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ABSTRACT: The onset of the rainy season is an important date for the mostly rain-fed agricultural practices in Vietnam.
Subseasonal to seasonal (S2S) ensemble hindcasts from the European Centre for Medium-Range Weather Forecasts
(ECMWF) are used to evaluate the predictability of the rainy season onset dates (RSODs) over five climatic subregions of
Vietnam. The results show that the ECMWF model reproduces well the observed interannual variability of RSODs, with a
high correlation ranging from 0.60 to 0.99 over all subregions at all lead times (up to 40 days) using five different RSOD
definitions. For increasing lead times, forecasted RSODs tend to be earlier than the observed ones. Positive skill score val-
ues for almost all cases examined in all subregions indicate that the model outperforms the observed climatology in predict-
ing the RSOD at subseasonal lead times (∼28–35 days). However, the model is overall more skillful at shorter lead times.
The choice of the RSOD criterion should be considered because it can significantly influence the model performance. The
result of analyzing the highest skill score for each subregion at each lead time shows that criteria with higher 5-day rainfall
thresholds tend to be more suitable for the forecasts at long lead times. However, the values of mean absolute error are
approximately the same as the absolute values of the mean error, indicating that the prediction could be improved by a
simple bias correction. The present study shows a large potential to use S2S forecasts to provide meaningful predictions of
RSODs for farmers.
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1. Introduction

Located in the eastern part of the Indochina Peninsula,
Vietnam is a developing country with an economy that sub-
stantially depends on agriculture. Especially rainfall can either
encourage growth or devastate crops, so it has direct effects on
agricultural production and the income of farmers (Lambert
2014). However, agriculture in Vietnam seems to be vulnerable
to the anomalous variations of the rainfall characteristics, which
was reported in previous studies (e.g., Endo et al. 2009;
Ngo-Duc 2014; Trinh-Tuan et al. 2019; Pham-Thanh et al. 2020).

Temporal and spatial variability of rainfall characteristics in
Vietnam is quite complex. The rainy seasons in the north, the
south, and in the Central Highlands coincide with the Asian
summer monsoon (May–October), while it is shifted to boreal
autumn–winter (August–December) in the central part
(Phan-Van et al. 2018; Nguyen-Le et al. 2014, 2015; Nguyen
et al. 2014). In the context of global warming, trends in annual
rainfall totals over the country fluctuate substantially from
station to station and from the north to the south. As an

example, the total rainfall has increased in the south but
decreased in northern Vietnam in current decades (e.g., Endo
et al. 2009; Pham-Thanh et al. 2020). Among rainfall charac-
teristics, the rainy season onset date (hereafter denoted as
RSOD) has received major attention because of its important
implications not only for agriculture but also for society due
to its impact on electricity generation, water management,
and human health (e.g., Bombardi et al. 2020). Furthermore,
changes in the starting dates of the rainy season or monsoon
were documented for Vietnam (e.g., Kajikawa et al. 2012;
Ngo-Thanh et al. 2018; Pham-Thanh et al. 2019). Therefore, a
reliable prediction of RSODs is one aspect to improve deci-
sion-making across several social sectors.

For different regions of the world, many studies have been
conducted to estimate the predictability of RSODs using both
statistical and dynamical methods to meet the strong demand of
society. Statistical predictions of RSODs commonly depend on
the influence of the large-scale circulation on local-scale rainfall
characteristics (e.g., Omotosho 1992; Omotosho et al. 2000; Lala
et al. 2020). For the south and the Central Highlands of
Vietnam, previous studies suggested that multivariate linear
regression approaches, which use large-scale circulation features
such as pressure, moist static energy gradients, outgoing long-
wave radiation, and wind fields as predictors, provide skillful
predictions of RSODs on seasonal time scales (Pham et al. 2010;
Pham-Thanh et al. 2019).
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For the dynamical approaches, a local-scale onset of rainy
seasons or monsoons can only be predictable if it is heavily
constrained by the large-scale circulation (Bombardi et al.
2020). Recent studies showed that the onset of monsoons and
rainy seasons could be predicted on lead times of weeks to
months using dynamical models (e.g., Vellinga et al. 2013;
Alessandri et al. 2015; Bombardi et al. 2017; Chevuturi et al.
2019, 2021). Among different times scales of predicting the
future state of the atmosphere ranging from nowcasting (from
0 to 2 h) to long-range forecasting (from 30 days up to a year),
the subseasonal to seasonal (from 2 weeks to 2 months, here-
after referred to as S2S) forecasts are of pivotal importance in
management decisions for agriculture, water resource man-
agement, disaster risk reduction, health, and others (Vitart
et al. 2012; White et al. 2017). However, the S2S time scale
has long been considered as a “predictability desert” (Vitart
et al. 2012). Recently, there are several subseasonal climate
prediction datasets from state-of-the-art forecast models
freely available, for example, the multimodel S2S prediction
database hosted by the European Centre for Medium-Range
Weather Forecasts (ECMWF), which enable studies examine the
predictive skills of the S2S forecasts for different purposes across
the world. Several studies demonstrated predictive skill of S2S
forecasts at lead times of several weeks for raw output variables
such as rainfall, wind speed, and temperature (Tompkins and
Feudale 2010; Lynch et al. 2014; Phakula et al. 2020) and its appli-
cations to many socioeconomic sectors, especially early warn-
ings of malaria (Tompkins and Di Giuseppe 2015), heat waves
(Lowe et al. 2016), and tropical cyclones (Lee et al. 2020).

Recent studies pointed out the ability of dynamical models
in capturing the RSOD at subseasonal time scales. In many
monsoon regions such as the North and South American,
East Asian, and Northern Australian monsoon areas, the
onset and demise dates of the rainy season could be fore-
casted at subseasonal (∼30 days) lead times (Bombardi et al.
2017). Recently, Kumi et al. (2020) conducted a study focus-
ing on the West African monsoon. Their results showed that
the dynamical model was able to reproduce the three main
phases of the monsoon (i.e., onset, peak, and southward
retreat of rainfall) and other dynamics at six lead times (10,
20, 30, 40, 50, and 60 days), but especially in the 20–60-day
forecasts. Thus, previous research suggests that the RSODs
over a typical monsoon region like Vietnam could be pre-
dicted at subseasonal time scales using dynamical models.

For Vietnam, where the rainy season is strongly related to
the activity of monsoon systems (Zhang et al. 2002), hitherto
no study has investigated the skill of dynamical forecast mod-
els in predicting RSODs. Therefore, the present study selects
five climatic subregions over Vietnam where the rainy season
is mostly dominated by the monsoon, namely, the Northwest
(R1), Northeast (R2), Red River Delta (R3), Central High-
lands (R6), and Southern Plain (R7) regions (Nguyen and
Nguyen 2013; Nguyen et al. 2014; Thanh Nga et al. 2021), to
answer the question: Can the raw S2S rainfall prediction be
used for skillful subseasonal forecasts of RSODs in the above-
mentioned subregions of Vietnam? Skillful forecasts would be
an essential step to establish an operational S2S forecast system
with lead times of more than one week for decision support

across the country. The rest of this work is organized as follows:
In section 2, detailed descriptions of the data and methods are
provided. Section 3 presents the obtained results and analysis.
Discussions and conclusions are given in the final section.

2. Data and methods

a. Data

In this study, two data sources for the 20 years from 2000 to
2019 have been used to evaluate the subseasonal predictabil-
ity of the RSOD, namely, observed daily rainfall and precipi-
tation hindcasts from the S2S database of the ECMWF. Only
forecasts from the ECMWF model (in the following
ECMWF-S2S) were used. The ECMWF-S2S hindcasts pro-
vide forecasts for 11 members, and the forecasts have a length
of 46 days with a spatial resolution of 1.58 3 1.58. To better
select grid points that fall into the different subregions, inter-
polated data with the resolution of 0.1258 3 0.1258 were
retrieved. The higher resolution data were provided by
ECMWF using a linear interpolation on a triangular grid.
Note that the higher resolution will not remediate the
smoothness imposed by the original resolution, thus the lack
of differences between and within subregions, especially in
the smaller northern regions, remains. The ECMWF hind-
casts are produced for two starting days each week (Mondays
and Thursdays) for the last 20 years once a new operational
model version is available. In our study, hindcasts correspond-
ing to model version dates of the year 2020 were used. In
2020, two model versions have been in use, namely, CY46R1
until 29 June 2020 and CY47R1 from 30 June 2020 onward.
Altogether 23 100 (i.e., 20 years 3 105 start days 3 11 mem-
bers) 46-day forecasts were utilized. Time resolution of the
forecasts is daily, and the data are freely available online
(https://apps.ecmwf.int/datasets/data/s2s/).

To evaluate the ability of ECMWF-S2S in capturing the
RSODs, daily rainfall data obtained from meteorological sta-
tions of the Vietnam Meteorological and Hydrological
Administration were used as reference. To ensure sufficient
data quality, only stations that do not have more than three
consecutive days with missing values during the periods close
to the mean start dates of the rainy season (March–September)
were selected. Consequently, data from 93 stations (cf. Fig. 3
for their locations) covering the study period were used.

b. Criteria for determination of RSODs

RSODs can be defined by using a wide range of criteria. In
general, the techniques for identifying onset dates can be classi-
fied into two main categories: those based on rainfall distribution
and those related to the changes in the large-scale atmospheric
circulation. However, to answer the question about directly using
the raw ECMWF-S2S rainfall forecasts to determine RSODs,
this study selects a rainfall-based approach to detect RSODs.
This approach was modified and applied in many previous stud-
ies for both monitoring RSODs from observed rainfall data and
detecting RSODs from rainfall data of numerical weather predic-
tion models (e.g., Stern et al. 1981; Sivakumar 1988; Omotosho
1992; Moron et al. 2009, Kumi et al. 2020).
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Here, the RSOD is defined as the first wet day of a rainy
period (i.e., lasting for at least N days), which received a given
rainfall amount (i.e., larger than P mm) and is not followed by
a long dry spell during the following weeks (i.e., the following
D days after the RSOD). Typically, the thresholds of P, N,
and D are empirically defined and rely on the climatic rainfall
conditions in the study region. Thus, these fixed empirical
thresholds are not useful for application outside of the study
region without adjustments. Previous studies focusing on
tropical Africa suggested that the condition represents the
rainfall intensity in an initial wet spell (i.e., the P threshold)
can be considered as the crucial parameter to determine
RSODs (Marteau et al. 2009; Boyard-Micheau et al. 2013).
Therefore, five different criteria that use five different thresh-
olds for this threshold, namely, P = 20, 25, 30, 40, or 50 mm,
were applied to investigate the RSOD for both the observed
and hindcast data in this study. In the following these criteria
will be referred to as P20, P25, P30, P40, and P50.

In detail, the observed station and forecast gridpoint
RSODs are determined as the first day of the year that meets
the following conditions:

1) The total rainfall amount of five consecutive days is larger
than P mm.

2) The RSOD and at least 3 days in five consecutive days
have rainfall amounts larger than 1 mm day21.

3) No more than seven consecutive dry days in the following
20 days after the RSOD.

Because the longest forecast lead time is 46 days, the third con-
dition of the abovementioned criteria needs to be modified as:

3′) No more than seven consecutive dry days after the RSOD.

Figure 1 illustrates the process of determining RSODs
using observations and forecasts. The RSODs using station
data are determined by directly applying criteria 1–3 to rain-
fall observations at an individual station within the subre-
gions. To determine forecast RSODs from ECMWF-S2S, the

median of all observed RSODs within one subregion (e.g.,
subregional RSODs) needs to be known, since lead times of
ECMWF-S2S are defined relative to this value. For example,
if the observed RSOD is 20 April, a forecast lead time of
7 days refers to the 46-day forecasts starting on 13 April.
Using the 46-day forecasts for a particular lead time, RSODs
are then determined using the criteria 1, 2, and 3′. Due to the
fact that for criterion 3′ at least seven forecast days are
required; the longest possible lead time is 40 days. For each
forecast member, the subregional RSOD is the median of
RSODs determined at all grid points within the subregion.
Note that if for less than 50% of grid points a RSOD could be
determined, no RSOD was assigned to the region. Since
ECMWF-S2S forecasts are only available on Mondays and
Thursdays, RSODs cannot be determined for all lead times.
Using the example from above, RSODs cannot be deter-
mined, for example, for a lead time of 8 days since ECMWF-
S2S forecasts are not starting on Sundays. Figure S1 shows
the availability of forecasts using certain lead times, where
100% would mean that for all 20 years a RSOD could be
determined for this lead time. In all subregions, the frequency
does not exceed 50%. Therefore, to evaluate the model per-
formance for all lead times, the RSODs of lead times that are
not available are defined using the nonweighted mean of
nearest available RSODs on both sides. Thus, in the case of
unavailable lead times the results do not reflect the perfor-
mance of these particular lead times but are more representa-
tive for a period 63–4 days around it. A particular date is
only considered to be the RSOD if at least half of the grid
points within one subregion satisfy all conditions. This condi-
tion reduces the number of false alarm onsets, which may
occur locally.

c. Distinction of forecasted RSODs between ECMWF-
S2S members

The distinction of RSODs between the 11 members of
ECMWF-S2S is estimated by the sensitivity index (SI). This

FIG. 1. Schematic of determining RSODs using observations and forecasts.
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index is calculated for each lead time and for each subregion.
The SI is defined as

SI � 1

L3
M3 M2 1( )

2

∑L
k�1

∑M2 1

j�1

∑M
e�j1 1

xkj 2 xke
∣∣ ∣∣, (1)

where L is the number of years (20 years),M is the number of
members (11 members), xkj is the onset date computed for
year k by the hindcast from member j, and xke is the onset
date computed for year k by the hindcast from member e. A
higher (lower) SI value means that the detected RSODs at a
given lead time and region are more (less) distinct between
each member. Therefore, this information can highlight
regions and lead times, which should be treated carefully
when calculating the ensemble median values to determine
RSODs.

To evaluate the performance of single members against
the ensemble median for each lead time and for each subre-
gion, the added value (AV) index is used. This index is
defined as

AV � RMSEmod 2RMSEens

RMSEens
, (2)

where

RMSEmod �
�������������������������
1
n

∑n
1

Fmod,i 2Oi
( )2√

, (3)

RMSEens �
������������������������
1
n

∑n
1

Fens,i 2Oi
( )2√

: (4)

Here n is number of years; Fmod,i, Fens,i, and Oi are RSODs
from single members, RSODs from the ensemble median,
and observed RSODs for the ith year, respectively. The AV
thus can be used to measure the improvement of the ensem-
ble median over a single member in forecasting RSODs. A
positive value of the AV means that using the ensemble
median to determine RSODs is better than using a single
member.

Besides that, to evaluate the reliability of the ensemble pre-
dictions, a simple reliability index (RI) is introduced. The RI
is defined in two steps as follows:

Step 1: For each of the 20 years, the forecasted RSODs
from the 11 members are denoted as X1, X2, … , X11 and
are sorted in ascending order, resulting in Z1, Z2, … , Z11,
where Z1 is the earliest forecasted RSOD and Z11 is the lat-
est one. Then, the interval I = [Z1, Z11] is the range of pre-
dictions from all ensemble members.
Step 2: Calculate RI as follows:

RI � 100%3
C
L
,

where L is the number of years (20 years), and C is the num-
ber of years in which the observed RSOD is within the inter-
val of the ensemble members.

Therefore, if the ensemble is calibrated (i.e., if the ensem-
ble is a random sample from the true distribution of the
RSODs), the probability that the observed RSOD is con-
tained in [Z1, Z11] should be 10/12 = 83.3%, because the event
of the observation falling into any of the 12 intervals
(2infinity, Z1], (Z1, Z2], … , (Z10, Z11], (Z11,1infinity) should
have equal probability. If the RI value is smaller than the
nominal coverage of 83.3%, too few observations fall into the
ensemble range. It reflects the bias in the ensemble forecasts,
and/or the range of the ensemble is too small (i.e., the ensem-
ble underestimates the true uncertainty). Vice versa, if the RI
is larger than the nominal coverage of 83.3%, the ensemble
range is too large, and the ensemble overestimates the true
uncertainty.

d. Forecast verification

The model performance was evaluated using mean error
(ME), mean absolute error (MAE), and MAE skill score
(SSMAE), which are defined as

ME � 1
n

∑n
i�1

Fi 2Oi( ), (5)

MAE � 1
n

∑n
i�1

Fi 2Oi| |, (6)

SSMAE � 12
MAE

MAEObs
, (7)

with

MAEObs � 1
n

∑n
i�1

Oi 2O
∣∣ ∣∣, (8)

O � 1
n

∑n
i�1

Oi, (9)

where n is number of years, Fi and Oi are modeled and
observed RSODs for the ith year, O is the mean of the
RSODs based on observations, and MAEobs is the mean
absolute error of climatological forecasts (O) used as refer-
ence model. In addition, the correlation (CORR) is also used
for verification.

3. Results and discussion

a. Observed RSODs

As a preparatory step, the coherence of observed RSODs
across each subregion is estimated. In particular, the spatial var-
iability is determined by taking the standard deviation of all
mean onset dates at all stations in a given subregion for each
criterion (P20, P25, P30, P40, and P50; Table 1). Overall, the
spatial variability in each subregion depends only slightly on the
criterion used. However, the spatial heterogeneity of mean
RSODs differs substantially between subregions, ranging from
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7 days in R7 to 23 days in R6. Spatial variability is lower in R1
and R7 with 7–13 days and higher in R2, R3, and R6 with 15–23
days. The higher spatial heterogeneity of RSODs reflects local-
scale factors that play different roles in rainfall characteristics at
each station, even in the same subregion. Therefore, for a given
subregion, to reduce the effect of local-scale outliers of RSODs
the median of RSODs from all stations is used in the following
as the representative of the regional RSODs.

Figure 2 shows the boxplots of the median forecast RSODs
in the five subregions identified by five criteria for the period
2000–19. Overall, the stronger criteria lead to later RSODs.
However, the sensitivity with changing criteria to determine
RSODs is different in each subregion. For the northern parts
(R1, R2, R3), changes in the chosen thresholds result in much
higher variations of detected onset dates than for the southern
parts (R6, R7). The distinction caused by using different crite-
ria to the climatology of regional RSOD is up to 19 days for
the three northern regions, while this value is only about
7 days for the southern regions. These results suggest that
finding robust RSOD thresholds for the northern regions
region are more challenging and necessary than in others.

However, results from different criteria consistently show
that the earliest RSODs occur in subregion R1 around late
April. For the R2, R6, and R7 subregions, the RSODs occur
mainly between late April and early May, while the rainy sea-
son starts latest in subregion R3 (mid-May). In general, these
spatial heterogeneities and chronological order of RSODs are
consistent with previous studies that used different criteria
and data to determine rainy season or summer monsoon onset
dates (Nguyen-Le et al. 2014, 2015; Ngo-Thanh et al. 2018;
Pham-Thanh et al. 2019; Acharya and Bennett 2021).

The interquartile ranges of the RSODs obtained by differ-
ent criteria in each subregion are similar. However, irrespec-
tive of the method to determine the RSODs, the interannual
variability tends to be higher in the northern parts (R1, R2,
R3) than in the southern parts (R6, R7). These heterogene-
ities could be related to the different causes of rain in each
subregion. The higher fluctuation of rainfall events in the
early seasonal transition periods in the northern part might be
associated with diverse causes, such as the activity of mei-yu
fronts, cold surges, and summer monsoon, or an interaction of
different forcings (e.g., Yokoi and Matsumoto 2008; Chen
et al. 2012; Vu et al. 2015; van der Linden et al. 2016). For the
southern part, the interannual variability is higher in R6,
which could be related to the mountainous terrain, which
favors local afternoon instability showers (Pham-Thanh et al.
2019).

Although the results from the five criteria are somewhat dif-
ferent, they are still consistent in capturing the spatial and inter-
annual variability in each subregion, especially the heterogeneity
of RSODs between subregions. After comparing these results
with other studies (Nguyen-Le et al. 2014; Ngo-Thanh et al.
2018; Pham-Thanh et al. 2019; Acharya and Bennett 2021), the
P20 criterion seems to be more reasonable than other criteria
(i.e., P25, P30, P40, and P50) in determining the RSODs. Figure 3
shows the mean RSODs determined using the P20 criterion
at the 93 stations. It can be seen that the RSODs vary

TABLE 1. Spatial variability (days) of RSODs detected by five
thresholds for each subregion.

Threshold

Region P20 P25 P30 P40 P50

R1 8 8 9 10 11
R2 17 17 17 17 16
R3 15 15 15 15 15
R6 19 19 20 21 23
R7 7 7 9 11 13
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FIG. 2. Boxplots of RSODs detected by five criteria for the
period 2000–19 in five subregions (ordering from north to south).
The dots outside the boxes show outliers that are greater (less)
than 1.5 times the interquartile range from the median.

FIG. 3. Mean RSODs determined using the P20 criterion for the
period 2000–19. The black lines indicate the borders of the seven
climatic subregions in Vietnam, which were commonly used in
previous studies.
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significantly between stations, not only in the different subre-
gions but also in the same subregion (Fig. 3, Table 1). Using
the P20 criterion, the mean RSODs for all subregions vary
between late April and mid-May. The earliest start date of
the rainy season occurs in the R1 subregion, with the mean
RSOD on 24 April and a standard deviation of 18 days. For
the R2 and R6 subregions, the mean onsets are comparable
with a mean RSOD around 29 and 30 April, but the interan-
nual variability in R2 (21 days) is higher than in R6 (12 days).
For the R7 subregion, the mean onset is on 8 May with a
standard deviation of 11 days. In comparison to other subre-
gions, the mean RSOD in R3 is latest (approximately 17
May). This region also has the highest interannual variability
of about 28 days. To evaluate the performance of ECMWF-
S2S hindcasts in capturing the transition between the dry and
rainy seasons, the median of RSODs identified with the P20
criterion in each subregion will be used as reference in the
remainder of this study.

b. Performance of ECMWF subseasonal forecasts to
predict RSODs

Figure 4 shows the SI of RSODs computed for 7–40-day lead
times over the five subregions using five criteria. Overall, the SI
values range from 1 to 12 days and depend on both criteria
used and forecast lead times. Not surprisingly, irrespective of
the criteria to determine the RSOD, the SI index tends to get
higher for longer lead times, which can be seen clearly for most
subregions, especially R7. An exception is subregion R3 where
the SI rather fluctuates around a certain value irrespective of
the lead time. For most lead times and all subregions, the SI val-
ues are smallest when using criteria with smaller P thresholds.

For the criteria using higher values of P (P40 and P50), the
SI values only differ slightly between lead times, with high
values ranging from 5 to 12 days. Since a high SI value means
that the detected RSODs at given lead times and subregions
are more distinct among members, the ensemble median will
be used instead of individual members to reduce the influence
of outliers. Particularly, for each subregion and each forecast
member, the RSOD is the median of RSODs determined at
all grid points. The ensemble forecast RSOD is the median of
forecast RSODs of all members.

The RSOD is a diagnostic variable, which is different from
the prognostic variables of numerical models such as tempera-
ture and wind. Therefore, for a specific forecast, the forecasted
RSODs depend strongly on both the used criteria and the

model performance. In some cases, a RSOD cannot be deter-
mined for a given member, especially for forecasts with longer
lead times (above approximately 28 days) and using criteria P40
and P50 ( Fig. S2). Using the ensemble median, for more than
18 out of 20 years the RSODs could be determined in all subre-
gions and for all lead times, while a RSOD cannot be deter-
mined for many years using individual members.

To further motivate the use of the ensemble median instead
of individual members to determine the RSODs, Fig. 5 presents
the AV for the 11 members for 7–40-day lead times in the five
subregions. As already mentioned above, the AV values reflect
the improvement of the ensemble median over a single member
in determining RSODs. Overall, the AV calculated for a spe-
cific member strongly fluctuates, depending on the lead time
and the criterion used to determine the RSOD. However, espe-
cially for shorter lead times positive AVs prevail for almost all
subregions and for all criteria. The highest AVs tend to occur
for forecasts with short lead times and when using the higher 5-
day rainfall criteria to identify the RSODs. These results sug-
gest that in terms of predicting the RSODs, using the ensemble
median might be better than using individual members. Thus,
in the remainder of this study, the ensemble median will be
used to evaluate the performance of using the raw ECMWF-
S2S rainfall in predicting the RSODs.

The top row of Fig. 6 shows that using the ensemble
median, ECMWF-S2S can capture well the interannual vari-
ability of the RSODs at all lead times. The correlation is
rather high, with values ranging from 0.60 to 0.99 with signifi-
cance above 95% based on the Student’s t test in all subre-
gions and for all criteria. As expected, the correlations tend to
be slightly weaker for increasing lead times. However, the
choice of RSOD criterion clearly influences the ability of
ECMWF-S2S forecasts in capturing the observed RSOD fluc-
tuations, which is reflected more specifically in subregions R1
and R2. For a fixed lead time, the high correlation tends to
appear in cases of using criteria with smaller P thresholds
(P20 and P30) in all subregions. In general, the correlation
coefficients are lowest when using the P50 criterion for almost
all lead times. However, in some forecasts with a lead time of
more than 30 days in the R6 and R7 subregions, the higher
values of P (P40, P50) give higher correlation values than
other criteria. The observed RSODs in the R6 and R7 subre-
gions are stable with a small interannual variation of about
12 days (cf. section 3a). While a wet spell is easier to be as the
RSODs when using the weaker criteria, which lead to the

0

3

6

9

12

15

7 14 21 28 35
ltime

R1

0

3

6

9

12

15

7 14 21 28 35
ltime

R2

0

3

6

9

12

15

7 14 21 28 35
ltime

R3

0

3

6

9

12

15

7 14 21 28 35
ltime

R6

0

3

6

9

12

15

7 14 21 28 35
ltime

R7

0

3

6

9

12

15

7 14 21 28 35 42
ltime

B1

0

3

6

9

12

15

7 14 21 28 35 42
ltime

B2

0

3

6

9

12

15

7 14 21 28 35 42
ltime

B3

0

3

6

9

12

15

7 14 21 28 35 42
ltime

N2

0

3

6

9

12

15

7 14 21 28 35 42
ltime

N3

criteria P20 P25 P30 P40 P50

FIG. 4. SI values (days) for different lead times in the five subregions using different criteria.
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forecasted RSOD could occur in the early period of a forecast
length of 46 days. Thus, for the long lead-time forecasts, the
forecasted RSODs, which in the early period, seem to fail and
far from the observed RSODs. The error of the forecasted
RSOD in previously mentioned cases could lead to an
increase in interannual variation of the forecasted RSODs or
the opposite of the forecasted RSODs and observed RSODs
anomaly. As a consequence, the correlation of the forecasted
RSODs and observed RSODs is decreased.

Figure 6 also shows the verification scores calculated
using the RSODs determined using the ensemble median.
Overall, the MEs range from 235 (forecasted RSODs ear-
lier than observed) to 111 days (forecasted RSODs later
than observed), which strongly depend on the criterion
used to determine the RSODs and on the lead times. For
P20, P25 and P30, the RSODs are predominantly earlier
than observed, while for P40 and P50 the MEs change from
positive to negative between approximately 14 and 21 days.
For all subregions, at a given lead time, the differences of
MEs between forecasts using different criteria ranges
from 5 to 15 days. The RSOD criteria with higher 5-day
rainfall thresholds (P40, P50) tend to give later RSODs
than other criteria.

In all subregions, the RSOD forecasts tend to be earlier
than the observations for increasing lead times. For lead times
shorter than 20 days, the absolute values of ME are less than
seven days, while these values can reach up to more than
20 days earlier for lead times of more than 30 days.

The model performance seems to be strongly influenced by
lead time. Overall, in all subregions, the model performance
tends to drop when increasing the lead time, also reflected in
higher MAEs, which range from 0 to 30 days (Fig. 6). Interest-
ingly, for almost all cases, the MAEs are approximately the
absolute values of MEs. These results combined with the high
correlation between the forecasts and the observations sug-
gest the potential improvement of forecasting RSODs by
applying a simple bias correction.

In comparison to the reference forecasts using observed
RSOD climatology (i.e., climatological forecast), the skill
scores of MAE decrease with increasing lead times (Fig. 6,
bottom row). This means that the forecast performance
strongly depends on the forecast lead times. The skill scores
are positive (negative) if the forecast skill is higher (lower)
than the climatological forecast. Thus, it can be said that the
model outperforms the climatological forecast in predicting
the RSOD in all subregions for the lead times up to about
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FIG. 5. Added value of 11 members [control forecast (cf) and m01–m10] for different lead times in the five subregions. The asterisks
denote negative values.
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30 days. Compared to other lead times, the highest skills of
the model seem to be at 7–14-day lead times with skill scores
of more than 0.5. However, the model skill depends strongly
on the RSOD criterion. Skill scores are higher for criteria
using smaller P thresholds (P20 and P30) at lead times of less
than 14 days, while for the lead times of more than 14 days,
the criteria with higher P thresholds (P40 and P50) are more
suitable to capture the RSODs. These results also suggest that
the selection of RSOD criteria should be carefully considered
because it can substantially influence the forecast skill.

c. Lead-time-dependent performance of S2S forecasts

The above results showed that the ECMWF-S2S hindcasts
can capture well the interannual variability of observed
RSODs in all subregions with lead times between 7 and
40 days. However, the forecast skill strongly depends on the
forecast lead times and the criteria used to determine the
RSODs. The ECMWF-S2S hindcasts generally outperform

the observed climatology in predicting the RSOD at the lead
times between 1 and 6 weeks over all subregions. In this sec-
tion, six lead times of 7, 14, 21, 28, 35, and 40 days are selected
for a quantitative forecast verification. As before, RSODs
determined using the ensemble median are also used here.

Table 2 shows the criteria with which the forecasts have
highest skill scores for each region and each lead time. It can

FIG. 6. (first row) Correlation, (second row) ME, (third row) MAE, and (fourth row) SSMAE between ensemble median hindcasts and
observations of RSODs for different lead times in the five subregions.

TABLE 2. Criteria that have the highest skill score for each
subregion at different lead times.

Lead time

Region 7 days 14 days 21 days 28 days 35 days 40 days

R1 P25 P30 P50 P50 P50 P40
R2 P30 P50 P50 P50 P50 P50
R3 P25 P40 P50 P50 P50 P40
R6 P20 P40 P40 P50 P50 P50
R7 P30 P40 P40 P50 P50 P50
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be seen that the criteria using smaller P thresholds (P20 and
P30) are more suitable for the forecasts at the shorter lead
times, while the criteria using higher P thresholds (P40 and
P50) are more suitable for longer lead times.

Figure 7 shows the interannual variability of RSODs
based on observations (OBS) and corresponding forecasts
at different lead times (7, 14, 21, 28, 35, and 40 days) for
each subregion using the criteria listed in Table 2. Overall,
the interannual variability of the observed RSODs in all
subregions is reproduced reasonably well by ECMWF-S2S
at all forecast lead times with correlation coefficients
between OBS and forecasts ranging between 0.76 and 0.99
with significance above 95% based on Student’s t test (Table 3).
However, the correlation coefficients tend to decrease for
increasing lead times. The ECMWF-S2S RSODs tend to occur

predominantly earlier than the observation, shown by MEs
ranging from 219 to 12 days. However, for lead times of
21 days and less, the MEs are quite small, varying from 23
to 12 days.

The MAEs range from 3 to 19 days and strongly depend on
the lead times (Table 3). Longer lead times result in an increase
of MAEs: 3–7 days for lead times of up to 21 days, 5–10 days
for lead times of 28 days, and 7–19 days for lead times of more
than 35 days. When considering subregions individually, the
MAEs in R6 and R7 are more stable between each lead time
up to 28 days, ranging from 3 to 5 days, suggesting that the accu-
racy of RSOD forecasts for these subregions is higher.

Table 3 also shows skill scores of MAE. These values range
from 20.74 to 0.86 and strongly depend on the subregions and
lead times. Irrespective of the subregion, forecasts are more
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FIG. 7. Time series of the observation-based RSODs (OBS) and from ECMWF-S2S forecasts for different lead times for each subregion.
The gray shaded area indicates the range of one the standard deviation of the RSODs from observations.
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skillful at shorter lead times. For example, the skill scores for a
lead time of 7 days are at least 0.62 in all subregion, reaching
0.86 in subregion R3. Although the MAEs in R6 and R7 are
smaller than in the other subregions, their skill scores are slightly
smaller than those in the other subregions. The switch of the sign
of the skill scores is different in each subregion. Overall, the skill
score is positive for all lead times of 28 days or shorter, while for
a lead time of 35 days, (small) positive values occur only in the
R2, R3, and R6 subregions. For lead times of 40 days, all skill
scores of MAE are negative, ranging from 20.74 to 20.20,
meaning that observed RSOD climatology outperforms the fore-
casts in predicting the RSOD in all subregions.

Finally, Table 3 also shows the reliability of the ensemble
forecasts through the RI introduced in section 2c. For lead
times below 21 days, RI values above 80% indicate a too
large spread in the ensemble that could be reduced by post-
processing. For larger lead times at and above 21 days, RI
values drop and can be as low as 0% at a lead time of
40 days in some regions (R1, R3, and R6). This insinuates
that the ensemble range tends to be smaller than the uncer-
tainty of the observed RSODs at longer lead times. While
the reasons for the different RI values with lead times and
between regions are hard to disentangle, partly also due to
the low sample of 20 years and ensuing uncertainties in the

RI estimates, the low RI values for lead times of above 35
days could be related to the ECMWF-S2S RSODs occurring
predominantly earlier than the observation, as indicated by
MEs ranging from 219 to 27 days (Table 3).

4. Conclusions

As a part of activities toward operational subseasonal fore-
casts of RSODs for Vietnam, this study has evaluated the per-
formance of ECMWF-S2S forecasts in predicting RSODs in
five climatic subregions. Five different criteria were used to
quantify observation uncertainties and RSOD characteristics,
and to evaluate the model’s performance. The results can be
summarized as follows.

1) Although rainfall in all subregions is influenced substan-
tially by the monsoon, local-scale factors still play an
essential role in rainfall characteristics at each station.
This is reflected in a large spatial heterogeneity of RSODs
of stations even within one specific subregion. This sug-
gests that for each subregion the median of RSODs from
all stations should be used as being representative of the
regional RSOD to reduce the effect of local-scale outliers.

2) Uncertainties in determination of RSODs associated with
the chosen thresholds are an essential aspect that should
be considered. The sensitivity with changing criteria to
determined RSOD is different between subregions.
Although the obtained results of detected RSOD from
five criteria are somewhat different, there are still consis-
tent in capturing the spatial variability and interannual
variability of each subregion, especially the heterogeneity
of RSOD between subregions. Among five selected crite-
ria, the P20 criteria seem to be more reasonable in deter-
mining the regional RSOD, which coincides significantly
with previous studies (Nguyen-Le et al. 2014; Ngo-Thanh
et al. 2018; Pham-Thanh et al. 2019; Acharya and Bennett
2021). Following this criterion, the observed RSODs vary
from late April to mid-May in the selected subregions.
The earliest rainy season is observed in the R1 subregion.
The mean onsets in the R2 and R6 subregions are some-
what similar to that in R1, but the interannual variability
is higher in R2 than in R6. Among subregions, the RSOD
in R7 is most stable, while in R3 the RSOD is latest and
the interannual variability of RSOD is highest.

3) In terms of subseasonal forecasts using ECMWF-S2S hind-
casts, there is a distinction of RSODs determined by each
forecast member. The SI depends on both criteria used and
the forecast lead times. Using criteria with smaller P thresh-
olds, such as P20, to determine the RSOD, SI values are
smallest at most forecast lead times and in all subregions.
Thus, to reduce the influence of outliers, especially in case
of long lead times, the RSODs determined from the S2S
ensemble forecasts were calculated as the median instead of
mean values from 11 forecast members.

4) When compared to observations, the ECMWF-S2S ensem-
ble hindcasts can capture the interannual variability of
RSODs in all subregions with lead times of 7–40 days. The
correlations between forecasts and observations are high,

TABLE 3. Statistical indices of ensemble forecasts for different
lead times and each subregion.

Region Lead time CORR ME MAE SSMAE RI

R1 7 0.98 21 3 0.79 95
14 0.97 21 4 0.69 95
21 0.91 0 6 0.56 90
28 0.83 27 9 0.32 65
35 0.90 216 16 20.15 45
40 0.83 219 19 20.40 0

R2 7 0.99 21 3 0.79 75
14 0.95 2 6 0.60 75
21 0.94 21 7 0.54 80
28 0.93 28 9 0.42 50
35 0.93 215 15 0.01 45
40 0.88 216 16 20.20 5

R3 7 0.99 21 3 0.86 90
14 0.97 1 5 0.74 90
21 0.97 21 6 0.67 80
28 0.96 27 10 0.47 70
35 0.95 216 16 0.12 35
40 0.89 218 18 20.21 0

R6 7 0.98 22 3 0.74 80
14 0.91 2 5 0.50 100
21 0.91 0 5 0.51 95
28 0.82 21 5 0.50 80
35 0.94 27 7 0.18 55
40 0.82 212 12 20.35 0

R7 7 0.98 22 3 0.62 75
14 0.89 0 5 0.41 90
21 0.84 23 5 0.33 95
28 0.85 22 5 0.37 90
35 0.76 212 12 20.57 55
40 0.90 213 13 20.74 20
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but tend to be slightly weaker for increasing lead times.
Overall, the RSODs determined based on ECMWF-S2S
hindcasts tend to be earlier than those from observations,
especially for increasing forecast lead times. The analysis of
MAE and skill score of MAE identified that models are
more skillful at shorter forecast lead times.

5) For all subregions, the RSOD criteria with higher P
thresholds tend to be more suitable in capturing the
RSOD for forecasts at longer lead times. The P20, P25, or
P30 criteria are more suitable for the forecast lead times
of 7 days, while the P40 or P50 are more decent for lead
times of 14 days or more.

6) Using the best suitable criteria, the ECMWF-S2S ensem-
ble hindcasts outperform the observed RSOD climatology
for lead times of up to 4 or 5 weeks, depending on the
subregion considered. However, irrespective of the subre-
gion, the skill scores decrease for increasing lead times.
For lead times of less than 28 days, the skill scores of the
MAEs are mostly above 0.3 in all subregions.

These results contribute evidence that the RSODs can be
predicted on lead times of weeks to months in selected cli-
matic subregions of Vietnam, where the rainy season is
mainly dominated by the summer monsoon. The results quali-
tatively agree with previous studies about the potential of pre-
dicting RSODs at subseasonal time scales for several
monsoon regions, by using only raw rainfall from numerical
models (e.g., Bombardi et al. 2017; Kumi et al. 2020). The sim-
ilarity between MEs and MAEs as well as the large values of
the RI at shorter lead times suggests that the quality of sub-
seasonal RSOD predictions could be enhanced using ensem-
ble postprocessing to realize the full potential of ensemble
forecasts (e.g., Vogel et al. 2018). This should be in the focus
of future research.
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