Abstract:
Vorhofflimmern ist die häufigste supraventrikuläre Arrhythmie in der klinischen Praxis. Es gibt Hinweise darauf, dass pathologisches Vorhofsubstrat (Fibrose) eine zentrale mechanistische Rolle bei der Aufrechterhaltung von Vorhofflimmern spielt. Die Behandlung von Vorhofflimmern erfolgt durch Ablation des fibrotischen Substrats. Der Nachweis eines solchen Substrats ist jedoch eine ungelöste Herausforderung, was durch die mangelnden positiven klinischen Ablationsergebnisse ersichtlich wird.
Daher ist das Hauptthema dieser Arbeit die Charakterisierung des atrialen Substrats. ... mehrDie Bestimmung von Signalmerkmalen an Stellen mit fibrotischem Substrat erleichtert die Erkennung und anschließende Ablation solcher Areale in Zukunft. Darüber hinaus kann das Verständnis der Art und Weise, wie diese Areale das Vorhofflimmern aufrechterhalten, die positiven Ergebnisse von Ablationseingriffen verbessern. Schließlich kann Restitutionsinformation ein weiteres Instrument zur Substratcharakterisierung sein, das bei der Unterscheidung zwischen pathologischen und nicht-pathologischen Arealen helfen und somit das Ablationsergebnis weiter verbessert.
In dieser Arbeit werden zwei Ansätze zur Substratcharakterisierung vorgestellt:
Zunächst wurde eine Charakterisierung des Substrats mit Hilfe des intraatrialen Elektrogramms vorgenommen. Dazu wurde eine Auswahl spezifischer Merkmale des Elektrogramms an Positionen evaluiert, die eine Terminierung von Vorhofflimmern nach Ablation zur Folge hatten. Die Studie beinhaltete 21 Patienten, bei denen eine Ablation nach Pulmonalvenenisolation das klinisch persistierende Vorhofflimmern beendete. Der klinisch vorgeschlagene Grenzwert der Spannungsamplitude von <0:5 mV wurde genutzt, um die Positionen der Ablation zu definieren. Die Bereiche, in denen das Vorhofflimmern erfolgreich terminiert wurde, wiesen ausgeprägte Elektrogramm-Muster auf. Diese waren gekennzeichnet durch kurze lokale Zykluslängen, die fraktionierte Potentiale und Niederspannungspotentiale enthielten. Gleichzeitig zeigten sie eine lokale Konsistenz und deckten einen Großteil der lokalen Vorhofflimmer-Zykluslänge ab. Die meisten dieser Bereiche wiesen auch im Sinusrhythmus pathologisch verzögerte atriale Spätpotentiale und fraktionierte Elektrogramme auf.
Im zweiten Teil der Arbeit wurden Restitutionsdaten der lokalen Amplitude und der lokalen Leitungsgeschwindigkeit (CV) erfasst und genutzt, um daraus Informationen über das zugrunde liegende Substrat abzuleiten. Die Daten zur Restitution wurden von 22 Patienten mit Vorhofflimmern aus zwei Kliniken unter Verwendung eines S1S2-Protokolls mit Stimulationsintervallen von 180 ms bis 500 ms gewonnen. Um Restitutionsdaten der Patientengruppe zu erhalten, musste ein automatisierter Algorithmus entwickelt werden, der in der Lage ist, große Mengen an Stimulationsprotokolldaten zu lesen, zu segmentieren und auszuwerten. Dieser Algorithmus wurde in der vorliegenden Arbeit entwickelt und CVAR-Seg genannt. Der CVAR-Seg Algorithmus bietet eine rauschresistente Signalsegmentierung, die mit extremen Rauschpegeln getestet wurde, die weit über dem erwarteten klinischen Pegel lagen. CVAR-Seg wurde unter einer Open-Source-Lizenz für die Allgemeinheit bereitgestellt. Es ermöglicht aufgrund seines modularen Aufbaus den einfachen Austausch einzelner Verfahrensschritte durch alternative Methoden entsprechend den Bedürfnissen des Anwenders. Darüber hinaus wurde im Rahmen dieser Studie eine neuartige Methode, die sogenannte inverse Doppelellipsenmethode, zur Bestimmung der lokalen CV etabliert. Diese Methode schätzt die CV, die Faserorientierung und den Anisotropiefaktor bei beliebiger Elektrodenanordnung. In Simulationen reproduzierte die Doppelellipsenmethode die vorherrschende CV, Faserorientierung und Anisotropie genauer und robuster als die aktuell gängigste Methode. Zusätzlich erwies sich diese Methode als echtzeittauglich und könnte daher in klinischen Elektrophysiologiesystemen eingesetzt werden. Die Doppelellipsenmethode würde durch die lokalisierte Vermessung des Vorhofsubstrats ermöglichen während eines Kartierungsverfahrens gleichzeitig eine CV-Karte, eine Anisotropieverhältniskarte und eine Faserkarte zu erstellen. Die Restitutionsinformationen der Patientenkohorte wurden mit der CVARSeg-Pipeline und der inversen Doppelellipsenmethode ausgewertet, um Amplituden- und CV-Restitutionskurven zu erhalten. Zur Anpassung der Restitutionskurven wurde eine monoexponentielle Funktion verwendet. Die Parameter der angepassten Funktion, die die Restitutionskurven abbilden, wurden verwendet, um Unterschiede in den Restitutionseigenschaften zwischen pathologischem und nicht-pathologischem Substrat zu erkennen. Das Ergebnis zeigte, dass klinisch definierte pathologische Bereiche durch eine reduzierte Amplitudenasymptote und einen steilen Kurvenabfall bei erhöhter Stimulationsrate gekennzeichnet waren. CV-Kurven zeigten eine reduzierte Asymptote und eine große Variation im Parameter der den Kurvenabfall beschreibt.
Darüber hinaus wurden die Restitutionsunterschiede innerhalb des Vorhofs an der posterioren und anterioren Wand verglichen, da die Literatur keine eindeutigen Ergebnisse lieferte. In dieser Arbeit wurde nachgewiesen, dass die posteriore Vorhofwand Amplituden- und CV-Restitutionskurven mit höherer Asymptote und moderaterer Krümmung verglichen mit der anterioren Vorhofwand aufweist.
Um über den empirisch beschriebenen manuellen Schwellenwert hinauszugehen, wurde der Parameterraum, der von den Anpassungsparametern der Amplituden- und CV-Restitutionskurven aufgespannt wird, nach natürlich vorkommenden Clustern durchsucht. Obgleich Cluster vorhanden waren, deutete ihre unzureichende Trennung auf einen kontinuierlichen, sich mit dem Schweregrad der Substratpathologie verändernden Verlauf der Amplituden- und CV-Kurven hin.
Schließlich wurde eine einfachere und schnellere Methode zur Erfassung von Restitutionsdaten vorgestellt, die einen vergleichbaren Informationsgehalt auf der Grundlage der maximalen Steigung anstelle einer vollständigen Restitutionskurve liefert.
In dieser Arbeit werden zwei neue Methoden vorgestellt, der CVAR-Seg-Algorithmus und die inverse Doppelellipsenmethode, die eine Auswertung von S1S2 Stimulationsprotokollen und die Bestimmung der lokalen Leitungsgeschwindigkeit beschleunigen und verbessern. Darüber hinaus werden in dieser Arbeit Merkmale von pathologischem Gewebe definiert, die zur Identifizierung von Arrhythmiequellen beitragen. Somit trägt diese Arbeit dazu bei, die Therapie von Vorhofflimmern in Zukunft zu verbessern.
Abstract (englisch):
Atrial fibrillation (AF) is the most common supraventricular arrhythmia in clinical practice. There is increasing evidence from a mechanistic point of view that pathological atrial substrate (fibrosis) plays a central role in the maintenance and perpetuation of AF. AF is treated by ablation of fibrotic substrate. However, detection of such substrate is an ongoing challenge as demonstrated by poor clinical ablation outcomes. Therefore, the main topic of this work is the characterization of atrial substrate.
Determining signal characteristics at fibrotic substrate sites could make detection and subsequently ablation of such sites easier in future. ... mehrAdditionally, understanding of how these sites uphold AF can increase positive outcome of AF ablation procedures. Lastly, restitution information could be a further tool of substrate characterization that could help with distinction of pathological and non-pathological sites and therefore further improve ablation outcome. In this thesis two approaches for substrate characterization are presented.
Firstly, substrate was characterized by proposing electrogram characteristics that defined sites maintaining AF, which after ablation terminated AF. This study was performed on 21 patients in whom low-voltage-guided ablation after pulmonary vein isolation terminated clinical persistent AF. Successful termination sites of AF displayed distinct electrogram patterns with short local cycle lengths that included fractionated and low-voltage potentials that were locally highly consistent and covered a majority of the local AF cycle length. Most of these areas also exhibited pathologic delayed atrial late potentials and fractionated electrograms in sinus rhythm.
Secondly, restitution information of local amplitude and local conduction velocity (CV) was acquired and used to infer information on the underlying substrate. Restitution data was gained from 22 AF patients from two clinics by using a S1S2 protocol between pacing intervals of 180 ms to 500 ms. To obtain restitution data from the patient group, an automated algorithm capable of reading, segmenting, and analyzing large amounts of stimulation protocol data had to be developed. This algorithm was developed as part of this work and is called CVAR-Seg. The CVAR-Seg algorithm provided noise-robust signal segmentation up until noise levels far exceeding expected clinical noise levels. CVAR-Seg was released as open source to the community and due to its modular arrangement, enables easy replacement of each of the single process steps by alternative methods according to the user’s needs.
Additionally, a novel method called inverse double ellipse method was established to determine local CV within the scope of this study. This inverse double ellipse method estimated CV, fiber orientation and anisotropy factor from any electrode arrangement and reproduced in-silico CV, fiber orientation and CV anisotropy more accurately and more robust than the current state-of-the-art method. Furthermore, the method proved to be real-time capable and thus a valid consideration to implement in clinical electrophysiology systems. This would enable instantaneous localized measurement of atrial substrate information, gaining a CV map, an anisotropy ratio map, and a fiber map simultaneously during one mapping procedure.
Restitution information of the patient cohort was evaluated using the CVAR-Seg pipeline and the inverse double ellipse method to acquire amplitude and CV restitution curves. Restitution curves were fitted using a mono-exponential function. The fit parameters representing the restitution curves were used to discern differences in restitution properties between pathological and non-pathological substrate. The result was that clinically defined low voltage (LV) zones were characterized by a reduced amplitude asymptote and a steep decay with increased pacing rate, whereas CV curves showed a reduced CV asymptote and a high range of decay values.
Moreover, restitution differences within the atrial body at the posterior and anterior wall were compared, since literature reports revealed inconclusive results. In this work, the posterior atrial wall was found to contain amplitude and CV restitution curves with higher asymptote and more moderate curvature than the anterior atrial wall.
To move beyond the empirically described manually chosen threshold used currently, the parameter space spanned by the fit parameters of the amplitude and CV restitution curves was searched for naturally occurring clusters. While clusters were present, their inadequate separation from each other indicated a continuous progression of the amplitude curves as well as the CV curves with the level of the substrate pathology.
Lastly, an easier and faster method to acquire restitution data was proposed that is based on acquisition of the maximum slope and provides comparable information content to a full restitution curve.
This work presents two novel methods, the CVAR-Seg algorithm and the inverse double ellipse fit that expedite and refine evaluation of S1S2 protocols and estimation of local CV. Furthermore, this work defines characteristics of pathological tissue that help identify sources of arrhythmia. Thus, this work may help to improve the therapy of AF in the future.