
EVALUATING UNIFORM MANIFOLD APPROXIMATION AND PROJECTION FOR

DIMENSION REDUCTION AND VISUALIZATION OF POLINSAR FEATURES

Sylvia Schmitz 1, 2,∗, Uwe Weidner 2, Horst Hammer 1, Antje Thiele 1, 2

1 Fraunhofer IOSB, Ettlingen, Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB -

(Sylvia.Schmitz, Antje.Thiele, Horst.Hammer)@iosb.fraunhofer.de
2 Institute of Photogrammetry and Remote Sensing, Karlsruhe Institute of Technology (KIT) -

(Sylvia.Schmitz, Uwe.Weidner, Antje.Thiele)@kit.edu

Commission I, WG I/3

KEY WORDS: PolInSAR, F-SAR, Visualization, Dimension Reduction, UMAP.

ABSTRACT:

In this paper, the nonlinear dimension reduction algorithm Uniform Manifold Approximation and Projection (UMAP) is investigated

to visualize information contained in high dimensional feature representations of Polarimetric Interferometric Synthetic Aperture

Radar (PolInSAR) data. Based on polarimetric parameters, target decomposition methods and interferometric coherences a wide

range of features is extracted that spans the high dimensional feature space. UMAP is applied to determine a representation of

the data in 2D and 3D euclidean space, preserving local and global structures of the data and still suited for classification. The

performance of UMAP in terms of generating expressive visualizations is evaluated on PolInSAR data acquired by the F-SAR

sensor and compared to that of Principal Component Analysis (PCA), Laplacian Eigenmaps (LE) and t-distributed Stochastic

Neighbor embedding (t-SNE). For this purpose, a visual analysis of 2D embeddings is performed. In addition, a quantitative

analysis is provided for evaluating the preservation of information in low dimensional representations with respect to separability of

different land cover classes. The results show that UMAP exceeds the capability of PCA and LE in these regards and is competitive

with t-SNE.

1. INTRODUCTION

In recent years, Polarimetric Synthetic Aperture Radar

(PolSAR) systems, which capture high resolution data inde-

pendent of weather and daylight, have proven to be a power-

ful tool for earth observation. The information contained in

fully polarimetric data can provide insights into the shape, ori-

entation, and dielectric properties of observed scatterers on the

ground. The high information content of the data enables ap-

plications ranging from land use and land cover classification,

soil moisture and surface roughness estimation to ice thick-

ness determination (Lee and Pottier, 2017, Cloude, 2009). To

extract relevant information from polarimetric data, a number

of specialized features have been introduced in recent years.

These are either based directly on the backscattering coeffi-

cients, second order statistics represented by the covariance

matrix or result from target decompositions, which aim at quan-

tifying individual scattering mechanisms to facilitate a physical

interpretation.

If a scene is covered from at least two slightly different angles or

with a time offset, further valuable information can be obtained

from the phase difference between the complex radar images.

This imaging technique, which is referred to as Interferometric

Synthetic Aperture Radar (InSAR), enables the derivation of

geophysical parameters such as surface topography or ground

deformation. The combination of polarimetry and interfero-

metry, known as PolInSAR (Cloude and Papathanassiou, 1998),

provides a rich source of information that allows the realization

of a wide range of applications from biomass estimation to ex-

tended topography mapping.
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Getting comprehensive and understandable overview of the vast

amount of information that can be extracted from PolInSAR

data is challenging. On the one hand, the visualization of dif-

ferent physically interpretative feature images is possible. For

example, the components derived by a Freeman Durden decom-

position encoded as a pseudocolor image is particularly suitable

for the investigation of natural targets. On the other hand, dif-

ferent features aim at characterizing different properties of ob-

served scatterers and it is not feasible to perceive all feature

images separately to make a statement about the contained in-

formation. It is therefore desirable to generate a human inter-

pretable visualization that summarizes the information content

of a wide range of features in a comprehensive way.

In addition to the challenge of information gathering by human

observers, a high number of features can likewise complicate

automatic analysis. Especially in machine pattern recognition,

as example for classification, regression or clustering of data,

the complexity of estimators increases with an increasing num-

ber of feature dimensions or even leads to a loss of performance.

This phenomenon is known as the curse of dimensionality.

To counteract this problem, a number of dimension reduction

methods have been introduced. These methods aim at pro-

jecting high dimensional data into a space with fewer dimen-

sions, retaining the important information to the maximum

possible extent and removing redundant information. Among

the most popular linear transformation methods are Principal

Component Analysis (PCA) and Linear Discriminant Ana-

lysis (LDA). More recently presented approaches, which fall

into the category of nonlinear dimension reduction, are mostly

based on manifold learning techniques and aim in particular

at obtaining the local structure of the data. These include,

among others, Locally Linear Embeddings (LLE) (Roweis and
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Saul, 2000), Isometric Feature Mapping (ISOMAP) (Tenen-

baum et al., 2000), Laplacian Eigenmaps (LE) (Belkin and

Niyogi, 2003) and t-distributed Stochastic Neighbor embed-

ding (t-SNE) (Van der Maaten and Hinton, 2008). Particularly

for data visualization, t-SNE is considered as a state-of-the-art

approach.

In the context of PolSAR data, dimension reduction methods

are typically used for preprocessing in classification processes.

For example, in (Tu et al., 2012) LE are employed to repres-

ent the information from 42 different polarimetric features in

only few components on the basis of which a Support Vector

Machine (SVM) is applied for land cover classification. With

a similar objective, the same high dimensional feature repres-

entation is used in (Shi et al., 2013a) and embedded into a

low dimensional space using a supervised graph embedding.

In (Ainsworth and Lee, 2004), the improvement of classific-

ation accuracy by preprocessing using ISOMAP is evaluated.

More recently, manifold learning algorithms such as t-SNE and

Locality Preserving Projections (LPP) are integrated into deep

learning processes to combine principal features that reflect

local back scattering properties with deep spatial features that

capture a larger semantic context (He et al., 2020a, He et al.,

2020b).

In 2018, McInnes et al. introduced a new manifold learn-

ing algorithm for general dimension reduction named UMAP

(McInnes et al., 2018a), which is based on topological data ana-

lysis. It has been adopted for data analysis in several applica-

tion domains, including mass spectrometry imaging (Smets et

al., 2019), single cell data biology (Becht et al., 2019) and pop-

ulation genetics (Diaz-Papkovich et al., 2019). The evidence

collected in the various studies suggests that UMAP has su-

perior properties compared to other dimension reduction and

visualization methods in terms of preservation of global data

structure, transparency of parameters, computational speed and

scalability towards large data sets.

To the best of our knowledge, UMAP has not yet been con-

sidered for the reduction of high dimensional features derived

from PolInSAR data. Hence, this paper investigates the po-

tential of UMAP for the visualization and explorative analysis

of PolInSAR data. The objective is to assess the expressive-

ness of visualizations based on polarimetric and interferometric

features embedded into 2D and 3D euclidean feature space us-

ing UMAP compared to other dimension reduction approaches.

For this purpose, a visual analysis and comparison of 2D em-

beddings based on resulting scatter plots is carried out. Since

this type of analysis is inherently subjective to a certain extent,

an additional quantitative analysis is performed, which evalu-

ates the preservation of information with regard to the separ-

ability of land cover classes. Further, we propose to visualize

embedded features derived by UMAP within a spatial context

by generating pseudo color images. These images can be used

to easily identify the potential of available PolInSAR data, for

example in terms of distinguishing different land cover classes

or bio-physical properties.

2. DATA SET

The data that is explored in this paper was acquired by

the F-SAR system during a measurement campaign in 2019.

F-SAR is an airborne SAR system that enables the simul-

taneous acquisition of fully polarimetric data in multiple fre-

quency bands (X-, C-, S-, L- and P-bands) (Horn et al., 2009).

Additionally, interferometric measurements can be realized in

repeat-pass and single-pass. The data of the conducted meas-

urement campaign are fully polarimetric S-band and VV polar-

ized X-band data, recorded in single- and repeat-pass. Of the

resulting available data products, only a subset is considered in

this paper. This consists of the individual S-band Single Look

Complex (SLC) images in each polarization and co-registered

InSAR image pairs in VV polarization from single- and repeat-

pass measurements. However, since our visualization approach

is easily expandable to a wider range of data, the other available

products will also be included in the future.

3. METHODS

A wide variation of polarimetric and interferometric features

is extracted from the selected data. While individual features

can each characterize only a specific portion of the information

contained in the data, the combination of partly complementary

features provides a comprehensive description. Therefore, all

extracted features are included to span a high dimensional fea-

ture space. Thus, each pixel in the SAR image is represented

as a point in this space. In order to generate a low dimensional

representation that can be visualized, the high dimensional fea-

ture representation is embedded into 2D and 3D euclidian space

using UMAP. Resulting 2D embeddings are presented as scatter

plots. Based on the 3D embeddings, pseudo color images are

generated to allow observing the results within a spatial context.

3.1 PolInSAR features

To reduce the high level of speckle noise, the original SLC im-

ages are first down sampled by a factor of 3 and then filtered

using the Refined Lee filter (Lee, 1981). Subsequently, several

polarimetric and interferometric parameters and features, which

are given in Table 1, are extracted using the PolSARpro soft-

ware (Pottier et al., 2018). The first group of parameters con-

tains the polarimentric backscattering coefficients and their ra-

tios. Features based on polarimetric decompositions, as well as

further polarimetric features are included in the second group.

From the wide range of target decompositions, the Pauli de-

composition, belonging to the category for the description of

coherent scatterers, and the Van Zyl, Huynen and Cloude de-

composition, which aim at characterizing distributed scatterers,

are selected. Additionally, polarimetric properties described

by the depolarization index, conformity coefficient, scattering

predominance and the scattering diversity are included. For a

detailed description of the calculation and interpretation of the

different polarimetric features, please refer to (Lee and Pottier,

2017). In addition to descriptions of polarimetric properties,

interferometric coherences are included, which quantify local

phase correlations between two complex images.

The list of parameters and features given here does not represent

a complete coverage of all available and potentially profitable

features. However, for the intended evaluation of UMAP in

the context of PolInSAR data representation, we limit ourselves

to this selection. Nevertheless, modification and extension of

features are quite conceivable.

In order to facilitate the validation and interpretation of results,

all 27 feature images are projected into ground range under the

flat earth assumption. The resulting images, with a resolution

of 1 m × 1 m, are each normalized to the value range [0, 1]

and then assembled into a 27-channel image array. Each point

in the image is thus characterized by a 27 dimensional feature

representation.
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Expression Physical Description

σ0

hh = 〈ShhS
∗

hh〉 Co-polarized HH backscattering coefficient

σ0

hv = 〈ShvS
∗

hv〉 Cross-polarized HV backscattering coefficient

σ0

vh = 〈SvhS
∗

vh〉 Cross-polarized VH backscattering coefficient

σ0

vv = 〈SvvS
∗

vv〉 Co-polarized VV backscattering coefficient

SPAN(S) = |Shh|
2 + |Shv|

2 + |Svh|
2 + |Svv|

2 Total scattered power

rhhvv = 10 log(|Shh|
2/|Svv|

2) Co-polarized ratio in dB

rhvhh = 10 log(|Shv|
2/|Shh|

2) Cross-polarized ratio in dB

rhvvv = 10 log(|Shv|
2/|Svv|

2) Cross-polarized ratio in dB

|a|2, |b|2, |c|2 Contribution of scattered power of isotropic odd, even and π/4
even scatterers derived from Pauli decomposition (Cloude and
Pottier, 1996)

H , A, α Entropy, anisotropy and alpha angle derived from Cloude decom-
position (Cloude and Pottier, 1997)

λ =
∑

3

i=1
piλi Weighted mean of eigenvalues of coherence matrix derived from

Cloude decomposition

A0, B0 +B, B0 −B Symmetry, nonsymmetry and irregularity derived from Huynen
decomposition (Huynen, 1970)

fodd, fdouble, fvolume Odd-bounce, double-bounce and volume scattering derived from
Van Zyl decomposition (Van Zyl, 1993)

d(M) Deplorization index (Gil and Bernabeu, 1985)

µ Conformity coefficient (Truong-Loi et al., 2009)

s(N) Scattering predominance (Praks et al., 2009)

Ĥ Scattering diversity (Praks et al., 2009)

|γvv,single| = |〈svv,1s
∗

vv,2〉/
√

〈svv,1s∗vv,1〉〈svv,2s
∗

vv,2〉| Magnitude of interferometric coherence derived from single-pass
image pair

|γvv,repeat| = |〈svv,1s
∗

vv,2〉/
√

〈svv,1s∗vv,1〉〈svv,2s
∗

vv,2〉| Magnitude of interferometric coherence derived from repeat-pass
image pair

Table 1. Polarimetric and interferometric features, extracted to build a high dimensional representation of PolInSAR data.

3.2 Uniform Manifold Approximation and Projection

UMAP is applied to embed the high dimensional feature repres-

entation into a low dimensional euclidian space. At this point,

only the basic idea behind the UMAP algorithm is presented.

A detailed description of the underlying mathematical methods

can be found in (McInnes et al., 2018a). UMAP belongs to the

group of nonlinear dimension reduction methods and is based

on manifold learning techniques. Under the assumption that

high dimensional data are uniformly distributed on local man-

ifolds, a topological representation of the data is constructed.

This representation can basically be understood as a weighted

graph in which edge weights indicate the probabilities of two

data points being connected. To decide about the existence of

an edge, open balls with a radius depending on the distance

to the nth nearest neighbor is drawn outward from each point.

Subsequently, the layout of an equivalent representation in the

low dimensional space is constructed and optimized to resemble

the topological structure of the high dimensional representation

as closely as possible. This is realized by minimizing the cross-

entropy between the two topological representations.

3.3 Data visualization

Dimension reduction algorithms are valuable to generate hu-

man interpretable visualizations that help to understand the un-

derlying structure of available data. One way to visualize the

PolInSAR feature representation reduced to 2 and 3 dimensions

is by using scatter plots, where each pixel is represented as a

data point in x-y plane and x-y-z space, respectively. The rel-

ative position of the points to each other represents the similar-

ity of back scattering properties encoded in PolInSAR features.

Scatter plots of 2D embeddings generated using UMAP are

presented and visually compared to scatter plot of 2D embed-

dings generated with comparable dimension reduction methods

in Section 4.1. A quantitative evaluation with regard to the in-

formative value contained within the different embeddings is

presented in Section 4.2.

Scatter plots can be useful to detect clusters in the data and gain

a deeper understanding of the relationship and internal struc-

ture of the data. However, spatial information is not captured in

this type of visualization. To overcome this challenge, pseudo

color images are derived from 3D embeddings. The x-, y- and

z-components are scaled linearly to a range of values from 0 to

255 and interpreted as red, green and blue intensities. Visual-

izations generated in this manner are shown and discussed in

Section 4.3.

4. EXPERIMENTS

The main objective of our research is to assess the information

content and quality of visualizations derived from PolInSAR

features embedded into 2D and 3D euclidean space. To evalu-

ate in particular the preservation of local structures of original
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PCA Laplacian Eigenmaps t-SNE UMAP

Trees Pastures Man-Made Sand Asphalt

Water Mudflat Mussels

(a) (b) (c) (d) (e)

Figure 1. Comparison of 2D feature representations, derived by different dimension reduction methods. In (a) orthophotos of the

selected scenes are given, overlaid with labeled reference classes. In (b) to (e) 2D embeddings derived from PCA, LE, t-SNE and

UMAP are shown. Embeddings illustrated in the first and second row contain points from only one scene, while embeddings

illustrated in the third row are joined embeddings calculated based on points of both scenes. Embedded data points are colored by

their corresponding class label.

high dimensional data in the low dimensional representation,

class information is included. The classes represent different

land cover types, since it is expected that different land covers

will differ in their backscattering properties reflected in the high

dimensional feature representation.

UMAP is compared with other dimension reduction methods,

including PCA, LE and t-SNE. PCA is probably one of the most

commonly used methods for dimension reduction. Thereby, the

high dimensional feature representation is approximated by a

lower dimensional representation that captures most of the vari-

ance of the data. The LE method is a nonlinear, graph based

approach in which particularly local information is preserved

in the low dimensional embedding. LE is used for comparison

in this work, as its successful application to PolSAR data was

already demonstrated (Tu et al., 2012, Shi et al., 2013b). t-SNE

is a further nonlinear dimension reduction algorithm based on

neighborhood graphs that aims at preserving the local structure

of data. The basic idea in this approach is, to convert distances

between data points into probability distributions that should

be as similar as possible to each other in high and low dimen-

sional representations. Since t-SNE is regarded as state-of-the-

art method for the visualization of high dimensional data, it is

included in the comparison.

For the comparison of the different dimension reduction meth-

ods, the implementations from the sci-kit learn software pack-

age (Pedregosa et al., 2011) for PCA, LE and the Barnes-Hut

approximation of t-SNE are used with provided default para-

meters. For the implementation of UMAP, the UMAP python

package (McInnes et al., 2018b) is used.

The experiments performed consist of three principal parts.

First, a visual analysis of 2D embeddings is carried out based on

resulting scatter plots. Secondly, in order to evaluate the preser-

vation of information content with respect to class separation

more objectively, a quantitative analysis based on supervised

classification is performed. Thirdly, pseudo color images based

on UMAP embeddings are explored.

4.1 Visual analysis

For the comparison of embeddings derived from different di-

mension reduction approaches, two exemplary SAR image sec-

tions that capture different land cover classes are selected. The

first image section depicts an onshore coastal area and maps the

classes trees, pastures, man-made objects, sand and asphalt.

In the following, this section is referred to as onshore scene.

In the second image section, denoted offshore scene, a tidal

area is captured that is composed of water, tidal flats and mus-

sels. Within the two scenes, reference areas representing the

specified classes were manually marked with the help of op-

tical aerial imagery (see Figure 1(a)). All data points, described

by the high dimensional feature representation, located within

the referenced areas are embedded into 2D euclidean space us-

ing the different dimension reduction algorithms. The resulting
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Pastures Man-Made Sand Asphalt

Figure 2. Embedding unknown test data in previously learned

feature space. On the left the Pauli decomposition of the test

scene overlaid with reference polygons is shown. On the right,

the 2D embedding of test data is presented.

embeddings are presented as scatter plots in Figure 1(b) to (e),

where data points are colored according to their reference class.

First, the two scenes are analyzed separately (first two rows).

Additionally, data points from both scenes are embedded jointly

(last row). Regarding the PCA embedding, the following ob-

servations are derived from Figure 1: For both scenes, a spatial

sorting by land cover class is clearly evident. However, the isol-

ation of distinct clusters is only partially successful. The classes

sand, asphalt and pastures transition into each other (onshore

scene) and overlaps occur particularly between the water and

tidal flat classes (offshore scene). Consistent with the under-

lying methodology, PCA embeddings primarily provide global

information content and are unable to represent rich local data

structures. The LE algorithm, which aims at preserving local

data structure, provides a locally sparse but globally smooth

representation in triangular shape. Considering both scenes in-

dependently, the separation of associated land classes is appar-

ent. In the joint representation, however, the problem arises

that the land cover classes represented by a smaller propor-

tion of data points (trees, pastures, man-made objects, sand,

asphalt and mussels) are projected into a dense space and are

no longer visually separable. In contrast, t-SNE tends to dis-

tribute the data uniformly around the reduced feature space and

achieves a clear separation of distinct clusters that correspond

to different land cover classes. However, classes are not ne-

cessarily represented in only a single cluster. Particularly for

the offshore scene, it can be observed that classes decompose

into isolated non-adjacent subclusters. The 2D embeddings ob-

tained by UMAP show comparable class separation ability to

that of t-SNE embeddings. A striking difference is the denser

packing of data points within individual clusters as well as the

varying distances between clusters. A possible explanation for

the different behavior regarding cluster distances is that t-SNE

preserves only local data structure, while UMAP additionally

aims at preserving global data structure. Methodologically, this

is related to the choice of different cost functions used for the

optimization as argued in (McInnes et al., 2018a).

An advantage of the UMAP method over t-SNE and LE is that

the low dimensional feature representation learned on one data

set is transferable to unknown test data. Thus, the approach

allows adding new data points to an existing 2D visualization

without computing a new feature space on all data. Further,

higher flexibility is given in terms of its usability for machine

learning tasks such as classifications. To investigate this func-

tionality on the PolInSAR data, a test scene with similar land

(a) (b)

Figure 3. Supervised UMAP. The 2D embedding of the training

data (a) and the (b) test data that are embedded in the learned 2D

feature space (b) are illustrated.

cover to the onshore scene is involved. The unknown test data

are embedded into the feature space that is learned on the data

of the onshore scene. The result is shown in Figure 2. It is ob-

served that data points are embedded in the expected locations

in the 2D feature space. Also the internal shape and structure

of clusters can be reproduced by embedding the unknown test

data.

In addition to unsupervised dimension reduction, UMAP can

also be used for supervised dimension reduction, in which the

information about the class membership of a data point is used

to determine an optimal embedding. The goal is to map differ-

ent classes in the low dimensional space as far apart as possible,

while at the same time maintaining the internal class structure

and the inter-class relationships. To test the supervised variant

of UMAP on the PolInSAR data, the data points of the onshore

and offshore scene are divided into training data (20 % of the

points) and test data (80 % of the points). To learn an appropri-

ate 2D embedding, only the training data with given class la-

bels are used. Subsequently, the test data are embedded on this

basis. Figure 3 illustrates the resulting scatter plots for training

and test data. For the training data, a very clear class separation

is realized, especially compared to the unsupervised version of

UMAP. This was expected, since the information of the class

membership was known for the determination of the embed-

ding. Analysis of embedded test data, which was not included

in the learning process, shows that the clear class separation

is preserved. Only for a few data points a clear assignment to

a cluster fails. In addition to the good class separation, it is

evident that the internal structures of the individual classes are

highly similar to those of unsupervised embedding. This in-

dicates that structural properties of the data are retained, while

applying supervised UMAP.

4.2 Quantitative analysis

In the following, we quantitatively analyze to what extent the

different dimension reduction methods allow to preserve in-

formation of high dimensional PolInSAR features represented
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Figure 4. Mean accuracy for the SVM classification of

embedded test data via UMAP, PCA, LE and t-SNE. Results are

shown over increasing dimensions of embeddings.

within a minimal number of components. For this purpose, the

linear separability of different land cover classes based on em-

beddings of increasing dimensions is considered. As a meas-

ure of quality, the classification accuracy achieved by applying

a linear SVM is used. Notably, this analysis does not aim at

determining the performance of the classifier, but at quantify-

ing the preservation of local structures and linear separability

in low dimensional representations.

All eight land cover classes present in the onshore and offshore

test scenes are included in the classification. First, all labeled

data points are divided into equally sized training and test sets.

For dimension reduction performed by PCA and UMAP, only

the training data are used to determine suitable embeddings and

the test data are embedded into the learned space only after-

wards. In contrast, dimension reduction performed by LE and

t-SNE is based on all data points (training and test set), since a

transformation of non-included data is not possible. Based on

embedded data points and their corresponding class labels lin-

ear SVM classifiers are trained for each embedding. Optimal

penalty parameters are determined for each of the classifiers by

applying a grid search with 5-fold cross validation based on the

training set. Resulting classifiers are used to predict class labels

for embedded held out test data points. Figure 4 presents the

classification accuracy in dependence of embedding’s dimen-

sion for each dimension reduction method. Since t-SNE only

allows to embed data in two or three dimensions, only these

two results are available. In addition, the accuracy labeled as

baseline is provided, which presents the result of a linear SVM

classification based on the original 27-dimensional feature rep-

resentation.

Classifications based on supervised UMAP embeddings

achieve highest accuracies across all dimensions. With ac-

curacies of approximately 96 %, it provides better results even

on the basis of the 2D representation than achievable using the

high dimensional feature representation. The superiority of the

supervised UMAP method was presumable, since it presents the

only method in the comparison, in which the information of the

class membership is included for the determination of a suitable

embedding. However, the 2D and 3D embeddings obtained by

unsupervised UMAP preserve the linear separability of the data

compared to PCA, LE and t-SNE to a high degree as well. To

Figure 5. Mean accuracy for the KNN classification of

embedded test data via UMAP, PCA, LE and t-SNE. Results are

shown over increasing dimensions of embeddings.

outperform the classification performance based on high dimen-

sional representation, only five dimensions are needed when us-

ing unsupervised UMAP. The poorer linear separability in the

representations provided by t-SNE have already become appar-

ent in the visual analysis, in which the nonlinear mapping was

observable.

Another measure of quality, commonly used to evaluate dimen-

sion reduction and visualization methods, is the class separab-

ility by means of a k-nearest neighbors (KNN) classifier. The

choice behind this benchmarking method is motivated by the

fact that labels tend to be similar in small neighborhoods and

therefore the classification accuracy based on neighborhoods

would remain close to that in high dimensional space. If the

dimension reduction method cannot maintain neighborhoods, a

degradation of KNN accuracy is expected. For KNN accuracy

based evaluation, the previously described process of parameter

tuning (in this case the number of nearest neighbors), training

and testing of classifiers is followed. Results are presented in

Figure 5.

Especially for very low dimensions, the supervised UMAP

method is again superior. In contrast to the SVM results, the

KNN accuracies based on the 2D and 3D embeddings of t-SNE

and unsupervised UMAP are comparable and with approxim-

ately 95 % at a high level. It can be concluded that although

linear separability is no longer present to the same extent as

in higher dimensions, the local neighborhood structure is well

preserved in very low dimensional representations.

4.3 Data visualization results

In the previous sections, it was shown that UMAP is suitable

to represent a high amount of information contained in PolIn-

SAR data in just a few components. To visualize this inform-

ation within a spatial context, pseudo color images are gener-

ated using the method described in Section 3.3. In this repres-

entation, the coloring of each pixel reflects the location of the

corresponding data point in the reduced 3D feature space. In

Figure 6 (a) and (b), resulting pseudo color images are shown

alongside the corresponding orthophotos of the onshore and off-

shore scene. The underlying 3D embeddings are learned on a

subsets of the data points in an unsupervised manner. Remain-

ing points were embedded accordingly. The reduced 3D feature
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(a) (b) (c)

Figure 6. In (a) orthophotos of the onshore and offshore scene are given. (b) presents pseudo color images, which encode the 3D

feature representation of the PolInSAR data. In (c) embedded data points are shown in 3D euclidean space.

Figure 7. Pseudo color image of tidal area, covering 6,3 km2, and the corresponding 3D scatter plot.

spaces, containing all embedded data points are illustrated in

Figure 6 (c). When comparing the pseudo color images to the

optical images, a clear correlation between coloring and land

cover is apparent. Especially for the offshore scene, the strong

color contrasts enable land classes to be visually distinguished

even better than in the optical image. Thus, without providing

explicit class labels, pseudo color images can be used to intu-

itively identify which land cover classes are identifiable based

on the PolInSAR data and which may be potentially more chal-

lenging to separate. A further observation concerns the trans-

ition regions between different land cover classes. In the pseudo

color image of the offshore scene, dark green colored mussel

beds are surrounded by dark purple tones that then transition

to a pink color, which apparently represents the tidal flat class.

The exact same color transition is also identifiable in the 3D

scatter plot in the transition between two distinct clusters. It

is reasonable to assume that data points located in such trans-

ition areas in the scatter plot either represent resolution cells in

which two different land covers are present or areas that cannot

be clearly assigned to a particular land cover class.

Figure 7, shows a resulting pseudo color image for a wider area.

The color scheme with respect to the various land cover classes

is inherently consistent throughout the scene. Mussels appear

in pink, water in dark blue, and tidal flats are divided into green,

light blue, and orange areas. The color differentiation between

various tidal flat areas suggest that sediment types with differ-

ent properties, such as water content and surface roughness, are

distinguishable using PolInSAR data.

5. CONCLUSION

In this paper, we evaluated the potential of the nonlinear dimen-

sion reduction method UMAP for visualizing high dimensional

feature representations of PolInSAR data. Thereby, this work

represents the first approach to the use of UMAP in the context

of PolInSAR data. The preservation of information content in

low dimensions was considered with respect to the separability

of different land cover classes. It is demonstrated that compared

to commonly used methods like PCA, LE or t-SNE, the local

and global structure of high dimensional PolInSAR feature rep-

resentation is preserved superiorly. We conclude that UMAP

provides a suitable framework to gain a deeper understanding

of high dimensional feature representations of PolInSAR data.

In particular, the generation of pseudo color images based on

3D embeddings is useful to visualize the information density of

PolInSAR data in a human interpretable way. Furthermore, in

the context of automated land cover classification, it is shown
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that low dimensional representations determined by UMAP are

sufficient to achieve at least the same accuracies as the original

high dimensional representation using simple classifiers. This

suggests that in addition to the visualization being focused in

this paper, UMAP can act as a useful building block in the de-

velopment of classification processes.
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