
Received: 29 May 2020 Revised: 23 September 2021 Accepted: 27 September 2021

DOI: 10.1002/oca.2811

S P E C I A L I S S U E A R T I C L E

ALADIN-𝜶—An open-source MATLAB toolbox
for distributed non-convex optimization

Alexander Engelmann1 Yuning Jiang2 Henrieke Benner1 Ruchuan Ou1

Boris Houska2 Timm Faulwasser1

1Institute for Automation and Applied
Informatics, Karlsruhe Institute of
Technology, Karlsruhe, Germany
2School of Information Science and
Technology, ShanghaiTech University,
Shanghai, China

Correspondence
Alexander Engelmann, Institute of Energy
Systems, Energy Efficiency and Energy
Economics, TU Dortmund University,
Emil-Figge-Straße 70, 4227 Dortmund,
Germany.
Email: alexander.engelmann@ieee.org

Present address
Alexander Engelmann, Ruchuan Ou and
Timm Faulwasser are currently with the
Institute of Energy Systems, Energy
Efficiency and Energy Economics, TU
Dortmund University, Dortmund,
Germany

Funding information
Baden-Württemberg Stiftung

Abstract
This article introduces an open-source software for distributed and decentral-
ized non-convex optimization named ALADIN-𝛼. ALADIN-𝛼 is a MATLAB
implementation of tailored variants of the Augmented Lagrangian Alternating
Direction Inexact Newton (ALADIN) algorithm. It is user interface is conve-
nient for rapid prototyping of non-convex distributed optimization algorithms.
An improved version of the recently proposed bi-level variant of ALADIN is
included enabling decentralized non-convex optimization with reduced infor-
mation exchange. A collection of examples from different applications fields
including chemical engineering, robotics, and power systems underpins the
potential of ALADIN-𝛼.

K E Y W O R D S

ADMM, ALADIN, decentralized optimization, distributed model predictive control, distributed
optimization, nonconvex optimization, optimal power flow

1 INTRODUCTION

Distributed non-convex optimization is of significant interest in various engineering domains. These domains range from
electrical power systems,1-4 transportation problems,5 via machine learning,6 to distributed control,5,7-9 and distributed
estimation.10-13 However, only few software toolboxes for distributed optimization are currently available. Moreover, these
toolboxes are typically tailored to specific applications and often focus on convex problems. Examples comprise implemen-
tations of the Alternating Direction of Multipliers Method (ADMM) from Boyd et al.;6,* an implementation of ADMM for
consensus problems;† and a tailored implementation of ADMM for Optimal Power Flow (OPF) problems in Guo et al.14,‡

However, there is a lack of multi-purpose software tools for distributed optimization and, to the best of the authors’
knowledge, there are no generic toolboxes for both distributed and decentralized non-convex optimization.

Notice that we distinguish parallel and distributed optimization. In parallel optimization, the main motivations are
computational speed-up or computational tractability, while reducing the amount of communication and the amount
of central coordination is typically of secondary importance (due to shared memory architectures). In distributed opti-
mization, the main goal is to minimize central coordination and communication (distributed memory architectures).
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. Optimal Control Applications and Methods published by John Wiley & Sons Ltd.

Optim Control Appl Meth. 2021;1–19. wileyonlinelibrary.com/journal/oca 1

https://orcid.org/0000-0002-8545-0013
https://orcid.org/0000-0002-7145-0995
https://orcid.org/0000-0002-6892-7406
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Foca.2811&domain=pdf&date_stamp=2021-11-22

2 ENGELMANN et al.

Decentralized optimization additionally requires communication purely on a neighbor-to-neighbor basis. This is espe-
cially relevant in multi-agent settings, where individual entities cooperate to the end of optimization, control, or
estimation—for example, in the context of cyber-physical systems, IoT, or embedded control. Essentially decentralized
optimization softens the requirement of pure neighbor-to-neighbor communication by allowing the global summation
of scalars.15

For parallel optimization efficient structure-exploiting tools exist. Classical tools include the GALAHAD software col-
lection and in particular the LANCELOT algorithm, which is based on augmented Lagrangians and efficiently solves
problems on shared-memory architectures.16 A closed-source parallel interior point software is OOPS.17 The open-source
package qpDUNES is tailored towards the time-wise decomposition of Quadratic Programs (QPs) arising in Model Predic-
tive Control (MPC).18 PIPS is a collection of algorithms solving structured linear programs, QPs, and general Nonlinear
Programming Problems (NLPs) in parallel.19,20 The software HiOp is tailored towards structured and very large-scale
NLPs with few nonlinear constraints. It is based on interior point methods.21,22 Moreover, combining parallel linear
algebra routines (e.g., PARDISO)23 with standard nonlinear programming solvers (e.g., IPOPT)24 also leads to partially
parallel algorithms.25,26 The tools mentioned above are implemented in low-level languages such as C or C++ leading to a
high computational performance. On the other hand, their focus is mainly computational speedup via parallel computing
rather than distributed and decentralized optimization in a multi-agent setting.

Classical distributed and decentralized optimization algorithms based on Lagrangian relaxation such as dual decom-
position or ADMM are guaranteed to converge only for very specific non-convexities typically appearing in the objective
function of the optimization problems commonly at a sublinear/linear rate.27-29 In many multi-agent applications,
however, the non-convexities occur in the constraints. This implies that classical algorithms are not guaranteed to
converge.2,8 One of the few algorithms exhibiting fast convergence guarantees in the non-convex case is the Augmented
Lagrangian Alternating Direction Inexact Newton (ALADIN) algorithm.30 Yet—up to now—a publicly available software
implementation of ALADIN is missing.

The present article introduces an open-source MATLAB implementation of different ALADIN variants in the toolbox
ALADIN-𝛼. It is intended for rapid prototyping and aims at user-friendliness. The only user-provided information are
objective and constraint functions—derivatives and numerical solvers are generated automatically using algorithmic dif-
ferentiation routines and external state-of-the-art NLP solvers. A rich set of examples covering problems from robotics,
power systems, sensor networks, and chemical engineering underpins the application potential of ALADIN-𝛼. Besides
the vanilla ALADIN algorithm, ALADIN-𝛼 covers recent extensions including:

• improved§ decentralization of bi-level ALADIN with essentially decentralized, respectively, decentralized variants of
the Conjugate Gradient method (d-CG) and the Alternating Direction of Multipliers Method (d-ADMM) as inner
algorithms;1,15

• the nullspace ALADIN variant reducing communication and coordination;1

• a parametric implementation enabling distributed MPC, and
• heuristics for Hessian regularization and parameter tuning for improving performance.

Moreover, we provide an implementation of ADMM based on the formulation of Houska et al.,30 which uses the
same interface as ALADIN. This way, comparisons between ALADIN and ADMM are fostered. Moreover, ALADIN-𝛼
can be executed in parallel mode via the MATLAB parallel computing toolbox. This often leads to a substantial speed-up,
for example, in distributed estimation problems. A documentation and many application examples of ALADIN-𝛼 are
available under https://alexe15.github.io/ALADIN.m/. We remark that ALADIN-𝛼 intends to be a rapid prototyping envi-
ronment to enable testing of distributed and decentralized algorithms for non-convex optimization based on ALADIN.
At this stage, computational speed or real-time feasibility are beyond the scope of the toolbox.

The remainder of the article is organized as follows: Section 2 recalls the main ideas of ALADIN and bi-level ALADIN.
In Section 3 we comment on the code structure and data structures and present a simple tutorial example. Numerical
examples from chemical engineering, power systems, and sensor networks illustrate how to use ALADIN-𝛼 in different
application domains in Section 4. The Appendix provides implementation details.

2 PRELIMINARIES

We start with a problem formulation amenable for distributed and decentralized optimization.

https://alexe15.github.io/ALADIN.m/

ENGELMANN et al. 3

2.1 Problem formulation

The ALADIN-𝛼 toolbox solves structured optimization problems of the form

min
x1,…,xns

∑
i∈

fi(xi, pi) (1a)

subject to gi(xi, pi) = 0 |𝜅i,∀i ∈  , (1b)

hi(xi, pi) ≤ 0 |𝛾i,∀i ∈  , (1c)

xi ≤ xi ≤ xi |𝜂i, ∀i ∈  , (1d)∑
i∈

Aixi = b |𝜆, (1e)

where  = {1,… ,ns} is a set of subproblems, fi ∶ Rnxi × R
npi → R are objective functions, gi ∶ Rnxi × R

npi → R
ngi and hi ∶

Rnxi × R
npi → Rnhi are constraint functions of the subproblems i ∈  . Upper and lower bounds xi, xi ∈ Rnxi are considered

separately for numerical efficiency reasons. The matrices Ai ∈ Rnc×nxi combined with b ∈ Rnc model affine coupling con-
straints between the subproblems. The Lagrange multipliers 𝜅 assigned to the constraint g are denoted by g(x) = 0 | 𝜅.
The partially separable formulation of (1) is generic: it contains several problem formulations as special cases such as
consensus or sharing problems. Most NLPs can be reformulated in form of (1) by introducing auxiliary variables.6 We dis-
cuss a particular reformulation example in Section 4. Note that problem (1) allows for parametric problem data captured
in pi ∈ R

npi . This can be useful in MPC or if one would like to solve the same problem for varying parameters.

2.2 Standard and bi-level ALADIN

ALADIN solves convex and non-convex optimization problems (1) in a distributed fashion. A simplified flow chart
of standard ALADIN is sketched in Figure 1. ALADIN combines ideas from ADMM and Sequential Quadratic
Programming (SQP) combining distributed computation from ADMM with fast convergence properties and guarantees
from SQP.30 Similar to ADMM, ALADIN adopts a parallel step—that is, several NLPs are solved locally and in parallel to
minimize local objective functions fi together with augmentation terms

azi,𝜆(xi) = 𝜆⊤Aixi + ‖xi − zi‖2
Σk

i
.

These terms account for the coupling between the subproblems. Here, Σi ∈ Rnxi×nxi ≻ 0 are scaling matrices and zi ∈ Rnxi

encodes the influence of other subproblems. Moreover, local non-convex constraints

i = {xi ∈ R
nxi | gi(xi) = 0, hi(xi) ≤ 0}

are considered in each subproblem i ∈  . Since these subproblem-specific NLPs are similar in ALADIN and ADMM,
both algorithms share the same computational complexity in the local step. Sensitivities such as the gradients of the local
objective ∇fi(xi), Hessian approximations B̃i and Jacobian matrices (∇gi,∇hi) of the local constraints are evaluated locally.
These sensitivities are combined in a sparse coordination QP adopted from SQP methods. Note that the coordination QP is
equality-constrained and strongly convex (under certain regularity assumptions)—thus it can be reformulated as a system
of linear equations. The primal and dual solution vectors of this coordination QP are broadcasted to the local subproblems
and the next ALADIN iteration starts. The algorithm terminates once the norm of the violation of the constraint (1e) and
the stepsize are both sufficiently small.

The main advantage of standard ALADIN over other existing approaches are convergence guarantees and fast local
convergence.30 On the other hand, the coordination QP makes ALADIN distributed but not decentralized. Furthermore,
the coordination step in standard ALADIN is quite heavy and communication intense compared with other algorithms
such as ADMM. Bi-level ALADIN overcomes these drawbacks by constructing a coordination QP of smaller dimen-
sion lowering communication.1 Here, the sensitivities are “condensed” by computing the Schur-complement of the KKT

4 ENGELMANN et al.

F I G U R E 1 Simplified flow chart of standard ALADIN

F I G U R E 2 Simplified flow chart of bi-level ALADIN

systems leading to {Si}, {si}, which are of dimension nc—the number of the coupling variables. The number of cou-
pling variables is typically much smaller than the total number of variables. These Schur-complements are combined in a
lower-dimensional QP, which is solved in a decentralized fashion purely based on neighborhood communication leading
to an overall decentralized algorithm. A simplified flow chart of bi-level ALADIN is shown in Figure 2. Observe that—in
contrast to standard ALADIN (Figure 1)—bi-level ALADIN solves the coordination QP in a decentralized fashion based
decentralized inner algorithms. ALADIN-𝛼 comes with two of these inner algorithms: an essentially decentralized version
of the conjugate gradient (d-CG) method and a decentralized version of ADMM (d-ADMM).15 The variables, which have
to be exchanged in the solution process of the lower-dimensional QP depend on the particular decentralized algorithm at
hand. Although these decentralized inner algorithms do not solve the coordination problem exactly, bi-level ALADIN is
still guaranteed to converge locally under certain bounds on the numerical precision.1 A detailed description of ALADIN
is given in Appendix A.1.

3 THE ALADIN-𝛂 TOOLBOX

This section presents the main contribution of this article: the ALADIN-𝛼 toolbox implementing different ALADIN vari-
ants. We comment on its code structure and data structures. Moreover, we illustrate the usage of ALADIN-𝛼 on a tutorial
example.

ENGELMANN et al. 5

3.1 Code structure

In order to simplify algorithm development and testing we choose a procedural/functional programming style. All core
features are implemented in MATLAB enabling easy rapid-prototyping. The overall structure of run_ALADIN()—the
main function of ALADIN-𝛼—is shown in Figure 3. First, a preprocessing step performs a consistency check of the
input data and provides default options. The createLocSolAndSens() function initializes the local NLPs and
sensitivities for all subproblems i ∈  . We use CasADi31 for algorithmic differentiation and as an interface to many
state-of-the-art NLP solvers such as IPOPT.24 CasADi itself relies on pre-compiled code making function and deriva-
tive evaluation fast. A reuse option avoids the reconstruction of the CasADi problem setup, which enables the use of
saved problem formulations. When the reuse mode is activated (e.g., when ALADIN-𝛼 is used within an MPC loop),
createLocSolAndSens() is skipped, which results in a speed-up especially for large problems.

In the main loop iterateAL(), the function parallelStep() solves the local NLPs and evaluates the Hessian
of the Lagrangian (or its approximation e.g., when BFGS is used), the gradient of the objective, and the Jacobian of the
active constraints (sensitivities) at the NLP’s solution. The set of active constraints is determined by primal active set
detection described in Appendix A.1. Furthermore, a regularization procedure is executed if needed. Moreover, in case
the nullspace method or bi-level ALADIN is used, the computation of a nullspace basis and the computation of the
Schur-complement is performed locally shifting substantial computational burden from the centralized coordination
step to parallelStep(). The function updateParam() computes dynamically changing ALADIN parameters for
numerical stability and speedup.

The coordination QP is constructed in the function createCoordQP(). Different QP formulations are possible:
here we use a variant considering slack variables from Houska et al. for numerical stability.30 Different dense and sparse
solvers for solving the coordination QP are available in solveQP(). Most of them are based on solving the first-order
necessary conditions which is a system of linear equations. Available solvers are the MATLAB linear algebra routines
linsolve(), pinv() and MA57.¶ Using sparse solvers can speed up the computation time substantially. Note that
only MA57 supports sparse matrices. The solver can be specified by setting the solveQP option. In case of conver-
gence problems from remote starting points it can help to reduce the primal-dual stepsize of the QP step by setting the
stepSize in the options to a value smaller than 1. More advanced step-size selection rules are subject to ongoing and
future work.

3.2 Data structures

The data structure for defining problems in form of (1) is a struct called sProb. This data structure col-
lects the objective functions {fi}i∈ and constraint functions {gi}i∈ and {hi}i∈ in cells, which are con-
tained in a nested struct called locFuns (Figure 4). Furthermore, sProb collects lower/upper bounds (1d)
in cells llbx and uubx. The coupling matrices {Ai}i∈ are summarized in AA. One can provide NLP
solvers and sensitivities optionally—in this case the problem construction in createLocSolAndSens() is

F I G U R E 3 Structure of run_ALADIN() in ALADIN-𝛼

6 ENGELMANN et al.

skipped leading to a speedup for large problems. This way, problem setups can be saved and reused. For
a minimal working example of ALADIN-𝛼, one only needs to specify ffi and AA. Optionally one can
provide initial guesseszz0 and initial Lagrange multiplierslam0. The second ingredient for ALADIN-𝛼 is anopts struct,
which specifies the ALADIN variant and algorithm parameters. A full list of options with descriptions can be found in
the code documentation.#

ALADIN-𝛼 returns a struct as output. This struct contains the cell xxOpt with local minimizers {x⋆i }i∈ and the
optimal Lagrange multipliers 𝜆⋆ of the consensus constraints (1e). Moreover the field iter contains information about
the ALADIN iterates such as primal/dual iterates and timers collects timing information. Note that run_ALADIN()
and run_ADMM() have the same function signature in terms of sProb—only the options differ.

3.3 Further features

We describe selected features of ALADIN-𝛼—a full description of all features can be found under||.
Hessian approximations Instead of exact Hessians, approximations such as the Broyden–Fletcher–Goldfarb–

Shanno (BFGS) update can be used either to reduce communication and/or to reduce computational complexity in sen-
sitivity computation. The BFGS Hessian is activated by setting the Hess option either to BFGS for standard BFGS or to
DBFGS for damped BFGS. For details on BFGS we refer to the book of Nocedal and Wright.32

Parametric NLP setup A parametric problem setup, where the objective functions fi and the equality/inequality
constraints gi∕hi depend on parameters pi is possible. This feature is useful in combination with the reuse option
which returns the internally constructed CasADi solvers and derivatives. If one provides a previously constructed
NLP as input argument when calling run_ALADIN(), the problem construction is skipped, which can lead to a
substantial speedup. In an MPC setting, for example, the parameter pi models the changing initial condition in
the MPC loop. Moreover, parametric problem data might be useful for large-scale problems where one would like
to solve an optimization problem for a wide range of parameters. This feature is activated by adding a parame-
ter cell p to sProb and defining the objective/constraints in terms of two inputs, xi and pi. An example illus-
trating how to use these features for distributed predictive control of two mobile robots is given in in the code
repository.**

Parallelization ALADIN-𝛼 also supports parallel computing on multiple processors via the MATLAB parallel
computing toolbox. Here, we exploit the fact that the local NLPs are independent from each other, that is, they can
be solved in parallel. An example for distributed nonlinear estimation with mobile sensor networks can be found in
Subsection 4.3. Parallel computing can be activated by setting the parfor option to true.

Application examples We provide numerical examples highlighting applicability of ALADIN-𝛼 to a wide range of
problems. The code for all these examples is available in the examples∖ folder of ALADIN-𝛼. Furthermore, we pro-
vide descriptions of these examples in the documentation online.†† Beyond the examples of this section, we consider

F I G U R E 4 The sProb data structure for defining problems in form of (1)

T A B L E 1 Application examples coming with ALADIN-𝛼

Example Field examples/... Docs

Chemical reactors Chemical engineering/control chemical_reactor

Mobile robots Robotics/control robots https://alexe15.github.io/ALADIN.m/robotEx/

Optimal power flow Power systems optimal_power_flow https://alexe15.github.io/ALADIN.m/redComm/

Sensor network Estimation sensor_network https://alexe15.github.io/ALADIN.m/ParallelExample/

https://alexe15.github.io/ALADIN.m/robotEx/
https://alexe15.github.io/ALADIN.m/redComm/
https://alexe15.github.io/ALADIN.m/ParallelExample/

ENGELMANN et al. 7

distributed optimal control and the application of ALADIN-𝛼 to test problems from the Hock–Schittkowski test collection
in the online repository.1,33,34 A list of all examples is given in Table 1.

3.4 A tutorial example

Consider the non-convex NLP

min
x1,x2∈R

f (x) = 2 (x1 − 1)2 + (x2 − 2)2 (2a)

subject to −1 ≤ x1 ⋅ x2 ≤ 1.5. (2b)

In order to apply ALADIN-𝛼, we reformulate problem (2) in form of (1). We introduce auxiliary variables y1, y2 with y1 ∈ R

and y2 = (y21 y22)⊤ ∈ R2. We couple these variables again by introducing a consensus constraint
∑

i Aiyi = 0 with A1 = 1
and A2 = (−1 0). Furthermore, we reformulate the objective function f by local objective functions f1(y1) ∶= 2 (y1 − 1)2

and f2(y2) = (y22 − 2)2 with f = f1 + f2. Moreover, reformulate the global inequality constraint (2b) by a local two dimen-
sional constraint h2 = (h21 h22)⊤ with h21(y2) = −1 − y21 y22 and h22(y2) = −1.5 + y21 y22. Combining these reformulations
yields

min
y1∈R,y2∈R2

2 (y1 − 1)2 + (y22 − 2)2 (3a)

subject to − 1 − y21 y22 ≤ 0, −1.5 + y21y22 ≤ 0, (3b)

y1 + (−1 0) y2 = 0, (3c)

which is in form of (1). Note that the solutions to (2) and (3) coincide but (3) is of higher dimension. This reformulation
reveals a general strategy for reformulating problems in form of (1): if there is nonlinear coupling in the objective functions
or the constraints, introduce auxiliary variables and require them to coincide by an additional consensus constraint in
form of (1e).

Solution with ALADIN-𝛼 Next, we transcribe (3) in the struct sProb as illustrated in Subsection 3.2. To
highlight different possibilities of problem setup, we construct the problem in three different ways: a) via the MAT-
LAB symbolic toolbox, b) via the CasADi symbolic framework, and, c) directly via function handles, compare
Figure 5.

After defining objective and constraint functions, all function handles and the coupling matrices Ai are collected in
sProb. We call run_ALADIN()with an empty options struct leading to computation with default parameters. The code
and the resulting ALADIN-𝛼 report after running run_ALADIN() are shown in Figure 6. In the ALADIN-𝛼 report, the
reason for termination and timing information is displayed. Figure 7 shows the output of ALADIN-𝛼 while it is running.
The figures show (in this order) the consensus violation ||Ax − b||∞, the local step sizes ||xk − zk||∞, the step size in the
coordination step ||Δxk||∞, and the changes in the active set. Note that online plotting may consume a substantial amount
of time—hence it is advisable to deactivate online plotting if there is not required for diagnostic reasons.

4 NUMERICAL CASE STUDIES

We present three case studies to shed light on the differences of the implemented algorithms. We consider an optimal
control problem for a chemical reactor, an OPF problem, and a sensor localization example.

4.1 Distributed optimal control of a chemical process system

We consider a discrete-time Optimal Control Problem (OCP) for a chemical process system. This OCP can serve as a basis
for distributed MPC.35-37 The process consists of two Continuous Stirred-Tank Reactors (CSTRs) and a flash separator
shown in Figure 8.38,39 The goal is to steer the system to the optimal setpoint

8 ENGELMANN et al.

F I G U R E 5 Problem setup via MATLAB symbolic (left), CasADi (middle), and function handles (right)

F I G U R E 6 Collection of variables (left) and output of ALADIN-𝛼 (right)

u⊤
s =

(
0 0 0

)
and x⊤s =

(
369.53 3.31 0.17 0.04 435.25 2.75 0.45 0.11 435.25 2.88 0.50 0.12

)
from x(0)⊤ = (360.69 3.19 0.15 0.03 430.91 2.76 0.34 0.08 430.42 2.79 0.38 0.08). After applying a fourth-order
Runge–Kutta scheme for discretization, the dynamics of all CSTRs and the flash separator are given by

xk+1
i = qi(xk

i ,uk
i , zk

i) for i ∈  ,

where qi ∶ Rnxi × Rnui × Rnzi → Rnxi are the dynamics of the ith vessel with  ∶= {1, 2, 3} being the set of vessels. Here,
x⊤i = (xAi, xBi, xCi,Ti) are the states, xAi, xBi, xCi are the concentrations of the reactants A, B and C, and T is the temperature.

ENGELMANN et al. 9

F I G U R E 7 ALADIN-𝛼 iteration plot for tutorial problem (3)

F I G U R E 8 Reactor-separator process

The input ui = Qi denotes the heat-influx of the ith vessel and zi ∶= (xj)j∈N(i) are copied states of all neighbors N(i) ⊆  .
Note that the feed-stream flow rates F10,F20,F3,FR, and Fp are fixed and given. A detailed description of the system
dynamics is given in Christofides et al.39 With the above, we formulate a discrete-time optimal control problem

min
(xk

i , zk
i ,u

k
i),k∈I[1 T]
i∈

∑
i∈

∑
k∈I[1 T]

1
2
(xk

i − xis)⊤Qi(x
k
i − xis) +

1
2
(uk

i − uis)⊤Ri(u
k
i − uk

is) (4a)

subject to xk+1
i − qi(xk

i ,uk
i , zk

i) = 0, x0
i = xi(0) for all k ∈ I[1 T] and for all i ∈  , (4b)

ui ≤ uk
i ≤ ūi, xi ≤ xk

i , for all k ∈ I[1 T] and for all i ∈  , (4c)∑
i∈

Ai
(

xk⊤
i zk⊤

i uk⊤
i
)⊤ = 0 for all k ∈ I[1 T], (4d)

with lower/upper bounds on the inputs u = −u = (5 ⋅ 104 1.5 ⋅ 105 2 ⋅ 105)⊤, and lower bounds on the states xk
i = 0 for all

times k ∈ I[1 T] and all vessels i ∈  . The weighting matrices are Qi = diag(20 103 103 103) and Ri = 10−10. The matrices
Ai are constructed to model the constraint zi ∶= (xj)j∈N(i). The sampling time is Δh = 0.01h and the horizon is T = 0.1 h.
By defining x̃⊤i ∶=

(
xk⊤

i zk⊤
i uk⊤

i

)
k∈I[1 T]

, fi(x̃i) ∶=
∑

k∈I[1 T]

1
2
(xk

i − xis)⊤Qi(x
k
i − xis) +

∑
k∈I[1 T−1]

1
2
(uk

i − uis)⊤Ri(u
k
i − uk

is),
gi(x̃i) ∶=

(
xk+1

i − qi(xk
i ,uk

i , zk
i)
)

k∈I[1 T−1]
, and hi(x̃i) ∶=

(
(ui − uk

i uk
i − ūi xi − xk

i)
⊤
)

k∈I[1 T]
the OCP (4) is in form of (1),

where x̃i corresponds to xi in (1).
Numerical results Figure 10 shows the convergence behavior of standard ALADIN, of bi-level ALADIN with

d-CG as inner algorithm, of bi-level ALADIN with d-ADMM as inner algorithm, and of ADMM over the itera-
tion index k. Specifically, we depict the distance to a minimizer ||xk − x⋆||∞, the consensus violation ||Axk − b||∞,
and the optimality gap |f (xk) − f (x⋆)|. Note that for the considered problem, ADMM is not guaranteed to con-
verge because of the nonlinear dynamics. However, since ADMM is nevertheless used in may works, we use

10 ENGELMANN et al.

(A) (B)

F I G U R E 9 Optimal state/input trajectories computed by ALADIN and ADMM

F I G U R E 10 Numerical performance of ALADIN, bi-level ALADIN, and ADMM for OCP (4)

it as a baseline for comparison.40-42 Bi-level ALADIN with d-ADMM is executed with inner d-ADMM iterations
ninner ∈ {50,100, 200} and bi-level ALADIN with d-CG is executed with 200 inner d-CG iterations. One can see that
ADMM converges fast and there seems to be no benefit when using bi-level ALADIN with ADMM as an inner
algorithm. Basic ALADIN and ALADIN with conjugate gradients converges faster, but one has to solve an expen-
sive coordination step in case of basic ALADIN or to perform many inner iterations in case of bi-level ALADIN
with d-CG.

Figure 9 shows the resulting open-loop input and state trajectories for OCP (4) for ALADIN and ADMM after 20
iterations, and for ADMM after 100 iterations. At first-glance, all trajectories look quite similar. However, small differences
in the input trajectories can be observed. Close inspection of Figure 10 shows that in logarithmic scale the differences
can be large. For example the consensus gap ||Ax − b||∞ is in an order of 10−1 after 20 iterations, which means that the
physical values at the interconnection points have a maximum mismatch of 10−1.

4.2 Distributed optimal power flow

Next, we consider an OPF problem, which is one of the most important optimization problems in power systems.43 Dis-
tributed optimization is particularly important here due to large problem sizes and due to the necessity of a reduced
information exchange between subsystems.

ENGELMANN et al. 11

We consider the IEEE 118-bus test case shown in Figure 11, which comprises about 500 decision variables. A detailed
problem description to match (1) is beyond the scope of this article. Details on this and on the partitioning scheme are
given in Engelmann et al.44

Numerical results Figure 12 shows the performance of all distributed and decentralized optimization algo-
rithms coming with ALADIN-𝛼. Bi-level ALADIN with d-ADMM is executed with inner d-ADMM iterations ninner ∈
{50,100, 200} and bi-level ALADIN with d-CG is executed with 70 inner iterations. One can see that in contrast
to the chemical reactor from the previous subsection ADMM converges quite slowly and requires about 1500 iter-
ations to converge to an acceptable level of accuracy. This underlines that the performance of ADMM is problem
dependent—especially in a setting with non-convex constraints. Basic ALADIN and bi-level ALADIN with d-CG on the

F I G U R E 11 Map of the IEEE 118-bus test system

F I G U R E 12 Numerical performance of ALADIN, bi-level ALADIN and ADMM for the 118-bus OPF problem

12 ENGELMANN et al.

T A B L E 2 Timings for different algorithms converging to||Axk||∞ < 10−3

Bi-level ALADIN

Basic ALADIN d-CG (70) d-ADMM (200) ADMM

2,5 s 2,8 s 4,5 s 16,2 s

other hand converge rapidly and to a high accuracy. For bi-level ALADIN with d-ADMM, the achievable accuracy depends
on the number of inner d-ADMM iterations.

Table 2 shows timing information for all algorithms converging to ||Axk||∞ < 10−3. We use a computer with an
Intel Core i7-8550U processor with 4 cores, 16 GiB of memory, and MATLAB R2020a running Arch Linux with parallel
computing disabled. The initialization phase of the sensitivities is not considered. One can see that there is not much
difference between the ALADIN variants since most of the time is spent in solving the local NLPs and this step is the
same. ADMM is about five times slower since it requires many more iterations and thus many more NLP solutions are
computed.

4.3 Parallel computing for sensor localization

To illustrate parallel computing capabilities of ALADIN-𝛼, we consider a sensor localization problem.30 Let N be
the number of sensors, let 𝜒i = (xi, yi)⊤ ∈ R2 be the unknown position of the ith sensor, let 𝜂i be its estimated posi-
tion, let 𝜉ibe the position of sensor (i + 1) estimated by sensor i, and let 𝜂i be the estimated distance between sensor
i and its neighbors. The measurement error is given by 𝜂i − 𝜒i and is assumed to be Gaussian with covariance
𝜎2

i I2×2 with 𝜎 = 1.5 and zero mean. We define local decision variables xi = (𝜒⊤
i , 𝜉

⊤
i)

⊤ ∈ R4 and obtain the estimation
problem

min
x

∑
i∈

fi(xi)

s.t. hi(xi) ≤ 0 ∀i ∈ {1,… ,N},
𝜉i = 𝜒i+1 ∀i ∈ {1,… ,N},

with

fi(xi) =
1

4𝜎2
i

||𝜒i − 𝜂i||22 + 1
4𝜎2

i+1

||𝜉i − 𝜂i+1||22 + 1
2𝜎2

i+1

(||𝜒i − 𝜉i||22 − 𝜂i
)2
,

and

hi(xi) =
(||𝜒i − 𝜉i||2 − 𝜂i

)2 − 𝜎i
2
,

which is in form of problem (1).
Numerical results We investigate how the runtime of ALADIN-𝛼 can be improved via parallel computing. The

timings are shown in Figure 13 for different numbers of sensors S. One can see that for a very small number of sensors
(less than 10), parallel computing is not very useful as the introduced additional overhead outweighs the benefits of
parallelization. However, for larger number of sensors a speedup factor of more than two can be achieved when running
on four processors.

5 SUMMARY AND FUTURE WORK

This article has introduced one of the first open source toolboxes for distributed non-convex optimization: ALADIN-𝛼. It
is based on the ALADIN algorithm and implements various extensions mostly aiming at reducing communication and

ENGELMANN et al. 13

F I G U R E 13 Computation time for N sensors computed on four cores

coordination overhead. Moreover, ALADIN-𝛼 comes with a rich set of examples from different engineering fields reaching
from power systems over non-linear control to mobile sensor networks.

Although ALADIN-𝛼 performs well for many small to medium-sized problems, we aim at further improving numer-
ical stability in future work by developing more advanced internal auto-tuning routines. Furthermore, developing
distributed globalization strategies for enlarging the set of possible initializations seems important and promising. Code
generation for distributed optimization on embedded devices is another interesting research direction. A possible alter-
native to ALADIN-based schemes for distributed non-convex optimization seem essentially decentralized interior point
methods.15,45

ACKNOWLEDGMENT
We would like to thank Tillmann Mühlpfordt for very helpful discussions and suggestions, and Veit Hagenmeyer for
supporting the development of ALADIN-𝛼. Moreover, Timm Faulwasser acknowledges financial support by the Elite
Program for Postdocs of the Baden-Württemberg Stiftung.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in the repository https://github.com/alexe15/
ALADIN.m/tree/b156d42c64d837865644e2f212d9ae5ead2143d4.

ENDNOTE
* https://web.stanford.edu/~boyd/papers/admm/
†http://users.isr.ist.utl.pt/~jmota/DADMM/
‡https://github.com/guojunyao419/OPF-ADMM
§ The version of bi-level ALADIN given here is improved in the sense that we use improved versions of d-CG and d-ADMM from Engelmann et
al.15 In contrast to a previous version,1 these two algorithms rely on a unified sparsity framework and do not require a precomputation phase
lowering communication demand.

¶ MA57 is interfaced indirectly—we employ the MATLAB LDL factorization, which is based on MA57.
https://alexe15.github.io/ALADIN.m/options/||https://alexe15.github.io/ALADIN.m/options/

** https://alexe15.github.io/ALADIN.m/robotEx/
††https://alexe15.github.io/ALADIN.m/
‡‡We use scaled 2-norms ||x||Σ ∶=

√
x⊤Σx for Σ ≻ 0 here.

§§ Some numerical solvers for (A1) can for example treat box constraints in an efficient way by using projection methods.
¶¶ Note that in contrast to Houska et al.,30 we omit the term 𝜌∕2 in front of the penalization term in (A1) avoiding redundancy. The setting from

Houska et al.30 can be recovered by choosing Σk
i = 𝜌k∕2 I.

If one would use (A3) regardless, the coordination step (A2) would not necessarily produce descent directions destroying the local convergence
properties of ALADIN. In case of zero eigenvalues, Bk

i is singular and the coordination step can not be solved by a standard solver for linear
systems of equations.

https://github.com/alexe15/ALADIN.m/tree/b156d42c64d837865644e2f212d9ae5ead2143d4
https://github.com/alexe15/ALADIN.m/tree/b156d42c64d837865644e2f212d9ae5ead2143d4
https://web.stanford.edu/~boyd/papers/admm/
http://users.isr.ist.utl.pt/~jmota/DADMM/
https://github.com/guojunyao419/OPF-ADMM
https://alexe15.github.io/ALADIN.m/options/
https://alexe15.github.io/ALADIN.m/options/
https://alexe15.github.io/ALADIN.m/robotEx/
https://alexe15.github.io/ALADIN.m/

14 ENGELMANN et al.

ORCID
Alexander Engelmann https://orcid.org/0000-0002-8545-0013
Yuning Jiang https://orcid.org/0000-0002-7145-0995
Timm Faulwasser https://orcid.org/0000-0002-6892-7406

REFERENCES
1. Engelmann A, Jiang Y, Houska B, Faulwasser T. Decomposition of nonconvex optimization via bi-level distributed ALADIN. IEEE Trans

Control Netw Syst. 2020;7(4):1848-1858. doi:10.1109/TCNS.2020.3005079
2. Erseghe T. Distributed optimal power flow using ADMM. IEEE Trans Power Syst. 2014;29(5):2370-2380. doi:10.1109/TPWRS.2014.2306495
3. Kim BH, Baldick R. A comparison of distributed optimal power flow algorithms. IEEE Trans Power Syst. 2000;15(2):599-604. doi:10.1109/

59.867147
4. Dall’Anese E, Zhu H, Giannakis GB. Distributed optimal power flow for smart microgrids. IEEE Trans Smart Grid. 2013;4(3):1464-1475.

doi:10.1109/TSG.2013.2248175
5. Jiang Y, Zanon M, Hult R, Houska B. Distributed algorithm for optimal vehicle coordination at traffic intersections. IFAC-PapersOnLine.

2017;50(1):11577-11582.
6. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J. Distributed optimization and statistical learning via the alternating direction method of

multipliers. Found Trends Mach Learn. 2011;3(1):1-122.
7. Tippett MJ, Bao J. Distributed model predictive control based on dissipativity. AIChE J. 2013;59(3):787-804. doi:10.1002/aic.13868
8. Christofides PD, Scattolini R, de la Pena DM, Liu J. Distributed model predictive control: a tutorial review and future research directions.

Comput Chem Eng. 2013;51:21-41. doi:10.1016/j.compchemeng.2012.05.011
9. Stewart BT, Venkat AN, Rawlings JB, Wright SJ, Pannocchia G. Cooperative distributed model predictive control. Syst Control Lett.

2010;59(8):460-469. doi:10.1016/j.sysconle.2010.06.005
10. Shi Q, He C, Chen H, Jiang L. Distributed wireless sensor network localization via sequential greedy optimization algorithm. IEEE Trans

Signal Process. 2010;58(6):3328-3340. doi:10.1109/TSP.2010.2045416
11. Du X, Engelmann A, Jiang Y, Faulwasser T, Houska B. Distributed state estimation for AC power systems using Gauss-Newton ALADIN.

Proceedings of the 2019 IEEE 58th Conference on Decision and Control (CDC); December 2019:1919-1924; IEEE.
12. Rabbat M., Nowak R.. Distributed optimization in sensor networks. Proceedings of the 3rd International Symposium on Information

Processing in Sensor Networks; 2004:20-27.
13. Kar S, Moura José MF, Ramanan K. Distributed parameter estimation in sensor networks: nonlinear observation models and imperfect

communication. IEEE Trans Inf Theory. 2012;58(6):3575-3605. doi:10.1109/TIT.2012.2191450
14. Guo J, Hug G, Tonguz OK. A case for nonconvex distributed optimization in large-scale power systems. IEEE Tran Power Syst.

2017;32(5):3842-3851. doi:10.1109/TPWRS.2016.2636811
15. Engelmann A, Faulwasser T. Essentially decentralized conjugate gradients; 2021.
16. Gould NI, Orban D, Toint PL. GALAHAD, a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization. ACM Trans

Math Softw. 2003;29(4):353-372. doi:10.1145/962437.962438
17. Gondzio J, Grothey A. Parallel interior-point solver for structured quadratic programs: application to financial planning problems. Ann

Operat Res. 2007;152(1):319-339. doi:10.1007/s10479-006-0139-z
18. Frasch JV, Sager S, Diehl M. A parallel quadratic programming method for dynamic optimization problems. Math Program Comput.

2015;7(3):289-329. doi:10.1007/s12532-015-0081-7
19. Chiang N, Petra CG, Zavala VM. Structured nonconvex optimization of large-scale energy systems using PIPS-NLP. Proceedings of the

2014 Power Systems Computation Conference 2014:1-7
20. Lubin M, Petra CG, Anitescu M, Zavala V. Scalable stochastic optimization of complex energy systems. Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and Analysis SC’11; 2011:1-10; IEEE.
21. Petra CG. A memory-distributed quasi-newton solver for nonlinear programming problems with a small number of general constraints.

J Parallel Distrib Comput. 2019;133:337-348. doi:10.1016/j.jpdc.2018.10.009
22. Petra CG, Chiang N, Anitescu M. A structured quasi-newton algorithm for optimizing with incomplete Hessian information. SIAM

J Optim. 2019;29(2):1048-1075. doi:10.1137/18M1167942
23. Schenk O, Gärtner K, Fichtner W, Stricker A. PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor

device simulation. Future Gener Comput Syst. 2001;18(1):69-78. doi:10.1016/S0167-739X(00)00076-5
24. Andreas W, Biegler Lorenz T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear program-

ming. Math Program. 2006;106(1):25-57. doi:10.1007/s10107-004-0559-y
25. Curtis FE, Huber J, Schenk O, Wächter A. A note on the implementation of an interior-point algorithm for nonlinear optimization with

inexact step computations. Math Program. 2012;136(1):209-227. doi:10.1007/s10107-012-0557-4
26. Kourounis D, Fuchs A, Schenk O. Toward the next generation of multiperiod optimal power flow solvers. IEEE Trans Power Syst.

2018;33(4):4005-4014. doi:10.1109/TPWRS.2017.2789187
27. Wang Y, Yin W, Zeng J. Global convergence of ADMM in nonconvex nonsmooth optimization. J Sci Comput. 2019;78(1):29-63.

doi:10.1007/s10915-018-0757-z
28. Hong M, Luo Z-Q, Razaviyayn M. Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems.

SIAM J Optim. 2016;26(1):337-364. doi:10.1137/140990309

https://orcid.org/0000-0002-8545-0013
https://orcid.org/0000-0002-8545-0013
https://orcid.org/0000-0002-7145-0995
https://orcid.org/0000-0002-7145-0995
https://orcid.org/0000-0002-6892-7406
https://orcid.org/0000-0002-6892-7406
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0

ENGELMANN et al. 15

29. He B, Yuan X. On the O(1/n) convergence rate of the Douglas–Rachford alternating direction method. SIAM J Numer Anal.
2012;50(2):700-709. doi:10.1137/110836936

30. Houska B, Frasch J, Diehl M. An augmented Lagrangian based algorithm for distributed non-convex optimization. SIAM J Optim.
2016;26(2):1101-1127. doi:10.1137/140975991

31. Andersson JAE, Gillis J, Horn G, Rawlings JB, Diehl M. CasADi: a software framework for nonlinear optimization and optimal control.
Math Program Comput. 2019;11(1):1-36. doi:10.1007/s12532-018-0139-4

32. Nocedal J, Wright S. Numerical Optimization. Springer Science & Business Media; 2006.
33. Hock W, Schittkowski K. Test examples for nonlinear programming codes. J Optim Theory Appl. 1980;30(1):127-129.
34. Mehrez MW, Sprodowski T, Worthmann K, et al. Occupancy grid based distributed MPC for mobile robots. Proceedings of the 2017

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2017:4842-4847; IEEE.
35. Rawlings JB, Mayne DQ, Diehl M. Model Predictive Control: Theory, Computation, and Design. 2nd ed. Nob Hill Publishing;

2019.
36. Stewart BT, Wright SJ, Rawlings JB. Cooperative distributed model predictive control for nonlinear systems. J Process Control.

2011;21(5):698-704. doi:10.1016/j.jprocont.2010.11.004
37. Müller MA, Allgöwer F. Economic and distributed model predictive control: recent developments in optimization-based control. SICE

J Control Measur Syst Integr. 2017;10(2):39-52. doi:10.9746/jcmsi.10.39
38. Cai X, Tippett M, Xie L, Bao J. Fast distributed MPC based on active set method. Comput Chem Eng. 2014;71:158-170.
39. Christofides PD, Liu J, De La Pena DM. Networked and Distributed Predictive Control: Methods and Nonlinear Process Network Applications.

Springer Science & Business Media; 2011.
40. Bestler A, Graichen K. Distributed model predictive control for continuous-time nonlinear systems based on suboptimal ADMM. Opt

Control Appl Methods. 2019;40(1):1-23. doi:10.1002/oca.2459
41. Tang W, Daoutidis P. Distributed nonlinear model predictive control through accelerated parallel ADMM. Proceedings of the 2019

American Control Conference (ACC); 2019:1406-1411; Philadelphia.
42. Farokhi F, Shames I, Johansson KH. Distributed MPC via dual decomposition and alternative direction method of multipliers. In: Maestre

JM, Negenborn RR, eds. Distributed Model Predictive Control Made Easy. Springer; 2014:115-131.
43. Frank S, Rebennack S. An introduction to optimal power flow: theory, formulation, and examples. IIE Trans. 2016;48(12):1172-1197.

doi:10.1080/0740817X.2016.1189626
44. Engelmann A, Jiang Y, Mühlpfordt T, Houska B, Faulwasser T. Toward distributed OPF using ALADIN. IEEE Trans Power Syst.

2019;34(1):584-594. doi:10.1109/TPWRS.2018.2867682
45. Engelmann A, Stomberg G, Faulwasser T. Toward decentralized interior point methods for control; 2021.
46. Bertsekas DP. Nonlinear Programming. Athena Scientific; 1999.

How to cite this article: Engelmann A, Jiang Y, Benner H, Ou R, Houska B, Faulwasser T. ALADIN-𝛼—An
open-source MATLAB toolbox for distributed non-convex optimization. Optim Control Appl Meth. 2021;1-19. doi:
10.1002/oca.2811

APPENDIX A. IMPLEMENTATION DETAILS

The main ALADIN algorithm is based on Houska et al.,30 but additional practical considerations have been taken into
account improving efficiency and numerical stability.

A.1 ALADIN in Detail
Standard ALADIN is summarized in Algorithm 1. Each ALADIN iteration executes three main steps: Step 1
solves local NLPs (A1) for fixed and given values for primal iterates zk

i and dual iterates 𝜆k in parallel. The
parameter sequences {Σk

i } ≻ 0 and {Δk} ≻ 0 are user-defined—details are described in Subsection A.4.‡‡ Note that
the equality constraints (1b) and box constraints (1d) are not explicitly detailed in Houska et al.30—we con-
sider them separately here for numerical efficiency reasons.§§ Step 2 of Algorithm 1 computes sensitivities such
as the gradients of the objective functions gk

i = ∇fi(xk
i) and positive definite approximations of the local Hessian

matrices

http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0
http://dx.doi.org/0

16 ENGELMANN et al.

Algorithm 1. Augmented Lagrangian Alternating Direction Inexact Newton (ALADIN)

Initialization: Initial guess
(
{z0

i }i∈ , 𝜆
0), choose {Σk

i } ≻ 0, {Δk} ≻ 0, 𝜏 > 0, 𝜖 > 0.
Repeat:

1. Parallelizable step: For each i ∈  , solve

min
xi

fi(xi) + (𝜆k)⊤Aixi +
‖‖‖xi − zk

i
‖‖‖2

Σk
i

subject to gi(xi) = 0, hi(xi) ≤ 0, and xi ≤ xi ≤ xi. (A1)

2. Termination criterion: If ‖‖‖∑i∈ Aixk
i − b‖‖‖ ≤ 𝜖 and ‖‖xk − zk‖‖ ≤ 𝜖, return x⋆ = xk.

3. Sensitivity evaluation: Compute and communicate gradients,Hessian approximations and constraint Jacobians
according to (A3) and (A5), respectively.

4. Consensus step: Solve the coordination QP

min
Δx,s

∑
i∈

1
2
Δx⊤i B̃k

i Δxi+
(

gk
i
)⊤ Δxi + (𝜆k)⊤s + ‖s‖2

Δk

subject to
∑
i∈

Ai(xk
i + Δxi) − b = s | 𝜆QPk, (A2)

Ck
i Δxi = 0 ∀i ∈  ,

and return Δxk and 𝜆QPk.
5. Line search: Update primal and dual variables by

zk+1 ← xk + 𝛼kΔxk 𝜆k+1 ← 𝜆k + 𝛼k(𝜆QPk − 𝜆k),

with 𝛼k = 1 for a full-step variant.Update Σk
i and Δk.

B̃k
i ≈ Bk

i = ∇2
xx

{
fi(xk

i) + 𝜅k⊤
i gi(xi) +

(
𝛾k⊤

i 𝜂k⊤
i
)

j∈k
i

(
h̃j(xk

i)
)

j∈k
i

}
, (A3)

where

A
k
i ∶=

{
j ∈ {1,… ,nhi + 2nxi} | (h̃(xk)

)
j > −𝜏

}
is the set of active inequality constraints in subproblems i ∈  and 𝜏 > 0 is a user-defined parameter which can be
specified via the actMargin option. Moreover, we define combined inequality constraints

h̃(x)⊤ ∶=
(

h(x)⊤ (xi − xi)⊤ (xi − xi)⊤
)
, (A4)

and Jacobians of active constraints

Ck⊤
i ∶=

(
∇gi(xk

i)
⊤
(
∇h̃j(xk

i)
)⊤

j∈A
k
i

)
(A5)

for all i ∈  . With this information, Step 4 of Algorithm 1 solves an equality constrained quadratic program
(A2) serving as a coordination problem. Step 5 of Algorithm 1 updates zk and 𝜆k based on the solution to
(A2). To achieve global convergence guarantees, the step size parameter 𝛼 ∈ (0 1] has to be properly chosen
by a globalization routine. Designing suitable distributed globalization routines is subject of ongoing and future
work—we use the full step variant 𝛼 = 1. A smaller stepsize can be specified via the stepSize option which
might stabilize ALADIN-𝛼 for certain problems. Note that time-varying parameter sequences {Δk} and {Σk

i } with
Σk

i ,Δ
k ≻ 0 might accelerate convergence of ALADIN in practice. Heuristic routines for doing so are described

in Subsection A.4.¶¶

ENGELMANN et al. 17

T A B L E A1 Centralized QP solvers interfaced in ALADIN-𝛼

Name MA57 pinv linsolve

Algorithm Multifrontal LDL Based on SVD LU

Sparse Yes Yes No

A.2 Solving the Coordination QP
The Hessian approximations Bk

i are assumed to be positive definite. Hence, problem (A2) is a strictly convex
equality-constrained QP which can be solved via the first order optimality conditions (if Ck

i has full row rank) which
is a system of linear equations. There are two possibilities for solving (A2) numerically: either by centralized linear
algebra routines or by iterative methods. For centralized computation, several solvers are interfaced in ALADIN-𝛼 which
can be specified via the solveQP option. The available solvers are summarized in Table A1. Note that not all solvers sup-
port sparse matrices. MA57 usually performs very well in practice—both in terms of speed and robustness. The second
approach to solve (A2) is via iterative and decentralized routines such as d-CG and d-ADMM. Details of these decentralized
routines are described in Subsection A.6.

A.3 Hessian Approximations
As Bk

i may have zero eigenvalues or may even be indefinite if evaluated via (A3), special care has to be taken.## Here we
use a heuristic from Nocedal and Wright32—other heuristics are possible and might accelerate convergence. Our heuristic
“flips” the sign of the negative eigenvalues (if there are any) and modifies the zero eigenvalues to a small positive number 𝛿.
The intuition here is that the stepsize in the direction of negative curvature becomes smaller the “more negative” the
curvature is. For doing so we compute the eigendecomposition Bk

i = ViΛiV⊤
i for each subproblem i locally, where Λi is

a matrix with the eigenvalues of Hi on its main diagonal and Vi is the matrix eigenvectors. Hence, the regularization
reads

Λ̃jj ∶=
⎧⎪⎨⎪⎩
|Λjj| if Λjj < −𝛿,
𝛿 if |Λjj| ∈ (−𝛿, 𝛿),
Λjj else,

and B̃k
i ∶= ViΛ̃iV⊤

i ,

with 𝛿 = 10−4. Regularization can be activated by the option reg and 𝛿 can be specified via regParam.
As an alternative to exact Hessians with regularization, one can use the BFGS update for successively approximat-

ing the exact Hessian based on the gradient of the Lagrangian. This has the advantage that only the gradient of the
Lagrangian has to be communicated (which is a vector) instead of the Hessian (which is a matrix). A detailed descrip-
tion on how to use BFGS within ALADIN can be found in Engelmann et al.44 The BFGS formula can be activated by
the setting the option Hess to BFGS or to DBFGS for damped BFGS. The advantage of damped-BFGS is that it guar-
antees positive-definiteness of Bk

i regardless of the positive-definiteness of the exact Hessian at the current iterate. Note

that in case the nullspace method is used (cf. Subsection A.5), the regularization is done for the reduced Hessian B
k
i

instead of Bk
i .

A.4 Scaling Matrices
A simple heuristic for the sequences {Σk

i } ≻ 0 and {Δk} ≻ 0 is to start with certain (usually diagonal) initial matrices
Σ0

i ,Δ
0 and to multiply them by a factor rΔ, rΣ > 1 in each iteration, that is,

Σk+1
i =

{
rΣΣk

i if ||Σi||∞ < 𝜎

Σk
i otherwise

and Δk+1 =

{
rΔΔk if ||Δ||∞ < 𝛿

Δk otherwise.
(A6)

These routines have been successfully used in previous works.1,44 An alternative for choosing {Δk} is based on the
consensus violation for each individual row in (1e). The idea here is to increase the corresponding Δk

ii to drive the cor-
responding consensus violation to zero. This technique is common in algorithms based on augmented Lagrangians,
compare Bertsekas.46(chap. 4.2.2). Mathematically this means that we choose

18 ENGELMANN et al.

Δk+1
cc =

⎧⎪⎨⎪⎩
𝛽 Δk

cc if |||(∑i∈ Aixk
i − b

)
c
||| > 𝛾

|||(∑i∈ Aixk−1
i − b

)
c
|||

Δk
cc if |||(∑i∈ Aixk

i − b
)

c
||| ≤ 𝛾

|||(∑i∈ Aixk−1
i − b

)
c
||| for all c ∈ 1,… ,nc, (A7)

with 𝛾 ∈ (0 1) and 𝛽 > 1. In ALADIN-𝛼 we choose 𝛽 = 10 and 𝛾 = 0.25. This rule can be activated by the option DelUp
and is able to accelerate convergence of ALADIN-𝛼 substantially in some cases.

Note that the above heuristics such as regularization or parameter updates do not interfere with the fast local
convergence properties of ALADIN-𝛼. They are required for guaranteeing fast local convergence since they ensure
that the assumptions made in the local convergence proof of ALADIN such as the positive-definiteness of B̃k

i are
satisfied.30

A.5 The Nullspace Method
The nullspace method can be activated to reduce the dimensionality of the coordination QP (A2), thus reducing
communication and computation in the coordination step. The idea is to parameterize the nullspace of the active con-
straints null(Ck

i) ∶= {xi ∈ Rnxi | Ck
i xk

i = 0} by null(Ck
i) = Zk

i Δvi, where Zk
i ∈ R

xxi×(nxi−|Ak
i |) is a matrix whose columns are

a basis of null(Ck
i). Note that Ck

i Zk
i = 0 by definition of the nullspace. Using this parametrization, (A2) can be written

as

min
Δv,s

∑
i∈

{1
2
Δv⊤i B

k
i Δvi + gk⊤

i Δvi

}
+ (𝜆k)⊤s + ||s||2

Δk

subject to
∑
i∈

Āk
i (v

k
i + Δvi) − b = s | 𝜆QPk, (A8)

where B
k
i = Zk⊤

i Bk
i Zk

i ∈ R(nxi−|Ak
i |)×(nxi−|Ak

i |), gk
i = Zk⊤

i gk
i ∈ R(nxi−|Ak

i |), and Āk
i = AiZk

i ∈ R
nc×(nxi−|Ak

i |). Note that Āk
i has an

iteration index k and changes during the iterations since zk
i changes. Similar to the full-space approach, regulariza-

tion from Subsection A.3 is used (if it is activated via the option reg) yielding a positive definite B
k
i . The nullspace

method can be used by activating the option redSpace. Notice that the required communication between the
subproblems and the coordinator is reduced by twice the number of equality constraints and active inequality con-
straints. Thus, the communication reduction can be large for problems with many constraints. Furthermore, the
coordination QP (A2) is in general less expensive to solve since (A8) is of smaller dimension than (A2). Indeed,
(A8) is strongly convex under suitable assumptions which (A2) is not necessarily.1 While computing nullspaces
is numerically expensive (due to singular-value decomposition), it is done parallel in our context—thus fostering
parallelization.

A.6 Bi-level ALADIN
Bi-level ALADIN is an extension of ALADIN to further reduce dimensionality of the coordination QP (A8). Moreover, it
enables the use of decentralized ADMM or essentially decentralized conjugate gradients as inner algorithms leading to
an overall (essentially) decentralized ALADIN variant.

We briefly recall the main idea of bi-level ALADIN. Under the assumptions from Engelmann et al.,1 evaluating the
KKT conditions for (A8) yields

B
k
Δv + gk + Āk⊤𝜆QP = 0, (A9a)

Āk(vk + Δv) − b − 1
2
(
Δk)−1(𝜆QP − 𝜆k) = 0, (A9b)

where B
k
, Āk, and Δvk are block-diagonal concatenations of B

k
i , Āk

i , and Δvk
i . Using the Schur-complement reveals that

(A9) is equivalent to solving the system of linear equations(∑
i∈

Sk
i +

1
2
(
Δk)−1

)
𝜆QP =

∑
i∈

sk
i +

(1
2
(
Δk)−1

𝜆k − b
)
, (A10)

ENGELMANN et al. 19

where Sk
i ∶= Āk

i B
k−1

i Āk⊤
i ≻ 0 are local Schur-complement matrices and sk

i ∶= Āk
i

(
vk

i − B
k−1

i gk
i

)
are local

Schur-complement vectors. The key observation for decentralization is that the matrices Sk
i and vectors sk

i inherit the
sparsity pattern of the consensus matrices Ai, that is, zero rows in Ai yield zero rows/columns in Sk

i and sk
i . Intuitively

speaking, each row/column of Sk
i corresponds to one consensus constraint (row of (1e)) and only the subproblems which

“participate” in this constraint have non-zero rows in their corresponding Si. This sparsity can be exploited to solve
(A10) in a decentralized fashion. Examples for such algorithms are decentralized ADMM or an essentially decentralized
conjugate gradients algorithm presented in Engelmann and Faulwasser.15

