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Abstract: We study a novel class of affine-invariant and consistent tests for multivariate normality. The tests
are based on a characterization of the standard d-variate normal distribution by way of the unique solution
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d’une part, un estimateur de la variance limite convergent sous des hypotheses alternatives fixes et un
intervalle de confiance asymptotique de la distance d’une alternative sous-jacente et une loi normale
multivariée. Nos simulations numériques montrent que les tests proposés sont puissants comparativement a
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1. INTRODUCTION

Statistical inference for a dataset starts with assumptions on the underlying stochastic mechanism
that determines the generation of the data. In most classical models for multidimensional data,
such as multivariate linear regression models or multivariate analysis of variance, the assumption
of multivariate normality of the underlying random vectors is inherent. Hence, before making any
serious statistical inference, one should check this assumption. To be specific, let X, X, X,, ...
be a sequence of independent and identically distributed (i.i.d.) d-dimensional (column) vectors
that are defined on a common probability space (€2, .4,[P). As is common in the context of
testing for multivariate normality, we make the basic standing assumption that the distribution
PX of X is absolutely continuous with respect to the d-dimensional Lebesgue measure; see also
the discussion before Equation (3). In what follows, we denote by N,(u, Z) the d-variate normal
distribution with expectation vector y and covariance matrix X, and we write

Ny = {N,u.2) : p € R?, £ € R™ positive definite }

for the class of all non-degenerate d-variate normal distributions. The unit matrix of order d will
be denoted by /,. The problem at hand is testing the hypothesis

Hy : PXe N,

based on X, ..., X, against general alternatives. The purpose of this article is to introduce and
study a novel class of affine-invariant and consistent tests based on a partial differential equation
(PDE) that determines the characteristic function (CF) of the multivariate standard normal law.
We write V for the gradient operator and consider for f € L*(R?) the initial value problem of
the PDE

t+V)f() =0, reRY,
{( )/ (1) 0

£0) = 1.

Note that the multivariate Stein operator A f(x) = (x — V) f(x) is connected to the initial value
problem (1) in the following sense: For a centred random vector X with E[XXT] = I, which has a
differentiable density with full support R?, we have E[A f (X)] = E[X f(X) — V f(X)] = 0 for each
function f with existing derivatives in every direction, and for which all occurring expectations
exist, if and only if X has the normal distribution N,(0, I;); see Theorem 3.5 in Mijoule, Reinert
& Swan (2018) as well as Stein (1981), Liu (1994) and Landsman, Vanduffel & Yao (2013)
for more information on the multivariate Stein lemma. Here and in the following, the symbol
T means transposition of column vectors and matrices. In the spirit of the Stein—Tikhomirov
method, see Formanov & Formanova (2013) and Arras et al. (2016), and hence using the CFs
{exp(ith),t e R? } as test functions, a simple calculation shows the equivalence of the Stein
equation to the initial value problem in (1). In the case d = 1, the same initial value problem was
motivated by a fixed point of the zero-bias transform in Ebner (2021). For more information on
the zero-bias transform, see Goldstein & Reinert (1997) and Shevtsova (2013).

Theorem 1. The CF )
1
w(t) = exp <—%> e R, @

of the d-variate standard normal distribution N4(0, 1;) is the only solution of (1).
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Proof. If f € L*>(R?) is an arbitrary solution of (1), the product rule yields

VI ex w = w =
Pl /) =exp (= (tf@)+Vf@©) =0.

Considering that £(0) = 1, we have exp(||¢||?/2)f(t) = 1, and the assertion follows. [ |

According to Theorem 1, the CF of the d-variate standard normal distribution is the only CF
satisfying Vy (1) = —ty(¢). Our test statistic will be based on this equation. To achieve affine
invariance of the test statistic with respect to full-rank affine transformations of X, ..., X,,, let

Y, i=8"(X;-X,). j=1,....n,

denote the so-called scaled residuals, where X = n~! Yo X;and S, =07t 30 (X - X,)

(X = )_(n)T stand for the sample mean and the sample covariance matrix of X, ..., X,,, respec-

tively. The matrix S,;l/ % is the unique symmetric positive definite square root of S;'. The almost
sure invertibility of S, follows from the absolute continuity of PX and the henceforth tacit assump-
tion n > d + 1, see Eaton & Perlman (1973). In particular, the condition that P(X; € F) = 0 for
each proper flat F of R?, which follows directly from the absolute continuity of PX, is necessary
and sufficient for the non-singularity with probability 1 of the sample covariance matrix, see p.
715 of Eaton & Perlman (1973). Writing

n

1 .
fH=- Y, ), reR? 3
W, (1) n;exp (ir"Y,;) 3)
for the empirical CFof V,, 4, ..., ¥, ,, our test statistic is
T,,= nJ , IV, (1) + tw (DIIZ. w, (1) dt. 4)
R

Here, w,(f) = exp (—a||t||2), a> 0, is a suitable weight function that depends on a positive
parameter a, and ||+ || denotes the complex Euclidean vector norm. Rejection of H|, is for large
values of T, ,. With this approach, we obtain a flexible class of genuine tests for multivariate
normality, all of which are motivated by the result of Theorem 1.

Clearly, we propose a new approach to a well-known and widely studied problem. For
a survey of affine-invariant tests of multivariate normality, see Henze (2002), and for recent
developments with an emphasis on L? type statistics, see Ebner & Henze (2020). We list a short
overview of different approaches: Henze & Wagner (1997), Pudelko (2005), Tenreiro (2009) and
Dorr, Ebner & Henze (2021a, 2021b) consider tests connected to the empirical CF, while Henze
& Jiménez-Gamero (2019), Henze, Jiménez-Gamero & Meintanis (2019) and Henze & Visagie
(2020) are based on the empirical moment-generating function. The most classical approach
is to consider measures of multivariate skewness and kurtosis; see, e.g., Mardia (1970), Méri,
Rohatgi & Székely (1994), Kankainen, Taskinen & Oja (2007) and Doornik & Hansen (2008),
although inconsistency of those measures with regard to elliptically symmetric alternatives are
known, see Baringhaus & Henze (1991, 1992) and Henze (1994a, 1994b). Generalizations of
tests for univariate normality (as in Siiriicli, 2006; Villasefior Alva & Gonzdlez Estrada, 2009;
Kim & Park, 2018), the examination of nonlinearity of dependence (see Cox & Small, 1978;
Ebner, 2012), canonical correlations (see Thulin, 2014), and the notion of energy (see Székely
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& Rizzo, 2005) are other approaches to this testing problem. Note that Bontemps & Meddahi
(2005) use the univariate Stein equations to test marginal normal distributional assumptions.
Empirical competitive Monte Carlo studies can be found in Voinov et al. (2016) and Ebner &
Henze (2020).

The rest of this article unfolds as follows: in Section 2, we give a representation of 7, , that
is amenable to computational purposes. Moreover, we derive limits of 7, ;, after suitable affine
transformations, as a — co and a — 0, that hold element-wise on the underlying probability
space. Section 3 deals with the limit distribution of 7, , under the null hypothesis, and Section 4
considers the limit behaviour of 7}, , both under contiguous and fixed alternatives to H,. Section 5
presents the results of a simulation study, and Section 6 exhibits a real data example. Section 7
contains a brief summary and indicates topics for further research. For the sake of readability,
some of the proofs have been deferred to the Appendix.

. . . D L.
Throughout the article, we use the following notation: the symbol = means equality in
P a.s.
distribution, and — and — stand for convergence in probability and almost sure convergence,

respectively. Moreover, 3» is shorthand for convergence in distribution for random elements
in whatever space is relevant (which will be clear from the context). If not stated otherwise,
each limit refers to n — oo, and each unspecified integral is over R?. The stochastic Landau
symbols op(1) and Op(1) refer to convergence to zero in probability and stochastic boundedness,
respectively.

2. BASIC PROPERTIES OF THE TEST STATISTIC

In this section, we provide some information on the test statistic 7, , defined in (4). The first
result shows that 7, , allows for a simple representation that is amenable to computational
purposes. Moreover, since this representation shows that 7, , depends on X, ..., X, only via

T
Yn IYM, i,j €{l,...,n}, the statistic TM is affine-invariant.

Theorem 2. We have

. 2 \! d § 1Y, 11
”’“_"<a+1) 2a+1) <2a+1) §2a+1 < 4a +2>
- 2
1(n\2 T ” nl_Yn,j”
+;<;) ,Z_: YnlY,”exp< — ) )

Note that this representation is implemented in the R package mnt, see Butsch & Ebner
(2020). The proof of Theorem 2 is given in the Appendix.

We now consider the element-wise limits (on the underlying probability space) of T, , for
fixed n as a - oo and a — 0. It will be seen that the class of tests based on 7, , is “closed at the
boundaries” a — oo and a — 0 in the sense that, after suitable affine transformatlons there are
well-defined “limit statistics.” Our first result refers to the limit a — oo.

n,a

[S1ESW

Theorem 3. Element-wise on the underlying probability space (Q, A,P), we have

e
7 16Tn’a = bl,d + 2bl,d (6)

nr2

lim

a—oo

- 3. ., . .
Here, by ,=n 2y ( Y, ) is Mardla s celebrated measure of multivariate skewness,
i,j=1 n,i’ n.Jj

see Mardia (1970), and bld =n"2 z m n,” A2 ,”|| is a measure of multivariate
skewness introduced by Mori, Rohatgi & Szekely (1 994 ).
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Proof. Invoking (5), it follows that

d

d 3+l 2
a3+2T B a 2+1a_d a B 2 i”y Pexp (- 1Y, ;I
g e a+1 2 n a+% = " P\" 2a+2
2 ¢ 1Y, = Y, 1P
a T n, n,j
+;ijz_ YmYnjexp< B —

=!A,-B,+C,

(say). We now use

2! 1\ 2" d 1
<ail> =<1+5) =1—(§+1>5+0(a_2) @)

exp(—x) = 1 —x + %xz +0(?) (8)

as a — oo and

as x — 0, and we employ the identities /_, ¥, ; =0, X"_, |Y,;|I> = nd as well as

2 ni nj - —_22 ni ,” =—2n2d,

i,j=1
Z ni ”J ’“_Y ” _2nbld+4nbld_82 nznj) Y, ”
i,j=1 ij=1
n n
2 4
() WY P =0 Y Y,
i,j=1 j=1

to obtain A, = ad/2 — d*/4 — d/2 + o(1) as a — oo. Likewise
n 2
B,=-(a-(%+1)= Y, 121 - 2 1
8 n<“ <2+ >2>;n ,,,,n( s ) e
3 & d 1 « .
_<da_z_§>_ﬁzl|lyn,j” +o(1),

2 & 1Y, = Yo I* 1Y, =Y, 01
Cn:a_ Y,Il n,j (l - : e + - o +0(])

4a 32a?
da 1
=_ 16<b]d+2b]d IZH ilj” >+0(1)

Upon combining, the assertion follows. |

Notice that the right-hand side of (6) is a linear combination of two time-honoured measures
of multivariate skewness. Notably, the same linear combination shows up not only for the class
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of Baringhaus—Henze—Epps—Pulley (BHEP) tests (see Theorem 2.1 of Henze, 1997), but also
as a limit of a related test statistic in connection with a test for multivariate normality based
on a PDE for the moment-generating function of the normal distribution, see Henze & Visagie

(2020).
Regarding the limit of 7, , as a — 0, we have the following result:

Theorem 4.  Element-wise on the underlying probability space, we have

d n 2
1 [[a\s d oyl ) 1Y,
lﬂ%T((Z) T"ﬂ_d>‘§_22 w 2%l exp(‘T '
naz j=1

Proof. From the representation (5), it follows that

T,. 3 nd ( ) +1 zn: Iy, ”Yn,j”2
4 d 2a+ 1 da+2

7z 2@+ 1)

n 2
1 T ”Yn,i - Yn,j”
+— 2 YmYnjexp< —4a

na? ij=1

= An,a - Bn,a + Cn,a

(say).Now, lim,_ A, ,= nd/2andlim,_ B, , = 2'+1 Z/ Y, ||2 exp (_”ij 17/2), element-
wise on the underlying probability space. To tackle C, ,, the relatlon Z;’:l 1Y, I? = nd yields

n 2
”Yn,'_ Yn,‘”
Cou= =7 T+ Y,I,Yn,exp( —

na2 Jj= na2 i#]
2
d 1 1 ”Yn,i_Yn,j”
=—g+—£ZYmYMexp< Ey—
az naz i#j
and the assertion follows. [ |

Interestingly, Theorem 4 means that for (very) small values of a, rejection of H,, for large
values of T, , is essentially equivalent to the rejection of H,, for small values of

n
1 2 Y, 112/2
- Z 1Y, ;1% 1Y 1772
j=1

This statistic, upon expanding the exponential function, comprises even powers of ||Y, ;||
and is thus related to Mardia’s measure of multivariate kurtosis, which is defined by b, , =
n~! p 17,11, see Mardia (1970).

3. THE LIMIT NULL DISTRIBUTION

In this section we derive the limit distribution of T, , under the hypothesis H,,. Because of affine
invariance, we assume without loss of generality that X has the standard normal distribution
N,4(0,1,) in what follows. The starting point is an alternative representation of 7}, ,, namely

Tho= J I1Z, (D117, (1) dt, )
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where
Z,(t) = L\/_ Z (cos (11Y,,;) +sin (177, ;) — tw(n)). (10)
This assertion follows from straightforward calculations using

nja

Jcos (7Y, sin (7Y, ;)w, (1) dt = 0, Icos (7Y, )Y, w, (1) di = (11)

Writing L? := L? (R4, BY, w,(t)dt) for the separable Hilbert space of (equivalence classes of)
functions f : R? — R that are square-integrable with respect to w,,(¢)dt, we regard Z, as arandom
element of the Hilbert space H = [’Q - QL2 Putting f = (f1,.... f), 8§ = (g, -...84), the
space H is equipped with the inner product { f, )y := (f1, 8102 + - - - + (f,» 84012 and the norm
1 f 1l = (S, f)l/2 Notice that we have

ﬂw=ﬁmmWWmm=wmﬁ

The main theorem of this section is as follows:

Theorem 5.  Under Hy, there is a centred Gaussian random element Z of H having covariance
matrix kernel

K(s,0)=(I; = (s=D(s =" )y(s—1)

(sTt)?
+ =0T+ =T =L+ sTt(ssT+1T —stT = 1)) — > st ) w(w (@), (12)

D
s,t € R, such that Z, — ZinH, where Z, is the random element defined in (10).

Since the proof of Theorem 5 is long and tedious, it is deferred to the Appendix. A crucial
role will be played by the quantities

1 _1
A=Y, —X, = <sn2 —1d> X, -S,’X,. j=1...n (13)

From Theorem 5 and the continuous mapping theorem, we obtain the following result:

Corollary 6. Under H,, we have

D 2 _ 2
nw—ﬂmm—jwmuwmw

D
It is well known that the distribution of 7, , := ||Z ||ﬁ isthatof T, , = Z;’;l A j(a)NJZ, where
N|,N,, ... is a sequence of i.i.d. standard normal random variables, and 4,(a), A,(a), ... are the
positive eigenvalues associated with the integral operator

Kf(s) := J'K(s, DfOw, (1) dt, s € R, (14)
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8 EBNER, HENZE AND STRIEDER Vol. 00, No. 00

f € H. Because of the complexity of K(s,?), we did not succeed in obtaining closed-form
expressions for these eigenvalues. In our simulation study presented in Section 5, we use
approximate critical values for 7, , that have been obtained by way of simulations. Some
information on the limit null distribution, however, is given by the following result:

Theorem 7. We have

N 2 % (16d3 + (8d + 48)a® + (12d + 40)a + d? + 10d + 16)d
= (2) 4~ (25) |

a a+1 16(a + 1)3

Proof.  From Fubini’s theorem, it follows that E[T, ,] = | E[|IZ(1)||*w,(¢) dr. Moreover, writing
tr for trace, we have

ENZ®I? = E[Z(0)'Z(0)] = w(E[Z(HZ(1)])

ll211°

=tw(Kt1)) =d- <d +d||t)]> = el + T) exp (—Il1?).

Since

d d
J ll2]|*e=<I g7 = (f) 4 4+2) and J l[2]|6e=1 g7 = (E) P4 (2 16d+8),
al 442 a/ 8a’

the assertion follows by straightforward computations. [ ]

In the univariate case, which is deliberately included in our study, we have been able to
calculate the first four cumulants of T, ,. By the methods presented in Chapter 5 of Shorack &
Wellner (1986), the mth cumulant of T, , is derived by

K, (@) = 2" (m = 1)! J b, (£, D)W, (1) dt.
R

Here, h(s,t) = K(s, 1), and h,,(s, 1) := IR B (s, w)K (u, t)w, () du if m > 2. In order to calculate
k,(a), m € {1,2,3,4}, we used the computer algebra system Maple, see Maplesoft (2019).
For the first two cumulants we obtain

Ky (a) = JR <1 - <1 +2 -+ g) exp(—t2)> exp (—af*) dt

(=164° = 564> — 52a —27) | —— + 16\/E(a +1)°
a+1 a

B 16(a + 1)3

and

72608117
8(a+2)°* (40> +8a+3)"* \Jaa+3 @+ 1)
1024 2 15360 2 108032 2 _ 473856 =
— a2 + a2 + a2 + a?
7260811 T 72608117 7260811 " 7260811

1449216 2t 3263232 19 5559908 17 7254348 15
az + az + az + az
7260811 7260811 7260811 7260811

Kz(a) =

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs. 11670



2021 TESTING NORMALITY IN ANY DIMENSION 9

15535906 11 160113 ¢ = 5253759 1 6017409 5
2 + ——az2 + a2 a? a2
7260811 367636 29043244 116172976

3
266733 3, 22113 a>m

29043244 29043244

+a

1024 (a+3/2)* (a+ 1) (a+1/2)* (a® + 2a + 3)
+ V4a? +8a+3
7260811

51420992/ a + 2 64 3 1024 2 1104 272 36544 25
- a? + a? + a? + a?
7260811 803453 803453 114779 803453

+ 12]05451% + 297018@22_1 + 55616361% + 807017ag + 912747@12_5 +al_23
803453 803453 803453 803453 803453

803453° " T 303453%" T 303453 VT 303453"" T 16397%" T 303453

545801 U 281319 ¢ 106779 I 28293 5 9 3 372 ))
2 4+ 2 4+ 2 4+ 2 \/— .

The formulae for x5(a) and k,(a) are known but are too extensive to be stated here explicitly.
From these cumulants, we calculate the expectation, the variance, the skewness f; and the
kurtosis f, of T, , for the case d = 1 (see Table 1), since

K3(a) K4(a)

[E[Too’a] =k (a), Var[Tooﬂ] =Ky(a), pi(a)= W, pr(a) =3+
2

Kz(a)2 .

Analogously to Henze (1990) and Ebner (2021), we can now approximate the distribution of
T, by that of a member of the system of Pearson distributions which has the same first four
moments as T, ,. To this end, we used the statistical software R, see R Core Team (2019), and
the package PearsonDS, see Becker & KloBner (2017). Table 2 shows the quantiles of the
fitted Pearson distribution, which serve as approximations to the corresponding quantiles of the
distribution of T, ,. Here, the symbol % stands for negative values of the approximate quantiles.
These are omitted, since T, , is always positive and the fit of the Pearson family having support
on R is obviously not suited to approximate the lower quantiles for a = 10.

4. LIMIT BEHAVIOUR UNDER ALTERNATIVES

In this section, we assume that H, does not hold, and we will derive limit distributions for 7, ,

both under contiguous and fixed alternatives to H,,. To define the setting for a triangular array

TasLE 1: Expectation, variance, skewness and kurtosis of 7 ,, d = 1.

a 0.1 0.5 1 2 5 10

E(T,..] 3.0040 0.6574 0.2939 0.1092 0.0207 0.0047
Var[T, ] 2.8028 0.2686 0.0742 0.0133 0.0006 0.0000
pi(a) 1.3737 1.9098 2.1996 2.4619 2.7090 2.7938
pr(a) 6.0366 8.8662 10.7047 12.5510 14.3071 19.4464

DOI: 10.1002/cjs. 11670 The Canadian Journal of Statistics / La revue canadienne de statistique
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TaBLE 2: Approximate quantiles of T , in the case d = 1.

a

q 0.1 0.5 1 2 5 10
0.01 0.6857 0.0903 0.0331 0.0110 0.0018 *
0.05 0.9970 0.1299 0.0435 0.0130 0.0020 *
0.1 1.2382 0.1712 0.0573 0.0165 0.0023 *
0.5 2.6510 0.5137 0.2091 0.0700 0.0115 0.0030
0.9 5.2211 1.3283 0.6405 0.2529 0.0511 0.0119
0.95 6.2138 1.6743 0.8329 0.3384 0.0705 0.0162
0.99 8.4485 2.4904 1.2956 0.5470 0.1182 0.0275
of contiguous alternatives, we assume that, for each n > d + 1, Xois -0 Xy, are 1.1.d. d-variate
random vectors having Lebesgue density

X

£, = go(x)<1 + %}) xe R4
n

Here, p(x) = 27)~%/? exp(—||x||*/2), x € R, is the density of the distribution N40,1,), and g is
a bounded measurable function satisfying j g()@(x)dx = 0. Notice that f, is non-negative for

sufficiently large n because of the boundedness of g. To derive the limit distribution of 7}, , under

this sequence of alternatives, we employ the representation (9), which comprises the random
element Z, as defined in (10). For repeated later use, we define

CS™(s, 1) = cos(sTr) + sin(sTr), CS7(s,1) = cos(s't) — sin(sTs), 5,7 € RY. (15)
Theorem 8.  Under the sequence of alternatives (X, |, ..., X, ) psa+1, We have
D
Z,— Z+cin H.

Here, Z,, is defined in (10), Z is the centred Gaussian random element of H figuring in Theorem 5,
and the shift function c(-) is given by

c(t) = IZ**(x, NgWe()dx, 1€ R, (16)
where
Z¥(x, 1) = xCS™ (1, x) — (t +x+ (21, - ttT)%(xxT — 1)t - tht) w(t), x,t € R’

Proof.  We write A for the d-dimensional Lebesgue measure, and we put P® := ®(@19),
0" :=Q(f,A?). Furthermore, let L, := dQ™ /dP"™. The boundedness of g and a Taylor

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs. 11670
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. 8(X, j>>
log| 1+ :
121 < Vn

o8, 8(X,,)
D <7’ - ) + 0p (1), (17)
=1 n

In the following, we write o’ = j g(x)z(p(x) dx < 0. Since, under P, expectation and variance
of the sum figuring in (17) converge to —% /2 and o2, respectively, the Lindeberg—Feller central
limit theorem and Slutsky’s lemma yield

expansion then give

log(L, (X, X, )

n,12 * >

D o2 ,
log(L,) — N =70 under P™. (18)

Notice that the boundedness of g ensures the validity of the Lindeberg condition. In view of
Le Cam’s first lemma (see, e.g., Li & Babu, 2019, p. 297), the probability measures 0" and
P™ are mutually contiguous. According to Theorem 5, the auxiliary process Z» introduced in
(A4) is tight under P™ and thus, in view of contiguity, also under Q™. Let {e;, k > 1}, be an
arbitrary complete orthonormal system of H. It remains to show that, for each £ > 1, we have

D
,(Z,) — M ,(Z + ¢) under O™, where T1, denotes the orthogonal projection onto the linear

subspace of H spanned by ey, ..., e,. We first consider

4
M, (Z)) = Y AZ: e ey

J=1

where Z7 is given in (A4), with the only difference that X is replaced throughout with X;, ;. In view
of Theorem 5, the asymptotic distribution of Z* under P™ is a centred Gaussian with a covariance

D
operator K given by the covariance matrix kernel K (s, ), whence <Z:’ e w— N (0, (Ke € >H)
under P™_ In view of (18), we have

(<Z:’el>“'”’ T <Z:’e’f’>ﬂ-ﬂ’10g(l‘n))T Z Nf+1<(0, ..., 0, —62/2)T’ [Z 52] >

¢l o
under P for each # > 1. Here, £ := (<Kei’ej>ﬂ'ﬂ)l<ij<f eR™ and ¢ = (¢y,...,¢,)" €RY,

where, by Fubini’s theorem, ¢; :=lim,_, E[(Z;l", ej>H, log(Ln)] ={c,e; )y, and ¢ is given in
(16). According to Le Cam’s third lemma (see, e.g., Li & Babu, 2019, p. 300), it follows that

D
((Z;:, e )H, e, Z:, ef>H)T — N,(¢,X) under O™ Since, for the centred Gaussian random
element figuring in Theorem 5 we have

D
((Z +ce)y, .. {(Z+c, ef)H)T =N, (¢,2),

it follows that
D
((ZF.e) )y (z;;,e,,;)[H])T — ((Z+ce))yo - (Z+c, ey (19)
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under Q™. Now, let ¥ : R = H be defined by ¥(x) := Zlexjej, x=(x,...,x,)T. The
continuous mapping theorem and (19) then yield
D
,(z) = ‘P(((Zn,el>H, s <Zn,ef>H)T> — lI‘(((Z+ ey {Z + c,ef)H)T>
=I,(Z+c¢)

D
under Q™. In view of the tightness of Z* under 0", we conclude Z* — Z + ¢ under Q. The
assertion now follows from Slutsky’s lemma since, in view of (A6) and (A7), ||Z, — Z}||,, is

asymptotically negligible under P and thus, because of contiguity, also under Q. [ |
As a corollary, we have the following result:

Corollary 9.  Under the conditions of Theorem 8, we have
D 2 2
Tya 2124l = [ 120+ ol 0

We now consider fixed alternatives to H, and we suppose that the underlying distribution,
in addition to being absolutely continuous, satisfies E||X]|* < co. In view of affine invari-

ance, we assume E[X] =0 and E[XXT] =1,. Our first result is a strong limit of 7, ,/n as
n— oo.
Theorem 10. IfE|X||?> < oo, we have

Tn,a a.s.

n — S
where

A, = J [l 1(0) = g (D) Pw, (1) e (20)

and u(t) = E[XCS™* (1, X)].
Proof. Invoking (9), we have n~'T, , = |[n"'/2Z ||, where Z, is given in (10). Putting

Zo(t) =n"1/? E L (X;C8* (X)) — ty/(t)) the strong law of large numbers in Hilbert spaces

a.s. a.s.
yields In=12Z0|2 — A, and thus it remains to prove ||n~'/2(Z, — Z?)||;; — 0. To this end,
notice that

n

L (z0-20) =12 (CS*(1,Y,;) —CS*(1.X,)) + A,,CS* (1. Y, ).

’nj s Ly j
n nj:l

where A, ; is defined in (13). Since CS+( , ,”) =CS*(, X;) + €, ;(1) + n, ;(t), where max(|e,, ;
I, Inn,,(t)l) < l7lfl1A,, 41l it follows that

Zx (CS*(1,Y,,) - CST(1.X)))

2 n
< 5,21 X 11N A - 1)
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2021 TESTING NORMALITY IN ANY DIMENSION 13

Using [|A,, ;]I < ||S_1/2 — L, 1,1l + ||S_1/2||2||)_(n||, where |- ||, denotes the spectral norm of a
matrix, we have

n n n

1 - 1 - v 1l

= 2 A< 182 = Tallys 20 UG+ (15, 050~ 311
j=1 j=1 j=1

The strong law of large numbers and the continuity of the map A — A~!/2 now yield )_(" N 0,

n! S I ENXIL a7t Y 1X 1% < ENIX)? and S;'/? <5 1. Thus, the right-hand

side of (21) converges to 0 almost surely. Likewise, n~! ijl 1A, 1l = 0, and the remaining

assertion ||[n=1/2(Z, = Z%) ||, 2% 0 now follows from the triangle inequality. [ |

As a corollary, we obtain the following result:

Corollary 11.  The test for multivariate normality based on T, , is consistent against each
alternative distribution satisfying E||X||* < co.

Proof. Let wy(t) = E[exp(itTX)] be the CF of X. By straightforward calculations, we have
= [ IV (0) = VwrOlIZw () d,
D
where A, is given in (20). Since A, =0 if and only if X = N,(0,1;) (recall the standing

assumptions that E[X] = 0 and E[XXT] = I,), the assertion follows. | |

Notice that, for each a > 0, A, may be regarded as a measure of deviation from normality.
The following result sheds some more light on A

Theorem 12. IfE||X||® < oo, then, under the standing assumptions E[X] = 0 and E[XXT] = I,
we have

(Y

lim 1642 (”)EA = E[XIX 11X, 1P1X,017] +2E[(X]X,)°), (22)

a—oo

as well as

[\S]

a—0 2

d d, X, 112
limn_iAazc—l 22 1[E[||X1||2 <—” 1l )]

Proof.  Straightforward calculations give A, =1, —1,, + 1,5, where

I

a,

L= J E[X,CS*(t, X )]TE[X,CS* (¢, X,)]w, (£) dt,

I, = 2J E[X,CS*(t. X))ty (Ow, (1) dt, 1,5 = JtTtw(t)zwa(t) dr.
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Using addition theorems for the sine and the cosine function as well as (11) and (A1)—(A3), it
follows that

d 2

2 ||X1_X2||
1 =<£)2[E X'x - s
a,1 4 142 €Xp 4a

d
3 X0 X, ?
Ia2=2( 27 )2[E [1X4 1 exp _IXqll
’ 2a+1 2a+1 4a+2

Taylor expansions (7) and (8), together with E[X] = 0, E[XXT] = I, and E||X |® < oo then yield

/ :< P4 )E d
’ @37 \ag+1/) 2a+2°

d

a X, =X 2
(£ 1o = PEXIX)] - aE [X]Xz—” -l
T

4

X, =X |*
I 132 ol + o™

a,l —

] +E [x}xz

2 3 1 _
XIGIXIPIXI] + 2 E| (X]X)'| = ZEIX 1 + 0™,

dh
2 2
a 1,
a|l — [E[uxlnzexp (— s
a+§ a+

&2 d\ 1 s o
-4 CEx
<ad . 2) JEIX I+ 0@™),

I
|

+
|
i

Q
)
/~
|
SN——
[S1EW
Q'N
[§)
Il

d d
s (a\2 a \37'd ad d* d -1
4Ny = ( ) da_dad_d _ 4 ouh.
a(;;) a3 =\ 23 "3 o)

Upon summarizing, the assertion follows. The second statement is proved following similar
arguments. |

We remark in passing that the first term on the right-hand side of (22) is the population measure
of multivariate skewness in the sense of Méri, Rohatgi & Székely (1994), and E [(X 1TX2)3] is the
population skewness in the sense of Mardia (1970). Thus, Theorem 12 can be regarded as the
“population counterpart” of Theorems 3 and 4.

Baringhaus, Ebner & Henze (2017) observed that, in the context of goodness-of-fit testing of
a general parametric hypothesis H,, (say), weighted L?-statistics have a normal limit under fixed
alternatives to H,,. To state such a theorem in our case, we first introduce some notation. Again,
we write yy(f) = E[exp(itTX)] for the CF of X and put w;f(t) := Re yy(?) = Im yy (1),

w(t,X) = XCS*(1,X) — Xy (1) — (1XVy{ (1)

+ = ((XXT +1,) Vs (1) — E[IXXTCS™ (6, )1 (XXT = 1))1). (23)

1
2

Moreover, let
L(s, 1) := E[w(s, X)w(t,X)T], s.t€ R (24)

We then have the following result:

Theorem 13. IfE|X||* < oo, we have

T
\/Z< e Aa> 2 N(0,62),

n
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where
62 =4 J] 2($)TL(s, Dz(t)w,(s)w, (1) ds dt. (25)

Here
z2() 1= pu(0) — (), (26)

and L(s, t) is defined in (24).

Proof.  The basic observation is that, with Z, defined in (10) and z(¢) : = u(t) — tw (1), we have

Tna —_
‘/;< n Aa> = Vn(lln™"Z, 115, = 112115,
= \/n(n™?2, — 2,22+ 07127, - 2),, 27
=2Z, - \/;z, Dy + n_]/2||Zn - \/Zzllé (28)

Letting V,,(t) := Z,(1) — \/nz(t) = n~'/? Z;‘zl (v, ,CS*(1.Y, ;) — u()), the next step is to show
that

D
V,— VinH (29)

for some centred Gaussian random element V of H having covariance matrix kernel L(s, ) given
in (24). The proof of (29) is completely analogous to that of Theorem 5 and is therefore omitted.
In view of (29), the second summand in (28) is op(1), and the first converges in distribution
to 2(V,z)y by the continuous mapping theorem. The distribution of 2(V,z)y is the normal
distribution N (0, 0'5) . ]

Using Slutsky’s lemma, Theorem 13 yields the following asymptotic confidence interval
for A,:

Corollary 14.  For a € (0, 1), let z,_, , denote the (1 — a/2)-quantile of the standard normal
distribution. If alfa is a consistent sequence of estimators for UZ, and if 62 > 0, then
T, o T, o

n.a na n.a na

La,:=|=-22

: z =L+ 2y
n,a,a l1—a/2> 1—a/2

is an asymptotic confidence interval with level 1 — a for A,,.

A necessary and sufficient condition for 0'5 > 01is that the function R¢ = s f L(s, t)z(H)w, (1)
dt does not vanish A9-almost everywhere, see Remark 1 of Baringhaus, Ebner & Henze (2017).

To construct a consistent sequence of estimators for aﬁ, we replace z(s), z(t) and L(s, 1)
figuring in (25) with suitable empirical counterparts. In view of (23) and (24) and the fact that
Vu/;(t) = E[XCS™ (1, X)], Vyy (1) = —E[XCS™ (1, X)], let

L(s.0) = % 3 W, (W, ), (30)
=1
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where
W, (0 := Y, ,CS*(1,Y, ;) = Y, ¥, (1) = 7Y, ¥, (1)
1
—E(YnJYM+Id)‘P3n(t) ‘P4n(t)( oy M - 1), (31)
and
1 n
¥, (0 = chm, w) a0 1=~ ; Y, CS(t.Y, ). (32)
) 1
¥y, () = ZY CST(1,Y,,), W, = ;;YMYJ]CS t.Y,,). (33)
Furthermore, let
1 n
HORE DY, CStW Y, ) — tw (o). (34)
j=1

We then have the following result:

Theorem 15. Let
6, =4 H 2,(8)TL,, (s, )z, (W, (s)w,(t) ds dt,

where L, (s, t) and z,(t) are as defined in (30) and (34), respectively. If E||X||* < co, then ( o, a)

2

. . . . A P 2
1S a consistent sequence ofestlmatorsfor O'a, Le., we have 0, - o, Moreover

Gl (35)

na’

where Ejlja is given in (A12).

Since the proof of Theorem 15 is long and tedious, it is deferred to the Appendix. We stress
that the representation (35) does not comprise any integral, which means that 83# is a feasible
estimator.

We close this section with an example that illustrates the feasibility of the asymptotic
confidence interval. To this end, we consider the following standardized symmetric alterna-

D
tives to normality: Firstly, let X = U(—\/g, \/g)d have the uniform distribution on the cube

(=3, \/g)d. In this case, we have @y (1) = [T, sin (V/31) /+/31,,

3cos (V/31)1; = V3sin (V31)) ﬁ sin (v/31))
3 i 3

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs. 11670
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where V()Y is the jth component of V(7). Secondly, we consider a Laplace distribution with
i.i.d. marginals, denoted by Laplace(0, 1/ \/E)d , for which

d

ox0=[[==5. Vex0 =- H

2 2°
i1 2+1 2+t2 i 2+

Finally, let X have a logistic distribution with i.i.d. marginals, denoted by Logistic(0,3/x) . In
this case, we obtain gy (1) = ]2, \/3t,/ sinh (\/gti),

\/3 sinh (\/gtj) — 3t; cosh (\/gtj) d V3t
sinh(\/gtj)2 i sinh(\/gtl-).

In each case, A, has been computed by numerical integration. The resulting values are displayed
in Table 3.

By means of a Monte Carlo study, we estimated the probability of coverage of the confidence
interval I, , , figuring in Corollary 14 for a € {0.5,1,2,5}, d € {1,2}, and the sample sizes
n € {50, 100,200,500}. The nominal level is 0.95, and the number of replications is 10,000.
Simulations have been carried out with the statistical software R, see R Core Team (2019). In
particular, we used the package extraDistr, see Wolodzko (2019), to generate variates from
the Laplace distribution. The results are displayed in Table 4. We also considered a confidence
interval [ for A, based on the asymptotic normality of \/_ (log(T,, ,/n) —log(A,)) through
the delta method since A, is positive if X is not normally dlstrlbuted As one can see, the
empirical coverage converges to the nominal level. However, the convergence seems to be
slower for higher dimensions. The empirical coverage of the confidence interval /, , , seems to
converge faster, especially in higher dimensions. For larger values of the tuning parameter a, the
confidence interval tends to be too wide, so we conjecture that an improvement of the asymptotic

interval might be found.

Voy()V =

5. SIMULATIONS

This section presents the results of a Monte Carlo study, with the aim to compare the power of the
proposed test with respect to that of prominent competitors against selected alternatives. We used
the statistical software R, see R Core Team (2019), and we employed the package MonteCarlo,

TABLE 3: Values of A,.

a

d 0.5 1 2 5
U(—\/E, \/§>d 1 0.029273 0.011432 0.002911 0.000259

2 0.090821 0.027841 0.005709 0.000365
Laplace(O,l/\/E)d 1 0.026076 0.013968 0.005230 0.000778

2 0.071014 0.032525 0.010141 0.001097
Logistic(O, \/§/ﬂ>d 1 0.005014 0.002688 0.001005 0.000144

2 0.013664 0.006226 0.001942 0.000202
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TaBLE 4: Empirical coverage probability for A, (10,000 replications, nominal level 0.95).
L4095 L} 0095

d n 0.5 1 2 5 0.5 1 2 5
U(—\/g, \/§)d 1 50 9486 9559 98.08 99.23 8959 90.60 92.89 9523
100 9471 95.67 9729 9893 9213 9234 93.65 96.99
200  94.77 9530 96.72 9852 9377 93.63 9459 97.16
500 95.08 9475 9542 9791 9458 94.06 9437 97.00
2 50  82.81 8797 9361 9799 5544 62.70 66.53 68.37
100 87.62 89.10 9275 9824 7263 7589 77.53 80.10
200 90.02 90.62 9295 97.56 8249 83.56 8455 86.58
500 9274 9240 9269 9578 89.75 89.52 89.37 90.58
Laplace(O, 1/\/5)‘1 1 50 9298 90.01 87.60 87.25 88.50 90.24 89.16 86.12
100 9394 90.54 88.36 8845 9236 93.09 9299 91.84
200 94.81 9330 9046 89.17 9426 9461 9430 93.35
500  95.02 9455 92.83 90.59 94.60 9533 9467 93.53
2 50 8458 9433 96.07 9528 39.69 65.00 72.67 67.90
100 90.92 96.53 97.82 9744 62.87 80.03 84.94 82.65
200  93.00 97.06 97.50 97.56 7635 86.99 90.34 89.69
500 9422 9636 96.79 9723 86.83 91.59 9274 94.01
Logistic (0, \/g/n)d 1 50  99.15 9824 9732 96.85 7599 8199 8195 78.82
100 98.55 96.22 9507 9498 8470 87.83 87.65 85.87
200 96.38 94.64 9351 93.77 89.11 9098 90.90 90.54
500 9551 9413 93.64 93.56 9253 94.03 9449 9437
2 50 6924  89.51 9497 9571 1.08 15.17 3192 36.06
100 79.65 94.61 97.68 98.64 9.69 37.20 53.68 54.49
200 8590 96.54 98.78 9932 29.73 59.16 7120 71.24
500  89.05 96.45 9849 9932 5930 77.13 8443 84.58

see Leschinski (2019), which allows for parallel computing. In addition, we used the package
expm, see Goulet et al. (2019), for the standardization of the data. Critical values for the test
statistic have been estimated by means of extensive simulations (100,000 replications), and they
are displayed in Table 5 for the weight parameters a € {0.5,1,2,5, 10, oo} and the sample sizes
n € {20,50, 100}. Throughout, the level of significance is & = 0.05. For the sake of comparison,
Table 5 displays the approximate critical values of T, , in the special case d = 1, which have
been obtained in Section 3 by choosing a distribution of the Pearson family by equating the first

The Canadian Journal of Statistics / La revue canadienne de statistique
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TasLE 5: Empirical 0.95-quantiles for a?/>*27=4/216T,, , under H, (100,000 replications).

a

d n 0.5 1 2 5 10 00
1 20 2.57 7.12 15.90 30.72 39.98 53.38
50 2.64 7.42 16.82 34.00 45.48 62.93
100 2.65 7.46 17.08 34.88 47.28 65.19

00 2.67 7.52 17.28 35.56 46.23 —
2 20 5.77 15.94 3547 70.27 93.10 125.90
50 5.83 16.27 37.16 76.41 102.65 145.38
100 5.87 16.19 37.35 77.40 106.51 151.15
3 20 9.43 27.03 61.74 125.52 167.47 230.75
50 9.57 27.37 64.02 135.16 186.80 267.89
100 9.58 27.47 64.38 137.79 190.30 276.76
5 20 17.89 55.55 137.20 296.36 407.65 581.08
50 18.03 56.21 141.10 319.59 452.61 681.00
100 18.05 56.32 141.21 323.19 462.59 704.12

four moments. As already mentioned in Section 2, the test statistic 7, , is a linear combination
of skewness in the sense of Mardia (1970) and skewness in the sense of M6ri, Rohatgi & Székely
(1994), and it equals the statistic HV, of Henze—Visagie, see Henze & Visagie (2020).

5.1. Univariate Normal Distribution

In the univariate case d = 1, we compared the power of our novel test statistics with several
competitors, which are

e the Cramér—von Mises test (CvM),

e the Anderson—Darling test (AD),

e the Shapiro—Wilk test (SW),

o the Baringhaus—Henze—Epps—Pulley test (BHEP), and
e the Henze—Visagie test (HV).

The first three of these tests are well known. The CvM test and the AD test have been
implemented with the R-package nortest, see Gross & Ligges (2015), which contains the
functions cvm. test and ad. test. For the SW test, we used the function shapiro.test
of the stats-package. The test statistics BHEP and HV will be explained in (36) and (37),
respectively.

For the BHEP test and the HV test, critical values have been simulated with 100,000
replications. These values and those of Table 5 for the novel test statistics have been employed
to assess the power of the various tests against several alternatives. Table 6 gives the percentages
of rejection based on 100,000 replications. An asterisk denotes power of 100%, and the best
performing test for each alternative is marked in boldface. The choice of alternatives orients
itself towards those used in Henze & Visagie (2020). The acronym NMix1 denotes a mixture
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TaBLE 6: Empirical power (d = 1, a = 0.05, 100,000 replications).

n CwM AD SW BHEP, HV, T,, T, T, T, T, T

N(, 1) 20 5 5 5 5 5 5 5 5 5 5 5
50 5 5 5 5 5 5 5 5 5 5 5
100 5 5 5 5 5 5 5 5 5 5 5
NMix| 20 20 23 25 26 25 27 28 28 28 27 27
50 45 50 56 55 52 58 60 61 61 60 59
100 75 81 85 84 82 87 8 89 89 88 88
£,(0, 1) 20 30 33 34 33 36 36 36 35 35 34 35
50 57 61 64 61 63 66 65 63 59 56 52
100 8 85 88 86 84 88 88 8 80 76 64
15(0, 1) 20 15 17 19 18 22 20 20 20 20 20 20
50 27 30 35 31 39 3 36 35 34 33 3
100 43 48 57 50 56 55 56 53 49 45 40
1,000, 1) 20 8 9 10 9 12 11 11 11 11 1111
50 11 12 15 13 9 15 16 16 16 16 16
100 14 16 23 17 27 21 22 22 21 20 20
o) 20 34 38 44 42 35 42 43 43 42 41 40
50 73 80 89 83 74 8 86 87 8 85 83
100 97 99 % 99 97 99 99 % 99 99 99
22(15) 20 14 15 17 17 6 18 19 19 19 19 18
50 30 33 42 39 37 40 43 45 45 45 44
100 54 61 75 68 65 71 74 76 71 711 76
Logistic(0,1) 20 10 11 11 11 14 13 13 13 13 13 13
50 14 16 20 17 23 20 20 20 19 19 19
100 21 24 31 25 32 30 30 28 26 24 23
U~V3,43) 20 14 17 20 12 o 10 4 2 1 1 1
50 44 58 75 55 0 55 3 5 1 0
100 84 95 % 94 0 9% 90 48 2 1
Py, (5) 20 15 17 19 18 22 20 20 20 20 20 21
50 27 30 35 31 39 3 36 35 34 33 3
100 43 48 57 50 56 55 56 53 49 45 41
P,,(10) 20 8 9 10 9 12 11 11 11 11 11 11
50 11 12 16 12 9 15 16 16 16 16 16
100 14 16 23 17 27 21 22 22 20 20 20
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of the normal distributions N(0, 1) and N(3, 1) with weights 0.9 and 0.1, respectively. We write
Py, for the Pearson-type VII distribution, see Becker & KloBner (2017).

The novel tests outperform the selected competitors for the t;-distribution, the x2(15)-
distribution and the distribution NMix 1, and they keep up with the other procedures against the
remaining alternatives. For most of the alternatives, power does not change much with varying

the weight parameter a. A notable exception is the uniform distribution U (—\/5, \/5), against
which power breaks down for larger tuning parameters, a feature shared by the HV test.

5.2. Multivariate Normal Distribution

For the dimensions d =2, d =3 and d =5, we compared the novel test statistic with the
following procedures:

o the test of Baringhaus—Henze—Epps—Pulley (BHEP),
e the test of Henze—Zirkler (HZ),

o the test of Henze—Visagie (HV), and

o the energy test (EN).

A recent synopsis of tests for multivariate normality is given in Ebner & Henze (2020). Just
as the novel procedure, the BHEP test (see Henze & Wagner, 1997) is based on the empirical
characteristic function. More precisely, it employs the test statistic

BHEP, = J v, (1) = w ()P, (1) dt, (36)

where @, (1) = 2za®)~4/? exp(—||t]|>/(2a)), and () and w(f) are given in (3) and (2),
respectively. An alternative representation for BHEP,, is

n
1 2
BHEP, = — 3’ exp (—%”Ym - Yn,j||2>
i,j=1

n 2 2
241 ||V, -
—2(1+Cl) 2;;6Xp<—m +(1+261) 2.

In our study, we used the special value a = 1.
The test HZ of Henze—Zirkler (cf. Henze & Zirkler, 1990) originates if we choose a =

1/ \/5 (Qd+ 1)n /4)d+r4 in the BHEP test. The R-package HZ, see Korkmaz, Goksuluk &
Zararsiz (2014), contains the function mvn, which calculates the statistic of the HZ test.

The recent test of Henze—Visagie, see Henze & Visagie (2020), is the “moment-generating
function analogue” of our novel test statistic. It employs the test statistic

HV, = nJ' VM, () — tM,, () ||*w,(0) dt,

where M, (1) = n~! Z;’zl exp(1'Y, ;) is the empirical moment-generating function of the scaled
residuals. An alternative representation of HV , is

d n 2
1/7\2 1V, + Yl 11 d
Hv, = (%) Ze"P(T (it 4 Wi+ Yl (37 = 50) +55)-
i,j=1
(37)
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TaBLE 7: Empirical power (d = 2, a = 0.05, 100,000 replications).

n BHEP, HZ HV, EN T,, T, T, T, T, T

Ny(0,1,) 20 5 5 5 5 5 505 5 5 5
50 5 5 5 5 5 505 5 5 5

100 5 5 5 5 5 5.5 5 5 5

NMixI 20 39 34 32 37 38 41 41 40 39 38
50 83 74 68 8 8 88 8 88 8 86

100 99 9% 97 99 99 99 ok & % *

NMix2 20 20 17 27 20 23 24 25 25 25 25
50 38 30 53 39 45 48 49 48 47 44

100 60 47 77 6l 68 72 72 70 66 55

150, 1) 20 47 45 54 49 49 51 53 53 53 52
50 83 80 8 8 8 84 8 8 8 78

100 98 97 97 97 97 98 98 97 95 90

15(0,1) 20 25 2 32 26 27 29 30 31 31 3l
50 49 42 59 50 49 53 55 54 54 52

100 75 67 8 76 71 76 77 75 12 66

110(0, 1) 20 1 0o 16 12 12 14 14 15 15 16
50 17 14 29 18 19 22 24 25 25 25

100 27 20 43 28 26 31 33 34 33 33

() 20 48 44 38 46 46 48 50 48 4T 46
50 93 8 80 92 93 94 95 95 94 93

1572 20 18 6 17 17 17 19 20 20 20 19
50 45 35 39 42 43 49 53 55 54 52

100 78 62 71 77 78 84 88 8 88 88

(X202 20 15 3 14 14 14 15 16 16 16 16
50 34 27 31 33 33 38 41 43 43 4

100 64 47 8 63 64 71 76 18 77 77

G, 17 20 26 23 23 24 24 27 28 27 27 26
50 64 53 53 61 6 6 71 712 T 6

100 93 84 87 93 94 9% 97 98 97 97

r@4,2y 20 32 22 27 30 30 33 34 33 33 32
50 75 64 61 73 73 79 8 8 8 79

100 98 92 93 97 98 99 99 99 99 99
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TaBLE 7: Continued

n BHEP, HZ HV, EN T, T, T, T, T, T,

Logistic(0,1)> 20 11 0 16 12 13 14 15 16 15 16
50 18 IS 29 20 20 23 24 25 25 25
100 29 22 42 31 29 34 35 34 33 3]
UG=v3,4/3? 20 12 18 0 11 6 3001 1
50 60 67 0 52 32 13 3 0
100 98 98 0 9 9 80 24 1
P,,(5) 20 20 18 28 21 22 24 26 26 26 27
50 39 32 51 40 41 45 47 46 46 45
100 63 3 73 64 6 67 68 66 62 S8
P, (10)2 20 10 8§ 13 10 11 11 12 13 13 13
50 13 1M 23 14 15 18 19 20 20 20
100 19 14 35 21 20 24 26 27 27 26
P, (20)2 20 7 6 8 7 7 7 7 8 8 8
50 7 7 12 8 8 9 10 11 11 11
100 8 717 9 9 11 11 13 12 13

In our comparative study, we put a = 5, as recommended in Henze & Visagie (2020).

The rationale of the energy test of Székely & Rizzo (2005) is based on the fact that, if X and
Y are independent, integrable d-dimensional random vectors and X’ and Y’ denote independent
copies of X and Y, respectively, then

2EIIX - Y - EIIX - X"|| - EIlY = Y| > 0.

D
Here, the equality holds if and only if X = Y. The statistic of the energy test for multivariate
normality is

n n
2 . 1 - -
EN =1 <; D [E[nYn,j - Z Xy, ... X] —EIZ =2l = — DIV, - Yn,j||> :

j=1 i,j=1

Here, f/nJ =y/n/(n=1)Y,
also independent of Yn’l s..o» Y, . To calculate EN, notice that E||Z; — Z,|| = 2I" (d—;l> /T (g)
and

and Z,, Z, are i.i.d. with the normal distribution N,(0, 1;), which are

d+1

[E||a—Z|—\fF<Z>> \[Z(l)k a2 (5)r(k+3)

r( K12k (2k + 1)(2k +2) r<k+§+1)
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TaBLE 8: Empirical power (d = 3, a = 0.05, 100,000 replications).

n BHEP, HZ HV, EN T,, T, T, T, T, T

N30, ;) 20 5 5 5 5 5 505 5 5 5
50 5 5 5 5 5 505 5 5 5

100 5 5 5 5 5 5.5 5 5 5

NMix1 20 39 35 033 41 40 43 44 43 41 40
50 89 81 66 91 91 94 95 95 93 92

NMix2 20 28 24 43 33 34 38 40 41 41 41
50 59 49 8 66 65 72 75 15 15 T3

100 85 74 9 8 8 92 93 94 92 8§

150, 1) 20 56 53 65 62 58 63 65 66 65 65
50 93 9 94 94 8 93 93 93 92 9l

100 * * * 98 99 o ® 99 99 98

150, 1) 20 29 26 41 35 32 37 39 41 40 41
50 62 54 73 67 57 67 70 70 70 69

100 90 8 92 91 8 88 90 8 88 84

110(0,15) 20 12 120 15 14 17 18 19 19 20
50 22 17 38 26 22 28 32 34 35 35

100 37 28 57 42 30 40 46 48 48 47

) 20 48 43 38 49 46 50 51 50 49 48
50 95 8 82 9% 94 97 97 97 9T %

(157 20 17 5 17 18 16 18 19 19 19 19
50 45 34 38 48 4 51 56 58 57T 56

100 82 64 69 8 8 8 92 93 93 92

(220 20 13 2 14 14 13 14 16 15 15 15
50 34 25 30 36 31 39 43 45 44 44

100 67 48 56 70 65 75 81 8 8 8

G, 1y 20 25 2 23 25 23 26 28 27 27 26
50 65 53 53 68 64 71 76 16 15 T4

100 96 8 8 97 9 98 99 99 99 99

r@,2y 20 30 27 27 32 29 32 34 33 33 32
50 77 65 62 79 76 82 8 8 8 83

100 99 94 93 99 99 ok k% *
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TaBLE 8: Continued

n BHEP, HZ HV, EN T, T, T, T, T, T

Logistic(0,1)* 20 11 o 17 13 13 15 16 17 17 17
50 18 14 32 22 19 24 27 29 29 29
100 31 22 48 36 27 35 39 39 39 38
U-v3,4/37° 20 11 15 0 6 5 21
50 58 65 0 39 20 8 2
100 98 98 0 9 79 51 12 1
P, (5) 20 20 17 30 24 23 27 29 30 30 30
50 41 34 58 47 42 50 54 55 54 53
100 69 s7 8 73 6 72 76 715 13 69
P, (10)° 20 9 8 4 11 11 12 13 14 14 14
50 13 0 2 16 14 18 21 23 23 23
100 20 14 39 24 18 24 29 31 31 3]
P, (20)} 20 6 6 9 7 7 7 7 8 8 8
50 7 6 13 8 8 9 10 11 12 12
100 8 717 10 8 10 12 13 14 14

The R-package energy Rizzo & Székely (2019) contains the function mvnorm.etest to
calculate EN. Note that all of the mentioned procedures are also implemented in the R-package
mnt, see Butsch & Ebner (2020).

Just as was done in the case d = 1, we first simulated critical values with 100,000 replications.
With the same number of replications, we then simulated the power of the tests under discussion
against selected alternatives. Again, the choice of alternatives orients itself towards those
used in Henze & Visagie (2020). Tables 7-9 display the percentages of rejection of H,, for
dimensions d =2, d = 3 and d = 5, respectively, and an asterisk again denotes power 100%.
To generate pseudo-random numbers, we used the R-packages mvtnorm, see Genz et al.
(2019), and PearsonDS, see Becker & KloBner (2017). Suppressing the dimension d, the
distribution NMix1 is a mixture of the normal distributions N,(0, I;) and N,(3,1;) with mixing
proportions 0.9 and 0.1, respectively. Here, 3 stands for the d-dimensional vector that contains
3 in each component. Likewise, NMix2 denotes a mixture of the normal distributions N,(0,1,)
and N,(0, B;) with mixing proportions 0.1 and 0.9, respectively. Here, B, is a d X d-matrix with
1 for each diagonal entry and 0.9 for each off-diagonal entry.

The novel tests outperform the competitors for some alternatives, notably for the y2-, the I'-
and the NMix-distribution, but they can also keep up for the other alternatives. However, just as

in the univariate case, power is extremely low against the uniform distribution U (—\/5, \/3 ), a
feature shared by the HV test. Based on the results of this simulation study, we recommend as
an omnibus choice a = 1 for the tuning parameter, since it leads to competitive power against
nearly all of the alternatives considered. In particular, it also has power against alternatives like
the uniform distribution.
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TaBLE 9: Empirical power (d = 5, a = 0.05, 100,000 replications).

n BHEP, HZ HV, EN T,, T, T, T, T, T

N5(0,15) 20 5 5 5 5 5 5 5 5 5 5
50 5 5 5 5 5 5.5 5 5 5

100 5 5 5 5 5 5.5 5 5 5

NMix1 20 25 2 31 32 27 33 36 34 34 33
50 85 74 50 94 8 94 95 92 90 86

NMix2 20 32 27 6 48 40 51 56 58 59 59
50 76 67 9% 8 79 89 93 94 94 94

100 96 92 * 9 96 99 99 o % *

150, 15) 20 62 59 79 76 67 76 19 81 81 80
50 98 97 99 99 99 ® F 99 99 99

150, 1) 20 31 28 54 47 37 48 52 54 54 55
50 77 71 8 8 68 82 88 8 8 89

100 98 9 99 99 88 96 98 99 98 98

110(0,15) 20 12 126 20 15 21 24 25 26 26
50 28 23 55 44 26 39 48 52 54 53

100 54 4 78 69 36 54 61 72 173 72

G 20 39 35 36 48 39 46 48 48 47 45
50 94 8 80 98 94 97 98 98 98 97

(Z(15)° 20 13 2 15 16 13 15 17 17 171 17
50 38 29 35 52 37 49 56 58 58 56

100 78 60 64 90 77 89 94 95 95 94

(220)° 20 11 9 12 13 11 12 13 14 13 13
50 28 2 28 39 27 36 42 45 44 43

100 61 43 51 77 60 74 8 8 8 85

I, 1) 20 18 16 21 24 18 22 24 25 24 24
50 59 47 20 74 58 71 78 719 18 76

100 95 8 8 99 95 99 99  x 99

r(4,2)’ 20 23 20 25 29 23 28 30 30 30 29
50 72 60 59 8 71 8 87 88 8 85

100 99 9 91 * 99w w o w o ow *
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TaBLE9: Continued

n BHEP, HZ HV, EN T,, T, T, T, T, T

Logistic(0,1)* 20 9 8§ 17 13 11 14 16 17 17 17
50 15 13 34 2 17 24 30 33 34 34
100 29 22 53 42 23 34 43 47 41 47
U-V3.43° 20 9 11 0 2 4 21
50 50 51 0o 12 12 4 1
100 9% 95 0 75 49 20 5 0 0
P,,(5) 20 16 14 33 25 20 27 30 33 32 32
50 39 32 67 56 39 54 62 65 65 65
100 71 60 8 83 59 77 8 8 8 83
P, (10)° 20 8 7 14 11 9 11 13 14 14 14
50 11 9 28 19 12 18 23 26 27 27
100 18 13 4 28 16 24 32 37 38 38
P, (20)° 20 6 5 8 7 7 7 8 8 8 8
50 7 6 13 9 8 9 11 12 12 12
100 7 719 11 8 10 13 15 16 16

5.3. High Dimensions

To assess the power of the proposed test for higher dimensions, we performed a Monte Carlo
study. We first generated critical values with 10,000 replications and then simulated the power of
the test with the same number of replications against the selected alternatives. Table 10 displays
percentages of rejection of H|, for the dimensions d € {50, 100, 200,500} and the sample sizes
n € {500,700, 1000,2000}. Again, an asterisk * denotes power of 100%. The proposed test is
applicable in high-dimensional settings given there is a reasonably large amount of data available.
The test performs well even in high dimensions, and especially so for the #-distributions. The
choice of a larger weight parameter a seems to be beneficial for higher dimensional cases. For

the uniform distribution U (—\/5, \/5), the proposed test performs notably better than in the
low-dimensional cases.

6. A REAL DATA EXAMPLE

The Black—Scholes—Merton model is a stochastic model for the dynamics of a financial market
that contains derivative investment instruments. One of the basic assumptions of this model is
the normality of the log returns of stocks and indexes. To test the hypothesis of joint normality
of log returns of several indexes, we consider the following five stock indexes: Standard &
Poor 500 (*GSPC), Dow Jones Industrial Average (*"DJI), NASDAQ Composite (M"XIC), DAX
Perfomance Index (*GDAXI) and EURO STOXX 50 (*STOXXS50E), over a period of 50 trading
days, starting 1 July 2017. The data (daily closing prices of the stocks) were obtained by
means of the R-package quantmod, see Ryan & Ulrich (2019). To model the independence
assumption between the realizations, we ignored a time span of 10 trading days between each
of the five-dimensional observations. Figure 1 shows a plot of the two-dimensional projections
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TaBLE 10: Empirical power for high dimensions (@ = 0.05, 10,000 replications).
d 50 100 200 300
n 2 5 10 2 5 10 2 5 10 2 5 10
N(O,1)) 500 5 5 5 6 5 5 5 6 5 5 4 5
700 5 5 5 5 5 5 5 5 5 5 6 5
1000 5 5 5 5 5 5 4 5 5 7 5 5
2000 5 5 5 5 5 5 5 6 5 5 5 5
NMix1 500 52 89 89 6 17 26 0 5 7 0 4 5
700 78 99 99 7 31 45 0 4 9 0 0 4
1000 98 * * 10 52 71 0 5 13 2 4 5
2000 * * * 25 98 * 0 14 37 0 0 10
NMix2 500 * * * * * * 0 79 91 0 0 0
10,1, 500 * * * * * * * * * 22 * *
700 * * * * * * * * * 14 * *
1000 * * * * * * * * * * * *
2000 * * * * * * * * * * * *
th(O’ Id) 500 % * % * k * % * %k 1 % 8
(r*(15))¢ 500 * * * 8 97 * 0 14 * 0 0
700 * * * 26 * * * 78 0 0 0
1000 * * * 71 * * 0 1 * * 0 0
2000 * * * * * * 0 * * 0 0 *
5, 1)¢ 500 * * * 16 * * 0 0 22 0 0 0
700 * * * 62 * * 0 0 98 0 0 0
1000 * * * 99 * * 0 4 * 0 0 0
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TaBLE 10: Continued

d 50 100 200 300

LogisticO, 1) 500 13 74 9 2 1 8 * 0 0 0 0 0
700 26 80 99 3 2 8 * 0 0 95 95 0

1000 s1 8 * 8 6 9 0 0 0 % 0

20000 99 98 * 69 4 97 0 0 0 0 0

U=V3,4/3)" 500 97 0 * 8 0 4 % 98 4 99 99
700 % 0 * 9 0 3 x x4 =

1000 * 0 * 99 0 3 x k6 x %

2000 % 14 0 % k0 3 & x 3 %

Py, (5) 500 93 % o+ 14 8 % 0 0 w0 w 0
700 % % % 70 52 % 4 0 0 0

1000 * * %= % 98 % 0 0 1 0

2000 ¢ % ok x % % 95 % 70 0 52 0

of the log returns. For each value a € {0.5, 1,2, 5, 10} of the weight parameter a, we performed
a Monte Carlo simulation based on 100,000 replications in order to estimate the P-value of the
observations. The empirical P-values are displayed in Table 11. As can be seen, the hypothesis
of multivariate normality of the log returns of the selected stock prices is rejected at the 1%
level, for each choice of the weight parameter a. The hypothesis of univariate normality of the
marginal distributions of the data, however, is not rejected at the 5% level for most of the choices
of the weight parameter a.

7. SUMMARY AND OUTLOOK

We proposed a novel class of tests of normality based on an initial value problem connected
to a multivariate Stein equation, which characterizes the multivariate standard normal law. We
derived asymptotic theory under the null hypothesis, as well as under contiguous and fixed
alternatives. Moreover, we proved consistency against each alternative distribution that satisfies
a weak moment condition, and we provided insights into the structure of the behaviour of the test
statistic under fixed alternatives by calculating asymptotic confidence intervals for A, and by
providing a consistent estimator for the limiting variance 0'5. Monte Carlo simulations showed
that the methods operated as expected and that the new family of tests is a strong class of
competitors to established procedures.

A first open question for further research is to find explicit formulae or numerically stable
approximations for the eigenvalues 4;(a), j = 1,2, ... connected to the integral operator K in (14).
We also leave as an open problem the calculation of higher cumulants of T, , for dimensions
d > 1. Results of this kind would open ground to efficient approximation methods for the
computation of critical values that avoid Monte Carlo simulations and efficiency statements,
since the largest eigenvalue has a crucial influence on the approximate Bahadur efficiency, see
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FiGure 1: 2D projections of the log returns of the indexes.
TasLE 11: Empirical P-value (100,000 replications).
a 0.5 1 2 5 10
Univariate AGSPC 0.1025 0.0721 0.0535 0.0457 0.0436
ADJI 0.1750 0.1324 0.1212 0.1225 0.1231
AIXIC 0.2226 0.2100 0.2093 0.2236 0.2297
AGDAXI 0.1391 0.1062 0.0690 0.0491 0.0434
ASTOXXS0E 0.0991 0.0930 0.0677 0.0488 0.0424
Multivariate 0.0002 0.0001 0.0002 0.0003 0.0003

Bahadur (1960) and Nikitin (1995). A promising new field of interest in connection with tests of
multivariate normality is to consider their behaviour in high-dimensional settings, that is, to find
a suitable rescaling and shifting of the test statistic to obtain a non-trivial limit distribution under
a suitable limiting regime, under which, for example, n,d — oo such thatd/n — = € [0, co]. For
initial results, see Chen & Xia (2019). As a starting point, we conjecture that for a sequence
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(ng)gen> Whereny, > d+1and n,; = 0<< 24 )_ ), we have under Hy as d — oo
T

d
a E ng.a a.s.
- — 1.
T d

Finally, it would be of interest to consider a related family of test statistics, which is given by

Sna = nJ ) IV, () + tw, (DIIE w,(0) dt.
R

Thus, the theoretical CF in T, , has been replaced by the empirical counterpart. Note that in
the univariate case, this family is extensively studied in Ebner (2021), but the generalization to
higher dimensions is still open. We conjecture that similar results as derived in Sections 2—4
hold for S, .
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APPENDIX

Proof of Theorem 2. Putting t = (ty,...,1,)' € R? and Y, ; = (Y(l? o Y,(ldj))T, some algebra
(using symmetry and the addition theorem for the cosine function) yields

To =1 | V(0 + @[ w0 d
~ n 2
1. .
=n Iln Z 1Y, ;exp (ir? Yn’j) + ()| w,(1)dt
Jj=1 c
~ n 2
=n 1Z{n,/(r)—y ssin (1Y, ;) +1Y,, cos (11, .)} w,(f) dt
J n j:1 n,j n,j n,j n,j C a

N n 2 n 2
=n|) <% D Oy(e) - ¥ sin (tTY,Lj)> - (% > ¥ cos (tTYn,j)> w, (1) dt

v k=1 Jj=1 Jj=1
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d
J z {t(k)t(k) exp ||t|| -= 2 t(k)y/(t)Y(k) sin (tTY )
k=1

I

n n,j o n,i n.j

n
1
+= ) YOy W cos (i1(v,, - ¥, »))}wa(t)dt.
i,j=1

We thus have
2« .
T,.= nJ {||r||2exp (~@+ Dli?) = = ¥ 17, sin (17Y,, ) exp< (a + = >||t||2>
j=1

+; Z Y1Y, cos (11(Y,; —Yn’j))exp(—a||t||2)} dr.

i,j=1
Using
d
2
jllrllzexp(—allrnz) dt = (5> 4 (A1)
a 2a
g 2
2
Jcos(ﬂc) exp (—a||t||2) dt = (E) exp <— el > (A2)
a 4a
d
3 2 2
j tTesin(fTc) exp (—a||t||2) dt = <£> e exp <— e > (A3)
a 2a 4a
the assertion follows readily. |

Proof of Theorem 5. Recall that, in view of invariance, there is no loss of generality if we

D
assume X = N,(0,1;). With the notation in (15), Z, defined in (10) takes the form

Z(t)_—z (Y,,CS*(1.Y,,) — tw(®).

n j=

To prove Theorem 5, we use the central limit theorem for Hilbert space valued random elements,
see, for example, Theorem 2.7 of Bosq (2000). Since Z, does not comprise independent
summands, we approximate Z, by a sum of i.i.d. random elements of H. To this end, we
introduce the auxiliary random elements

n

7, := LZ X;+4,,)CS*(LX;) — tw(n) + X,CS™(1.X;)TA, ),

1
2
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where A, j is defined in (13).
The proof of Theorem 5 comprises three steps. We show

D
7' = ZinH, (AS)
~ P
1Z, = Z,llyy — O, (A6)
~ " P
”Zn - Zn”ﬂ.[] — 0. (A7)

The assertion then follows from Slutsky’s lemma. To prove (AS), notice that Z;" *,Z;*, ...1sa
sequence of i.i.d. random elements of H. These elements are centred, since

E[Z:(0)] = E [XCS+(t, X)— (t FX 4+ QL — )%(XXT . tTXt> y/(t)]
= E[XCS*(t,X) - tw(n)] =0, reR%

The covariance matrix kernel E [Z/()Z*())T| = E [ZT*(S)ZT*(I)T] = K(s,1) (say), where 5,1 € R,
is given by

K(s.t)=E [(Xcs+(s, X) - (s +X A+ QL —ssT )%(XXT L) sTXs>t//(s)>
(xest@x0 - (r+x+ @1, - ttT)%(XXT - tTXt>y/(t))T].
In view of E[X] = 0 and E[XXT] = I, tedious but straightforward calculations yield
K(s,1) = E[XXTCS* (s, X)CS* (1, X)| — sw()E[XTCS* (1, X)| — w(s)E[XXTCS*(1,X)]
— w(s)E [((yd - ssT)%(XXT —I)- sTx> SXTCS*(, X)]
— E[XCS* (5. )] Ty (0) + s (9w (6) — E[XXTCS* (5. X)] w(0) + Lw (5w (0

+E :((21[, e )%(XXT — 1) = STX ) 5XT ] W)

—E |xCS* (s, )17 ((21d — )%(XXT —I)- tTX>T] (o)

+E X7 ((Zld - ttT)%(XXT —1,)—-t'X )T] w(w (D)

+E ((ZId—ssT)%(XXT - Id)—sTX> st <(2[d—tt7)%(XXT—Id) - tTX>T] w(w().

Since the occurring expectations are given by
E[CS*(t.X)] = w(@).
E[XCS* (1, X)] = tw (1),
E[XCS™(t,X)] = -y (),
E[XXTCS*(1,X)| = (U, — My (®),
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E[XXTCS™(1,X)| = (I, — "y (0),
E[sTXXXTCS* (0, X)| = (sTey — trT) + st7 + 157 )y (1),
E [XXT CS*(s, X)CS™ (¢, X)] = E[XXT(sin(s + 1) + cos(s — 1))]

= (I, = (=0 =D")y(s—1),
E[sTXXXT] =0 € R™,

E[XXT = I)s"(XXT — 1)| = 15T + s,

some algebra shows that K(s, r) takes the form given in (12). Thus, by the central limit theorem
in Hilbert spaces, (AS) follows. To prove (A6), notice that

cos(tY, ;) = cos(t™X;) — sin(t"X)1TA,, ; + €, (1),
sin(t'Y, ;) = sin(z1X;) + cos(t"™X )1TA, ; +n,, ; (1),

where
max(le, ;)] |n, ;OD < 1717114, 117 (A8)
Hence

CS™(t,Y, ;) = CS*(t.X,) + CS™(LX)IA,,; + €, (1) + 1, (1),

> Ln,j

and some algebra gives

Ly

Vi &

Z,(t) - Z,(t) = (X + A, ), ;) +1,;0) + A, ,CST(LX)TA, ;).

Putting

A, = = S 2ux,0a,,0% B, = 2 1A, n=i2 20,
n j=1 j=1 \/_ i=1

(A8) and the Cauchy—Schwarz inequality yield

1Z,(5) = Z, @Il < Allell> + B, llell + C, liel1>.

By Theorem 5.2 of Barndorff-Nielsen (1963), we have n~!/4 max;_; ., [IX;l ) Invoking
Proposition A.1 of Dorr, Ebner & Henze (2021b) gives us n'/*max;_; |14, % 0 and

Z;': A, I> = Op(1), from which it is readily seen that each of the expressions A,, B, and C,
converges to zero in probability as n — oco. In view of

5 112 2
1Z, = Z,lly < [ (AN + B llzll + C,llell*) “w, (o) dt,
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the proof of (A6) is finished. To prove (A7), we put

(X,x! — Id)t> u/(t)),

A(t)_TZ(A CS+(tX)+<X +2

B,(1) = % > (xes @ xpma,, + (1 - ttT)%(XjX]T. 1)t =X, ().

n j=1

Using the triangle inequality, some calculations give ||Zn =Z, < Al + 1IB,lly, and thus
(A7) follows provided we can show that [|A, ||, = op(1) and [|B,|l,; = op(1). We only prove
14,1}y = op(1), since the reasoning for ||B,,[|;; = op(1) is similar. From the definition of A,, ; in
(13), we have

n

A, (1) = <s,j 2 —1d> % (x,CS*(1, X)) - p(0) - S, °X,
n j=1

1 1
—w(r) <S,:E —Id) VX, + <\/Z<S,7 —Id> - (x,X] —Id)>ty/(t)

=A,1(0) =A@ — A, 3(0) + A, 400,
say, and thus it remains to prove that each of [|A, i |l,;, k € {1,2,3,4}, is op(1). Letting | - ||,

denote the spectral norm, it follows that

2
(X,CS*(1. X)) — ty (1))

Wl < |Va(s:t =) | 2

H

Here, the first factor on the right-hand side is Op(1), and the second converges to zero almost
surely because of the strong law of large numbers in H. As for ||A,,, ”iu’ it holds that

2
2
14,2115 <

LY (st x) - w)
=1

12

Here, each of the first two factors on the right-hand side are Op(1), and the last one converges
to zero almost surely because of the strong law of large numbers in L. The term ||An,3”|]2.n is
bounded from above by

_1 2 —
14,01, < [VA(S27 = 1) IR | expc P, o .

Hence ||A,, 3 ”?I-[I = op(1) since ||)_(”||2 = op(1). Finally, we have
1 n 2
-3 1
WAnally < V(S = 1) + —= X (X,X] - 1) j 111> exp(=ll])w, (1) dr.
24/n 1= ,

From Display (2.13) of Henze & Wagner (1997), the factor preceding the integral is op(1), and
thus ||An,4||”2ﬂ = op(1). The proof of Theorem 5 is completed. [ |
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Proof of Theorem 15

Proof.  Since the proof is analogous to that given in Dorr, Ebner & Henze (2021b), it will only
be sketched here. The first observation is that the quantities ¥, ,(¢), £ € {1,2, 3,4}, defined in
(32), (33) have the following almost sure limits:

W0 5wt (), Wa, (1) = Vit (1), Ws,(1) — =V (1), Wy, (1) — EIXXTCS™(1, X)].

Here, the convergence of W5 ,,(¢) is assertion (a) of Lemma 6.6 of Dorr, Ebner & Henze (2021b),
and the remaining claims follow, after some notational changes, the reasoning given in the proof
of Lemma 6.6. of Dorr, Ebner & Henze (2021b). From (30) and (31), we have

5

L(s,0)= Y Li(s1), (A9)

ij=1

where L (s, ) = LJ(t, s)T and—putting I:l—' =Y, Y o+,

n,j* n,j

LM (s, 0=~ ZY,UCS+ 5, Y,;)Y1.CS* (1.7, ),

L2(s,0) = —= Z Y, ;CS* (s, Y, ) Y1 W), (),
L3, =—~ Z Y, CS*(s,Y,,)1'Y, ¥, ()T,
LG, 1) = —— Z Y, ,CS* (s, Y, ;) W5, (O,
LS(s,0 = —= 2 Y, ,CS* (s, Y, )11, W, ,(0),

n
22 _ 1 T
L=~ ; Y, Y] W),
1 n
L23(s,1) = - PR A SO AR SWOLE
j=1
1 n
2,4 — T7+
Lt =5 ,ZT Y, ()W, (O,

1% -
L) = 5 DY, a0 W, (0,
=1
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n

1
L}3(s,0) = n Z sTY, ¥ ()Y, ;W (DT,
j=1

n

1
3.4 —
L0 = om 51, o, O¥3, 0T,

Jj=1

n

1 _
L) = 50 350, 0 (0L W (1),
j=1

n
1
LiA(S, H= an Irtjlp3,n(s)lp3,n(t)wn+s/’
j=1

n
LH(s,0) = % A SWOTL it FWOX
j=1

1 n

55 _ S

L (s, 1) = n 'El Wy () STy, ().
=

From (A9), it follows that 52 = Eszl &), where

6l = H Zu()TLY (5, D)z, (D)W ()W, (1) ds dt. (A10)

Notice that 6",% = 8{;,‘;. In view of (23) and (24), we have L(s,t) = ij:l L (s, t), where
LM (s, 1) = E[w;(s, X)w;(t, X)T], and

WI(LX) = XCS+(I, X)9 Wz([, X) = _XW;(I)9 W3(t, X) = _tTXVW;(t)9

wy(t,X) = = (XXT+ 1;) Vg (1), ws(1,X) = —%[E[XXT CS™ (1, X)I(XXT = I)t.

N —

s
Therefore, 62 = Y.° . o,’, where
a i,j=1"a

ot =4 ﬂ 2()TLH (s, Dz(t)w ,(s)w, (1) ds dt

and, by symmetry, L/ (s, t) = L/(¢, s)T and hence afl’j = o-é"i. We thus have to prove ’a\f;f;l i» Gfl’j
for each phoice of i,j e {1, ...','5}. To this end, we proceed in two steps. The first one is to
replace L,/ (s, 1) in (A10) with LZ{O(S, f). Here, L;’”O(s, f) originates from L’ (s, ) by replacing each
Y, j with X s and this replacement also affects the quantities ‘Pf’n(t), ¢ € {l,...,4}. Moreover,

we replace z,,(r) with z,, (1) = n”"! 27:1 X,CS*(1,X;) — ty (7). Putting

n,0,a

/O_\i,j =4 J] Zn,O(s)TLZj()(S’ t)Zn,O(t)Wa(s)Wa(t) ds df,
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T P . ) )
it follows from Fubini’s theorem that ":{jo L o’ The second, much more technical, step is to

~ij AL . .
prove 0,7, = 0,7 , = op(1). To this end, notice that

2L (5, 02,(0) = 2, ()L (5, 02,00 = 2, ()T (L (5,1) = L (5.0) 2, (1)
+ (zn(s) - zn,o(s))TL;’j (s, )z,(1)
+ 2,0 OTLA 8, D(2,(0) = 2,0®),  (ALD)

where

|(Zn(s) —zn,o(s)) (s Nz,(0)] < [|z.(5) —z,,o(s)””L (s, D5 ||z.®|-
|z, O(S)TL (5.0 (2,(0) = 2,0(0) | < ||z,,0(s)||||L (Do ]|20(0) = 200 D-

We have ||z, ()]l < 2n~! Z/ L IX; 1l + [[2|ly (2), and a Taylor expansion yields

n

2
Ol < ~ DX+ 16 A 1+ A+ A, 17) + el @),

j=1

n
2 2I|t|I
1 — Hil <= A, —_— A X;
l12,(®) = 2,00l < - > 1Al + Z 14, IHIX -

j=1

Notice that each of the terms ||L (s, n||, is bounded from above by terms of the type
2€1sI1Z 1£]l™, multiplied with flnltely many products of the type n~! ijl [|1 X jllﬁ , with k <2,
£,me {0,1}, and g € {1,2,3,4}. In view of the condition E||X||* < co and the fact that

n~! Z;’:l 1A, 411X, 017 ! (see Proposition A.2 of Dorr, Ebner & Henze, 2021b), it follows
that

H | (z,(s) — zn,o(s))TL’;;{O(s, 02,0 W, (5)w, (1) ds dt o,
ﬂ |20 ()L (5, D) (2,(6) = 2,,0(0) [w (s)w, (1) ds dlt 0.

As a consequence, we only have to consider the first term on the right-hand side of (A11). To
this end, notice that

|Zn(s)T(Li;j(s,t)— (s D)z, (0| < ||zaO|||LE (s, 1) — L (s D, ]|z.®||-

To find an upper bound for [|L"/ (s, 1) — L’ J o(8: DI, we have to consider each case i, j € {1,...,5}
such that i < j separately. We will elaborate on the case i = j = 1; the other cases are treated
similarly. Putting CS* (s, 1, &) = CS™ (s, £)CST (¢, &), we have

n

1
;Z(y YT CS*(s,1,7,,) = X;X]CS¥ (5,1, X;))

Ly s, 0) = LYo, D, = Y
j=1

)

2
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and a Taylor expansion yields
4% 4%
| o0 = Ly n]), < = 311 (M4, 1+ s, 1)+ 3% 112 (s A1)
j=1 j=1

8 n
+- 2 126 1A, 1L+ DA 1) (L + DA, 1)
=1

4 n
2 3 I (L s, 11) (1 + 1A, 1)-
j=1

From Proposition A.2 of Dorr, Ebner & Henze (2021b), it follows that ||Lrll*](s, 1 —

LM 0l = 0.
To prove (35), we need the integrals

g 2
Ly, = J 1w (H)CS™ (8, x)w, (1) dt = ﬂxexp il ’
’ (a+ 1)5*! 4a+2

L, (x) := J 11" xy (HCS™(t, x)w,, (1) dt

d
21)2 x||?

= (—)d((Za + Dx — ||x||2x) exp | — (A1 ,
(2a+1)5+2 4a+2

d o
I, (6y) = JCS+(t,x)CS+(t, Y, (1) dt = (g) 2 exp (—%) ,

[ o2
L (xy) = JtCS+(t, 0CS™(t, y)w, () dt = <§>2 (xzay ) exp <— Ix 4ay I > .

Putting

P =YY, 0 (Y,

la = “ni'nj

Yn,j) - Ll,a(Yn,j)TYn,j’

A

ik
PlZ,Ja = YJ,iYn.jll.a(Yn,h Yn,k) - Ll,a(Yn,k)T Yn,j’

P;i;k = Y,L‘Yn,kYyI,jIZ,a(Yn,i’ Yn,k) - YJ,jLZ,a(Yn,k)’

ik
Pl =Y (Y 1) Yady oY Yo) = Yo (Y Yo+ 1) Ly oY),

4,a nJj = n,j n,J = n,j

Pk =yly PR AIES RIEHOAR AVED AR A AFED AI SO A9

Sa °° Tnin n,j " n,j n.j = n,j
straightforward calculations give
n n
A~ 4 ij pkj A 4 ij ik
ohl = Z P ophi 512 = — pil ptis i
n* .

n,a ; la" la’ n,a l,a 2a
i,j.k=1 i,j.k, =1
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4 n
81,3 - _ Z Pl,j Pf,],k’ 81,4 —__= Z P,J P £.Js k’
n,a n4 l.a® 3.a n,a l,a® 4,a
ij.k=1 ,jkf 1
> n
sls — _ <2 2 i p ,/k’ 82’2= Z P,JkP ,Jf
n,a n4 l,a” 5.a n,a
i,j.k, =1 ,kam 1
A~ 4
0’372:_5 Z P,Jk})m’]f Z PsJkP ,jf
K em=1 a ,jklm 1
A~ k 4 PN k f
525 = £ 2 P,J ij 0_33 2 P,J P ,J
na n 5.a
i,j,k,l,m=1 i,j.k, 0 m=1
~ 2 A~
534 = = 2 P”kP ,Jf 63,5= Z P,Jkpmu’
na nd n,a
i)k m=1 ,kam 1
1 n
A ik £ A k& f
0_4,4 — = Z Pl,j, Pm’J, , 0_4,5 — Z P»J P aJ
n,a nd 4a " 4a n,a
i.j.k.0 . m=1 i.j.k, ¢ m=1
~ 1
Gy = Z PP (A12)
i,j.kC m=1
|
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