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Abstract
Numerical climate models have been upgraded by the improved description of terrestrial hydrological processes across differ-
ent scales. The goal of this study is to explore the role of terrestrial hydrological processes on land–atmosphere interactions 
within the context of modeling uncertainties related to model physics parameterization. The models applied are the Weather 
Research and Forecasting (WRF) model and its coupled hydrological modeling system WRF-Hydro, which depicts the lateral 
terrestrial hydrological processes and further allows their feedback to the atmosphere. We conducted convection-permitting 
simulations (3 km) over the Heihe River Basin in Northwest China for the period 2008–2010, and particularly focused on 
its upper reach area of complex high mountains. In order to account for the modeling uncertainties associated with model 
physics parameterization, an ensemble of simulations is generated by varying the planetary boundary layer (PBL) schemes. 
We embedded the fully three-dimensional atmospheric water tagging method in both WRF and WRF-Hydro for quantify-
ing the strength of land–atmosphere interactions. The impact of PBL parameterization on land–atmosphere interactions is 
evaluated through its direct effect on vertical mixing. Results suggest that enabled lateral terrestrial flow in WRF-Hydro 
distinctly increases soil moisture and evapotranspiration near the surface in the high mountains, thereby modifies the atmos-
pheric condition regardless of the applied PBL scheme. The local precipitation recycling ratio in the study area increases 
from 1.52 to 1.9% due to the description of lateral terrestrial flow, and such positive feedback processes are irrespective of 
the modeling variability caused by PBL parameterizations. This study highlights the non-negligible contribution of lateral 
terrestrial flow to local precipitation recycling, indicating the potential of the fully coupled modeling in land–atmosphere 
interactions research.

Keywords  Land–atmosphere interactions · Coupled WRF-Hydro model · Evaporated water tagging · Lateral flow · 
Precipitation recycling · Heihe River Basin

1  Introduction

Climate change influences global and regional hydrological 
variabilities and affects water resource supplies, and thus 
is essential for the environment and human development 
(Immerzeel et al. 2010; Vörösmarty et al. 2000). High-res-
olution regional climate modeling has shown the distinct 
capability in addressing research issues related to climate 
and hydrological applications. Regional climate models 
(RCMs) not only produce reliable added value at higher 
temporal-spatial resolution (Knist et al. 2018; Qiu et al. 
2019; Solman and Blázquez, 2019), but also incorporate 
internally consistent water and energy exchanges throughout 
the land–atmosphere interface (Campbell et al. 2019; Knist 
et al. 2017; Smirnova et al. 2016).
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It has been pointed out that the land surface processes 
require a precise description in numerical weather and cli-
mate modeling (Betts and Silva Dias 2010; Koster et al. 
2010; Ma et al. 2017; Santanello et al. 2018; Senatore et al. 
2015). As land surface models (LSMs) integrated in RCMs 
usually have a crude representation of terrestrial water 
movements (Clark et al. 2015), one state-of-the-art focus 
in recent years has arisen on fully coupled atmospheric-
hydrological modeling systems (Butts et al. 2014; Davison 
et al. 2018; Lahmer et al. 2020; Larsen et al. 2014; Ning 
et al. 2019; Rummler et al. 2019; Senatore et al. 2015; Zhang 
et al. 2019). Shrestha et al. (2014) employed the coupled 
Terrestrial Systems Modeling Platform (Gasper et al. 2014) 
for the North Rhine-Westphalia region in Germany. They 
found that the surface and groundwater processes enhanced 
the redistribution of moisture to dry soils, thereby influenc-
ing the exchange fluxes distribution and atmospheric bound-
ary layer development. By coupling the hydrological model 
PROMET with Mesoscale Model version 5 (MM5), Zabel 
et al. (2012) noticed that the surface hydrological processes 
can influence evapotranspiration and precipitation either 
positively or negatively in central Europe, depending on pre-
vailing hydrological conditions. Later on, Zabel and Mauser 
(2013) indicated that the coupled modeling improved near-
surface temperature simulation in the Upper Danube catch-
ment. By using the Weather Research and Forecasting 
(WRF) model and its coupled hydrological model system 
WRF-Hydro, many studies illustrated that the near-surface 
lateral hydrological processes including overland flow and 
subsurface flow influence the regional climate, water cycle, 
and land–atmosphere feedbacks. In southern Italy, Senatore 
et al. (2015) investigated the impact of lateral terrestrial flow 
on surface hydrometeorological variables, and found that 
the latent heat fluxes were increased and the precipitation 
was influenced modestly. Arnault et al. (2016b) concluded 
that the impact on precipitation depends on the size of the 
analyzed area. Gao et al. (2006) and Zhang et al. (2019) 
performed the coupled simulations for short-term and long-
term scale over high-elevation and complex terrain region 
in the northeastern Tibet Plateau. Their results demonstrated 
the influence of the lateral hydrological processes not only 
on the near-surface atmosphere, but also on the joint atmos-
pheric-terrestrial water balance. Over the central Europe, 
Arnault et al. (2018) and Rummler et al. (2019) employed 
ensemble simulations during the summer season, and con-
firmed the importance of lateral flow description in regional 
atmospheric modeling via precipitation spread and regional 
local recycling. All of the above studies demonstrated the 
capability of fully coupled models in representing complex 
interaction between climate and land surface processes.

Uncertainties broadly exist in regional climate mod-
eling related to model physics parameterization, internal 
variabilities, and external forcing (e.g., Braun and Tao 

2000; Crétat et al. 2012; Klein et al. 2015; Laux et al. 
2017). Multiple planetary boundary layer (PBL) param-
eterization schemes are available in numerical models, 
which are known to have a broad impact on RCM appli-
cations. In India, Gunwani and Mohan (2017) found that 
the PBL scheme is sensitive to downscaled meteorological 
fields over different climatic zones in WRF simulations. 
Likewise, many studies compared different PBL param-
eterization in meteorological condition prediction, by aim-
ing to ascertain an appropriate PBL scheme for specific 
geographical regions (e.g., Avolio et al. 2017; García-
Díez et al. 2013; Hu et al. 2010). Over a coastal moun-
tainous region in Canada, Onwukwe and Jackson (2020) 
conducted yearlong WRF simulations and found that the 
disparities in mixing strengths among PBL schemes were 
more considerable in summer than in winter, depending 
on moist stable conditions and airflow direction. Given 
that the PBL scheme adopts assumptions concerning mass, 
moisture, and energy transport from the land surface to the 
low atmosphere, uncertainties associated with the PBL 
parameterization could directly relate to land–atmosphere 
interactions. In the framework of fully coupled atmos-
pheric-hydrological model systems, studies on the effects 
of different PBL parameterization schemes are usually 
lacking.

Precipitation originating from local evapotranspiration 
source is known as precipitation recycling, which has been 
actively used as a diagnostic measure of land–atmosphere 
interaction (Eltahir and Bras 1996; Trenberth 1999; van 
der Ent et al. 2013). The E-tagging method initially ‘tags’ 
the water vapor evaporated from the land surface, then 
treats the tagged moisture in the same way as all moisture 
does in the RCMs, and follows it in space and time until it 
precipitates. It considers the source-sink relations through 
all physical processes and relaxes the vertical-mixing 
assumption of other precipitation recycling measures 
(Arnault et al. 2016a; Insua-Costa and Miguez-Macho, 
2018). Therefore, it is thought to be the most physically 
realistic way to access the recycled precipitation quantity, 
thus allowing for detecting small perturbation-induced 
changes at the land–atmosphere interface (Arnault et al. 
2019; Dominguez et al. 2016; Zhang et al. 2019). For 
example, by incorporating the E-tagging method with 
MM5, Wei et al. (2015) investigated the annual cycle of 
the contribution of evaporation to precipitation for the 
Poyang Lake region in China, emphasizing the impor-
tance of land surface characteristics in the atmospheric 
hydrological cycle. Knoche and Kunstmann (2013) and 
Arnault et  al. (2016a) traced the evaporated moisture 
pathways in West Africa, and they revealed the effect of 
vertical wind shear to regional precipitation recycling. 
On a large scale, Yang and Dominguez (2019) and Gao 
et al. (2020) employed a tagging-enabled WRF model for 
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South America and Tibetan Plateau respectively, high-
lighting the effects of land surface conditions on recycled 
precipitation. These studies confirmed the ability of the 
E-tagging method to quantitatively assess land–atmos-
phere interactions.

Understanding the interactions between the atmospheric, 
land surface and hydrological processes is of great impor-
tance in complex mountain terrain. This is particularly true 
for the high mountain environment, which is considered as 
the nature’s water tower while is experiencing more rapid 
climate change (Immerzeel et al. 2010; Pepin et al. 2015). 
The Heihe River Basin (HRB) is such an environment. It 
is located in Northwestern China, stretching from Tibetan 
Plateau to Mongolia, and suffering from water shortage and 
ecosystem deterioration problems (Cheng et al. 2014). In 
the upper reach of HRB, where the mountain elevation is 
particularly high, the water availability has been declared to 
be significantly sensitive to climate change (Li et al. 2020; 
Luo et al. 2016; Ma et al. 2019; Zhang et al. 2016). The 
hydrological cycle in this arid alpine area and its connection 
to climate change still needs to be further understood, which 
requires a joint assessment of land–atmosphere interaction 
processes with a complex coupled modeling system (Zhang 
et al. 2019). Therefore, within the context of improving ter-
restrial hydrological processes in regional climate modeling, 
it is important to further understand the role of terrestrial 
water flow on land–atmosphere interactions in such an arid, 
high mountain environment area like HRB. An improved 
understanding can be achieved with the above-mentioned 
fully coupled atmospheric-hydrological modeling, by con-
sidering physics parameterization uncertainties and the 
quantification of the interactions strengthen with the E-tag-
ging approach.

For this purpose, we use the newly developed E-tagging 
method embedded in the standard WRF and fully coupled 
WRF-Hydro model, and carry out ensemble simulations 
for the HRB region by varying PBL parameterizations. The 
main goals of this study are: (1) to assess the impact of lat-
eral terrestrial flow on the simulation of surface hydrome-
teorological variables and land–atmosphere interactions, 
(2) to evaluate to what extent the PBL parameterization 
influences land–atmosphere interactions, and (3) to identify 
the respective impact of lateral terrestrial flow and the PBL 
parameterization uncertainties in a fully coupled modeling 
approach. The analyses of land surface-precipitation feed-
back processes (Asharaf et al. 2012; Schär et al. 1999) and 
precipitation recycling based on E-tagging are used as quan-
titative measures. To our knowledge, this is the first effort 
performed in regional climate modeling to consider uncer-
tainties in the evaporated water tracing method originating 
from model physics parameterizations.

In the following, Sect. 2 briefly describes the study region 
and used datasets. In Sect. 3, the model descriptions and 

setup, as well as the ensemble strategy and quantitative 
methods are addressed. The results of ensemble modeling 
are discussed in Sect. 4, and the conclusions are summarized 
in Sect. 5.

2 � Study region and dataset

The Heihe River Basin (HRB) is the second-largest inland 
river basin in China, covering an area of approximately 
143,000 km2. The river starts from the Qilian Mountain in 
the northern Tibetan Plateau and disappears at two terminal 
lakes in the Gobi Desert. From the upstream mountains to 
the desert in downstream, the elevation decreases from 5500 
to 1000 m (Fig. 1b), and the annual precipitation decreases 
from 550 to 50 mm. The water vapor transport over HRB 
is mainly controlled by the middle-latitude westerly wind 
and polar north wind, with the weakened East Asian sum-
mer monsoon obstructed by the Qilian Mountains in the 
upstream (Wang et al. 2004; Wang et al. 2018a, b). There-
fore, the precipitation in HRB shows large seasonal and 
spatial variability, with more than 80% precipitation occur-
ring from May to September and 70% precipitation over the 
upper mountains (Li et al. 2018a). Due to the steep terrain 
gradients (Fig. 1b) and climate characteristics, the natural 
landscape and hydrological conditions show an obvious 
spatial heterogeneity (Cheng et al. 2014). The upper reach 
of HRB is a typical alpine environment, where the main 
landscape is covered by alpine meadow, with the annual air 
temperature between − 3 °C and 0 °C. The middle reach of 
HRB is spatially fragmentarily covered with lower oasis and 
dryland cropland. In this area, the river water and ground-
water are largely consumed by irrigation water withdrawal. 
The downstream of HRB is vastly covered by the sand and 
gravel deserts plus certain riparian ecosystems. The climate 
is extremely dry, with annual precipitation less than 50 mm 
and potential evapotranspiration greater than 1000 mm (Ma 
et al. 2014). The ecological system over the middle and 
downstream of HRB is threatened by an increase of water 
consumption, and is significantly dependent on upstream 
hydrological variability under rapid climate change (Cheng 
et al. 2014; Zhang et al. 2016). Therefore, this study particu-
larly focuses on the upper reach of HRB (upper HRB) outlet 
at the Yingluoxia hydrological gauge (1634 m a.s.l.). The 
upper HRB is entirely situated within the Qilian Mountains, 
with a drainage area of 10,009 km2. Two additional hydro-
logical gauges, located at Qilian (2590 m a.s.l.) and Zhama-
shike (2635 m a.s.l), measure the streamflow of eastern and 
western tributaries in the upper HRB (Fig. 1c).

The China Meteorological Forcing Dataset (CMFD), 
the Global Land Evaporation Amsterdam Methodology 
(GLEAM) dataset, and soil moisture dataset of European 
Space Agency’s Climate Change Initiative (ESA CCI) are 
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used for evaluating the modeling results. The CMFD data 
was constructed by merging 740 in-situ China Meteorologi-
cal Administration (CMA) stations with various advanced 
retrospective analyses data resources (He et al. 2020). This 
product provides gridded meteorological analysis over China 
with spatial and temporal resolutions of 0.1° and 3 h, respec-
tively. Extensive studies suggested that CMFD accurately rep-
resents the meteorological conditions within and surrounding 
the HRB region (Pan et al. 2014; Yang et al. 2017b). In this 
study, CMFD is used for the validation of air temperature and 
precipitation, and for offline hydrological model driving (see 
Sect. 3.1). The GLEAM dataset (Martens et al. 2017) is the 
global evapotranspiration product based on remote sensing 
observation, with a spatial resolution of 0.25°. Based on the 
point-validation of GLEAM dataset across China via eddy 
covariance measurements, Yang et al. (2017a) confirmed the 
capability of GLEAM in representing monthly and spatial 
variations of evapotranspiration around upper HRB. The soil 
moisture from ESA CCI is the remotely sensed surface soil 

moisture combined from active and passive microwave sensors 
measurements, with a spatial resolution of 0.25° (Gruber et al. 
2019). For the site-based measurements, 18 meteorological 
stations within and surrounding the HRB (Fig. 1b) collected by 
CMA stations and Heihe Watershed Allied Telemetry Experi-
mental Research project (Li et al. 2013) are used for further 
verifying air temperature and precipitation. Daily streamflow 
observation records from 3 hydrological gauges in upper HRB, 
shown in Fig. 1c, are provided by the Hydrological Bureau 
of Gansu Province. The missing records from meteorological 
stations are linearly interpolated with the nearby stations. The 
streamflow records affected by dry season dam operation at 
Yingluoxia gauge are reconstructed using linear-line fit with 
two upstream gauge records.

Fig. 1   a Geographic location of the Heihe River Basin and the loca-
tion of WRF/WRF-Hydro model domain. b Terrain topography and 
river network of the drainage of Heihe River Basin, with nearby 
meteorological stations shown in red cycles. c Zoom of the topog-

raphy, stream channels and the discharge gauges (orange rectangles) 
described in the 300-m high resolution WRF-Hydro routing subgrid 
for the upper Heihe River Basin
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3 � Modeling experiments and methods

3.1 � WRF and WRF‑Hydro setup

The advanced research WRF model (Skamarock and Klemp 
2008) version 3.7 and its Hydrological modeling system 
WRF-Hydro (Gochis et al. 2015) are employed for regional 
atmosphere-hydrology simulations to address the research 
objectives of this study. WRF is a numerical meteorologi-
cal and climate model that is widely used in weather and 
climate research as well as operational applications (Pow-
ers et al. 2017). WRF-Hydro affords a set of supplementary 
hydrological components to the WRF model, which enables 
the capability of lateral redistribution of the hydrological 
condition at the land surface (Gochis et al. 2015). All WRF 
and WRF-Hydro simulations are run in a single-domain 
configuration, covering the whole HRB and centering at 
the upper HRB (Fig. 1a). Acknowledging that the refined 
model grid improves orography representation over highly 
complex terrain, thereby offering added values in simulated 
surface fields (e.g., Fosser et al. 2014; Karki et al. 2017; 
Woodhams et al. 2018), all simulations are performed at 
a convection-permitting resolution of 3 km with 350 × 350 
grid points. This high resolution excludes the uncertainties 
from cumulus parameterization, thus allowing for a more 
realistic simulated soil moisture-precipitation feedback 
(Prein et al. 2015; Taylor et al. 2013). The vertical coordi-
nate is a hybrid terrain-following coordinate with 40 levels 
and pressure top at 20 hPa. The atmospheric lateral bound-
ary conditions are provided by the operational analysis from 
the European Center for Medium-Range Weather Forecasts 
(ECMWF), with 0.125° spatial resolution and 6-h inter-
vals. The model physics adopted in this study includes the 
WRF single-moment 6-class (WSM6) microphysics scheme 
(Hong and Lim 2006), the Rapid Radiative Transfer Model 
longwave radiation scheme (Mlawer et al. 1997), and the 
Dudhia shortwave radiation scheme (Dudhia 1989). The dif-
ferent PBL schemes used for turbulence parameterization are 
described in Sect. 3.2

The land surface static characteristics are replaced with 
the accurate localized dataset, acknowledging their notice-
able impact on atmospheric modeling in the study area 
(Gao et al. 2008; Meng et al. 2009; Wen et al. 2012). The 
land cover map is updated with the Multi-source Integrated 
Chinese Land Cover Map (Ran et al. 2012), and the soil 
texture map is adapted from the Chinese 1: 1,000,000 scale 
Soil Map and Harmonized World Soil Database (HWSD) 
version 1.2. The Noah-LSM scheme is used for param-
eterizing lower boundary interactions in the land surface 
(Chen and Dudhia 2001). In the WRF model, Noah-LSM 
only considers vertical water and energy exchanges in a 
4-layer soil column within a 2-m soil depth.

The above model configurations are the same in WRF 
and coupled WRF-Hydro simulations. In WRF-Hydro, a 
separated 300-m hyper-resolution subgrid is prepared with 
WRF-Hydro Pre-processing Tool using the hydrological 
data and maps based on Shuttle Elevation Derivatives at 
multiple Scales (HydroSHEDS; Lehner et al. 2008). At each 
WRF model timestep, hydrological variables including sur-
face water amount and soil moisture are disaggregated from 
the 3-km WRF grid to the 300-m hydro subgrid. Afterward, 
additional hydrological processes including lateral subsur-
face flow routing, overland flow routing, and channel water 
routing are resolved in this hydro subgrid, resulting in an 
updated surface state variable. The drainage water from 
the soil bottom is collected in a groundwater bucket for 
each basin area, and is used for baseflow calculation via 
an exponential function. We note that the water routed in 
the channel and collected in the bucket has no further feed-
back to the land surface modeling. A detailed description 
of the water routing schemes and baseflow routine in WRF-
Hydro is available in Gochis et al. (2015). Succeeding the 
above hydrological procedures, surface water amount and 
soil moisture content on the fine hydro subgrid are linearly 
averaged back to the coarse WRF grid. Therefore, the land 
surface condition modulated by lateral terrestrial flow feeds 
back to WRF atmospheric processes at the next iteration of 
the Noah-LSM.

Calibrating the hydrological parameters is relevant to 
the realistic representation of terrestrial water processes in 
hydrological modeling. Driven by the observational-based 
CMFD dataset, the WRF-Hydro model is calibrated in its 
offline mode using observed daily streamflow at the Yin-
gluoxia gauge. After model calibration, the Nash–Sutcliffe 
efficiency and Kling-Gupta efficiency (Gupta et al. 2009) of 
the simulated streamflow reach the values of 0.6 and 0.79, 
respectively. The calibration procedure has been elabo-
rated in Yucel et al. (2015) and detail of calibration results 
has been discussed in Zhang et al. (2019). The calibrated 
parameter set is therefore used in fully coupled WRF-Hydro 
simulations.

3.2 � PBL schemes and experimental strategy

Three PBL schemes in WRF and WRF-Hydro are used for 
investigating modeling sensitivity to turbulence parameteri-
zation: the Yonsei University (YSU) scheme, the Mellor-
Yamada-Janjic (MYJ) scheme, and the Asymmetrical Con-
vective Model version 2 (ACM2) scheme. These three PBL 
schemes are chosen as they have been extensively considered 
in turbulence parameterization uncertainty studies (Arnault 
et al. 2018; García-Díez et al. 2013; Gómez-Navarro et al. 
2015; Gunwani and Mohan, 2017; Hu et al. 2010). The YSU 
scheme is a first-order scheme that uses the nonlocal eddy 
diffusivity coefficient to explicate turbulent fluxes (Hong 
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et al. 2006). The MYJ scheme is a local closure scheme and 
it uses a 1.5-order turbulence model with a prognostic equa-
tion for the turbulent kinetic energy (Janjić 1994). ACM2 
uses a combination of nonlocal upward convective mixing 
and local downward mixing, and treats nonlocal fluxes using 
a transilient matrix (Pleim 2007). In this study, all the WRF 
and coupled WRF-Hydro simulations are configured with 
the model setups in Sect. 3.1 and run three times, one for 
each of these three PBL schemes. This gives a model ensem-
ble of six members, that are three WRF members and three 
WRF-Hydro members (Table 1).

A schematic view of model ensemble members is pro-
vided in Fig. S1. When intercomparing the ensemble mem-
bers in Fig. S1, the comparisons in horizontal (orange line) 
indicate the model uncertainties related to PBL schemes, and 
the comparisons in vertical (blue line) express the influences 
related to lateral terrestrial flow. In the following, we call 
Hydro-ensembles the ones which use only WRF members 
(WRFS) or WRF-Hydro members (WRFH). Then, we call 
PBL-ensembles the ones which use only one PBL scheme.

For all ensemble simulations, the initial soil conditions 
is spun-up by the 2-year WRF simulation with the ACM2 
PBL scheme, ensuring their comparability in the following 
analyses. All the simulations are performed from 2008 to 
2010, which allows to account for the interannual modeling 
variabilities.

3.3 � Evaporated water tagging method

The physically realistic method to trace online the water 
originating from evapotranspiration, known as E-tagging, 
is used for diagnosing and quantifying the land–atmosphere 
interactions in the study. This method was firstly techni-
cally realized in the German Weather Service’s hydrostatic 
high-resolution model (HRM) by Sodemann et al. (2009) 
for a regional application. Later on, this E-tagging method 
has been implemented and verified with MM5 (Knoche and 
Kunstmann 2013) and WRF (Arnault et al. 2016a; Insua-
Costa and Miguez-Macho 2018).

The E-tagging method developed by Arnault et  al. 
(2016a) is used in this study. It has been incorporated in both 
standard WRF and coupled WRF-Hydro, and is compatible 
with the physics parameterizations selected for model setups 
in Sects. 3.1 and 3.2. The following tagging procedure is 
employed: (1) Define the upper HRB as the source region for 
water tracing, the evapotranspiration from the upper HRB 
(red outline in Fig. 1b) being labeled as the tagged evapo-
transpiration (ETtag); (2) Analogously replicate the numeri-
cal formulations related to the advection and turbulent trans-
port of the original water species (qn) for the tagged water 
species (qn,tag); (3) Introduce a weighting coefficient (qn,tag/
qn) for the computation of tagged water phase transitions. 
Following this procedure, tagged water species are traced 
until tagged precipitation at the surface (Ptag) or tagged 
advection outside of the domain’s boundaries. It is noted that 
the tagged water species which leave the lateral boundaries 
of the model domain are set to zero, which means that the 
returning of tagged water species from outside of the domain 
is neglected.

3.4 � Quantitative measures of land–atmosphere 
interactions

To quantify the interactions between land surface and atmos-
phere, we firstly use the analysis framework of land surface-
precipitation feedback processes proposed by Schär et al. 
(1999) and advanced by Asharaf et al. (2012). This analysis 
is based on the atmospheric water balance, and assumes that 
the water vapor transported through a region and from the 
local evapotranspiration is well mixed.

For a control experiment, the relationship of precipita-
tion (P), evapotranspiration (ET), and the atmospheric water 
vapor transport in a specific region is described as:

Qin is the atmospheric water inflow calculated by inte-
gration of water vapor fluxes through the boundary of the 
selected area. χ is called precipitation efficiency, which is 

(1)P = �
(

ET + Qin

)

.

Table 1   List of the six WRF and WRF-Hydro experiments, along with the used PBL scheme, brief description of the PBL scheme, and the LSM 
parameterizations

Experiment PBL scheme Short description of PBL LSM

WRFH-YSU YSU Nonlocal mixing; first-order closure; explicitly represent entrainment at the top of PBL Hydrologically 
enhanced Noah-
LSM

WRFH-MYJ MYJ Local mixing; use a 1.5-order closure scheme with a prognostic equation of turbulent 
kinetic energy

WRFH-ACM2 ACM2 Combination of local downward mixing and nonlocal upward convective mixing; first-
order closure

WRFS-YSU YSU Same as in WRFH-YSU Standard Noah-LSM
WRFS-MYJ MYJ Same as in WRFH-MYJ
WRFS-ACM2 ACM2 Same as in WRFH-ACM2
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defined as the fraction of the water vapor entering a certain 
region, either by evapotranspiration or atmospheric water 
transport, that falls as precipitation within the same region 
afterward.

For a perturbation experiment, Eq. (1) can be rewritten 
as:

where dashed variables stand for the conditions in the per-
turbation experiment. Subtracting Eq. (1) from Eq. (2), the 
precipitation difference ΔP is written as:

where Δ denotes the differences between the perturbation 
experiment and control experiment. Rearranging the right-
hand terms according to Schär et al. (1999) and Asharaf 
et al. (2012), ΔP can be expressed as:

In Eq. (4), the precipitation difference ΔP is separated 
into three terms and residual. The first term reflects the 
processes affecting the transformation of available atmos-
pheric water into precipitation. It is the indirect contribution 
through the changes in precipitation efficiency Δχ, referred 
to as efficiency effect. The second and the third terms reflect 
the precipitation change by direct contribution through the 
changes in surface evapotranspiration ΔET and changes in 
atmospheric water vapor inflow ΔQin, referred to as surface 
effect and remote effect, respectively. The residual term is 
very small and can be neglected. Therefore, this analysis 
allows distinguishing between the direct and indirect pro-
cesses of lateral terrestrial flow on the simulated precipita-
tion from the model simulations. In this study, the coupled 
WRF-Hydro ensemble is considered as the perturbation 
experiment which additionally depicts the lateral terrestrial 
flow. The feedback analysis based on Eq. (4) is conducted 
with WRF and coupled WRF-Hydro simulations which use 
the same PBL scheme (blue line in Fig. S1).

Precipitation recycling ratio is used as another meas-
ure for quantifying land surface-atmosphere interactions 
strength. Precipitation recycling ratio is defined as the frac-
tion of evaporation-originated precipitation in the total pre-
cipitation, in this case for the upper HRB area. Based on 
the E-tagging method, the precipitation recycling ratio is 
calculated as:

The higher value of � stands for a higher contribution of 
locally evaporated water to local precipitation.

(2)P� = � �
(

ET � + Q�
in

)

,

(3)ΔP = P� − P = � �
(

ET � + Q�
in

)

− �
(

ET + Qin

)

,

(4)

ΔP = Δ�
(

ET + Qin

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Efficiency effect

+ �ΔET
⏟⏟⏟

Surface effect

+ �ΔQin
⏟⏟⏟

Remote effect

+Δ�
(

ΔET + ΔQin

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Residual

.

(5)� = Ptag∕P.

4 � Results and discussion

The quantification measures of land–atmosphere inter-
actions depend on the performance of modeling results 
in reproducing the hydrometeorological fields, i.e., pre-
cipitation, temperature, evapotranspiration, and discharge. 
Therefore, the simulated hydrometeorological fields from 
model ensembles are evaluated and discussed at first, then 
followed by discussions on quantified land–atmosphere 
interactions.

4.1 � Hydrometeorological fields

4.1.1 � Precipitation

The annual precipitation from model ensembles is spa-
tially compared with the CMFD gridded precipitation and 
ground measurements in Fig. 2. As illustrated in Fig. 2a, 
the observational reference shows a precipitation band 
along with the Qilian Mountain, with a decrease of precip-
itation from southeast to the northwest. The heavy precipi-
tation is centered to the south of HRB, while the minimal 
precipitation is spread over the lowland area in the north. 
All the considered ensemble members capture the above 
spatial pattern of precipitation, and are consistent with the 
ground measurements (Fig. 2b–f). The monthly averaged 
precipitation in the upper HRB from Hydro-ensembles 
WRFS and WRFH, is temporally compared with CMFD 
in Fig. 3a. It shows that all the simulations skillfully repro-
duce the monthly and seasonal variation of precipitation. 
Similar to many RCM simulations (e.g., Pan et al. 2014; 
Xiong and Yan 2013; Yang et  al. 2017b; Zhang et  al. 
2018), all the model ensembles overestimate precipitation 
over the high mountains from May to August (Fig. 3a). In 
comparison to CMFD precipitation for the upper HRB, 
the Hydro-ensembles WRFS and WRFH overestimate pre-
cipitation by 221 mm/year and 231 mm/year respectively, 
and the PBL-ensembles simulate 201–254 mm/year more 
precipitation, in which the ACM2 ensemble shows the 
smallest bias and MYJ ensemble shows the highest. Tak-
ing into account the fact that CMFD merges sparse ground 
observations over flat valley area around the study area 
(Fig. 1b), the wet bias of precipitation in the upper HRB 
could be partially attributed to the fact that high mountain 
precipitation is not well represented in the gridded refer-
ence dataset (Chen et al. 2015; Pan et al. 2014; Yang et al. 
2017b).

Spatially, all the WRF and coupled WRF-Hydro experi-
ments show much more spatial details in comparison to the 
reference data, in relation to the high resolution employed 
for the simulation. In the high mountains to the south, 
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the precipitation distribution is highly associated with 
elevation, and shows more precipitation on the northern 
flank of the Qilian Mountains (Chen et al. 2018a; Wang 
et al. 2018a). As an important component of precipitation, 
snowfall is primarily distributed over high-altitude moun-
tains, accounting for approximate 23% of total precipita-
tion in the upper HRB. This spatial distributions of simu-
lated snowfall and snow water equivalent from ensemble 
simulations (Fig. S2) are comparable and similar to that 
of Pan et al. (2017). These localized spatial patterns of 
orographic precipitation and snowfall prove the trustwor-
thy of ensemble simulations in representing precipitation 
quantities.

4.1.2 � Near‑surface temperature

The comparisons of 2-m air temperature between CMFD 
and the Hydro-ensembles are displayed in Figs. 3b and 4. 
Both model ensembles simulate monthly averaged tempera-
ture variations in good agreement with the reference dataset 
(Fig. 3b), with statistically significant correlation coeffi-
cients above 0.98. As shown in Fig. 4, the spatial variations 
of annual mean temperature are also realistically reproduced, 

with a spatial correlation of 0.96 for the whole HRB and 
0.81 for the upper HRB. Comparing with CMFD reference, 
the simulated near-surface temperature from all ensemble 
members is slightly lower during the summertime and higher 
during the wintertime (Fig. 3b), with a warm bias ranging 
from 0.3 to 0.9 °C. This model performance is fairly com-
parable to that obtained with other RCM simulations (e.g., 
Gao et al. 2015; Pan et al. 2012).

4.1.3 � Evapotranspiration and soil moisture

Evapotranspiration (ET) and surface soil water content 
from the Hydro-ensembles are evaluated with the GLEAM 
and ESA CCI datasets as time series for the upper HRB 
in Fig. 3c, d. Soil water content comparison is only avail-
able during summertime due to the general missing values 
in the wintertime. In general, simulated monthly ET in the 
upper HRB shows good agreement with GLEAM with cor-
relation coefficients above 0.84 (p < 0.01) and the simulated 
soil water content is also quite comparable with ESA CCI 
observations. Overall, the Hydro-ensemble WRFH overes-
timates ET by about 61 mm/year while WRFS underesti-
mates ET by about 11 mm/year. As shown in Fig. 3c, d, 

Fig. 2   Annual accumulated precipitation derived from a CMFD, and 
the Hydro-ensembles of b WRFS-ENS and c WRFH-ENS for the 
period 2008–2010. d–f are for the PBL-ensembles of d YSU-ENS, e 

MYJ-ENS and f ACM2-ENS. Colored circles represent the ground-
observed precipitation from in-situ stations
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WRFH overestimates the peak value of ET in the summer-
time, which is associated with the higher soil moisture in the 
WRFH ensemble. All simulations slightly underestimate ET 
during March and April in the upper HRB where elevation 
is high. As the air temperature is below 0 °C (Fig. 3b) and 
the precipitation is low (Fig. 3a) during this springtime, the 
underestimated ET could be largely attributed to an inac-
curate specification of the frozen soil thawing mechanism 
in land surface modeling (Duan et al. 2018; Zhang et al. 
2019; Zheng et al. 2017). In Fig. 5, the spatial pattern of 
ET in GLEAM is fairly represented in the model ensem-
bles, with a maximum in the southeast, and declining val-
ues from the southern to the northern HRB. It is noted that 

simulation results additionally represent spatial variations of 
ET according to local vegetation conditions and precipita-
tion distribution (Fig. 2). These high-resolution features of 
ET, which cannot be detected in the GLEAM dataset, are 
similar to those shown by satellite data-derived results (Wu 
et al. 2020).

4.1.4 � Impact of lateral terrestrial flow 
on hydrometeorological fields

The role of lateral terrestrial flow on simulated hydrome-
teorological variables is inspected by intercomparing the 
Hydro-ensembles WRFH and WRFS (Sect. 3.2). Displayed 

Fig. 3   Monthly variation of a 
precipitation, b 2-m air temper-
ature, c evapotranspiration and 
d soil water content averaged in 
the upper HRB from reference 
datasets (CMFD, GLEAM, ESA 
CCI), and the Hydro-ensemble 
(WRFS-ENS, WRFH-ENS) in 
the period of 2008–2010
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in Fig. 3, the monthly time series of precipitation from the 
two Hydro-ensembles show similar variations, with small 
differences in the monthly amounts, while the ET and soil 
moisture is distinctly higher in WRFH, with around 0.5 mm/
day more ET and 0.03 m3/m3 higher soil water content than 
those in WRFS during the summertime. Furthermore, the 
range of ET in each Hydro-ensemble is generally less than 
0.18 mm/day (Fig. 3c). This robustly indicates that the 
increase of evapotranspiration in WRFH corresponds to the 
description of lateral terrestrial flow, regardless of the pre-
cipitation uncertainties. Since lateral flow does not directly 
affect the snowpack, the snow melting process is related to 
the simulated air temperature, which is comparably similar 
in all ensemble simulations (Fig. 3b). Slight differences in 
snowmelt are associated with the differences in snowfall 
between WRFS and WRFH ensembles (Fig. S3).

The spatial differences of related hydrometeorologi-
cal variables are explored for the months from May to 

September (Fig. 6), which is defined as the rainy-season 
(Su et al. 2017; Zhang et al. 2018). By enabling lateral 
terrestrial hydrological processes within atmosphere mod-
eling, the land surface in turn is affected according to the 
terrain complexity. Regardless of the precipitation dif-
ferences, Fig. 6c shows that ET systematically increased 
over the areas with high elevation gradients in the Qilian 
Mountains, and with small differences in the northern flat 
regions and flat valleys. The increase of ET is consistent 
with the increase of soil moisture, which is caused by lat-
erally moved and re-infiltrated surface runoff. Tempera-
tures between the two Hydro-ensembles are rather simi-
lar. WRFH shows slightly lower near-surface temperature 
than WRFS alongside the mountains, within − 0.2 °C, as 
a consequence of a more evaporative cooling effect. These 
wetting and cooling results in mountainous areas are con-
sistent with findings in the Eastern Alps area (Rummler 
et al. 2019).

Fig. 4   Annual mean 2-m air temperature derived from a CMFD, and the Hydro-ensemble of b WRFS-ENS and c WRFH-ENS for the period 
2008–2010. Colored circles represent the ground-observed 2-m air temperature from in-situ stations

Fig. 5   Annual mean accumulated evapotranspiration derived from a GLEAM, and the Hydro-ensembles of b WRFS-ENS and c WRFH-ENS for 
the period 2008–2010
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4.2 � Streamflow

Simulated streamflow hydrographs from the coupled WRF-
Hydro ensemble are compared with gauge observations in 
Fig. 7. In general, the timing of hydrograph peaks and the 
flow recession are well captured by all ensemble members. 
The temporal variations of streamflow are comparable with 
observed streamflow, except for the baseflow amount during 
the dry period, which is mostly underestimated. Apart from 
the fact that WRF-Hydro explicitly describes the subsurface 
flow in a soil layer of 2 m depth only and oversimplifies 
deeper groundwater processes with a simple bucket base-
flow parameterization (Gochis et al. 2015; Li et al. 2017; 
Rummler et al. 2019; Yucel et al. 2015), streamflow under-
estimation during low flow period could be further attributed 
to a lack of glacier wastage modeling in the current model 
framework.

As indicated in previous coupled WRF-Hydro applica-
tions (Arnault et al. 2016b; Kerandi et al. 2018; Rummler 
et al. 2019; Senatore et al. 2015), our results similarly under-
line the impact of simulated precipitation on streamflow 
simulation. Related to the overrated precipitation amount, 
the peak flows are mostly overestimated during the rainy-
season, resulting in low KGE coefficient values spanning 
from 0.02 to 0.21. With respect to different PBL schemes 

used in the coupled modeling, the simulated hydrographs in 
all members are similar, however, distinguishable ranges are 
obtained at flow peaks during the rainy period. This behav-
ior is quite comparable to the ensemble simulations over 
central Europe and Alps catchments (Arnault et al. 2018; 
Rummler et al. 2019). The uncertainties in the peak flows 
can be justified by the simulated precipitation differences, 
which not only rely on the amounts and spatial distributions, 
but also on the intensity and duration of heavy precipita-
tion events (Kokkonen et al. 2004; Rasmussen et al. 2012). 
Nevertheless, the ratios of total streamflow to precipitation 
are reasonably reproduced at all three gauges. The calcu-
lated streamflow ratios show values of 0.38–0.40 at Qilian 
gauge, 0.40–0.41 at Zhamashike gauge, and 0.36–0.38 at 
Yingluoxia gauge, respectively, and these are quite compa-
rable with various pure hydrological modeling results (Chen 
et al. 2018b; Gao et al. 2016; Li et al. 2018b; Ruan et al. 
2017; Yang et al. 2015).

4.3 � Land surface‑precipitation feedback processes

As the precipitation amount during the dry season is quite 
small and similar among all ensemble members (Fig. 3a), 
the land surface-precipitation feedback analysis focuses 
on the rainy-season from May to September. Figure 8 

Fig. 6   Differences in a accumu-
lated precipitation, b mean 2-m 
air temperature, c accumulated 
evapotranspiration, and d 
surface soil moisture between 
the Hydro-ensembles (WRFH-
ENS minus WRFS-ENS) for the 
rainy-season (May–September) 
in 2008–2010
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displays the quantified effect terms of lateral terrestrial 
flow on precipitation in the upper HRB with each PBL 
scheme. The results among different PBL schemes are 
quite consistent. The direct contribution of evapotran-
spiration changes to precipitation changes is small and 
positive in all months, in relation to the higher evapotran-
spiration in coupled WRF-Hydro. Since the soil moisture 
conditions can modify mesoscale moisture convergence 
thereby affect atmospheric water inflow (e.g., Cook et al. 
2006; Koster et al. 2016; Schär et al. 1999), the remote 
effect reaches its maximum value in July when the water 
transport is the strongest. The positive or negative remote 
effects are related to the atmospheric moisture conver-
gence differences and the relative location of the study 
area (Fig. S5j–l). The efficiency effect shows the dominant 
contribution to the change of precipitation, with the largest 
absolute value throughout the rainy-season. In the model 
system, this efficiency effect corresponds to the convection 
organization triggered by moisture convergence and model 
physical processes. Being influenced by lateral terrestrial 

flow, the modeled specific humidity and latent heating 
(i.e., evapotranspiration) increase at the land surface (Fig. 
S4j–l), in association with a shallower boundary layer, 
a decrease in lifting condensation level, and an increase 
of most unstable convective available potential energy 
across southern mountains (Fig. S5a–j). These results sug-
gest that the lateral terrestrial flow potentially affects the 
spatial distribution and strength of convection through a 
change in atmosphere stability, similar to the study cases 
of direct perturbation of wetter soil moisture conditions 
(e.g., Asharaf et al. 2012; Froidevaux et al. 2014; Wei 
et al. 2016). Therefore, although the lateral terrestrial 
flow has a relatively small direct impact on precipitation, 
it promotes much larger indirect impact on precipitation 
through atmospheric moisture convergence and convective 
processes.

As atmospheric moisture convergence and convection for-
mation are both influenced by model physical parameteri-
zation schemes, the precipitation changes and the quanti-
fied effects are varying from month to month among three 

Fig. 7   Range of daily time 
series of simulated streamflow 
by the coupled WRF-Hydro 
ensemble at the outlets of the 
gauges a Yingluoxia, b Qilian 
and c Zhamashike for the period 
2008–2009. The observed 
streamflow is shown as black 
solid lines
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PBL-ensembles. The effect of different PBL schemes will 
be investigated using E-tagging method in the following 
section.

4.4 � Evapotranspiration tagging and precipitation 
recycling

4.4.1 � Distribution of tagged precipitation and precipitation 
recycling

The tagged evaporated water which precipitates at the 
ground, namely the tagged precipitation (Ptag), and the pre-
cipitation recycling ratio are spatially displayed in Fig. 9 for 
the standard WRF simulations with the three PBL schemes. 
The results from coupled WRF-Hydro simulations are simi-
lar and are displayed in Figure S6. The tagged precipitation 
is mainly distributed around the source region, the upper 

HRB, and alongside the mountain range stretching from 
southeast to northwest. Besides, the higher amount of tagged 
precipitation falls at the mountain peaks within and to the 
south of the upper HRB, which confirms the role of the Qil-
ian Mountain blocking the atmospheric water transport to 
the Tibet Plateau (Li et al. 2015; Wang et al. 2018b).

Only a small portion of evaporated water falls back to the 
source area, resulting in an annual precipitation recycling 
ratio less than 2.2% (Table 2), whereas the predominant 
portion flows outside the domain boundaries. In Fig. 10, 
the calculated monthly precipitation recycling ratio ranges 
from 0.05 to 3.9%, which is comparable to that obtained in 
a previous study (Zhang et al. 2019). This low precipita-
tion recycling feature in the study area is confirmed by all 
ensemble members, and it is mainly related to the fact that 
the source area is small. The precipitation recycling ratio 
is scale-dependent, explaining that it tends to zero at the 

Fig. 8   Monthly quantified 
change of precipitation (WRFH-
PBL minus WRFS-PBL) in the 
upper HRB for the rainy-season 
in 2008–2010
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point-scale and reaches 1 at the global-scale (Arnault et al. 
2016a; Burde and Zangvil 2001; Trenberth 1999). In the fol-
lowing, we compare the E-tagging results among ensemble 
members to investigate the PBL-related and lateral terrestrial 
flow-induced changes in local recycled precipitation.

4.4.2 � Impact of PBL scheme on precipitation recycling

As shown in Figs. 9, S6 and Table 2, it is found that the 
annual tagged precipitation and precipitation recycling 
show differences among the PBL schemes. For the WRFS 
ensemble, the MYJ scheme has the largest amount of 
tagged precipitation around 15.5 mm/year, and the highest 

precipitation recycling ratio of 1.76%. The ACM2 scheme 
has the lowest amount of tagged precipitation of 11.9 mm/
year, with a precipitation recycling ratio of 1.28%. A similar 
difference among the PBL schemes is also found in the case 
of the WRFH ensemble (Table 2).

The calculated monthly precipitation recycling ratios 
for all ensemble members are displayed in Fig. 10. The 
precipitation recycling ratio shows a distinct seasonal 
cycle, which is quite comparable among all PBL schemes, 
showing the lowest values during the winter season and 
higher values in the summer season. For the magnitude, 
again, the highest precipitation recycling ratio is found 
in the PBL scheme of MYJ throughout the whole period, 
and the ACM2 scheme shows the lowest values. These 
differences in precipitation recycling could be explained 
by the local closure difference in the PBL parameteriza-
tion. The local closure schemes (i.e., MYJ) usually pro-
duce insufficient mixing in the convective boundary layer 
(Brown 1996; Cohen et al. 2015; Xie et al. 2012), and 
this weaker vertical mixing tends to transfer less surface 
water vapor to higher atmospheric levels (Hu et al. 2010). 
However, the nonlocal schemes (i.e., YSU, ACM2) usually 

Fig. 9   Spatial pattern of a–c annual tagged precipitation amount and precipitation recycling d–f from the WRF standalone simulations (WRFS) 
with respect to 3 PBL schemes for the period 2008–2010

Table 2   Annual precipitation recycling of the upper HRB for each 
model ensemble member

PBL scheme WRFS- (%) WRFH- (%)

YSU 1.53 1.90
MYJ 1.76 2.19
ACM2 1.28 1.61
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transport more moisture away from the surface and deposit 
more moisture at a higher atmospheric level (Hong and 
Pan 1996; Hu et al. 2010; Srinivas et al. 2007). These 
differences in moisture mixing are exemplified in the ver-
tical profile shown in Fig. 11. The MYJ scheme exhibits 
more moisture in the low atmosphere below the height of 
5500 m, whereas the ACM2 scheme displays the lowest 
moisture. In the higher atmosphere, the ACM2 scheme is 
inversely showing the higher moisture mixing ratio with 
respect to the YSU and MYJ schemes. As the moisture 
particles in the higher atmosphere levels can be trans-
ported farther away to remote regions, the precipitation 
recycling ratio from the ACM2 scheme is accordingly low.

4.4.3 � Impact of lateral terrestrial flow on precipitation 
recycling

Figures 12 and 13 illustrate the precipitation recycling dif-
ferences between the Hydro-ensemble WRFH and WRFS as 
spatial maps and monthly time series, respectively. Concern-
ing the impact of lateral terrestrial flow, spatial precipitation 
recycling increases in the northwestern upper HRB, with 
a total increased ratio of 0.47% and up to 0.93% in moun-
tain peaks (Fig. 12). Despite the uncertainties introduced 
by the PBL schemes, lateral terrestrial flow systematically 
increases the monthly precipitation recycling ratios, up to 
1.2% more in the summertime (Fig. 13).

Fig. 10   Monthly precipita-
tion recycling ratio calculated 
from all WRF standalone and 
coupled WRF-Hydro ensemble 
members

(a) (b)

Fig. 11   Vertical profiles of the difference in a total water vapor mixing ratio and b tagged water vapor mixing ratio between three PBL param-
eterization schemes for June and August in 2008. Differences are respectively calculated from each PBL ensemble and their ensemble mean
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Differential vertical profiles of moisture mixing ratio 
between the WRFH and WRFS are shown in Fig. 14, one 
for June 2008 when the recycling ratio differences is the 
largest, and the other for August 2008 when the differences 

display the widest range. For both months, WRFH enhances 
the moisture in the lower atmosphere and decreases moisture 
in the higher atmosphere up to the height of 9000 m. The 
tagged moisture in WRFH is comparatively higher below the 

Fig. 12   Spatial pattern of precipitation recycling from Hydro-ensembles of a WRFS, b WRFH and c their difference (WRFH minus WRFS)

Fig. 13   Monthly precipitation 
recycling ratio differences with 
respect to lateral terrestrial flow. 
Differences are respectively 
calculated from WRFH- and 
WRFS- for each PBL scheme

(b)(a)

Fig. 14   Vertical profiles of the differences in a total water vapor mixing ratio and b tagged water vapor mixing ratio between WRFH- and WRF- 
for June and August in 2008. Differences are respectively calculated from WRFH- and WRFS- for each PBL scheme
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height of 7000 m. The vertical change of moisture mixing 
ratio robustly illustrates that the enriched evapotranspiration 
in WRFH intensifies the wetting in the lower atmosphere and 
reduces the mixing ratio in the free convection level above. 
This lateral terrestrial flow-induced feedback mechanism is 
comparable to the results of positive feedbacks obtained by 
directly perturbating soil moisture fields to a wetter condi-
tion (Schär et al. 1999). As such an intensified wetting in the 
low atmosphere causes convective instability and increases 
the possibility of moist convection (Derbyshire et al. 2004; 
Yin et al. 2015), thereby increasing the local precipitation 
recycling. However, as shown in Figs. 6a and 8, the increase 
of precipitation recycling ratio is not necessarily associated 
with an increase of precipitation, as the precipitation in the 
study area is dominated by remote water sources through 
atmospheric water transport. In particular, this ensemble 
result confirms the blocking effect of topography in the 
weakened East Asian summer monsoon environment, and 
endorses the positive feedback of local land–atmosphere 
interactions in the study area.

5 � Summary and conclusions

In this study, we have addressed the sensitivity of simulated 
land–atmosphere interactions to model physics parameteri-
zation and lateral terrestrial flow description over a high 
mountainous area, the Heihe River Basin in Northwest 
China. Two ensembles of convection-permitting simulations 
with the fully coupled atmosphere-hydrology model WRF-
Hydro and the standalone WRF model are generated by var-
ying turbulence parameterization with three PBL schemes 
(YSU, MYJ, and ACM2), which allows for assessing the 
robustness of results. All the simulations are set up for three 
consecutive years from 2008 to 2010, using 3-km high hori-
zontal resolution. To assess the strength of land–atmosphere 
interactions, the advanced evaporated water tagging method 
is embedded with both WRF-Hydro and WRF to quantify 
the contribution of local evaporated water to precipitation 
in the study area. Our main findings are summarized in the 
following.

Ensemble results show that spatial patterns and monthly 
variations of air temperature, precipitation, and evapo-
transpiration are similarly simulated by changing the PBL 
scheme and terrestrial flow description. PBL schemes show 
a modest impact on the simulated monthly basin-averaged 
precipitation and evapotranspiration. By considering lateral 
terrestrial flow movement in coupled WRF-Hydro, evapo-
transpiration is distinctly increased with surface soil mois-
ture regardless of different PBL parameterization, whereas 
the precipitation is not much affected.

Driven by atmospheric lateral boundary forcing only, 
the coupled WRF-Hydro ensemble reasonably reproduces 

the daily streamflow in its seasonal cycle and variabilities. 
Different PBL parameterizations induce a spread in simu-
lated streamflow during the rainy and peak flow period, but 
not during the dry and recession period. This highlights 
the sensitivity of simulated streamflow to modeled precipi-
tation in fully coupled modeling.

The results of land surface-precipitation feedback anal-
ysis and evaporated water tagging demonstrate the positive 
feedback and the non-neglectable role of lateral terrestrial 
flow on land–atmosphere interactions in the study area. 
Despite the relatively small precipitation recycling values 
less than 2.2%, which is related to the small-scale analysis 
area, PBL parameterization and lateral terrestrial flow are 
found to both affect the regional precipitation recycling. 
A reduced vertical mixing is associated with a higher pre-
cipitation recycling.

Overall, this joint investigation demonstrates the simu-
lated land–atmosphere interactions strength in dependency 
of the parameterized model physics in regional climate 
modeling. Most importantly, the presented ensemble 
results highlight that the precipitation recycling ratio 
increases spatially and temporally due to the considera-
tion of the lateral water flow, irrespective of how the PBL 
scheme parameterizes vertical mixing. This result rein-
forces the noteworthy role of lateral terrestrial flow com-
ponents in the modeled hydrology–land surface–atmos-
phere earth systems (e.g., Fan et al. 2019; Prein et al. 
2015; Santanello et al. 2018). We conclude that further 
studies targeting land–atmosphere interactions by apply-
ing a climate modeling approach should be conducted by 
accounting for the description of the terrestrial hydrologi-
cal compartment.
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