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1 Introduction

Hadronic production of top quarks at the LHC provides an opportunity to study the heavi-
est particle of the Standard Model in great detail. Since, according to the Standard Model,
top quarks receive their masses exclusively through interactions with the Higgs background
field, a better understanding of top quark properties may lead to a better understanding
of electroweak symmetry breaking in and, hopefully, beyond, the Standard Model.

At a hadron collider top quarks and anti-quarks are primarily produced in pairs by
means of strong interactions. However, single-top production, which necessarily involves
the weak tWb interaction vertex, also occurs quite frequently at the LHC. In fact, the single-
top production cross section at the LHC is about a quarter of the cross section to produce a
tt̄ pair. Such a large cross section and an impressive luminosity collected at the LHC implies
that by now O(10) millions top quarks have been produced there thanks to this mechanism.

The interest in single-top production is related to the fact that weak interactions are
responsible for this process. This opens up a number of interesting opportunities [1] that
involve studies of the structure of the tbW vertex [2, 3], improving constrains on the CKM
matrix elements [3, 4] and indirect determination of the top quark width Γt [5]. More
recently, measurements of the top quark mass in single-top events started to play a more
visible role in the top quark mass measurements at the LHC [6]. Finally, detailed stud-
ies of QCD dynamics in single-top production processes including interesting constraints
on parton distribution functions and precise measurements of kinematic distributions are
benefitting from the high integrated luminosity of the LHC [7, 8].

At a hadron collider, single top quarks can be produced in three different ways (for
a review, see ref. [1]). One distinguishes i) the t-channel process that refers to q b → q′ t
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Figure 1. Examples of non-factorisable two-loop diagrams. Wavy lines represent W bosons, curly
lines are gluons, solid lines are quarks. The double line represents the top quark.

scattering mediated by an exchange of a W boson, ii) the s-channel process that at the
partonic level corresponds to q q′ → W ∗ → t b and, finally, iii) the associated production
that involves the g b → W t process. About 70% of single top quarks at the LHC are
produced in the t-channel process; O(25%) are due to the associated tW production and
only O(5%) are due to the s-channel process.

Studies of single-top production rely on a precise theoretical description of this pro-
cess that can be obtained in the context of perturbative QCD and collinear factorisation.
This has been done at next-to-leading order (NLO) in perturbative QCD in refs. [9–14].
Furthermore, for the t-channel production next-to-next-to-leading order (NNLO) QCD
corrections have been calculated in refs. [15–17]. Although the more recent computations
of such corrections presented in refs. [16, 17] are quite sophisticated and incorporate top
quark decays and QCD corrections to them in the narrow width approximation, all existing
calculations of NNLO QCD corrections to t-channel single-top production do not account
for the so-called non-factorisable contributions.

In the context of t-channel single-top production, non-factorisable corrections refer to
contributions that connect a light-quark line and a heavy b → t line by gluon exchanges,
see figure 1. Thanks to colour conservation, such contributions vanish when NLO QCD
predictions for cross sections are computed. However, since at next-to-next-to-leading
order two gluons in a colour-singlet state can be exchanged between different fermion lines,
non-factorisable diagrams start contributing at that order and, in principle, have to be
accounted for.

However, it is far from obvious that these non-factorisable corrections are important
for a precise description of single-top production. The reason for neglecting them in earlier
computations was that they are colour-suppressed compared to factorisable contributions
shown in figure 2. On the other hand, as became clear recently, these non-factorisable
corrections may be enhanced by a factor π2 related to remnants of the so-called Coulomb
or Glauber phase [18]. Indeed, the existence of such an enhancement was recently demon-
strated [19] in the context of Higgs boson production in weak boson fusion. In fact it was
shown in that reference that the π2-enhancement of non-factorisable corrections largely
compensates their O(1/N2

c ) suppression, so that the non-factorisable corrections to Higgs
production in weak boson fusion are larger than the colour-suppression argument suggests.
Moreover, it is known that factorisable NNLO QCD corrections to the total single-top
production cross section and, in certain cases, to basic kinematic distributions are rather
small [15–17, 20]. This smallness of factorisable QCD corrections makes non-factorisable
corrections more relevant provided, of course, that high-precision theoretical description of
single-top production is of interest.
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Figure 2. Examples of factorisable two-loop diagrams not considered in the present calculation.
Wavy lines represent W bosons, curly lines are gluons, solid lines are quarks. The double line
represents the top quark.

The goal of this paper is to make the first step towards a better understanding of
non-factorisable corrections to single-top production at the LHC and to calculate their
contributions to the two-loop virtual amplitude. We do this by expressing all two-loop
integrals that appear in non-factorisable diagrams through master integrals keeping exact
dependence on the top quark mass and the W mass and by computing these integrals using
the auxiliary mass flow method [21–23].1 As we explain in detail below, this computational
set up is similar to the one used previously by two of the present authors [26, 27].

This paper is organised as follows. In section 2 we discuss technical details pertinent
to the calculation of non-factorisable contributions to the single-top production amplitude.
In section 3 we describe the numerical evaluation of the master integrals. The (infrared)
pole structure of the non-factorisable contribution to the amplitude is discussed in sec-
tion 4. The impact of non-factorisable corrections on the cross section and some kinematic
distributions are studied in section 5. We conclude in section 6. Numerical values for
non-factorisable contributions to the two-loop amplitude at a few kinematic points are
presented in appendix A. Boundary conditions for master integrals that we used in this
calculation can be found the supplementary material.

2 Non-factorisable contributions to helicity amplitudes

We consider single-top production in the t-channel and, for definiteness, focus on a partic-
ular flavour of light quarks

u(p1) + b(p2)→ d(p3) + t(p4). (2.1)

Except for the top quark, all other quarks in eq. (2.1) are massless, so that p2
i = 0, i =

1, 2, 3. The top quark is on the mass-shell p2
4 = m2

t . We follow standard conventions and
define Mandelstam variables as

s = (p1 + p2)2, t = (p1 − p3)2, u = (p2 − p3)2, (2.2)

with s+ t+ u = m2
t .

1We note that the very first reduction of the non-factorisable contributions to single-top production
to master integrals was performed in ref. [24], albeit for a fixed numerical relation between the top-quark
mass and the W boson mass m2

t = 14m2
W /3. Furthermore, a reduction of planar double-box diagrams for

W -associated single-top production was recently presented in ref. [25].

– 3 –



J
H
E
P
1
1
(
2
0
2
1
)
1
3
0

u

t

d

b

Figure 3. Tree-level diagram. Wavy lines represent W bosons, solid lines are quarks. The double
line represents the top quark.

We write the amplitude of the process in eq. (2.1) expanded in the renormalised strong
coupling constant αs = αs(µ) as follows

A({pi}) = g2
wVudVtb

(
A(0) + αs

4πA
(1)
nf +

(
αs
4π

)2
A(2)

nf + . . .+O
(
α3
s

))
. (2.3)

When writing eq. (2.3), we have extracted the weak coupling constant gw and the CKM
matrix elements Vtb and Vud. Also, A(0) = A(0)({pi}) is the (properly normalised) Born am-
plitude of the process eq. (2.1), A(1,2)

nf = A(1,2)
nf ({pi}) are one- and two-loop non-factorisable

amplitudes respectively, and ellipses stand for factorisable contributions that we do not dis-
cuss in this paper.2

To proceed further, we perform the colour decomposition of relevant amplitudes. Fig-
ure 3 shows the only diagram that contributes to t-channel single-top production at tree
level. Since W bosons carry no colour charge, we find

A(0) = 1̂c3c1 1̂c4c2A
(0) = δc1c3δc2c4 A

(0), (2.4)

where 1̂ is the identity matrix, c1,...,4 are the colour indices of particles with momenta p1,...,4,
respectively, and A(0) is the colour-stripped amplitude.

Four box diagrams with identical colour factors contribute to the one-loop non-
factorisable amplitude. We write

A(1)
nf = T ac3c1T

a
c4c2A

(1)
nf = 1

2

(
δc1c4δc2c3 −

1
Nc
δc1c3δc2c4

)
A

(1)
nf . (2.5)

We note that the interference of the one-loop amplitude and the Born amplitude vanishes
thanks to colour conservation ∑

colour
A(0)?A(1)

nf = 0. (2.6)

At two loops eighteen non-factorisable box diagrams need to be considered; we generate
them using QGRAF [35]. Since W bosons are colourless, these diagrams are of both planar
and non-planar types as far as QCD interactions are concerned. For this reason, there are
just two distinct colour factors

c2,pl = (T aT b)c3c1(T aT b)c4c2 , c2,npl = (T aT b)c3c1(T bT a)c4c2 , (2.7)
2We note that two-loop factorisable contributions to the full amplitude are of the vertex type, see figure 2.

For the udW vertex they were computed in refs. [28, 29], whereas for the tbW vertex they were calculated
in refs. [30–34].
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so that

A(2)
nf = c2,plA

(2),pl
nf + c2,nplA

(2),npl
nf . (2.8)

The two amplitudes A(2),pl
nf and A

(2),npl
nf are obtained by computing (QCD) planar and

non-planar diagrams, respectively.

However, it is easy to realise that only a particular combination of these amplitudes
contributes to NNLO QCD cross section through interference with the leading-order am-
plitude. Indeed, since the leading-order colour factor involves δc3c1δc4c2 , when the interfer-
ence of non-factorisable two-loop diagrams and the tree amplitude is computed, we obtain
Tr(T a1T a2) for each of the fermion lines. However, since Tr(T aT b) = Tr(T bT a), the dis-
tinction between colour factors for planar and non-planar diagrams disappears. To project
on the relevant structure, we write

2T aT b = {T a, T b}+ [T a, T b], 2T bT a = {T a, T b} − [T a, T b]. (2.9)

Since Tr
(
[T a, T b]

)
= 0, commutators of colour generators do not contribute to the inter-

ference. As the result, we can write

A(2)
nf = 1

4{T
a, T b}c3c1{T a, T b}c4c2 (A(2),pl

nf +A
(2),npl
nf ) + . . .

= 1
4{T

a, T b}c3c1{T a, T b}c4c2 A
(2)
nf + . . . ,

(2.10)

where ellipses stand for terms that vanish when the interference of A(2)
nf with tree amplitude

is computed. We note that we introduced A(2)
nf = A

(2),pl
nf +A

(2),npl
nf in eq. (2.10). We find

∑
colour

A(0)∗A(2)
nf = 1

4(N2
c − 1) A(0)∗A

(2)
nf . (2.11)

To compute relevant one- and two-loop amplitudes, we need to write them in terms
of invariant form factors and independent Lorentz structures. Since charged weak currents
involve left-handed projectors and, therefore, the Dirac matrix γ5, care is needed when
performing computations in dimensional regularisation. However, since no closed fermion
loops contribute to non-factorisable corrections, we can make use of an anti-commuting
prescription for the γ5 and move left-handed projectors to act on the external massless
fermion states. It then becomes clear that we can consider amplitudes mediated by the
vector current but only account for left-handed massless quarks when constructing physical
amplitudes for the charged current.

– 5 –



J
H
E
P
1
1
(
2
0
2
1
)
1
3
0

There are eleven structures that may contribute to the non-factorisable part of the
amplitude through NNLO QCD. They are3

S1 = ut(p4) u(p2)× u(p3) /p4 u(p1) ,

S2 = ut(p4) /p1 u(p2)× u(p3) /p4 u(p1) ,

S3 = ut(p4) γµ1 u(p2)× u(p3) γµ1 u(p1) ,
S4 = ut(p4) γµ1/p1 u(p2)× u(p3) γµ1 u(p1) ,

S5 = ut(p4) γµ1γµ2 u(p2)× u(p3) γµ1γµ2/p4 u(p1) ,

S6 = ut(p4) γµ1γµ2/p1 u(p2)× u(p3) γµ1γµ2/p4 u(p1) ,

S7 = ut(p4) γµ1γµ2γµ3 u(p2)× u(p3) γµ1γµ2γµ3 u(p1) ,
S8 = ut(p4) γµ1γµ2γµ3/p1 u(p2)× u(p3) γµ1γµ2γµ3 u(p1) ,

S9 = ut(p4) γµ1γµ2γµ3γµ4 u(p2)× u(p3) γµ1γµ2γµ3γµ4/p4 u(p1) ,

S10 = ut(p4) γµ1γµ2γµ3γµ4/p1 u(p2)× u(p3) γµ1γµ2γµ3γµ4/p4 u(p1) ,

S11 = ut(p4) γµ1γµ2γµ3γµ4γµ5 u(p2)× u(p3) γµ1γµ2γµ3γµ4γµ5 u(p1) ,

(2.12)

where ut(p4) denotes the only massive spinor. We note that the above quantities depend
on the polarisation states of external fermions that, in what follows, we will denote by ~λ.
Therefore, we will write Si = Si(~λ), i = 1, . . . , 11.

It is clear that not all eleven structures contribute at leading and next-to-leading order
in the perturbative expansion of the amplitude A. Indeed, at tree level each fermion line
has exactly one Dirac matrix. As the result, the colour-stripped tree-level amplitude for
the u+ b→ d+ t process can be written as

A(0)(~λ) = S3(~λ)
4(t−m2

W )
. (2.13)

Upon squaring A(0)(~λ) and summing over colours and appropriate polarisation states of
external fermions, we find ∑

~λ,colours

|A(0)(~λ)|2 = N2
c

4s(s−m2
t )

(t−m2
W )2 . (2.14)

The one-loop diagrams have at most three γ-matrices on each fermion line and can
therefore be decomposed in terms of the first seven tensor structures. At two loops we need
all eleven structures to express the amplitude in terms of invariant form factors. We write

A
(2)
nf = ~f · ~S, (2.15)

where we introduced vectors ~S and ~f to accommodate eleven tensor structures ~ST =
(S1,S2, . . . ,S11) and eleven form factors, respectively.

To compute the form factors, we calculate eleven quantities

Qi =
∑
~λ

S†i (~λ)A(2)
nf (~λ), i = 1, . . . , 11, (2.16)

3We use slightly different tensor structures as compared to the ones used in ref. [24].
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where the sum runs over all polarisation states of external fermions. We stress that since
form factors do not depend on helicities of external quarks, we do not need to restrict
polarisation states to left-handed ones when computing the sum in eq. (2.16). Hence, we
can use simple formulas to describe density matrices of external quarks∑

λ

u(pi)⊗ u(pi) = /pi, i = 1, 2, 3,
∑
λ

ut(p4)⊗ ut(p4) = /p4 +mt . (2.17)

For each Feynman diagram that contributes to A(2)
nf polarisation sums produce independent

traces for the two fermion lines. Once these traces are computed, the results depend on
scalar products of the loop momenta and external momenta and no external spinors are
present anymore. At this point, one can define families of integrals and use integration-by-
parts identities to express all the relevant integrals through a relatively small set of master
integrals. We describe this point in detail in the next section.

To relate the quantities Qi to form factors, we use the representation of the amplitude
in terms of form factors and write

Qi =
∑
~λ

S†i (~λ)A(2)
nf (~λ) =

∑
j

fj
∑
~λ

S†i (~λ)Sj(~λ) =
∑
j

Cijfj , (2.18)

where the coefficients Cij read

Cij =
∑
~λ

S†i (~λ)Sj(~λ) . (2.19)

Turning to vector notation, we rewrite eq. (2.18) as
~Q = Ĉ ~f . (2.20)

It follows that
~f = Ĉ−1 ~Q . (2.21)

This equation allows us to compute the form factors as linear combinations of the amplitude
projections Qi.

It remains to explain how helicity amplitudes are computed. To this end, we make
use of the fact that the four-momenta p1,2,3,4 are four-dimensional. This allows us to
define polarisation states of the external fermions in the standard way. However, since
the Lorentz indices that appear in eq. (2.12) are d-dimensional, before we can calculate
helicity amplitudes we need to remove all Dirac matrices with (d− 4)-dimensional indices
from these expressions. This can be done if one notices that, to be non-vanishing, a matrix
element between two “four-dimensional” spinors requires an even number of matrices with
(d − 4)-dimensional indices. This observation allows us to decompose the original tensor
structures in terms of their “four-dimensional” counter-parts. We find

S1,...,4 = S(4)
1,...,4 ,

S5,6 = S(4)
5,6 − 2εS(4)

1,2 ,

S7,8 = S(4)
7,8 − 6εS(4)

3,4 ,

S9,10 = S(4)
9,10 − 12εS(4)

5,6 +
(
12ε2 + 4ε

)
S(4)

1,2 ,

S11 = S(4)
11 − 20εS(4)

7 +
(
60ε2 + 20ε

)
S(4)

3 ,

(2.22)
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Name Definition

planar

1
l21, (l1 − p1)2, (l1 + p2)2, (l2 + p3)2, (l1 + l2 − p1 + p3)2,

(l2 − p1 − p2 + p3)2, l22 −m2
W , l1 · p3, l2 · p2

2
l21, l

2
2, (l1 − p1)2, (l1 + p2)2, (l2 + p3)2,

(l2− p1− p2 + p3)2−m2
t , (l1 + l2− p1 + p3)2−m2

W , l1 · p3, l2 · p2

3
l22, (l1 − p1)2, (l2 + p3)2, (l1 + l2 − p1 + p3)2, (l1 + p2)2 −m2

t ,

(l2 − p1 − p2 + p3)2 −m2
t , l

2
1 −m2

W , l1 · p3, l2 · p2

non-planar

1
l22, (l2 − p1)2, (l1 + p3)2, (l1 − l2 + p3)2, (l1 − l2 − p2 + p3)2,

(l1 − p1 − p2 + p3)2, l21 −m2
W , l2 · p2, l2 · p3

2
l21, l

2
2, (l1 − p1)2, (l1 + p2)2, (l2 + p3)2,

(l1 − l2 + p2 − p3)2, (l1 − l2 − p1)2 −m2
W , l2 · p1, l2 · p2

3
l21, l

2
2, (l1 + p3)2, (l1 − l2 + p3)2, (l1 − l2 − p2 + p3)2,

(l1 − p1 − p2 + p3)2 −m2
t , (l2 − p1)2 −m2

W , l2 · p2, l2 · p3

4
l21, l

2
2, (l1 − p1)2, (l1 + p2)2, (l1 − l2 − p1)2,

(l1 − l2 + p2 − p3)2 −m2
t , (l2 + p3)2 −m2

W , l2 · p1, l2 · p2

5
l22, (l1 − p1)2, (l2 + p3)2, (l1 − l2 − p1)2, (l1 + p2)2 −m2

t ,

(l1 − l2 + p2 − p3)2 −m2
t , l

2
1 −m2

W , l2 · p1, l2 · p2

6
l21, l

2
2, (l2 − p1)2, (l1 + p3)2, (l1 − l2 − p2 + p3)2 −m2

t ,

(l1 − p1 − p2 + p3)2 −m2
t , (l1 − l2 + p3)2 −m2

W , l2 · p2, l2 · p3

Table 1. Definitions of the integral families. l1 and l2 are loop momenta while p1, p2, and p3
are external momenta defined in eq. (2.1). The remaining 9 families can be obtained by crossing
p1 ↔ −p3.

where the notation S(4)
1,...,11 refers to the structures shown in eq. (2.12) with all dummy

indices restricted to four dimensions. Thanks to this restriction, computing helicity ampli-
tudes using Lorentz structures that appear on the right-hand side of eq. (2.22) is straight-
forward and unambiguous.

3 Master integrals

To compute the eleven quantities Qi, we classify all contributing integrals into integral
families using REDUZE 2 [36]. We find that we need to introduce 18 integral families but half
of them are crossings of the other half. The integral families can be found in table 1. The
integral reduction is performed analytically using KIRA [37]. The computational expense is
rather modest and the most complicated reduction takes about four days on 20 cores. We
find that 428 master integrals are required to compute the non-factorisable corrections to
single-top production at two loops.

The master integrals are defined as follows

I(a1, . . . , a9) =
∫ ( 2∏

n=1
eεγE

ddln
iπd/2

)
1

Da1
1 Da2

2 · · ·D
a9
9
, (3.1)
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(a) Planar no. 1. (b) Planar no. 2. (c) Planar no. 3.

(d) Non-planar no. 1. (e) Non-planar no. 2. (f) Non-planar no. 3.

(g) Non-planar no. 4. (h) Non-planar no. 5. (i) Non-planar no. 6.

Figure 4. Topologies of integral families. Solid and dashed lines correspond to massive and
massless particles respectively. Blue lines have mass mt while red lines have mass mW . All families
can be crossed (p1 ↔ −p3) giving a total of 18 topologies.

where denominators Di can be deduced from table 1 for each of the integral families. Note
that we absorb a factor of −i(4π)2−εeεγE per loop into the definition of the master integrals.

The calculation of the master integrals needed to compute the non-factorisable correc-
tions to single-top production is complicated as they depend on Mandelstam variables and
on two masses, mW and mt. We believe that, currently, their analytic computation is not
possible. For this reason, we employ the auxiliary mass flow method [21–23] to calculate
them. To this end, we first construct a system of differential equations with respect to
m2
W , solve it starting from the boundary conditions at m2

W → −i∞ as required by the
causality prescription, and move to the physical value mW = 80.379 GeV. To do so, we
require boundary conditions at m2

W → −i∞. Although many integrals in this limit can
be computed, we find that some of the boundary integrals are either hard to calculate
analytically or that analytic results available in the literature are not known to sufficiently
high orders in the ε-expansion. Examples of such integrals are shown in figure 5. We take
a pragmatic approach and calculate these integrals numerically. Having already taken the
limit m2

W → −i∞, we analytically continue m2
t in internal propagators to the complex

– 9 –
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Figure 5. Examples of integrals that appear in the calculation of boundary conditions at m2
W →

−i∞. Solid and dashed lines correspond to massive and massless particles respectively. Blue lines
have mass mt while black lines correspond to massive external particles.

(a) I1. (b) I2. (c) I3. (d) I4.

(e) I5. (f) I6.

(g) I7. (h) I8. (i) I9.

(j) I10. (k) I11. (l) I12.

(m) I13.

(n) I14. (o) I15. (p) I16. (q) I17.

Figure 6. Master integrals for the boundary conditions. Solid and dashed lines correspond to mas-
sive and massless particles respectively. Thick solid lines represent particles with either mass m or
mt depending on whether the line is external or internal. If in some integrals thick solid lines appear
both as external and internal, the mass is mt. Thin solid lines correspond to external particles with
the momentum squared q2 where in general q is a linear combination of external momenta p1,2,3.

plane, as the causality prescriptions differ for internal and external masses. We proceed as
follows. First, we rename the top mass mt that appears in internal propagators to m and
construct a system of differential equations with respect to m2. We solve these equations
starting at the boundary m2 → −i∞ and moving to the physical value m = mt = 173 GeV.
We then use these results as boundary conditions for differential equations with respect to
m2
W at m2

W = −i∞. The integrals shown in figure 6 is the complete set that we used as
boundary conditions either at m2

W = −i∞ or m2 → −i∞. We note that these integrals
can be found in the supplementary material. In compiling this list, we have used results of
refs. [38–42]. We have calculated two of the master integrals (I16 and I17 in figure 6) since
we could not find them in the literature.
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For phenomenology, we need to compute master integrals for many kinematic points
relevant for the description of the process u + b → d + t. To do that, we can simply
solve the differential equations with respect to m2

W starting at m2
W = −i∞ for each pair

of Mandelstam variables s and t. This is the approach used in the previous papers by
two of the present authors [26, 27]. Alternatively, we can compute master integrals at a
few kinematic points by solving differential equations in m2

W and then use these points as
boundary conditions for differential equations with respect to the kinematic invariants s
and t to calculate master integrals at other phase-phase points. We note that a similar
approach has already been used in the literature [43–45]. In the current calculation, we first
generate several reference points in the phase space by solving the m2

W equation. Then we
solve the equations in s or t to move from one of the reference points to the point of interest.

In general there are singularities in differential equations with respect to Mandelstam
invariants; some of these singularities may appear as curves in the physical phase space.
We need to use the correct causality prescription to cross such curves to avoid ending up
on the unphysical sheet of the Riemann surface. One virtue of the auxiliary mass flow
method is that the negative imaginary part of the mass provides a correct way to cross
singular curves involving that mass. Whenever we encounter such a singular curve, we can
move to the complex mass plane using the corresponding equation, then solve the s and t
equations, and finally move back to the physical value of the W boson mass. Evaluating
all 428 master integrals to a precision of twenty digits at a typical phase-space point takes
less than half an hour on a single CPU core.

We perform two checks to verify the integrals computed using the method described
above. First, we calculate the master integrals by directly integrating over Feynman param-
eters using the publicly available program pySecDec [46, 47]. We perform a comparison at
a physical phase-space point, away from kinematic thresholds4 and find good agreement of
our and pySecDec results for the majority of the master integrals. Unfortunately, for some
master integrals required in this paper, in particular non-planar boxes, we were unable to
produce meaningful results with pySecDec.

Second, we have also checked the self-consistency of the differential equations. Indeed,
solving the differential equations in s and t variables to move from one phase-space point to
the next should produce the same results as solving the m2

W -equations and directly moving
from m2

W = −i∞ to the phase-space point of interest. We have checked that for several
points across the phase space, master integrals evaluated in these two different ways agree
up to the target precision of twenty digits.

4 Divergences in non-factorisable contributions to the scattering ampli-
tude

In this section we discuss the ε-pole structure of non-factorisable contributions to the
scattering amplitude for the process u+ b → d+ t. In principle, divergences of scattering
amplitudes at higher orders in perturbative QCD are very well understood, see e.g. refs. [48–
50]. However, since in this paper we only deal with non-factorisable contributions to the

4We use s = (500 GeV)2 and t = −(100 GeV)2.
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two-loop amplitude, the relevant pole structure turns out to be quite special and, in fact,
simpler than the general case.

Indeed, the first point to appreciate is that there are no ultraviolet divergences in non-
factorisable corrections that contribute to the interference of the two-loop amplitude and
the tree-level amplitude in eq. (2.11). Therefore, we only need to use a relation between the
bare and renormalised MS QCD coupling to zeroth order in perturbative QCD. It reads

αbare
s = µ2εSεαs, (4.1)

where Sε = (4π)−ε exp(εγE) and γE ≈ 0.57721 is the Euler-Mascheroni constant. Starting
with the expression for individual Feynman diagrams, where the bare coupling constant
enters, and rewriting it using eq. (4.1), we obtain the amplitude introduced in eq. (2.3).

In general, after renormalisation, the only ε-poles present in the amplitude A are of
infrared origin. To extract them, we follow refs. [48–50]. To this end, we interpret the full
amplitude in eq. (2.3) as a vector in colour space. This amplitude is divergent; if poles of
this amplitude are removed using the MS prescription, we obtain a finite amplitude |F〉
that is also a vector in colour space. Similar to the original amplitude |A〉, |F〉 can also be
expanded in powers of αs. We write

|A〉 = Z|F〉, (4.2)

where Z is an operator that removes infrared poles from the amplitude |A〉. This operator
satisfies the renormalisation group equation

µ
d

dµ
Z = −ΓZ, (4.3)

where Γ is the so-called anomalous dimension operator. It reads [51–56]

Γ({pi},mt, µ) =
∑
(i,j)

T i · T j

2 γcusp(αs)Lij +
∑
(I,j)

T I · T jγcusp(αs)L(m)
Ij

−
∑
(I,J)

1
2T I · T Jγcusp(νIJ , αs) +

∑
i

γi(αs) +
∑
I

γI (αs)

+
∑

(I,J,K)
ifabcT aI T

b
JT

c
KFI (νIJ , νJK , νKI)

+
∑
(I,J)

∑
k

ifabcT aI T
b
JT

c
kf2

(
νIJ , ln

(−σJkvJ · pk
−σIkvI · pk

))
.

(4.4)

Small-letter indices refer to massless external partons whereas capital-letter indices denote
massive external partons [52]. When indices in a sum are shown in parenthesis, as e.g.
(i, j), the summation should be restricted to distinct indices. Also, Lij = ln

(
µ2/(−sij)

)
and L

(m)
Ij = ln (mtµ/(−sIj)). Furthermore, the kinematic invariants that appear in the

above equation are defined as
sij = 2σijpi · pj + iε , (4.5)
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where σij = 1 if both pi and pj are incoming or outgoing and σij = −1 otherwise. Quan-
tities νIJ are cusp angles, vI are four-velocities and T i are colour-charge operators of the
corresponding partons.

The operator Γ in eq. (4.4) describes infrared and collinear divergences of the full
amplitude that includes both factorisable and non-factorisable terms. However, if we focus
on non-factorisable contributions only, the expression for Γ can be simplified. Indeed, we
note that the last two terms in eq. (4.4) are not needed for predicting infrared poles of the
non-factorisable amplitude A(2)

nf since they are proportional to non-abelian colour factors.
As we have explained in section 2, non-abelian colour factors cannot arise in the contribu-
tions that we are interested in. Furthermore, the two sums over the anomalous dimensions
γ(i) and γ(I) cannot contribute to A(2)

nf either since they are related to collinear emissions
that, in physical gauges, should be associated with factorisable parts of the amplitude.

We are left with three sums that involve products of two colour-charge operators in
eq. (4.4). In our case, there are three massless and one massive external particle; hence,
the third sum in eq. (4.4) that should be performed over two distinct massive indices is not
relevant for us and can be discarded. Moreover, the non-factorisable contributions involve
gluon exchanges between different fermion lines. Hence only four products of colour-charge
operators contribute; they are T 1 · T 2, T 1 · T 4, T 2 · T 3, and T 3 · T 4. Finally, the cusp
anomalous dimension is given by [52, 57]

γcusp = 4
(
αs
4π

)
+
[(

268
9 − 4π2

3

)
CA −

80
9 TFnf

](
αs
4π

)2
+O(α3

s) . (4.6)

We note that the O(α2
s) contribution to γcusp contains terms that are either proportional

to a non-abelian colour factor CA or to the number of light fermions nf and none of these
parameters appear in the non-factorisable diagrams. Hence, if we are interested in non-
factorisable corrections only, the CA- and nf -dependent contributions to γcusp should be
discarded. Therefore, we are allowed to replace

γcusp → γnf = 4
(
αs
4π

)
, (4.7)

in the expression for Γ in eq. (4.4).
We define the part of the operator Γ that is relevant for non-factorisable corrections

as Γnf . As a consequence of the above discussion, it reads

Γnf({pi},mt, µ) =
(
αs
4π

)
Γ0,nf({pi},mt, µ), (4.8)

where

Γ0,nf = 4
[
T 1 · T 2 ln

(
µ2

−s− iε

)
+ T 2 · T 3 ln

(
µ2

−u− iε

)
(4.9)

+ T 1 · T 4 ln
(

µmt

m2
t − u− iε

)
+ T 3 · T 4 ln

(
µmt

m2
t − s− iε

)]
. (4.10)

We can solve eq. (4.3) with Γnf in place of Γ order by order in αs, to determine the
operator Znf ; we assume that Znf = 1+O(αs). This solution is much simpler than the one
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for the full amplitude since perturbative running of the coupling constant cannot play a role
in the non-factorisable contribution through O(α2

s). As the result, we find a remarkably
simple expression

Znf = 1 +
(
αs
4π

) Γ0,nf
2ε +

(
αs
4π

)2 Γ0,nf
2

8ε2 +O(α3
s), (4.11)

which emphasizes that through two loops non-factorisable contributions are abelian even if
computed in a non-abelian theory like QCD. We also note that in comparison to infrared
ε-poles in the full amplitude, divergences in non-factorisable contributions are much more
mild and start at 1/ε at O(αs) and at 1/ε2 at O(α2

s). This is a direct consequence of the
fact that collinear divergences cannot appear in a non-factorisable amplitude due to its
very definition. Hence, all infrared poles present in eq. (4.11) are of soft origin.

It is now straightforward to predict ε-poles in non-factorisable contributions to cross
sections. We find

〈A(0)|A(2)
nf 〉 = − 1

8ε2 〈A
(0)|Γ2

0,nf |A(0)〉+ 1
2ε〈A

(0)|Γ0,nf |A
(1)
nf 〉+ 〈A(0)|F (2)

nf 〉,

〈A(1)
nf |A

(1)
nf 〉 = 1

4ε2 〈A
(0)||Γ0,nf |2|A(0)〉+ 1

2ε〈A
(1)
nf |Γ0,nf |A(0)〉

+ 1
2ε〈A

(0)|Γ†0,nf |A
(1)
nf 〉+ 〈F (1)

nf |F
(1)
nf 〉.

(4.12)

We can easily calculate matrix elements of the relevant colour-charge operators. As
an example, consider 〈A(0)|Γ2

0,nf |A(0)〉. The action of colour-charge operators on vectors in
the colour space is defined as follows

〈e|T a
i |d〉 = T aeidi

∏
j 6=i

δejdj
, T aeidi

=

taeidi
final state quark,

−tadiei
initial state quark.

. (4.13)

In the above equation |d〉 and |e〉 are vectors in colour space and the SU(3) generators ta,b

are normalised in a standard way

Tr
(
tatb

)
= 1

2δab . (4.14)

Using these definitions, it is easy to see that for all combinations of colour-charge operators
that appear in Γ2

0,nf the following results holds

〈A(0)|(T iT j)(T kTm)|A(0)〉 = (−1)ni
N2
c − 1
4 . (4.15)

Here ni is the number of indices among i, j, k,m that correspond to initial-state partons.
Hence, we find

〈A(0)|Γ2
0,nf |A(0)〉 = 4(N2

c − 1)|A(0)|2
(

ln
(−u− iε
−s− iε

)
+ ln

(
m2
t − u− iε

m2
t − s− iε

))2

. (4.16)

All other contributions that appear in eq. (4.12) can be computed in a similar way.
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ε−2 ε−1

〈A(0)|A(2)
nf 〉 −229.0940408654660− 8.978163333241640i −301.1802988944764− 264.1773596529505i

IR poles −229.0940408654665− 8.978163333241973i −301.1802988944791− 264.1773596529535i

Table 2. Computed and predicted ε-poles for a typical phase space point. We use s ≈ 104337 GeV2

and t ≈ −5179.68 GeV2 for a comparison.

Predictions for infrared poles of the two-loop non-factorisable contribution to the cross
section provide an important cross check of the correctness of the calculation. As an
example of the level of numerical precision that we have achieved for the ε-poles of the
two-loop non-factorisable amplitude, in table 2 we compare the results of the evaluation
of 〈A(0)|A(2)

nf 〉 with the analytic predictions for its ε-poles. We observe that analytic and
numerical results for ε-poles agree to 15 digits. We also find that the ε-poles of 〈A(1)

nf |A
(1)
nf 〉

are accurate to about 30 digits throughout the phase space since the one-loop integrals
are evaluated to that precision. In appendix A we provide additional numerical results for
non-factorizable contributions, including their finite parts, for further reference.

5 Results

Having computed the two-loop non-factorisable contribution to the scattering amplitude for
single-top production, we can study its impact on the single-top production cross section.
Such an analysis is necessarily incomplete. Indeed, since in this paper we restrict ourselves
to virtual corrections, we will have to consider quantities that depend on how the infrared
singularities are removed. To arrive at the physical result which is independent of the in-
frared regulator, we need to combine virtual corrections computed in this paper with real-
emission non-factorisable contributions. We intend to do this in the future. However, we be-
lieve it is still useful to study the contribution of virtual corrections computed in this paper
to the single-top production cross section. Indeed, as we explained in the previous sections,
we computed master integrals numerically. Hence, it is important to show that our numer-
ical evaluation is sufficiently fast and robust to enable realistic phenomenological studies.

To address this point, we study non-factorisable corrections to the differential cross
section for single-top production at the LHC in the ub-channel. We write

dσubpp→d+t =
∑

i,j=u,b
i 6=j

∫
dx1 dx2 fi(x1)fj(x2) dσ̂ij→d+t(x1, x2) , (5.1)

where fi are parton distribution functions (PDFs) and the superscript indicates that we
only consider the ub initial state. We consider proton-proton collision at 13TeV and use
the NNPDF31_lo_as_0118 parton distribution functions [58, 59]. The renormalisation and
factorisation scales are fixed at µ = mt. The value of the strong coupling constant αs is
provided by the PDF sets. We use mt = 173 GeV, mW = 80.379 GeV, the Fermi constant
GF = 1.16637× 10−5 GeV−2 and set CKM matrix elements to one. Finally, we note that
no kinematic cuts are applied.
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We compute the partonic cross section using the finite amplitude F . We write

σ̂ij→d+t = 1
8N2

c s

∫
d3p3

(2π)3 2E3

d3p4
(2π)3 2E4

〈F|F〉 (2π)4δ(4) (p1 + p2 − p3 − p4) , (5.2)

where the prefactor on the right-hand side includes spin- and colour-averaging factors.
Since we are interested in the non-factorisable two-loop QCD contribution we use

〈F|F〉 = 〈F (0)|F (0)〉+
(
αs
4π

)2 [
〈F (1)

nf |F
(1)
nf 〉+ 2<

{
〈F (0)|F (2)

nf 〉
}]

. (5.3)

As we already mentioned, O(αs) non-factorisable contribution vanishes due to colour con-
servation.

In practice, the evaluation of the non-factorisable contribution to the cross section
proceeds as follows. As a first step we produce a reliable grid for the evaluation of the
leading order cross section as well as top rapidity and p⊥ distributions. Once the grid is
obtained, we randomly draw kinematic points from it, compute 〈F|F〉 and the phase-space
weight for these points and obtain an estimate of the cross section including non-factorisable
corrections.

We find the following result

σubpp→dt =
(

90.3 + 0.3
(
αs(µnf)
0.108

)2)
pb, (5.4)

where the first term is the leading order cross section5 and the second term is the non-
factorisable NNLO contribution. We have indicated in eq. (5.4) that one can change the
scale of the strong coupling constant in non-factorisable corrections independently of the
rest of the calculation. This is so because the non-factorisable corrections appear for the
first time at NNLO so that they cannot compensate the scale variations of leading and next-
to-leading order cross sections. This remark is important as the choice of µnf in eq. (5.4)
has obvious consequences for how large these corrections actually are. We note that the
non-factorisable correction 0.3 pb in eq. (5.4) is the result of the cancellation between the
one-loop squared contribution (0.7 pb) and the interference of the two-loop amplitude with
the leading order one (−0.4 pb).

It follows from eq. (5.4) that non-factorisable corrections are quite small; they change
the leading order cross section by 0.3 percent. However, in spite of being small they are
nearly of the same order as the factorisable corrections to single-top production. Fac-
torisable corrections are supposed to be dominant and indeed change the NLO single-top
production cross section by 1 − 3% percent, depending on the parton distributions used
when comparing predictions at different orders in perturbation theory (see e.g. ref. [17]).
However, as we already mentioned, the appropriate choice of the scale µnf in eq. (5.4) is
unclear at present. Since these corrections always involve exchanges between two quark
lines, it is reasonable to assume that the proper µnf should be related to a typical trans-
verse momentum of the top quark in single-top production, which is about 40 − 60 GeV.

5The leading order cross section has been checked against MadGraph5_aMC@NLO [60].
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Figure 7. The top-quark transverse momentum distribution. In the upper pane, the blue line
corresponds to the leading order distribution whereas the dashed, red line to the distribution with
NNLO QCD non-factorisable corrections included. In the lower pane, the ratio of non-factorisable
corrections to the leading order distribution is presented. See text for further details.

If so, the magnitude of the non-factorisable correction will increase by a factor O(1.5) and
becomes close to half a percent thereby increasing its relative importance.

Having discussed the total cross section we move to kinematic distributions. We begin
with the distribution of the top quark transverse momentum; it is shown in figure 7. In
the upper pane we display the differential cross section at leading order and including non-
factorisable corrections. In the lower pane, we show ratios of the NNLO non-factorisable
correction to the leading order differential cross section as a function of the top quark
transverse momentum.

It follows from figure 7 that non-factorisable corrections exhibit significant p⊥-
dependence. Indeed, they are quite small and negative for p⊥ between 0 and 50GeV.
For larger p⊥, they start growing and reach O(1%) at p⊥ ∼ 100 GeV. It is interesting to
note that the NNLO factorisable correction exhibits a stronger p⊥-dependence [15–17, 61].
This means that the relative importance of factorisable and non-factorisable corrections
changes across the phase space.

In figure 8, we show the impact of non-factorisable corrections on the top-quark rapidity
distribution and on the distribution of the invariant mass of the top quark and the light-
quark jet which for a 2→ 2 process is equivalent to the partonic centre-of-mass energy

√
ŝ.

It follows from figure 8a that non-factorisable corrections to the rapidity distributions are
O(0.3%) for |yt| < 2.5; for larger rapidities corrections quickly become negative. The non-
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ŝ.

Figure 8. Distributions of the absolute value of the top-quark rapidity (left) and the partonic center
of mass energy

√
ŝ (right). Upper panes show leading order distributions as well as distributions with

non-factorisable corrections included. Lower panes show the ratio of non-factorisable corrections to
leading order distributions. See text for further details.

factorisable corrections to the
√
ŝ distribution shown in figure 8b are positive and change

from O(0.6%) at the threshold to O(0.1%) at large partonic centre-of-mass energies.

6 Conclusions

In this paper, we computed the contribution of two-loop non-factorisable virtual corrections
to t-channel single-top production cross section. This is the last missing part of the two-
loop amplitude needed for a complete description of this process through NNLO QCD.
Exact dependence on the top quark mass is retained throughout the calculation.

The calculation reported in this paper involves numerical computation of master in-
tegrals using the auxiliary mass flow method [21–23]. For this reason it is important to
demonstrate that the calculation is sufficiently robust and can be used to produce results
relevant for phenomenology. We have shown this by studying the impact of finite remain-
ders of non-factorisable virtual corrections on the single-top production cross section and
basic kinematic distributions. We have found that non-factorisable corrections are smaller
than, but quite comparable to, the factorisable ones, especially since it is not very clear
which scale for the strong coupling constant should be used when computing them.

We emphasize that phenomenological studies reported in section 5 are necessarily in-
complete since they include only virtual non-factorisable corrections. As we explained
in section 4, these virtual corrections are infrared divergent; hence, to arrive at physical
predictions, we also require non-factorisable real-emission contributions. Given the re-
cent progress with understanding of how fully-differential NNLO QCD computations can
be performed, we believe that it is straightforward to compute the non-factorisable real-
emission corrections to single-top production; we plan to do this in the near future. Finally,
realistic phenomenological studies require an inclusion of top quark decays. Since we com-
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〈A(0)|A(2)
nf 〉(s, t) ε−2 ε−1 ε0

(104337.30,−5179.6797) −229.09404− 8.9781633i −301.18030− 264.17736i 380.61217 + 307.59053i

(51824.679,−16060.887) −8.2985887− 4.8234599i −7.2779624− 22.421862i 42.503179 + 59.484685i

(2728123.9,−69809.245) −5061.2720− 83.997993i 34392.588− 1255.7061i −1507.7598 + 18782.966i

Table 3. Numerical results for non-factorisable corrections at three different kinematic points speci-
fied by (s, t) in units of GeV2. For presentation purposes we have truncated numerical values to eight
digits. We use mW = 80.379 GeV, mt = 173 GeV and µ = mt. See main text for further details.

puted non-factorisable contributions to two-loop helicity amplitudes, it is straightforward
to accommodate top quark decays into our computation as well.
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