KIT | KIT-Bibliothek | Impressum | Datenschutz

Optimization of SnO$_{2}$ electron transport layer for efficient planar perovskite solar cells with very low hysteresis†

Eliwi, Abed Alrhman; Malekshahi Byranvand, Mahdi; Fassl, Paul ORCID iD icon; Khan, Motiur Rahman; Hossain, Ihteaz Muhaimeen; Frericks, Markus; Ternes, Simon; Abzieher, Tobias; Schwenzer, Jonas A.; Mayer, Thomas; Hofmann, Jan P.; Richards, Bryce S. ORCID iD icon; Lemmer, Uli; Saliba, Michael; Paetzold, Ulrich W. ORCID iD icon

Abstract:

Nanostructured tin oxide (SnO$_{2}$) is a very promising electron transport layer (ETL) for perovskite solar cells (PSCs) that allows low-temperature processing in the planar n–i–p architecture. However, minimizing current–voltage (J–V) hysteresis and optimizing charge extraction for PSCs in this architecture remains a challenge. In response to this, we study and optimize different types of single- and bilayer SnO$_{2}$ ETLs. Detailed characterization of the optoelectronic properties reveals that a bilayer ETL composed of lithium (Li)-doped compact SnO$_{2}$ (c(Li)-SnO$_{2}$) at the bottom and potassium-capped SnO$_{2}$ nanoparticle layers (NP-SnO$_{2}$) at the top enhances the electron extraction and charge transport properties of PSCs and reduces the degree of ion migration. This results in an improved PCE and a strongly reduced J–V hysteresis for PSCs with a bilayer c(Li)-NP-SnO$_{2}$ ETL as compared to reference PSCs with a single-layer or undoped bilayer ETL. The champion PSC with c(Li)-NP-SnO$_{2}$ ETL shows a high stabilized PCE of up to 18.5% compared to 15.7%, 12.5% and 16.3% for PSCs with c-SnO$_{2}$, c(Li)-SnO$_{2}$ and c-NP-SnO$_{2}$ as ETL, respectively.


Verlagsausgabe §
DOI: 10.5445/IR/1000140770
Veröffentlicht am 26.04.2022
Originalveröffentlichung
DOI: 10.1039/d1ma00585e
Scopus
Zitationen: 35
Dimensions
Zitationen: 35
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mikrostrukturtechnik (IMT)
Universität Karlsruhe (TH) – Interfakultative Einrichtungen (Interfakultative Einrichtungen)
Karlsruhe School of Optics & Photonics (KSOP)
Lichttechnisches Institut (LTI)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 2633-5409
KITopen-ID: 1000140770
HGF-Programm 38.01.02 (POF IV, LK 01) Materials and Interfaces
Erschienen in Materials advances
Verlag Royal Society of Chemistry (RSC)
Band 3
Heft 1
Seiten 456-466
Vorab online veröffentlicht am 04.11.2021
Nachgewiesen in Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 7 – Bezahlbare und saubere Energie
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page