;�uÞ for a
specific output/input combination indicates process
improvement, while the negative value deterioration. It

was shown that for potential input process improvement
can be obtained (Figure 2e), while for rotation rate as an
input, the process cannot be improved (not shown
here). With help of theoretical FRF, it was explained
that diffusion layer thickness under forced periodic
www.sciencedirect.com
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Figure 3

Experimental NFR data (second and third harmonics) of Li-ion battery aged under lithium plating. (a) and without lithium plating (b), as well as input signal
amplitude normalized first harmonic in Nyquist plot presentation under lithium plating (c) and without lithium plating (d). Redrawn from the study by
Harting et al. [18]. NFR, nonlinear frequency response.
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operation will be always thicker than under steady-state
conditions (lower oxygen concentration at the inter-
face), which will lead to negative G2ðu; � uÞ, that is,
process deterioration.

Dynamic methods are widely used for the analysis and
diagnosis of (Li-ion) batteries [30]. Similarly, as in fuel
cells [3,31,32], nonlinear methods improve the feasi-
bility to discriminate among different battery processes
and degradation issues. Whereas both, experimental
EIS and NFR spectra could be divided into three
characteristic frequency regions, NFRA revealed
negligible nonlinearities at high frequencies, that is,
the dynamics stem not only from electrochemical re-

actions but also Li-ion transfer through the solid-
www.sciencedirect.com
electrolyte interphase [33]. Temperature, amplitude,
and aging [33] impacted the spectra, as well as state of
charge [20], DC bias [34], and compression pressure

[35]. State-of-health could be predicted by analyzing
various NFRA features [17,36]; machine learning even
allowed to minimize error below 4% [17]. Furthermore,
NFRA outperformed EIS as it enabled us to distinguish
between normal aging and aging because of the safety-
critical Li-plating [18]; only for plated cells, the third
harmonics was higher than the second one (Figure 3).
Quantitative experimental interpretation poses chal-
lenges, as NFR spectra of different batteries may vary
strongly, both qualitatively and quantitatively [28,37].
Model-based parameter sensitivity studies allowed to

elucidate the impact of material parameters, for
Current Opinion in Electrochemistry 2021, 30:100851
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example, diffusion or reaction constants, and thus
transport or reaction processes on NFR spectra
[19,28,38]. Special care should further be taken to
guarantee a quasi-steady-state, as transient behavior
may impact spectra especially at low frequencies [8].
Conclusions and perspectives
NFRA allows in-depth kinetic studies and diagnosis of
electrochemical surfaces. In-depth interpretation of
spectra requires physical models, limiting its widespread
application presently. NFR approach used in the study by
Kandaswamy et al. [13] and Zivkovic et al. [14] offers a
unified treatment of all parts of the nonlinear response,

and it is easily adaptable to models of electrochemical
systems of different complexity and different output/
input combinations (also nonelectrical). Software-
assisted tools, such as cNFR [26], can accelerate the
broader application of analytical approaches.

Numerical NFR analysis is easy to implement [33], but
care has to be taken to achieve a periodic (quasi) steady-
state in simulations. FRFs can be obtained from nu-
merical harmonic values. It was shown that if amplitude
in numerical simulations is a well-selected agreement

between analytically derived and numerically obtained
FRFs can be achieved. Numerical simulations give also
useful guidance for the design of the experiment
(e.g. selection of amplitude).

FRFs have often unique shapes (both experimental and
theoretical) and contain a unique combination of pro-
cess parameters, two features that make higher-order
FRFs valuable for model discrimination.

Although experimentally NFR is similar to EIS, the
experimental routines need to be better established for

broader use.

Currently, the NFR is focused on kinetics and batteries,
and in the past, it was also used for fuel cell studies
[3,31,32]. However, the method can be easily applied to
other electrochemical systems (e.g. electrolyzers).
Currently, mainly the second and third harmonic, as well
as the symmetrical second-order FRF were in focus. The
asymmetrical, second-order FRF, the main contribution
of a nonperiodic DC component was largely overlooked
part of the NFR. Its significance in different applica-

tions, for example, in model discrimination or as a
measure of process improvement under forced periodic
operation, compared with the steady-state operation,
still has to be demonstrated.
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