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Abstract

When approaching thyroid gland tumor classification, the differentiation between samples

with and without “papillary thyroid carcinoma-like” nuclei is a daunting task with high inter-

observer variability among pathologists. Thus, there is increasing interest in the use of

machine learning approaches to provide pathologists real-time decision support. In this

paper, we optimize and quantitatively compare two automated machine learning methods

for thyroid gland tumor classification on two datasets to assist pathologists in decision-mak-

ing regarding these methods and their parameters. The first method is a feature-based

classification originating from common image processing and consists of cell nucleus seg-

mentation, feature extraction, and subsequent thyroid gland tumor classification utilizing dif-

ferent classifiers. The second method is a deep learning-based classification which directly

classifies the input images with a convolutional neural network without the need for cell

nucleus segmentation. On the Tharun and Thompson dataset, the feature-based classifica-

tion achieves an accuracy of 89.7% (Cohen’s Kappa 0.79), compared to the deep learning-

based classification of 89.1% (Cohen’s Kappa 0.78). On the Nikiforov dataset, the feature-

based classification achieves an accuracy of 83.5% (Cohen’s Kappa 0.46) compared to the

deep learning-based classification 77.4% (Cohen’s Kappa 0.35). Thus, both automated thy-

roid tumor classification methods can reach the classification level of an expert pathologist.

To our knowledge, this is the first study comparing feature-based and deep learning-based

classification regarding their ability to classify samples with and without papillary thyroid car-

cinoma-like nuclei on two large-scale datasets.

Introduction

The seminal challenge in thyroid gland pathology is to determine whether the magnitude of

nuclear alterations present in a sample is sufficient to be considered “papillary thyroid
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Citation: Böhland M, Tharun L, Scherr T, Mikut R,

Hagenmeyer V, Thompson LDR, et al. (2021)

Machine learning methods for automated

classification of tumors with papillary thyroid

carcinoma-like nuclei: A quantitative analysis. PLoS

ONE 16(9): e0257635. https://doi.org/10.1371/

journal.pone.0257635

Editor: Andrey Bychkov, Kameda Medical Center,

JAPAN

Received: May 19, 2021

Accepted: September 4, 2021

Published: September 22, 2021
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carcinoma-like” (PTC-like). PTC-like nuclear alterations are the major discriminator between

four of the most common benign and malignant thyroid gland neoplasms, all of which can

show an encapsulated follicular-patterned tumor: noninvasive follicular thyroid neoplasm

with papillary-like nuclear features (NIFTP) and follicular variant of papillary thyroid carci-

noma (FVPTC), which both exhibit PTC-like nuclei, versus follicular adenoma (FA) and follic-

ular thyroid carcinoma (FTC), both of which do not show PTC-like nuclei [1]. Accurate

discrimination between NIFTP and FVPTC in particular poses a major challenge to patholo-

gists. This discrimination requires incorporation of architectural features (e.g. papillae forma-

tion, invasion), which is beyond the scope of this nucleus-centered study. Since NIFTP are

known to exhibit less clear PTC-like nuclei, we chose the Nikiforov box A cohort for analysis,

as this was assembled to define NIFTP and is therefore enriched in cases with borderline

nuclear features, difficult to classify even for expert pathologists. The utility of assisted nuclear

feature assessment lies in being able to evaluate every single neoplastic nucleus in a standard-

ized manner, thereby reducing interpretation errors due to tumor heterogeneity and individ-

ual thresholds. An automated designation of any area of PTC-like nuclei in a neoplasm could

therefore potentially change the diagnosis from benign to malignant (i.e. FA to FVPTC) if

papillae are also present. Vice versa, a neoplasm erroneously regarded as FVPTC by subjective

designation of PTC-like nuclei might represent FA by standardized evaluation for PTC-nuclei.

Additionally, application of automated nuclear evaluation to cytology specimen as well might

prove valuable to improve intra- and interobserver consistency.

Pathologists utilize several morphological criteria to determine whether a tumor is consid-

ered PTC-like or not, hence non-PTC-like. These criteria predominantly include changes in

nuclear size and shape, nuclear membrane irregularities, and chromatin distribution features.

Since the criteria are qualitative, there is a well-recognized inter-observer variability among

pathologists in the overall weighting of criteria for PTC-like nuclei [2, 3]. Additionally, the

nuclear alterations are often heterogeneously and unevenly distributed in a single tumor nod-

ule (so called “sprinkling sign”), requiring a meticulous and time-consuming evaluation. To

reduce inter-observer variability and speed up the process of determining ultimate tumor clas-

sification, machine learning methods could provide an objective, thorough, and reproducible

method to assist pathologists in making these distinctions.

In the past, several studies focused on automated classification of thyroid tumors. In [4],

the deep learning network architectures Inception-ResNetV2 and VGG19 are compared in

their capacity to classify normal thyroid tissue, adenoma, nodular goiter, PTC, FTC, medullary

thyroid carcinoma (MTC), and anaplastic thyroid carcinoma (ATC). The cohort for their

fully-automated method consisted of 806 patients and the images were acquired with a 100x
magnification. The cohort was labeled by two senior pathologists; any discordant cases were

removed, resulting in removal of potentially difficult or challenging cases.

Wei Wang, et al., worked on distinguishing normal thyroid tissue, FA, and FTC [5]. The

cohort consisted of 10 samples: five FA and five FTC samples. Images were acquired using

400x magnification (0.074 μm/px) and 24bit RGB channels. In contrast to most studies using

hematoxylin and eosin (H&E) staining, Feulgen staining was used. With Feulgen staining,

only DNA is stained, resulting in a better visibility of the nuclei for computer recognition. The

method consists of a semi-automated segmentation, reviewed by an expert pathologist, and

followup feature extraction and classification. Solely the nuclear area or the entropy of inten-

sity values was statistically significant enough to achieve 100% accuracy. Regarding the study

size, the authors mention, that “10 human cases is not nearly enough to establish the validity of

the technology in a clinical sense” [5].

In [6], normal thyroid tissue and PTC were classified. A segmentation pipeline using parti-

cle swarm optimization-based Otsu’s multilevel thresholding was used. Binary images were
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manually extracted and post-processed, resulting in a semi-automated approach. Gray level

co-occurrence matrix features were created and a closest-matching-rule algorithm was pro-

posed for classification. The cohort consisted of 12 patients and images were taken at 40x mag-

nification. The ground-truth classification was performed by a pathologist.

In [7] a neural network able to predict the BRAF-RAS gene expression signature is used to

identify NIFTP. The dataset was trained on a network extracted from The Cancer Genome

Atlas and has 497 individual samples. Furthermore, an Xception-based network was used to

classify papillary thyroid carcinoma classic, papillary thyroid carcinoma extensive follicular

growth, NIFTP and FA. The dataset has 115 samples scanned with 40x magnification. The

images used for training have a resolution of 1.01 μm/px with an effective optical magnifica-

tion of 10x. The trained network is able to detect NIFTP samples with a sensitivity of 89.4%

and a specificity of 89.7%, thus correlating morphology to RAS-like gene expression signature.

The authors of [8] used weakly supervised instance learning to predict the malignancy of

thyroid tumor from whole slide images. The Bethesda System (TBS) diagnostic score is used as

a classification target. The dataset contained 908 cases scanned with 40x magnification result-

ing in a resolution of 0.25 μm/px. An area under curve of 0.870 ± 0.017 with an average preci-

sion of 0.743 ± 0.037 was achieved.

The previous studies show that not only a multitude of different methods with various

parameterizations can be applied, but also that datasets are heterogeneous and adapted to the

needs of each lab. To apply machine learning methods to histopathology and assist patholo-

gists in classification of a tumor, e.g., PTC-like vs. non-PTC-like, pathologists need to know

what methods can be applied and what level of accuracy can be expected for their data.

While feature-based classification in [5] and deep learning-based classification in [4] have

individually proven their applicability for thyroid tumor classification, there is no direct com-

parison of both methods nor is it known which method should be used and how it may need

to be parameterized.

The present paper is addressed to pathologists with an interest in machine learning and bioin-

formaticians with an interest in histology. We start by introducing the two dominant approaches

for thyroid tumor classification: feature-based and deep learning-based. This enables patholo-

gists to decide which method is suitable for their data, while it enables bioinformaticians to apply

and adapt the methods to their individual problem setting. Pathologists and bioinformaticians

need to be enabled to make this selection, since thyroid tumor datasets are not standardized for

histochemical staining nor image acquisition, and therefore high quality results on new data

requires individual method selection and adaption. In our experiments, the methods are applied

to two datasets. Further, for one dataset we compare the results for each sample to the results of

24 expert thyroid gland pathologists. We aim to assist pathologists in evaluating the methods for

clinical use in terms of accuracy, interpretability, and computational complexity, and enable

them to assess whether individual training of the methods for their datasets is necessary. Further-

more, we demonstrate that tumor classification feature-based techniques are comparable to deep

learning-based techniques. Both datasets were created with standard imaging techniques and

resolutions of 0.23 μm/px (40x magnification) and 0.49 μm/px (20x magnification). We show

that this is sufficient to achieve high quality results. Finally, results are discussed and conclusions

for practical application of automated thyroid tumor classification methods are shown.

Methods

Overview

In this section, two datasets and two supervised methods able to classify histopathological

images of thyroid tumors into PTC-like and non-PTC-like are introduced. While the feature-
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based classification consists of a three stage process (segmentation, feature extraction and clas-

sification), the deep learning-based classification is directly performed on the thyroid images,

coupled with the diagnosis. An implementation for both methods is available at https://github.

com/moboehland/thyroidclassification. The Ethics Committee of the Universität zu Lübeck

approved our study. The commission has no concerns regarding our study, gave written con-

sent, and the internal reference number is 20–267. The performed study was retrospective and

all data was fully anonymized. The ethics committee waived the requirement for informed

consent.

Datasets

Since machine learning approaches and especially deep learning approaches heavily depend

on the underlying data, two different datasets were used for the experiments. Histology exam-

ples of PTC-like and non-PTC-like images are shown in Fig 1.

Tharun and Thompson dataset. The Tharun and Thompson dataset consists of a cohort

of 156 thyroid gland tumors built from the pathology archives at the University Clinic Schles-

wig-Holstein, Campus Luebeck (n = 138) and the Woodland Hills Medical Center, Woodland

Hills, California (n = 18). A representative, hematoxylin and eosin-stained section per tumor

was selected and scanned with the Ventana iScan HT (Roche diagnostics, Basel, Switzerland).

Whole slide images were acquired at 40x magnification and a resolution of 0.23 μm/px. Whole

slide images were processed as 8-bit color depth RGB images. Afterwards, two pathologists

agreed upon the classification for each whole slide image. Divergent diagnoses were resolved

by discussion, yielding consensus on every case. The dataset can be requested by sending an

email to sekretariat.patho@uksh.de.

Fig 1. Example thyroid gland tumor images from the Tharun and Thompson dataset and the Nikiforov dataset. The images are cropped to 512 × 512 px. The

upper row shows non-PTC-like samples and the lower row shows PTC-like samples. A high-resolution version is available in S1 Fig.

https://doi.org/10.1371/journal.pone.0257635.g001
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The dataset was divided into the following five entities:

• follicular thyroid carcinoma (FTC, 32 patients),

• follicular thyroid adenoma (FA, 53 patients),

• noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP, 9

patients),

• follicular variant papillary thyroid carcinoma (FVPTC, 9 patients), and

• classical papillary thyroid carcinoma (PTC, 53 patients).

Oncocytic neoplasms were excluded as these are readily classifiable by their cytoplasmic

and architectural features. For this study, the five different entities were combined into non-

PTC-like (FTC, FA, 85 patients) and PTC-like (NIFTP, FVPTC, and PTC, 71 patients). For the

experiments, a pathologist extracted representative images from neoplastic areas from each

whole slide image. For 147 out of 156 entities, 10 images of size 1916 × 1053 px without overlap

from neoplastic areas were extracted. For the remaining nine cases the neoplasm areas are

small and only one to six images are available. The images were extracted with the acquisition

magnification of 40x and a resolution of 0.23 μm/px.

Nikiforov dataset. The Nikiforov dataset consists of the two parts BoxA and BoxB and is

available at http://image.upmc.edu:8080/NikiForovEFVStudy/view.apml. For classification

into PTC-like and non-PTC-like tumors, Box A was used. Images were available at 20x magni-

fication with a resolution of 0.49 μm/px. All 138 cases were initially submitted by six different

institutions as potential encapsulated follicular variant papillary thyroid carcinoma (EFVPTC)

to define NIFTP out of these.

Each case was afterwards individually classified by an international panel of 24 expert thy-

roid pathologists into one of the five entities:

• encapsulated follicular variant papillary thyroid carcinoma (EFVPTC, enriched in NIFTP

according to the then defined nomenclature),

• invasive follicular variant papillary thyroid carcinoma (IFVPTC),

• classical papillary thyroid carcinoma (CPTC),

• follicular thyroid carcinoma (FTC), and

• benign (this category included follicular adenoma, goiter, nodular hyperplasia, adenomatoid

nodules).

These five entities were grouped into entities with PTC-like nuclei (EFVPTC, IFVPTC, and

CPTC) and non-PTC-like nuclei (FTC and benign). A list with the number of pathologists

classifying each case into each entity was provided to us by the authors of [9], while the scoring

of each individual pathologist was not available to us.

Furthermore, in the study’s supplementary material, 30 cases have been reviewed again by

23 pathologists, where a nuclear score of two or three defines PTC-like nuclei. We excluded two

cases (A38 and A120) since only 13 and 15 pathologists defined them as PTC-like. All cases

with less than 13 pathologists rating the case as PTC-like have been classified as non-PTC-like,

while all cases with more than 15 pathologists rating the case as PTC-like have been classified as

PTC-like. All other cases not reviewed again in the study’s supplementary material have been

classified according to the majority vote in the list made available to us. Three additional cases

have been removed since the same amount of pathologists rendered each case PTC-like and

non-PTC-like. The final dataset consists of 103 PTC-like and 30 non-PTC-like diagnoses.

PLOS ONE Automated classification of tumors with papillary thyroid carcinoma-like nuclei

PLOS ONE | https://doi.org/10.1371/journal.pone.0257635 September 22, 2021 5 / 21

http://image.upmc.edu:8080/NikiForov%20EFV%20Study/view.apml
https://doi.org/10.1371/journal.pone.0257635


Due to the initially submitted classification as EFVPTC with the intention to find a cohort

defining NIFTP, we conclude that the dataset contains many borderline cases that were diffi-

cult to classify even by expert pathologists and is therefore labeled as a more difficult dataset.

Since the anonymized classification by the thyroid expert pathologists is available to us, the

results of the machine learning methods can be compared to the classifications of the expert

pathologists. Additionally, it could be determined whether the samples difficult to classify by

expert pathologists are also difficult to classify by machine learning methods.

The classification is available for each whole slide image. To be comparable to the Tharun

and Thompson dataset, an image of size 2272 × 2272 px is extracted from neoplastic areas for

each whole slide image by a pathologist. This results in approximately the same area in μm

available for each case compared to the Tharun and Thompson dataset. The images were

extracted with the acquisition magnification of 20x and a resolution of 0.49 μm/px. For the fea-

ture-based classification, images were upscaled to 40x (by a factor of two) using spline interpo-

lation of order three. This was done to match the magnification of the Tharun and Thompson

dataset and the Multi-Organ Nuclei Segmentation Challenge dataset [10, 11], which is used to

train the segmentation model for the feature-based classification.

Feature-based classification

The first step of the feature-based classification shown in Fig 2 is the segmentation where the

thyroid images are used to extract the thyroid segmentations, nucleus crops, and nucleus

masks. Afterwards, during feature extraction, the thyroid images, the corresponding segmen-

tations, and the extracted nucleus crops and nucleus masks are used to extract nucleus features.

During the classification step, the extracted features are aggregated, preprocessed and used for

classification with nested cross-validation. This method has been used in former studies on

small datasets or images with high magnification (100x or more) with semi-automated cell

nucleus segmentation approaches, where pathologists reviewed the segmentation [5, 6, 12].

Cell nucleus segmentation. The aim of the cell nucleus segmentation is to extract the

shape and position of each individual nucleus in the image. This instance segmentation is

often visualized color-coded, i.e., each detected nucleus gets an unique label which is assigned

to a different color. Artifacts like nuclei not being fully visible in the image plane should not be

segmented. Exemplary instance segmentations are shown in Fig 3.

In former studies, the cell segmentation step was performed with semi-automated methods

without utilizing deep learning methods [5, 6]. One possibility to fully automate the cell seg-

mentation is to use convolutional neural networks which can be used as there are a number of

histopathology datasets available that provide cell nucleus annotations [10, 13]. Convolutional

neural networks (i.e., the U-Net [14]), have proven their ability to generate high quality seg-

mentation results [15]. The U-Net architecture is commonly used in biological cell segmenta-

tion tasks and provides state-of-the-art results [10, 15, 16]. For the segmentation, we use the

double encoder U-Net and the adapted border method [16]. Deep learning is only used during

the segmentation step in the feature-based classification. This adaption to the method is under-

taken to increase segmentation quality and omit manual review of the segmentation.

To train the segmentation model, we use the training data provided by the Multi-Organ

Nuclei Segmentation Challenge [10, 11], although it does not contain any thyroid images. Still,

as shown in Fig 3 the training data is sufficient to enable inference on thyroid images. The

main problems after inference on new thyroid images are merged nuclei and nuclei that are

not sufficiently in the image plane. Not removing those segmentations would bias the features

created. Both problems are addressed by a post-processing. All nuclei with an area larger than

200% of the median nucleus (merged nuclei) and smaller than 50% of the median nucleus
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(nuclei insufficiently represented in the image plane) are removed. The median nucleus area is

defined for each sample image individually. Afterwards, the thyroid images and the thyroid

segmentations are used to extract individual nucleus crops and nucleus masks.

When applying the feature-based classification to a new dataset, it has to be ensured that

the image resolution of the new dataset is equal to the image resolution of the segmentation

model training data. Otherwise the segmentation model has to be retrained on the desired

image resolution or the image resolution of the new dataset has to be scaled.

Cell nucleus feature extraction and aggregation. For each segmented cell nucleus indi-

vidual features are extracted. An abstraction of the process is depicted in the feature extraction

part of Fig 2. The feature extraction for each nucleus is performed with the nucleus mask in

combination with the corresponding nucleus in the microscopy color image and a grayscale

Fig 2. The feature-based classification consisting of segmentation, feature extraction and classification.

https://doi.org/10.1371/journal.pone.0257635.g002
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version of the color image. For simplicity, this grayscale version of the microscopy images is

not depicted in Fig 2.

Nuclear scoring by pathologists can be grouped into changes of size and shape, membrane

irregularities and chromatin aspects. Our automated feature extraction selects other features,

which do not necessarily belong to only one of the groups and can resemble many manual fea-

tures at once. For example, texture features could implicitly assess many different membrane

irregularity and chromatin distribution features. As such, for image processing, the features

can be divided into the three category’s color, shape, and spatial features, respectively. All color

features are listed in S1 Table in S1 Appendix, while all shape features are listed in S2 Table in

S1 Appendix, and the spatial features are listed in S3 Table in S1 Appendix. For the color fea-

tures, the RGB image and the grayscale image of each nucleus are evaluated. For the shape fea-

tures, solely the nucleus segmentation is used (see Fig 2, nucleus masks). For the spatial

features, solely the thyroid segmentation is used (see Fig 2, thyroid segmentations). The

extracted features resemble the features used by pathologists for PTC-nuclear scoring [3].

Color features. The color features reassemble the membrane irregularities and chromatin

characteristics addressed in [3]. Therefore, the mean and standard deviation of the nucleus

color are calculated separately for each color channel (red r, green g, blue b) and the grayscale

image of the nucleus are extracted. To focus on the features of intranuclear cytoplasmic inclu-

sions, chromatin clearing, and margination to the nuclear membranes, the changes in color

Fig 3. Exemplary thyroid images from the Tharun and Thompson dataset and the corresponding instance

segmentations. The images are 200 × 200 px crops. The left images show a non-PTC-like sample and the right images

a PTC-like sample.

https://doi.org/10.1371/journal.pone.0257635.g003
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comparing the center, middle, and the border of the nucleus are calculated. This is achieved by

creating three equally sized areas and calculating color ratios among them. Membrane irregu-

larities and chromatin characteristics can also be represented by features distinguishing differ-

ent texture patterns. Since gray level co-occurrence matrices (GLCMs) and their properties

yielded good results in [6], we also use them together with the Shannon entropy in our study.

In total, 23 color features are generated.

Shape features. The size and shape of nuclei are an important feature used by pathologists

in thyroid PTC-nuclear scoring. The shape features, including area, perimeter, eccentricity,

and solidity are extracted from the instance segmentation. The feature area refers to the num-

ber of pixels inside the instance segmentation for each nucleus. The eccentricity is measured

by fitting an ellipse to each nucleus and calculating the eccentricity of the ellipse. The solidity

is a measure for the distortion of the nucleus border and is calculated by the ratio of pixels

inside the nucleus to the pixels of the convex hull. In total, four different shape features are

calculated.

Spatial features. One of the features used by pathologists is nuclear crowding. This spatial

feature refers to the number of neighborhood nuclei. We measure this by counting the number

of nuclei in different radii around each nucleus. To define the radii, the mean cell radius rmean:

rmean ¼
1

n

Xn

k¼1

ffiffiffiffiffi
Ak

p

r

; ð1Þ

where n is the total number of nuclei in the image and Ak is equal to the area of nucleus k, is

calculated. The radii are afterwards calculated by x � rmean. Because we do not know which

radii are most relevant for the classification into PTC-like and non-PTC-like, we use a large

variety of different radii and therefore define x 2 {3, 5, 7, 9, 15, 20, 25, 30}. A total of eight dif-

ferent distances are used to consider crowding in small and large areas. During the following

feature selection step, the less relevant radii can be omitted. We do not perform any correction

regarding nuclei at the borders of the images since our images are reasonably large. When

applying the method to small images with a high border to center ratio, border corrections e.g.

with reflection padding may be needed. Furthermore, the Euclidean distance to the nearest

neighbor nucleus is calculated. In total, nine different spatial features are calculated.

Sample aggregation. Features are generated for each nucleus individually, for a total of 36

features. Each dataset in our experiments has more than 700,000 nuclei. While it is possible to

classify each nucleus individually, this is computationally not feasible when combined with

nested cross-validation. By sample aggregation, the number of samples in the dataset and

therefore computational time is reduced. This is performed by representing the distribution of

each feature for all nuclei of a patient by the mean and the standard deviation. However, this

could possibly result in loss of useful information. Despite the mean and standard deviation,

additional characteristics of the distribution could be used to describe it, but this increases the

size of the final number of features and thus computational time. Using the mean and standard

deviation results in 72 features for each patient, and the number of samples is reduced to the

number of patients in the dataset. When multiple images are available for a patient, samples

are merged across images and not individually for each image.

Preprocessing and classification. A large variety of different algorithms exist for data

preprocessing and classification. To achieve the best results possible, the different algorithms

have to be compared for each dataset since there is no way to know which combination will

have the best results beforehand. For data preprocessing, we use quantile transformation and

standard scaling. Each data preprocessing step can be applied or skipped. This results in differ-

ent data preprocessing combinations, e.g., use of quantile transformation and no standard
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scaling. Furthermore, different feature selection methods are examined. As a filter based

method, the univariate χ2 feature selection is used. Sequential forward selection from the

MLxtend framework [17] is used as a wrapper-based method. Only one feature selection

method is use at a time. Additionally, feature selection can be skipped. Most classifiers have

hyperparameters which also have to be tuned for maximum performance.

This results in many hyperparameter combinations whereas thyroid datasets are often

small. As a result, biased test performance can occur when cross-validation is used [18]. To

reduce this bias, we use nested cross-validation in our experiments, where model fitting and

hyperparameter selection is performed independently [18]. We split the data into five folds for

the outer cross-validation and four folds are used for each inner cross-validation. Inside the

inner cross-validation only the classifier hyperparameters are optimized, while a separate

nested cross-validation is performed for each preprocessing, feature selection and classifier

combination. It has to be noted, that not optimizing the data preprocessing hyperparameters,

feature selection method and the chosen classifier inside the nested cross-validation could bias

the result. We choose this trade-off to be able to discuss results like the used preprocessing

method, the number of features selected and the used classifier in a much more intuitive man-

ner. Furthermore, all splits are performed in a stratified manner regarding the distribution of

the dataset into PTC-like and non-PTC-like.

Deep learning-based classification

The feature-based classification is compared to the direct classification with the deep learning-

based classification. As shown in Fig 4, the different steps needed for the classification are sig-

nificantly reduced. Therefore, the complexity of this approach is comparable to the segmenta-

tion step of the feature-based classification since we also utilize a convolutional neural network

for this step. Time consuming feature engineering and setup of preprocessing pipelines is not

needed. To improve performance and reduce training time on ImageNet [19], pretrained ver-

sions of the models are used. For all models investigated in the experiments, the last layer is

replaced by a fully connected linear layer with two output neurons representing the PTC-like

and non-PTC-like classes. The Adam optimizer [20] is used together with the cross-entropy

loss. The training setup is further described in S1 Appendix.

Fig 4. The deep learning-based classification performs the classification directly on the thyroid images.

https://doi.org/10.1371/journal.pone.0257635.g004
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We investigate different neural network and augmentation combinations specified in the

Hyperparameter selection section. Due to the computationally intensive training of neural net-

works, cross-validation is used instead of nested cross-validation for the deep learning-based

classification. To be able to compare the results to the feature-based classification, we perform

a cross-validation, where the splits are the outer splits of the feature-based classification. The

cross-validation is performed for each network and augmentation combination separately.

Because we initialize the neural network weights randomly, we divide the training data for

each split into 80% training and 20% validation data and train five models for each split. The

best model for each split according to the validation data was applied to the corresponding test

data afterwards. The final validation and test accuracy was the mean accuracy of the chosen

models over the five splits.

When multiple images per sample are available in the test data, the final classification is

determined by the majority. If the network’s prediction has a 50–50 ratio, the wrong class will

be assumed for the sample.

Hyperparameter selection

Feature-based classification. A large variety of algorithms have to be compared to iden-

tify the maximum quality achievable with feature-based classification. The algorithms itself

can be represented by a hyperparameter. The data preprocessing hyperparameters are quantile

transformation and standard scaling. Additionally, each feature selection method together

with the number of selected features, ranging from 1 to 25 are defined as feature selection

hyperparameters.

The six classifiers:

• Support Vector Classification (SVC),

• K-Nearest Neighbors (KNN),

• Gaussian Naive Bayes (GNB),

• Decision Tree (DT),

• Logistic Regression (LogReg), and

• Random Forest (RF)

are trained using Scikit-learn [21]. Each classifier has its individual set of classifier hyper-

parameters, which were optimized inside the nested cross-validation. The classifier hyperpara-

meters used for each classifier are listed in S1 Appendix.

Deep learning-based classification. In the experiments, the residual neural networks

ResNet18, ResNet50 and ResNet101 [22] are compared in combination with five different aug-

mentation setups.

Augmentations were performed with the Albumentations framework [23]. Three hand-

crafted augmentations (minimal, standard, and big) were investigated. While minimal consists

of a random cropping, flipping, and normalization, standard adds pixel level transformations

like contrast limited adaptive histogram equalization, blur, or noise. The big augmentation

setup adds Fourier Domain Adaptation to the standard augmentation [24]. This transfers the

style of one image onto another image during training. Furthermore, two augmentations cre-

ated with AutoAlbument [25] were investigated. This set of augmentations was picked to

investigate whether complex augmentations help the networks to generalize better on the

training data or prevent them from learning the relevant features. Furthermore, the
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AutoAlbument augmentations were picked to assess whether automated augmentation tools

are superior to hand-crafted augmentation pipelines.

Additional training information and the augmentation setups can be seen in S1 Appendix.

Results

Overview

The results for the Tharun and Thompson dataset are shown first followed by the results for

the Nikiforov dataset including the comparison to expert pathologists. Furthermore, we exam-

ine the domain gap between both datasets and the generalization ability of both methods in S1

Appendix.

Tharun and Thompson dataset. For the Tharun and Thompson dataset, the classification

results of the feature-based classification are shown first. Afterwards, the influence of the

hyperparameter optimization for the feature-based classification is investigated. The results for

the deep learning-based classification are shown subsequently. At the end, the influence of the

diagnostic groups present in the dataset is analyzed.

A full list of the trained feature-based classification models and the trained deep learning-

based classification models together with the achieved accuracies on the Tharun and Thomp-

son dataset is provided in S1 File.

Feature-based classification. For the feature-based classification, three hyperparameter

combinations achieve the exact same accuracy on the validation data. SVC is used for all of

them. Therefore we opted for the one with the least number of features used to achieve this

result. The result is achieved by using quantile transformation and not applying a standard

scaler for the data preprocessing. Additionally, sequential forward selection with a total of 22

features is used during training. The accuracy on the test data is 89.7% (Cohen’s Kappa 0.79).

The classifier achieves an accuracy of 86.4% on the validation data and 97.4% on the training

data.

A confusion matrix for the feature-based classification results is shown in Fig 5a.

The receiver operating characteristic (ROC) curves for the feature-based classification are

shown in Fig 6. The mean ROC curve of the cross-validation splits has an area under curve

(AUC) of 0.93 ± 0.05. Thus, the standard deviation is low. The ROC curve for the ROC fold 2

split is notably worse then the ROC curves of the other splits.

To analyze what features are the most important, we trained the final classifier on the whole

dataset. Since sequential forward selection was used for feature selection, we used it to extract

the features selected first. The five most import features are the mean of the nuclei solidity,

standard deviation of change of color comparing the nucleus border to the middle, mean of

the GLCM correlation feature, the mean of the nucleus area, and the mean of the mean nucleus

Fig 5. Confusion matrices for the Tharun and Thompson dataset.

https://doi.org/10.1371/journal.pone.0257635.g005
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color in the green color channel. Therefore, color features as well as shape features are in the

five most important features, while no spatial features are present.

Feature-based hyperparameter optimization. To assess the effect of hyperparameter

tuning, we trained a baseline model and compared the performance to the tuned model. For

the baseline model, we used SVC with standard scikit-learn hyperparameters. Therefore,

hyperparameter optimization inside the nested cross-validation has been disabled, while the

outer splits of the nested cross-validation stayed the same, resulting in common cross-valida-

tion. Standard scaling is applied and no feature selection is used. This baseline model achieved

an accuracy of 85.9% and therefore hyperparameter optimization results in a classification

improvement of 3.8%.

Additionally, we examined whether the same preprocessing, feature selection method and

classifier work on different datasets. We extracted the best hyperparameter setting on the Niki-

forov dataset (quantile transformation, standard scaling and χ2 feature selection with a total of

22 selected features) and used it for the nested cross-validation on the Tharun and Thompson

dataset. This results in an accuracy of 84.0% on the test data. Using the Nikiforov dataset

hyperparameters on the Tharun and Thompson dataset thus results in an accuracy decrease of

Fig 6. The receiver operating characteristic curves for the feature-based classification, where a true positive sample is a PTC-like

sample classified as PTC-like. All cross-validation splits and the resulting area under curve (AUC) together with the resulting mean for the

dataset are shown. The standard deviation around the mean is annotated in dark gray. The red dotted line corresponds to the classification

by chance.

https://doi.org/10.1371/journal.pone.0257635.g006
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1.9% compared to the baseline model and 5.7% compared to the model with hyperparameters

optimized on the Tharun and Thompson dataset.

Deep learning-based classification. For the deep learning-based classification, the best

model achieves an accuracy of 89.1% on the test data (Cohen’s Kappa 0.78), right at the transi-

tion from a moderate to a strong level of agreement [26]. It achieves an accuracy of 94.5% on

the validation data. A ResNet101 with the big augmentation is used. A confusion matrix for

the deep learning-based classification results is shown in Fig 5b.

Diagnostic group evaluation. To evaluate the influence of the diagnostic groups present

in the dataset, the results were split into their initial diagnostic groups in Table 1. The classifi-

ers performs worst for the NIFTP (PTC-like) group. The NIFTP samples have the smallest

nuclear alterations compared to FVPTC and CPTC, with only nine NIFTP samples in the data-

set. CPTC has the strongest nuclear alterations and is classified with 91% and 94% accuracy.

FTC and FA both have no PTC-like nuclear alterations, with the sample size and accuracy for

FA higher than for FTC for both classifiers.

Nikiforov dataset

Also for the Nikiforov dataset, the classification results of the feature-based classification are

shown first, followed by the influence of the hyperparameter optimization. After that, the deep

learning-based classification results are shown. Because the classification by 24 expert patholo-

gists was present for the Nikiforov dataset, we were able to conduct an in depth comparison of

the methods to expert pathologists. A full list of the trained feature-based classification models

and the trained deep learning-based classification models together with the achieved accura-

cies on the Nikiforov dataset is provided in S2 File.

Feature-based classification. The accuracy for the feature-based classification on the test

data is 83.5% (Cohen’s Kappa 0.46). The classifier achieves 85.9% on the validation data and

90.4% on the training data. This is achieved by using quantile transformation and standard

scaling. For feature selection, χ2 feature selection with a total of 22 selected features is used.

The classifier utilized is SVC.

Confusion matrices for the results are shown in Fig 7a. The PTC-like samples are classified

with a much higher accuracy than the non-PTC-like samples. This could be partially due to

the dataset distribution, since 77% of the samples have PTC-like features and stratified cross-

validation is used. Therefore, it is beneficial for the classifiers to classify uncertain samples as

PTC-like.

The ROC curves are shown in Fig 8. The mean ROC curve of the cross-validation splits has

an AUC of 0.75 ± 0.12. Thus, the standard deviation is high and the results for the splits differ

considerably.

Finally, we analyzed which features are the most important for the feature-based classifica-

tion on the Nikiforov dataset. Since the features are selected by χ2 feature selection, no

Table 1. Number of correct predictions relative to the amount of samples split into the diagnostic groups of the

initial dataset. Results are shown for the feature-based classification (FBC) and deep learning-based classification

(DLC).

diagnosis FBC DLC

FTC 26/32 (81%) 27/32 (84%)

FA 52/53 (98%) 49/53 (92%)

NIFTP 6/9 (67%) 5/9 (56%)

FVPTC 8/9 (89%) 8/9 (89%)

CPTC 48/53 (91%) 50/53 (94%)

https://doi.org/10.1371/journal.pone.0257635.t001
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classifier had to be trained. The five most important features regarding χ2 feature selection on

the whole dataset are: the standard deviation of the perimeter, the standard deviation of the

area, mean of change of color comparing the nucleus border to the middle, mean change of

color comparing the nucleus border to the center, and the standard deviation of the standard

deviation of the mean nucleus color in the green color channel. Therefore, similarly for the

Fig 7. Confusion matrices for the Nikiforov dataset.

https://doi.org/10.1371/journal.pone.0257635.g007

Fig 8. The receiver operating characteristic curves for the feature-based classification, where a true positive sample is a PTC-like

sample classified as PTC-like. All cross-validation splits and the resulting area under curve (AUC) together with the resulting mean for the

dataset are shown. The standard deviation around the mean is annotated in dark gray. The red dotted line corresponds to the classification

by chance.

https://doi.org/10.1371/journal.pone.0257635.g008
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Nikiforov dataset, color and shape features are in the five most important features, while no

spatial features are present.

Feature-based hyperparameter optimization. We also assessed the effect of hyperpara-

meter optimization on the Nikiforov dataset. The baseline model is the same as for the Tharun

and Thompson dataset. The baseline model trained on the Nikiforov dataset achieves an accu-

racy of 79.6%, decreasing the accuracy by 3.9% compared to the model with optimized

hyperparameters.

Additionally, we investigated, whether the preprocessing, feature selection method and

classifier performing best on the Tharun and Thompson dataset (quantile transformation, no

scaling, sequential forward selection with 22 selected features and SVC) also yield good perfor-

mance on the Nikiforov dataset. Therefore, we used this setup for nested cross-validation on

the Nikiforov dataset. The resulting accuracy is 80.5%, decreasing the accuracy by 3.0% com-

pared to the model with optimized hyperparameters.

Deep learning-based classification. For the deep learning-based classification, the best

performing model is a ResNet101 with the standard augmentation. The model achieves an

accuracy of 77.4% on the test data (Cohen’s Kappa 0.35) and 88.9% on the training data. It per-

forms 6.1% worse than the feature-based classification.

Expert pathologist comparison. In addition to the ground truth classification, the Niki-

forov dataset was classified by an international panel of 24 thyroid gland expert pathologists.

For each sample, the number of pathologists classifying the sample as PTC-like and non-PTC-

like was used. With this data, we were able to conduct an in depth comparison of both meth-

ods to the expert pathologists. To do so, the mean expert pathologist rating ci for each sample i
can be calculated by:

ci ¼
maxðcni ; c

p
i Þ

cni þ cpi
; ð2Þ

where cni is the number of pathologists grading the sample i as non-PTC-like and cpi is the num-

ber of pathologists grading the sample i as PTC-like. The mean expert pathologist rating for

the whole dataset was obtained by calculating the mean of ci which is equal to 71.2% and there-

fore lower than the accuracy of both classifiers.

Furthermore, it can be calculated how the classifiers perform on samples where the patholo-

gists dissent in grading and therefore ci is small and how they perform on samples where the

pathologists agree upon and therefore ci is close to 100%. This is undertaken by evaluating not

the whole dataset, but only samples where ci is above specific thresholds (the minimal patholo-

gist agreement level). As an example, all results could be calculated only for samples where ci
is� 80%. A total of 27 samples remain for evaluation, where 25 samples are PTC-like and 2

samples are non-PTC-like resulting in 92.6% of the samples being PTC-like. The mean expert

pathologist rating for this samples rises to 87.6%. The feature-based classification achieves

100% on the remaining samples, while the deep learning-based classification achieves 96.3%.

An evaluation on samples where ci is equal or greater than different thresholds is shown in

Fig 9. The accuracy of the feature-based classifier surpasses 90% (Cohen’s Kappa 0.67) when

being evaluated on samples with ci� 67%. The classifier already reached 100% when being

evaluated on samples with ci� 80%.

Additionally, the data distribution accuracy is shown in Fig 9, which refers to the accuracy

achievable by only knowing the class distribution of the data. For ci� 80% there are 63 PTC-

like samples and 16 non-PTC-like samples. Therefore, 79.7% accuracy is achievable by classify-

ing all samples as PTC-like. The feature-based classifier always outperforms the accuracy

achievable from just knowing the data distribution.
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Discussion

The experimental results show that feature-based classification is still able to outperform a

deep learning-based classification. However, the creation of the feature-based classification is

more time consuming. Although the problem setting is the same, the best data preprocessing

and feature selection methods differ for both datasets. To achieve the best performance on

new datasets, it is necessary to conduct a computational intensive hyperparameter search,

which is not feasible for many clinics.

As the Nikiforov dataset contains mostly borderline tumors, many of which were reclassi-

fied as NIFTP, known to show less distinct PTC-like nuclear features, both methods performed

worse on this dataset. Thus, performance of both methods on new data has to be verified. If

the performance significantly differs from the expected performance, the algorithms may have

to be individually trained on the new data before being used in clinical practice.

Furthermore, it must be assumed that on the available datasets both methods are not able

to reliably detect borderline samples, i.e., NIFTP samples. Nevertheless, both methods are able

to classify FA and CPTC samples with a very high accuracy. During the creation phase of new

datasets, challenging borderline samples must be included, otherwise the classifications will

result in unrealistically high accuracies that would not transfer to clinical practice. Comparing

the results of both methods on the Nikiforov dataset to the classifications of the expert patholo-

gists supports this theory, since samples that are difficult to classify by humans are also the

most challenging for automated methods.

Both compared methods can be used to assist pathologists in their daily work, while the fea-

ture-based classification has the advantage of providing the features as additional data for the

pathologists. This could lead to greater acceptance by pathologists and thereby lead to

improved diagnostic accuracy while reducing their workload. Ways to incorporate these meth-

ods into their daily working routines requires further investigation.

Fig 9. The evaluation on samples with a pathologist agreement level greater than a threshold is shown in (a). The feature-based classification (FBC

accuracy, blue dots) outperforms the mean expert pathologist rating (green squares) and the accuracy achievable by knowing the data split (red crosses).

The performance of the deep learning-based classification (DLC accuracy, orange triangles) varies between the FBC accuracy and the mean expert

pathologist rating. The number of samples evaluated for different minimal pathologist agreement levels is shown in (b). The PTC-like samples are shown in

blue dots and the non-PTC-like samples are shown in orange squares.

https://doi.org/10.1371/journal.pone.0257635.g009
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Notably, the newly created features representing color changes inside the nucleus were

present in the five most important features for both datasets. This suggests that features like

chromatin clearing, glassy nuclei, and chromatin margination to the nuclear membrane used

by pathologists are represented by these chromatin features. It is of additional interest that

these features are the ones used by expert pathologists to the highest kappa reproducibility of

0.68 (mean; median 0.67; SD 0.14), than what was achieved based on size and shape (0.54;

median 0.60; SD 0.19) and membrane irregularities (0.61; median 0.67 SD 0.26) [3]. Thus, the

spatial features able to detect crowding of nuclei had no additional information important

enough to be in the top five features.

The deep learning-based classification performs not as well as the feature-based classifica-

tion on the Nikiforov dataset, while it yields a nearly identical performance on the Tharun and

Thompson dataset. One explanation could be the properties of the Nikiforov dataset. The

Nikiforov dataset only contains cases initially classified as FVPTC-like. Reclassification by an

expert panel removed 30 cases into a non-PTC-like category. Therefore, one can conclude that

the non-PTC-like cases are all difficult, borderline cases at the transition between non-PTC-

like to PTC-like tumors. It seems the deep learning-based method is not able to draw a bound-

ary between these cases correctly. For the feature-based classification on the Nikiforov dataset,

the shape features perimeter and nucleus area are the most important features. Therefore,

especially for borderline cases, shape features are the most relevant features and the feature-

based classification is able to explicitly use this information for decision making. Moreover,

the Nikiforov dataset could be too small for the use of the deep learning-based method with

only 79 tumors in the training data.

Conclusion

Automated thyroid tumor classification using nuclear alterations is a challenging task. Incor-

poration of machine learning methods into the clinical routine could possibly reduce the

workload of pathologists and decrease inter-observer variability. To evaluate the applicability

of machine learning methods, we compared feature-based classification and deep learning-

based classification with respect to their ability to classify thyroid gland tumors into PTC-like

and non-PTC-like on two datasets.

In our experiments on the Nikiforov dataset, the feature-based classification achieves an

accuracy of 83.5% (Cohen’s Kappa 0.46). It performs 6.1% better than the deep learning-based

classification and exceeds the mean expert pathologist rating. For the Tharun and Thompson

dataset, the feature-based classification achieves an accuracy of 89.7% (Cohen’s Kappa 0.79)

exceeding the deep learning-based classification by 0.6%.

High accuracies are achieved by both methods while no method was clearly superior in all

aspects. We advise to use the feature-based method on small datasets with many borderline

cases. When applying the methods to new unseen datasets, it should be assessed whether they

are able to generalize on this data. The accuracies achievable are comparable to expert patholo-

gists and can provide decision support through a second opinion.

To further increase the classification performance we see a need for bigger datasets espe-

cially incorporating borderline cases, since neural networks often benefit a lot from large

datasets.

In order to further improve usability of machine learning-based methods for pathologists,

we want to incorporate frameworks explaining why predictions are made in the future [27,

28]. Additionally we would like to extend the feature-based classification to incorporate

other nuclear features, such as the rate of nuclei containing perinucleolar halos. Preliminary

data of ours and a study by Suzuki, et al. [29], shows that this might be a feature more
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frequent in PTC-like nuclei, but automated detection of perinucleolar halos still poses a tech-

nical challenge.

Supporting information

S1 Appendix. Further methodical information. Further information regarding the feature-

based classification and deep learning-based classification methods.

(PDF)

S1 Fig. Example images. Example images from the Nikiforov dataset and the Tharun and

Thompson dataset from both classes PTC-like and non-PTC-like.

(PNG)

S1 File. Tharun and Thompson results. Full list of classification results on the Tharun and

Thompson dataset for all trained feature-based classification and deep learning-based classifi-

cation variants.

(XLSX)

S2 File. Nikiforov results. Full list of classification results on the Nikiforov dataset for all

trained feature-based classification and deep learning-based classification variants.

(XLSX)

Author Contributions
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