KIT | KIT-Bibliothek | Impressum | Datenschutz

New benchmark problems for verification of the curve-to-surface contact algorithm based on the generalized Euler–Eytelwein problem

Konyukhov, A.; Shala, S.

Abstract:

Development of the numerical contact algorithms for finite element method usually concerns convergence, mesh dependency, etc. Verification of the numerical contact algorithm usually includes only a few cases due to a limited number of available analytic solutions (e.g., the Hertz solution for cylindrical surfaces). The solution of the generalized Euler–Eytelwein, or the belt friction problem is a stand alone task, recently formulated for a rope laying in sliding equilibrium on an arbitrary surface, opens up to a new set of benchmark problems for the verification of rope/beam to surface/solid contact algorithms. Not only a pulling forces ratio $_{𝑇0}^{ 𝑇}$ , but also the position of a curve on a arbitrary rigid surface withstanding the motion in dragging direction should be verified. Particular situations possessing a closed form solution for ropes and rigid surfaces are analyzed. The verification study is performed employing the specially developed Solid-Beam finite element with both linear and 𝐶1 -continuous approximations together with the Curve-to-Solid Beam (CTSB) contact algorithm and exemplary employing commercial finite element software. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000140704
Veröffentlicht am 07.12.2021
Originalveröffentlichung
DOI: 10.1002/nme.6861
Scopus
Zitationen: 5
Web of Science
Zitationen: 4
Dimensions
Zitationen: 5
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mechanik (IFM)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0029-5981, 1097-0207
KITopen-ID: 1000140704
Erschienen in International Journal for Numerical Methods in Engineering
Verlag John Wiley and Sons
Band 123
Heft 2
Seiten 411-443
Vorab online veröffentlicht am 24.10.2021
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page