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Abstract
Shadow evaporation is commonly used to micro-fabricate the key element of superconducting
qubits—the Josephson junction. However, in conventional two-angle deposition circuit
topology, unwanted stray Josephson junctions are created which contribute to dielectric loss. So
far, this could be avoided by shorting the stray junctions with a so-called bandage layer
deposited in an additional lithography step, which may further contaminate the chip surface.
Here, we present an improved shadow evaporation technique allowing one to fabricate
sub-micrometer-sized Josephson junctions together with bandage layers in a single lithography
step. We also show that junction aging is significantly reduced when junction electrodes are
passivated in an oxygen atmosphere directly after deposition.

Supplementary material for this article is available online
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(Some figures may appear in colour only in the online journal)

In superconducting quantum processors, qubits ar.e realized
with non-linear resonators formed by capacitively or induct-
ively shunted Josephson tunnel junctions [1, 2]. It is com-
monly understood that dielectric loss in insulation layers and
tunnel junction barriers contributes strongly to energy relax-
ation [3]. Even without deposited dielectrics, surface oxides
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and contamination at electrode interfaces are major limiting
factors for qubit coherence [4–7].

Qubits require submicrometer-sized Josephson junctions
to enhance the circuit’s non-linearity, and to minimize the
amount of lossy dielectric in the junction’s tunnel barri-
ers [3, 9]. Usually, such junctions are made using electron-
beam patterning of photoresist to form a Dolan-bridge
[10, 11], an intersection of narrow trenches [12–14], or asym-
metric undercuts [15]. The shadow cast by these structures
when metal is evaporated from two different angles then
defines the junction area. After the junction’s bottom electrode
has been deposited, it is oxidized to form the tunnel barrier,
and capped by the top electrode in the second evaporation step.
Typically, submicrometer-sized junctions are fabricated on top
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Figure 1. (a) Sketch of the double resist mask (developed in cold 2-Propanol [8]), and the Dolan bridge (see inset) for the fabrication of
in-situ bandaged Josephson junctions. For clarity, the resist mask is not shown in the following sketches. (b) The Josephson junction (dashed
rectangle) is created after deposition of a first (red) and second (blue) Al layers at tilted angles (see inset) and an intermediate oxidation
which forms the tunnel barrier. Note that no material is deposited in the bottom of the side-trenches visible in (a). (c) Without breaking the
vacuum, the aluminum oxide is cleaned from the qubit electrodes (gray) and the junction films by argon ion milling, and a bandage film is
deposited perpendicularly to the wafer. The inset shows a cross-section of the junction layers (not to scale) along the red dashed line. (d)
The exploded view reveals the chain of galvanic contacts which interconnects the qubit electrodes through the Josephson contact. (e)
Electron-microscopy image of a DC-SQUID consisting of two in-situ bandaged Josephson junctions, connected to the electrodes of a
transmon qubit.

of pre-patterned larger circuit structures such as shunt capacit-
ors, which are made with faster UV-optical lithography [16].

Since the electrodes of the qubit’s shunt capacitor are also
oxidized during tunnel barrier formation, they are connected
to the junction’s top electrode through unwanted additional,
so-called ‘stray’ junctions. The contribution of stray junctions
to the qubit Hamiltonian is made negligible when they are
much larger than the qubit junctions [17]. Increasing the area
of the stray junction also reduces the ac-voltage drop across
them and thus limits dielectric loss due to structural defects
in their tunnel barriers [18]. Nevertheless, even large stray
junctions may still contribute significantly to decoherence
[19].

Improved qubit coherence is obtained when stray junctions
are shorted using so-called bandages that are deposited in a
successive lithography step [5]. However, this requires addi-
tional lithography which consumes time and carries the risk
of introducing further contamination.

Here, we describe an improved shadow-evaporation
technique to fabricate sub-micrometer-sized Dolan bridge
Josephson junctions together with bandage layers in a single
lithography step by using three-angle evaporation. After junc-
tion formation, an argon milling plasma [20] is applied in-situ
prior to bandage deposition. Importantly, due to the anisotropy
of the remote argon plasma, the sub-micrometer Josephson
junction is protected in the shadow of the resist mask from
damage due to impacting ions. In addition, we observe that
junction aging, i.e. the drift of normal-state resistance or super-
conducting critical current, is significantly reduced when the
junction electrodes and the bandage layers are oxidized in a
controlled atmosphere directly after their deposition.

We note that a similar bandaging technique has recently
been developed independently by Osman et al and demon-
strated for Manhattan-style Josephson junctions [21].

Figure 1(a) shows the double resist mask used to form
in-situ bandaged Josephson junctions (ISBJ). The Dolan
bridge highlighted in green defines the junction area, under-
neath of which the two Al-electrodes evaporated from ±24◦

angles are overlapping, see figure 1(b). Before the second
deposition, the bottom electrode is oxidized in a static pres-
sure of 15 mBar for 180 s to form the tunnel barrier. Note
that the narrow side trenches are oriented perpendicular to
the evaporation direction of the junction electrodes, so that
the underlying qubit electrodes (gray) are not exposed as
shown in figure 1(b) where the mask has been omitted for
clarity.

Next, ion-milling is applied in the same vacuum chamber
to sputter the oxide from the Al films. Finally, the bandage is
deposited (yellow in figure 1(c)) perpendicularly to the sub-
strate to create a galvanic contact between junction layers and
the qubit electrodes through the side trenches. The contact
areas and the Josephson contact are indicated in the legend
of the exploded view shown in the right panel of figure 1(c).
The Dolan bridge protects the junction from the argon milling
and from being shorted by the bandage. An image of a dc-
SQUID fabricated on sapphire, which consists of two ISBJs,
is shown in figure 1(e). See supplementary materials wich con-
tain a detailled recipe for the here-studied ISBJs.

Note that the bandage spans possible discontinuities of the
junction electrodes at the film edges of the qubit electrodes,
which are marked in the inset of figure 1(c) by gray arrows.
This simplifies the electrode geometry since no basewire
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Figure 2. (a) Resistance change of in-situ bandaged Josephson junctions after thermal annealing (10 min at 200◦C in air). Type B junctions
were oxidized in-situ after bandaging, while type C junctions were additionally oxidized after junction deposition (10 min at 30 mBar O2).
Wafers 4 and 5 were cleaved in two after mask development. (b) Resistance change after storage for three weeks at ambient conditions.
Type A junctions were not tested. (c) Overview of oxidation steps applied to each junction type, and their resistance change after annealing
and storage.

hooks [5] are required which are commonly used to avoid film
interruptions.

The critical current density of the junctions is calibrated
from measurements of their normal resistance Rn at room
temperature via the empirical relation Et = Em(Rt/Rn)

2.5 [22]
where Em is the static oxidation exposure (mBar·s) during
tunnel barrier formation, Rt is the target normal resistance,
and Et the adjusted oxygen exposure. However, the junction
resistance typically shows temporal drift, known as junction
aging [23]. To explain aging, it was suggested that the tun-
nel barrier might incorporate aluminum hydrates [24], where
the OH−-group may stem from organic resist residuals [25] or
from water dissociation at the aluminum oxide interface [6]. It
has also been shown that better long-term stability is obtained
when junctions are annealed at a few hundred ◦C temperat-
ure in vacuum [23], which was explained by dissociation of
aluminum hydrates [24].

We monitored the stability of 500 in-situ bandaged junc-
tions (yield > 96%) by measuring their normal resistance Rn
directly after fabrication and after annealing for 10 min at
200◦C in air. Junctions fabricated as described above (type A
junctions) showed a resistance drop of (42± 2)% after anneal-
ing. This might be due to contamination of the junction barrier
by resist re-deposition during argon ion milling, and during
lift-off in liquid stripper.

The resistance drop after junction annealing was reduced
to (29± 2)% when the junctions were additionally oxidized
in-situ after bandaging (type B junctions). Strongest improve-
ment was observed when an additional oxidation step was
applied between junction formation and subsequent argon
ion milling (‘protective oxidation’, type C junctions), which
reduced the resistance drop to (6± 3)%. We speculate that the
thicker aluminum oxide may hinder contaminants from dif-
fusing towards the tunnel barrier. Figure 2(a) summarizes the
statistics of our observations for the three junction types.

The protective oxidation of junction electrodes also
improves the long-term stability during storage. After three
weeks at ambient conditions (stored in a laboratory drawer),
the resistance of type B junctions increased by (24± 6)%,
while type C junctions showed an increase of (3± 3)% (see
figure 2(b)).

Figure 3. (a) Histograms of energy relaxation time T1 and Ramsey
dephasing time T2 recorded over several hours (the duration is
indicated in each histogram label), with two out of three qubits from
a same qubit chip. Qubit three was tuned far away from the
transmon sweet spot due to trapped vortices. (b) T1 records vs. time
which result in the histogram for qubit No. 1 in the panel above. We
recognize that the qubit experienced strong coherence fluctuations
in the last three hours of records, most probably due to coupling to
some charged tunneling defects [26, 27].

To test the suitability of in-situ bandaged Josephson junc-
tions for quantum bits, we used them to fabricate Xmon-type
transmon qubits [16, 28]. These had charge and Josephson
energies designed to EC ∼ 200 MHz and EJ ∼ 20 GHz,
respectively. We monitored their energy relaxation times T1

at qubit resonance frequencies of about 6 GHz during several
hours to account for temporal fluctuations due to the interfer-
ence with material defects [29, 30]. Figure 3(a) shows his-
tograms of T1 for two tested samples. The obtained average
T1 times were very similar than those we obtained on sim-
ilarly designed qubits [31] that were fabricated either with
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classical shadow junctions [10, 11] or cross-type junctions
[13, 32]. Thus, ISBJs did not generate identifiable excess
dielectric loss. Figure 3(b) contains the time evolution of
T1 of qubit No. 1, showing strong fluctuations during the
last hours of measurement. This is a common issue that is
explained by resonance frequency fluctuations of strongly
interacting tunneling defects residing on qubit electrodes
[26, 27].

We conclude that the presented technique is applicable for
fabrication of coherent qubits that are free of stray Josephson
junctions, and it works reliably and economizes one litho-
graphy step. The reportedmethod also preserves the advantage
of conventional bandaging [5] where the interface of junction
films to the substrate was not harmed by argon ion milling, and
it is slightly simpler than the in-situ bandaging technique [21]
based on Manhattan-style junctions [12], as it requires a
uniaxial wafer tilt for shadow evaporation. Moreover, we
observed that the changes of junction resistance induced by
thermal annealing and by long-term storage are significantly
reduced by adding oxidation steps after junction and bandage
layer depositions.

These results offer improvements in the fabrication of
stable and contamination-free Josephson junctions as required
by quantum-limited parametric amplifiers [33, 34] and super-
conducting quantum processors. The in-situ bandaging tech-
nique to avoid parasitic tunnel barriers can also facilitate
the deposition of multi-material stacks, e.g. to fabricate
superconductor-ferromagnet junctions which have applica-
tions in spintronics [35] and superconducting logic cir-
cuits [36]. It is also suitable for so-called cross junctions whose
bottom layer is deposited separately [9, 13], where the top
and bandaging layers can be deposited under distinct wafer
orientations.
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