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Abstract 
To realize autonomous production machines it is necessary that machines are able to automatically and autonomously 
predict their condition. Although many classical as well as Deep Learning based approaches have shown the ability to 
classify faults, so far there are no approaches that go beyond the basic detection of faults. A complete, image based 
predictive maintenance approach for machine tool components has to the best of our knowledge not been investigated 
so far. In this paper it is shown how defects on a Ball Screw Drive (BSD) can be automatically detected by using a machine 
learning based detection module, quantified by using an intelligent defect quantification module and finally forecasted 
by a prognosis module in a combined approach. To optimize the presented method, it is shown how existing domain 
knowledge can be formalized in an expert system and combined with the predictions of the machine learning model to 
aid quality of the prediction system. This enables the practitioner to forecast the severity of failures on BSD and prevent 
machine breakdowns. The work is intended to set new accents for the development of practical predictive maintenance 
systems and bridging the fields of machine learning and production engineering. The code is available under: https://​
github.​com/​2Obe/​Pitti​ng_​Pred_​Maint​enance.

Keywords  Condition monitoring · Predictive maintenance · Machine vision · Machine learning · Object detection · Wear 
of machine tool

1  Introduction

In the course of the Industrial Internet of Things (IIoT), fully 
automated machines are becoming increasingly important 
[10]. One of the main goals of IIoT is to realize batch size 
one through a fully automated production [17]. Unexpected 
machine failures can cause massive delays in the supply 
chain in just-in-time production and reduce the overall 
equipment effectiveness of machines. To act with mainte-
nance measures before the failure of a machine occurs, it is 
necessary to predict failures on machine tool components at 
an early stage. The goal of condition monitoring systems is 
to record the current condition of a machine. Subsequently, 

conclusions are drawn from the data obtained to forecast 
failures and predict the remaining time till maintenance is 
needed, also known as predictive maintenance (Wickern 
2019). Enabling machines to find defects by themselves and 
make decisions regarding their wear condition is an enabler 
to find the sweet spot to maximize the overall equipment 
effectiveness without the risk of sudden and unforeseen 
machine breakage due to worn parts [17]. The automation 
of the maintenance process consists of two critical steps 
where the first step is to accurately detect failures respec-
tively evaluate the actual health of a component. In the 
second step, the current condition has to be forecasted to 
plan maintenance operations in time. The authors show the 
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implementation of a novel autonomous and vision-based 
condition monitoring system using the example of the ball 
screw drive (BSD) to then forecast the current failure state 
using an automatic regression approach. The BSD is chosen 
as a component since the BSD is one of the most important 
machine tool components in various industries and studies 
showed that the BSD is one of the main responsible com-
ponents for machine tool failures [31]. The rolling elements 
cause material fatigue on the spindle over time which finally 
results in small breakouts on the spindle’s surface called pit-
ting (Fig. 1). These breakouts could also happen on the roll-
ing elements as well, though this will lead to defects on the 
spindle later on. Surface defects indicate wear but do not 
lead to a sudden machine breakdown [18] which was further 
validated in life time experiments described later on. 

Though, after a sufficient operation time has passed, 
these pittings influence the performance and finally can 
lead to the breakdown of a machine. The progress of these 
failures depends on various conditions such as the load, 
contaminations as well as the lubrication strategy [11]. It 
has been shown that the actual lifetime of the BSD can 
vary largely from the nominal lifetime [26, 33]. For this 
reason, a universal definition over all industries of fixed 
time limits for the replacement of the BSD is not appro-
priate and has to be defined by the users based on the 
acceptable wear for a specific process. This makes the ball 
screw drive a perfect example for condition monitoring 
and predictive maintenance. In the here presented work, 
the authors describe an approach with which image data 
obtained from a camera system as described in [30] can 
be automatically examined for the occurrence of pittings. 
The size of the pittings is extracted and predicted using a 
regression-based wear forecaster (Fig. 2). Depending on 
the user’s definition of permissible wear on the compo-
nent, the BSD can be replaced in time before the mechanic 
breakdown of the component.

As the main contribution of this paper, the authors pro-
vide a novel, vision-based end to end predictive mainte-
nance system from the detection of the failures over the 
quantification of the size to the prognosis of the future 
failure severity.

The paper is structured as follows: In section two, an 
overview on condition monitoring and predictive main-
tenance systems is given where the focus lies on vision-
based systems in the context of machine tools. The third 
section describes the own approach where the authors 
start by giving an overview and describing the data used 
for model building. Next, the proposed predictive main-
tenance system, together with its sub-components, is 
described. The authors elaborate the pipeline and show 
the results of the sub-components in direct connection. 
The fourth section contains a validation section where 
the model is validated on new data. The fifth section 
concludes the paper and states open research questions 
before it ends with an acknowledgement.

2 � Related work

The field of condition monitoring and predictive mainte-
nance in the industry is vast which is why the authors want 
to give a quick overview and further concentrate on the 
field of machine learning based vision systems to moni-
tor metallic surfaces. Second, the focus should be laid on 
prognostic systems predicting the progress of failures for 
predictive maintenance purposes.

Approaches trying to monitor the current state of 
machines, tools and machine tool components often 
use the signals of motor current, vibration, tempera-
ture and acoustic emission. Exhaustive reviews can be 
found in [13, 15, 25, 36]. Most of the former approaches 
use a mixture of classical signal processing techniques, 
where the more recent approaches combine the signal 
processing techniques with machine learning and deep 
learning approaches. The field of vision-based condi-
tion monitoring techniques is smaller and in the field 
of machine tools mainly focused on monitoring the 
wear of cutting tools. [22] implement a new automatic 
machine learning setup where they remedy the tedi-
ous task of hyper-parameter set up for machine learn-
ing systems by applying amongst other, different data 
augmentation techniques to build robust classifiers for 

Fig. 1   Examples of pittings on the spindle. All images have the 
same original size and ration hence the scale bar and the ratios are 
easily transferable to all other images
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Fig. 2   Defect Size Prediction of different candidate functions
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the detection of wear on cutting tools. [38] use classical 
CNNs to predict the wear on classical cutting tools. [34] 
try to visualize the condition of a machine by applying 
machine learning techniques and creating heat maps 
from the machine components to indicate noticeable 
areas. [16] for instance, follow a similar approach by 
combining thermal images of motors and machines with 
deep convolutional neural networks to predict failures 
for instance in bearings which result in an anomal tem-
perature increase in specific parts of the component. [24] 
use a hybrid approach to detect wear on cutting tools 
by combining a threshold-based approach as kind of a 
first filter with a neural network which is then trained 
on the processed pixels. [3] use a quasi-real-time CNN-
based approach to detect different types of damages on 
different metallic and concrete surfaces. [29] combine 
a vision based convolutional neural network approach 
with the physical knowledge of wear progression on 
roller bearings to detect failures. Other approaches focus 
on detecting defects on metallic surfaces, not necessarily 
in the context of machine tools. [8] use an indirect but 
reliable process of measuring tool wear by evaluating the 
surface quality of the produced products. [20] present 
an automatic climbing robot prepared with a machine 
vision system to automatically climb bridge structures 
and detect cracks. [7] use processed Shearlets to classify 
textures like they could also be observed on technical 
surfaces like steel, concrete, wood or fabric. [4] use a so-
called quantile net to detect different defects on metal-
lic surfaces. [12] present a somewhat earlier approach 
for the detection of defects on hot-rolled steel products 
which represents a better studied subfield for automatic 
flaw detection on metallic surfaces. A newer approach 
where the promising architecture of Siamese-networks, 
like it is used by the authors in (Schlagenhauf et  al. 
2020), is used to classify surface defects, can be found 
in [5]. Here [5] use an data efficient one-shot learning 
approach to recognize manufacturing defects on steel 
surfaces. [21] present a general review on the subfield 
of defect recognition on steel products, hot- and cold-
rolled steel strips. Another interesting approach which 
implements deep learning techniques for the detection 
of defects on the NEU dataset [32] can be found in [14] 
where they use convolutional neural networks to pro-
duce features which are then combined in multilevel 
feature fusion networks. A somewhat older, general 
review of vision-based approaches to detect defects on 
steel surfaces can be found in [27]. Though, the field of 
vision-based condition monitoring specifically for the 
supervision of machine tools and machine tool com-
ponents is rare. Related approaches like on rail surfaces 
[9] and concrete structures [19] implementing similar 
machine learning based techniques as for the detection 

of defects on metallic surfaces with the entitled goal for 
specifically monitoring the condition of the mentioned 
structures are rare examples in the literature. Based on 
the recognition of an anomaly in the operating behav-
iour of a machine tool, not only limited to vision-based 
approaches, the literature shows some works which try 
to forecast the detected signal to implement some sort of 
predictive maintenance. [23] present an approach based 
on a vibro-diagnostic model for predictive maintenance 
of rotary machines. [6] present a machine learning based 
approach to classify the vibration signal of a machine into 
normal or anomalous. [2] provide a systematic literature 
review on the field of machine learning methods applied 
for predictive maintenance.

It is notable that many approaches use the terminol-
ogy of predictive maintenance though strictly speaking 
they are condition monitoring systems since they solely 
decide if a machine or a machine tool is working properly 
or not. The necessary part of prediction into the future is 
often not clear. Hence, it can be summarized that there 
are limited end to end predictive maintenance systems 
in general, and no systems which operate on the image 
based surface characteristics of a failure on metallic sur-
faces in general and on BSD in specific – implementing 
Machine Learning techniques. The reason for this can be 
found in the fact that building such models necessitates 
proper datasets showing the evolution of defects, which 
are, to the best of the author’s knowledge, not available 
so far.

3 � Own approach and results

This section describes the different modules of the BSD 
predictive maintenance system which are depicted in 
Fig. 3. The first part is the raw data, generated in lifetime 
experiments using the camera system described in [30]. 
The generated dataset has the specific property that it 
shows a continuous progression of failures and hence 
depicts the whole wear history from the start of opera-
tion until the mechanical breakdown of the component. 
On this dataset a so called Pitting Detection model is 
build which is able to return a bounding box approxi-
mating the size of a defect. This result can be further 
refined by using a new approach for the calculation of 
the defect area based on a combination of a classical 
threshold-based method in combination with a convo-
lutional neural network (CNN) predicting the threshold 
for the calculation of the area with the threshold model. 
The extracted failure area is then processed in a forecast-
ing module which is trained on historical defect data. The 
model can finally be used to predict the future area of the 
size of new failures. 
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Fig. 5   Process of generating Training Data from original camera 
images. The images show different conditions with respect to light-
ing and pollution
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Fig. 4   Main components of the camera system used to generate 
the training data as described in [30]

3.1 � Data set

Using a BSD test bench to artificially wear ball screw drives, 
the authors generated images of pittings in a temporal 
relationship. Early images show no or only small pittings 
which then grow over time until the component fails. 
A progression of pittings is depicted in Fig. 14. As stop-
ping criteria for the experiments the authors defined the 
mechanical breakdown of the system. During the experi-
ments the authors mounted a camera system as described 
in detail in [30] close to the nut of the ball screw drive such 
that the system looks radially onto the spindle and returns 
images of the surface of the spindle. The experimental 
setup is depicted in Fig. 4.

Every four hours the whole spindle is scanned by the 
system. The experiments are undertaken with an axial 
load of ~ 14kN. The external conditions can be regarded 
as being similar to an industrial environment since no 
special protection measures were taken during the experi-
ments and pollutions as well as lubricants are show on the 

spindle.The BSD-Nuts are prepared with standard wipers. 
Due to [31] changing the axial load does not influence the 
way a surface defect grows (the growth function is the 
same) but only influences the speed of growth.

The camera has a resolution of 2592 × 1944 Pixels and 
an LED lighting is used. Because of the kinematics of the 
BSD, the whole raceway passes the camera lens and the 
author’s crop images of the size of 190 × 190 pixels auto-
matically from the larger images. This setup can be eas-
ily adjusted to specific needs. This process is depicted 
together with exemplary images used for training in 
Fig. 5. The authors extracted in total 230 images where 
60 images are put apart for testing the model and a 70/30 
split of the remaining images is used for training and vali-
dation of the defect detection model. For the training of 
the threshold prediction model, which is described later 
on in more detail, the authors used 600 images from the 
same data source but without drawing bounding boxes 
around the defects. There is an intersection between the 
sets, but this does not influence the results since the mod-
els are distinct. These images are divided into 6 lighting 

Raw Data Pitting Detection Area Calculation Forecasting Module

ExpertSystem

Fig. 3   Pipeline to forecast the progression of a failure. From the raw 
data the detection module first detects the failure in the image. 
This region is then passed to the area calculation module which 

calculates the size of the defect which is then used together with 
its progression history in a forecasting module to predict the future 
size of the defect
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categories for the threshold prediction. A 70/30 train, vali-
dation split is used for model training.

3.2 � Defect detection

To be able to predict the evolution of the size of defects, 
first the defects must be located in the image. The Ten-
sorFlow Object Detection API is used to set up the object 
detection model. As a pre-trained model, the EfficientDet 
D01 512 × 512, pre-trained on the COCO dataset, is used. 
EfficientDet employs EfficientNet as a backbone network 
which is pre-trained on the ImageNet data set. As a fea-
tured network serves the weighted bi-directional feature 
pyramid network (BiFPN) (Tan et al. 2020). For the object 
detection part, the last layer of the pre-trained model is 
fine-tuned on the 120 images of pittings. The convolu-
tional base is not changed. The model is trained using a 
NVIDIA Tesla T4 hardware for 2000 epochs.

If an image with pitting is passed through the model, 
the model detects the pitting and outlines the pitting with 
a bounding box as depicted in Fig. 6. The system yields a 
validation accuracy of 92%. These bounding boxes serve 
as Region of Interest for the following threshold model. As 
a result, this model could be used as a standalone model 
for the forecasting step in case that the approximate size 
of a pitting is sufficient.

By passing on only the content of the bounding box, 
this area then contains fewer disturbing factors, and the 
contour of the pitting can be determined more reliably. 

During the detection step, it could happen that the model 
cannot find an object in a specific image. In that case, it has 
to be differentiated if the model has detected a pitting at 
an earlier point in time. If this is the case, by domain knowl-
edge, it is known that there has to be a pitting why it helps 
use a slightly larger bounding box as used on the same 
position at t − 1. This is beneficial because it is not possi-
ble that the failure has shrunken or disappeared entirely. 
To summarize: If there is a bounding box in step t, there 
has to be one in step t + 1. This expert behaviour based on 
domain knowledge is implemented by the expert system 
described later on. The authors provided the model with 
60 additional test images containing defects of different 
sizes to validate the detection model. Figure 7 shows the 
distribution of defects together with the information if 
the pitting was detected correctly (the whole pitting lies 
within the bounding box) or not. All pittings corrrectly 
detected by the object detection model are depicted 
in green. The defects marked in blue are the pittings for 
which no bounding box was found. The model accurately 
detects most defects and only misses some small pittings. 
Figure 8 shows examples for which the model failed to 
detect the failures. However, since the goal is to use the 
bounding box as a region of interest for the next step, it 
is possible, as already mentioned, to use the previously 
found bounding box of t − 1 on the same position and 
assume that there must be a pitting.

Fig. 6   Surface defects in different sizes detected by the Pitting 
detection model

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

2,00

0,00 0,50 1,00 1,50 2,00 2,50 3,00

v
er
ti
ca
l
sp
re
ad

in
m
m

horizontal spread in mm

Pitting-Size

detected

not detected

Fig. 7   Detection of Pittings of different sizes over the spread of the 
pittings in horizontal and vertical direction. Green means that ta 
pitting was detected and blue that it was not detected

Fig. 8   Mainly very small Pittings from the test dataset not detected 
by the model

1  For model details and further information visit the model repo: 
https://​github.​com/​tenso​rflow/​models/​tree/​master/​resea​rch/​
object_​detec​tion.

https://github.com/tensorflow/models/tree/master/research/object_detection
https://github.com/tensorflow/models/tree/master/research/object_detection
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Fig. 10   Visualization of different thresholds applied to different 
images and comparison to the predicted threshold value (right 
side)

3.3 � Threshold prediction

Processing the regions inside the found bounding boxes, 
the goal of the threshold prediction model is to find 
an appropriate threshold such that the failure can be 
extracted as precisely as possible. To extract the failure, 
the authors use a classical threshold-based (findcontours) 
approach provided by the OpenCV foundation [1].

The algorithm yields the best results in a binary image 
since there the regions are maximally distinguishable. 
Hence the goal is to process the image into a black and 
white image separating the failure area. Since of the 
diversity of the BSD images there is no unique appropri-
ate global threshold value for all images. The threshold 
value is an integer in the range [0,…,255] marking the 
border below which all values are set to 0, and all values 
above are set to 255. Experiments show that also auto-
matic global and local threshold finding algorithms such 
as the method of Otsu, which is a widely used algorithm to 
find the global threshold automatically [28] did not work 
properly as depicted in Fig. 9. 

The method of Otsu works especially with bimodal 
images by choosing the threshold as a point between 
the modes. This is not applicable in the here presented 
case since the images are not bimodal and the modes are 
changing over images. In the here presented approach, 
the authors trained a CNN model to classify images into 
their appropriate threshold values. The basic idea of this 
approach is to determine the value of a parameter, which 
is otherwise calculated by statistical methods such as a 
mean value method, with the help of a CNN. This method 
could be used in other areas where model parameters 
are to be determined as well. An example could be 
simulations where models must be parametrized based 
on some raw input data. Especially when it is difficult 
to determine an appropriate set of values in advance 
and finding a value is done by trial and error, the here 
presented approach can aid to accelerate the process 
of finding appropriate parameter values. The authors 

used a total amount of 600 images in a 70/30 train, vali-
dation split. The images used to train the CNN model 
are divided into six classes for six different background 
conditions resulting in six threshold values. The six back-
ground conditions are labelled by the authors based on 
different lighting and pollution conditions which have in 
turn influence on the threshold. Different conditions are 
shown e.g. in Fig. 5 above. For example, images taken on 
a spindle that is already worn often have a much darker 
background because dirt particles, discolored lubricant 
and wear particles showing on the spindle. It turned 
out that six classes are sufficiently fine-grained, more 
classes does not aid the model. As threshold values, the 
authors defined the values 35, 40, 45, 52, 62, 72. With 
these thresholds, all contours could be satisfactorily rep-
resented. Figure 10 shows the labelling process where all 
threshold values are applied to all images and the most 
sufficient threshold value is chosen.

It can be clearly seen that for each image, a different 
threshold value is needed for optimal contour recogni-
tion. A box surrounds the best value in each case. This 
process can be understood as labelling images with use-
ful thresholds.

In the next step, the authors trained a CNN model by 
using the images together with the threshold labels. The 
CNN model is a manually build model with 4 convolu-
tional layers and 2 × 2 max pooling operation following 
each convolutional layer. The convolutional base is fol-
lowed by two fully connected layers with 64 neurons 
each. Relu activation is used in all convolutional and 
dense layers. The dense layers are followed by 0.1 drop-
out layers. The final layer consists of six neurons apply-
ing softmax activation. The used optimizer is Adam, with 
a learning rate of 0.0001. The training was done using 
NVIDIA Tesla T4 hardware for 1000 epochs.

The authors achieved a validation accuracy of 92% 
which shows that the model can accurately predict the 
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Fig. 9   Comparison between the Otsu Algorithm for finding thresh-
olds with the proposed threshold prediction approach
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best-suited threshold value. In advance to applying the 
method, the authors implemented a four-step image 
pre-processing to aid the segmentation results. The four 
conducted steps are Thresholding, Invert Bitwise, Mor-
phological Dilation and Morphological Erosion (Fig. 11).  

3.4 � Expert system

Once the area of a failure is calculated, it could be used 
in the forecasting model to predict the expected failure 
size. As mentioned above, there is usually some valuable 
domain knowledge about the failure’s visual characteris-
tics as well as the wear mechanisms in technical domains, 
which could aid the machine learning approach. This is 
true for many areas where substantial domain knowl-
edge is available. By intelligently combining the domain 

knowledge with Machine Learning systems, the intelligent 
systems could be improved by the human experts intro-
ducing information not easily learnable from the available 
data (expert system). One example is the fact that a defect 
on the spindle cannot shrink over time, but only grow 
larger. It is important to mention that the knowledge base 
for the expert system is implicitly available encoded in the 
experience of the expert and is available with zero addi-
tional data points. This means that because it is already 
existing, task is to properly formulate and implement 
the expert knowledge in an algorithm to support data 
driven approaches. In the here presented case, a strong 
characteristic of the pitting is e.g. that it has sharp corners 
and a somewhat darker colour than the surroundings. 
This knowledge was not explicitly formulated above but 
implicitly used by the contour finding algorithm to find the 
borders of the failures. With the above described steps, it 
is possible to measure the size of a pitting very accurately, 
but due to oil or pollution on the ball screw, the appear-
ance of the pitting area can vary. In these cases, the cal-
culated pitting area would deviate from reality. Figure 12 
opposes the predicted progression of pitting (Quantifica-
tion) to the results implementing the expert system and 
the ground truth data over 28 timesteps after the first pit-
ting has been observed. The y-axis represents the pitting’s 
size in connection with the respective time steps (x-axis). 
The blue data series reflects the ground truth data whilst 
the grey data series represents the values measured by the 
model without the implementation of the expert system. 
The green line represents the results after implement-
ing the expert system. To make the prediction process 
more clear, predictions are made in a successive manner 
like it would be applied in reality during different steps 

Thresholding Invert

Bitwise

Morphological

Dilation

Morphological

Erosion

Calculate Area

Fig. 11   Data pre-processing pipeline to calculate the defect area

Fig. 12   Comparison of ground truth failure progression to the prediction of the applied expert system. Progression from a to h
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in time. For each step, a linear regression model (purple 
line) trained on the data already processed by the expert 
system is added.

It can be seen how the model without expert system 
(grey) matches the ground truth data (blue) at the begin-
ning. However, there are some strong outliers in later time 
steps. Additionally, it can be seen that the model partly 
overestimates the size of pitting in later time steps and 
also predicts smaller sizes for later timesteps. Though by 
domain knowledge, it is known that this effect of decreas-
ing pitting sizes is not possible. Hence, either the model 
has overestimated the size of a pitting in earlier timesteps 
or underestimates its size. To address this issue, domain 
knowledge is introduced by applying a two-step algorithm 
represented by the green line. As a baseline for the expert 
system, three possible cases are discussed.

First, the area in time step t + 1 is slightly larger than 
the area in time step t. In this case, the proposed value 
is valid. Second, the area in time step t + 1 is dispropor-
tionately large which may cause from severe pollutions 
on the surface. In this case, the average of the defect size 
in time step t + 1 and the defect size in time steps t and 
t − 1 is calculated and used as the predicted size. In this 
way, rough outliers are averaged which yields a smoother 
curve. Third, the area in t + 1 is smaller than in time step 
t, which is impossible. In this case, the pitting size at t + 1 
is predicted as the size in t and hence remains the same.

Therefore, the expert system as the last step of the 
pipeline compensates for erroneous measurements in the 
previous steps and results in a more accurate prediction 
model which shows that implementing the expert system 
aids the prediction.

3.5 � Forecasting function

The linear regression fitted to the data above seems to 
fit the data well. To double-check this assumption, the 
authors fitted a set of functions to the data to measure 
their root mean squared error (RMSE) between the predic-
tions and the ground truth data. As functions the authors 
chose the linear regression, a second and a third order pol-
ynomial and an exponential function. As a base method 
for determining the forecasting quality, the classical RMSE 
is used with:

where ât+jx  is the size predicted by the expert sys-
tem j timesteps ahead of t  and at+jx  is the ground truth 
value at the same time step. Hence the sum of the dis-
tances between all predicted and ground truth points is 

E =
1

J

J
∑

j=1

√

(â
t+j
x − a

t+j
x )

2

measured. The closer the predicted values match the true 
values, the better the function fits the data.

The issue here is that this only gives a measure on 
already observed points which is not appropriate in prac-
tice since the higher the polynomial the better the func-
tion will fit the data. A polynomial with degree n can match 
n data points with E = 0 though this function will probably 
not be a good estimator for future points. The goal is not 
to have a function which is precise on already observed 
points but on future points. Hence the model is created 
on points up to timestep t  and the prediction precision is 
measured on all points j in the future.

From a practical point of view, predictions that are cor-
rect in the very near future and predictions that are correct 
in the very far future are less important than middle-term 
predictions. This is the case because to maintain a com-
ponent in time, it is necessary to look some time ahead, 
which covers the needed time for the preparations for 
maintenance. Hence, it is of little value to have a model 
which is very accurate for the very near future but fails in 
the middle and long term future since then the time to 
plan the maintenance is not sufficient. The same is true for 
predictions very far in the future because the preparations 
for maintenance take some time p and if the prediction 
horizon is much greater than p this is of little extra value 
since it will not change the planning behaviour. Hence, 
there is a middle-term “sweet spot” in which a model 
should be as accurate as possible. The selection of this 
“sweet spot” horizon changes for different companies and 
processes. To implement this behaviour the formulation of 
the RMSE is extended to incorporate a time component:

where � is a parameter for how far in the future the highest 
attention is laid. � should be odd for mathematical con-
venience. The authors chose � as 7. The function f (j) is cho-

sen as a bell-shaped function with f (j) = e
−0.15∗(

(

ceil
(

�

2

)

−j
)2

) 
where ceil(.) means that the resulting float is rounded up 
to the next integer which is 4 in that case. The function f (j) 
is symmetric and takes its maximum value of 1 at j = 4 and 
smaller values for j > ceil

(

𝛼

2

)

 and j < ceil
(

𝛼

2

)

 . Hence the 

resulting RMSE is weighted and the value which lays 4 time 
steps in the future receives the highest weight.

Additionally, from a practical point of view a function 
is wanted that is as data efficient as possible. The func-
tion should fulfil the above criteria with as little data as 
possible. To implement this behaviour, the Loss Func-
tion is further developed to incorporate the reciprocal of 
the amount of data points used for training. The model 
is trained with progressively more data points where the 

E� =
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J

J
∑
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√
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Fig. 13   RMSE for several functions in comparison. Bar plot shows the comparison of the RMSE values for different functions

minimum number of available data points is set to four, 
until the calculation of the error is started. The RMSE is 
then summed over all RMSE� where � are the number of 
data points available for training. The final loss term is:

This final error term is used to compare the func-
tions. The result is shown in Fig. 13. The bar-plot shows 
that the assumption that the linear function yields the 
best results can be validated. The linear function closely 
matches the data which is plausible because by inspec-
tion the data follows a linear function of order one. The 
predicted curves indicate that all higher order polynomi-
als fail to match the data because they are too oscillatory. 
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The linear model is chosen as the appropriate model to 
fit the evolution in size of a defect.

4 � Validation

To validate the approach, the authors test the model 
on a new failure to check if first, the detection model 
is together with the expert system, able to accurately 
quantify the size of a failure. Secondly, the authors 
check the assumption that a linear function is able to 
forecast the size of a failure on a BSD. Additionally, the 
authors added a symbolic, industry-dependent meas-
ure for the allowed wear as well as a +−20% confidence 
band around the ground truth data. As allowed lifetime, 
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the authors choose an area of 0.9 mm2 as the industry 
dependent lifetime of a component. This border has to 
be adjusted depending on the industry but is chosen 
such that there is sufficient time until the mechanical 
breakdown of the component. The results are shown in 
Fig. 14.

Here it is important that the green line represents 
the data extracted by the expert system up to a specific 
time step. The forecasting model is built on this data. It 
is notable that the model is accurately working and is 
able to predict the failure in advance. During the first 
time steps, the system is underestimating the size of the 
failure which is why the regression line is flat. At about 

20% of the lifetime, the system correctly predicts the 
size of the defect and the regression line matches the 
ground truth data quite well which yields the ability to 
predict the end of life of the component after 40% of the 
lifetime. In later time steps, the model over-estimated 
the size of the failures which could result from, e.g. pol-
lutions on the spindle. This led the system to underesti-
mate the remaining lifetime of the component slightly 
which is in practice a not severe issue since this only 
would lead the maintenance to take action a bit earlier 
and give kind of an additional reserve. Additionally, the 
authors added images of the failure progression for spe-
cific time steps. This indicates the functionality of the 

Fig. 14   Validation of the failure forecasting system: top: forecast-
ing model based on the extracted sizes of failures. Bottom: evolu-
tion of the failure used for validation where the detected pittings 

in the images are framed by the detection module and their size is 
extracted by the size quantification module
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model and shows the growth of a defect on the spindle. 
At the top the detection model finds the pitting where 
at the bottom the size quantification module quantifies 
the accurate area of the failure.

5 � Conclusion

The authors presented an end to end pipeline for the 
detection and the forecasting of failures on BSD into the 
future. The model can be easily applied to other surface 
defects not only on machine tool components since the 
underlying methodology is transferable. The presented 
system can be used by practitioners as a predictive main-
tenance tool to plan maintenance operations in time 
before component failure. Due to the incorporation of 
domain knowledge, the authors improved the prediction 
system, which accurately detected failures but misinter-
preted the severity of some failures due to pollution on 
the spindle. The authors noticed this effect even dur-
ing the expert based labelling of the ground truth data, 
with the difference that the human expert unconsciously 
incorporates domain knowledge into the labelling pro-
cess. This limitation is obvious, especially for early fail-
ures where the whole failure comprises only a few pixels. 
A practical though cost-increasing improvement of the 
system would be to use a camera with a higher resolu-
tion which possibly could reduce the described effect.

The model can be used in three setups. The first setup 
is to use the image data and label the size of the failures 
manually by experts and then only use the forecasting 
model to predict the size of the failures into the future. 
This is robust in terms of the extraction of the failure 
size but needs manual efforts. The second approach is 
to use the whole pipeline but omit the size extraction 
module and only use the failure detection module. This 
can be done if an exact pixel resolution of a failure is not 
important. The third way is to use the whole pipeline.

Additional expert queries could be implemented to 
make the model more robust. For instance, by asking an 
expert if a failure has been correctly detected after a fail-
ure has been detected by the system. This could exclude 
false positives. Additionally, this information could be 
used in further research to re-train and adapt the model 
continuously. In additional further research, it should be 
proposed to automatically learn the domain knowledge 
induced by the human expert by using models that also 
incorporate time as a feature and therewith learn that 
failures are growing over time. Heavy pollutions which 
cover the valuable regions in an image lead to a natural 
limitation of vision-based systems. This limitation can 
be interpreted as noise in the pixel space. If the noise 
is too prevalent, the necessary information is no longer 

available. Transferred to signals in the time domain, pol-
lutions act like strong inferring signals. The significant 
advantage of a vision-based approach is that the noise 
can be easily identified by inspection. Elaborating on 
this, a useful extension to the vision-based approach 
would be the combination with time domain signals 
which are less influenced by pollutions. Possible signals 
could be acoustic emission or the motor current. Here 
the motor current is the suggested first choice of the 
authors since it does not need additional sensors. By 
training a motor current based system using the image 
data, the system should be able to connect the motor 
current signal to images showing defects and therewith 
learns how the motor signal (or acoustic emission signal) 
of a defect looks like in an image-based way. The Hypoth-
esis is that the motor current signal is less affected by 
covering pollutions and hence as a tandem even more 
accurate predictions could be made. As open question 
remains if the signal of the motor current is affected by 
small defects. This idea can easily be extended to multi-
ple sensor systems where the image data provide mutual 
information. Student–Teacher approaches are think-
able where the knowledge of multiple sensor systems 
is incorporated into one intelligent model.
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