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ON THE ITERATIVE REGULARIZATION OF
NON-LINEAR ILLPOSED PROBLEMS IN L∞

LUKAS PIERONEK AND ANDREAS RIEDER

Abstract. Parameter identification tasks for partial differential equations are non-
linear illposed problems where the parameters are typically assumed to be in L∞. This
Banach space is non-smooth, non-reflexive and non-separable and requires therefore
a more sophisticated regularization treatment than the more regular Lp-spaces with
1 < p <∞. We propose a novel inexact Newton-like iterative solver where the Newton
update is an approximate minimizer of a smooth Tikhonov functional over a finite-
dimensional space whose dimension increases as the iteration progresses. In this way, all
iterates stay bounded and the regularizer, delivered by a discrepancy principle, converges
weakly-? to a solution when the noise level decreases to zero. Our theoretical results
are demonstrated by numerical experiments based on the acoustic wave equation in one
spatial dimension. This model problem satisfies all assumptions from our theoretical
analysis.

1. Introduction

We consider the numerical solution of non-linear illposed and inverse problems where
the underlying non-linearity F maps from a possibly multi-component version of L∞ into
a normed space Y . This scenario appears quite naturally in many parameter identification
tasks for partial differential equations. The application we have in mind, and which has
triggered our research, is full waveform inversion (FWI), the most advanced inversion
technique in seismic imaging, see, e.g., [6, 27]. Depending on the used mathematical
model for wave propagation (acoustic, elastic, or visco-elastic regime) the searched-for
parameters include bulk density, pressure and shear wave velocities, and corresponding
relaxation times. Let

(1) F : D(F ) ⊂ L∞(D)` → Y

map these ` parameter functions located on some domain of interest D to the wave
field initiated by a source (explosion or earthquake). The wave field can be recorded at
receivers on the earth’s surface or by hydrophones in the sea. From these measurements
we then try to recover the parameters. Mathematically, we have to

(2) find u ∈ D(F ) such that F (u) ≈ yδ

where yδ are the (noisy) measurements satisfying ‖yδ−F (u+)‖Y ≤ δ for one u+ ∈ D(F ).
For this purpose, Newton-like regularization schemes are well-established iterations

for getting a meaningful approximate solution of non-linear inverse problems. There is
a wealth of literature on the analysis of those methods, mainly in a Hilbert space but
meanwhile also in a Banach space setting; we refer only to the monographs [12, 24] for
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2 L. PIERONEK AND A. RIEDER

a first reading. However, most of the Banach space methods are formulated in abstract
spaces requiring smoothness and reflexivity at least as they rely heavily on duality map-
pings to mimic the Riesz isomorphism. To the best of our knowledge, regularization
schemes applicable to non-reflexive spaces are only considered in [2, 8, 9, 10, 11, 20, 25].
The first six of these publications consider iterative schemes on the basis of proximal
point methods, Morozov, Ivanov, or Tikhonov regularization, respectively. However, all
of them require norm-related minimization whose implementation in the context of L∞

calls for non-smooth or constrained optimization techniques.
In this work we explore the Newton-like solver REGINN∞ which extends REGINN of

[21, 15] to a non-linear inverse problem with generic operators F as in (1). F is required
to fulfill a few specific properties which are, except for one, satisfied by FWI in all
regimes. This not yet verified property is a structural assumption known as tangential
cone condition (TCC), see (3) below and consult [4] for a first promising result. Apart
from establishing the non-linearity constraint, the main challenge about regularization in
L∞ is its non-reflexive and non-smooth nature. As this space is further non-separable,
convergence of a discretization scheme in the strong topology cannot be expected, see
[20]. Instead, using the well-known limit

‖u‖L∞(D)` = lim
q→∞
‖u‖Lq(D)` for all u ∈ L∞(D)`,

for bounded D, our idea is to make use of semi-discrete approximations to F based on
a family {Xn}n of finite dimensional nested subspaces of L∞(D)` which are equivalently
furnished with the Lqn(D)`-topology for properly chosen qn < ∞ such that qn → ∞ as
n → ∞. This then implies that the Newton update for the n-th iterate is obtained as
an approximate minimizer of a smooth (provided Y is smooth) and convex Tikhonov
functional over Xn with just the Lqn-norm as penalty term. In particular, the underlying
minimizing procedure can be easily implemented numerically, which is one of the major
advantage of our algorithm, while all iterates are still kept bounded in L∞ uniformly.

At first glance the IRGNM-Tikhonov method of [9] and REGINN∞ seem to be quite
similar, but they are separated by significant structural differences: In IRGNM-Tikhonov
the penalty parameter is determined a priori and the Newton update has to be a minimizer
of the Tikhonov functional, whereas for REGINN∞ the penalty parameter as well as the
penalty functional itself depend on the current iterate and the Newton update is only an
approximate minimizer. Further, the discrete spaces Xn are an intrinsic part of REGINN∞,
so that we can get rid of the L∞-norm with its geometrical and numerical difficulties.
Standard adaptive discretization, in contrast, mainly aims at reducing computational
expenses.

We present our material as follows: In Section 2 we introduce and analyze two versions
of REGINN∞ which differ in what information about the smoothness of the ground truth
is available a priori. Under reasonable assumptions both algorithms are well defined
and terminate with a regularized solution uMδ

∈ D(F ) of (2). Further, we prove the
regularization property, that is, weak-? convergence of {uMδ

}δ>0 to an exact solution of
F (·) = F (u+) as the noise level δ tends to zero. Our hypotheses are reasonable in fact
as they are met by FWI with exception of TCC (Section 3) as mentioned above. For the
acoustic regime we are even able to provide the information about the smoothness of the
ground truth which enters the second version of REGINN∞. Finally, Section 4 contains
some experiments concerning a toy model in the acoustic regime for which the TCC
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actually holds. Some technical details that would otherwise interrupt the flow of reading
have been moved to three appendices.

2. REGINN∞

For some bounded domain D ⊂ Rd let F : D(F ) ⊂ L∞(D)` → Y be Fréchet-differen-
tiable and satisfy the tangential cone condition (TCC) at u+, i.e., there are a positive
constant ω < 1 and a ball Br(u

+) ⊂ D(F ) with radius r > 0 such that

‖F (u)− F (ũ)− F ′(ũ)(u− ũ)‖Y ≤ ω‖F (u)− F (ũ)‖Y for all u, ũ ∈ Br(u
+).(3)

Here, F ′ : D(F ) ⊂ L∞(D)` → L
(
L∞(D)`, Y

)
denotes the Fréchet-derivative of F and

L∞(D)` is endowed with

‖u‖2L∞(D)` = ‖(u1, . . . , u`)‖2L∞(D)` :=
∑̀
j=1

‖ui‖2L∞(D).

For ω < 1/2 we can equivalently restate the TCC as

‖F (u)− F (ũ)− F ′(ũ)(u− ũ)‖Y ≤ L‖F ′(ũ)(u− ũ)‖Y ,(4)

with L = ω/(1 − ω) < 1. Since our method will be explicitly based on discretizing
L∞(D)`, we impose the following assumptions on corresponding spaces Xn:

(S1) {Xn}n∈N is a sequence of nested subspaces of L∞(D)`, i.e., Xn ⊂ Xn+1 ⊂ L∞(D)`

for all n ∈ N.
(S2) For each Xn there exists a linear projection operator Pn : L∞(D)` → Xn, that

is, Pnu = u for all u ∈ Xn, satisfying ‖Pnu‖L∞(D)` ≤ CP‖u‖L∞(D)` where the
constant CP ≥ 1 is independent of n.

(S3) For some C∞ > 1 we can find a positive increasing sequence {qn}n∈N such that

‖u‖L∞(D)` ≤ C∞‖u‖Lqn (D)` for all u ∈ Xn.

Note that the L∞(D)`-norm is always stronger than the Lqn(D)`-norm, hence the mag-
nitude of C∞ > 1 in (S3) determines how tight the norm equivalence with respect to Xn

is. A family {Xn}n∈N enjoying (S1)-(S3) is constructed in Appendix A on the basis of
tensor product B-splines. Finally, we require a compatibility condition of the form

lim
n→∞

‖F ′(u)
(
û− Pnû

)
‖Y = 0(5)

for all u ∈ D(F ) and all û ∈ L∞(D)`. This relation ensures that Pnû converges to û
as n → ∞ in a sense which still yields strong convergence of the images under F ′(u).
In general, one cannot expect limn→∞ Pnû = û in L∞(D)` because the union of Xn is
countable while L∞(D)` is not separable.

As motivated in the introduction, the guideline for designing our regularization algo-
rithm is to generate easily-computable and uniformly bounded iterates um in L∞(D)`

which give sufficiently small residuals

bδm := yδ − F (um).(6)

To address all three aspects at once, we build on an inexact-Newton framework and find
the updates from the linearization approximately via Tikhonov regularization with special
adaptive discretization. The latter refers to minimizing proper Tikhonov functionals on
Xn which are linked in a pre-defined manner. Note that thanks to assumption (S3)
the penalty term therein can be reduced to the Lqn(D)`-norm while still controlling the
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Algorithm 1 REGINN∞

Input: F ; u0; y
δ; δ; {µm}m; τ ; γ ; C∞ ; n0

Output: uM with ‖yδ − F (uM)‖Y ≤ τδ
m := 0
bδm := yδ − F (um)
while ‖bδm‖Y > τδ do

αm := ‖bδm‖2Y /γ2
determine n ≥ nm ∈ N and sm ∈ Xn: Jn,m(sm) ≤ µ2

m‖bδm‖2Y
um+1 := um + sm
m := m+ 1
nm := n
bδm := yδ − F (um)

end while
M := m

corresponding L∞(D)`-norm of actual interest which is difficult to cope with numerically.
Hence, given iterates {u0, . . . , um} ⊂ D(F ), the next Newton step reads

um+1 = um + sm,(7)

where nm ≥ nm−1 and sm ∈ Xnm are chosen such that

Jnm,m(sm) ≤ µ2
m‖bδm‖2Y .(8)

Here,

Jn,m(s) := ‖F ′(um)s− bδm‖2Y + αm‖s+ (um − u0)‖2Lqn (D)`(9)

is a Tikhonov functional for fixed yδ ∈ Y with domain Xn and

αm =
‖bδm‖2Y
γ2

(10)

is to set successively during run-time. So far, the parameters γ, {µm}m∈N are restricted
to fulfill 0 < µm < 1 and γ 6= 0. While µm serves as a stopping criterion in the spirit of
an inexact Newton condition to set the m-th update sm, γ will be responsible for keeping
the resulting iterate um+1 sufficiently close to u+: the larger γ is chosen, the better the
initial guess has to be. We stop the Newton iteration by a discrepancy principle with
constant τ > 1. The resulting inversion scheme REGINN∞ is summarized in Algorithm 1.
It is well defined under reasonable assumptions according to the following theorem.

Theorem 2.1 (Termination of REGINN∞). Let F : D(F ) ⊂ L∞(D)` → Y be as above
satisfying (3) with ω < 1/3 in Br(u

+) ⊂ int(D(F )) and (5), where {Xn}n∈N and {Pn}n∈N
fulfill assumptions (S1)-(S3). Let yδ be given such that ‖F (u+)− yδ‖Y ≤ δ for one δ > 0.
Let Λ ∈ ( 2ω

1−ω , 1) and set

µmax := (1− ω)Λ− ω.
For

γ ∈
(

0,
r√

C∞µmax

)
and

r0 ∈
(

0,min

{
r −

√
C∞µmaxγ,

γ

CP

√
µ2
max − ω2

})
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choose

τ >
1 + ω√

µ2
max − C2

Pr
2
0/γ

2 − ω
.

Further, define

µmin :=

√(
ω +

1 + ω

τ

)2

+ C2
P

r20
γ2
.

Restrict all tolerances {µm} to (µmin, µmax) and start with some n0 ∈ N and u0 ∈ Br0(u
+).

Then, there exists an Mδ ∈ N such that all iterates {u1, . . . , uMδ
} of REGINN∞ are well-

defined and stay in Br(u
+). Moreover, ‖bδm+1‖Y ≤ Λ‖bδm‖Y for m = 0, . . . ,Mδ − 1,

‖bδMδ
‖Y ≤ τδ, and Mδ = O(| log δ|) as δ ↘ 0.

Proof. Before we begin with the proof we discuss our assumptions on the parameters.
First, observe that the open interval for choosing Λ is non-empty by ω < 1/3. The lower
bound for Λ guarantees that µmax > ω. Together with the upper bound on γ this yields
a positive upper bound for r0. Further, the radicand and the denominator of the lower
bound for τ are positive. Finally, µmin < µmax.

We use an inductive argument and assume therefore that ‖bδm‖Y ≤ Λm‖bδ0‖Y as well
as ‖ui − u+‖L∞(D)` < r for i ≤ m, which holds in particular for m = 0 because of

‖u0 − u+‖L∞(D)` < r0 < r. If ‖bδm‖Y ≤ τδ, REGINN∞ stops with uMδ
:= um and nothing

else needs to be shown. Otherwise, ‖bδm‖Y > τδ and we next show that a Newton update is
well defined by (8). Let sn,m := arg mins∈Xn Jn,m(s) which exists as the unique minimizer
of a strictly convex functional over a finite dimensional space. Then,

Jn,m(sn,m) ≤ Jn,m
(
Pn(u+ − um)

)
= ‖F ′(um)Pn(u+ − um)− bδm‖2Y

+ αm‖Pn(u+ − um) + (um − u0)‖2Lqn (D)` .

Recursively, we get um − u0 = s0 + s1 + . . . + sm−1 from which we deduce that um − u0
is in Xnm−1 as the spaces are nested by (S1). Hence, by (S2), Pn(um− u0) = um− u0 for
n ≥ nm−1 and by linearity of Pn we may simplify

Jn,m(sn,m) ≤ ‖F ′(um)Pn(u+ − um)− bδm‖2Y + αm‖Pn(u+ − u0)‖2Lqn (D)`

≤ ‖F ′(um)Pn(u+ − um)− bδm‖2Y + vold(D)2/qnC2
P

r20
γ2
‖bδm‖2Y .

In the last step we additionally used (10), Hölder’s inequality and ‖Ph(u+−u0)‖L∞(D)` ≤
CP‖u+−u0‖L∞(D)` < CPr0, see (S2). We continue by splitting the residual term according
to

‖F ′(um)Pn(u+ − um)− bδm‖Y ≤ ‖F ′(um)(u+ − um)− F (u+)− F (um)‖Y
+ ‖F (u+)− yδ‖Y

+ ‖F ′(um)
(
Pn(u+ − um)− (u+ − um)

)
‖Y

≤ ‖F ′(um)(u+ − um)− F (u+)− F (um)‖Y + δ

+ ‖F ′(um)
(
Pn(u+ − u0)− (u+ − u0)

)
‖Y ,
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employing again Pn(u+−um) = um−u0 to get the bottom line. Since ‖um−u+‖L∞(D)` < r
by induction, TCC (3) yields

‖F ′(um)Pn(u+ − um)−
(
yδ − F (um)

)
‖Y

≤ ω‖F (u+)− F (um)‖Y + δ + ‖F ′(um)
(
Pn(u+ − u0)− (u+ − u0)

)
‖Y

and with ‖F (u+)− F (um)‖Y ≤ ‖F (u+)− yδ‖Y + ‖bδm‖Y ≤ δ + ‖bδm‖Y we deduce further

‖F ′(um)Pn(u+ − um)−
(
yδ − F (um)

)
‖Y

≤ ω
(
δ + ‖bδm‖Y

)
+ δ + ‖F ′(um)

(
Pn(u+ − u0)− (u+ − u0)

)
‖Y .

Taking into account that ‖bδm‖Y > τδ, we get

‖F ′(um)Pn(u+ − um)−
(
yδ − F (um)

)
‖Y

≤ ‖bδm‖Y
(
ω +

1 + ω

τ

)
+ ‖F ′(um)

(
Pn(u+ − u0)− (u+ − u0)

)
‖Y

and finally

Jn,m(sn,m) ≤
(
‖bδm‖Y

(
ω +

1 + ω

τ

)
+ ‖F ′(um)

(
Pn(u+ − u0)− (u+ − u0)

)
‖Y
)2

+ vold(D)2/qnC2
P

r20
γ2
‖bδm‖2L2(D).

(11)

Since vold(D)2/qn → 1 as n→∞ and in view of (5), we find that

(12) lim sup
n→∞

Jn,m(sn,m) ≤ ‖bδm‖2Y
((

ω +
1 + ω

τ

)2
+ C2

P

r20
γ2

)
= µ2

min‖bδm‖2Y .

Consequently, condition (8) with µm > µmin is feasible for nm large and appropriate
sm ∈ Xnm\{0}, where sm 6= 0 follows by Jn,m(0) ≥ ‖bδm‖2Y . Hence, um+1 = um + sm is
well defined and, relying on (S3) as well as (10), we proceed with

‖um+1 − u0‖2L∞(D)` = ‖sm + (um − u0)‖2L∞(D)` ≤ C∞
Jnm,m(sm)

αm

≤ C∞
µ2
m‖bδm‖2Y
αm

< C∞µ
2
mγ

2 .

Hence,

‖um+1 − u+‖L∞(D)` ≤ ‖um+1 − u0‖L∞(D)` + ‖u+ − u0‖L∞(D)` <
√
C∞µmaxγ + r0 < r

by the upper bound of r0, yielding um+1 ∈ Br(u
+) ⊂ int(D(F )). Finally, we estimate on

the basis of (4) and (8)

‖bδm+1‖Y = ‖
(
bδm − F ′(um)sm

)
−
(
F (um+1)− F (um)− F ′(um)sm

)
‖Y

≤ ‖bδm − F ′(um)sm‖Y +
ω

1− ω
‖F ′(um)sm‖Y

≤
√
Jn,m(sm) +

ω

1− ω
(
‖bδm‖Y + ‖F ′(um)sm − bδm‖Y

)
≤ µm‖bδm‖Y +

ω

1− ω
(1 + µm)‖bδm‖Y(13)
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=

(
µm +

ω

1− ω
(1 + µm)

)
‖bδm‖Y

<

(
µmax +

ω

1− ω
(1 + µmax)

)
‖bδm‖Y < Λ‖bδm‖Y .

Having thus proven the induction part, REGINN∞ is forced to terminate for any δ > 0
due to ‖bδm‖Y ≤ Λm‖bδ0‖Y ≤ τδ for m sufficiently large. From this estimate, we may even
deduce Mδ = O(| log δ|) as δ ↘ 0. �

Remark 2.2. a) The name REGINN∞ for Algorithm 1 is justified by the stopping condition
(8) for determining the Newton update which is, in view of (9) and (10), equivalent to

‖F ′(um)sm − bδm‖2Y
‖bδm‖2Y

+
‖sm + (um − u0)‖2Lqn (D)`

γ2
≤ µ2

m.

In particular, sm satisfies the stopping condition of REGINN [21], i.e., the above condition
without penalty term.

b) Recall that REGINN admits in the Hilbert space setting (and likewise for smooth reflexive
Banach spaces) a so-called error reducing property for the iterates of many inner linear
solvers, keeping thus um ∈ Br(u

+) if the initial guess was chosen so. However, this does
not hold any longer for our L∞-tailored REGINN∞ in general. Therefore our parameters
need to be controlled in terms of both ω and r, whereas standard REGINN only requires
the knowledge of ω for defining admissible tolerances µ and stopping constants τ , see
Theorem 3.1 in [14].

Remark 2.3. We discuss how the statement of the theorem from above carries over to a
semi-discrete situation as it appears under an implementation of Algorithm 1. Typically,
one Xnmax represents the finest possible or finest chosen resolution for the sought-for
quantity u+ ∈ Xnmax and models the implementation from a mathematical point of view.1

Here, Xnmax is equipped with the L∞-topology. Now, Theorem 2.1 applies to Fnmax where
(5) can be omitted due to

F ′nmax
(u)
(
(u+ − u0)− Pnmax(u+ − u0)

)
= 0

since both u0 and u+ are assumed to be in Xnmax. Further, (12) then reads

Jnmax,m(snmax,m) ≤ ‖bδm‖2Y
((

ω +
1 + ω

τ

)2
+ vold(D)C2

P

r20
γ2

)
and as the only consequence the constant CP needs to be replaced by vold(D)1/2CP in the
definition of corresponding REGINN∞ parameters.

We emphasize that the underlying semi-discrete inverse problem is: given yδ ∈ Y find
uδ ∈ Xnmax such that Fnmax(uδ) ≈ yδ where yδ now incorporates measurement noise and
discretization error.

In case that F is linear, i.e., F (u) = Au for some A ∈ L(L∞(D)`, Y ), the TCC holds
with ω = 0 and r =∞. Some observations are in order:

1Recall that Theorem 2.1 in its original version requires an initial guess u0 ∈ Br0(u+). Since L∞(D)`

is not separable, however, there might be no element in Xn for any n ∈ N which satisfies this closeness
condition. As remedy we may enlarge the parameter space for the semi-discrete problem to U0 +Xnmax

where U0 ⊂ L∞(D)` is a proper finite dimensional subspace such that u ∈ U0. In this case, we assume
u+ ∈ U0 +Xnmax .
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I Although r0 can be arbitrarily large now, to still ensure a finite and uniform
L∞-bound on the iterates, r0 < γ <∞ needs to be chosen compatibly.

I Because of

‖F ′(um)sm − bδm‖2Y = ‖Asm − (yδ − Aum)‖2Y = ‖Aum+1 − yδ‖2Y
the iterate um+1 satisfies

‖Aum+1 − yδ‖2Y + αm‖um+1 − u0‖2Lqnm (D) ≤ µ2
m‖bδm‖2Y .

Hence, um+1 can be considered an approximate minimizer of the Tikhonov func-
tional u 7→ ‖Au− yδ‖2Y +αm‖u− u0‖2Lqnm (D) in the set u0 +Xnm . Put differently:
in the linear case, REGINN∞ can be viewed as a cascading Tikhonov regularization
iterating over nested finite-dimensional spaces where the penalty term is deter-
mined a posteriori by the previous iterate.

Corollary 2.4 (Regularization Property of REGINN∞). Adopt all assumptions and nota-

tions from Theorem 2.1 with Br(u+) ⊂ D(F ) and set F (u+) = y. Additionally, assume
that F ′(u+) fulfills

R(F ′(u+)∗) ⊂ L1(D)`(14)

or that F is weakly-? sequentially closed, that is, un
∗
⇀ x in L∞(D)` and F (un) ⇀ y imply

that F (u) = y. Then the set of weak-? accumulation points of the sequence {uMδi
}i∈N is

non-empty and consists of solutions to F (·) = y. If u+ is the only solution in Br(u+),
then even the whole sequence {uMδi

}i∈N converges weakly-? to u+ in L∞(D)`.

Proof. By construction in Theorem 2.1 we know that {uMδi
}i∈N yields

‖y − F (uMδi
)‖Y ≤ ‖y − yδi‖Y + ‖bδiMδi

‖Y ≤ (1 + τ)δi → 0.(15)

and is uniformly bounded in L∞(D)`, so there exists weak-? accumulation points in

Br(u+) by weak-?-compactness. Take representatively uMδik

∗
⇀ ũ. In case that F is weak-

? sequentially closed, we can directly deduce F (ũ) = y, hence any weak-? accumulation
point solves the equation. In case that (14) holds, we first note that the TCC (3) implies
by the reverse triangle inequality for any u ∈ Br(u

+) that

(1− ω)‖F (u+)− F (u)‖Y ≤ ‖F ′(u+)(u+ − u)‖Y ≤ (1 + ω)‖F (u+)− F (u)‖Y .(16)

With (14) we then obtain for any g ∈ Y ∗

〈F ′(u+)ũ, g〉Y,Y ∗ = 〈ũ, F ′(u+)∗g〉L∞(D)`,L1(D)`

= lim
k→∞
〈uMδik

, F ′(u+)∗g〉L∞(D)`,L1(D)`

= lim
k→∞
〈F ′(u+)uMδik

, g〉Y,Y ∗

= 〈F ′(u+)u+, g〉Y,Y ∗ ,
where the last equality above follows by the second inequality in (16) with x = uMδik

and F (uMδik
) → y in Y . We deduce that F ′(u+)(u+ − ũ) = 0 and combining this

relation now with the first inequality in (16) using ũ = u, we may again conclude F (ũ) =

y. Finally, if u+ is the only solution to F (·) = y in Br(u+), the weak-? convergence
of the whole sequence {uMδi

}i∈N follows by a standard subsequence argument, see [28,

Prop. 10.13(2)]. �
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Remark 2.5. If F ′(u+) is injective, ‖u‖? := ‖F ′(u+)u‖ constitutes a norm on L∞(D)`

with respect to which {uMδ
}δ>0 then converges strongly to u+ according to (16) and (15)

at the rate ‖u+ − uMδ
‖? = O(δ) as δ → 0. However, this norm is generally weaker than

‖ · ‖L∞(D)` with equivalence if and only if F ′(u+) is boundedly invertible. However, for
locally illposed problems F (·) = y we expect its linearization to be illposed as well.

The previous version of REGINN∞ requires the determination of successive discretization
levels nm ≥ nm−1 for possibly many n and corresponding (almost) minimizers s ∈ Xn

of (9) need to be computed before meeting the given µm-criterion in (8). As this can be
numerically expensive, we want to present an alternative version which directly links n
to m. A closer look on the proof of Theorem 2.1 reveals that nm actually depends on
the decay of ‖F ′(um)(Pn(u+ − u0) − (u+ − u0))‖Y . Hence, if we have a concrete upper
bound for this discretization residual in terms of n, feasible choices of nm can be found
by simple algebraic manipulation. Such upper bounds can be deduced on the basis of
better initial guesses which are governed by some stronger norm. For this purpose we
state the following refined version of assumption (5):
If X ⊂ L∞(D)` is a subspace such that

‖û‖L∞(D)` ≤ CX‖û‖X for all û ∈ X,(17)

then for any u+ such that Br̃(u
+) ⊂ int(D(F )), u ∈ Br̃(u

+) and û ∈ X we assume that

‖F ′(u)
(
û− Pnû

)
‖Y ≤ C+‖û‖Xβ(n) ,(18)

where C+ > 0 and β fulfills β(n) ↘ 0 with β(0) = 1. We think of β as being rather
independent of u ∈ D(F ) once X and {Xn}n∈N are set while the magnitude of C+ is
strongly Br̃(u

+)-dependent. The next corollary shows that on this basis we can indeed
determine nm conveniently for successive Newton steps of REGINN∞.

Corollary 2.6. Adopt all assumptions, notations and parameters from Theorem 2.1 and
assume that (18) holds – without loss of generality with r̃ = r by shrinking one of the
radii otherwise. Start with u0 ∈ L∞(D)` such that ‖u+−u0‖X < min{r0/CX , 1/C+} and
restrict {µm} to (µεmin, µmax), where

µεmin :=

(
ω +

1 + ω

τ
+ ε

)2

+ max
{

vold(D)2/qn0 , 1
}
C2

P

r20
γ2

< µmax(19)

for some ε > 0 sufficiently small and qn0 large with n0 ∈ N. Further, let nm be defined by

nm := min

{
n ≥ n0 : β(n) ≤ ε‖bδm‖Y

}
.(20)

Then we can find sm ∈ Xnm satisfying (8) for all m. In particular, REGINN∞ also
terminates in this case and the regularization property still holds.

Proof. First, nm according to (20) is well defined since limn→∞ β(n) = 0. Besides, since
‖bδm‖Y is monotonously decreasing in m, we get that nm is non-decreasing, too. Using
sm := arg mins∈Xnm Jnm,m(s), we may compute with (11) and by (18)

Jnm,m(sm) ≤
(
‖bδm‖Y

(
ω +

1 + ω

τ

)
+ ‖F ′(um)

(
Pn(u+ − u0)− (u+ − u0)

)
‖Y
)2

+ vold(D)2/qnm
r20
γ2
C2

P‖bδm‖2L2(D)
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Algorithm 2 REGINN∞ for improved initial guesses

Input: F ; u0; y
δ; δ; {µm}m; τ ; γ; C∞; n0 ; ε; β

Output: uM with ‖yδ − F (uM)‖Y ≤ τδ
m := 0
bδm := yδ − F (um)
while ‖bδm‖Y > τδ do

αm := ‖bδm‖2Y /γ2
nm := min

{
n ≥ n0 : β(n) ≤ ε‖bδm‖Y

}
determine sm ∈ Xnm : Jnm,m(sm) ≤ µ2

m‖bδm‖2Y
um+1 := um + sm
m := m+ 1
bδm := yδ − F (um)

end while
M := m

≤
(
‖bδm‖Y

(
ω +

1 + ω

τ

)
+ C+‖u+ − u0‖X︸ ︷︷ ︸

<1

β(nm)︸ ︷︷ ︸
≤ε‖bδm‖Y

)2

+ max{vold(D)2/qn0 , 1}C2
P

r20
γ2
‖bδm‖2L2(D)

≤ (µεmin)2‖bδm‖2L2(D).

The fact that REGINN∞ still terminates and also admits the regularization property follows
by Theorem 2.1, Corollary 2.4 and ‖u0 − u+‖L∞(D)` ≤ CX‖u0 − u+‖X < r0. �

For convenience, we restate REGINN∞ in Algorithm 2 subject to u+−u0 ∈ X for which
we need to provide ε and β as additional input. This version is especially of interest if
the regularity u+ ∈ X is known a priori so that u0 ∈ X ensures u+−u0 ∈ X, as desired.

3. Applications: Full Waveform Inversion

Full waveform inversion (FWI) is the state-of-the-art imaging modality in exploration
geophysics, see, e.g., [6, 27]. Basically, it consists of a parameter identification problem
for the governing wave equation in time domain. In this section we will first verify
the compatibility condition (5) for the underlying parameter-to-solution map in quite
a general fashion, including the visco-elastic regime, and the B-spline subspaces from
Appendix A. Confining to the acoustic regime and linear B-spline spaces then, we can
even show (18).

We follow the abstract approach from [13] and consider, for some bounded domain
D ⊂ Rd, a (multi-)parameter-to-solution map

F : D(F ) ⊂ L∞(D)` → L2([0, T ], H) =: Y, u = (u1, . . . , u`) 7→ y,

which relates certain parameter functions {ul}1≤l≤` ⊂ L∞(D) to corresponding solutions
y : [0, T ]→ H given by

By′(t) + Ay(t) +BQy(t) = f(t) in (0, T ),

y(0) = y0.
(21)



ON THE ITERATIVE REGULARIZATION IN L∞ 11

Here, H is a Hilbert space and A, B, Q are time-independent operator-valued coefficients
on H for which we impose that A ∈ L(D(A), H) is unbounded and maximal monotone,
Q ∈ L(H) is such that QD(A) ⊂ D(A) and B ∈ L(H) is invertible and self-adjoint.
Further, we assume only B to depend on the ` parameter functions {ul}1≤l≤`. This
suggests introducing an auxiliary operator V : L∞(D)` → L(H) given by (u1, . . . , u`) =:
u 7→ V (u) := B which we require to be differentiable and such that any uniformly
bounded {ûn}n∈N ⊂ L∞(D)` with ûn → û pointwise a.e. implies for all h ∈ H and any
u ∈ L∞(D)` that

[V ′(u)ûn]h→ [V ′(u)û]h.(22)

For a concrete definition of the involved spaces and operators for the visco-elastic wave
equation we refer to [13] where it was shown that (21) admits a unique strong solution
y ∈ C([0, T ],D(A))∩C1([0, T ], H) ⊂ L2([0, T ], H) for y0 ∈ D(A) and f ∈ W 1,1([0, T ], H).
However, the inverse problem is locally illposed at any interior point u ∈ D(F ).

We will need the following two results of [13] for our further considerations.

Lemma 3.1. For f ∈ W 1,1([0, T ], H) and y0 ∈ D(A), F is Fréchet-differentiable at any
interior point u ∈ D(F ). Setting y = F (u), y := F ′(u)û ∈ C([0, T ], H) for û ∈ L∞(D)`

is given as the unique weak solution of

By′(t) + Ay(t) +BQy(t) = −[V ′(u)û] (y′(t) +Qy(t)) ,

y(0) = 0,

that is
d

dt
(By, v)H + (y, A∗v)H + (BQy, v)H = −

(
[V ′(u)û] (y′(t) +Qy(t)) , v

)
H

for a.e. t ∈ (0, T ) and all v ∈ D(A∗). Further, we have the stability estimate

‖y(t)‖H ≤ C‖[V ′(u)û](y′ +Qy)‖L1((0,t),H),(23)

where C depends continuously on the operator norms of B, B−1, Q, and on T .

Lemma 3.2. If f ∈ W k,1([0, T ], H) for k ≥ 1 and the compatibility conditions

y0,l := (B−1A+Q)ly0 +
l−1∑
j=0

(B−1A+Q)jB−1f (l−1+j) ∈ D(A), l = 0, . . . , k − 1,

hold, then the solution u of (21) is in Ck−1([0, T ],D(A)) ∩ Ck([0, T ], H). Further, we
also have the stability estimate

‖y(l)(t)‖H ≤ C
(
‖y0,l‖H + ‖f (l)‖L1((0,t),H)

)
,(24)

where C again depends continuously on the operator norms of B, B−1, Q, and on T .

For ` ∈ N we define

Xn = Xn
N × · · · ×Xn

N (` factors)(25)

as well as

Pn : L∞(D)` → Xn, Pnu = (PnNu1, . . . ,P
n
Nu`),(26)

where Xn
N and PnN are given by the cardinal B-spline spaces in (44) and (46), respectively.

The convergence properties of {Pn}n, see Appendix B, then guarantee (5) according to
the next lemma.
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Lemma 3.3. Let Xn and Pn be as above and assume that F is defined for f ∈ W 1,1([0, T ], H)
and y0 ∈ D(A). Then we have that

lim
n→∞

‖F ′(u)
(
û− Pnû

)
‖L2([0,T ],H) = 0

for any interior point u ∈ D(F ) and all û ∈ L∞(D)`.

Proof. Let yn := F ′(u)
(
û− Pnû

)
be the unique weak solution of

By′n(t) + Ayn(t) +BQyn(t) = −[V ′(u)
(
û− Pnû

)
] (y′(t) +Qy(t))

yn(0) = 0

which satisfies according to (23) for all 0 ≤ t ≤ T

‖F ′(u)
(
û− Pnû

)
(t)‖H ≤ C‖[V ′(u)

(
û− Pnû

)
](y′ +Qy)‖L1((0,T ),H).

Since C([0, T ], H) ↪→ L2([0, T ], H) is continuous, the assertion of the theorem follows
if we can show that the right-hand side of the above stability estimate goes to zero
as n → ∞. Applying Proposition B.1 componentwise we deduce that there exists a
subsequence such that Pnk û→ û pointwise a.e.. Using ‖Pnk û‖L∞(D)` ≤ CP‖û‖L∞(D)` and
(22), we can apply the dominated convergence theorem for integration in time which yields
‖[V ′(u)

(
û−Pnk û

)
](y′+Qy)‖L1([0,T ],H) → 0 as k →∞. By uniqueness of the pointwise limit

û the latter convergence even holds for the whole sequence, see [28, Prop. 10.13(2)]. �

Unfortunately, the TCC, which is the remaining condition for the rigorous applicability
of REGINN∞, is subject of current research in the context of FWI and only special cases
are known to hold. For example, the TCC has recently been shown for a semi-discrete
setting in the acoustic regime which does, however, not meet our requirements, see [4]. To
conclude our discussion about the rigorous scope of REGINN∞, we mention that condition
(14) from Corollary 2.4, which guarantees the regularization property, was proven in [13]
for the visco-elastic case.

A stronger result for the acoustic regime. In the remainder of this section we focus
on the stronger compatibility condition (18). For the acoustic wave equation and a special
choice of Xn and X, see (17), we will specify the decay function β.

In our abstract formulation (21), the acoustic wave equation is represented when setting
u = (ρ, ν), y = (p, v) ∈ L2([0, T ], H), H = L2(D)× L2(D,Rd) and

(27) Ay =

(
div(v)
∇p

)
, B−1y =

(
1
ρν2
p

ρv

)
, Q = 0,

subject to

D(A) =
{

(p, v) ∈ H1
0 (D)× L2(D,Rd) : div(v) ∈ L2(D,Rd)

}
.(28)

The two parameter functions are the bulk density ρ and the pressure wave speed ν taken
from the set

D(F ) =
{

(ρ, ν) ∈ L∞(D)2 : 0 < ρmin ≤ ρ ≤ ρmax <∞ and(29)

0 < νmin ≤ ν ≤ νmax <∞ a.e. in D
}

which is the domain of definition of the corresponding parameter-to-solution map.
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Our discretization space Xn = Xn
1 ×Xn

1 from (25) is now specified by ` = 2 and N = 1
and thus consists of piecewise constant functions. The associate projector (46) reads

Pnu =
∑
k∈In

2−nd

(∫
�nk

u(x) dx

)
1�nk

(30)

where

�nk := 2−n([0, 1]d + k)(31)

is the translated and dilated unit cube. Further, In = {k ∈ Zd : �nk ⊂ D}, see (45).
We are left to determine X ⊂ L∞(D)2 where the subspace X is governed by a stronger

topology measuring some kind of smoothness. Intuitively, X should be large enough
to still contain a wide class of discontinuous profiles, on the other hand we need some
minimal a priori regularity such that its Xn-projections facilitate a common decay rate
in (18). For s > 0 fixed we set

X := L∞s (D)2

whose component spaces are characterized by

L∞s (D) :=

{
u ∈ L∞(D) : sup

h6=0

‖u(· − h)− u‖L2(Dh)

|h|s
<∞

}
(32)

with Dh := {x ∈ D : x− h ∈ D} for any h ∈ Rd. We assign the norm

‖ · ‖L∞s (D) := ‖ · ‖L∞(D) + [·]Bs2,∞(D),

where [·]Bs2,∞(D) is a semi-norm given by the magnitude of the sup within (32). Originally,

[·]Bs2,∞(D) emerges from the definition of Hilbertian Besov-Nikolskii spaces

Bs
2,∞(D) =

{
u ∈ L2(D) : sup

h6=0

‖u(· − h)− u‖L2(Dh)

|h|s
<∞

}
with

‖ · ‖Bs2,∞(D) := ‖ · ‖L2(D) + [·]Bs2,∞(D),

cf. [26]. We obviously have ‖ · ‖L∞(D)2 ≤ ‖ · ‖X for

‖u‖2X := ‖ρ‖2L∞s (D) + ‖ν‖2L∞s (D),

L∞s (D) ⊂ Bs
2,∞(D) and Xn

1 ⊂ L∞s (D) if s ≤ 1/2. The latter can be seen for |h| < 2−n

with h = (h1, . . . , hd) and hi ≥ 0 without loss of generality thanks to symmetry of the
cube by the estimate

‖1−h+�nk − 1�nk
‖2L2(Dh) ≤ 2 vold

([
0, 2−n

]d\[0, 2−n − h1]× · · · × [0, 2−n − hd])
= 2
(

2−nd −
d∏
i=1

(
2−n − hi

))
≤ 2
(

2−nd −
(
2−n − |h|

)d)
≤ d2−n(d−1)+1|h|

for all k ∈ In, where we used the mean value theorem in the last step. We have a first
approximation result.
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Lemma 3.4. Let D be a bounded Lipschitz domain and let Pn be as in (30) for general
` ∈ N. Then, for any u ∈ L∞s (D)` and 0 < s ≤ 1/2,

‖u− Pnu‖L2(D)` ≤ C‖u‖L∞s (D)`2
−ns/d,

where C only depends on D and the dimension d.

Proof. It suffices to prove the assertion for ` = 1 since the case ` > 1 follows by a
componentwise consideration. Let � ⊂ Rd be a sufficiently large rectangle containing D.

By [22] there exists ũ ∈ Bs
2,∞(�) such that ũ|D = u and ‖ũ‖Bs2,∞(�) ≤ C̃‖u‖Bs2,∞(D), where

‖u‖Bs2,∞(D) can be replaced by the stronger norm ‖u‖L∞s (D). Using a dyadic partition of �
at level n based on our cubes {�nk}k (for which we restrict � to have integer side length),
we have

‖ũ− P̃nũ‖L2(�) ≤ [ũ]Bs2,∞(�)2
−ns/d,

see [1], where P̃n is defined as in (30) but with respect to the larger index set In(�) =
{k ∈ Zd : �nk ⊂ �}. Setting

Dn :=
⋃

k∈In(D)

�nk ,

we conclude that Pnu|Dn = P̃nũ|Dn and Pnu|D\Dn = 0. The latter implies

‖u− Pnu‖L2(D\Dn) = ‖u‖L2(D\Dn) ≤
√

vold(D\Dn)‖u‖L∞(D) ≤
√

vold(D\Dn)‖u‖L∞s (D)

for which we can estimate for some CD <∞

vol(D\Dn) ≤ CDH
d−1(∂D) 2−n

according to the inclusion D\Dn ⊂ ∪x∈∂D
(
x + 2−n[−1, 1]d]

)
, where Hd−1(∂D) denotes

the d− 1-dimensional Hausdorff measure of ∂D. Altogether, we obtain for s ≤ 1/2 that

‖u− Pnu‖L2(D) ≤ ‖u− Pnu‖L2(Dn) + ‖u− Pnu‖L2(D\Dn)

≤
(
C̃2−ns/d +

√
CDHd−1(∂D)2−n/2

)
‖u‖L∞s (D)

≤ C‖u‖L∞s (D)2
−ns/d

which proves the lemma. �

If F (u) admits higher integrability in space for all u in a neighborhood of the exact
solution u+, we can use the latter approximation result to verify (18) in quite a general
fashion.

Lemma 3.5. Let X = L∞s (D)` for some 0 < s ≤ 1/2 and let u+ ∈ D(F ) be some interior
point such that ‖y′ + Qy‖L1([0,T ],Hq) < C ′ for all ‖u− u+‖L∞(D)` < r′, where y = F (u) is
defined by (21) and Hq is the Lq-version of our L2-based Hilbert space H for some q > 2,
that is in the acoustic case

Hq := Lq(D)× Lq(D,Rd).(33)

Then, on the basis of (26) and (30), we have for all û ∈ X and u in a neighborhood of
u+ that

‖F ′(u)
(
û− Pnû

)
‖L2([0,T ],H) ≤ C+‖û‖X

(
2−s(q−2)/(3qd−4d)

)n
.(34)
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Proof. The proof uses a more elaborate analysis of the stability estimate

‖F ′(u)
(
û− Pnû

)
(t)‖L2([0,T ],H) ≤ C‖V ′(u)

(
û− Pnû

)
(y′ +Qy)‖L1((0,T ),H),

compared to Lemma 3.3. Recall that the constant C depends continuously on the operator
norm of B = V (u), B−1, Q and on T according to (23). Since V and B 7→ B−1 are
(locally) continuous, we can assume without loss of generality that the above inequality
holds for some fixed C = Cr′,u+ > 0 for any ‖u−u+‖L∞(D)` < r′ by shrinking the original
r′ > 0 otherwise. Then, for any δ > 0,

‖V ′(u)
(
û− Pnû

)
(y′ +Qy)‖L1((0,T ),H)

=

∥∥∥∥V ′(u)

(
û− Pnû

‖û‖X

)(
(y′ +Qy)(1{|û−Pnû|≥δ‖û‖X} + 1{|û−Pnû|<δ‖û‖X})

)∥∥∥∥
L1((0,T ),H)

‖û‖X

≤ ‖V ′(u)‖L(L∞(D)`,L(H))

‖û− Pnû‖L∞(D)`

‖û‖X
∥∥(y′ +Qy)1{|û−Pnû|≥δ‖û‖X}

∥∥
L1((0,T ),H)

‖û‖X

+‖V ′(u)‖L(L∞(D)`,L(H))δ
∥∥(y′ +Qy)1{|û−Pnû|<δ‖û‖X}

∥∥
L1((0,T ),H)

‖û‖X .

Due to ‖û − Pnû‖L∞(D)` ≤ (1 + CP)‖û‖L∞(D)` ≤ (1 + CP)‖û‖X by (S2) and CX = 1 in
(17), we obtain by dropping the complementary indicator function in the bottom line
above

‖V ′(u)
(
û− Pnû

)
(y′ +Qy)‖L1((0,T ),H)

≤ (1 + CP)‖V ′(u)‖L(L∞(D)`,L(H))

∥∥(y′ +Qy)1{|û−Pnû|≥δ‖û‖X}
∥∥
L1((0,T ),H)

‖û‖X
+‖V ′(u)‖L(L∞(D)`,L(H))δ ‖y′ +Qu‖L1((0,T ),H) ‖û‖X .

The middle line here can also be directly expressed in terms of δ according to our higher
integrability assumption and applying Hölder’s inequality with exponent q/2 > 1 to∥∥(y′ +Qy)(1{|û−Pnû|≥δ‖û‖X}

∥∥
L1((0,T ),H)

=

∫ T

0

(∫
D

∣∣y′(t) +Qy(t)
∣∣2(x)1{|û−Pnû|≥δ‖û‖X}(x) dx

)1/2

dt

≤
∫ T

0

(∥∥y′(t) +Qy(t)
∥∥2
Hq vol

(
{|û− Pnû| ≥ δ‖û‖X}

)(q−2)/(2q))1/2
dt

= ‖y′ +Qy‖L1((0,T ),Hq) vol
(
{|û− Pnû| ≥ δ‖û‖X}

)(q−2)/q
≤ ‖y′ +Qy‖L1((0,T ),Hq)

(
‖û− Pnû‖2

L2(D)`

δ2‖û‖2X

)(q−2)/q

.

In the last step we employed Tschebyscheff’s inequality, see, e.g., [7]. Applying Lemma 3.4
componentwise, we can further estimate

‖û− Pnû‖2
L2(D)`

δ2‖û‖2X
≤
C‖û‖2X

(
2−(s/d)

)n
δ2‖û‖2X

=
C
(
2−(s/d)

)n
δ2

.

Altogether, we get with a similar Hölder-inequality argument for

‖y′ +Qy‖L1((0,T ),H) ≤ ‖y′ +Qy‖L1((0,T ),Hq) vold(D)(q−2)/q

that

‖V ′(u)
(
û− Pnû

)
(y′ +Qy)‖L1((0,T ),H)
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≤ ‖û‖X‖V ′(u)‖L(L∞(D)`,L(H))‖y′ +Qy‖L1((0,T ),Hq)

×

(
(1 + CP)

(
C
(
2−(s/d)

)n
δ2

)(q−2)/q

+ δ vold(D)(q−2)/q

)
which holds for all δ > 0. Optimization in δ then yields δ ∝

(
2−s(q−2)/(3dq−4d)

)n
. Since

‖y′ + Qy‖L1((0,T ),Hq) < C ′ in a neighborhood of u+ and V ′ is continuous by assumption,
we can indeed find C+ <∞ in (34) which proves the lemma. �

Finally, we show that under reasonable modeling assumptions the necessary higher
integrability condition from the previous lemma can indeed be fulfilled in the acoustic
regime.

Lemma 3.6. Let D be C1-domain with d ∈ {1, 2, 3} and assume that f = (f1, f2) ∈
W 2,1([0, T ], H) with f2 ∈ C([0, T ], Lq̃(D,Rd)) for some q̃ > 2 such that f(0) = f ′(0) = 0
and y0 = 0. Then for any interior point u+ ∈ D(F ) there exists a neighborhood such that
corresponding solutions y = F (u) to

1

ρν2
p′ − div(v) = f1 in D × (0, T ),

ρv′ −∇p = f2 in D × (0, T ),
(35)

satisfy ‖y′‖L1([0,T ],Hq) < C ′ < ∞ and q̃ ≥ q > 2 only depends on D and the ratio
ρmax/ρmin <∞ from the definition of D(F ).

Proof. The proof makes use of converting higher time regularity to higher spatial in-
tegrability. By Lemma 3.2 and our compatible source and initial data, we know that
for u+ ∈ D(F ) we have y′ = (p′, v′) ∈ C([0, T ],D(A)) ∩ C1([0, T ], H), in particular p′ ∈
L1([0, T ], H1(D)). By Sobolev embedding, see [5], we obtain at least p′ ∈ L1([0, T ], L6(D))
for d ∈ {1, 2, 3}. Since the constant in (24) depends continuously on B and thus on u,
we can actually conclude ‖p′‖L1([0,T ],L6(D)) <∞ uniformly in a neighborhood of u+. Con-
cerning v′, we only have integrability information about its divergence. Therefore, we
first note that by (35) we have

div

(
1

ρ
∇p
)

= div(v′) =
p′′ − f ′1
ρν2

+ div(f2)

in the sense of distributions. As (ρ, ν) ∈ D(F ) is bounded away from 0 uniformly, the
non-divergence summand on the right hand side is in C([0, T ], L2(D)) by assumption.
Hence by well-posedness of the Laplace equation in free space for fixed t ∈ [0, T ], there
exists g = g(t) ∈ H1

loc(Rd,Rd) such that div(g) = 1D(p′′ − f ′1)/(ρν2) and

‖g‖H1(D,Rd) ≤ C

∥∥∥∥p′′ − f ′1ρν2

∥∥∥∥
L2(D)

for some d- and D-dependent constant C > 0. Again, by Sobolev embedding we obtain
g ∈ L6(D,Rd) and the second order equation for p reduces to

div

(
1

ρ
∇p
)

= div(f2 + g)

with (f2 + g) ∈ Lmin{q̃,6}(D,Rd). Now Meyers’ estimate, see [18], implies that

‖∇p‖Lq(D,Rd) ≤ C‖f2 + g‖Lq(D,Rd)
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for some min{q̃, 6} ≥ q > 2 and a constant C both of which only depend on D and
ρmax/ρmin <∞. In particular, ‖∇p‖L1([0,T ],Lq(D,Rd)) <∞ uniformly in a neighborhood of
u+ and using (35) we finally get that also ‖v′‖L1([0,T ],Lq(D,Rd)) < ∞ locally uniform in u.
This completes the proof. �

4. Numerical Results

We present numerical experiments2 on multi-parameter reconstruction to demonstrate
the operation of REGINN∞ in an easy test scenario where all assumptions required for our
analysis in the previous sections are satisfied.

Recall from Corollary 2.4 that, in general, the regularization property holds only in the
weak-? topology permitting a kind of strange convergence behavior. Therefore, we test
Algorithm 1 as the noise level approaches zero and also how it behaves under different
initial spaces Xn0 . We will start with a rather low dimensional Xn0 such that nm increases
successively in the course of the Newton iteration (while-loop) and in contrast also
with some large dimensional Xn0 which corresponds to a more static use of Tikhonov
regularization throughout all iterations.

Our experiments rely on the acoustic wave equation in one spatial dimension, d = 1,
where D = (0, 1) and T = 1:

1

ρν2
p′ − ∂xv = f1 in (0, 1)× (0, 1),

ρv′ − ∂xp = f2 in (0, 1)× (0, 1),

v(0, ·) = p(0, ·) = 0 on (0, 1),

p(·, 0) = p(·, 1) = 0 on (0, 1).

(36)

The source components f1, f2 : [0, 1]× [0, 1]→ R are

f1(t, x) = 100
(
x(x− 1)

1

ρ(x)ν(x)2
− π

2
cos
(π

2
x
))

,

f2(t, x) = 100
(
− t(2x− 1) + sin

(π
2
x
)
ρ(x)

)
,

(37)

where

(38) ρ(x) = 1 +
1

5
1[7/30,17/30](x) and ν(x) = 1− 1

10
1[13/30,23/30](x).

The corresponding exact data, that is, the solution of (36) and (37), are given by

(39) p(t, x) = 100tx(x− 1) and v(t, x) = 100t sin
(π

2
x
)
.

We solve the appearing wave equations during inversion for the parameters by the FEM-
based MATLAB (R2021a) command pdepe with 300 spatial and 100 temporal grid points.
Both sets of points are distributed equidistantly in [0, 1].

Our discrete parameter spaces Xn = Xn
1 ×Xn

1 are generated by the piecewise constant
cardinal B-spline as explained in Appendix A. So, conditions (S1)-(S3) are fulfilled. Note

2For the reader’s own experiments we provide our MATLAB code on http://www.math.kit.

edu/ianm3/~rieder/media/reginn_infty_fig2.m. Executed in MATLAB (R2021a) on an Intel(R)
Core(TM) i5-1035G4 CPU under Windows 10, the code produces the output shown in Figure 2. In
our program we use a routine by John D’Errico (2021): Piecewise functions (https://www.mathworks.
com/matlabcentral/fileexchange/9394-piecewise-functions), MATLAB Central File Exchange.
Retrieved November 29, 2021.

http://www.math.kit.edu/ianm3/~rieder/media/reginn_infty_fig2.m
http://www.math.kit.edu/ianm3/~rieder/media/reginn_infty_fig2.m
https://www.mathworks.com/matlabcentral/fileexchange/9394-piecewise-functions
https://www.mathworks.com/matlabcentral/fileexchange/9394-piecewise-functions
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that the dimension of Xn
1 is 2n. In view of Remark 2.3 we set nmax = 8 yielding the

semi-discrete parameter-to-state map

(40) Fnmax : D(Fnmax) ⊂ Xnmax → L2([0, 1], H), (ρ, ν) 7→ (p, v),

where (p, v) ∈ L2([0, 1], H), H = L2(0, 1)2, solves (36) with (37) and (ρ, ν) ∈ D(Fnmax) =
Xnmax∩D(F ), see (29) for D(F ). Within our computations, ‖·‖L2([0,1],H) is discretized by
the corresponding space-time Euclidean norm and denoted by ‖ · ‖. Since Fnmax satisfies
the TCC (3), see Appendix C, Theorem 2.1 guarantees termination of REGINN∞ applied
to the inverse problem

(41) find (ρ, ν) ∈ Xnmax : Fnmax(ρ, ν) ≈ (pδ, vδ).

To simplify notation we use the same symbols for the continuous and the discrete versions
of functions such as p, v, ρ, ν, etc.

We apply REGINN∞ (Algorithm 1) to (41) where we choose qn = n/ log2C∞ for Jn,m
from (9) in accordance with the lower bound in (47) below. For each m the computation of
Newton update candidates sm ∈ Xn is realized – benefiting greatly from the smoothness
of the Tikhonov functionals – by a steepest descent routine in a loop over n until (8) is
met. We adapt µm during iteration according to the rule proposed in [21]: we start with
µ1 = µ0 and set

µm =

{
min{1− jm−2

jm−1
(1− µm−1), 0.999}, jm−1 ≥ jm−2,

0.9µm−1, otherwise,
m ≥ 2,

where µ0 ∈ (0, 1) is user-supplied and jm denotes the number of gradient decent steps
needed to compute the update sm. Complementary, the underlying discretization level n
will be increased if the gradient descent loop stagnates on Xn, which we consider to occur
if the ratio of two successive gradient step evaluations does not exceed a fixed threshold
close to 1, say 0.99999. We stop the algorithm either by the discrepancy principle or
if n ≥ nmax happens, that is, if the discretization of Xn would become finer than the
computational grid used in the pdepe-routine for solving the wave equation. In the latter
case, we still perform xm+1 = xm + s̃m with the last update candidate s̃m ∈ Xnmax before
abortion. We emphasize that s̃m is a not Newton update in the sense of (8), but the
corresponding xm+1 might fulfill the discrepancy principle unlike xm.

In our experiments we especially want to detect the jump regions [7/30, 17/30] and
[13/30, 23/30], where the parameters differ from the homogeneous background material
(ρ0, ν0) = (1, 1) ∈ Xnmax , respectively, that we take as initial guess. Note that no grid
point of Xn coincides with either of the jump discontinuity points for all n so that the
error of any reconstruction of ρ and ν will always be at least (max ρ −min ρ)/2 = 1/10
and (max ν −min ν)/2 = 1/20 with respect to the L∞-norm, respectively.

First, we investigate the case of ‘exact’ data, that is, (pδ, vδ) = (p, v) with (p, v) from
(39). Despite of δ = 0 our data might still be contaminated by some discretization error
with respect to Fnmax since the corresponding analytical solution (ρ, ν) given by (38) is
not contained in Xnmax . Choosing µ0 = 0.7, γ = 0.8, C∞ = 1.1, we run Algorithm 1 for
different n0 to observe how its choice affects the outcome. Note that setting τ is redundant
here because termination is solely forced by n exceeding nmax. Figure 1 displays the exact
parameter functions ρ and ν (orange) and the corresponding outputs ρM and νM (blue)
of Algorithm 1 when starting with n0 ∈ {2, 5, 8}, respectively. We see that the larger n0

is, the smoother the output becomes, while the points of discontinuity are more sharply
located for smaller n0. Hence, for the reconstruction of jump discontinuities, n0 shall be
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Figure 1. Approximate solutions ρM (blue, left column) and νM (blue, right
column) by Algorithm 1 with initial spaces X2, X5, and X8 (top to bottom).

chosen large enough to locate discontinuity points sufficiently precise while at the same
time it should not be too large to prevent oversmoothing. Figure 2 shows a more detailed
convergence history in the case n0 = 2 and confirms that the majority of Newton steps
is indeed undertaken with nm ≤ 4.

Next, we study the case of noisy data. For this purpose we generate noise vec-
tors ζ as random samples from a centered Gaussian distribution and scale it such that
‖ζ‖ = δ‖(p, v)‖. Since δ is a relative perturbation here, the discrepancy principle must
be adjusted accordingly. As before, we employ Algorithm 1 with µ0 = 0.7, γ = 0.8,
C∞ = 1.1, τ = 1.1. Using the insights from our exact data case we set n0 = 5 as ini-
tial value to balance the aforementioned effects of globally smooth and locally oscillating
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m nm jm µm ‖b0m‖
0 2 0 0.7 2.56207

1 2 2 0.7 1.31590

2 2 3 0.8 0.67130

3 2 2 0.72 0.43376

4 2 5 0.888 0.29172

5 2 17 0.96706 0.24329

6 3 39 0.98564 0.20439

7 3 1 0.88708 0.17912

8 3 10 0.98871 0.14127

9 3 8 0.88984 0.13206

10 4 70 0.98741 0.10649

11 4 7 0.88867 0.09944

12 4 10 0.92207 0.08374

13 4 9 0.82986 0.07341

14 4 20 0.92344 0.05562

15 4 16 0.83109 0.04895

16 4 36 0.92493 0.03842

17 4 33 0.83244 0.03383

18 6 327 0.98309 0.02641

19 7 190 0.88478 0.02493

20 8 57 − 0.02442

11 12 13 14 15 16 17
0.6

0.7

0.8

0.9

1

0

10

20

30

40

‖b0m‖/‖b0m−1‖
µm−1
jm

Figure 2. Left: Convergence history for exact data case n0 = 2 from Figure 1.
Peaks for jm arise whenever the discretization level nm is increased as cumulative
contribution. Right: Graphical presentation of the values jm (blue) and µm−1
(black dashed) as functions of m ∈ {11, . . . , 17} where nm = 4. Moreover, we
have included the quotient ‖b0m‖/‖b0m−1‖ (red) which is always below µm−1. This
illustrates that (13) holds for a tiny ω.

reconstructions. The corresponding results for ρM and νM are shown in Figure 3 for
δ = 5%, δ = 2%, and 1%. We see that the reconstructions’ profiles approach the correct
jump height of the exact solution as δ becomes smaller. In all three cases, termination
occurs by reaching the discretization limit, however, each last update fulfills the discrep-
ancy principle afterwards. Altogether, the plots illustrate the regularization property of
REGINN∞ with respect to weak-? in L∞(D) as ensured by Corollary 2.4.

5. Conclusion

We have investigated a novel iterative regularization algorithm tailored for non-linear
illposed problems between L∞(D)` and a normed space Y . The main focus was on
generating uniformly bounded iterates relying on a Tikhonov-like regularization term.
Due to the non-smooth structure of L∞(D)`, a straightforward implementation would
require non-smooth or box-constrained calculus which we could circumvent by using
discretization in combination with equivalent Lp(D)`-norms for p <∞. Under reasonable
assumptions on the input parameters, our algorithm REGINN∞ terminates after finitely
many steps. Further, it fulfills the regularization property in the weak-? topology as the
noise level of the Y -data tends to zero. Depending on the non-linearity, this convergence
can be reformulated as convergence with respect to a norm. Numerical experiments with
a model problem illustrate the theoretical findings.
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Figure 3. Regularized solutions ρM (blue, left column) and ρM (blue, right
column) by Algorithm 1 for relative noise levels of 5%, 2% and 1% (top to

bottom).

Future research may include a convergence rate analysis under higher regularity as-
sumptions as in (18) or under more general variational source conditions with respect to
a Bregman distance [10]. We could even incorporate a metric to overcome that L∞(D)`

is non-separable; an approach proposed in [20]. Concerning the data space, especially the
task of finding proper measures for the misfit in seismograms, the Kantorovich-Rubinstein
(KR) norm has recently proven advantageous in exploration geophysics, see, e.g., [16, 17].
This fact demands an implementation of our method under the KR-norm on Y . Moreover,
our theory allows more general distance functions on Y . Indeed, any distance concept is
admissible which is convex in one of its two arguments (e.g. Bregman distances).
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Appendix A. A family of admissible subspaces

In this appendix we give a concrete construction for a family {Xn}n∈N of subspaces
of L∞(D)` which satisfies our assumptions (S1)-(S3) of Section 2 for D an open and
bounded subset of Rd. Using Cartesian products in case of ` > 1, cf. (25), we restrict our
attention to ` = 1 here.

We will rely on the cardinal B-spline ϕN : R→ R of order N ∈ N which is recursively
defined by

ϕN(t) := ϕN−1 ? ϕ1(t) =

∫ 1

0

ϕN−1(t− s) ds, ϕ1 = 1[0,1].

It obeys the scaling relation

(42) ϕN(t) = 21−N
N∑
k=0

(
N

k

)
ϕN(2t− k).

Further properties are

I suppϕN = [0, N ], ϕN |]0,N [ > 0, ϕN ∈ CN−2,
I for each k ∈ Z, ϕN |[k,k+1] is a polynomial of degree N − 1,
I for all t ∈ R,

(43) 1 =
∑
m∈Z

ϕN(t−m),

see, e.g., [23].

Using the tensor product B-Spline Φ(x) :=
∏d

i=1 ϕN(xi), x = (x1, . . . , xd)
> ∈ Rd, and

the notation Φn,k(x) = 2nd/2 Φ(2nx− k), n ∈ N, k ∈ Zd, we define

(44) Xn = Xn
N(D) := span

{
Φn,k|D : k ∈ In(D)

}
with

In = In(D) :=
{
k ∈ Zd : supp Φn,k ⊂ D

}
.(45)

These spaces are nested due to (42), so that (S1) holds. Note that ∪k∈In supp Φn,k ⊂ D
which is a proper inclusion in general.

Next we demonstrate (S2). To this end we set

(46) Pnu = PnNu :=
∑
k∈In

〈u, Φ̃n,k〉L2(D)Φn,k for u ∈ L∞(D)

where Φ̃ is a compactly supported dual function to Φ satisfying the biorthogonality

〈Φ̃(·),Φ(· − k)〉L2(Rd) = δ0,k.

The existence of such functions has been shown in [3]. The biorthogonality yields
PnNΦn,k = Φn,k, for all k ∈ In. Hence, the required projection property holds: PnNu = u
for all u ∈ Xn

N(D). We proceed with

‖PnNu‖L∞(D) = sup
x∈D

∣∣∣∑
k∈In

〈u, Φ̃n,k〉L2(D)Φn,k(x)
∣∣∣ =

∣∣∣∑
k∈In

〈u, Φ̃n,k〉L2(D)Φn,k(x
∗)
∣∣∣

≤
∑
k∈In

|〈u, Φ̃n,k〉L2(D)|Φn,k(x
∗) ≤ ‖u‖L∞(D)

∑
k∈In

‖Φ̃n,k‖L1(D) Φn,k(x
∗).
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Since

‖Φ̃n,k‖L1(D) ≤ 2−nd/2
∫
Rd
|Φ̃(x)| dx and

∑
k∈In

Φn,k(x
∗) ≤

∑
k∈Zd

Φn,k(x
∗)

(43)
= 2nd/2

we have established (S2) with CP ≤ ‖Φ̃‖L1(Rd). Observe that ‖Φ̃‖L1(Rd) ≥ 1 as Φ̃ has
mean value 1 just as Φ.

It remains to validate (S3). Let u ∈ Xn
N(D) with ‖u‖L∞(D) = 1. Then,

‖u‖Lq(D) ≥ δq > 0

for

δq = min
u∈M
‖g‖Lq(D) where M =

{
u ∈ Xn

N(D) : ‖u‖L∞(D) = 1
}
.

This minimum is non-zero and exists as M is compact in the finite dimensional space
Xn
N(D). Since δq = ‖uq‖Lq(D) for one uq ∈ M and as δq → 1 for q → ∞ (see below), we

find a q with δq ≤ 1/C∞ for any given C∞ > 1. Hence, 1 ≤ C∞ ‖u‖Lq(D) for all u ∈ M
and (S3) follows by the homogeneity of norms.

We finish with proving limq→∞ δq = 1. Obviously, δq = ‖uq‖Lq(D) ≤ vold(D)1/q →
1 as q → ∞. Therefore {δq} is bounded and admits a convergent subsequence, say,
limi→∞ δqi = δ∗ ≤ 1. For each q let x∗q ∈ D with |uq(x∗q)| = 1. If N = 1, uq must be equal
to unity in a whole cube of length 2−n as a subset of D containing x∗q. So we can estimate

‖uq‖Lq(D) ≥
(
2−nd

)1/q → 1(47)

as q → ∞ which proves the assertion in this case. If N > 1, we can still find for any
ε > 0 sufficiently small a δ > 0 such that |uq|Bδ(x∗q)∩D| ≥ 1 − ε for all q. This follows
by uniform equicontinuity ensured by the Arzelà–Ascoli theorem since M is compact in
C(D) as a bounded, closed, and finite dimensional set. Further, we have that

vold(Bδ(x
∗
q) ∩D) > c > 0

for all q. This follows by the more general observation that the union over m ∈ N of

Vm :=
{
u ∈ Rd : vold(Bδ(x) ∩D) >

1

m

}
is an open cover for D, so we can find a maximal m such that D ⊂ Vm by compactness
of D. Altogether, we can again deduce a lower bound of the form

‖uq‖Lq(D) ≥ (1− ε) vold(Bδ(x
∗
q) ∩D)1/q ≥ (1− ε)c1/q → 1− ε

as q → ∞. We conclude δ∗ = 1 since ε > 0 can be chosen as small as we wish. Finally,
any subsequence of {δq} contains a subsequence which converges to 1. So, the whole
sequence must converge to 1, see, e.g., [28, Prop. 10.13(2)].

A different approach. The functions of Xn
N(D) from the above construction vanish

on the set D\ ∪k∈In supp Φn,k which is non-empty in general. Here we present briefly
an alternative approach to overcome this drawback. Basically, we extend the preimage-
space of the map F of Section 2 while keeping all its necessary properties to carry over
Theorem 2.1 to the extension.

Let D̃ be an open superset of D: D ⊂ D̃. We will need two operators: the extension

operator E : L∞(D) → L∞(D̃), which extends a function by zero, and the restriction

operator R : L∞(D̃)→ L∞(D), which multiplies a function by the indicator 1D.
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We define F̃ : D(F̃ ) ⊂ L∞(D̃)→ Y by D(F̃ ) = ED(F ) and F̃ (ũ) = F (Rũ). This F̃ is

Fréchet-differentiable just like F . Moreover, the TCC holds in Br(Eu
+) ⊂ D(F̃ ). Indeed,

let ũ ∈ Br(Eu
+) then ‖Rũ − u+‖L∞(D) = ‖Rũ − REu+‖L∞(D) ≤ ‖ũ − Eu+‖L∞(D̃) ≤ r,

that is, Rũ ∈ Br(u
+) ⊂ D(F ). Thus, for u, ũ ∈ Br(Eu

+), we get

‖F̃ (u)− F̃ (ũ)− F̃ ′(ũ)(u− ũ)‖Y = ‖F (Ru)− F (Rũ)− F ′(Rũ)(Ru−Rũ)‖Y
≤ ω ‖F (Ru)− F (Rũ)‖Y = ω ‖F̃ (u)− F̃ (ũ)‖Y .

For this F̃ we can define spaces Xn = Xn
N(D̃) as above but with respect to D̃ rather

than D. Now, the union of the supports of Φn,k, for k ∈ In(D̃) covers D when n is large
enough.

Condition (5) does not transfer directly to the new construction but we have, for

ũ ∈ D(F̃ ) and û ∈ L∞(D̃), that

(48) ‖F̃ ′(ũ)
(
û− P̃nN û)‖Y ≤ ‖F ′(Rũ)(Rû− PnNRû)‖Y + ‖F ′(Rũ)(PnNRû−RP̃nN û)‖Y

where PnN : L∞(D) → Xn
N(D) and P̃nN : L∞(D̃) → Xn

N(D̃) are the corresponding projec-
tion operators in accordance with (S2). The left norm on the right hand side of (48) tends
to 0 for n→∞ by (5). The right norm converges to 0, for instance, if F ′(x) : L∞(D)→ Y

is weak-? continuous for all u ∈ D(F ): both sequences {PnNRû}n and {RP̃nN û}n converge
to Rû pointwise a.e. This convergence can be verified by standard arguments, see e.g.,
[23, Chap. 12.3] and [19, Chap. 2]. Further, both sequences are uniformly bounded due

to (S2). Hence, PnNRû−RP̃nN û→ 0 weakly-?.

Appendix B. An approximation result

Proposition B.1. For u ∈ L∞(D) and {Pn}n as in (46) we have that Pnu→ u in Lq(D)
for all q <∞.

Proof. Let � be a rectangular superset of D and �̃ a superset of �. Further, extend u by

zero outside of D. The convergence results of Section 12.3 from [23] yield that P̃nu→ u

in Lq(�) for any q < ∞ where P̃n is defined as in (46), however, with respect to In(�̃)

Xn(�̃). Hence, for any s ∈ D we have that P̃nu(x) = Pnu(x) for n large enough such
that x ∈ Dn, where

Dn :=

{
x ∈ D :

∑
k∈In

Φn,k(x) = 1

}
,

in particular vold (D\Dn) → 0. Because of ‖Pnu‖L∞(D) ≤ CP‖u‖L∞(D) by (S2), we can
estimate

‖u− Pnu‖Lq(D) = ‖u− Pnu‖Lq(D\Dn) + ‖u− Pnu‖Lq(Dn)
≤ vold (D\Dn)1/q (CP + 1)‖u‖L∞(D) + ‖u− P̃nu‖Lq(Dn)
≤ vold (D\Dn)1/q (CP + 1)‖u‖L∞(D) + ‖u− P̃nu‖Lq(�)

and the assertion follows. �
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Appendix C. On the tangential cone condition for the operator in (40)

Here we argue that the semi-discrete non-linear operator Fnmax defined in (40) satisfies
the TCC (3).

The underlying abstract system is (21) with the concrete settings (27), u0 = 0, and
(28) where D = (0, 1), T = 1, that is, d = 1 and u = (p, v) ∈ L2([0, 1], H), H = L2(0, 1)2.
Thus, we obtain the acoustic system (36) which has a unique classical solution under
(ρ, ν) ∈ D(Fnmax) and for the sources (37). In view of Lemma 3.1, Fnmax is Fréchet-
differentiable and we have F ′nmax

(ρ, ν)(ρ̂, ν̂) = (p, v) where (p, v) weakly solves

1

ρν2
p′ − ∂xv = −ρ̂p′ in (0, 1)× (0, 1),

ρv′ − ∂xp = −ν̂v′ in (0, 1)× (0, 1),

v(0, ·) = p(0, ·) = 0 on (0, 1)

v(·, 0) = p(·, 1) = 0 on (0, 1).

(49)

In a first step we validate injectivity of F ′nmax
(ρ, ν) for any (ρ, ν) ∈ D(Fnmax). To this

end, assume F ′nmax
(ρ, ν)(ρ̂, ν̂) = (0, 0). From (49) we get

0 = ρ̂p′ and 0 = ν̂v′ in (0, 1)× (0, 1).

Assume 0 6= ρ̂ ∈ Xnmax . Then, there is a non-empty interval [a, b], a = 2−nmaxk, b =
2−nmax(k + 1), k ∈ N0, where ρ̂ does not vanish. Hence, p′ = 0 in [0, 1] × [a, b]. By the
first equation in (36), −∂xv = f1 in [0, 1]× [a, b], that is,

v(t, x) = v(t, a)−
∫ x

a

f1(t, y)dy, (t, x) ∈ (0, 1)× [a, b].

Recalling the zero initial value v(0, ·) = 0 we get the contradiction 0 =
∫ x
a
f1(0, y)dy < 0

for x ∈ [a, b]. So, ρ̂ = 0 in (0, 1). One argues analogously to validate ν̂ = 0 in (0, 1).
Hence, F ′nmax

(ρ, ν) is one-to-one which implies the TCC at any interior point of D(Fnmax)
due to Lemma C.1 of [4].
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[25] T. Schuster, A. Rieder, and F. Schöpfer, The approximate inverse in action: IV. Semi-
discrete equations in a Banach space setting, Inverse Problems, 28 (2012), pp. 104001, 19, https:
//doi.org/10.1088/0266-5611/28/10/104001.

[26] H. Triebel, Theory of function spaces. II, vol. 84 of Monographs in Mathematics, Birkhäuser
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