HEAT
A DISTRIBUTED AND ACCELERATED TENSOR FRAMEWORK FOR DATA ANALYTICS AND MACHINE LEARNING
Claudia Comito1, Markus Götz2,3, Charlotte Debus2,3, Daniel Coquelin2,3, Michael Tarnawa1, Kai Krajsek1, Philipp Knechtges4, Martin Sigge4, Björn Hagemeier1, Achim Basermann2, Achim Streit3

1 Julich Supercomputing Centre (JSC), Forschungszentrum Jülich (FZJ), Jülich, Germany
2 Helmholtz AI
3 Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
4 Institute for Software Technology (SC), German Aerospace Center (DLR), Cologne, Germany

HEAT

BATTERIES INCLUDED
- Element-wise operations
- Advanced indexing, slicing and broadcasting
- Linear algebra subpackage
- Unsupervised machine learning
 - K-Means/-Medoids/-Means clustering
 - Spectral clustering
 - Self-organizing maps
- Supervised machine learning
 - Logistic/L1-LASSO-regression
 - k-nearest neighbors
 - Gaussian Naïve Bayes
- Neural networks
 - Data-parallel training (DASO)
 - State-of-the-art layers
 - PyTorch and ONNX compatible

DATA CRUNCHING IN THE WILD
- Study of paraffin-based hybrid rocket engine fuels
- Combustion tests at DLR Institute of Space Propulsion
 Super-high resolution video cameras
 10,000 frames/second
- Identification of combustion phases via unsupervised ML
- Parallel clustering algorithm implementations
- Production runs on high-performance supercomputer

FEEL THE HEAT

>>> pip install heat

>> git clone
https://github.com/helmholtz-analytics/heat.git

CONTACT
Dr. Claudia Comito, c.comito@fz-juelich.de
Dr. Markus Götz, markus.goetz@kit.edu