
Algorithmica
https://doi.org/10.1007/s00453-021-00884-x

Level-Planar Drawings with Few Slopes

Guido Brückner1 · Nadine Krisam1 · Tamara Mchedlidze2

Received: 24 December 2019 / Accepted: 12 October 2021
© The Author(s) 2021

Abstract
We introduce and study level-planar straight-line drawings with a fixed number λ of
slopes. For proper level graphs (all edges connect vertices of adjacent levels), we give
an O(n log2 n/ log log n)-time algorithm that either finds such a drawing or determines
that no such drawing exists.Moreover, we consider the partial drawing extension prob-
lem, where we seek to extend an immutable drawing of a subgraph to a drawing of
the whole graph, and the simultaneous drawing problem, which asks about the exis-
tence of drawings of two graphs whose restrictions to their shared subgraph coincide.
We present O(n4/3 log n)-time and O(λn10/3 log n)-time algorithms for these respec-
tive problems on proper level-planar graphs. We complement these positive results
by showing that testing whether non-proper level graphs admit level-planar drawings
with λ slopes is NP-hard even in restricted cases.

Keywords Graph drawing · Level planarity · Constrained drawings

1 Introduction

Directed graphs explaining hierarchy naturally appear in multiple industrial and
academic applications. Some examples include PERT diagrams, UML component
diagrams, text edition networks [1], text variant graphs [26], phylogenetic and neural
networks. In these, and many other applications, it is essential to visualize the implied
directed graph so that the viewer can perceive the hierarchical structure it contains.

An extended abstract of this paper appeared in the proceeding of the International Symposium on Graph
Drawing and Network Visualization 2019 [9]. The present extended version contains the proof of
NP-hardness of the considered problem, which has not appeared in the conference version.

B Guido Brückner
brueckner@kit.edu

Tamara Mchedlidze
t.mtsentlintze@uu.nl

1 Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

2 Utrecht University, Utrecht, Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-021-00884-x&domain=pdf
http://orcid.org/0000-0002-8867-2244

Algorithmica

By far the most popular way to achieve this is to apply the Sugiyama framework—a
generic network visualization algorithm that results in a drawing where each vertex
lies on a horizontal line, called layer, and each edge is directed from a lower layer to
a higher layer [21].

The Sugiyama framework consists of several steps: elimination of directed cycles
in the initial graph, assignment of vertices to layers, vertex ordering and coordinate
assignment. During each of these steps several criteria are optimized, by leading to
more readable visualizations, see e.g. [21]. In this paper we concentrate on the last
step of the framework, namely coordinate assignment. Thus, the subject of our study
are level graphs defined as follows. Let G = (V , E) be a directed graph. A k-level
assignment of G is a function � : V → {1, 2, . . . , k} that assigns each vertex of G to
one of k levels. We refer to G together with � as to a k-level graph (or level graph for
short). The length of an edge (u, v) is defined as �(v)−�(u). We say thatG is proper if
all edges have length one. The level graph shown in Fig. 1a is proper, whereas the one
shown in (b) is not. For a non-proper level graph G there exists a proper subdivision
obtained by subdividing all edges with length greater than one which result in a proper
graph.

A level drawing Γ of a level graph G maps each vertex v ∈ V to a point on the
horizontal line with y-coordinate �(v) and a real x-coordinate Γ (v), and each edge
to a y-monotone curve between its endpoints. In particular, the levels are equispaced
apart.A level drawing is called level-planar if no two edges intersect except in common
endpoints. It is straight-line if the edges are straight-line segments. A level drawing
of a proper (subdivision of a) level graph G induces a total left-to-right order on the
vertices of a level. We say that two drawings are equivalent if they induce the same
order on every level. An equivalence class of this equivalence relation is an embedding
of G. We refer to G together with an embedding to as embedded level graph G. The
third step of Sugiyama framework, vertex ordering, results in an embedded level graph.

The general goal of the coordinate assignment step is to produce a final visualiza-
tion while further improving its readability. The criteria of readability that have been
considered in the literature for this step include straightness and steepness of the edges
[21].Herewe study theproblemof coordinate assignment stepwith boundednumber of
slopes. The slope of an edge (u, v) inΓ is defined as (Γ (v)−Γ (u))/(�(v)−�(u)). For
proper level graphs it is �(v)−�(u) = 1, the slope of (u, v) is then simplyΓ (v)−Γ (u).
We restrict our study to drawings in which all slopes are non-negative; such drawings
can be transformed into drawings with negative slopes by shearing; see Fig. 1.

A level drawing Γ is a λ-slope drawing if all slopes in Γ appear in the
set {0, 1, . . . , λ − 1}.

We study embedding-preserving straight-line level-planar λ-slope drawings, or
λ-drawings for short and refer to the problem of finding these drawings as λ-
Drawability. Since the possible edge slopes in a λ-drawing are integers all vertices
lie on the integer grid.

Related Work The number of slopes used for the edges in a graph drawing can be
seen as an indication of the simplicity of the drawing. For instance, the measure
edge orthogonality, which specifies how close a drawing is to an orthogonal drawing,
where edges are polylines consisting of horizontal and vertical segments only, has

123

Algorithmica

(b) 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

2 3 4 5

0 1 2 3 4 5

6 7 8

6 7 8

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

11 12

11 12

(a)

Fig. 1 Shearing drawings to change the slopes. In (a), the left drawing with slopes 0 and 1 is transformed
into the right orthogonal drawing, i.e., one with slopes −1 and 1. In (b), the left drawing with slopes 0, 1
and 2 is transformed into a drawing with slopes −1, 0 and 1

been proposed as a measure of aesthetic quality of a graph drawing [40]. In a similar
spirit, Kindermann et al. studied the effect reducing the segment complexity on the
aesthetics preference of graph drawings and observed that in some cases people prefer
drawings using lower segment complexity [29]. More generally, the use of few slopes
for a graph drawing may contribute to the formation of “Prägnanz” (“good figure” in
German) of the visualization, that accordingly to the Gestalt law of Prägnanz, or law
of simplicity, contributes to the perceived quality of the visualizations. This design
principle often guides the visualization of metro maps. See [37] for a survey of the
existing approaches, most of which generate octilinear layouts of metro maps, and
[36] for a recent model for drawing more general k-linear metro maps.

Level-planar drawing with few slopes have not been considered in the literature
but drawings of undirected graphs with few slopes have been extensively studied.
The planar slope number of a planar graph G is the smallest number s so that G
has a planar straight-line drawing with edges of at most s distinct slopes. Special
attention has been given to proving bounds on the (planar) slope number of undirected
graph classes [4,13,14,16,17,27,28,31,32,38]. Determining the planar slope number
is hard in the existential theory of reals [23]. The slope number has also been studied
for upward planar drawings, that is, drawings of directed graphs where each edge is
drawn as a y-monotone curve (but, unlike with level planarity, the y-coordinate of the
vertices is not prescribed) [5,15].

Several graph visualization problems have been considered in the partial and simul-
taneous settings. In the partial drawing extension problem, one is presented with a
graph and an immutable drawing of some subgraph thereof. The task is to determine
whether the given drawing of the subgraph can be completed to a drawing of the
entire graph. The problem has been studied for the planar setting [33,39] and also the
level-planar setting [10]. In the simultaneous drawing problem, one is presented with
two graphs that may share some subgraph. The task is to draw both graphs so that the
restrictions of both drawings to the shared subgraph are identical. We refer the reader
to [6] for an older literature overview. The problem has been considered for orthogonal
drawings [2] and level-planar drawings [3]. Up to our knowledge, neither partial nor
simultaneous drawings have been considered in the restricted slope setting.

Contribution We introduce and study the λ-Drawability problem. To solve this
problem for proper level graphs, we introduce two models. In Sect. 3 we describe
the first model, which uses a classic integer-circulation-based approach. This model

123

Algorithmica

allows us to solve the λ-Drawability in O(n log3 n) time and obtain a λ-drawing
within the same running time if one exists. In Sect. 4, we describe the second distance-
based model. It uses the duality between flows in the primal graph and distances in the
dual graph and allows us to solve the λ-Drawability in O(n log2 n/ log log n) time.

We also address the partial and simultaneous settings. The classic integer-
circulation-based approach can be used to extend connected partial λ-drawings
in O(n log3 n) time. In Sect. 5, we build on the distance-based model to extend
not-necessarily-connected partial λ-drawings in O(n4/3 log n) time, and to obtain
simultaneous λ-drawings in O(λn10/3 log n) time if they exist.

We complement these algorithmic results in Sect. 6 with a proof that 2-
Drawability is NP-hard even for biconnected graphs where all edges have length
one or two, and then finish with some concluding remarks in Sect. 7.

2 Preliminaries

Let Γ be a level-planar drawing of an embedded level-planar graph G. The width of Γ
is defined as maxv∈V Γ (v)−minv∈V Γ (v). An integer x̄ is a gap inΓ if it isΓ (v) �= x̄
for all v ∈ V , Γ (v1) < x̄ and Γ (v2) > x̄ for some v1, v2 ∈ V , and Γ (u) < x̄ < Γ (v)

for no edge (u, v) ∈ E . For example, 2 is a gap in the left drawing in Fig. 1a. A
drawing Γ is compact if it has no gap, e.g., the left drawing in Fig. 1b. Note that
a λ-drawing of a connected level-planar graph is inherently compact. In a λ-drawing
of a non-connected level-planar graph every gap can be eliminated by a horizontal
shift. The fact that we only need to consider compact λ-drawings helps us to limit the
drawing width. In particular, a compact λ-drawing has width at most (λ − 1)(n − 1).

Let u and v be two vertices on the same level i . With [u, v]G (or [u, v] when G is
clear from the context) we denote the set of vertices that contains u, v and all vertices
in between u and v on level i in G. We say that two vertices u and v are consecutive
in G when [u, v] = {u, v}. Two edges e = (u, w), e′ = (v, x) are consecutive in G
when the only edges with one endpoint in [u, v]G and the other endpoint in [w, x]G
are e and e′. For example, in Fig. 2b, the vertices u and v are consecutive, the vertices x
andw are consecutive, and the edges (u, w) and (v, x) are consecutive; and in Fig. 2c,
the vertices vleft and vright are not consecutive.

A flow network F = (N , A) consists of a set of nodes N connected by a set of
directed arcs A. A node is a source if it has no incoming arcs and it is a sink if it
has no outgoing arcs. A flow network is an st-graph if it has exactly one source and
exactly one sink. Each arc has a demand specified by a function d : A → N0 and
a capacity specified by a function c : A → N ∪ {∞} where ∞ means unlimited
capacity. A circulation in F is a function ϕ : A → N0 that assigns an integral flow
to each arc of F and satisifies the two following conditions. First, the circulation
has to respect the demands and capacities of the arcs, i.e., for each arc a ∈ A it
is d(a) ≤ ϕ(a) ≤ c(a). Second, the circulation has to respect flow conservation, i.e.,
for each node v ∈ N it is

∑
(u,v)∈A ϕ(u, v) = ∑

(v,u)∈A ϕ(v, u). Depending on the
flow network no circulation may exist.

123

Algorithmica

w x

vu

wxhigh

uvlow

e′
righteleft

e′e

(c)(b)(a)

t

s

vleft vright

Fig. 2 An embedded level graph G (a). The definition of the arcs of the flow network (b). The graph G
together with the paths pleft and pright in black (c). The resulting flow network Fλ

G consists of the blue
slope arcs and the red space arcs, its nodes are formed by merging the nodes in the gray areas. The red
space arcs have a demand of 1 and a capacity of (λ − 1)(n − 1) and the blue slope arcs have a demand of
zero and a capacity of λ − 1 (Color figure online)

3 FlowModel

In this section, we model the λ-Drawability as a problem of finding a circulation in
a flow network. Let G be an embedded proper k-level graph. As a first step, we add
two directed paths pleft and pright that consist of one vertex on each level from 1 to k
to G. Insert pleft and pright into G to the left and right of all other vertices as the left
and right boundary, respectively. See Fig. 2a and c.

From now on, we assume that G contains the left and right boundary.
The flow network Fλ

G consists of nodes and arcs and is similar to a directed dual
of G with the difference that it takes the levels of G into account. In particular, for
every edge e of G, Fλ

G contains two nodes eleft and eright, in the left and the right faces
incident to e, and a dual slope arc e� = (eright, eleft)with demand 0 and capacity λ−1;
see the blue arcs in Fig. 2b and c. The flow across e� determines the slope of e.
Additionally, for every pair of consecutive vertices u, v we add two nodes [u, v]low
and [u, v]high to Fλ

G and connect them by a space arc [u, v]�; see the red arcs in
Fig. 2b and c. The flow across [u, v]� determines the space between u and v. The
space between u and v needs to be at least one to prevent u and v from colliding and
can be at most (λ − 1)(n − 1) due to the restriction to compact drawings. So, assign
to [u, v]� a demand of one and a capacity of (λ − 1)(n − 1). To obtain the final flow
network wemerge certain nodes. Let e = (u, w) and e′ = (v, x) be consecutive edges.
Merge the nodes eright, e′

left , the nodes {{u′, v′}high : ∀u′, v′ consecutive in [u, v]} and
the nodes {{w′, x ′}low : ∀w′, x ′ consecutive in [w, x]} into a single node. Next, merge
all remaining source and sink nodes into one source node s and one sink node t ,
respectively. See Fig. 2c, where the gray areas touch nodes that are merged into a
single node. Observe that flow network is a connected st-graph. Clearly s is a source
and t is a sink. Each remaining node v corresponds to two consecutive edges ofG, so by
construction it has exactly one incoming and one outgoing slope arc, so v is neither a
source nor a sink. This also implies that there exists a directed path of slope arcs from s
to v, and a directed path of slope arcs from v to t , so the flow network is connected.
Finally, to admit non-trivial circulations, insert an arc from t to s with capacity ∞.
Observe that Fλ

G is planar by its construction based on the planar embedding of G.

123

Algorithmica

The network Fλ
G is designed in such a way that the circulations in Fλ

G correspond
bijectively to the λ-drawings of G. Let Γ be a drawing of G and let x be the function
that assigns to each vertex of G its x-coordinate in Γ . We define a dual circulation x�

as follows. Recall that each arc a of Fλ
G − (s, t) is a slope arc or a space arc. If a is a

slope arc it is dual to an edge (u, w) of G. Then define x�(a) := x(w) − x(u). If a is
a space arc it is dual to consecutive vertices u, v of G, where u appears left of v. Then
define x�(a) := x(v) − x(u). We remark the following, although we defer the proof
to the next section.

Lemma 1 Let G be an embedded proper level-planar graph together with a λ-
drawing Γ . The dual x� of the function x that assigns to each vertex of G
its x-coordinate in Γ is a circulation in Fλ

G .

In the reverse direction, given a circulationϕ in Fλ
G wedefine a dual functionϕ� that,

when interpreted as assigning an x-coordinate to the vertices of G, defines a λ-drawing
of G. Refer to the level-1-vertex of pright as vright. Start by setting ϕ�(vright) = 0, i.e.,
the x-coordinate of vright is 0. Process the remaining vertices of the right boundary
in ascending order with respect to their levels. Let (u, v) be an edge of the right
boundary so that u has already been processed and v has not been processed yet. Then
set ϕ�(v) = ϕ�(u) + ϕ((u, v)�), where (u, v)� is the slope arc dual to (u, v). Let w, x
be a pair of consecutive vertices so that x has already been processed and w has not
yet been processed yet. Then set ϕ�(w) = ϕ�(x) − ϕ([w, x]�), where [w, x]� is a
space arc. It turns out that ϕ� defines a λ-drawing of G.
Lemma 2 Let G be an embedded proper level-planar graph, let λ ∈ N and let ϕ be a
circulation in Fλ

G . Then the dual ϕ�, when interpreted as assigning an x-coordinate
to the vertices of G, defines a λ-drawing of G.

While both Lemmas 1 and 2 can be proven directly, we defer their proofs to Sect. 4
where we introduce the distance model and prove Lemmas 3 and 4, the stronger
versions of Lemmas 1 and 2, respectively. Combining Lemmas 1 and 2 we obtain
the following.

Theorem 1 Let G be an embedded proper level-planar graph and let λ ∈ N. The
circulations in Fλ

G correspond bijectively to the λ-drawings of G.
Theorem 1 implies that a λ-drawing can be found by applying existing flow algo-

rithms to Fλ
G . For that, first transform our flow network with arc demands to the

standard single-source single-sink maximum flow setting without arc demands using
the construction due to Kleinberg and Tardos [30, Chapter 7.7]. This construction adds
one new “super-source” s∗ and one new “super-sink” t∗ to Fλ

G , and connects themwith

arcs to the other nodes in Fλ
G . In particular, the size of the resulting flow network is

linear in the size of Fλ
G . Subdivide the arcs incident to s∗, t∗ and then remove s∗, t∗

from the flow network, obtaining an instance of the multiple-source multiple-sink
maximum flow problem. Note that this network is planar. Use the O(n log3 n)-time
multiple-source multiple-sink maximum flow algorithm due to Borradaile et al. [8] to
find a circulation in Fλ

G , or to determine that no circulation exists.

123

Algorithmica

Corollary 1 Let G be an embedded proper level-planar graph and let λ ∈ N. It can be
tested in O(n log3 n) time whether a λ-drawing of G exists, and if so, such a drawing
can be found within the same running time.

3.1 Connected Partial Drawings

Recall that a partial λ-drawing is a tuple (G,H,Π), where G is an embedded level-
planar graph, H is an embedded subgraph of G and Π is a λ-drawing of H. We say
that (G,H,Π) is λ-extendable if G admits a λ-drawing Γ whose restriction toH isΠ .
Here Γ is referred to as a λ-extension of (G,H,Π).

In this section we show that in case H is connected, we can use the flow model
to decide whether (G,H,Π) is λ-extendable. Observe that when H is connected Π

is completely defined by the slopes of the edges in H up to horizontal translation.
Let Fλ

G be the flow network corresponding to G. In order to fix the slopes of an edge e
of H to a value �, we fix the flow across the dual slope arc e� in H to �. Checking
whether a circulation in the resulting flow network exists can be reduced to a multiple-
source multiple-sink maximum flow problem, which once again can be solved by the
algorithm due to Borradaile et al. [8].

Corollary 2 Let (G,H,Π) be a partial λ-drawing where H is connected. It can be
tested in O(n log3 n) time whether (G,H,Π) is λ-extendable, and if so, a corre-
sponding λ-extension can be constructed within the same running time.

4 Dual DistanceModel

A minimum cut (and, equivalently, the value of the maximum flow) of an st-planar
graphG can be determined by computing a shortest (s�, t�)-path in a dual ofG [24,25].
Hassin showed that to construct a flow, it is sufficient to compute the distances from s�

to all other vertices in the dual graph [20]. To the best of our knowledge, this duality has
been exploited only for flow networks with arc capacities, but not with arc demands.
In this section, we extend this duality to arcs with demands.

The resultingdual distancemodel improves the running time for theλ-Drawability,
lets us test the existence of λ-extensions of partial λ-drawings for non-connected sub-
graphs, and allows us to develop an efficient algorithm for testing the existence of
simultaneous λ-drawings.

We define Dλ
G to be the weighted directed dual of Fλ

G as follows. Let a be an arc

of Fλ
G with demand d(a) and capacity c(a). Further, let fleft and fright denote the left

and the right faces of a in Fλ
G , respectively. The dual D

λ
G contains fleft and fright as

vertices connected by the directed edge (fleft, fright)with weight c(a) and the directed
edge (fright, fleft)with weight−d(a); see Fig. 3. Equivalently, Dλ

G is obtained directly
from G as follows. Recall that if a is a slope arc, it is d(a) = 0, c(a) = λ − 1
and fleft, fright correspond to vertices u, w connected by the edge (u, w) in G. So,
create for each directed edge (u, w) of G the weighted directed edges (u, w) with
weight λ−1 and (w, u) with weight 0 in Dλ

G ; see Fig. 3a. If a is not a slope arc then a
is a space arc and it is d(a) = 1, c(a) = (λ − 1)(n − 1) and fleft, fright correspond to

123

Algorithmica

a

0 ≤ ϕ(a) ≤ λ − 1

fright

fleft

−d(a) = 0

c(a) = λ − 1

(a)

1 ≤ ϕ(a) ≤ (λ − 1)(n − 1)

a

fright
fleft

−d(a) = −1

c(a) = (λ − 1)(n − 1)
(b)

Fig. 3 Definition of the dual edges for a flow network arc a = (u, v) with demand d(a) and capacity c(a).
Let fleft and fright denote the vertices corresponding to the faces to the left and right of a in Fλ

G . Then add
the edge (fleft, fright) with weight c(a) and the reverse edge (fright, fleft) with weight −d(a). The edge
weights depend on whether a is a slope arc (a) or a space arc (b)

vrightvleft

0-1-2-3-4 1 2 3

0-1-2-3-4 1 2 3

1
0

−1

19

Fig. 4 The distance network D2
G obtained from the flow network F2

G shown in Fig. 2c. The x-coordinate

of every vertex is its distance from vright in D2
G . Red arcs pointing right have weight (λ − 1)(n − 1) = 19,

red arcs pointing left have weight −1. Blue arcs pointing up have weight λ − 1 = 1 and blue arcs pointing
down have weight 0 (Color figure online)

consecutive vertices u, v in G, where u appears to the left of v. So, create for each pair
of consecutive vertices u, v in G where u appears to the left of v the weighted directed
edges (u, v) with weight (λ−1)(n−1) and (v, u) with weight −1 in Dλ

G ; see Fig. 3b.
Observe that Dλ

G has the vertex set V of G and a superset of its edges. Figure 4 shows
the distance network obtained from the flow network shown in Fig. 2c.

A distance labeling is a function x : V → Z that for every edge (u, v) of Dλ
G

with weight l satisfies x(v) ≤ x(u) + l. We also say that (u, v) imposes the distance
constraint x(v) ≤ x(u)+l. A distance labeling for Dλ

G is the x-coordinate assignment

for a λ-drawing: For an edge (u, v) of Dλ
G where u, v are consecutive vertices in G, the

distance labeling guarantees x(v) ≤ x(u) − 1, i.e., the consecutive vertices are in the
correct order and do not overlap. If an edge (u, v) between layers has weight λ − 1,
then the distance labeling ensures x(v) ≤ x(u) + λ − 1, i.e., (u, v) has a slope
in {0, . . . , λ − 1}. Computing the shortest distances from vright in Dλ

G to every vertex
(if they are well-defined) gives a distance labeling that we refer to as the shortest
distance labeling. A distance labeling of Dλ

G does not necessarily exist. This is the

casewhen Dλ
G contains a negative cycle, e.g., when the in- or out-degree of a vertex inG

is strictly larger than λ. For a distance labeling x of Dλ
G we define a dual circulation x�

as follows. Recall that each arc a of Fλ
G − (t, s) is a slope arc or a space arc. If a is

123

Algorithmica

a slope arc it is dual to an edge (u, w) of G. Recall that u, w are vertices of Dλ
G and

define x�(a) := x(w) − x(u). If a is a space arc it is dual to consecutive vertices u, v

of G. Again, u, v are vertices of Dλ
G , define x

�(a) := x(v) − x(u).

Lemma 3 Let G be an embedded level-planar graph and Γ be a λ-drawing of G. The
function x that assigns to each vertex of G its x-coordinate in Γ is a distance labeling
of Dλ

G and its dual x� is a circulation in Fλ
G .

Proof SinceΓ preserves the embedding ofG, for each consecutive vertices v, u, with v

preceding u in G it holds that Γ (v) < Γ (u). Because Γ is a grid drawing Γ (v) ≤
Γ (u)−1,which implies x(v) ≤ x(u)+l, where l = −1 is theweight of (u, v). SinceΓ

is aλ-drawing, i.e., every edge (u, v) between the two levels has a slope in {0, . . . λ−1},
it holds that Γ (u) ≤ Γ (v) ≤ Γ (u) + λ − 1, which implies x(u) ≤ x(v) + 0, for the
edge (v, u) of Dλ

G with weight zero and x(v) ≤ x(u)+λ−1 for the edge (u, v) of Dλ
G

with weight λ − 1. Hence, x is a distance labeling of Dλ
G .

We now show that x� is a circulation in Fλ
G . Let f1, f2, . . . , ft , ft+1 = f1 be the

faces incident to some node v of Fλ
G in counter-clockwise order. Let a be the arc

incident to v and dual to the edge between fi and fi+1 with 1 ≤ i ≤ t . If a is an
incoming arc, it adds a flow of x(fi+1)− x(fi) to v. If a is an outgoing arc, it removes
a flow of x(fi) − x(fi+1) from v, or, equivalently, it adds a flow of x(fi+1) − x(fi)
to v. Therefore, the flow through v is

∑
i (x(fi+1) − x(fi)). This sum cancels to zero,

i.e., the flow is preserved at v.
Now consider an arc a of Fλ

G − (t, s).

If a is a slope arc it is dual to an edge (u, w) of G. Then Dλ
G contains the edge (u, w)

with weight c(a), which ensures x(w) ≤ x(u) + c(a), so x�(a) ≤ c(a). It also
contains the edge (w, u) with weight −d(a), which ensures x(u) ≤ x(w) − d(a),
so x�(a) ≥ d(a).

If a is a space arc it is dual to consecutive vertices u, v of G. Then Dλ
G contains the

edge (u, v) with weight c(a), which ensures x(v) ≤ x(u) + c(a), so x�(a) ≤ c(a). It
also contains the edge (v, u) with weight −d(a), which ensures x(u) ≤ x(v) − d(a),
so x�(a) ≥ d(a).

Finally, the arc (t, s) has demand 0 and capacity ∞, so its demand is satisfied and
its capacity is not exceeded.

Hence, x� is indeed a circulation in Fλ
G . �

Recall from Sect. 3 that for a circulation ϕ in Fλ
G we define a dual drawing ϕ�

by setting the x-coordinates of the vertices of G as follows. For the lowest vertex
of the right boundary set ϕ�(vright) = 0. Process the remaining vertices of the right
boundary in ascending order with respect to their levels. Let (u, v) be an edge of the
right boundary so that u has already been processed and v has not been processed yet.
Then set ϕ�(v) = ϕ�(u) + ϕ((u, v)�), where (u, v)� is the slope arc dual to (u, v).
Let w, x be a pair of consecutive vertices so that x has already been processed and w

has not yet been processed yet. Then set ϕ�(w) = ϕ�(x) − ϕ([w, x]�), where [w, x]�
is a space arc. It turns out that ϕ� is a distance labeling of Dλ

G and a λ-drawing of G.

123

Algorithmica

Fig. 5 Proof of Lemma 4.
Sets A and B contain the
incoming and outgoing red flow
network arcs incident to the gray
oval, respectively (Color figure
online)

u u′

v′v

Lemma 4 Let G be an embedded level-planar graph, let λ ∈ N, and let ϕ be a cir-
culation in Fλ

G . The dual ϕ� is a distance labeling of Dλ
G and, when interpreted as

assigning an x-coordinate to the vertices of G, defines a λ-drawing of G.

Proof We show that ϕ� is a distance labeling in Dλ
G . The algorithm described above

assigns a value to every vertex of Dλ
G . We now show that ϕ� is indeed a distance

labeling by showing that every edge satisfies a distance constraint.
Observe that the distance constraints imposed by edges dual to the space arcs

are satisfied by construction. To show that the distance constraints imposed by
edges dual to the slope arcs are also satisfied, we prove that for every edge (u, v),
it holds that ϕ�(v) = ϕ�(u) + ϕ((u, v)�). We refer to this as condition C for
short. Since ϕ((u, v)�) ≤ λ − 1 and the weight l of (u, v) is l = λ − 1 we
obtain ϕ�(v) = ϕ�(u) + �, which implies that ϕ� is a distance labeling of Dλ

G .
The proof is by induction based on the bottom to top and right to left order among the

edges of Dλ
G . We say that (a, b) precedes (c, d) if either �(a) < �(c), or �(a) = �(c)

and a is to the right of c, or �(a) = �(c) and b is to the right of d (in case a = c).
For the base case observe that the edges with both end-vertices on the first level and
the edges of pright satisfy condition C by the definition of ϕ�. Now let (u, v) be an
edge not addressed in the base case and assume that for every edge (u′, v′) preced-
ing edge (u, v) condition C holds. For the inductive step we show that condition C
also holds for (u, v). Let (u′, v′) denote the edge to the right of (u, v) so that (u, v)

and (u′, v′) are consecutive; see Fig. 5. Because v is not the rightmost vertex on its level
this edge exists. Let A denote the set of space arcs [u1, u2]� in Fλ

G with u1, u2 ∈ [u′, u].
Analogously, let B denote the set of space arcs [v1, v2]� in Fλ

G with v1, v2 ∈ [v′, v]. It
is ϕ�(v) = ϕ�(v′) − ∑

b∈B ϕ(b) by definition of ϕ�. Further, by induction hypothesis
and since (u′, v′) precedes (u, v) it is ϕ�(v′) = ϕ�(u′) + ϕ((u′, v′)�). Inserting the
latter into the former equation, we obtain

ϕ�(v) = ϕ�(u′) + ϕ((u′, v′)�) −
∑

b∈B
ϕ(b). (1)

Again, by definition of ϕ�, it is ϕ�(u) = ϕ�(u′) − ∑
a∈A ϕ(a). Solving for ϕ�(u′) and

inserting into (1) we obtain

ϕ�(v) = ϕ�(u) +
∑

a∈A

ϕ(a) + ϕ((u′, v′)�) −
∑

b∈B
ϕ(b). (2)

123

Algorithmica

Flow conservation on the vertex of Fλ
G to which edges of A and B are incident gives

ϕ((u′, v′)�) +
∑

a∈A

ϕ(a) = ϕ((u, v)�) +
∑

b∈B
ϕ(b). (3)

Solving Eq. (3) for ϕ((u′, v′)�) and then inserting it into Eq. (2) yields ϕ�(v) =
ϕ�(u)+ϕ((u, v)�), i.e., conditionC holds for (u, v). Thereforeϕ� is a distance labeling,
which we have shown to define a λ-drawing of G. �

Because Dλ
G is planar we can use the O(n log2 n/ log log n)-time shortest path algo-

rithm due to Mozes and Wulff-Nilsen [35] to compute the shortest distance labeling.
This improves our O(n log3 n)-time algorithm from Sect. 3.

Theorem 2 Let G be an embedded proper level-planar graph. The distance labelings
of Dk

G correspond bijectively to the λ-drawings of G. If such a drawing exists, it can

be found in O(n log2 n/ log log n) time.

5 Partial and Simultaneous Drawings

In this section we use the distance model from Sect. 4 to construct partial and simul-
taneous λ-drawings. We start with introducing a useful kind of drawing. Let Γ be
a λ-drawing of G. We call Γ a λ-rightmost drawing when there exists no λ-drawing Γ ′
with Γ (v) < Γ ′(v) for some v ∈ V . In this definition, we assume x(Γ (vright)) =
x(Γ ′(vright)) = 0 to exclude trivial horizontal translations. Hence, a drawing is right-
most when every vertex is at its rightmost position across all level-planar λ-slope grid
drawings of G. It is not trivial that a λ-rightmost drawing exists, but it follows directly
from the definition that if such a drawing exists, it is unique. The following lemma
establishes the relationship between λ-rightmost drawings and shortest distance label-
ings of Dλ

G .

Lemma 5 Let G be an embedded proper level-planar graph. If Dλ
G has a shortest

distance labeling it describes the λ-rightmost drawing of G.

Proof The shortest distance labeling of Dλ
G ismaximal in the sense that for any vertex v

there exists a vertex u and an edge (u, v) with weight l so that it is x(v) = x(u) + l.
Recall that the definition of distance labelings only requires x(v) ≤ x(u) + l. The
claim then follows by induction over V in ascending order with respect to the shortest
distance labeling. �

5.1 Partial Drawings

Let (G,H,Π) be a partial λ-drawing. In Sect. 3.1 we have shown that the flow model
can be adapted to check whether (G,H,Π) has a λ-extension, in caseH is connected.
In this section, we show how to adapt the distance model to extend partial λ-drawings,
including the case H is disconnected. Recall that the distance label of a vertex v is

123

Algorithmica

its x-coordinate. A partial λ-drawing fixes the x-coordinates of the vertices ofH. The
idea is to express this with additional constraints in Dλ

G . Let vref be a vertex of H. In
a λ-extension of (G,H,Π), the relative distance along the x-axis between a vertex v

ofH and vertex vref should be dv = Π(vref) − Π(v). This can be achieved by adding
an edge (v, vref) with weight dv and an edge (vref , v) with weight −dv . The first edge
ensures that it is x(vref) ≤ x(v) + dv , i.e., x(v) ≥ x(vref) − dv and the second edge
ensures x(v) ≤ x(vref)−d. Together, this gives x(v) = x(vref)−dv . Let Dλ

G,Π
be Dλ

G
augmented by the edges {(v, vref), (vref,v) : ∀v ∈ H}withweights as described above.

To decide existence of λ-extension and in affirmative construct the correspond-
ing drawing we compute the shortest distance labeling in Dλ

G,Π
. Observe that this

network can contain negative cycles and therefore no shortest distance labeling. Unfor-
tunately, Dλ

G,Π
is not planar, and thus we cannot use the embedding-based algorithm

of Mozes and Wulff-Nilsen. However, since all newly introduced edges have vref
as one endpoint, vref is an apex of Dλ

G , i.e., removing vref from Dλ
G,Π

makes it

planar. Therefore Dλ
G,Π

can be recursively separated by separators of size O(
√
n).

The O(n4/3 log n)-time shortest-path algorithm by Henzinger et al. [22] relies not on
planarity but only on O(

√
n)-sized separators [19, page 869]. So, run this algorithm

to compute the shortest distance labeling of Dλ
G,Π

.

Theorem 3 Let (G,H,Π) be a partial λ-drawing. In O(n4/3 log n) time it can be
determined whether (G,H,Π) has a λ-extension and in the affirmative the corre-
sponding drawing can be computed within the same running time.

5.2 Simultaneous Drawings

In the simultaneousλ-drawing problem,we are given a tuple (G1,G2) of two embedded
level-planar graphs that share a common subgraphG1∩2 = G1∩G2.We assumew.l.o.g.
that G1 and G2 share the same right boundary and that the embeddings of G1 and G2
coincide on G1∩2. The task is to determine whether there exist λ-drawings Γ1, Γ2
of G1,G2, respectively, so that Γ1 and Γ2 coincide on the shared graph G1∩2. The
approach is the following. Start by computing the λ-rightmost drawings of G1 and G2.
Then, as long as these drawings do not coincide on G1∩2 add necessary constraints
to Dλ

G1
and Dλ

G2
. This process terminates after a polynomial number of iterations,

either by finding a simultaneous λ-drawing, or by determining that no such drawing
exist.

Finding the necessary constraints works as follows. Suppose that Γ1, Γ2 are the λ-
rightmost drawings of G1,G2, respectively. Because both G1 and G2 have the same
right boundary they both contain vertex vright.We define the coordinates in the distance
labelings of Dλ

G1
and Dλ

G2
in terms of this reference vertex.

Now suppose that for some vertex v of G1∩2 the x-coordinates in Γ1 and Γ2 differ,
i.e., it isΓ1(v) �= Γ2(v). AssumeΓ1(v) < Γ2(v)without loss of generality. BecauseΓ1
is a rightmost drawing, there exists no drawing of G1 where v has an x-coordinate
greater thanΓ1(v). In particular, there exist no simultaneous drawingswherev has an x-
coordinate greater than Γ1(v). Therefore, we must search for a simultaneous drawing
where Γ2(v) ≤ Γ1(v). We can enforce this constraint by adding an edge (vright, v)

123

Algorithmica

with weight Γ1(v) into Dλ
G2
. We then attempt to compute the drawing Γ2 of G2 defined

by the shortest distance labeling in Dλ
G2
. This attempt produces one of two possible

outcomes. The first possibility is that there now exists a negative cycle in Dλ
G2
. This

means that there exists no drawing Γ2 of G2 with Γ2(v) ≤ Γ (v). Because Γ1 is a
rightmost drawing, this means that no simultaneous drawings of G1 and G2 exist. The
algorithm then terminates and rejects this instance. The second possibility is that we
obtain a new drawing Γ2. This drawing is rightmost among all drawings that satisfy
the added constraint Γ2(v) ≤ Γ1(v). In this case there are again two possibilities.
Either we have Γ1(v) = Γ2(v) for each vertex v in G1∩2. In this case Γ1 and Γ2
are simultaneous drawings and the algorithm terminates. Otherwise there exists at
least one vertex w in G1∩2 with Γ1(w) �= Γ2(w). We then repeat the procedure just
described for adding a new constraint.

We repeat this procedure of adding other constraints. To bound the number of
iterations, recall that we only consider compact drawings, i.e., drawings whose width
is at most (λ − 1)(n − 1). In each iteration the x-coordinate of at least one vertex is
decreased by at least one. Therefore, each vertex is responsible for atmost (λ−1)(n−1)
iterations. The total number of iterations is therefore bounded by n(λ − 1)(n − 1) ∈
O(λn2).

Note that due to the added constraints Dλ
G1

and Dλ
G2

are generally not planar. How-

ever, all newly inserted arcs are incident to vright, so vright is an apex of Dλ
Gi
for i = 1, 2.

As in the previous section, we apply the O(n4/3 log n)-time shortest-path algorithm by
Henzinger et al. to compute the shortest distance labelings. This gives the following.

Theorem 4 Let G1,G2 be embedded level-planar graphs that share a common sub-
graph G1∩2. In O(λn10/3 log n) time it can be determined whether G1,G2 admit
simultaneous λ-drawings and if so, such drawings can be computed within the same
running time.

6 Complexity of the General Case

So far, we have considered λ-Drawability problem for proper level graphs, i.e., level
graphs where all edges have length one. In this section, we consider the general case,
where edges may have arbitrary lengths. We say that an edge with length two or more
is long. One approach would be to try to adapt the flowmodel from Sect. 3 to this more
general case. By subdividing long edges, any level graph G can be transformed into a
proper level graph G ′. Observe that two edges in G ′ created by subdividing the same
long edge must have the same slope in order to yield a fixed-slope drawing ofG. In the
context of our flowmodel, this means that the amount of flow across the corresponding
slope arcs must be the same. Our problem then becomes an instance of the integer
equal flow problem. In this problem, we are given a flow network along with disjoint
sets R1, R2, . . . , Rt of arcs. The task is to find the maximum flow from s to t such
that the amount of flow across arcs in the same set Ri is the same. This problem was
introduced and shown to be NP-hard by Sahni [41]. The problem remains NP-hard
in special cases [18,42] and the integrality gap of the fractional LP can be arbitrarily
large [34].

123

Algorithmica

x2 x3 x4 x5 x6 x7

x5 ∨ x6 ∨ x7x1 ∨ x2 ∨ x3

x1 ∨ x4 ∨ x5

x1 ∨ x5 ∨ x7

¬x3 ∨ ¬x4 ∨ ¬x5

¬x2 ∨ ¬x3 ∨ ¬x5

¬x1 ∨ ¬x2 ∨ ¬x7

x1�X

Fig. 6 An instance of planar monotone 3-Sat

(a) true true

true true

0 1 2 3 4 5 6 7 13 14 15 1810

0 1 2 8 9 103 11 16 17 18

(b) false false

false false

0 1 2 3 4 5 6 7 13 14 158 16

0 1 2 5 8 9 10 13 16 17 18

Fig. 7 The variable gadget drawn in the “true” configuration (a) and the “false” configuration (b)

In this section we show that λ-Drawability NP-complete even for λ = 2, bicon-
nected graphs where all edges have length one or two. To this end, we present a
reduction from rectilinear planar monotone 3-Sat [12]. An instance of this problem
consists of a set of variables X and a set of clauses C . A clause is positive (nega-
tive) when it consists of only positive (negative) literals. We say that the instance is
monotonewhen each clause is either positive or negative. The corresponding variable-
clause graph consists of the vertices X ∪ C and each undirected edge {x, c} where
x ∈ X is a variable that appears in clause c ∈ C . The variable-clause graph admits a
planar drawing such that (i) the variables are aligned along a virtual horizontal line �X ,
(ii) positive clauses are drawn as vertices above �X , and symmetrically (iii)negative
clauses are drawn as vertices below �X . See Fig. 6.

Our reduction works by first replacing every vertex that corresponds to a variable
by a variable gadget and every vertex that corresponds to a positive (negative) clause
by a positive (negative) clause gadget. All three gadgets consist of fixed and movable
parts. The fixed parts only admit one level-planar two-slope drawing, whereas the
movable parts admit two or more drawings depending on the choice of slope for some
edges. Second, the gadgets are connected by a common fixed frame. All fixed parts of
the gadgets are connected to the common frame in order to provide a common point
of reference. The movable parts of the gadgets then interact in such a way that any
level-planar two-slope drawing induces a solution to the underlying planar monotone
3-Sat instance.

The variable gadget consists of a number of connectors arranged around a fixed
horizontal line that connects all variable gadgets along the virtual line of variables �X .
See Fig. 7, where the fixed structure is shaded in gray. Vertices drawn as squares are

123

Algorithmica

fixed, i.e., they cannot change their position relative to other vertices drawn as squares.
Vertices drawn as circles are movable, i.e., they can change their position relative to
vertices drawn as squares. The line of variables �X extends from the the square vertices
on the left and right boundaries of the drawing. Every connector consists of two pins:
the movable assignment pin and the fixed reference pin. The variable gadget in Fig. 7
features four connectors: two above the horizontal line and two below the horizontal
line. Assignment pins are shaded in yellow and reference pins are shaded in gray. The
relative position of the assignment pin and the reference pin of one connector encodes
the truth assignment of the underlying variable. Moreover, the reference pin allows the
fixed parts of the clause gadgets to be connected to the variable gadgets and thereby
to the common frame. Comparing Fig. 7a and b, observe how the relative position
of the two pins of each connector changes depending on the truth assignment of the
underlying variable. The key structure of the variable gadget is that the position of
the assignment pins of one variable gadget are coordinated by long edges. In Fig. 7,
long edges are drawn as thick lines. Changing the slope of these long edges moves
all assignment pins above the horizontal line in one direction and all assignment pins
below the horizontal line in the reverse direction. In this way, all connectors encode
the same truth assignment of the underlying variable. Note that we can introduce as
many connectors as needed for any one variable.

The positive clause gadget consists of a fixed boundary, a movablewiggle and three
assignment pin endings. See Fig. 8, where the fixed boundary is shaded in gray, the
wiggle is highlighted in blue and the assignment pin endings are highlighted in yellow.

The fixed boundary is connected to the reference pin of the variable gadget that
is rightmost among the connected variable gadgets. Because the variable gadgets are
fixed to the common frame, the boundary of the positive clause gadget is also connected
to the common frame. The assignment pin endings are connected to assignment pins
of connectors of the corresponding variable gadgets. The idea of the positive clause
gadget is that thewiggle has towiggle through the space bounded by the assignment pin
endings on the left and the fixed boundary on the right. Recall that the assignment pins
change their horizontal position depending on the truth assignment of their underlying
variables. The positive clause gadget is designed so that the wiggle can always be
drawn, except for the case when all variables are assigned to false. See Fig. 8a–c,
which shows the three possible situations when exactly one variable is assigned to
true. In any case where at least one variable is assigned to true the wiggle can be
drawn in one of the three ways shown. However, as shown in Fig. 8d, the wiggle
cannot be drawn in the case where all variables are assigned to false. The reason for
this is that the the assignment pin endings get so close to the fixed boundary that they
leave too little space for the wiggle to be drawn. This means that some vertices must
intersect, for example those shown in red in Fig. 8d.

The negative clause gadgets works very similarly. It is drawn below the horizon-
tal line of variables and it forces at least one of the incident variable gadgets to be
configured as false. See Fig. 9 which shows admissible drawings (a–c) and that the
case when all incident variables are configured as true cannot occur (d). Note that this
uses the design of the variable gadget that the assignment and reference pins below
the horizontal line are closer when the variable is assigned to true (i.e., the inverse
situation compared to the situation above the horizontal line).

123

Algorithmica

true

false

(a)

false

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 6 7 8 9 10 11 12 130

true

false

(b)

false

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 6 7 8 9 10 11 12 130

false

false

(c)

true

0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 6 7 8 9 10 11 12 132

false

false

false

(d) 0 1 2 3 4 5 6 7 8 9 10 11 12 13

5 6 7 8 9 10 11 12 130

Fig. 8 The positive clause gadget when the drawing when at least one variable is assigned to true (a–c). No
planar drawing exists when all variables are assigned to false (d), because this leads to intersections, e.g.,
at the vertices marked in red

It is evident that any level-planar two-slope drawing of the resulting graph induces
a solution of the underlying planar monotone 3-Sat problem and vice versa. Note that
the variable gadgets become biconnected when embedded into the common frame and
that the clause gadgets are biconnected by design. Furthermore, all long edges have
length two. We therefore conclude the following.

Theorem 5 λ-Drawability is NP-complete even for λ = 2 and biconnected graphs
where all edges have length one or two.

7 Conclusion

In this paper we studied λ-drawings, i.e., level-planar drawings with λ slopes. We
model λ-drawings of proper level-planar graphs as integer flow networks. This lets us
compute λ-drawings and extend connected partial λ-drawings in O(n log3 n) time.We
extend the duality between integer flows in a primal graph and shortest distances in
its dual to obtain a more powerful distance model. This distance model lets us find λ-

123

Algorithmica

true

true

false(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 8 9 10 11 12 135

false

true

true(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 8 9 10 11 12 133

true

false

true(c)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 8 9 10 11 12 133

true

true

true(d)

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1 2 8 9 10 11 12 133

Fig. 9 The negative clause gadget when at least one variable is assigned to false (a–c). No drawing exists
when all variables are assigned to true (d), because this leads to intersections, e.g., at the vertices marked
in red. Note the symmetry to the positive clause gadget in Fig. 8

drawings in O(n log2 n/ log log n) time, extend not-necessarily-connected partial λ-
drawings in O(n4/3 log n) time and find simultaneous λ-drawings in O(λn10/3 log n)

time.
In the non proper case, testing the existence of a 2-drawing becomes NP-hard,

even for biconnected graphs with maximum edge length two. This leaves little room
to extend our polynomial-time algorithms for more general classes of level-planar
graphs with fixed embedding.

An interesting problem that remains open is that of finding λ-drawings when the
embedding is not fixed. For orthogonal drawings, the SPQR-tree played a key role in
going from optimizing a given fixed embedding [43] to optimizing across all possible

123

Algorithmica

embeddings of a graph [7]. A recent SPQR-tree-like embedding representation for
level planarity [11] might enable a similar leap for λ-drawings.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. FAUSTEDITION. http://www.faustedition.net/macrogenesis/dag
2. Angelini, P., Chaplick, S., Cornelsen, S., Da Lozzo, G., Di Battista, G., Eades, P., Kindermann, P.,

Kratochvíl, J., Lipp, F., Rutter, I.: Simultaneous orthogonal planarity. In: Y. Hu, M. Nöllenburg (eds.)
GraphDrawing andNetworkVisualization—24th International Symposium,GD2016,Athens,Greece,
September 19-21, 2016, Revised Selected Papers, Lecture Notes in Computer Science, vol. 9801, pp.
532–545. Springer (2016). https://doi.org/10.1007/978-3-319-50106-2_41

3. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Beyond level planarity:
Cyclic, torus, and simultaneous level planarity. Theor. Comput. Sci. 804, 161–170 (2020). https://doi.
org/10.1016/j.tcs.2019.11.024

4. Barát, J., Matousek, J.,Wood, D.R.: Bounded-degree graphs have arbitrarily large geometric thickness.
Electron. J. Comb. 13(1) (2006). https://doi.org/10.37236/1029

5. Bekos,M.A., DiGiacomo, E., Didimo,W., Liotta, G.,Montecchiani, F.: Universal slope sets for upward
planar drawings. In: T.C. Biedl, A. Kerren (eds.) Graph Drawing and Network Visualization - 26th
International Symposium, GD 2018, Barcelona, Spain, September 26-28, 2018, Proceedings, Lecture
Notes in Computer Science, vol. 11282, pp. 77–91. Springer (2018). https://doi.org/10.1007/978-3-
030-04414-5_6

6. Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs. In: R. Tamassia (ed.)
Handbook on Graph Drawing and Visualization, pp. 349–381. Chapman and Hall/CRC (2013)

7. Bläsius, T., Rutter, I., Wagner, D.: Optimal orthogonal graph drawing with convex bend costs. ACM
Trans. Algorith. 12(3), 33:1-33:32 (2016). https://doi.org/10.1145/2838736

8. Borradaile, G., Klein, P.N., Mozes, S., Nussbaum, Y., Wulff-Nilsen, C.: Multiple-source multiple-sink
maximum flow in directed planar graphs in near-linear time. SIAM J. Comput. 46(4), 1280–1303
(2017). https://doi.org/10.1137/15M1042929

9. Brückner, G., Krisam, N., Mchedlidze, T.: Level-planar drawings with few slopes. In: D. Archambault,
C.D.Tóth (eds.)GraphDrawing andNetworkVisualization—27th International Symposium,GD2019,
Prague, Czech Republic, September 17-20, 2019, Proceedings, Lecture Notes in Computer Science,
vol. 11904, pp. 559–572. Springer (2019). https://doi.org/10.1007/978-3-030-35802-0_42

10. Brückner, G., Rutter, I.: Partial and constrained level planarity. In: P.N. Klein (ed.) Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,
Spain, Hotel Porta Fira, January 16-19, pp. 2000–2011. SIAM (2017). https://doi.org/10.1137/1.
9781611974782.130

11. Brückner, G., Rutter, I.: An SPQR-tree-like embedding representation for level planarity. In: Y. Cao,
S.W. Cheng, M. Li (eds.) 31st International Symposium on Algorithms and Computation, ISAAC
2020, December 14-18, 2020, Hong Kong, China (Virtual Conference), LIPIcs, vol. 181, pp. 8:1–8:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.ISAAC.
2020.8

12. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the plane. Int. J. Com-
put. Geom. Appl. 22(3), 187–206 (2012). https://doi.org/10.1142/S0218195912500045. http://www.
worldscinet.com/doi/abs/10.1142/S0218195912500045

123

http://creativecommons.org/licenses/by/4.0/
http://www.faustedition.net/macrogenesis/dag
https://doi.org/10.1007/978-3-319-50106-2_41
https://doi.org/10.1016/j.tcs.2019.11.024
https://doi.org/10.1016/j.tcs.2019.11.024
https://doi.org/10.37236/1029
https://doi.org/10.1007/978-3-030-04414-5_6
https://doi.org/10.1007/978-3-030-04414-5_6
https://doi.org/10.1145/2838736
https://doi.org/10.1137/15M1042929
https://doi.org/10.1007/978-3-030-35802-0_42
https://doi.org/10.1137/1.9781611974782.130
https://doi.org/10.1137/1.9781611974782.130
https://doi.org/10.4230/LIPIcs.ISAAC.2020.8
https://doi.org/10.4230/LIPIcs.ISAAC.2020.8
https://doi.org/10.1142/S0218195912500045
http://www.worldscinet.com/doi/abs/10.1142/S0218195912500045
http://www.worldscinet.com/doi/abs/10.1142/S0218195912500045

Algorithmica

13. Di Giacomo, E., Liotta, G., Montecchiani, F.: Drawing outer 1-planar graphs with few slopes. J. Graph
Algorithms Appl. 19(2), 707–741 (2015). https://doi.org/10.7155/jgaa.00376

14. Di Giacomo, E., Liotta, G., Montecchiani, F.: Drawing subcubic planar graphs with four slopes and
optimal angular resolution. Theor. Comput. Sci. 714, 51–73 (2018). https://doi.org/10.1016/j.tcs.2017.
12.004

15. Di Giacomo, E., Liotta, G., Montecchiani, F.: 1-bend upward planar slope number of SP-digraphs.
Comput. Geom. 90, 101628 (2020). https://doi.org/10.1016/j.comgeo.2020.101628

16. Dujmovic, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs with few slopes
and segments. Comput. Geom. 38(3), 194–212 (2007). https://doi.org/10.1016/j.comgeo.2006.09.002

17. Dujmovic, V., Suderman, M., Wood, D.R.: Graph drawings with few slopes. Comput. Geom. 38(3),
181–193 (2007). https://doi.org/10.1016/j.comgeo.2006.08.002

18. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems.
SIAM J. Comput. 5(4), 691–703 (1976). https://doi.org/10.1137/0205048

19. Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths, and near linear time.
J. Comput. Syst. Sci. 72(5), 868–889 (2006). https://doi.org/10.1016/j.jcss.2005.05.007

20. Hassin, R.: Maximum flow in (s, t) planar networks. Inf. Process. Lett. 13(3), 107 (1981). https://doi.
org/10.1016/0020-0190(81)90120-4

21. Healy, P., Nikolov, N.S.: Hierarchical drawing algorithms. In: R. Tamassia (ed.) Handbook on Graph
Drawing and Visualization, pp. 409–453. Chapman and Hall/CRC (2013)

22. Henzinger,M., Klein, P.N., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar graphs.
J. Comput. Syst. Sci. 55(1), 3–23 (1997). https://doi.org/10.1006/jcss.1997.1493

23. Hoffmann, U.: On the complexity of the planar slope number problem. J. Graph Algorithms Appl.
21(2), 183–193 (2017). https://doi.org/10.7155/jgaa.00411

24. Hu, T.C.: Integer Programming and Network Flows. Addison-Wesley, Reading, MA (1969)
25. Itai, A., Shiloach, Y.: Maximum flow in planar networks. SIAM J. Comput. 8(2), 135–150 (1979).

https://doi.org/10.1137/0208012
26. Jänicke, S., Geßner, A., Franzini, G., Terras, M., Mahony, S., Scheuermann, G.: Traviz: A visualization

for variant graphs. Digit. Scholarsh. Humanit. 30(Suppl-1), i83–i99 (2015). https://doi.org/10.1093/
llc/fqv049

27. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree with few slopes. SIAM
J. Discret. Math. 27(2), 1171–1183 (2013). https://doi.org/10.1137/100815001

28. Keszegh, B., Pach, J., Pálvölgyi, D., Tóth, G.: Drawing cubic graphs with at most five slopes. Comput.
Geom. 40(2), 138–147 (2008). https://doi.org/10.1016/j.comgeo.2007.05.003

29. Kindermann, P., Meulemans, W., Schulz, A.: Experimental analysis of the accessibility of drawings
with few segments. J. Graph Algorithms Appl. 22(3), 501–518 (2018). https://doi.org/10.7155/jgaa.
00474

30. Kleinberg, J.M., Tardos, É.: Algorithm design. Addison-Wesley (2006)
31. Knauer, K.B., Micek, P., Walczak, B.: Outerplanar graph drawings with few slopes. Comput. Geom.

47(5), 614–624 (2014). https://doi.org/10.1016/j.comgeo.2014.01.003
32. Lenhart, W., Liotta, G., Mondal, D., Nishat, R.I.: Planar and plane slope number of partial 2-trees. In:

S.K. Wismath, A. Wolff (eds.) Graph Drawing - 21st International Symposium, GD 2013, Bordeaux,
France, September 23-25, 2013, Revised Selected Papers, Lecture Notes in Computer Science, vol.
8242, pp. 412–423. Springer (2013). https://doi.org/10.1007/978-3-319-03841-4_36

33. Mchedlidze, T., Nöllenburg, M., Rutter, I.: Extending convex partial drawings of graphs. Algorithmica
76(1), 47–67 (2016). https://doi.org/10.1007/s00453-015-0018-6

34. Meyers, C.A., Schulz, A.S.: Integer equal flows. Oper. Res. Lett. 37(4), 245–249 (2009). https://doi.
org/10.1016/j.orl.2009.03.006

35. Mozes, S., Wulff-Nilsen, C.: Shortest paths in planar graphs with real lengths in o(n log2 n/ log log n)

time. In: M. de Berg, U. Meyer (eds.) Algorithms - ESA 2010, 18th Annual European Symposium,
Liverpool, UK, September 6-8, 2010. Proceedings, Part II, Lecture Notes in Computer Science, vol.
6347, pp. 206–217. Springer (2010). https://doi.org/10.1007/978-3-642-15781-3_18

36. Nickel, S., Nöllenburg,M.: Towards data-drivenmultilinearmetromaps. In: A. Pietarinen, P. Chapman,
L. Bosveld-de Smet, V. Giardino, J.E. Corter, S. Linker (eds.) Diagrammatic Representation and
Inference - 11th International Conference, Diagrams 2020, Tallinn, Estonia, August 24-28, 2020,
Proceedings, Lecture Notes in Computer Science, vol. 12169, pp. 153–161. Springer (2020). https://
doi.org/10.1007/978-3-030-54249-8_12

123

https://doi.org/10.7155/jgaa.00376
https://doi.org/10.1016/j.tcs.2017.12.004
https://doi.org/10.1016/j.tcs.2017.12.004
https://doi.org/10.1016/j.comgeo.2020.101628
https://doi.org/10.1016/j.comgeo.2006.09.002
https://doi.org/10.1016/j.comgeo.2006.08.002
https://doi.org/10.1137/0205048
https://doi.org/10.1016/j.jcss.2005.05.007
https://doi.org/10.1016/0020-0190(81)90120-4
https://doi.org/10.1016/0020-0190(81)90120-4
https://doi.org/10.1006/jcss.1997.1493
https://doi.org/10.7155/jgaa.00411
https://doi.org/10.1137/0208012
https://doi.org/10.1093/llc/fqv049
https://doi.org/10.1093/llc/fqv049
https://doi.org/10.1137/100815001
https://doi.org/10.1016/j.comgeo.2007.05.003
https://doi.org/10.7155/jgaa.00474
https://doi.org/10.7155/jgaa.00474
https://doi.org/10.1016/j.comgeo.2014.01.003
https://doi.org/10.1007/978-3-319-03841-4_36
https://doi.org/10.1007/s00453-015-0018-6
https://doi.org/10.1016/j.orl.2009.03.006
https://doi.org/10.1016/j.orl.2009.03.006
https://doi.org/10.1007/978-3-642-15781-3_18
https://doi.org/10.1007/978-3-030-54249-8_12
https://doi.org/10.1007/978-3-030-54249-8_12

Algorithmica

37. Nöllenburg,M.: A survey on automatedmetromap layout methods. In: SchematicMappingWorkshop.
Essex, UK (2014)

38. Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope numbers. Electron. J.
Comb. 13(1) (2006). http://www.combinatorics.org/Volume_13/Abstracts/v13i1n1.html

39. Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Comput. Sci. 17(5), 1061–
1070 (2006). https://doi.org/10.1142/S0129054106004261

40. Purchase, H.C.: Metrics for graph drawing aesthetics. J. Vis. Lang. Comput. 13(5), 501–516 (2002).
https://doi.org/10.1006/jvlc.2002.0232

41. Sahni, S.: Computationally related problems. SIAM J. Comput. 3(4), 262–279 (1974). https://doi.org/
10.1137/0203021

42. Srinathan, K., Goundan, P.R., Kumar,M.V.N.A., Nandakumar, R., Rangan, C.P.: Theory of equal-flows
in networks. In: O.H. Ibarra, L. Zhang (eds.) Computing and Combinatorics, 8th Annual International
Conference, COCOON2002, Singapore, August 15-17, 2002, Proceedings, Lecture Notes in Computer
Science, vol. 2387, pp. 514–524. Springer (2002). https://doi.org/10.1007/3-540-45655-4_55

123

http://www.combinatorics.org/Volume_13/Abstracts/v13i1n1.html
https://doi.org/10.1142/S0129054106004261
https://doi.org/10.1006/jvlc.2002.0232
https://doi.org/10.1137/0203021
https://doi.org/10.1137/0203021
https://doi.org/10.1007/3-540-45655-4_55

Algorithmica

43. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput.
16(3), 421–444 (1987). https://doi.org/10.1137/0216030

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1137/0216030

	Level-Planar Drawings with Few Slopes
	Abstract
	1 Introduction
	2 Preliminaries
	3 Flow Model
	3.1 Connected Partial Drawings

	4 Dual Distance Model
	5 Partial and Simultaneous Drawings
	5.1 Partial Drawings
	5.2 Simultaneous Drawings

	6 Complexity of the General Case
	7 Conclusion
	References

