Human-Understandable
Explanations
of Neural Networks

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften
(Dr.-Ing.)

von der KIT-Fakultit fur Wirtschaftswissenschaften
des Karlsruher Instituts fiir Technologie (KIT)

genehmigte
Dissertation
von
Anna Nguyen
Tag der miindlichen Priifung: 23. November 2021
Referent: Prof. Dr. York Sure-Vetter

Korreferent: Prof. Dr. Heiko Paulheim



This document is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0):
https://creativecommons.org/licenses/by-sa/4.0/deed.en



Danksagung

Zu Beginn meines Studiums habe ich mich mit der theoretischen Mathematik befasst.
Schnell habe ich gemerkt, dass mich auch die Praxis sehr interessiert, weswegen
ich mich im Verlauf meines Studiums der Wirtschaftsmathematik zuwandte. Dort
entwickelte ich die Leidenschaft Daten zu analysieren. Durch die Moglichkeit einer
Promotion konnte ich mein Wissen in der Informatik vertiefen, um Werkzeuge zu
erlernen grofle Datenmengen zu analysieren. Wahrend meiner dreijihrigen Promo-
tion an dem Lehrstuhl Web Science am AIFB konnte ich nicht nur mein Fachwissen
in ein neues Feld erweitern, sondern bekam auch die Moglichkeit an einem der
einschlagigsten Themen - der kiinstlichen Intelligenz — zu forschen. Dabei hat mich
die Thematik der Erklarbarkeit immer fasziniert. Gerade mich als Quereinsteiger
begeistert es, anderen Menschen neuronale Netze erklaren zu kénnen.

Ich danke meinem Doktorvater York Sure-Vetter dafiir, dass er mir die Forschung in
seiner Gruppe ermoéglichte und fiir die Begleitung meiner Dissertation. Durch die Ar-
beit am Lehrstuhl habe ich in den drei Jahren viel gelernt und mich weiterentwickelt,
sowohl inhaltlich als auch persénlich. Des Weiteren mochte ich meinem Korref-
erenten Heiko Paulheim fiir das Interesse an meinem Thema und sein wertvolles
Feedback danken. Ferner danke ich Rudi Studer fiir sein wertvolles Feedback zu
meinem Probevortrag und Beate Kithner fiir das Koordinieren der Termine fiir meine
Verteidigung.

Auflerdem bedanke ich mich bei allen Kollegen des Yordiverses, die mich bei
meiner Dissertation unterstiitzt haben. Die Arbeitsatmosphére war immer freund-
schaftlich und familidr. Der inhaltiche Austausch war stets konstruktiv und hat meine
Forschung vorangetrieben. Besonderer Dank gilt meinem langjahrigen Biirokollegen



Tobias Weller fiir die gemeinsame Arbeit an verschiedenen Forschungspapieren und
die stetige Unterstiitzung wahrend meiner Promotion.

Einen besonderen Dank an meine Studenten und Koautoren Adrian Oberfoll,
Franz Krause und Daniel Hagenmayer mit deren mitwirken ich meine Forschung
voranbringen konnte. Ich danke meinen wissenschaftlichen Hilfskréften Jannik
Deuschel und Yanglin Xu fiir ihre Arbeit, die meine Forschung unterstiitzten.

Des Weiteren danke ich Guido Briickner fiir die Unterstiitzung wéhrend meiner
Promotion. Sein Feedback war immer kritisch und anspruchsvoll, aber stets kon-
struktiv und hilfreich. Ich danke Fenja Scheu fir die Motivation beim Aufschrieb
der Dissertation durch die gemeinsamen Tage im Biiro. Auflerdem danke ich Cindy
Hong und Chau Phuc Nguyen fiir die Korrektur meiner Arbeit.

Abschlieflend danke ich meiner Familie und meinen Freunden, die stets an mich
glaubten und mir Durchhaltevermégen gegeben haben.



Deutsche Zusammenfassung

Das 21. Jahrhundert ist durch Datenstrome enormen Ausmafles gekennzeichnet.
Dies hat die Popularitidt von Berechnungsmodellen, die sehr datenintensiv sind,
wie z.B. neuronale Netze, drastisch erhoht. Aufgrund ihres grofien Erfolges bei der
Mustererkennung sind sie zu einem leistungsstarken Werkzeug fiir Vorhersagen,
Klassifizierung und Empfehlungen in der Informatik, Statistik, Wirtschaft und vielen
anderen Disziplinen geworden. Trotz dieser verbreiteten Anwendung sind neuronale
Netze Blackbox-Modelle, d.h. sie geben keine leicht interpretierbaren Einblicke in die
Struktur der approximierten Funktion oder in die Art und Weise, wie die Eingabe in
die entsprechende Ausgabe umgewandelt wird. Die jiingste Forschung versucht, diese
Blackboxen zu 6ffnen und ihr Innenleben zu enthiillen. Bisher haben sich die meisten
Forschungsarbeiten darauf konzentriert, die Entscheidungen eines neuronalen Netzes
auf einer sehr technischen Ebene und fiir ein Informatikfachpublikum zu erkldren. Da
neuronale Netze immer haufiger eingesetzt werden, auch von Menschen ohne tiefere
Informatikkenntnisse, ist es von entscheidender Bedeutung, Ansitze zu entwickeln,
die es ermoglichen, neuronale Netze auch fiir Nicht-Experten verstindlich zu erklaren.
Das Ziel ist, dass Menschen verstehen konnen, warum das neuronale Netz bestimmte
Entscheidungen getroffen hat, und dass sie das Ergebnis des Modells durchgehend
interpretieren konnen.

Diese Arbeit beschreibt ein Rahmenwerk, das es erméglicht, menschlich ver-
stdandliche Erkldrungen fiir neuronale Netze zu liefern. Wir charakterisieren men-
schlich nachvollziehbare Erklarungen durch sieben Eigenschaften, ndmlich Trans-
parenz, Uberpriifbarkeit, Vertrauen, Effektivitit, Uberzeugungskraft, Effizienz und
Zufriedenheit. In dieser Arbeit stellen wir Erkldrungsansétze vor, die diese Eigen-



schaften erfiillen. Zunéchst stellen wir TransPer vor, ein Erklarungsrahmenwerk
fiir neuronale Netze, insbesondere fiir solche, die in Produktempfehlungssystemen
verwendet werden. Wir definieren Erklarungsmafle auf der Grundlage der Relevanz
der Eingaben, um die Vorhersagequalitit des neuronalen Netzes zu analysieren und
KI-Anwendern bei der Verbesserung ihrer neuronalen Netze zu helfen. Dadurch
werden Transparenz und Vertrauen geschaffen. In einem Anwendungsfall fiir ein
Empfehlungssystem werden auch die Uberzeugungskraft, die den Benutzer zum
Kauf eines Produkts veranlasst, und die Zufriedenheit, die das Benutzererlebnis an-
genehmer macht, beriicksichtigt. Zweitens, um die Blackbox des neuronalen Netzes
zu 6ffnen, definieren wir eine neue Metrik fiir die Erklarungsqualitiat ObAIEx in der
Bildklassifikation. Mit Hilfe von Objekterkennungsansitzen, Erklirungsansétzen und
ODbAIEx quantifizieren wir den Fokus von faltenden neuronalen Netzwerken auf die
tatsdchliche Evidenz. Dies bietet den Nutzern eine effektive Erklarung und Vertrauen,
dass das Modell seine Klassifizierungsentscheidung tatsachlich auf der Grundlage
des richtigen Teils des Eingabebildes getroffen hat. Dartiber hinaus erméglicht es
die Uberpriifbarkeit, d. h. die Méglichkeit fiir den Benutzer, dem Erklarungssystem
mitzuteilen, dass sich das Modell auf die falschen Teile des Eingabebildes konzentriert
hat. Drittens schlagen wir FilTag vor, einen Ansatz zur Erklarung von faltenden neu-
ronalen Netzwerken durch die Kennzeichnung der Filter mit Schliisselwortern, die
Bildklassen identifizieren. In ihrer Gesamtheit erkléren diese Kennzeichnungen die
Zweckbestimmung des Filters. Einzelne Bildklassifizierungen kénnen dann intuitiv
anhand der Kennzeichnungen der Filter, die das Eingabebild aktiviert, erklart wer-
den. Diese Erkliarungen erhohen die Uberpriifbarkeit und das Vertrauen. Schlieflich
stellen wir FAIRnets vor, das darauf abzielt, Metadaten von neuronalen Netzen wie
Architekturinformationen und Verwendungszweck bereitzustellen. Indem erklart
wird, wie das neuronale Netz aufgebaut ist werden neuronale Netzer transparenter;
dadurch dass ein Nutzer schnell entscheiden kann, ob das neuronale Netz fiir den
gewiunschten Anwendungsfall relevant ist werden neuronale Netze effizienter.

Alle vier Ansatze befassen sich mit der Frage, wie man Erklarungen von neuronalen
Netzen fiir Nicht-Experten bereitstellen kann. Zusammen stellen sie einen wichtigen
Schritt in Richtung einer fiir den Menschen verstandlichen KI dar.



Abstract

The 21st century is characterized by an influx of tremendous amounts of data. This
has dramatically increased the popularity of computational models that are very
data-intensive such as neural networks. Due to the great success in pattern recog-
nition, they have become a powerful tool for example in prediction, classification,
and recommendation in computer science, statistics, economics, and many other
disciplines. Despite this widespread use, neural networks are black-box models,
meaning that they do not give any readily interpretable insights into the structure of
the approximated function or into how input is transformed into its corresponding
output. Recent research has attempted to pry open these black boxes and reveal
their inner workings. So far, most research has focused on explaining decisions of a
neural network at a highly technical level and to a computer science expert audience.
As neural networks become more widely deployed, including by people without
a computer science background, it is crucial to develop approaches that allow for
explanations of neural networks understandable to non-experts. The goal is that
humans can understand why certain decisions were made by the neural network and
can consistently interpret the model’s result.

This work describes a framework to provide human-understandable explanations
of neural networks. We characterize human-understandable explanations by seven
properties, namely transparency, scrutability, trust, effectiveness, persuasiveness,
efficiency, and satisfaction. In this work, we present explanation approaches that
satisfy these properties. First, we present TransPer, an explanatory framework for
neural networks, in particular those used in product recommender systems. We define
explanation measures based on input relevancies to understand the neural network’s
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prediction quality and to help Al practitioners improve their neural network. This
captures transparency and trust. Additionally, in a recommendation system use
case, persuasion, which persuades the user to buy a product, and satisfaction, which
makes the user experience more pleasant, are also included. Second, to open the
neural network black box, we define a new explanation quality metric ObAIEx for
image classification. Using object detection approaches, explanation approaches,
and ObAIEx, we quantify the focus of Convolutional Neural Networks on the actual
evidence. This provides the users an effective explanation and trust, i.e., that the
model has indeed made its classification decision based on the correct part of the
input image. Furthermore, it enables scrutability, i.e., the capability for the user to
declare that the model has focused on the wrong parts of the input image. Third, we
propose FilTag, an approach to explain Convolutional Neural Networks by tagging
the filters with keywords that identify classes of images. In aggregate, these tags
explain what the filter does. Individual image classifications can then be intuitively
explained in terms of the tags of the filters that the input image activates. These
explanations enhance scrutability and trust. Finally, we present FAIRnets, which aims
to process metadata such as architecture information and intended use. This makes
neural networks more transparent, i.e., to explain the neural network’s architecture,
which problems they solve, and so on, and more efficient, i.e., to help the user quickly
decide whether the neural network is relevant for their intended use case.

All four approaches address the question of how to generate explanations of neural
networks for non-experts. Together, they constitute an important step in the direction
of human-understandable AL



Contents

1 Introduction 1
1.1 Motivation . . . . . . ... 1

1.2 Problem Statement . . . .. ... ... ... ... ... ... 3

1.3 Stateofthe Art. . . . . ... . ... ... ... 5

14 Hypotheses. . . . . .. ... ... .. 6

1.5 Contributions . . . . .. ... L 10

1.6 Outline . . . . .. ... .. 12

2 Foundation 15
2.1 Neural Network . . ... ... ... ... . ... ... ... ..... 15

2.2 Explanation Approach . . ... ... ... ... ... ... ... 21

3 TransPer 25
3.1 Introduction . . ... ... ... ... 26

3.2 Preliminaries . . . . . . . .. ... 28

3.3 Formal Model ofan OnlineShop . . . . . .. ... ... ... ... .. 30

3.4 Explanation Approach . . .. ... ... ... ... . ... ... 31
3.4.1 Explanation via Layer-Wise Relevance Propagation . . . . . . 32

3.4.2 Input Analysis with Leave-One-Out Method . . . . . . . . .. 34

3.43 Explanation Quantity Measures . . . . .. .. ... .. .... 35

3.5 Evaluation . ... ... ... .. ... 37
3.5.1 EvaluationSetting . .. ... ... ... ... ... ...... 37

3.52 EvalvationDataSet. .. .. ... ... ... .......... 39

3.53 EvaluationResults . .. ... ... ... ... ... ... 39

vii



Contents

viii

3.5.4  Preliminary Study of Expert Evaluation . .. ... ... ...

3.6 Conclusion

4 ODbAIEx
4.1 Introduction
4.2 OBALEx M
4.3 Evaluation

etric. . . . . . ..

43.1 EvaluationSetting . . ... ... ... ... .. ... .. ..
432 EvaluationResults . ... ... .. ... ... ... .....
44 Conclusion . . . . .. ... L e
5 FilTag
51 Introduction . . .. ... ... ... ...
52 Approach . .. ... ...
5.2.1 Explanationsof Filters . . . . ... .. ... ... .......
5.2.2  Explanations of Individual Classifications . . .. ... .. ..
5.2.3  Analysis of Classification Errors . . . . ... .. ... .....
53 Experiment. . . . ... ... ...
5.3.1 ExperimentalSetup . . . . .. ... .. .. ... ...
5.3.2  Analysis of the Explanations . . . . .. ... ..........
5.3.3 Impact of Hyperparameters . . . . ... ... .........
5.3.4  Using the Explanations . . . . .. ... ... ..........

5.4 Conclusion

6 FAIRnets
6.1 Introduction

6.2 RelatedWork. . . .. ... ... .. ..

6.3 FAlIRnetsOntology . . .. ... ... .. .. .. ... .. ......
6.3.1 CreationProcess . . ... ... ... ... ... ... .. ...
6.3.2 Provisioning . . . ... ... L

6.4 FAlIRnets Knowledge Graph . .. ... ... ... ... ... .....
6.4.1 CreationProcess . . . ... ... ... ... ...
6.4.2 Provisioning . . . . .. ...
6.4.3  Statistical Analysis of the FAIRnets Knowledge Graph

6.5 FAIR Principles for Neural Networks . . . ... ... ... ......

6.6 FAIRnetsSearch . . ... .. ... ... .. ... ... .. .. .. ...

6.7 Impact . .. ... ...

6.8 Conclusion
7 Conclusion

Bibliography



List of Figures
List of Tables
List of Publications

Preliminary Study of Expert Evaluation

Contents

115
117
119
121






1 Introduction

Artificial Intelligence (AI) has gained importance in recent years due to the availability
of data and computing power. However, these approaches are so-called black-box
models that do not explain their results. Therefore, there has been an increase in
methods in the area of explanatory Al. However, the approaches developed so far are
very technical and intended for computer scientists. As more and more non-computer
scientists use neural networks, it is even more crucial to develop explanations for
this audience. In this work, we will tackle questions like "How exactly does a neural
network recognize an object in an image?" and "Why does a recommender system
recommend exactly this product?".

1.1 Motivation

The need for explainable Al can be demonstrated by three simple examples. Neural
networks have become very popular in the field of computer vision. They yield very
high accuracy in different tasks such as image classification and object recognition.
Despite this achievement, the state of the art research has revealed that some neural
networks classify correctly but due to wrong features of the image. Ribeiro, Singh,
and Guestrin, for example, did an experiment to show which features were relevant
for the decision of an image classifier. They trained a classifier that distinguished
pictures of wolves and huskies. They intentionally used images of wolves with snow
in the background to train the network [RSG16]. When inputting an image of a
husky with snow in the background, the neural network classifies it as a wolf. When
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Figure 1.1: Example of a classifier trained on images of wolves on snowy background
taken from [RSG16]. On the left-hand side is an image of a husky which is classified
as wolf. On the right-hand side is a visualization of the most important pixels as an
explanation which is the snowy background.

visualizing the important features, they could see that the neural network focused
on the background to make the decision, see Fig. 1.1. Another example of classifying
right for the wrong reasons can be seen in Fig. 1.2. Here, the neural network classifies
the object in the images correctly due to the focus on the source tags (see Fig. 1.2 (a)
and (c)) [Lap+19]. When removing the source tag in Fig. 1.2 (b) and (d), the neural
network classifies wrong and has no specific focus. These experiments show how
important it is that the neural network focuses on the right features and that it is
crucial to gain explanations for the neural network’s decision.

Another popular application of neural networks is in e-commerce. There, they
are used to make personalized product recommendations. For example, Amazon
recommends new products to buy, Netflix recommends movies to watch, and Face-
book runs personalized ads. Neural networks are a preferred tool because they can
capture the specific interests of the users and, thus, personalize the recommendations.
Therefore, they substantially improve the relevance of the recommendations. The
European Union has found it necessary to regulate access to personal data to protect
individuals (GDPR) [PE16]. In particular, they require that every user can see how
their data is being used. This means, for example, that every customer at Amazon
can see their data usage. In this context, it is especially important to know how the
(training) data is used in the recommender system. It is all the more crucial that the
explanations are understandable, especially for laypersons, since they are directly
affected by neural networks.
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Figure 1.2: Example of classifying right for the wrong reasons taken from [Lap+19].
On the left-hand side is the image to classify and on the right-hand side a visualization
of the most important pixels as explanation. (a) and (c) are correctly classified whereas
(b) and (d) are wrongly classified.

1.2 Problem Statement

The main research question that we seek to answer in this thesis is:
Research Question. How to make explanations human-understandable?

However, what are explanations that are understandable to humans? Imagine
the following situation. You want to explain to a child what a house is. You start
by describing its parts such as door, windows and roof but the child is not satisfied
and wants to know why these components describe a house. Then you continue to
describe its purposes such as the door being the entrance to the house. The next
question follows up: why? Because you live in a house and you want to enter it. After
the third why you don’t know anymore. Some researchers have been confronted
with this situation. Biran and Cotton have come to the following conclusion [BC17]:

“Explanation is closely related to the concept of interpretability: systems
are interpretable if their operations can be understood by a human, either
through introspection or through a produced explanation. In the case of
machine learning models, explanation is often a difficult task since most
models are not readily interpretable.”

To address this problem in this thesis, we first define explainability as:
Definition (Explainability). Explainability is the degree to which a human
1. can understand the cause of a decision.

2. can consistently interpret the model’s result.
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Now, we have a definition but how can we measure explainability? Tintarev and
Masthoff [TM12] develop seven objectives that understandable explanations should
address for people. An explanation approach should be an extension to a model that
enables the following features:

« Transparency explains how the system works. For example, convolutional neu-
ral networks in image classification have filters that highlight certain patterns.
Just knowing this explains to a certain extent how the neural network works.

« Scrutability allows users to tell the system it is wrong. This relates to our
motivation with the example of the wolf and the husky. There, we could tell
that the snowy background is wrong.

» Trust increases the users’ confidence in the system. Consider the example with
the source tags. If the user knows that the neural network classifies correctly
based on the actual object and not the source tag that would increase the user’s
confidence.

« Effectiveness helps users to make good decisions. Consider for example our
above motivation with classifying an image right for the right reasons.

+ Persuasiveness convinces users to try. For example, in an online shop, an
explanation of the neural network suggesting products would additionally
convince people to look at that product.

« Efficiency helps users to make decisions faster. For example, we have a problem,
but we do not know which neural network is suitable. With an explanation
of what which network does, we would come to a faster choice of a suitable
neural network.

« Satisfaction increases the ease of usability or enjoyment. Consider the online
shop example. An explanation of the product recommendations helps the
user to understand the suggestions and to act on them. This leads to more
user-friendliness.

These features make the potentially vague term of explainability more rigorously
tractable. In this thesis, we will introduce a framework that addresses these seven
goals to make explanations human-understandable.
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label: baseball
pred: crayfish
prob: 0.18 X

label: bell pepper .
pred: bell pepper |
prob: 0.98

label: ice lolly
pred: ice cream
prob: 0.34

label: broom
pred: broom
prob: 0.71

Figure 1.3: Exemplary explanation approaches taken from [Alb+19].

1.3 State of the Art

In eXplainable Artificial Intelligence (XAl), a lot has happened in the last few years due
to the boom of Al, especially with neural networks. Although there existed methods
on how to build an interpretable neural network back in the 90s [GHMS92, LC99,
AW93], the trend has resurfaced from 2010 onwards. Most explanation approaches of
neural networks occur in the field of computer vision. There, explanation approaches
visualize important features to bring the explanation closer to the human being.
For example in image classification, perturbation-based approaches perturb image
features such as image areas or image colors to find out which features are relevant.
For example, Deconvnet gradually covers areas of an image to find out which area was
most relevant [ZF14] (see Fig. 1.3). Another method is LIME [RSG16] which extends
Deconvnet. It divides the input image into similar color areas, called superpixels.
Then, the weighting of the superpixels is calculated to determine the most important
areas in the image for the classification. With these approaches, however, the size
of the window that one covers is relevant. This can lead to artificially optimized
explanation approaches, i.e., the window size is selected in a way that the object to
be classified lies within it. Gradient-based approaches on the other hand examine the
derivative to explain a neural network. For example, the Gradient-based Sensitivity
Analysis can be used to evaluate how sensitive the predictions react to small changes
in input features [RHW86]. Input values that lead to an increase or decrease in the
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predictions can be decisive for a certain class [SVZ14]. Known applications include
SmoothGrad, which adds noise to a picture to find the relevant pixels [Smi+17],
and Integrated Gradients, which combines sensitivity analysis and implementation
invariance [STY17]. These methods show whether an input has a positive or nega-
tive influence on the prediction. However, it is not possible to make a quantitative
statement because they do not preserve the former values. Other methods with a
similar goal are backpropagation-based approaches which use attention mechanisms
to see if the most important features are the desired ones. Known approaches are
Guided Backpropagation [SDBR15] and Layerwise Relevance Propagation [Bac+15,
Mon+19, MSM18]. Additional information on these methods can be found in Chap-
ter 2. Fig. 1.3 shows some examples of those explanation approaches. Despite the
number of visualization techniques, most of the time these explanations are aligned
to the view of a computer scientist. Without a technical background, it is difficult to
understand the meaning of the explanations. Thus, these approaches rely on a human
expert who evaluates the explanations. With thousands of images, it can take some
time to examine whether it corresponds to the desired explanation. Furthermore,
most explanations do not provide any indication of how the training process or
architecture should be changed to get an improvement.

1.4 Hypotheses

As we have seen in the previous section, the existing approaches go very deep in
their explanations. This allows a more detailed explanation of the architecture of the
neural network, for example, the individual neurons [Smi+17] or layers [Bac+15]. As
illustrated by Figure 1.3, such explanations are targeted at computer science experts.
We aim to bridge the gap between Al and (non-expert) humans. In particular, we
want to develop approaches that make neural network explanations comprehensible
to people without a computer science background. To this end, we formulate the
following hypotheses.

Hypothesis 1. Quantifying explanations based on the relevance of the input features
facilitates the evaluation of not only the input data but also the neural network.

Associated with Hypothesis 1 are the following research questions we want to
tackle:

1. What parameters are relevant for understanding explanation quality?
2. Which implications can be derived from these relevancies?

3. Can these relevancies be used to improve the neural network (and if so, how)?
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With the first hypothesis, we want to improve an existing explanatory approach by
quantifying its explanations and, thus, making them more tangible for laypersons.
In the second hypothesis, we turn to the neural network itself. How must a neural
network be adapted so that we get the desired explanation (making it right for the
right reasons)? Or what is the desired explanation, taking into account existing
explanation approaches?

Hypothesis 2. In image classification, object-aligned explanations can sufficiently
map the desired explanation of humans and guarantee an intuitive explanation.

Associated with Hypothesis 2 are the following research questions:
1. How can right for the right reasons be measured?
2. Does it satisfy the concept of classifying right for the right reasons?
3. Can it be included in the training process?

To break down the architecture of a neural network even further, we make use of
semantics to give another dimension of explanation besides visualization. The third
hypothesis considers filters in convolutional neural networks.

Hypothesis 3. Filters in CNNs encode semantic information of the input images.
Associated with Hypothesis 3 are the following research questions:
1. How can the encoded semantic information of the filters be decoded?

2. How precise are the tagged filters in predicting and understanding the output
of the CNN (compared to visual methods)?

3. What benefit does link tagged filters to knowledge graphs offer?

Our first three hypotheses aim at complementing existing explanatory approaches
and thus making them more comprehensible to humans. In doing so, we follow the
state of the art by going deeper into the architecture of neural networks. However,
the existing approaches still need to be evaluated by computer science experts.
Our distinction from existing approaches is that we exploit existing approaches
and enhance them with a measure to make them more tangible to non-experts.
Furthermore, we make use of semantics to include another dimension of explanation.
We note that all of these approaches, as well as those mentioned in Section 1.3 are
what we consider deep, i.e., they take one neural network and one input and produce
one explanation of the output.
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In contrast, one may also consider explanations that are broad, i.e., ones that take
into consideration multiple models at once. There is not only an unprecedented
availability of data but also an unprecedented availability of statistical models such
as neural networks that were trained on that data. A broad explanation approach
can serve as a very first step in finding suitable models for the task at hand. What if
you have an idea of a problem, but you do not know what kind of network to use?
You would need a more general explanation about existing neural networks. The
information basis on neural networks is quite large with repositories, containing
neural networks, data sets for neural networks, and frameworks to build neural
network architecture. It seems as if it is easy to find a neural network for every
use case. However, when trying to find a suitable neural network, the search list is
overwhelming positively and negatively. We can find a lot about neural networks,
but the information still needs to be sorted or is redundant according to use cases.
The availability is mostly not given or the repositories only provide a simple example.
The detailed search is meager and not specific enough for explicit neural networks.
The problem is the amount and creation speed of new information, the importance
of which must be determined and compiled in a structured manner. Only then
can people use and understand it. We address this problem in the final hypothesis
by preparing neural networks according to the FAIR Principles [Wil+16, Wis+19,
DPGK19] using semantics. The FAIR Principles give the guideline on how to make
data findable, accessible, interoperable and reusable. To our knowledge, this type of
broad explanation has not yet been addressed.

Hypothesis 4. Neural network models which comply with the FAIR Principles support
humans in dealing with the increase in volume, complexity, and creation speed of these
models.

Associated with Hypothesis 4 are the following research questions:

1. Which information should be provided about the neural network models to
enable transparency?

2. Which information must be provided to apply an existing model to a novel use
case?

3. What kind of functions should be provided for supporting humans in reusing
neural networks?

Figure 1.4 visualizes the hypotheses and research questions of this thesis.
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Figure 1.5: Overall framework.

1.5 Contributions

Considering the aforementioned hypotheses, our contribution is fourfold. TransPer
deals with the question: “I just bought a dishwasher, why is another dishwasher
recommended to me?” ObAIEx ensures that images of Huskies should not be recog-
nized by snowy backgrounds. FilTag addresses the question: “How is this Picasso
painting classified as a parrot?” FAIRnets tackles the hypothesis: “To apply machine
learning at scale, data must be discoverable, accessible, interoperable, and reusable.”
Fig. 1.5 shows an overview of our contributions and categorizes them accordingly
in a framework. If we consider the architecture axis, we see that TransPer, ObAIEx
and FilTag examine the architecture of a neural network regarding the depth of
explanation. That means, they drill down into the architecture. However, they are
narrower in their breadth of explanation than FAIRnets because they explicitly refer
to an existing neural network. Fairnets, on the other hand, does not go as deep as
the other approaches in its explanations but is rather on the surface. Nevertheless,
FAIRnets looks at the whole volume of existing neural networks, i.e. the explanations
are broad. If we turn to the semantic axis, we see that FAIRnets and FilTag use
semantic tools, while TransPer and ObAIEx do not use semantics. In the following,
we will go into more detail on the individual contributions:

Contribution to Hypothesis 1. TransPer, an explanatory framework for neural
networks based on input relevancies and explanation quantity measures to evaluate the
helpfulness of the resulting explanations.



Contributions

Section 1.5

Firstly, we present TransPer, an explanatory framework for neural networks to pro-
vide transparency. It uses novel explanation measures based on Layer-Wise Relevance
Propagation and can handle heterogeneous data and complex neural network architec-
tures, such as combinations of multiple neural networks into one larger architecture.
We apply and evaluate our framework on two real-world online shops. We show that
the explanations provided by TransPer help understand recommendation quality,
find new ideas on how to improve the recommender system, help the online shops
understand their customers, and meet legal requirements such as the ones mandated
by GDPR.

Contribution to Hypothesis 2. ObAIEx, an object-aligned explanation quality met-
ric for image classification.

Secondly, to open the neural network black box, we define a new explanation quality
metric ObAIEx for image classification. The effectiveness of Convolutional Neural
Networks (CNNs) in classifying image data has been thoroughly demonstrated. To
explain the classification to humans, methods for visualizing classification evidence
have been developed in recent years. These explanations reveal that sometimes
images are classified correctly, but for the wrong reasons, e.g. recall the example of
wolves being recognized based on snowy backgrounds, or the example of the objects
being recognized based on source tags from the beginning of this chapter. Of course,
images should be classified correctly for the right reasons, i.e., based on the actual
evidence. To this end, ObAIEx measures object-aligned explanation. Using object
detection approaches, explanation approaches, and ObAIEx, we quantify the focus
of CNNs on the actual evidence. Moreover, we show that additional training of the
CNNs can improve the focus of CNNs without decreasing their accuracy and, thus,
classify right for the right reasons.

Contribution to Hypothesis 3. FilTag, an approach to explain the role of each
convolutional filter of a convolutional neural network to non-technical-experts.

Thirdly, we propose FilTag, an approach to effectively explain Convolutional Neural
Networks even to non-experts by tagging the most activated filters with words de-
scribing objects from everyday life. The idea is that when images of a class frequently
activate a convolutional filter, then that filter is tagged with that class. These tags
explain what the filter does. Further, individual image classifications can then be
intuitively explained in terms of the tags of the filters that the input image activates.
Combining the tags with knowledge graphs gives a wider understanding of the filters.
Finally, we show that the tags help analyze classification mistakes and that they can
be further processed by computers.

11
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Contribution to Hypothesis 4. FAIRnets, an ontology for presenting neural networks
following the FAIR principles and a knowledge graph representing over 18,400 publicly
available neural networks.

Finally, we present FAIRnets, an approach that processes the metadata to explain.
Therefore, we define and build the neural network ontology FAIRnets Ontology, an
ontology to make existing neural network models findable, accessible, interoperable,
and reusable according to the FAIR principles. Our ontology allows us to model
neural networks on a meta-level in a structured way, including the representation of
all network layers and their characteristics. Based on that, we have modeled over
18,000 neural networks from GitHub, which we provide to the public as a knowledge
graph called FAIRnets, ready to be used for recommending suitable neural networks
to Al practitioners.

1.6 Outline

The thesis is structured as follows. After introducing fundamentals and concepts in
Chapter 2, we go on to present our four approaches that shape our framework. We
begin with TransPer in Chapter 3, an explanation approach for neural networks with
a focus on product recommendation. Then, we propose two explanation approaches
for computer vision to be more precise image classification, namely ObAIEx and
FilTag in Chapter 4 and Chapter 5, respectively. Afterward, in Chapter 6, we propose
FAIRnets, an approach to provide FAIR neural networks. Then, we conclude with a
summary of our framework, including limitations and future work in Chapter 7. An
outline of the thesis can be found in Figure 1.6.
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2 Foundation

In this chapter, we introduce notations, describe basic concepts and methods used
throughout the thesis. After introducing some famous neural networks which we
reuse in our approaches, we introduce basic explanation approaches.

2.1 Neural Network

Neural networks in computer science are a machine learning method in which a
computer learns to perform a task by analyzing training examples. Modeled after the

human brain, a neural network consists of thousands of neurons which are connected.

It can be visualized as a direct graph, where the nodes are the neurons. The neurons

each belong to one layer and are connected if so to the neurons in the next layer.
These layers consist of an input, an output, and hidden layers in between, see Fig. 2.1.

The edges here are weights that are determined during training. Each neuron has an
activation which is calculated from an activation function, weight and activation of the

previous neuron. In each training step, the weights are adjusted by backpropagation.

In this thesis, we consider trained neural networks, i.e. the weights are already
determined. Following [NKHF21], consider a trained neural network with K € N
layers, i.e. hidden layers. Fig. 2.1 shows an example of a neural network architecture
with K = 2. We refer to Iy as the set of all neurons in the k-th layer, ¢ as a nonlinear

monotonously increasing activation function, zf as the activation of the i-th neuron

in the k-th layer, wl.kj’k+1 as the weight between the neurons zX and zf“, and bﬁ? as the

bias term w.r.t. zf“. Assuming that we know the activations in IIj, the activations

15
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inputlayer hidden layers output layer

Figure 2.1: An exemplary neural network.

in ITg4; can be determined via forward pass as follows:

k+1 _ k. kk+l k
z; —o((Zziwij )+bj)

i€llx

1
f” we assume wl.kj’kJr = 0. If a network has no

bias, then b* = 0. This is the basic architecture of a feed-forward neural network. In
addition, there are also variations regarding the layers, which are presented hereafter.

For non-connected neurons zf and z

Convolutional Neural Network (CNN)

Convolutional Neural Networks are mostly used in the field of image recognition
because they are space invariant. A CNN has a convolutional layer as a characteristic
feature which is an application of a filter on an input resulting in a feature map. The
filters can detect specific patterns in an image that are relevant for certain prediction
classes.

Fig. 2.2 shows such a convolution. First, the input image is converted into a digital
image, more precisely an RGB image. By applying a filter that highlights specific
features a feature map is created. This feature map summarizes detected features from
the input. Usually, several filters are applied in parallel generating several feature
maps that are used as input in the next convolutional layer. This parallelization is
beneficial to learn complex patterns in an image. As the filters are learned during
training, they are also the weights of the neural network. This is important when it
comes to explanation approaches that visualize the weights to understand what the
neural network does.
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Figure 2.2: An exemplary convolution taken from [NHWF21].

Table 2.1: Overview of the CNNs used taken from [Ker]. The time is per inference
step.

Model Top-1 Accuracy Top-5 Accuracy Depth  Time (GPU)
VGG16 0.713 0.901 23 4.16ms
VGG19 0.713 0.900 26 4.38ms
ResNet50 0.749 0.921 - 4.55ms
InceptionV3  0.779 0.942 159 6.64ms
MobileNet 0.704 0.895 88 3.44ms

The neural network models we use throughout this thesis are pre-trained and
taken from [Ker]. Table 2.1 shows an overview of the characteristics. In the following
we will explain their architecture:

VGG. The architecture VGG was introduced by Simonyan and Zisserman. In their
paper “Very Deep Convolutional Networks for Large-Scale Image Recognition”, they
examined the role of the depth of a CNN. They found that a depth of 16—19 layers gave
the best accuracy in image recognition [SZ15]. Fig. 2.3 shows VGG16 with sixteen

17
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Figure 2.3: VGG16 architecture taken from [Has].

layers and Fig. 2.4 shows on the left-hand-side VGG19 with nineteen layers. In their
convolutional layers, they used a very small filter size of 3 X 3 and a Rectified Linear
Unit (ReLU) activation function. They use five convolutional blocks, whereby a block
consists of several convolutional layers. To deal with the dimensions, they use the
function max pooling between the convolutional blocks to reduce the dimensions. In
the end, there is another block of fully connected layers to summarize the information.
VGG16 and VGG19 belong to the most famous architectures of deep neural networks
achieving a 0.9 top-5 accuracy (i.e. the label is in the top five predictions) on ImageNet
[Ker]. Due to its simple structure and quite a manageable layer size, the pre-trained
VGG16 is used as an example in this thesis to evaluate explanation methods.

ResNet. The Residual Network (ResNet) was introduced by He, Zhang, Ren, and Sun.
In their paper “Deep Residual Learning for Image Recognition”, they introduced a
residual function to train deep neural networks with lower complexity [HZRS16]. The
characteristic of residual networks is that they skip layer connections. For example,
Fig. 2.4 shows on the right-hand-side a residual network with skip connections
whereas in the middle there is a plain neural network, i.e. the layer are all run
through there little by little. However, this increases the runtime and the number of
parameters enormously, which can be overcome by using residual blocks.
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Figure 2.4: Example CNN architectures for image recognition taken from [HZRS16].
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layers, and a residual network with 34 parameter layers.

Neural Network

Section 2.1
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Figure 2.5: Inception layer taken from [Sze+16].

InceptionNet. The architecture Inception was introduced by Szegedy, Liu, Jia, Ser-
manet, Reed, Anguelov, Erhan, Vanhoucke, and Rabinovich and called GoogLeNet
or Inception V1, respectively. In their paper “Going Deeper with Convolutions”,
they define a module that allows running multiple filters with different dimensions
simultaneously. The idea is that it is not necessary to choose one particular filter
size, but that all of them can be used. This facilitates the extraction of multi-level
features. Such a module can be seen in Fig. 2.5. The output of a previous layer is
passed on several 1X 1 convolutional layers to save parameters by reducing the depth
of the output and a 3 X 3 max-pooling layer to adjust the dimension for the different
convolutional layers [Sze+16]. GoogLeNet consists of 22 layers whereas a part of
these layers consists of a total of nine Inception modules. The later version provided
by Keras is Inception V3 from [Sze+16].

MobileNet. The architecture MobileNet was introduced by Howard, Zhu, Chen,
Kalenichenko, Wang, Weyand, Andreetto, and Adam. In their paper “MobileNets: Ef-
ficient Convolutional Neural Networks for Mobile Vision Applications”, they present
depthwise separable convolutions to build lightweight neural networks [How+17], i.e.
less computation power and thus also executable on mobile phones. Fig. 2.6 shows
the components to build a depthwise separable convolutional filter. It is basically a
factorization of a standard filter (Fig. 2.6 (a)) into a depthwise convolutional filter
(Fig. 2.6 (b)) and a pointwise convolutional filter (Fig. 2.6 (c)). Although depthwise
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Figure 2.6: Components to build a depthwise separable filter taken from [How+17].

convolution needs less computation power than standard convolution, it only filters
the single channels and does not merge them. Therefore, pointwise convolution is
used to bring the features of the individual channels together again. This combination
is called depthwise separable convolution.

2.2 Explanation Approach

There are three different scenarios where we can start to explain a neural network.
The first scenario is before building a model. Before building a model, the underlying
data can be analyzed to reveal understandable structures in the data that are then
processed from a neural network. By understanding the data, it is possible to derive
explanations for the output. For example, Gisolfi and Dubrawski introduced a bound-
ing box algorithm to extract simpler structures from the data. The second scenario
arises while building a new model. Here, we can use rule-based [GHMS92], case-
based [LC99], or monotonicity-based [AW93] approaches to build a neural network
to understand the model afterward. For example, Wu, Hughes, Parbhoo, Zazzi, Roth,
and Doshi-Velez [Wu+18] regularize deep models by training deep time-series models
which are modeled by decision trees. These two scenarios define interpretable models.
The last scenario is after building a model. Here a neural network is given. Due to the
black box problem with neural networks, there are several approaches to unveil its
behavior. There are attempts to approximate the neural network with an interpretable
model [LL17, RSG16], to evaluate the output with sensitivity analysis [SZ19, KDS17],
or investigate the hidden layers [CEP20, KKMK20]. In this thesis, we will focus on
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Prediction hummingbird occlusion

Figure 2.7: Example of the explanation method Deconvnet on VGG16.

the last scenario of a given neural network which we want to explain. Thus, in the
following, we will present some approaches that occur in this thesis.

Perturbation-Based Approach

Perturbation-based approaches examine a model’s output by perturbing specific
input features. These explanation methods use techniques like masking, blurring,
or noise to perturb an input to analyze the feedback regarding the output. The idea
behind this is that in altering input features that contribute maximally to an output,
the prediction of that output would decrease significantly. The different outputs can
then be compared to draw conclusions [SM19].

Zeiler and Fergus firstly introduced Deconvnet a method to perturb visualiza-
tions [ZF14]. They alternately cover areas of an image with a gray square. The
absence of information is simulated by occluding regions of the image. The gray
square is gradually sliding over the entire image. The probability of the correct class
is then visualized depending on the position of the occluded square. This identifies
important regions in the images. However, depending on the size, color, and sliding
of the square, the output may be affected. Fig. 2.7 shows a visualization of the impor-
tant pixels with Deconvnet on VGG16 which predicted the correct class with 1.00
accuracy.

Therefore, Ribeiro, Singh, and Guestrin take a different approach to perturb images.
With their method LIME (Local Interpretable Model-agnostic Explanations), they
divide an image into super-pixels. A super-pixel is defined as a group of pixels that
has specific properties such as color intensity. Then, they perturb these super-pixels
one by one and predict the class with the perturbed image. In this way, the most
important areas of the input for the decision can be detected and visualized. Fig. 2.8
shows a visualization of the important super-pixels with LIME on VGG16 which
predicted the correct class with 1.00 accuracy.
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Figure 2.8: Example of the explanation method LIME on VGG16.

Backpropagation-Based Approach

Backpropagation is a method used to learn neural networks. Through backpropaga-
tion, the error of the loss function is minimized. Inspired by this, backpropagation-
based approaches calculate an heat-map based on the output and the calculated
weights such as Guided Backpropagation [SDBR15], DeconvNet [NHH15] and DeepLIFT
[SGK17]. However, these approaches do not distinguish between different prediction
classes.

Class Activation Mapping (CAM) removes the fully connected layers and replaces
them with a global average pooling. Then, it retrains the neural network and outputs
the probability for each class [Zho+16]. This modification enables the computation of
a heat-map for each class. GradCAM (Gradient-weighted Class Activation Mapping)
is an extension of CAM without modification of the neural network. It computes
the gradients of the feature maps from the convolutional layers. Then, it gets a
weighted heat-map by computing a global average pooling of the gradients [Sel+16].
GradCAM++ further extends GradCAM by only considering positive gradients. The
idea is that only pixels that have a positive impact on the predicted class should
be visualized [CSHB18]. Fig. 2.9 shows a visualization of the important pixels with
GradCAM and GradCAM++ on VGG16 which predicted the correct class with 1.00
accuracy.

In this thesis, we will apply Layerwise Relevance Propagation (LRP) which is a
conservative method. It computes the relevance of each input neuron to each out-
put neuron with backpropagation while preserving the activation values [Bac+15,
Mon+19, MSM18]. Following [NKHF21] and the definitions in Section 2.1, the LRP
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Figure 2.9: Example of explanation methods GradCAM and GradCAM++ on VGG16.
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3 TransPer

Neural networks are a popular tool in e-commerce, in particular for product recom-
mendations. To build reliable recommender systems, it is crucial to understand how
exactly recommendations come about. Unfortunately, neural networks work as black
boxes that do not provide explanations of how the recommendations are made.

In this chapter, we present TransPer, an explanatory framework for neural networks.
It uses novel, explanation measures based on Layer-Wise Relevance Propagation and
can handle heterogeneous data and complex neural network architectures, such as
combinations of multiple neural networks into one larger architecture. We apply
and evaluate our framework on two real-world online shops. We show that the
explanations provided by TransPer help (i) understand prediction quality, (ii) find new
ideas on how to improve the neural network, (iii) help the online shops understand
their customers, and (iv) meet legal requirements such as the ones mandated by
GDPR. In particular, we aim to answer the following research questions with our
approach.

Research Question 1. Hypothesis: Quantifying explanations based on the rele-
vance of the input features facilitates the evaluation of not only the input data but
also the neural network.

1.1 What parameters are relevant for understanding explanation quality?
1.2 Which implications can be derived with these relevancies?

1.3 Can these relevancies be used to improve the neural network (and if so, how)?
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This chapter extends work initiated as part of a project in collaboration with the or-
ganization econda and is based on joint work with Franz Krause, Daniel Hagenmayer,
and Michael Farber [NKHF21].

3.1 Introduction

The breakthrough with neural networks as a pattern recognition technique has led
its way into many industry sectors. Especially in e-commerce, it can be used as a
recommender system for advanced searches [LM20], personalization of shopping
experiences and direct marketing [Par00], or advanced sales forecasting and predic-
tions [LMS18]. Improving the predictions and the usefulness of those recommenders
can increase sales and customer satisfaction. Additionally, there is increasing legal
pressure in favor of privacy and data protection. For example, the General Data
Protection Regulation [PE16] (GDPR) states that data subjects should be enabled to
check the collection, processing, or use of their data. Thus, businesses may be legally
required to make their recommender systems transparent.

Multilayer Perceptrons (MLP) have been applied in recommender systems learning
feature representations as an extension to collaborative filtering [KTL20]. In com-
bination with convolutional layers, they are applied to generate fashion outfits for
e-commerce or to personalize outfit recommendations based on learned embeddings
in Convolutional Neural Networks (CNN) [BHZC20, Che+19]. Recurrent Neural
Networks (RNN) have shown success in modeling sequential data and have been
used for personalized product recommendations based on the purchase patterns of
customers [ND19], learning embeddings of fashion items [LCZL17] and modeling
user behavior to predict clicks [BMRS16].

However, neural networks are black-box models, i.e., the predictions can not be
explained. To tackle this, it is beneficial to make them more transparent and there-
fore, more human-understandable. Typically, the Gradient-based Sensitivity Analysis
[RHW86] is used to explain the predictions of neural networks. By optimizing the
gradient ascent in the input space, it is possible to determine which inputs lead
to an increase or decrease of the prediction score when changed [SVZ14, STY17].
Although applications based on this method enable a statement regarding the positive
or negative influence of an input on a prediction, they do not reveal a quantitative
decision-relevant input score such as Guided Backpropagation [SDBR15], Decon-
vNet [NHH15], or DeepLIFT [SGK17]. These algorithms use the trained weights and
activations within the forward pass to propagate the output back to the input. This
way, it is possible to determine which features in an input vector contribute to the
classification and what extent. Exploiting this, ObAIEx [NOF21] is an explanation
quality metric which measures to what extent the classified object is aligned to the
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Figure 3.1: Model of a neural network recommender with different input data types

mentioned explanations. Nonetheless, all these methods are solely applied to CNNs
with image data where single pixels are then highlighted. Another back-propagating
algorithm is the Layer-Wise Relevance Propagation (LRP) that has already been
successfully used in interaction with MLPs and CNNs [ACOG18, Bac+15, Mon+19].
LRP computes the relevance of each input neuron to the output by performing a
value-preserving backpropagation of the output. Furthermore, this method is even
applicable on RNNs with sequential data [Bha18, MSM18] which often occurs in
processing customer profiles in e-commerce.

Although there are already some approaches in this field, it is now the case, due
to the data basis, that not only certain types of data are fed into a neural network.
Considering an online shop for clothes, both the images of the clothes or their
categories and the click history of the customers can be fed into the neural network.
Thus, this neural network would handle different types of data. Since the above
approaches only consider one type of neural network and therefore one datatype, we
need an explanation approach that can handle different types of data as in Fig. 3.1.

Contribution. Our contribution is threefold. First, we provide an explanation
framework called TRANSPER' for e-commerce businesses in online shopping (e.g.,
for product recommendation) to provide transparency to the neural networks used.
Based on a custom implementation of Layer-Wise Relevance Propagation, our ap-
proach can not only handle individual neural networks types, but also more complex
architectures that contain multiple neural subnetworks, such as shown in Fig. 3.1.
This is required in the presence of highly heterogeneous input data (e.g., product
images, chronological shopping interactions, personal information) where different
neural network types are necessary (e.g., CNN, RNN, MLP). We not only take into

1We provide the source code online at https:// github.com/Krusinaldo9/TransPer.
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account the relevance of the activations of the neurons, but also the bias. This has
not been considered in depth in the literature. Second, we define quantity measures
to evaluate the helpfulness of these explanations. The individuality measure can
be used to determine those parts of the input that are particularly relevant for the
decision. The certainty measure quantifies how certain the system is about its pre-
diction. The diversity measure states whether there are clear top predictions. Third,
we evaluate our approach in real-world scenarios. To this end, we used data from
two real-world online shops provided by our partner econda, an e-commerce solution
provider. We show that TRANSPER helps in (i) understanding the prediction quality,
(ii) finding ideas to improve the neural network, and (iii) understanding the customer
base. Thus, TRANSPER brings transparency to personally individualized automated
neural networks and provides new knowledge about customer behavior. We believe
that this helps to fulfill GDPR requirements.

The remainder of this chapter is structured as follows. After introducing prelimi-
nary definitions and concepts in Section 3.2, we go on to describe the problem setting
and formally define an online shop in Section 3.3, to introduce our quantity measures
in Section 3.4. We evaluate our approach based on a real-world scenario in Section 3.5
before ending with some concluding remarks.

3.2 Preliminaries

In this section, we present the fundamentals for the application of our approach. To
begin with, we consider a trained neural network with K € N layers as shown on
the left-hand side of Fig. 3.2. We refer to I as the set of all neurons in the k-th layer,

o as a nonlinear monotonously increasing activation function, zf as the activation of

k k+1

the i-th neuron in the k-th layer, w, as the weight between the neurons zf.‘ and

zﬁ? , and bﬁ? as the bias term w.r.t. zj?“. Assuming that we know the activations in

I, the activations in IIx,; can be determined via forward pass as follows:

k+1 ((Z k kk+1)+b§) (3.1)

ielly

k,k+1
For non-connected neurons z and szrl we assume w;;" = = 0. If a network has no

bias, then bf =0.
Layer-Wise Relevance Propagation is a method that represents a backward analysis
method [Bac+15]. Knowing the activations szrl in layer k + 1, we can determine to

what extent the neurons in IT; and the blases b* have contributed, or how relevant
they were. The idea behind the standard implementation of the LRP algorithm can
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Figure 3.2: Exemplary run of LRP. The left-hand side shows the calculation of neuron
activations in the forward pass. These activations are then part of the calculation of
its relevancies in the backward analysis depicted on the right-hand side.

be found on the right-hand side of Fig. 3.2 and is defined as

ZIF Wk,k+1

i ij
= D Rigs1jy 3.2)

J €llges1 k., k.k+1
DIy

iellx

bk
R? ! R (3.3)

k) = (k+1.j)"
(Z zf-“wfjfkﬂ) + b§

ielly

For a layer k + 1, we assume for each neuron j that a relevance can be assigned in the
form of a real-valued number Rfk ) Using Equation 3.2, we obtain the relevance,
i.e., quantitative contribution, of the i-th neuron in the k-th layer to the overall
relevance of layer k + 1. Furthermore, Equation 3.3 provides the relevance of the bias
b;? of the j-th neuron in layer k + 1.

In certain applications, customized variations of the standard LRP algorithm pre-
sented above can be considered to increase the performance. In particular, regarding
the explainability of CNNs, it has been found that adapted LRP methods lead to better
results than the standard LRP method [ACOG18, Bac+15, Mon+19]. These are char-
acterized, e.g., by the use of tuning parameters or penalty terms for negative neuron
activations. Regarding RNNs, however, hardly any results exist concerning the use
of such variations. Therefore, with the use cases in Section 3.5, we provide results of
a test study comparing well-known customizations with the standard method.
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3.3 Formal Model of an Online Shop

In this section, we define an online shop regarding a suitable neural network that can
handle specific characteristics. Especially, we include heterogeneous input data such
as interest in products or interactions with products which additionally can have
different input lengths. To generalize our definition, we consider a neural network
consisting of several neural subnetworks to cover different cases as can be seen in
Fig. 3.1. Considering all this, we define our online shop as follows.

Definition (Online Shop Model). We define an online shop T as a tuple
T =(CP, (P, ®),AN,S, (Q)ecec, (c)eec, (fe)eec)
with the following entries:
a) We denote C as the finite set of all customers of the shop.
b) Let P be the finite set of all products that the shop offers.

c) Then, let P* be a subset of P or P itself, i.e., P* C P, and ® denotes the real-valued
output space [0,1]F"].

d) We denote A as the set of information types that the shop T can have about one
of its customers ¢ € C and assume that this amount is finite.

e) We define A* as a finite set of disjoint subsets Ay, ..., Ay, of A which corresponds
to neural networks S = {s1," -+, sn}.

f) For a customer ¢ € C we define an associated real-valued input space
Q. =R™©) % xR™()
with the mappings m; : C — N fori € {1, .., n} with respect to s;.
g) Considering a particular customer ¢ € C, we define his input as w; € Q..

h) For a customer ¢ € C, we also define the mapping f. : Q. — ® where f.(x) is the
recommender’s output vector for an input x € Q..

Assume we have an online shop T with customers C. The online shop has a
catalog of offered products P. Though, not all products are predicted for example
only seasonally available ones or most purchased ones in the last week denoted by
P*. These are used as output space ® in the neural network, i.e., if ®(p) > ®(p’) then
product p is recommended. Now, consider the types of information A the online shop
can have about their customers such as already purchased products, interactions,



Explanation Approach

Section 3.4

or ratings. As mentioned in Section 3.1, certain network types are more suitable
for specific data types. Therefore, this information is then classified into disjoint
information types, such as sequential data A, graphical data A,, etc., and summarized
in A*. So, if an online shop T has heterogeneous user data, Fig. 3.1 would consist of
neural subnetworks sy, - - -, s,. With homogeneous data, we would have a special
case of the previous one. Hence, we have:

1. A=A andA" ={A}, ... A}. (heterogeneous data) (3.4)
2. A =Ajforsomeiand A" = {A}}. (homogeneous data) (3.5)

The different A} can have different input lengths depending on the sequence length
of the interactions or the size of the images. So, we use the mappings m; to deal
with it and summarize them in Q. Thus, for a customer ¢ € C, we obtain the neural
network’s output vector y = fz(«w.).

Considering the different data types, the online shop has three possibilities to
define a suitable neural network: (i) The online shop uses n different data types, i.e.,
heterogeneous data, and needs n different neural subnetworks. An overall decision
is obtained by concatenating the hidden layers at a suitable position, see Fig. 3.1. (ii)
Second, the online shop decides to just use one data class, i.e., homogeneous data, and
therefore has just one neural subnetwork in Fig. 3.1. However, important information
can be lost from the other data classes. (iii) Third, it is possible to define suitable
neural subnetworks for n > 1 data classes, train them separately and then save
their weights. These n trained neural subnetworks can be concatenated and trained
again with the entire data, using the already trained weights and biases as initial
values. This approach is therefore a combination of the two mentioned possibilities
above. Thus, n + 1 neural subnetworks are obtained in total, with one resulting from
the concatenation of the n individual neural subnetworks. The output vector then
depends on whether one uses the concatenated network s,.; or one of the neural
subnetworks sy, ..., s,. This third possibility will be relevant for our use case.

3.4 Explanation Approach

The goal of our approach is to evaluate the explanation of product recommendations
of a shop-adapted neural network to better understand the decision. Given input from
a user of an online shop and a trained neural network as a recommender, TRANSPER
performs a backward analysis based on an individual prediction. In this way, it can be
explained to what extent components of the trained network or certain inputs were
relevant. This process can be seen in Fig. 3.3. In the following, we will (i) describe
how these explanations can be gained with LRP, (ii) specify how to analyze the input
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Figure 3.3: TRANSPER Overview.

with the Leave-One-Out method, and (iii) define quantity measures to evaluate the
explanations.

3.4.1 Explanation via Layer-Wise Relevance Propagation

Following the notation of Section 3.2 and Definition 3.3, we assume that K € N
denotes the number of layers in the neural network, i.e., the first layer is the input layer
and the K-th layer is the output layer. Furthermore, fork € {1, ..., K} let |[IIx| = [y € N
be the number of neurons in the k-th layer, i.e., I; describes the number of input
neurons and Ix the number of output neurons. Indeed, in the context of classifiers,
each neuron of the output layer represents one element of the target set. For example,
for an input x, the neuron (K, i*) with the highest prediction score f(x);- as output
is the actual recommendation. In this context, it is then of interest to find out to what
extent the neurons of the lower layers contributed to the decision f(x);:. For our

approach, we define the initial relevance vector RfK,_) = (R?K’i)) ie{1,...Ix} With

(KD~ o otherwise

i { fx)e ifi=i*

which can be used to iteratively compute the relevance for layers K — 1, ..., 1 using
Equation 3.2 and Equation 3.3. Finally, we obtain Rfl’_) as the input layer’s relevance
vector and can thus determine to what extent an input neuron is decision-relevant
(see Fig. 3.2). Note that a negative relevance in an input neuron diminishes the
prediction i* whereas a positive relevance underpins it. In contrast to most LRP

b ) of the j-th neuron of

approaches, we also consider the relevance of the bias R( k)
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the (k + 1)-th layer. Our LRP method is characterized as follows:
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K-1
- Z Rl +Z Z R?k,j)’ (3.6)

ielly k=1 j€llj4q
—_——— —,—,—,—,—,——
=:R? =:Rb

i.e., the sum of the final relevancies R* and R® equals the original output score. By
comparing the two summands in Equation 3.6, the LRP algorithm also provides a
method to find out how much relevance R?, R® can be assigned to the input neurons
and the trained bias, respectively.

3.4.2 Input Analysis with Leave-One-Out Method

In this section, we want to find out why well-functioning recommenders work
and provide new insights into the customers’ shopping behavior. Additionally, we
want to know why an insufficiently functioning recommender delivers meaningless
predictions. Therefore, we need to further analyze the explanations gained from LRP
regarding their helpfulness, i.e., the impact of input on the prediction. Using the
Leave-One-Out method [YLLZ10], we evaluate the input relating to the explanations.
By consistently leaving one product out by setting its input value to zero, we can
observe its effect on the predictions and explanations, see Fig. 3.4. Assuming a trained
neural network, we perform the following steps:

(i) We start with a particular customer and the associated input x which is mapped
to an output vector y via the trained network.

(ii) According to Equation 3.6, for a given output neuron y;- with i* € {1, .., Ix}
(e.g., the one with the highest prediction score), we compute the associated
input relevancies (Rf1 j)) je(1,..5,} and the overall relevance of the bias RP.

Thus, we consider the set of relevancies R := {R?} U {Rfl,j) :1<j<hL}

(iii) For a salient subset of the relevancies R* C R (e.g., the inputs with the high-
est/lowest relevancies), we set the associated input neurons (marked red in
Fig. 3.4) in x to 0 and obtain the adapted input vector x*.

(iv) Asin Step (i), we map the input x* to the corresponding output y* via the same
trained network and obtain the test output y*.

Thus, with steps (i)-(iv), we obtain the input vectors x and x*, the output vectors y
and y*, and the set of relevancies R. They are used in Section 3.4.3 to enable the
explainability of neural network predictions according to the online shop in Defini-
tion 3.3.



Explanation Approach

Section 3.4

Prediction Explanation Prediction

-
|

Input
7
Input*
Output*

et

Figure 3.4: Selection and analysis of the most relevant inputs via LRP

3.4.3 Explanation Quantity Measures

Methods such as A/B testing exist to test the performance of a recommender system
[GV16, CL17]. They aim at evaluating the predictions trained on a fixed group of
customers with new test customers. Ideally, positive feedback on the training process
is obtained. However, the results can be unsatisfactory as well. In both cases, it is of
interest to know how the predictions come about and how certain inputs influence
them specifically. Using Equation 3.6 and the definitions

= Z max{0, Rfl’i)}, R = Z min{0, Rfl’l.)},

ielly ielly
we obtain the network’s top prediction within the setting of Definition 3.3
yie = fo(me) = R +R® = RZ + R* + RV, (3.7)

In the following we consider two disjoint subsets Cy, C; C C. C; represents a set of
customers where the inconsistencies to be analysed occur. In contrast, this is not the
case for customers from C,. With Equation 3.7, it is then possible to define measures
that can be used to analyse such irregularities in specific test cases. W.l.o.g we always
assume for the output value y;» > 0. Based on these considerations, we define three
measures to quantify the relevance of the input.

Individuality Measure.
Definition (Individuality Measure). o : C — R with

R? R?

O R Ty
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The individuality measure can be used to determine to what extent the input was
relevant for the decision. Via Equation 3.7, we obtain 1 = R?/y; + R?/ ;- and define
that a prediction y;+ is maximally individual, if o7(c) = 1 holds. In contrast, y;-
is considered to be minimally individual, if o7(c) = 0 holds. In this case only the
bias was relevant. For o7(c) € (0, 1) we generally have R? R” > 0, so both of these
components contribute positively to y;-. If R or R, are negative, this component
argues against prediction y;- and we either have or(c) € (—00,0) or or(c) € (1, ).
Note that due to y;+ > 0 it can not occur that R* and R, are negative.

With o7 it is for example possible to attribute inconsistencies to overly homo-
geneous training data. Consider a shop offering men’s and women’s products.
Let men be C; and women be C,. If the training data is largely assigned to men,
women could often get men’s products suggested because the recommender’s bias
was trained on men. Then, for ¢; € C; and ¢; € C;, the following would apply:
11— or(e)] < [1-or(c)l.

Certainty Measure.

Definition (Certainty Measure). v : C — (0, 1] with

(0 {FIR iR >0
vric) =
! R?/R:, ifRE <0.

The certainty measure can be used to make a quantitative statement about the
deviation of the individual relevancies from the overall relevance. Considering
definitions of R, R?, and Equation 3.7, we have RZ € [R?, o) and R* € (—oo, R?].
Depending on the sign of R?, one can determine whether the input neurons as a whole
had a positive or negative relevance for the decision made. We restrict ourselves to
the case of R* > 0. However, the results apply to R* < 0, respectively. Thus, we can
deduce that a value of v;(c) = 1 means that no negative relevancies were assigned
to the input neurons. A value close to zero, on the other hand, indicates a strong
dispersion of the relevancies.

Diversity Measure.
Definition (Diversity Measure). (1,7, {7 : C — [0, 00) with

1

— 1,
0 g e 3
reR |R| -1 P ERVAr}
{F(c) == max ~ and y;h - r,
reR; R, |R+| -1 v eRA(r)
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for a customer ¢ € C and top prediction y;-. We additionally introduce the set of input
relevancies R := Rfl ) which we divide as follows:

Ry={reR:r=0}, Ry :={reR:r>0}, andR_ ={reR:r <0}

The diversity measure finds outliers within certain input relevancies. For example,
considering r € R, then (r — ug)/ug is the proportional deviation between the
values in R except for r. For r € R, or r € R_ one proceeds analogously. Note that
the calculation of diversity measures does not apply to empty sets R, R,, and R_,
respectively. Furthermore, the zero is always obtained for one-element sets. For two
customers cy, ¢; with {7 (c1) < {7 (cz), we can thus state that the prediction for c,
depends more on a single input neuron than the prediction for c;.

3.5 Evaluation

In this section, we demonstrate the benefits and application of our approach in three
use cases. First, our explanation approach can help in understanding fluctuations
in the recommender’s quality. Second, TRANSPER can help in finding ideas on
how to improve the recommender. Third, our contribution can help to improve the
understanding of the customer base. In the course of this research, we kindly received
permission from the e-commerce service provider econda [eco] and two of its partner
companies to use their customer data. These partner companies are a jewelry shop
and an interior design shop.

3.5.1 Evaluation Setting

At this point, we show that both online shops fit the formal model from Definition 3.3
and are thus applicable to the TRANSPER framework. We assume that T! is the
jewelry shop and T? is the interior design shop. As shortly mentioned in Section 3.3,
the neural network econda uses for T! and T? comply with the third neural network
type with three neural subnetworks sy, s,, s3 in Fig. 3.1.

Online Shop Models.. We now illustrate how the shops satisfy Definition 3.3:

a) Both shops provide anonymized information about a variety of their cus-
tomers C! C C!,C? C C?, for example shopping history,
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b) and their offered products P!, P2.

c) The targets P*, in our use case a subset of selected products of the offered
products, define the real output space ®! and @2, respectively.

d) The available customer information types are based on the information sets Al
and A?, respectively.

e) The information from A' (A?) is classified according to its characteristic
properties. In our case, the disjoint subsets are the same for both shops,
ie, A* = A™ = A*. Especially, T' and T? have three disjunctive informa-
tion types, i.e., |A*| = 3, which result in three neural subnetworks sy, s, s3.

f) According to A, any customer c has therefore the associated input space
denoted by Q, = R™ x R™ X R™3(¢) The first two neural subnetworks s;, s
have a fixed number of input neurons independent of the customer, so in
a slight abuse of notation we write m; and m;, instead of m;(c) and m,(c),
respectively. The third subnetwork has several neurons dependent on the
number of interactions of c.

g) Via preprocessing, the information about a user ¢ € C is converted into an
input w, € Q..

h) The function f; represents the recommender’s implicit process of decision
making. Given an input w., the vector f.(w.) contains an entry for each
product in P* and the product with the corresponding highest prediction score
is recommended.

The neural networks are trained in two steps, respectively. First, the neural
subnetworks sy, 52, s3 are trained independently. Based on the trained weights and
biases, the subnetworks are concatenated according to Fig. 3.1 in their hidden layers
and trained again to obtain the combined decision function f;. This also means, each
of the subnetworks sy, s, s3 individually fits Definition 3.3 and processes the following
information types which we will further analyze in Section 3.5.3. (i) s; processes
information regarding general interactions, whereby the input vector is an embedding
of a user profile. For example, an input neuron can represent the purchase of a certain
product or interest in a product category. This neural subnetwork is designed as a
multi-layer perceptron. (ii) s; processes personal information not related to former
product interactions. A multi-layer perceptron is used as well. (iii) s; processes the
most recent customer interactions as sequences, whose lengths may be different for
each customer. An action performed by a user is embedded and considered as a part
of the interaction sequence. An RNN approach with Gated Recurrent Unit layers is
used here.



Evaluation

Section 3.5

Table 3.1: Characteristics of the data set.

Characteristics Jewelry shop T!  Interior design shop T?
period of survey December 2020  January 2021

profile stream 8 10

customers per stream 524 1004

average customer interaction 33 64

3.5.2 Evaluation Data Set

The data set used in this work consists of the online shops T! and T? as instantiations
of the model from Definition 3.3. For each online shop, the corresponding recom-
mender is provided in the form of a trained neural network. In both cases, the neural
networks were trained each on the interactions of eleven consecutive days. At T!,
there were about 1000 customer profiles and at T2 about 600 profiles. A customer
profile always includes the interactions of the last 14 days. Furthermore, we receive
the profile stream, which contains the user information about the customers which
were previously considered as training and test data. econda updates the respective
recommender at regular time intervals based on current purchasing behavior. There-
fore, the data set used includes several profile streams and recommenders per online
shop. In total, we use 8 (10) profile streams for T! (T2). A profile stream contains on
average 524 (1004) customers and per customer, we have on average 33 (64) customer
interactions. All recommenders were realized in Python 3.7 with Tensorflow v2.1.0.

3.5.3 Evaluation Results

In Section 3.2, we have defined the standard LRP method. However, there are also
variants of this method that outperform the standard on some architectures. To the
best of our knowledge, it is not known which of these methods works best for RNNs.
As a preliminary step, we, therefore, fill in this gap by evaluating the performance of
the standard LRP and some of its most popular variants using our algorithm from
Section 3.4.2. As a reference, we switch off each input neuron once at a time to
find the neuron that is most relevant to the decision. This is the case when the
change of the original prediction value is maximal by leaving out this specific input.
Finally, per the LRP variant, we determine the relative frequency to detect the most
relevant input neuron. Regarding the mentioned LRP methods, we first consider
all possible parameter combinations for the values 0.01, 0.1, 1,5, 10, and then choose
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Table 3.2: Results of LRP-comparison for recurrent neural networks.

LRP method Score

standard [Bac+15] 0.9800
epsilon [ACOG18] 0.9560
gamma [Mon+19] 0.9080

alphabeta [MSM18] 0.7720
nonnegative [MSM18]  0.5040

the best combination. Based on the results in Table 3.2 and because the standard
method achieved a hit rate of 100% in the case of MLPs, we will limit ourselves to
this method. In the following, we describe three use cases that can be achieved with
our explanation quantity measures defined in Section 3.4.3.

Understanding the Recommendation Quality. To tackle this, we have to exam-
ine discrepancies between prediction and input. We found one within the predictions
provided by econda for the jewelry shop T that could not be explained intuitively.
Therefore, we apply the measures from Section 3.4.3 to obtain explanations regard-
ing the recommender’s decisions. The upper part of Fig. 3.5 shows two exemplary
output layers of the neural subnetwork s;, where C;, C, C C! are disjoint subsets of
customers C! of T!. The exemplary customers were each randomly selected from
25 customers in C; and 29 customers in Cy, respectively. The output neurons are
ranked in descending order regarding their prediction score. It can be seen that the
preferred outputs for customers from C; are almost indistinguishable. In contrast,
the scores for customers from C, imply clear top predictions. Considering the lower
part of Fig. 3.5, we plot the residuals after setting the most relevant input neuron to
zero to show the discrepancy. For customers from Cj, the discrepancy between the
top prediction and the average prediction score is much smaller than for customers
from C; because the entire curve hovers quite closely around its average. Thus,
the product recommender s; of T! is not as certain about its decisions because the
predictions range over a small interval. Therefore, we consider the top predictions
in each case and try to gain new insights into the decision-making of the neural
network via the explanation measures from Section 3.4.3. Table 3.3 shows these
results including significant differences between C; and Cs:

(i) Comparing the results of the individuality measure o1, we can see that pre-
dictions for customers of C; depend more on the bias induced by the training
data. Predictions for customers of C, are almost independent of the bias.
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Figure 3.5: Two exemplary output layers for shop T!. Output vectors of the NN
ranked in descending order for customer groups C; and C, in the upper part including
corresponding residual plots after setting the most relevant input neuron to zero in
the lower part. The residual of the original top prediction is marked red.

(ii) Regarding the certainty measure v1, customers of C; have more contradic-
tory input neurons with negative relevance.

(iii) Since we are interested in the positive influence of input neurons on the overall
decision, we consider the diversity measure gV;I. We can see the greatest
divergence between customers of the two classes C; and C,. Regarding the
inputs with positive relevance, customers of C, have an input with a relevance
that is significantly greater than the other relevancies. This means that there
are inputs that speak in favor of the decision making which is not the case for
customers from C;.

All three measures reveal differences between the two customer groups. The diversity
measure stands out particularly prominently. The key figures listed here reflect a
well explainable prediction of the recommender for customers from C,. This means
that few input neurons had the strongest influence on the prediction made which is
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Table 3.3: Results of LRP-comparison for recurrent model

measure\user G Csy C!

ori (individuality) 1.2668 1.0021 1.1409
vy (certainty) 07302  0.9733  0.8804
I, (diversity) 15564 143.1009  65.7103

not the case for customers from C;. This discrepancy can also be seen very well if we
switch off the input with the highest relevance and plot the residuals of the output
vectors, see the lower part of Fig. 3.5. The input with the highest relevance is marked
red. It has a significantly stronger influence on the prediction for customers from
C, than C;. For the latter, switching off this input causes almost no deviation in the
predictions. Using the LRP approach and the explanatory measures, it has thus been
possible to establish that the clear predictions for customers from C, are quite simple
to explain. Namely, these customers have activated input neurons that contribute
massively to the prediction made. For the customers from C; on the other hand, the
decision-making is rather based on the entire interaction of the input neurons.

Ideas to Improve the Recommender. A closer look at the most relevant inputs
reveals a certain pattern. We have two different types of input neurons: (a) input
neurons representing the interaction with a product from P* and (b) input neurons
representing an interaction with a certain product category. In the latter case, an
interaction with a category can only take place via an interaction with a product
from the associated category. The activation of the categories occurs for each product
interaction, regardless of whether or not it is contained in P*. Now, when looking at
the input relevancies for customers from C; or Cs, the following is noticeable: Firstly,
for customers from Cj, there are no activations of products. The most relevant inputs
are therefore categories and the relevancies hardly differ. Secondly, customers from
C, always have product activations. In these cases, the most relevant input is always
a neuron belonging to a product interaction and these relevancies are significantly
higher than those of the likewise activated categories. We were thus able to determine
that the activation of products as input neurons leads to more unambiguous decision-
making. In particular, these represent a better explanatory power as the neural
network predicter can identify certain information that significantly influenced the
decision made. It would therefore make sense to separate the user information even
further and define the products or categories as separate subnetworks. In this way,
the decision-making process for user profiles that only contain categories as input
neurons could be given a stronger explanatory power.
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Understanding the Customer Base. We also evaluated the interior design shop
T?. Our diversity measures o7z and {;z revealed that the trained bias and outliers
within the positive input relevancies of the neural subnetwork s, were particularly
relevant for the decisions made. Thus, it was found that buying interest is based on
daily trends rather than past interactions. Unfortunately, we cannot explain this in
more detail here due to space constraints.

3.5.4 Preliminary Study of Expert Evaluation

We conducted a preliminary study of the expert evaluation. The aim of this study
is to identify how the study needs to be conducted in order to design sufficient
explanations for further evaluation for end customers of the corresponding shops. In
particular, we want to determine the questions and the response scale to present the
explanations we get with the LRP method.

Setting. To evaluate the explanations, we created the following role-play. We
present two choices from the three most important interactions for the correspond-
ing purchase decision on the most current day. One choice option corresponds to
the products with the three highest weights according to the LRP-method. The
other choice option is a randomized selection of three products from the previous
interactions. The expert then decides between the two possibilities and selects the
one that, in his or her opinion, contributed most to the purchase decision on the
current day. The interactions of the last 30 days in total are shown. Specifically, we
divided the days as follows: 28 days describe the past interactions, 1 day describes
the previous day, and 1 day describes the current day with the purchased product.

Design. In order to examine the differences between visual and textual informa-
tion, we chose two forms of presentation. In the visual form of presentation, the
interactions are presented in the form of images. In the textual form of presentation,
the interactions are described in a table. With these two forms, we want to find out
whether a visual or a semantic presentation contributes to a better understanding. In
doing so, we first evaluate 15 examples with images and then 15 examples with text.
An example of the survey can be found in Appendix B. The experts in our preliminary
study are employees in the field of data science in the respective stores because they
know their products best. This means they can assess the extent the best to which
the explanations are sufficient. Additionally, they are asked to answer questions
regarding persuasion and satisfaction. How strong is the connection between the
desire to buy and previous interactions? How easy was it for you to choose a winner?
Are you satisfied with the expertise of your winner? Here, we have used a five Likert
scale.
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Lessons Learned. We drew the following conclusions from our preliminary study.
It turned out that 30 case studies (i.e., 15 visual and 15 textual) are too many. Here,
we should rather have limited ourselves to five case studies per presentation (i.e., ten
in total). Another issue is the scale size. A five Likert scale was too powerful for our
study. A three Likert scale would have been sufficient, without loss of information.
In addition, it would have been preferable to have many participants to represent the
broad mass, rather than just a few experts. Last but not least, it would have been ideal
to include the users of the online stores in the research design right at the beginning
and have them answer the survey. However, this would mean that the online shops
would need to put the survey online in the first place. This will be addressed in future
work.

3.6 Conclusion

In this chapter, we have presented TRANSPER, an explanatory framework for neural
networks used in online shopping.

We used the LRP method to define three explanation measures, namely the indi-
viduality measure, used to determine those parts of the input that are particularly
relevant for the decision; the certainty measure, which measures how certain the
system is about its prediction; and the diversity measure, which measures whether
there are clear top predictions. These measures can be defined on complex neural
networks which process heterogeneous input data.

We have demonstrated the usefulness of our metrics in three explanation use
cases. First, we explained fluctuations in the prediction qualities. Understanding the
prediction quality facilitates transparency and trust. Second, TRANSPER explana-
tions can help find ideas on how to improve the neural network which enhances
persuasiveness. Third, our explanations can help online shops better understand
their customer base which can help satisfy users. These explanations also play an
important role in fulfilling legal requirements such as the ones mandated by GDPR.
Furthermore, we started an expert evaluation to examine the explanations in terms
of their comprehensibility for humans. We wanted to examine the aspect of visual
versus textual explanations.

Reconsidering the research questions, we found out that based on the LRP approach,
the weights and also the bias is relevant to understand the explanation quality which
answers Research Question 1.1. Regarding Research Question 1.2, the explanation
quality measures reveal how important specific relevancies are for different customer
bases. The leave-one-out method can reveal important features which can be used to
improve a neural network. This answers Research Question 1.3.
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Outlook. With the preliminary study, we were already able to determine the setting
and design in the course of the work. For the future, we would put the evaluation
online and let the respective users of the online shops evaluate it directly. These
customers are the only ones who can say whether or not the explanation of their per-
sonalized recommendation is sufficient. However, we encountered several problems
here. This would entail a much greater evaluation, since an explanation is perceived
differently depending on the group of people. Since we started with a preliminary
study of expert evaluation which are in our case data scientists, a group of non-
experts could wish for other explanations. For this reason, it is important that online
stores include the evaluation from the very beginning. This way, users are involved
from the very start and improvements can be adapted gradually. Nevertheless, this
would require the consent of the online shops to integrate the evaluation and run it
for a while. Additionally, we need the customers to participate in the evaluation for
a certain period of time and repeatedly.

Last but not least, we would integrate our measures into a user-friendly interface
for the online shops. Then, they could use it to automatically improve their network if
they determine the features to improve. For example, if they find with the individuality
measure that the neural network is biased, then they could balance the training data.
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4 ODbAIEx

The effectiveness of Convolutional Neural Networks (CNNs) in classifying image data
has been thoroughly demonstrated. In order to explain the classification to humans,
methods for visualizing classification evidence have been developed in recent years.
These explanations reveal that sometimes images are classified correctly, but for
the wrong reasons, i.e., based on incidental evidence. Of course, images should be
classified correctly for the right reasons, i.e., based on the actual evidence.

To this end, we propose a new explanation quality metric to measure object aligned
explanation in image classification which we refer to as the OBALEx metric. Using
object detection approaches, explanation approaches, and OBALEx, we quantify the
focus of CNNs on the actual evidence. Moreover, we show that additional training
of the CNNs can improve the focus of CNNs without decreasing their accuracy. In
particular, we aim to answer the following research questions with our approach.

Research Question 2. Hypothesis: In image classification, object-aligned expla-
nations can sufficiently map the desired explanation of humans and guarantee an
intuitive explanation.

2.1 How can right for the right reasons be measured?
2.2 Does it satisfy the concept of classifying right for the right reasons?
2.3 Can it be included in the training process?

This chapter extends work initiated as part of Adrian Oberfoll’s bachelor’s the-
sis [Obe] and is based on joint work with Adrian Oberfo6ll and Michael Farber [NOF21].
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4.1 Introduction

Convolutional Neural Networks (CNNs) have been demonstrated to be very effective
in image classification tasks, achieving high accuracy. However, methods to explain
classifications performed by CNNs have shown that sometimes image data has
been classified for incidental evidence, undermining the trust between humans and
machines [RSG16]. Previous attempts to fix this problem have included a human-
in-the-loop approach [Sch+20], a pre-processing step for removing features of the
input that are deemed irrelevant for the classification task at hand (such as images’
backgrounds) [JLC18], or the introduction of a new loss function that incorporates an
explanation approach during training [RHD17]. Although the latter work constrains
the explanation of the model in the loss function penalizing the input gradients, it
uses explanations only based on input gradients which is not ideal for all use cases,
especially in image classification, where individual pixels are difficult to interpret.
Overall, we believe that there is a lack of a metric that quantifies if an intuitive
explanation can be gained.

In this chapter, we propose an object aligned explanation quality metric, called
OBALEx. OBALEX quantifies to which degree the object mask of an image is con-
sistent with the obtained evidence of explanation methods and thus, imitates human
behavior to classify images according to the objects contained. The proposed metric is
independent of the used explanation method (e.g., Deconvnet [ZF14], LIME [RSG16],
or Grad-cam [Sel+16]) and object detection method and can therefore be applied
together with arbitrary explanation and object detection methods. Our approach to
identifying the focus on the relevant input regions requires neither human interaction
nor pre-processing. Based on extensive experiments, we demonstrate the effective-
ness of the proposed metric while training CNNSs, ensuring both high accuracy and a
focus on the relevant input regions.

Our main contributions are as follows:

1. We propose an object-aligned explanation metric, OBALEX, to quantify ex-
planations of image classification models intuitively. Our metric applies to
different explanation methods and neither requires human interaction nor
interference in the model’s architecture.

2. In extensive experiments, we show that our metric can be used for making
CNN models for image classification more intuitive while keeping the accuracy.
We provide the source code online at https://github.com/annugyen/ObAIEx.

In the following section, we outline our metric. We then present our extensive
experiments. Finally, we close with some concluding remarks.
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Section 4.2
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Figure 4.1: The pipeline of our metric.

4.2 OBALEX Metric

The metric OBALEX is designed as a relative metric that depends on the explanation
method and the classifier used. Based on the change of the explanation quality during
training, it can be evaluated if a certain training strategy leads to an improvement or
deterioration of the model’s intuitive explanation. By explanation quality, we define
the degree of alignment between the object to be classified and the explanation of
the classification model.

The pipeline to calculate OBALEX is outlined in Fig. 4.1. Given an input image on
which an object should be detected, we first apply an object detection method (e.g.,
Mask R-CNN) to obtain the image regions of the object itself (i.e., object mask). We
define regions of the explanation that lie outside of the object mask as indicative of
classification for the wrong reasons, and conversely, that regions of the explanation
that lie inside of the object mask as indicative of classification for the right reasons.
The mask of objects on images can be obtained with a high accuracy nowadays (see
Sec. 4.3).

Simultaneously, an image classifier (e.g., pre-trained VGG16) is applied to obtain
labels of recognized objects (e.g., "dog"). An explanation method (e.g., Grad-Cam)
then outputs the image regions which are most influential given the extracted features
from the CNN and the input image.

Both the object mask and the explanation output is then used to compute the metric
OBALEX and thus, to improve the explanation quality. Since existing explanation
methods support different highlighting levels, our score is constructed in such a way
that the score is the higher the more the highlighted explanation aligns with the
object mask. In the following, we describe the computation of the explanation quality
formally.
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Given a data set D with correctly classified images and an image d € D with pixels
pg., width w?, and height k¢, let A? denote the matrix whose values a?j equals the

activation of the pixels of the object mask, where i € {1,..., hd}, jed{y,..., wd},
h¢, w? € N. We regard A? as a fuzzy set, i.e. whose values have degrees of membership
depicted as a?j. We define aflj € Rwith 0 < a?j < 1. In our experiments, we set

a?j = 1 if the pixel pfj of the input image belongs to the object mask and a?j =0,
otherwise. Similarly, let B9 be the matrix whose values b% equals the activation of
the pixels of the explanation. We additionally normalize the values b?j between zero
and one, i.e. 0 < b?j < 1 where bfj = 1 if the pixel pfj of the input image belongs to
the highest activation and b?j = 0 otherwise. Our metric OBALEX is, then, defined
as follows:
2ij a?jb;jj
2 bfﬂ-
To get the explanation quality of an image classifier, OBALEX can be applied
on all images in a data set D. We then calculate the average of all values of the

explanation quality of each picture for an image collection. In doing so, we weight
all images equally. The explanation quality of the classifier is defined as

ObAIEx(A% BY) = € [0,1] (4.1)

AvgObAIEx(D) = % Z ObAIEx(A%, BY) € [0,1], (4.2)
d=1

where n € N is the number of images in data set D. AvgObAIEx only considers the
scores of images classified correctly by the model, otherwise the metric would get
skewed. Therefore, images which are classified wrong are excluded.

4.3 Evaluation

4.3.1 Evaluation Setting

To evaluate OBALEX, we apply pre-trained CNN models. We focus on three state-of-
the-art image classification models: VGG16 [SZ15], ResNet50 [HZRS16], and MobileNet
[How+17]. The models are pre-trained on the ILSVRC2012 data set [Rus+15] which
is also known as ImageNet. We adapt each model’s upper output dense layers to
the specific data set (i.e., number of categories in the used image classification data
sets Dogs vs. Cats and Caltech 101, respectively). To show the universal applicability
of OBALEX, we use different well-known explanation methods such as Decon-
vnet [ZF14], LIME [RSG16], Grad-Cam [Sel+16], and Grad-Cam++ [CSHB18]. In our
experiments, the AvgObAIEx settled around a fixed value after 50 images. For that
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reason and due to high computing power costs in the case of LIME, we calculate the
AvgODbAIEx for 50 images per epoch in the following experiments. Our experiments
are executed on a server with 12 GB of GPU RAM. We use TensorFlow and the Keras
deep learning library for implementation. We use the following data sets in our
evaluation:

Dogs vs. Cats data set® contains 3,000 dog and cat images, 1,500 per class. We
use Mask R-CNN [HGDG20] to create the object masks. The quality of the
object masks is important for the validity of the proposed metric OBALEX.
Therefore, we manually evaluated the computed object masks for 200 randomly
chosen images regarding the overlap of the whole object. The (top-1) accuracy
was 91%. Thus, we argue that the pre-trained Mask R-CNN performs well for
our purpose.

Given the data set size, we used 70% of the images for training and 30% for
testing. We first adjust the output layer of all CNN models to the two categories
(dog and cat) and train them for 10 epochs on the Dogs vs. Cats data set (where
all layers except the output layer are frozen). After that, we freeze different
combinations of layers for further training. In the original papers of the above-
mentioned models, the convolutional layers are divided into five blocks. For
simplification and comparability, we use this convention for our strategies.
We also summarize the last dense layers to one block. Thus, we always set
whole blocks of layers to either be trainable or non-trainable. We train every
strategy for another 10 epochs. We investigate the following strategies: (a)
train the last dense layers which we denote as dense blocks, (b) train the last
two convolutional blocks (i.e. the fourth and fifth), (c) train the first three
convolutional blocks, and (d) train all layers, i.e. all convolutional and dense
blocks.

Caltech 101 data set [FFP07] has 101 object categories. We create a uniform
distributed data set by drawing random sampling from the categories resulting
in a total of 6,060 images with 60 images per class. We use a test split of 0.25.
This data set is provided with hand-labeled object masks for all images. Thus,
we use those labeled object masks. We perform another experiment inspired
by [RHD17, Sch+20]. To actively force the model to be more intuitive and thus,
to provide a more interpretable explanation, we followed a naive approach
by using artificial images. We edit the images in a way that they contain the
object to classify and masked out the background with random pixels. This
should force the model to focus more on the object and increase the explanation
quality.

2 https://www.kaggle.com/c/dogs-vs-cats, last accessed: 2020-10-28
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Figure 4.2: VGG16 Results. Transfer learning strategies with VGG16 with explana-
tion methods Deconvnet (Occlusion), LIME and Grad-Cam/Grad-Cam++.

4.3.2 Evaluation Results

Dogs vs. Cats. Fig. 4.2 shows the results for VGG16 with training strategies (a) and
(b). We can see that the performance of the model measured with accuracy did not
change within 10 epochs (see Fig. 4.2 (a)/(b) left graph). However, we observed a
change in AvgObAIEx (see Fig. 4.2 (a)/(b) right graph). The explanation quality after 10
epochs computed with any explanation method for strategy (b) is significantly higher
than the explanation quality for strategy (a). This fits to the common knowledge
that complex structures in the input images are learned in the later convolutional
blocks and are, therefore, more decisive for the classification. Moreover, Fig. 4.2
(b) shows with an increasing number of epochs a decrease in the loss, while the
AvgODbAIEx increases simultaneously. This indicates the effectiveness of the model
for the right predictions based on the right reasons. The results of strategy (d) and
(b) and the results of strategy (c) and (a) are similar to each other respectively, which
emphasizes the common knowledge. Without using the proposed metric OBALEx
this improvement would not be evident since the accuracy of all models stays the
same during training.
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Figure 4.3: Examples from Dogs vs. Cats with quality scores shown above.
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Figure 4.4: Examples from Caltech 101 with quality scores shown above.

In Fig. 4.3, we provide an example of the explanation visualized with Grad-Cam
with strategy (b) on VGG16. We can see that the explanation quality increases after
training and that the visualized explanation has a stronger focus on the object. With
only 10 epochs of additional training, we were able to improve the model in a way
that it utilizes more important features such as the face of the animal. Without
OBALEX, it would be obvious to not train the model any further due to the non-
changing accuracy. We observed similar results on the experiments with ResNet50
and MobileNet, and also on the Caltech 101 data set.
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Figure 4.5: Training on Caltech 101.

Caltech 101. Fig. 4.5 shows the results for 10 epochs of training VGG16 on Caltech
101 with the original and masked images as input. As we can observe in the left
graph, training with the original images results in higher accuracy than training
with the masked images. However, the AvgObAIEx (computed with Grad-Cam as
explainer, see graph on the right) of the model trained with masked input images
is significantly higher than the AvgObAIEx of the model trained with the original
input images. This indicates that more background information was used in the
classification. Thus, evaluating image classifiers beyond accuracy can be valuable to
real-world cases where specific background information is unavailable.

Fig. 4.4 shows an example image with Grad-Cam on VGG16. Despite high accuracy,
we can see that the explanation for the image with masked out background (image at
the bottom) is more intuitive and more focused on the actual object than the original
input image.

4.4 Conclusion

In this chapter, we focused on evaluating CNN image classifiers with different ex-
planation approaches. We introduced a novel explanation quality score metric to
support the training process besides accuracy and loss function which facilitates
scrutability. We have shown in our experiments that our metric OBALEX can be
used to effectively indicate cases where a model makes its predictions based on wrong
reasons. Overall, OBALEX facilitates more generalized models which can increase
the user’s trust in the model by object-aligned explanations.
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Back to the research questions, the OBALE X metric measures the alignment of the
explanations with the actual object and thus can be used to measure the right features
for the right reasons. This answers Research Question 2.1. By considering different
state-of-the-art explanation methods in our approach, the OBALEX metric satisfies
the concept which answers Research Question 2.2. Considering Research Question
2.3, the OBALEX metric can be calculated during the training process to see the
improvement of the explanations in addition to the accuracy and loss function.

Outlook. As future work, we want to integrate OBALEX in a loss function. As
we used different explanation methods, we have to commit to one to define a score
depending on the used explanation approach. Furthermore, we only applied OBALEx
on image data. An extension on other data types would be obvious.
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5 FilTag

Convolutional neural networks (CNNs) have achieved astonishing performance on
various image classification tasks, but it is difficult for humans to understand how
a classification comes about. Recent literature proposes methods to explain the
classification process to humans. These focus mostly on visualizing feature maps
and filter weights, which are not very intuitive for non-experts in analyzing a CNN
classification.

In this chapter, we propose F1LTAG, an approach to effectively explain CNNs
even to non-experts. The idea is that when images of a class frequently activate
a convolutional filter, then that filter is tagged with that class. These tags explain
a reference of a class-specific feature detected by the filter. Based on the tagging,
individual image classifications can then be intuitively explained in terms of the tags
of the filters that the input image activates. Finally, we show that the tags are helpful
in analyzing classification errors caused by noisy input images and that the tags can
be further processed by machines. In particular, we aim to answer the following
research questions with our approach.

Research Question 3. Hypothesis: Filters in CNNs encode semantic information
of the input images.

3.1 How can the encoded semantic information of the filters be decoded?

3.2 How precise are the tagged filters in predicting and understanding the output
of the CNN (compared to visual methods)?
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Figure 5.1: Explanations of Convolutional Filters. The upper part shows a visual
explanation. The lower part contains an example of our tagging approach F1LTAG.

3.3 What benefit does link tagged filters to knowledge graphs offer?

This chapter extends work initiated as part of Daniel Hagenmayer’s master’s
thesis [Hag] and is based on joint work with Daniel Hagenmayer, Tobias Weller and
Michael Farber [NHWF21].

5.1 Introduction

Deep convolutional neural networks (CNNs) are the state-of-the-art machine learning
technique for image classification [SZ15, Sze+16]. In contrast to traditional feed-
forward neural networks, CNNs have layers that perform a convolutional step (see
Figure 5.2 for the relations in a convolution). Filters are used in a convolutional step
which outputs a feature map in which activated neurons highlight certain patterns
of the input image. Although CNNs achieve high accuracy on many classification
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tasks, these models do not explain (i.e., decisive information) the classifications. Thus,
researchers recently focused on methods to explain how CNNs classify images.

Related Work. Some of the earliest works on explaining CNNs focus on visualizing
the activations of individual neurons [MSM18, OMS17]. However, these methods
cannot explain more complex relationships between multiple neurons, as no human-
understandable explanation is used. Olah et al. [Ola+18] defined a semantic dictionary
by pairing every neuron activation with its abstract visualization using a channel
attribution, determining how much each channel contributes to the classification
result. This may explain the role of a channel in the classification of an individual
image, but it does not explain the role of that channel across all possible input images.
Hohman et al. [HPRC20] try to overcome this problem by aggregating particularly
important neurons and identifying relations between them. Other approaches focus
on filters, the discerning feature of CNNs. For example, Zeiler and Fergus [ZF14]
visualize the filter weights to illustrate the patterns these filters detect. However,
these visualizations are based on the inputs of the layers to which the respective filter
belongs. Thus, only the filter patterns of the first layer can be directly associated
with patterns on the input image of the network. To overcome this, the method
Net2Vec [FV18] quantifies how concepts are encoded by filters by examining filter
embeddings. Alternatively, Network Dissection [Bau+17] uses human-labeled visual
concepts to bring semantics to the convolutional layers. However, visualizations and
embedding filters only explain the outcome of a model implicitly, whereas we assign
explicit tags to filters that can be understood by non-experts. Most visualizations used
for explaining CNNs are similar to the example in Figure 5.1, which visualizes the
most activated convolutional filters. Such visualizations are difficult to understand
on their own. Adding an explicit explanation such as a semantic tag (e.g. dog, parrot,
cat, or toucan) as shown in the bottom example would dramatically improve the
explanation, including for non-experts.

Contribution. Our contribution is threefold. First, we introduce F1LTAG, an auto-
matic approach to explain the role of each convolutional filter of a CNN to non-expert
humans. We use the fact that each filter is dedicated to specific sets of classes [ZF14,
GDDM14, SVZ14, SDBR15]. Indeed, the idea of F1LTAG is to quantify how much
a filter is dedicated to a class and then tag each convolutional filter with a set of,
particularly important classes. The lower part of Figure 5.1 shows an example of
what a CNN tagged in this way could look like. In that example, the rightmost filter
highlighted in red plays a role in classifying parrots, whereas the filter in the middle
only plays a role in classifying birds in general, as both, toucans and parrots are birds.
This filter extract features that are specific to these classes (e.g. wings, feathers, etc.).
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Figure 5.2: Terminology and basic relations of a filter in a convolution.

Second, our approach can also be used to explain the classification of an individual
image. In the example in Figure 5.1, the classification of the input image as a parrot
would be explained by the union of the tags of the activated filters, which are all
animals, particularly tagged with a parrot. Third, F1LTAG is suitable to analyze
classification errors. We analyze our approach with thorough experimentation using
ImageNet as a data set and using multiple CNNs, including VGG16, VGG19, and
InceptionNet with pre-trained models. We focus on the experiment on VGG16. The
source code is available online”.

5.2 Approach

Our approach consists of three components. In Section 5.2.1, we explain the role of
each filter in a CNN (independent from concrete input images) using our concept of
filter tags. Then, in Section 5.2.2, we explain how a particular input image can be
explained, namely in terms of the filters that it activates. Finally, we show how to
use filter tags to analyze classification errors in Section 5.2.3.
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5.2.1 Explanations of Filters

Our explanation of filters works in two steps. In the first step, we quantify how
much each filter is activated by images of each class. In the second step, we use this
information to tag the filters.

Quantifying Filter Activations. Feature maps with high activations can be used
as an indication of the importance of the preceding filter for the input image [HPRC20,
ZF14]. Traditional explanation approaches focus on one image and therefore use
the most activated feature map while our approach focuses on a set of images of the
same class.

Given a pre-trained CNN with a set of convolutional layers M with its respective set
of filters I(.) and a labeled data set D with labels ¢ € C from a set of labels C, let d € D
be an input image and m € M a convolutional layer. First, we collect the activations
in the feature map to get the importance of the filters regarding an input image, i.e.
the output in the feature map for a given filter (see terminology in Figure 5.2). Second,
we scale these activations per layer between [0, 1]. In scaling the activations, we
ensure that no image is overrepresented with overall high activation values. We scale
the activations per layer because each layer has its specific pattern compositionality
of filters. For example, the first convolutional layers detect simple patterns such
as lines and edges whereas the layers, in the end, detect compositional structures
which match better to human-understandable objects [ZF14]. Let a(m, i, d, j) be such
a scaled activation in the jth element in the feature map calculated from image d
and filter i € I, in convolutional layer m. In order to get a total activation value per
feature map, we define a(m, i, d) as the arithmetic mean of the scaled activations in a
feature map:

n

1
a(m.i.d) = ~ Z a(mi,d,j), 0<a(mid) <1, (5.1)

J

where n is the number of activations in the feature map. We do this for all filters
i € I, and repeat these steps for all layers m € M.

Next, we use the labels as the desired explanation. Let d; be an input image with
label c. We define z.(m, i) as arithmetic mean of a(m, i, d;) over one class c:

|De|
1
ze(m,i) = D] Z a(m,i,d.), 0<z.(mi)<1, (5.2)
c
de

where |D,| is the number of images in class c. This way, z.(m, i) is the averaged value
of all activations of the images in one class respective its filter i in layer m. Thus,
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we can rank the classes according to the highest averaged activation of the filter per
layer which will be the decisive criterion for the labeling. We, therefore, compare the
received values for each feature map. We repeat these steps for all images in D per
label class.

Filter Tagging. We tag the filters according to their corresponding values received
in Equation 5.2 with the label of the input image class. We are interested in the
feature maps with high activations of a certain class because they indicate important
features associated with that class [HPRC20]. We define two methods to select those
feature maps per class and per layer (because of the mentioned complexity in different
layers):

i) k-best-method: choose the k feature maps with highest activation values.

ii) g-quantile-method: choose the g-quantile of feature maps with highest activa-
tion values.

These tags serve as an explanation of what the filter does. For example, in Figure 5.1,
the leftmost activated filter has the three tags dog, parrot and cat, which suggests
that this filter plays a role in recognizing animals.

5.2.2 Explanations of Individual Classifications

While previous visual methods for explaining filters are difficult for humans to
understand, a textual assignment can lead to unambiguous explanations (as later
seen in our experiments in Figure 5.1). To get an explanation given input, we assume
that the tags have a better information value with the classification of the CNN
if the tags match with the classification output. Therefore, we want to measure
the hit of the prediction with the tags in the most activated filters. To do this, we
determine the most frequently occurring labels for each image of a class according to
the previously mentioned method using the metric Hits@n. Hits@n measures how
many positive label tags are ranked in the top-n positions. For example, in Figure 5.1,
the classification of the input image as a parrot is explained by its high activation of
filters tagged with parrot.

5.2.3 Analysis of Classification Errors

F1LTAG can be used for error analysis using Hits@n. Taking misclassified input
images, Hits@n indicates if the most relevant filters were activated. If Hits@n is high,
we can assume that there are similar features of the misclassified class and original
image. Analyzing the tags, we may find correlations in their semantics. Furthermore,
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linking the tags and filters to knowledge graphs such as ConceptNet [SCH17] or
FAIRnets [NWFS20] can bring more insights. ConceptNet is a semantic network with
meanings of words and FAIRnets is a neural network graph with meta-information
about the architecture. For example, in Figure 5.1, if we input a picture of a car but
the most activated filters have tags of animals, we can conclude that the wrong filters
were activated.

5.3 Experiment

5.3.1 Experimental Setup

Data Set. Following related work, we use ImageNet [Rus+15] data set from ILSVRC
2014 to conduct experiments on the introduced approach. This data set contains
over one million images and 1,000 possible class labels including animals, plants, and
persons. Each class contains approximately 1,200 images. We use a holdout split,
using 80% of the images to tag the filters while ensuring that there were at least 500
images from each class in the set, and the remaining 20% to test the explanations.

Baseline. We compare our approach with two state-of-the-art visualization methods
in explaining neural networks. The selection of the methods was based on their focus
on feature visualization. One of the methods used provided the fundamental basis
of visualization of features and uses minimal regularization [EBCV09], the other
method uses optimization objectives [OMS17].

Implementation. We implemented our method in Python3 and used TensorFlow
as a deep learning library. The experiments were performed on a server with Intel(R)
Xeon(R) Gold 6142 CPU@2.60 GHz, 16 physical cores, 188GB RAM, and GeForce
GTX 1080 Ti. We used pre-trained neural network models from Keras Applications.
The filters of a VGG16 were explained in the experiments using the introduced
method. VGG16 was used as CNN as it is frequently used in various computer vision
applications. The evaluation for VGG19 and InceptionNet gave similar results and
can be executed with the given code.

5.3.2 Analysis of the Explanations

In this analysis, we want to study the explanations of the filters using k-best-method,
with k = 1, to provide a better comparison with the state-of-the-art methods since
they frequently visualize the most activated feature map. Figure 5.1 shows exemplarily
the visual explanations of the baseline methods and the tags of our approach FirTag.
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As shown, the visual explanations of the baseline methods [EBCV09, OMS17] do
not provide satisfactory comprehension. At first sight, there is not much to under-
stand. Considering our tags, one can imagine what the visualizations display. We
additionally include pictures corresponding to our tags, to show the information
value compared to only visualizations of the filters. Filter 95 seems to recognize a
lampshade especially a trapezoidal shape. Filter 150 is only tagged with cannon, i.e.
the filter is specific for this class. Filter 288 detects the head of a goldfinch especially
with consideration of the yellow and black pattern. Filter 437 and Filter 462 recognize
the ears of brown dogs and the body of snakes, respectively. This information would
be hard to retrieve without the tags. Even without considering the visualizations,
one has a good impression of what a filter detects. For example, it is quite impressive
that Filter 288 detects this black yellow pattern which we can follow from the tags
goldfinch, toucan, and european fire salamander. As well, Filter 95 detects the trapezoid
in table lamp, yurt, and lampshade.

In addition to comparing our method to the state-of-the-art methods in CNN
explanations, we linked the tags to concepts from ConceptNet [SCH17] to achieve a
coarsening of common tags. ConceptNet is a semantic network with the meanings
of words. This comparison revealed that many tags have both visual and semantic
commonalities (e.g., see Filter 437 in Figure 5.1, rhodesian ridgeback, bloodhound,
and redbone are all of the type dogs). Following this evaluation process, we manually
reviewed 100 filters in the context of common visual and semantic commonalities.
Here we found 88% conformance with common tags in the filters.

5.3.3 Impact of Hyperparameters

In this evaluation, we show the impact of the hyperparameters k and g on inter-
pretability and expressiveness. In Figure 5.3, we compute Hits@n with the test set
from ImageNet depending on k and q. We can see that Hits@n increases for increasing
k, g and n. For q = 25% and n = 50, we even get a hit rate of 80% over all 1,000 object
classes. This result shows that FILTAG can be taken as a significant explanation for
the classification. For example, we have observed that the class shoji gets the highest
hit rate of 98.47% followed by the classes slot, odometer, entertainment center, and
bookshop with also around 98%. The classes with worst hit rates are spatula (51.19%),
schipperke (50.97%), reel (49.8%), bucket (46.83%), and hatchet (36.75%).

The corresponding likelihoods of the best classes are shoji (81.22%), slot (92.30%),
odometer (91.73%), entertainment center (82.89%), and bookshop (66.41%). Likewise,
the accuracies of the worst classes are spatula (30.15), schipperke (71.81%), reel
(57.25%), bucket (48.80%), and hatchet (50.60%). These results fit to the top-1 accuracy
of VGG16 with 74, 4% for all classes.* However, for larger values of ¢ we observed
that the interpretability decreases because the number of tags increases for each filter.

% hitps://paperswithcode.com/sota/ image-classification-on-imagenet, last accessed: 2021-03-02.

65


https://paperswithcode.com/sota/image-classification-on-imagenet

Chapter 5

66

FilTag
0.8 —a— k=1
0.7 —e— k=5
—— k=25
0.6 —=— q=1%
—— q:5%
éos —— q=25%
]
T 0.41
0.3
0.2
0.1
0 10 20 30 40 50

n
Figure 5.3: Hits@n with different k and g on ImageNet

This makes it harder to find similarities between the classes. Thus, there is a trade-off
between expressiveness for the classification and interpretability for the filters.

5.3.4 Using the Explanations

F1LTAG can be used for error analysis using Hits@n. Taking misclassified input
images, Hits@n indicates if the most relevant filters were activated. If Hits@n is high,
we can assume that there are similar features of the misclassified class and original
image. Analyzing the tags, we may find correlations in their semantics.

Figure 5.4 shows an image of the class mortarboard in ImageNet. Using VGG16,
the class academic gown is predicted with confidence of 83.8%, while the actual class
mortarboard is predicted with a confidence of only 16.2%. Considering the image,
we notice that both objects are part of this image, making this result reasonable.
Reviewing the activated filters, we observe that filters tagged by F1LTac with the
tag mortarboard, as well as with the tag academic gown, are usually activated. As a
result, we can verify that features are extracted from these two classes and used for
prediction. This allows giving non-experts an understanding of the reason for the
misclassification, as often features of the other class are extracted from this image.
Likewise, we can use the information to increase the number of images in which the
mortarboard is the actual class but not in the main focus of the image, to continue
training the network to make the predictions more accurate.
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Figure 5.4: Example image of class mortarboard

Figure 5.5: Example image of class desktop computer

Figure 5.5 shows an image from the class computer. This image is classified by
VGG16 as cash machine with a probability of 99%. Looking at the tagged filters, filters

of the tags cash machine are mostly activated, followed by screen, CD player, and file.

Considering Figure 5.5 and having knowledge about the other images of the class
computer in ImageNet, the reason this image is not assigned to this class becomes
clear. Generally, frontal images of a computer were used for the computer class for
learning. However, this image does not correspond to the same distribution. Thus, it
is very difficult for the neural network to assign it correctly. Moreover, it is a very old
computer, whereas the other images in ImageNet generally represent rather modern
computers. To classify this image correctly, further images showing old computers
from the side have to be included to change the distribution and train the VGG16 to
classify this image correctly.
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5.4 Conclusion

We have introduced F1LTAG, an approach to provide human-understandable expla-
nations of convolutional filters and individual image classifications. These tags can
be used to query and identify specific filters that are relevant for feature detection. In
contrast to state-of-the-art explanations, our approach allows for explicit, non-visual
explanations which are more understandable for non-experts. Moreover, we have
demonstrated that FILTAG can be used to understand and analyze classification
errors. This improves scrutability and thus human understanding of CNNs which
contributes to making artificial intelligence more trustworthy.

Coming back to the research questions, we could show that by tagging the filters of
convolutional layers, the encoded semantic information of the filters can be decoded
in human-understandable language. This answers Research Question 3.1. Regard-
ing Research Question 3.2, we found out that words can be more comprehensible
compared to visual methods. We could show with our evaluation that the tagged
filters are quite accurate in predicting and understanding the output of the CNN.
Considering Research Question 3.3, linking the tagged filters to other knowledge
graphs allows for expanding the information of the labeled filters.

Outlook. We plan to extend our evaluation for general classification tasks using
CNNs, e.g. not only for images but also texts.

The approach described in this chapter uses ImageNet class labels as tags. These
class labels name concrete objects such as “parrot”, “car”, or “table lamp”. Some
of these objects may share commonalities. For instance, parrots, goldfinches and
toucans are all different kinds of birds. It would be interesting to link the ImageNet
class labels together with a knowledge graph that describes the relationships between
these objects, such as ConceptNet. In such a knowledge graph, the vertices “parrot”,
“goldfinch” and “toucan” could all be connected to the vertex “bird” by an “is a kind
of”-edge. Using this information, can we use the filters tagged with parrot, goldfinch
and toucan to determine filters that recognize birds?

A similar but slightly different angle is that parrots and toucans have eyes, a beak
and a tail. Cats do not have a beak, but they also have eyes and a tail. Again, this could
be represented in a knowledge graph by a “has a”-edge linking these animals with
the vertices representing eyes and tails. Can we use these relationships to determine
filters that recognize eyes or tails?

We note that providing either the positive or the negative answer to these questions
is very interesting. In the positive case, we obtain a very powerful system that would
provide classification explanations such as “This is an image of a parrot because it
features eyes, a beak and a tail”. Such a system would be highly persuasive to humans.
In the negative case, we obtain evidence that CNNs do not recognize objects in a
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way that is reminiscent of deductive reasoning but in a fundamentally different way,
leading to questions about how neural networks perceive objects.

We have made some preliminary excursions in this direction. They have revealed
that the integration of ImageNet’s roughly one thousand classes (many of which
are highly specific) into ConceptNet is not sufficiently tight to answer the questions
above. Expanding ConceptNet appropriately with manual annotations could mitigate
this problem.
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6 FAIRnets

Research on neural networks has gained significant momentum over the past few
years. Because training is a resource-intensive process and training data cannot
always be made available to everyone, there has been a trend to reuse pre-trained
neural networks. As such, neural networks themselves have become research data.
The problem with the information basis on neural networks available online is that
they are represented in different formats, repositories, and information bases such as
only model architecture. The FAIR guiding principles encourage to provide meta-
information to make digital assets more transparent to especially non-experts in
computer science such as data scientists.

In this chapter, we propose an approach that summaries the neural networks
according to the FAIR guiding principles by proposing an ontology that enables
semantic annotations to enhance the information basis and representing a wide
range of existing neural network models with this ontology in a knowledge graph.
To simplify the search of our knowledge graph, we implemented a search engine for
neural networks with over 18,400 neural networks. In particular, we aim to answer
the following research questions with our approach.

Research Question 4. Hypothesis: Neural network models which comply with the
FAIR Principles support humans in dealing with the increase in volume, complexity,
and creation speed of these models.

4.1 Which information should be provided about the neural network models to
enable transparency?
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4.2 Which information must be provided to apply an existing model to a novel use
case?

4.3 What kind of functions should be provided for supporting humans in reusing
neural networks?

This chapter is based on joint work with Tobias Weller, Michael Farber, and York
Sure-Vetter [NWFS20, NW19].

6.1 Introduction

Researchers of various sciences and data analysts reuse but also re-train neural
network models according to their needs. Providing pre-trained neural network
models online has the following advantages. First, as a provider, you can benefit
from users improving your neural network and circulating your research. Second,
as a user of an already trained neural network, you can overcome the cold start
problem as well as save on training time and costs. Furthermore, providing trained
neural network models gets increasingly important in the light of the research
community’s efforts to make research results more transparent and explainable (see
FAIR principles [Wil+16]). As a result, more and more trained models are provided
online at source code repositories such as GitHub. The models provided serve not only
to reproduce the results but also to interpret them (e.g., by comparing similar neural
network models). Lastly, providing and using pre-trained models gets increasingly
important via transfer learning in other domains.

To ensure the high-quality reuse of data sets and infrastructure, the FAIR Guid-
ing Principles for scientific data management and stewardship [Wil+16] have been
proposed. These guidelines are designed to make digital assets Findable, Accessible,
Interoperable, and Re-usable. They have been widely accepted by several scientific
communities nowadays (e.g., [Wis+19]). Making digital assets FAIR is essential to
deal with a data-driven world and thus keeping pace with an increasing volume,
complexity, and creation speed of data. So far, the FAIR principles have been mainly
applied when providing data sets and code [Wis+19, DPGK19], but not machine
learning models, such as neural network models. In this chapter, we bring the FAIR
principles to neural networks by (1) proposing a novel schema (i.e., ontology) which
enables semantic annotations to enhance the information basis (e.g., for search and
reasoning purposes), (2) representing a wide range of existing neural network models
with this schema in a FAIR way, and (3) providing an online search service which
facilitates queries indicating the desired characteristics of the neural network. As
we outline in Section 6.4.1, extracting metadata from neural networks automatically
is a nontrivial task due to heterogeneous code styles, dynamic coding, and varying
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versioning. The key idea is that the information contained in these networks should

be provided according to the FAIR principles. This comprises several steps which not

only consist of having identifiers but providing (meta)data in a machine-readable way

to enable researchers and practitioners (e.g., data scientists) easy access to the data.

We facilitate this by using semantic web technologies such as OWL and RDF/RDEFS.
Overall, we provide the following contributions:

1. We provide an ontology, called FAIRNETs ONTOLOGY, for representing
neural networks. It is made available using a persistent URI by w3id and
registered at the platform Linked Open Vocabularies (LOV).

Ontology URI: https://w3id.org/nno/ontology
LOV: https://lov.linkeddata.es/dataset/lov/vocabs/nno

2. We provide a knowledge graph, called FAIRNETS, representing over 18,400
publicly available neural networks, following the FAIR principles. FAIRNETS
is available using a persistent URI by w3id and is uploaded to Zenodo.
Knowledge Graph URI: https://w3id.org/nno/data
Zenodo: https://doi.org/10.5281/zenodo.3885249

3. We provide a search service, called FAIRNETs SEARCH, to query, search and
find neural networks in our knowledge graph.
Search URI: http://km.aifb.kit.edu/services/fairnets/

The chapter is structured as follows. Section 6.2 gives an overview of related
work. Section 6.3 describes the structure of FAIRNETS ONTOLOGY and Section 6.4
describes the knowledge graph FAIRNETS. Section 6.5 explains the reason why the
neural networks in FAIRNETs follow the FAIR principles. Section 6.6 demonstrates
use cases possible with FAIRNETS SEARCH. Section 6.7 describes the impact of
FAIRNETS. Lastly, the contributions are summarized.

6.2 Related Work

Information of neural network models. Mitchell et al. [Mit+19] suggest which
information about neural networks should be considered as relevant when modeling
them. Information such as description, date of the last modification, link to papers,
or other resources to further information, as well as the intended purpose of a neural
network, are taken into account. Storing such information makes neural networks
more transparent. We follow this suggestion by defining a semantic representation
that, to the best of our knowledge, does not exist for neural network models so far.

The knowledge extraction from neural networks can point out relevant features or
redundancies [BG97]. We extract neural network information to build a knowledge
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graph to better evaluate the causal relationships between different neural network
architectures.

Representing and provisioning neural network models. There exist several
standards for the exchange of neural network information on the instance level.
The Predictive Model Markup Language (PMML) [Gro] is an XML-based standard
for analytic models developed by the Data Mining Group. PMML is currently sup-
ported by more than 30 organizations. The Open Neural Network eXchange format
(ONNX) [Fou] is a project by Facebook and Microsoft that converts neural networks
into different frameworks. These two formats serve as an exchange format for neural
networks on the instance level. We are less interested in the exchange of formats,
but rather the reusability of the neural networks on a meta-level. Therefore, our
FAIRNETSs ONTOLOGY lifts its elements to a semantic level, i.e. to RDF/S, following
a methodology for reusing ontologies [PM00] and applying the Linked Data Princi-
ples [Ber]. Thus, we incorporate information on the instance and meta-level in the
knowledge graph FAIRNETS.

Neural network repositories. Many pre-trained neural networks are available
online. The well-known Keras framework [Ker] offers ten pre-trained neural net-
works for reuse. The Berkeley Artificial Intelligence Research Lab has a deep learning
framework called Caffe Model Zoo [BAI] which consists of about fifty neural net-
works. Wolfram Alpha has a repository with neural networks [Alp] which consists of
approximately ninety models. These pre-trained neural networks are represented in
different formats making it, for instance, difficult to compare or reuse neural networks.
Besides, a larger number of neural networks can be found in code repositories such as
GitHub. These neural networks are typically coded in one of the major programming
frameworks such as Keras, TensorFlow, or PyTorch. Our approach aims to consider
such neural networks and make them available as FAIR data.

6.3 FAIRnets Ontology

6.3.1 Creation Process

The FAIRNETS ONTOLOGY is dedicated to model metadata for neural network
models on a schema level. We developed the ontology by using Protégé [Mus15]. To
the best of our knowledge, there is no existing vocabulary for the specific description
of neural networks. That is why several senior researchers use best practices [GP09]
to construct the ontology. We identify researchers, especially beginners, as potential
users. The use cases we envision can be found in Section 6.7.
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In addition to the consideration of the Predictive Model Markup Language (PMML)
in the development of the ontology (especially in describing the architecture), find-
ings from further work were also considered. In particular, model cards [Mit+19]
were taken into account to validate relevant concepts. Model cards encourage trans-
parent model reports concerning machine learning models and are used for outlining
the intended use of a model. These cards define minimal information needed to
sufficiently describe a machine learning model (in our case, a neural network) that is
relevant to the intended application domains. As suggested from model cards, we
included model details such as the person developing the model, model date, model
type, and licenses.

Characteristics

The structure of the FAIRNETs ONTOLOGY can be seen in Figure 6.1. Overall, the
ontology consists of a total of 516 axioms and uses a total of 77 classes where 70
are sub-classes. It also consists of four object properties, 23 data properties, and 29
individuals.

The ontology enables representing three different aspects of information. (1) Neural

network-related general metadata and (2) neural network-dependent features can be
modeled, such as the type of layer, loss function, and optimizer. (3) Layer-specific
metadata is used to enhance the information basis of the specific layers, e.g., its
keywords and parameters. In the following, we will describe these three components
of the FAIRNETS ONTOLOGY correspondingly.’
General information describe general components of the neural network, as well
as the intended use. For instance, the owner/developer of the (trained) neural network
is modeled by using the property dc:creator. This attribute makes it possible to
search for repositories by the author in the domain of neural networks. Following the
Linked Data Principles, the author is represented via a URL In this way, the authors
are uniquely identified. Therefore, it is possible to link it to the Microsoft Academic
Knowledge Graph [Far19] which models scholarly data such as scientific publications
in which some of the represented neural network models are proposed and evaluated.
Moreover, a name (rdfs:label) and a description (dc:description) of the trained
neural network are stored. The data property nno:dataset of type URI allows us
to specify the data set that was used to train the neural network. This information
already gives a more detailed insight into the neural network as well as its intended
use.

Furthermore, the timestamp of creation date (dc:created) or last modification
(dc:modified) allows assessing the currency of the neural network. dc:license in-
dicates the rights to modify and redistribute that network. Besides, the property
nno:hasRepositoryLink allows linking to the repository in which the neural net-
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work is located. Likewise, references to published papers can be included using
dc:references.

Model-specific information covers model-specific components of the neural net-
work, such as optimization function denoted by nno:hasOptimizer. The ontology
covers modeling various loss functions, such as binary cross-entropy and mean
squared error, via the property nno:hasLossFunction. Loss functions are subdivided
into classification and regression loss functions in the ontology to further indicate
the intended use of the neural network. The information about existing layers of the
neural network can be linked via the property nno:hasLayer. The loss functions and
layer types available in Keras, an open-source deep learning framework to model
neural networks, served as a basis to model available loss functions and layers.

Layer-specific metadata outlines additional information about the individual layer.
The layers of neural networks are subdivided into subclasses such as core, recurrent,
and convolutional layers. These classes are further subdivided into more specific
layer classes. This specification derived from Keras enables the categorization of
the neural networks. For example, a neural network with a layer from class convo-
lutional layer can be assigned to the type convolutional neural network. Further-
more, the hyperparameters (e.g., kernel size, stride, and padding) are denoted by
nno:hasLayerKeywords and saved as a dictionary. Additional values in the layer are
denoted by nno:hasLayerParameter.

Most of the categories, properties, and instances are annotated with a label
(rdfs:label), a description (rdfs:comment), and, if given, a link (rdfs:seeAlso)
which make it easy for ontology users to identify the intended use of categories,
properties, and instances, therefore supporting the reusability.

6.3.2 Provisioning

The World Wide Web Consortium (W3C) Permanent Identifier Community Group
service is used to provide secure and permanent URL forwarding to the ontology.
The FAIRNETS ONTOLOGY in syntax turtle is accessible under https://w3id.org/
nno/ontology. Moreover, the ontology has been registered at LOV under https:
/Novlinkeddata.es/dataset/lov/vocabs/nno. The ontology is licensed under Creative
Commons BY 4.0 [Com] which allows its wide usage. Furthermore, the ontology
follows the 5-Star Linked Data Principles [Ber] and can, therefore, be easily reused. A
VolID file is provided under https://w3id.org/nno/fairnetsvoid including provisioning
information.
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6.4 FAIRnets Knowledge Graph

Apart from the ontology, we provide the FAIRNETS knowledge graph, which is
based on the FAIRNETS ONTOLOGY. The knowledge graph allows us to store
knowledge (in our case, detailed metadata for neural network models) intuitively
as a graph. Existing and widely used W3C standards and recommendations, such
as RDF and SPARQL, can be used to query the knowledge graph and to integrate
relatively easily into existing frameworks and systems. For instance, FAIRNETS is
already integrated into KBox [MSBC17] which is a data management framework,
allowing users to share resources among different applications.

6.4.1 Creation Process

The previous online available neural network repositories such as Keras [Ker], Caffe
Model Zoo [BAI], and Wolfram Alpha [Alp] are rather small (under one hundred
neural networks) and not sufficient to present trends in the development and usage of
neural networks. General-purpose online code-sharing services, such as GitHub [Git]
and Bitbucket [Bit], in contrast, contain many repositories of different nature. We,
thus, decided to use GitHub since it is the largest host of repositories. Details about
the nontrivial extraction process are given in the following.

Data Source. We extract and represent metadata of publicly available, trained
neural network models in RDF* (i.e. RDF and RDFS) based on the FAIRNETS
ONTOLOGY. Information from SemanGit [KBG19] and GHTorrent [Gou13] can be
used to identify GitHub repositories. SemanGit and GHTorrent provide a collection
of data extracted from GitHub. In total there are more than 119 million repositories
available in the GHTorrent data collection. However, SemanGit and GHTorrent have
a different focus and do not provide all the information which we wanted to provide in
the FAIRNETS knowledge graph. For instance, information about the architectures
of neural networks within the repositories, the creation date of the repositories,
as well as the watcher count is not included. We, therefore, directly accessed the
GitHub Repository API and queried available neural network repositories. We used
the search term ‘neural network’ and filtered for repositories that use Python as a
programming language. We accessed these repositories® and extracted the neural
network metadata.

Extraction Process. The difficulty lies in the extraction of the architecture in-
formation from the code. We narrowed our extraction down on neural networks
implemented in Python. Still, it is difficult to identify the Python file which models
a neural network. Therefore, we started with h5 files which are an open-source
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Table 6.1: Mapping GitHub REST API values to general components in FAIRNETSs.

GitHub API FAIRnets Ontology
created_at dc:created

description, readme dc:description
html_url nno:hasRepositorylLink
license dc:license

owner [‘html_url’]  dc:creator

updated_at dc:modified
watchers_count nno:stars

name rdfs:label

topics [‘names’] doap:category

technology for storing trained machine learning models. Neural networks that have
been trained with Keras, for example, can be stored in this format. The h5 file contains
information about the neural network, e.g., the sequence of layers, used activation
functions, optimization function, and loss function. Accessing the information in the
h5 file makes it easier to identify and extract the architecture of the neural network.
However, not every repository contains trained neural networks in h5 files. The
reason is that trained neural networks often take up a lot of storage space. Thus,
our contribution is the information extraction from the code directly which will be
described below.

General Information: The mapping of the values from the Github API with the cor-
responding general component properties in FAIRNETS can be seen in Tab. 6.1. We
use the full_name of the GitHub REST API as a unique identifier (e.g., ‘dmnelson/senti-
ment-analysis-imdb’ in note 6.4.1). The full name consists of the GitHub username
combined with the name of the repository. The owner of the repository is also the
owner of the neural network. Moreover, we store the link (nno:hasRepositoryLink),
the time of creation (dc:created), and the last modification (dc:modified) of the
repository. As a description of the neural network (dc:description), we extracted
automatically the description and readme file of the GitHub repository. This gives a
summary of the possible use of the neural network. Furthermore, license informa-
tion about the neural network is extracted and modeled in the knowledge graph, if
available. This information is crucial regarding the reusability of neural networks.
Given this information, it is possible to filter neural networks by license — which
is often an important constraint in industrial settings. To enrich the knowledge
graph FAIRNETs with information according to the usage of a neural network, we
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extract the topics’ of each repository from the GitHub repositories and store them as
doap:category.

Additionally, we extract arXiv HTTP links within the readme file and map them to
dc:references. If BibTex file codes can be found in the readme file, we extract the URL
information from the BibTex entry and link it by using the property dc: references.
The property dc: references is only intended for scientific contributions. By linking
it with URLs from BibTex entries and arXiv links, we ensure this condition. Other
links in the readme file are linked to the neural network using rdfs:seeAlso.
Model & Technical Information: The main feature of FAIRNETS is the modeling
of neural networks. We can model the structure and technical components of neural
networks by employing the FAIRNETs ONTOLOGY. To extract the neural network
information from the repositories we consider all Python files in the repositories.
Each repository can contain several models of a neural network. In general, it is
difficult to extract the architecture information automatically without executing the
source code. By executing the code, you can save the neural network model, for
example in h5, and retrieve the information easier. We seek a more elegant way
by saving execution costs and use language processing to extract the information.
Due to that, we focus on Python files with static variables. Despite this restriction,
there are still challenges because of various programming styles such as inconsistent
naming of variables, complex loop constructions, different structures of code, and
other logic statements. Another challenge is changing parameter naming due to
different framework versions which are usually not stated. To solve these tasks, a
general method is generated using Python Abstract Syntax Trees (AST) module [Pyt].
The AST module helps Python applications process trees of the Python abstract
syntax grammar. We focused on Keras applications of neural networks to extract the
architecture because it is the most used deep learning framework among the top-
winners on Kaggle [Ker]. The information on the architecture of the neural network
is then modeled by using the schema and properties provided by the FAIRNETS
ONTOLOGY. Also, the individual layers and their hyperparameters are stored in
our knowledge graph. Likewise, the used optimization function and loss function
are stored, among other things, allowing us to infer whether the neural network
is used for classification or regression. Our code can be found on GitHub under
https://github.com/annugyen/FAIRnets.

Evaluation. To evaluate the accuracy of our information extraction, we manually
went through 50 examples where we judged the extraction of the GitHub Repository
API in Tab. 6.1. The evaluation was in all cases correct. In the case of the neural
network architecture, we used the h5 files, if available, in the repositories. We
were able to evaluate over 1,343 h5 files with architecture information (i.e., layer
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Table 6.2: Statistical key figures about FAIRNETS.

Key Figure Value
repositories 9,516
unique users 8,637
neural networks 18,463
FFNN 8,924 (48%)
CNN 6,667 (36%)
RNN 2,872 (16%)

information) that overlap with the architecture extracted from the code with 54%
accuracy. Due to later modifications in the code, the overlap with the h5 file does not
apply anymore (e.g., if a layer is commented out).

6.4.2 Provisioning

Just like the FAIRNETS ONTOLOGY, the knowledge graph FAIRNETS is also
based on the 5-Star Linked Data Principles. The knowledge graph is accessible under
a persistent URI from w3id and additionally provided on Zenodo. In combining
FAIR principles and Linked Data Principles using URIs to identify things, providing
information using RDF”, and linking to other URIs, it is possible to easily reference
and use FAIRNETS (see Section 6.7). Machine-readable metadata allows us to
describe and search for neural networks. The knowledge graph FAIRNETS, like
the ONTOLOGY, is published under the Creative Commons BY 4.0 [Com] license. A
VoID file describing the knowledge graph in a machine-readable format is provided
under https://w3id.org/nno/fairnetsvoid.

6.4.3 Statistical Analysis of the FAIRnets Knowledge Graph

Tab. 6.2 shows some key figures about the created knowledge graph. It consists
of 18,463 neural networks, retrieved from 9,516 repositories, and provided by 8,637
unique users. The creation time of the neural networks in our knowledge graph ranges
from January 2015 to June 2019. All these networks have a link to the respective
repository and owner. Based on the used layers, we can infer the type of neural
network. If a network uses a convolutional layer, it is inferred that the network is a
convolutional neural network (CNN). Likewise, if a network contains a recurrent layer,
it is inferred that the network is a recurrent neural network (RNN). For simplicity,
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if none of those two layer types are used, the default claim for the network is a
feed-forward neural network (FFNN). Of the total 18,463 neural networks, FFNN is
most represented in the knowledge graph comprising half of the neural networks.
CNN s follow with 36% and RNN with 16% of the total number of neural networks.

6.5 FAIR Principles for Neural Networks

With FAIRNETS, we treat neural networks as research data. As such, to ensure good
scientific practice, it should be provided according to the FAIR principles, that is, the
data should be findable, accessible, interoperable, and reusable. While the GitHub
repositories themselves do not satisfy the FAIR principles (e.g., the metadata is not
easily searchable and processable by machines), the modeling of the neural networks
in the FAIRNETs knowledge graph is made FAIR as we show in the following.
Specifically, in this section, we identify the factors that make the neural network
representations in FAIRNETs FAIR. This was achieved by following the FAIRification
process [FAI]. Our FAIRification process is aligned with the FAIRMetrics [Wil+18]
outlined in Tab. 6.3. In the following, we point out how the single FAIR metrics are
met by our knowledge graph.

Findable describes the property that metadata for digital assets is easy for both
humans and machines to find. Our approach ensured that, firstly, by retrieving
the metadata available in the repository, secondly, structuring its metadata in the
readme file, and thirdly, obtaining the architecture information from the code file
according to the FAIRNETs ONToLOGY. The neural networks we model have
unique identifiers (i.e., fulfilling Gen2_FM_F1A) and a persistent URI (Gen2_FM_F1B).
As aresult, the process for a human to find a suitable neural network through resource
identifiers in the metadata (Gen2_FM_F3) is improved. By using RDF as the data
model and by providing a schema in OWL as well as a VoID file as a description of
the knowledge graph, the metadata is machine-readable (Gen2_FM_F2). Thus, the
knowledge graph can be automatically filtered and used by services. An exemplary
service supporting this statement is presented in Section 6.6. FAIRNETs allows
for querying information about and within the architecture of the neural networks
which was not possible previously. Now, complex queries are feasible (e.g., list all
recurrent neural networks published in 2018), which cannot be solved by traditional
keyword searches. The metric Gen2 FM_F4® - ‘indexed in a searchable resource’ -
was not passed by FAIRNETs although we indexed it on Zenodo. The reason is that
the resource on Zenodo is not findable in the search engine Bing which the authors
of the FAIRMetrics use as ground truth. However, FAIRNETS is indexed by the
search engine Google.

82

8 https://github.com/FAIRMetrics/Metrics/blob/master/FM_F4, last acc. 2020-10-15


https://github.com/FAIRMetrics/Metrics/blob/master/FM_F4

Section 6.5

FAIR Principles for Neural Networks

() sprepue)g Ajunwwio)) SN £ TY WA ZU9D
V) 90URUSAOIJ PI[IRId  Z'IY WA ZuU2O J[qesnay
, 9suQdIT a3es() A[qISSAY [Ty WA ZUID
2 S90URI9JY payIreny) asn ST WA Zuao
2 SILIB[NQBI0A YTV 95N ZI W zuon  9[qeradorajuy
2 a3en3ue uorjejuasarday a8paymou)] € s IT WA Zuoo
V) Ayad3uoT ejepejoy eV Nd 42D S[qISS00Y
, UOTIRZLIOYINE SSAIY  Z' IV N ZU?9D
Va [000101 SS90y [TV A U9
X 90IN0SII S[qRYDIILIS B UI PIXIpU] 2 RAES)
, BJRPRISIN UI IYIIUSP] 90IN0STY &1 W ZUaD
/ eJepejaw Jo AI[IqepesI-ouryoejy 2d WA ¢uaD Ilqepul]
2 oouaysisiad 1YNURp]  gId WA ZU9D
, ssouonbrun reynuapy  VIJ WA ZuUoD
Jnsay aureN SLIPRINYIVA ardiourig

‘(passed jou = y ‘ssed p[noys = () ‘passed = A :9]0N)
SOLIPIAYTV: ZUOTIRISUAD) 3Y} 0] SUIPIOOE SLANYIV,] JO UOTIen[eAq :€°9 a|qe]

83



Chapter 6

FAIRnets

Accessible describes that users can access (meta)data using a standardized commu-
nication protocol. The protocol must be open, free, and universally implemented.
FAIRNETS ONTOLOGY AND KNOWLEDGE GRAPH is located on a web server and
can be accessed using the HTTPS protocol (Gen2_FM_A1.1). The neural networks
in the repositories can also be accessed using the HTTPS protocol (Gen2_FM_A1.2).
In addition to the open protocol, the accessible property requires that metadata can
be retrieved, even if the actual digital assets are no longer available. Due to the
separation of the information in FAIRNETs and the actual neural networks on
GitHub, this property is fulfilled, since the information in FAIRNETS is preserved
even if the neural networks on GitHub are no longer available (Gen2_FM_A2). The
service to evaluate the metric Gen2_FM_AZ2 - ‘metadata longevity’ — could not be
executed because it only tests files that are less than 300kb’ whereas FAIRNETS
has more than 80MB. This test checks for the existence of the ‘persistence policy’
predicate. This predicate is available in FAIRNETS, which should pass the test.

Interoperable refers to the capability of being integrated with other data as well as
being available to applications for analysis, storage, and further processing. We make
use of Linked Data by applying RDF (Gen2_FM_I1) and SPARQL to represent the
information. This makes the data machine-readable, even without the specification
of an ad-hoc algorithm or mapping. Additionally, the FAIRNETs ONTOLOGY and
the respective KNOWLEDGE GRAPH use well-established and commonly used vo-
cabularies to represent the information. Among others, Dublin Core, Vocabulary of a
Friend (VOAF), Creative Commons (CC), and a vocabulary for annotating vocabulary
descriptions (VANN) are used for annotations and descriptions (Gen2_FM_I2). As
a further requirement of the FAIR guideline, qualified references to further meta-
data are required. This requirement is fulfilled by rdfs:seeAlso and dc: references
(Gen2_FM_1I3). dc: references statements provide scientific references between the
neural networks and scientific contributions. These references to the scientific con-
tributions are provided via globally unique and persistent identifiers, such as DOIs.
Reusable aims at achieving well-defined digital assets. This facilitates replicability
and usage in other contexts (i.e., reproducibility), as well as findability. Due to the
architecture and metadata extraction, the process of finding and reusing a neural
network by an end-user becomes significantly easier and can now be performed sys-
tematically. By using best practices in ontology building, the properties and classes of
FAIRNETS ONTOLOGY provided are self-explanatory with labels and descriptions
(Gen2_FM_R1.3). The neural networks in FAIRNETS contain structured detailed
metadata such as creator and GitHub link (see Gen2_FM_R1.2) for easy findability
and reuse. At the same time, most neural networks in FAIRNETs have an assigned
license which is important for reusability (Gen2_FM_R1.1). For passing Gen2_FM_R1.2,
(meta)data must be associated with detailed provenance reusing existing vocabularies
such as Dublin Core which we included in our knowledge graph. Gen2_FM_R1.3 tests
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Figure 6.2: The FAIRNETS SEARCH Framework

a certification saying that the resource is compliant with a minimum of metadata.
FAIRNETS is described by using LOV standards for publication. Therefore, we
assume that these metrics are fulfilled. Overall, the neural networks modeled in
FAIRNETS fulfill all requirements of the FAIR principles, see Tab. 6.3.

6.6 FAIRnets Search

FAIRNETS SEARCH is a service provided by us to make neural networks searchable
and findable. The service is available at the following URI http://km.aifb.kit.edu/
services/fairnets/. It represents an attempt to search for all neural network archi-
tectures or neural network instances that fulfill specific requirements (e.g., used
for specific tasks, having a specific architecture, etc.). For this purpose, the Web
service uses our knowledge graph FAIRNETs. This knowledge graph currently
contains 18.463 neural networks. Figure 6.2 shows an overview of the framework.
We collected neural networks from GitHub and retrieved the information. The data
is annotated using the FAIRNETs ONTOLOGY and represented in RDF. For each of
the neural networks in FAIRNETS, the relevant properties according to the Neural
Network Ontology such as the description and the architecture are stored. That
way, FAIRNETS can be queried with a set of desired properties and responds with
a set of neural networks that have these properties with a SPARQL Endpoint. The
FAIRNETS SEARCH combines these implementations by a browser-based frontend
to the SPARQL endpoint.
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Demonstration of Use Cases

The attendees of the demo will learn how FAIRNETS SEARCH can be used to gain
insights into the usage of existing neural networks and data sets in machine learning.
In the online demo, the users are encouraged to use the search engine to find and
access neural network architectures. With FAIRNETS SEARCH, we will tackle the
following three scenarios:

Search for Neural Networks. The FAIRNETS SEARCH engine allows users to
search keyword-based for neural networks. FAIRNETS is searched using SPARQL.
Multiple keywords are supported in the search. The results are sorted based on
the number of hits counted, i.e. how often the keywords appear in the title and
description. The attendee of the demo can, for example, search for the terms ‘image’
and ‘classification’ and will get a list of neural networks that are related to these terms
(see Figure 6.3). Existing neural networks in this area can thus easily be retrieved.
Detailed information on the individual neural networks can be accessed on the model
sites of the neural network. Information such as the publisher, links, architecture
information, and the latest update of the network is provided and shown by our
demo. The attendees of the demo can choose based on the information and links
provided by us if an already modeled neural network fits their use case. We support
the reusability of neural networks with FAIRNETS SEARCH.

Search for Used Data Sets. Another use case is the usage of data sets. Attendees
of the demo can search for specific data sets (e.g. search for ‘mnist’). FAIRNETS
SEARCH lists neural networks that are related to the searched data set. This gives
the attendees the possibility to find out which neural network architectures have
been applied to a given data set. Additional information such as the link to the
GitHub repository is available on the respective pages. This allows for getting more
information about the performance of the architectures on the data sets. Besides
identifying already applied neural network architectures on a given data set, the
search can also be used to identify new data sets. This information is implicit in the
descriptions of neural networks. Searching for ‘image classification’ lists all available
neural networks in this domain. In the description of the neural network or on the
corresponding GitHub repository page further information about the used data sets
for training can be found. This supports the attendees of the demo to find new data
sets suitable for their use case.

Fine-grained Search by Exploiting the SPARQL Endpoint. Besides the search
functionality, we offer the attendees of the demo the possibility to post individual
SPARQL queries to the FAIRNETs endpoint. We use YASGUI [RH17] to display
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Al Privacy About Index Repository Download Dataset Ontology al:fb

About results (162 hits)

neil7-Image-classification-using-CNN
https://w3id.org/nno/data#neil7/Image-classification-using-CNN
Image classification performed on labeled dataset of Cats and Dogs

frotms-image_classification_keras
https://w3id.org/nno/data#frotms/image_classification_keras

image classification using keras-project-template, train a model of classification easily by modifying a
json configuration

YETI-WU-Image_Classification_ResNet50_Single-Hand-Sign
https://w3id.org/nno/data#YETI-WU/Image_Classification_ResNet50_Single-Hand-Sign
Image Classification of Single-Hand-Sign

tlokeshkumar-Fast-image-classification
https://w3id.org/nno/data#tlokeshkumar/Fast-image-classification
Fast image classification using Bottlenecks

frank1789-NeuralNetworks

https://w3id.org/nno/data#frank1789/NeuralNetworks

Intent of this project is the rapid development of a neural network for image classification. Thanks to the
use of framework like Keras this is possible by moving the first steps using refinement techniques
starting from known models. There is discussion of the architecture of a USB commercial device, Intel
Movidius neural compute stick, with lo...

Figure 6.3: Returned hits of the FAIRNETS SEARCH demo, based on the entered
keywords. In the search presented here, the user was interested in image classification.

the results of the queries. The interface to the provided endpoint can be accessed
via the following link: https://km.aifb.kit.edu/services/fairnets/sparql. The endpoint
allows for answering individual requests upon the data set. We already offer some
pre-selected SPARQL queries, such as a list of all neural networks with a maximum
number of layers (see Figure 6.4) and an overview of the frequencies of the activation
functions used.

6.7 Impact

We see high potential of FAIRNETS ONTOLOGY and the knowledge graph FAIR-
NETS in the areas of transparency, recommendation, reusability, education, and search.
In the following, we outline these application areas in more detail.

Transparency. Neural networks are applied in many different areas such as finance
[QJLQ20], medical health [Kha+01], and law [PWB00]. Transparency plays a major
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PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX nno: <https://w3id.org/nno/ontology#>

"2
'sY

SELECT ?label ?link (COUNT(?layer) AS ?total) WHERE {

?network a ?networkType .
?network rdfs:label ?label .
?network €

?network nno
}
GROUP BY ?label ?1ink|
HAVING(COUNT(?layer) <= 10)

ayer ?layer

4 Response  Pivot Table ~ Google Chart
Showing 1 to 50 of 417 entries (in 0.129 seconds)
label
1 charlesyz-word-rnn
2 donadigo-TMTrackNN
3 DillonWard-Emerging-Technologies-Project

4 FengYen-Chang-CarND-Behavioral-Cloning-P3

oryLink ?link .

</>

Search: Show[50 %] entries
§ link $ total 9
“csdinteger

https://github.com/charlesyz/word-mn 5"

https://github.com/donadigo/TMTrackNN =gn"ixsdinteger

https://github.com/Dill

7+~ xsdintoger

https://github.com/FengYe

Figure 6.4: Example of a List of all GitHub links, which provide neural networks
that have at most 10 layers.

role in these areas when it comes to trust the output of a used neural network model.
We claim that our contribution which makes neural networks more transparent can
increase trust and privacy [Sch19]. Additionally, using semantic annotations can
even enhance interpretability by distributional semantics [SFH19].

Another aspect is the transparency of scientific work regarding neural networks.
Researchers publishing a model should provide it according to the FAIR principles to
strengthen their scientific contribution. Our knowledge graph FAIRNETS can pave
the way for this.

Recommendation. Neural Architecture Search (NAS) is used to find the best suit-
able neural network architecture based on existing architectures [EMH19]. However,
the search is performed purely based on metrics like accuracy ignoring explainability
aspects concerning the best fitting model. Our knowledge graph allows us to have a
search for the best suitable neural network models on a meta-level, using modeled
use-cases, data sets, and scientific papers. Knowledge graphs have also been used to
provide explanations for recommendations to the user [Wan+19a, Xia+19].

Additionally, we can apply explainable reasoning [Wan+19b] given the ontology
and the knowledge graph and infer some rules. Doing this, we might reason which
neural network models are reasonable or which components of the architecture stand
in conflict with each other.

Reusability. Transfer learning is a method in deep learning to reuse pre-trained
models on new tasks. Our contribution facilitates the search of pre-trained neural
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networks and provides the metadata needed to choose a specific neural network. We
can envision FAIRNETSs linked with other knowledge bases to enrich the reusability
of neural networks by applying Linked Data Principles [Ber]. For example, training
data sets can be linked with Neural Data Server [YAF20], Wikidata [Wik], and
Zenodo [Zen] through schema.org [Sch], scientific papers can be linked with the
Microsoft Academic Knowledge Graph [Fir19], and metadata can be extended with
OpenAlIRE [Ope].

On the other hand, providing a model and encouraging its reuse can improve it by
revealing limitations, errors, or suggestions to other tasks.

Education. Our FAIRNETs knowledge graph can be used for educational pur-
poses [Che+18], for instance, to learn best practices regarding designing a neural
network model. Another aspect is to learn the usages of different architectures and
their approaches (e.g., via linked papers). Our knowledge graph includes training
parameters that can help setting up the training process of a neural network (e.g.,
when facing the cold start problem).

Search. We provide online the search system FAIRNETs SEARCH [NW19], which
is based on the proposed FAIRNETS ONTOLOGY and KNOWLEDGE GRAPH. Users
can search for neural network models through search terms. Additional information
can be retrieved by using SPARQL as query language on top of our knowledge graph,
which enables faceted and semantic search capabilities. The SPARQL endpoint is also
available to the public. The search system shows how a semantic search system can
be realized which improved the limited capabilities of keyword searches on GitHub.
Furthermore, developers can provide their GitHub repository to run the FAIRification
process on their neural networks. Until now, we have over 550 visits to the website
FAIRNETS SEARCH with over 4,800 page views, 1,400 searches on our website with
an average duration of twelve minutes, and the maximal actions in one visit is 356.

6.8 Conclusion

This chapter was dedicated to making neural networks FAIR. To this end, we first
proposed the FAIRNETs ONTOLOGY, an ontology that allows us to model neural
networks on a fine-grained level and that is easily extensible. Second, we provided the
knowledge graph FAIRNETSs. This graph contains rich metadata of 18,463 publicly
available neural network models using our proposed ontology as knowledge schema.
Third, we provide FAIRNETS SEARCH which allows for making neural networks
better findable, searchable, and accessible which enhances efficiency. We have shown
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high potential impact in transparency, recommendation, reusability, education, and
search.

If we look at the research questions again, we can draw the following conclusions.
The information encoded using our ontology facilitates transparency by following
fair principles. This answers Research Question 4.1. As we retrieved the architecture
information from the source code, we have the necessary parameters to apply an
existing model to a novel use case which answers Research Question 4.2. Regarding
Research Question 4.3, we modeled three information levels, namely general, model,
and layer-specific information, that enhance the reusability.

Outlook. As future work, we plan to connect the FAIRNETS ONTOLOGY and
KNOWLEDGE GRAPH with scholarly data. Specifically, we will work on linking
publications, authors, and venues modeled in knowledge graphs like the Microsoft
Academic Knowledge Graph or Wikidata to the FAIRNETs knowledge graph. This
will require applying sophisticated information extraction methods to scientific
publications.



7 Conclusion

Neural networks are used in all kinds of industries but behave like a black box. To
apply and improve these black boxes, explanations are crucial. As neural networks
are also used by non-computer scientists, it is becoming increasingly important
that humans can understand and improve them. Furthermore, companies have to
deal with the issue of data protection, which is reinforced by politics (GDPR). We,
therefore, addressed the following question in this thesis:

Research Question. How to make explanations human-understandable?

In this thesis, we provided a framework for neural networks consisting of different
approaches. In line with state-of-the-art research, our framework tackles important
goals to make explanations human-understandable. These are transparency, scrutabil-
ity, trust, effectiveness, persuasiveness, efficiency, and satisfaction. We contributed
TrRANSPER, OBALEX, FILTAaG and FAIRNETS to achieve these goals. These are
summarized in the following by recapitulating the hypotheses with their associated
research questions and concluding with the findings, limitations, and outlooks.

In Chapter 3, we introduced TRANSPER in the context of product recommendation
in e-commerce. We showed how explanations based on LRP can be quantified to get
human-understandable and beneficial explanations according to our individuality,
certainty, and diversity measure. Although we worked with RNNs, this approach
applies to all neural network types with even heterogeneous data as input.

Hypothesis 1. Quantifying explanations based on the relevance of the input features
facilitates the evaluation of not only the input data but also the neural network.
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1.1 What parameters are relevant for understanding explanation quality?
1.2 Which implications can be derived with these relevancies?
1.3 Can these relevancies be used to improve the neural network (and if so, how)?

Research Question 1.1. addresses the relevant parameters to understand the expla-
nation. We found out that based on the LRP approach, the weights and also bias
is relevant to understanding the explanation quality. Most importantly, the bias is
usually omitted from the literature, although we could show that it reveals a lot in
connection with the explanation. Research Question 1.2. addresses implications that
can be derived. The explanation quality measures reveal how important specific
relevancies are for different customer bases. Research Question 1.3 addresses the
improvement of a neural network based on these explanations. The leave-one-out
method can reveal important features which can be used to improve a neural network.
In summary, we confirm Hypothesis 1. We explained fluctuations in the prediction
qualities. This helped in finding ideas to improve the neural network and understand
the customer base of online shops. Although we have only shown our approach in
e-commerce, our metrics can generally be applied to all neural network types, as LRP
is also applicable to other architectures.

In Chapter 4, we improved existing visual explanation methods by quantifying
the explanations following humans’ expectations in OBALEx. We have shown
for CNNs in image classification that our explanation quality score can be used to
improve a classifier regarding object-aligned explanations. Training a model with the
addition of the data of the desired explanation increases not only accuracy but also
effectiveness and scrutability. This leads to more generalized models and therefore
more trust in a model.

Hypothesis 2. In image classification, object-aligned explanations can sufficiently
map the desired explanation of humans and guarantee an intuitive explanation.

2.1 How can right for the right reasons be measured?
2.2 Does it satisfy the concept of classifying right for the right reasons?
2.3 Can it be included in the training process?

Research Question 2.1 addresses the selection of the desired explanation regarding
classifying an image right for the right reasons. The ObAIEx metric measures the
alignment of the explanations with the actual object and thus can be used to measure
the right features for the right reasons. Research Question 2.2 addresses the suffi-
ciency of the metric regarding the concept of classifying right for the right reasons.
By considering different state-of-the-art explanation methods in our approach, the
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ObAIEx metric satisfies the concept. Research Question 2.3 addresses the included
in the training process. The ObAIEx metric can be calculated during the training
process to see the improvement of the explanations in addition to accuracy and loss
function. In summary, we confirm Hypothesis 2. Although OBALEX is not explicitly
integrated into the loss function but included as an additional step, it facilitates more
generalized models which can increase the user’s trust in the model by object-aligned
explanations.

In Chapter 5, we provided FILTAG a semantic description of filters in a CNN
to make them human-understandable. Also here, we have shown in the context
of CNNs in image classification that filters encode specific information that can be
translated into a semantic description. These can be better understood by humans
and computers than visual explanations which lead to more scrutability and trust.

Hypothesis 3. Filters in CNNs encode semantic information of the input images.
3.1 How can the encoded semantic information of the filters be decoded?

3.2 How precise are the tagged filters in predicting and understanding the output of
the CNN (compared to visual methods)?

3.3 What benefit does link tagged filters to knowledge graphs offer?

Research Question 3.1 addresses the decoding of semantic information in convolu-
tional filters. We could show that by tagging the filters of convolutional layers, the
encoded semantic information of the filters can be decoded in human-understandable
language. Research Question 3.2 addresses the tagged filters and their information
value regarding prediction and understanding the output. We found out that words
can be more comprehensible compared to visual methods which are currently used
more and more often. We could show with our evaluation that the tagged filters
are quite accurate in predicting and understanding the output of the CNN. Research
Question 3.3 addresses the benefit of linking these tags to knowledge graphs. Linking
the tagged filters to other knowledge graphs allows to expand the information of the
labeled filters and with it more knowledge, which can lead to more understanding. In
summary, we confirm Hypothesis 3. Our approach allows for explicit, non-visual ex-
planations in contrast to state-of-the-art explanations which are more understandable
for non-experts.

Finally, in Chapter 6, we provided a collection and preparation of publicly available
neural networks following the fair principles. Based on this, we created a knowledge
graph called FAIRNETs with metadata over 18,000 neural networks. This knowl-
edge graph based on FAIRNETs ONTOLOGY allows the presentation of neural
network metadata in a transparent way. We have additionally integrated this data in
FAIRNETS SEARCH to enhance efficiency in findability, search, and accessibility.

93



Chapter 7

Conclusion

94

Hypothesis 4. Neural network models which comply with the FAIR Principles support
humans in dealing with the increase in volume, complexity, and creation speed of these
models.

4.1 Which information should be provided by the neural network models to enable
transparency?

4.2 Which information must be provided to apply an existing model to a novel use
case?

4.3 What kind of functions should be provided for supporting humans in reusing
neural networks?

Research Question 4.1 addresses the information basis necessary to facilitate trans-
parency. We could show that the information encoded using our ontology enhances
transparency by following fair principles. In providing it this way, the neural networks
themselves become research data. Research Question 4.2 addresses the information
basis necessary to reproduce a model. As we retrieved the architecture information
from the source code, we have the necessary parameters to reproduce the model.
Research Question 4.3 addresses the features to enhance reusability. We modeled
three information levels, namely general, model, and layer-specific information, that
enhance the reusability. In summary, we confirm Hypothesis 4. We have shown
high potential impact in transparency, recommendation, reusability, education, and
search even though additional information extraction methods could enhance the
information basis.

All in all, our framework expands along two explanation dimensions. First, we
go into the depth of explanation with our first three approaches and look at specific
components of the neural network. These approaches allow us to zoom into a specific
neural network. These are OBALEX, F1LTAG and TRANSPER. They not only
provide a quantified explanation but also point out ideas to improve the neural
network. We have complemented these approaches with another approach, namely
FAIRNETS, that allows us to provide a broader explanation of neural networks. Using
semantics, we have developed an ontology that provides an overview of existing
neural networks as an explanation. To the best of our knowledge, such a broad
approach to explaining neural networks has not been proposed before. Coming back
to the main research question, we could show that following the goals of explanation
mentioned in Section 1.2 give a good starting point to make explanations human-
understandable. In the course of this thesis, we found that certain targets are more
prominent than others. For example, trust could be covered in three of the four
approaches which is related to the fact that FAIRNETs focuses on transparency
and efficiency by providing metadata on neural networks. It does not address the
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processing of the data which would foster trust. Instead, facts are presented in a
structured way and the perception of the user is not taken into account. This approach
shows that the commitment to some goals and their optimization can diminish other
goals. TRANSPER, on the other hand, addresses transparency but is more accessible to
user’s sensitivity. Due to its design in the context of recommender systems, it is more
open to the needs of a user, whose goals are persuasiveness and satisfaction among
others. OBALEx and F1LTAG consider besides trust also scrutability. This is possible
because these approaches explain the inner workings of the model. Consequently,
with the help of these approaches, we were able to understand the networks through
study and observation. Conversely, the goal effectiveness is only in OBALEX because
it uses multiple explanatory approaches and thus gives enough room to adjust the
explanation.

Outlook

Following the seven goals of explanations, it was possible to design a framework
that tackles all goals. However, in this work, not all goals were treated the same.
As mentioned before, trust is considered in three approaches (namely OBALEX,
F1LTAG, and TRANSPER) but satisfaction and persuasiveness was only considered
in TRANSPER which has a more important role in the field of recommender systems.
By optimizing one goal, the other can be comprised or ignored. As future work, we
can work on how to align these goals, e.g. by more user-friendly interfaces, so that
all targets are addressed.

In this thesis, we only showed each approach on one neural network repository,
neural network type, input data, or use-case. For example, FAIRNETs only uses
GitHub as a neural network repository to create a knowledge graph. This can be
extended to other repositories. We did not address it due to different standards,
frameworks, and programming language which would require more engineering
but would not further demonstrate the benefits of our approach. To enrich the
information base further information extraction methods would be needed. OBALEX
is only applied to one neural network type, namely CNNs. This can be extended
on other neural networks such as RNNs with sequential data. We did not approach
it because we used object detection to automatically get the desired explanation.
Using other neural network types requires other methods or manual labeling of the
desired explanation. FILTAG is only applied on images as input data. This can also
be extended with other labeled input data. TRANSPER is only shown in the context
of e-commerce. This can be extended to other businesses using neural networks. We
did not tackle it, because of the lack of companies who are willing to share their
architecture and data.
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Preliminary Study of Expert
Evaluation

This is an exemplary excerpt of our preliminary study of expert evaluation from
Chapter 3. This study was conducted at two online stores, each with two and three
experts from the corresponding data science area, respectively. The goal was to find
out how the study should be conducted in order to design sufficient explanations for
further evaluation for end customers.
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Appendix B Preliminary Study of Expert Evaluation

Expert Evaluation - Setting
Transparent Personalization

Hello all!

As you probably know, we need reinforcement for our team. That's why | invited Claudia
and Robert for an interview. Both have experience in sales and now want to start in e-
commerce. To assess their knowledge, | need your help. I'll explain what it's all about.
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Preliminary Study of Expert Evaluation  Appendix B

In the following, we will look at the profile data of some of our customers, which was
kindly provided to us. Over the last two weeks, we have recorded them and classified
them chronologically.
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Appendix B Preliminary Study of Expert Evaluation

For example, let's consider Tobias. We get the interactions he made within two weeks.
These have been subdivided again. The blue interactions describe his general buying
behavior and refer to 30 days. The red interactions, on the other hand, are those he
made yesterday. For today, however, Claudia and Robert do not receive any more
detailed information. They are only told which product he bought today. IMPORTANT:
Today here refers to December 22, 2020.
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Preliminary Study of Expert Evaluation

Appendix B

Our customers all think that today's purchase desire is related to their previous
interactions. Claudia and Robert are now required to find out what these are. Afterwards,
you are to judge who is more likely to be able to interpret the customer's preferences
correctly. | will illustrate this with a case study.
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Appendix B Preliminary Study of Expert Evaluation

ise?
The yellow interactions Who has better expertise? The interactions

were very decisive. Robert [l I Claudia were very decisive.

Listed above are the products that seem to have interested our customer. The customer
has looked at these products, added them to the shopping cart, or purchased them
(indicated by the white symbol). The pin marked in green represents his current
purchase request. Claudia and Robert each choose three interactions that, in their
opinion, are most closely related to this purchase desire. Your task is then to determine
which of the two has expressed a better expertise.
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ise?
The yellow interactions Who has better expertise? The interactions

were very decisive. Robert [l I Claudia were very decisive.

How strong is the How easy was it for Are you satisfied with
connection between you to choose a the expertise of your
the desire to buy and winner? winner?
previous interactions?

Rate the following questions from one to three where one means very strong / easy /
satisfied and three not strong / easy / satisfied. Respectively two means strong / easy /
satisfied.
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Appendix B Preliminary Study of Expert Evaluation

That would make it halfway through. | would like to ask you for a short feedback
regarding the evaluation so far. | would like to present the other customer profiles in a
different form. For this purpose, | will first present another example on the next page.

How clear was the How intuitive did you
presentation format of find the evaluation
the customer process?

interactions?

Rate the following questions from one to three
where one means very clear / intuitive and three
not clear / intuitive. Respectively two means clear /
intuitive.
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Preliminary Study of Expert Evaluation

Appendix B

L

Product Interaction #

Product Interaction

FAVS Chain 88101294 Viewed

FAVS Chain 88101294 Cart

FAVS Chain 88101294 Purchased

Engelsrufer Lady‘s Ring Shiny Purchased
ERR-SHINY-ZI-56

ise?
The yellow interactions Who has better expertise? The interactions

were very decisive. Robert [l I Claudia were very decisive.

Listed above are the products that seem to have interested our customer. The customer
has looked at these products, added them to the shopping cart, or purchased them. Blue
interactions can occur more frequently (see #). Red interactions, on the other hand, are
considered separately and are ordered chronologically. The product highlighted in green
represents his current purchase desire. Claudia and Robert each choose three
interactions that are most closely related to this purchase desire. Your task is then to
determine which of the two has expressed a better expertise.
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L

Product Interaction #

Product Interaction

FAVS Chain 88101294 Viewed
FAVS Chain 88101294 Cart

FAVS Chain 88101294 Purchased

a.

Engelsrufer Lady‘s Ring Shiny Purchased
ERR-SHINY-ZI-56

ise?
The yellow interactions Who has better expertise? The interactions

were very decisive. Robert [l I Claudia were very decisive.

How strong is the How easy was it for Are you satisfied with
connection between you to choose a the expertise of your
the desire to buy and winner? winner?
previous interactions?

Rate the following questions from one to three where one means very strong / easy /
satisfied and three not strong / easy / satisfied. Respectively two means strong / easy /
satisfied.
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Finally, | would be interested to know which of the two evaluation methods you liked
better. Please rank the forms of presentation, where 1 means very good and 3 means
very bad.

Presentaion Presentation
with pictures with text
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