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Abstract

Surrogate modeling and data-model convergence are important in any field utilizing probabilistic modeling, includ-
ing High Energy Physics and Nuclear Physics. However, demonstrating that the model produces samples from
the same underlying distribution as the true source can be problematic if the data is many-dimensional. The 1-D
and multi-dimensional Kolmogorov-Smirnov test (ddKS) is a statistically powerful nonparametric test which can be
implemented as a one- or two-sample test. We have developed three algorithms, one exact and two approximate,
for the multi-dimensional Kolmogorov-Smirnov test proposed by Fasano. We apply ddKS to the comparison of
photon distributions in the Belle II time-of-propagation detector using the collaboration’s Geant4 simulation and
our own neural network surrogate model. Additionally, we have derived an analytic form for the statistical sig-
nificance of ddKS. Our approximations reduce the input time complexity from quadratic to log-linear (vdKS) and
reduce the dimensional time complexity from exponential to linear (rdKS). The approximation methods maintain the
statistical power of the exact method requiring tens of data points to indicate differences between most sampled
distributions.

Motivation

• Comparison of distributions, especially with strong statistical guarantees, is important throughout physical sci-
ences and surrogate modeling.

• Statistical comparison in high dimensions is often overlooked.

Test Statistics

• Numerical summaries of data values to set thresholds
for hypothesis testing.

• Use cases:

– One-sample tests (data is compared to given prob-
ability distribution)

– Two-sample tests (determine if two data sets are
drawn from the same distribution)

• Two-sample tests gain even more importance e.g.
through rise of generative models in machine learn-
ing.

• As number of data samples increases, fast computa-
tion of statistical tests is invaluable for most analyses.

One Dimensional
• Popular statistical tests (e.g. integratedmean squared
error or Earth Mover’s Distance) only used in one-
dimensional space.

• Scaling to higher dimensions is often paired with high
time cost.

• One-dimensional tests cannot identify covariances be-
tween variables.

• Most test statistics require assumptions/approxima-
tions of underlying distribution.

• The Kolmogorov-Smirnov test:

– Is also one-dimensional, but non-parametric.
– Defined as maximum difference between two cu-
mulative distribution functions (CDF):

Dn = sup
x

|F1,n(x)− F2,m(x)|. (1)

• KS is one of the most general non-parametric tests,
using both shape and position of CDFs.

Definition

• We take the case of the two sample test of N samples between predicted Xp and true Xt, each of dimension d

• We seek to test the null hypothesis H0, that the two samples come from the same distribution. Statistical
significance p is then compared to action level α = 0.05, and if p ≤ α, H0 can be rejected.

The ddKS Test Statistic

• ddKS compares cumulative distribution function be-
tween two distributions.

• Use membership in orthants partitioned at each point
in Xp and Xt as surrogate for full CDF.

• Region membership calculated in 2d sized vector -
xi ∈ Xp and V p

j (xi), V
t
j (xi) is jth component of the

membership vector.

• ddKS is then defined as

Dp = max
i,j

|V t
j (xi)− V p

j (xi)|. (2)
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Figure 1: ddKS compares points to a test point along basis vectors
of the space, assigning membership to quadrants based on their re-
lationship to the test point.

Permutation Test
• Allows calculation of statistical significance using any
distance or divergence measure.

• Calculate test statistic Dp for predicted Xp and true
Xt.

• Randomly mix Xp and Xt to produce two new distri-
butions made of approximately half the samples from
both, recalculating Dp for the two new distributions
(labelled D0).

• Repeat M times to produce D0,i, i ∈ [1,M ], with M
large enough to approximate Dp under the Null hy-
pothesis.

• p-value is the fraction of D0,i greater than Dp

p =
NDp<D0,i

N
. (3)

• To account for binomial statistics of NDp<D0,i
use ex-

pectation value

〈p〉 =
1 +NDp<D0,i

2 +N
. (4)

Considered Test Statistics
• Because of the permutation test, we can use any dis-
tance or divergence as a test statistic. To show ddKS’s
utility for physical sciences, we compare it to three
other test statistics:

– One dimensional Kolmogorov-Smirnov test
(OnedKS): We compare our ddKS against one di-
mensional test statistics by formulating a combined
one dimensional KS test in all dimensions. To do so,
we take the maximum of the KS statistic in any di-
mension.

– Hotelling’s T2 test (Hotelling-T2): We compare
ddKS against a mean-only high dimensional test
first published by Hotelling [1].

– Kullback-Leibler Divergence (KLDiv): We com-
pare ddKS to a modern distribution distance, the
Kullback-Leibler Divergence [2]. To calculate KLDiv,
an estimate of the underlying probability density
of each sample is required. We perform this es-
timate by taking the d-dimensional histogram with
constant bin size and bin density defined by Scott’s
suggestions in [3].

Implementation

• Naive, loop-based implementation: loop through every point in one distribution, count how many fall in each
surrounding orthant. Prohibitively slow for all N points (O

(
N 2

)
) .

Tensor Primitive Based Computation

For small N :

• Using PyTorch tensor primitives:
implicit parallelism, reduces time
complexity to O (1), enables GPU
calculation.

For large N :

• Trade time for memory complex-
ity.

Algorithm:

1. Construct tensors (P,Q,T,U) from
Xp andXt where P [i, j, k] = Xp [i, j]
for all k.

2. Build tensors of partition compar-
ison by performing elementwise

operations, e.g.
GP = P ≥ Q, (5)

3. Each point surrounded by 2d or-
thants. Construct membership
tensor M using the positional en-
coding

S (x, f ) = (−1)b4fxc , (6)
with f = 2−j−2 and x ∈

[
0, 2d − 1

]
,

shown for 3D in fig. 2.
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Figure 2: Positional Encoding function S for
3 dimensions

4. Fill the membership tensor

M [i, j] =

N∑
k=1

d∏
j=1

(
G [l, j, k] · S [i, k]

+

∣∣∣∣S [i, k]− 1

2

∣∣∣∣). (7)

5. Calculate ddKS divergence from
each distribution to the other.

D1 = max |M1 −M2| (8)

D2 = max |M3 −M4| (9)

6. Finally, average to calculate the fi-
nal metric

D =
D1 +D2

2
. (10)

Accelerated Computations

Voxel Based
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Figure 3: vdKS initially separates the hyperspace into voxels, comput-
ing membership within each. For voxels with high membership, ddKS
can be performed on that voxel’s membership for higher fidelity.

• Voxel based pairwise approximation ddKS (vdKS) di-
vides the space into hypervoxels and counts themem-
bership for each class in each voxel.

• Approximates ddKS in O
(
2dNk

)
(where k is the num-

ber of voxels).

Radius Based
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Figure 4: rdKS uses chosen ”corners” for comparison, assigning
membership for a point to a given quadrant if the euclidean distance
between that point and the ”corner” is smaller than between the cor-
ner and a test point.

• In rdKS d+1 corner points are identified and, for each
point, the sample points are sorted by their distance
from each corner.

• rdKS approximates ddKS in O ((d + 1)N logN), thus
providing a good method for larger dimensions.

Time Complexity
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Figure 5: Time to compute a single test statistic for ddKS accelerated methods and selected other methods from the literature. A lower time
for computation is better, however there is a tradeoff between time complexity as visualized here, and statistical power.

• Tensor primitive based computation uses implicit parallelization in PyTorch’s tensor primitive operations; reduces
computational complexity to O (1) until the memory or core count is exhausted.

Analytical Significance Calculation

• We derived a formula for the significance for the two-
sample ddKS test by assuming that each element of
M [i, j] can be thought of as the result of N binomial
trials. λi,k is the rate corresponding to each entry.

• The analytical significance is then given by

S
(
D,NP , NT , ~λ

)
= 1.0−

2d∏
i=0

N∏
k=0

p<δ (D,NP , NT , λi,k) .

(11)

• The analytical significance closely matches the signifi-
cance given by the permutation test.
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Figure 6: Statistical significance with which we can reject H0 with in-
creasing sample size N on a given distribution in 3 dimensions, re-
peated 100 times.

Behavior

Datasets
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(a) Gaussian varying means

2.5 0.0 2.5
x1

2

0

2

x
2

0.0

0.5

p
(x

2
)

0.0 0.5
p(x1)

(b) Gaussian varying standard deviations
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(c) Diagonal versus uniform
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Figure 7: Illustration of two-dimensional version of all datasets
tested. Red and blue show the different distribution members.

Results
• We test ddKS by calculating the minimum sample size
to correctly reject H0 given the default parameters of
each dataset.

• We compare this to the KL divergence, the
Hotelling’s T2 test and the one-dimensional KS test
(fig. 8).

• We also compare the three ddKS accelerated compu-
tation methods, ddKS, vdKS and rdKS (fig. 9).
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Figure 8: ddKS vs. other
test statistics. Samples required
to reject H0 (shown radially, log
scale) for each dataset around cir-
cumference (closer to center is
better). ddKS reliably shows low
sample sizes; other methods fail
on one or more datasets.
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Figure 9: ddKS vs. vdKS vs.
rdKS Samples required to reject
H0 (shown radially, log scale) for
each dataset around circumfer-
ence (closer to center is better).
All xdKS methods show similar
performance: able to discrim-
inate all datasets investigated
with small sample sizes.

Belle II application

• The Belle II TOP detector consists of 16 quartz
bars centered around the beam pipe to measure
Cherenkov photons created by crossing particles for
particle identification. [4]

• Current TOP Monte Carlo simulation (Geant4) is
largest time contribution to overall Belle II detector
simulation. Any faster surrogate models must be val-
idated against this.

• Both photon and particle identification uncertainty
can be analysed with ddKS.

• Behavior of photon detection values is difficult to
learn by a fast simulation. ddKS can be used as an
evaluation metric.

• A fast analytical calcula-
tion is being developed,
taking (78.9 ± 6.9) ns

photon,
2000× faster than Monte
Carlo ((142.1± 8.1) µs

photon).

• ddKS shows significant
differences D > 0.7 be-
tween faster surrogate
model and Monte Carlo
(repeated simulations
give D < 0.05). Figure 10: Surrogate versus

monte carlo simulated photons
for a predefined ~x and ~p

• ddKS can also be used to profile distribution changes
as a function of input parameters, locating interesting
regions in phase space.

• Figure 11 shows large distribution differences as ϑ and
ψ change, indicating the importance of initial angle on
final detection pixel and time.
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Figure 11: ddKS distances of photon detection values. Photons are
generated starting at the same origin, with momentum in the angle
interval ϑ = 20.7◦± 10◦ and ψ = 291.6◦± 10◦. Detection values of every
point in the ϑ-ψ grid are compared with ddKS to those of the origin
marked by the red x (100 photons per point). [5]

Conclusions and Applications

• In general, we have shown ddKS to be a useful test statistic for high dimensional data, out-performing one
dimensional metrics and KL divergence on the scientific data sets explored.

• ddKS is a metric, which suggests its use as a loss function for high dimensional data problems - in particular in
scientific applications.

• Surrogate modeling (replacing computational expensive simulators of scientific data with ML solutions) is grow-
ing in popularity. ddKS is useful as uncertainty quantification or a loss function for these surrogate models.

• ddKS could place statistical significance on predictions from other ML applications with high dimensional latent
spaces.
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