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Introduction

The mathematical concept of topology dates back to 1736, when Leonhard Euler presented his paper
[1] on the seven bridges of Königsberg. He proved that it was not possible to find a path that crosses
each bridge exactly once. This proof only depended on connectivity properties in an abstracted graph
representing the city. The lengths of bridges and roads do not appear in this abstracted picture and can
be varied arbitrarily without changing the answer. This thesis deals with topological gapped condensed
matter systems, that can be characterized by a topological winding number. Smooth deformations
(respecting certain symmetries) like disorder or varying couplings without closing the bulk gap leave
this winding number invariant. More specifically, for non-interacting gapped fermions the topological
phases that can occur are classified according to the “10-fold way” [2–5]. This classification is tied to
the Riemannian symmetric spaces [6], which directly appear in the description of disordered systems:
as the transfer matrix ensembles and as the non-linear sigma model (NLSM) manifold [7–9].
The world we live in can be described best using three spatial dimensions. In condensed matter

physics, many applications nevertheless consider lower dimensional systems. The quantum Hall systems
introduced in more detail below are famous examples of surface physics with important applications.
In the context of topological materials, surfaces and edges are particularly interesting, since there
are gapless modes at a topological phase boundary protected by the bulk-boundary corresponence
[10, 11]. The work in Chap. 4 touches this question, surface states in a topological superconductor
are found to be critical throughout the superconducting gap, despite the topological protection being
defined strictly only at the band center. Another exciting example of potential applications of low
dimensional physics are Majorana bound states (MBS) appearing at the edges of topological wires
[12–15]. One idea is to use these as an ingredient of a universal quantum computer, since the quantum
states of the Majoranas are protected by topology and robust to local impurities. Such low-dimensional
systems are prone to Anderson localization in presence of arbitrarily weak disorder [9, 16]. One can
understand Anderson localization as constructive interference catastrophe of multiple scattering event
return paths. One mechanism to escape this fate is (weak) antilocalization due to spin orbit coupling,
that introduces dephasing. In such systems metallic phases and metal-insulator transitions are possible
in two dimensions (2D). Another mechanism relies on topology. At the transition between topologically
distinct phases, there must be gapless degrees of freedom and criticality [17–19]. Despite the general
tendency towards localization, low dimensional systems at a topological transition remain critical
in presence of disorder [2, 10, 11]. This would be an example of a (topological) insulator-insulator
Anderson transition (AT).
At an AT, there is multifractality determining the statistics of eigenstates [9]. The wavefunctions

are neither spread over a large extent of the system like in a metal nor localized to a finite localization
volume like in an insulator. Instead they can be thought to occupy fractal dimensional portions of
the system. This serves as a hallmark of such a transition and can be used to pinpoint its position in
the phase diagram [20, 21]. In experiments, the direct observation of multifractality remains challeng-
ing. Recently, there was progress for electrons in disordered semiconductors [22] and experiments on
superconductor-insulator transition in disordered films [23, 24].
A paradigmatic example of topological transitions in physics is the integer quantum Hall effect
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discovered in 1980 by Klaus von Klitzing [25]. The Hall conductance is precisely quantized in integer
multiples of e2/h. These integers can be understood as topological winding number of the system. By
varying the magnetic field a transition between two distinct phases is driven. In presence of disorder,
multifractal spectrum and longitudinal conductance assume universal values. The integer quantum Hall
systems reside in class A and have superconducting counterparts in classes C, D: the spin quantum
Hall (SQH) systems and the thermal quantum Hall (TQH) systems, where spin (thermal) current is
quantized. These systems host the 2D quantum Hall type phases. In Chap. 3, the multifractality in
SQH systems is studied in detail.

The interplay of topology, multifractality and interactions gives rise to surprising phenomena. For-
mally, the “10-fold way” classification can be extended to include weak interactions [26–28]. In that
sense topological phases are robust towards weak interactions. At phase boundaries in disordered
systems however there is Anderson-transition criticality. Multifractality can enhance the impact of
interactions, in 2D superconductor systems, it has been shown to drive the system away from critical-
ity by spontaneous symmetry breaking [29, 30]. A similar setting can be found in the Majorana and
complex fermion wires under investigation in Chap. 2.
In the following paragraphs, more detailed introductions to the particular systems addressed in this

thesis follow. The central questions analyzed and answered here are formulated.

Disorder and interaction in chiral chains Topological one-dimensional (1D) systems are considered
a potential platform for quantum computing [12–15], as topology protects the qubit state from local,
uncorrelated noise.
In this part of my thesis a disordered interacting generalization [31] of the Kitaev chain [32], which

is such a topological 1D system of Majorana fermions, is explored. Potential realizations of this
system are vortex lattices [33–35] in a thin film topological superconductor. Another possibility are
superconductor-ferromagnet structures along quantum spin Hall edges [36]. The effective low energy
theory in InGaAs nanowires on top of a superconductor in a magnetic field is described by a Kitaev
Hamiltonian [37].
The Majorana model is compared to that of complex fermion hopping on a chain with the chemical

potential tuned to zero [38, 39]. In absence of interactions both models exhibit the same infinite
randomness physics [38, 40]. With interactions, the complex fermions remain at the infinite randomness
fixed point, whereas the Majoranas either localize or show a different kind of criticality depending on
the sign of the interaction term [41]. The main aim in Chap. 2 is to understand the fundamental
difference between Majoranas and complex fermions in 1D.

Generalized multifractality in Spin Quantum Hall systems Low dimensional disordered systems
have a natural tendency to localize. More precisely, in symmetry class AI, d = 2 is the lower critical
dimension, systems in this class localize in presence of arbitrarily weak disorder. In the other symmetry
classes, there is a wealth of escape mechanisms from localization [9]. These are related to topology or
conventional weak antilocalization physics. A famous example is the plateau transition in the integer
quantum Hall effect.
Many critical theories attempting to describe the integer quantum-Hall plateau transition have

been formulated [42–50]; in particular, various versions of the Wess-Zumino-Novikov-Witten (WZNW)
theory were proposed. These kinds of theories constrain the multifractal spectrum to be parabolic,
determined by a single parameter. On the numerical side, the multifractal spectrum is very close to
parabolicity [51]; however, a high-precision numerics indicates small deviations [52, 53].
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The work in this part investigates a superconducting counterpart of the integer quantum Hall
transition—the spin quantum Hall (SQH) transition [54, 55]. The multifractal spectrum can be stud-
ied analytically in special points by mapping to classical percolation [56–58]. By numerical studies
Refs. [58] and very recently Ref. [59] found clear (although relatively weak) deviations from parabolic-
ity. These deviations hint to a possible violation of local conformal invariance (LCI)[60]. The quest in
Chap. 3 is to derive the theory describing generalized multifractality for the SQH transition. This the-
ory should be formulated in a way allowing an extension to other critical points in 2D. A fundamental
question arising is, whether SQH criticality satisfies or violates LCI.

Disordered Surfaces of time reversal invariant topological superconductors In this part of
my work in Chap. 4, a novel phenomenon in time-reversal invariant topological superconductors is
described. The surface theories of the bulk TSCs under consideration can be described by 2D Dirac
models [8]. These are equivalent to Wess–Zumino–Novikov–Witten (WZNW) nonlinear sigma models,
modified by the addition of the nonzero quasiparticle energy. At zero energy (the surface Dirac point),
these models are also quantum critical, and have been long understood thanks to the exact solution
via conformal field theory [61–68]. By contrast, the finite-energy behaviour of the WZNW models still
evades analytical treatment.
In particular, finite-energy states in class AIII Dirac surface of the U(1) symmetric TSC with wind-

ing number ν = 1 appear to share the multifractal spectrum and the distribution of the Landauer
conductance associated with the integer quantum Hall (IQH) plateau transition in class A [9, 51, 69–
74]. Further the TSC with full spin SU(2) symmetry (class CI) has finite-energy surface states [75]
mimicing the class C SQH phenomenology precisely [9, 54–58, 76, 77]. At this point one can ask the
questions (i) does this generalize to higher winding numbers ν? and (ii) does the TSC in class DIII
display any kind of criticality related to the thermal quantum hall transition in class D [78–85]?

Structure of this Thesis

This thesis consists of three content chapters dealing with 1D wires (Chap. 2), 2D quantum Hall systems
(Chap. 3) and surfaces of 3D bulk time reversal invariant topological superconductors (Chap. 4).
Additionally there is an exhaustive introduction (Chap. 1) to all fundamentals necessary to understand
the systems and methods studied in this thesis.

Disorder and interaction in chiral chains This first chapter is devoted to chiral topological chains.

1. The models are introduced in Sec. 2.2 complemented by an exhaustive discussion of better
understood limiting cases. The aim is to understand the behavior of fermionic and Majorana
versions for different coupling strengths, in other words determining and understanding the phase
diagram.

2. Having introduced the models, one can directly perform density matrix renormalization group
(DMRG) numerics. In Sec. 2.3 the results from Ref. [86] are reviewed. Both the clean and
the disordered theories are considered. The analytically understood limits of the models serve
as benchmark for the numerics. The most remarkable finding is that interaction drastically
changes the physics in the disordered Majorana chain. The effect is sign dependent: for repulsive
interaction there is localization, for attractive interaction disorder becomes effectively weakened
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and the chain is critical. From the behavior of the correlation functions a spontaneous symmetry
breaking can be made responsible for the localization.

3. In order to understand the numerically extracted phase diagram and phenomenology, I performed
two complementary RG approaches. These are (a) a momentum space RG treating disorder
perturbatively and (b) an exact treatment of disorder analyzing the interaction matrix elements
at perturbative level. In method (a) disorder flows to strong coupling quickly, which means that
method (b) is more appropriate to gain new insight on the system.

4. By combining the RG treatment of interaction with a numerical study of wave-function corre-
lations at the infinite-randomness fixed point, we identify a relevant operator in the case of the
Majorana chain. No such operator exists in the case of the complex fermionic chain in view of
the cancellation between Hartree and Fock contributions.

Key result to this chapter is the fundamental difference between interacting disordered Majoranas
and complex fermions. A disordered Majorana chain is instable towards arbitrarily weak interaction,
repulsive interaction has the most dramatic localizing effect, whereas in a chain of complex fermions
is stable to short range interaction.

Generalized multifractality in Spin Quantum Hall systems The above mentioned studies [58, 59]
are extended to the generalized multifractal spectrum:

1. In the conformal field theory framework for multifractality 3.2 the impact of local conformal
invariance (LCI) on the multifractal spectrum is investigated. The argument given in Ref. [60] can
be extended to generalized multifractality assuming Abelian fusion of the pure-scaling composite
operators in addition to local conformal invariance. In this case, the generalized-multifractality
spectrum must exhibit “generalized parabolicity”, i.e. is parametrized (for a given critical point)
by a single constant. This proof is shown in Section 3.2.

2. A construction of pure-scaling composite operators for the σ-model of class C, invoking the
Iwasawa decomposition (Sec. 3.3) is presented. It is proven explicitly that the constructed
composite operators obey Abelian fusion rules.

3. There is an infinite number of pure-scaling operators families. By using one-loop renormalization
group of the class C NLSM, one further alternative family (invariant with respect to the action
of the symmetry group of the σ-model) is derived in Sec. 3.5.

4. In Sec. 3.6 and Sec. 3.7 a “translation” of the scaling operators to the language of eigenstates of the
Hamiltonian is performed. Explicit expressions for eigenstate correlators exhibiting pure scaling
and thereby makeing the generalized multifractal spectrum accessible are determined. Using
the SU(2) version of the Chalker-Coddington network model in class C, I numerically verify
that these are indeed the proper scaling operators and determine the corresponding exponents.
Very remarkably, there is a strong violation of the generalized parabolicity of the generalized-
multifractality spectrum. In combination with the results proven in 1., this points out to a
violation of the local conformal invariance at the SQH transition. This is a rather surprising
conclusion, but the analytical results in 5. eliminate the possibility of different explanations.

5. By exploiting the percolation mapping of the SQH transition, the violation of generalized parabol-
icity is verified analytically in Sec. 3.8.
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Two points in above list should be emphasized. Reference [87] contains the construction from 2.,4.
for class A. In class C considered here a lot more technical obstacles occur. This is related to the
additional “spin” structure of the wavefunctions here. Second, the points 1.,5. imply directly violation
of the local conformal invariance at the SQH critical point.

Disordered Surfaces of time reversal invariant topological superconductors Here disordered
surfaces of bulk TSCs are considered.

1. The finite energy multifractal spectrum of wave function fluctuations and the distribution of the
Landauer conductance in the class AIII Dirac surface theory appears to match the universal
values associated with the integer quantum Hall transition (IQHT) in class A [88]. This is
surprising for a number of reasons. First, the critical state associated with the IQHT typically
obtains only with fine-tuning of the magnetic field or particle density. This is because the IQHT
is a quantum phase transition separating topologically distinct plateaus. Instead, at the surface
of a TSC, every finite-energy state appears to feature its own plateau transition. Second, the
quantum Hall effect lacks time-reversal symmetry (TRS), yet the findings in Ref. [88] show an
energy-stacking of IQHT states without TRS breaking.

2. For the TSC with full spin SU(2) symmetry (class CI), the finite-energy surface states [75] mimic
the class C spin QHT phenomenology precisely (see Sec. 1.5.3).

3. The TSC unrestricted by spin symmetry shows non-universal behavior. This is hypothesized to
be related to the thermal QHT in class D (see Sec. 1.5.3).

These key numerical findings for class AIII, CI, and DIII finite-energy surface theories [75, 88, 89]
are summarized in this chapter. Novel results for the Kubo conductivity for class CI and AIII surface
states from Ref. [90] are shown as well.
The 2D Dirac surface models studied here are equivalent to WZWN nonlinear sigma models [8],

modified by the addition of the nonzero quasiparticle energy. Many works (like Ref. [50]) conjectured
that quantum Hall criticality is described by a WZNW CFT. The results in Chap. 3 indicate that
such a description is not possible for the SQH case. The results of this chapter and the numerical
works reviewed in it instead suggest, that the WZNW theory in presence of the energy perturbation
(breaking even global conformal invariance) seems to flow to a Pruisken like theory, exhibiting QH
criticality.
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1 Chapter 1

Fundamentals

In this chapter, the theoretical concepts underlying the problems considered in this thesis are introduced.
In Sec. 1.1 (field theoretic) methods for tackling low-dimensional systems are introduced. The concepts
of Anderson transitions and multifractality are outlined in Sec. 1.2. In the cases of interest in this
thesis, the transitions are induced by topology (Sec. 1.3). Finally having introduced the necessary
concepts and methods, a detailed overview of criticality in low dimensions is given (Sec. 1.4, Sec.
1.5).

1.1 Methods

In this section methods for analyzing low-dimensional problems are discussed. Among them (local)
conformal field theory (Sec. 1.1.2) is a powerful tool restricted to (1 + 1)D or (2 + 0)D. For 1D
problems Sec. 1.1.1 introduces a further technique restricted to this dimension, the Jordan Wigner
transformation. The renormalization group analysis 1.1.3 and field theoretic techniques for disorder
averages (Sec. 1.1.4) are applicable in arbitrary spatial dimension. However, the non-linear sigma
model (Sec. 1.1.4.4) and the transfer matrix (Sec. 1.1.4.3) are particularly useful in low dimensions.

1.1.1 Special techniques in 1D

For presenting the methods in this chapter, I closely follow Ref. [91].

1.1.1.1 Jordan-Wigner Transformation

Any fermionic model can be mapped to a spin−1
2 chain via the Jordan-Wigner (JW) transformation.

The spin operators are related to complex fermionic creators/annihilators as follows:

σ+
j = e

iπ
∑

k<j
n̂kc†j , c†j =

∏
k<j

σzkσ
+
k , (1.1)

σ−j = e
iπ
∑

k<j
n̂kcj , cj =

∏
k<j

σzkσ
−
k , (1.2)

σzj = 2n̂j − 1. (1.3)
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1 Fundamentals

The exponential is the so-called Jordan-Wigner string, the transformation is non-local. For physical
(i.e. local) models, all terms in the Hamiltonian contain an even number of fermion operators, which
leads to local spin models.
For Majorana operators, the transformation reads:

σxj =

∏
k<j

iγ2kγ2k+1

 γ2j , γ2j =
∏
k<j

σzkσ
x
j , (1.4)

σyj =

∏
k<j

iγ2kγ2k+1

 γ2j+1, γ2j+1 =
∏
k<j

σzkσ
y
j , (1.5)

σzj = iγ2jγ2j+1. (1.6)

It is assumed that neighboring majoranas are paired to a fermion via ck = γ2k + iγ2k+1.

1.1.1.2 Bosonization

One of the peculiarities in one dimension is that the partition function of right- and left-moving fermions
with a linear spectrum εR/L,k = vF (±k − kF ) is equal to that of a single boson. This means that a
many-body fermionic problem may equivalently be described in terms of bosons.
This is especially helpful when fermionic density-density interactions are considered, since there is an
exact mapping to a bosonic non-interacting Hamiltonian. The bosons are then simply given by the
particle hole exitations. A slightly changed basis related directly to the density ρR/L in real space

∇Φ(x) = −π(ρR(x) + ρL(x)), (1.7)
∇Θ(x) = π(ρR(x)− ρL(x)) (1.8)

no longer has bosonic commutation relations, however Φ and Θ are canonically conjugated:

[Φ(x1),Θ(x2)] = i
π

2 sign(x2 − x1), (1.9)

[Φ(x1),∇Θ(x2)] = iπδ(x2 − x1). (1.10)

The fermionic creators and annihilators contain Φ and Θ as phases. The subscript r = ± = R/L
distinguishes right and left movers:

ψr(x) = Ur
1

2παe
irkF xe−i(rΦ(x)−Θ(x)). (1.11)

The Ur are the so called Klein-factors that are simply numbers satisfying majorana algebra for all
purposes considered here.

Fermionic Density-Density Interaction The spinless fermionic Hamiltonian with short range density-
density interaction

H =
∫

dx
[
vF (Ψ†R∇ΨR −Ψ†L∇ΨL) + g4(ρRρR + ρLρL) + g2ρLρR

]
(1.12)
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can be brought to quadratic form in the bosonic basis via the transformation introduced above:

H = 1
2π

∫
dx
[
uK(∇Θ)2 + u

K
(∇Φ)2

]
. (1.13)

The parameters K and u of this Hamiltonian are the Luttinger parameter controlling the asymptotics
of all correlation functions and the velocity of exitations. The dependence on g4, g2 and vF can be
worked out after a bit of simple algebra. This becomes important for the RG analysis in Chap. 2, where
the density-density interaction term can be treated exactly by the above Luttinger Liquid description.

1.1.2 Conformal field theory

For the proof on constraints of the multifractal spectrum due to local conformal invariance and abelian
fusion in Chap. 3 some fundamentals in conformal field theory are crucial.
I closely follow Ref. [92] to give an overview of the constraints of global conformal invariance to

correlation functions.

1.1.2.1 Global conformal invariance

In a space of arbitrary dimension, the (global) conformal transformations:

1. translations Ta : r→ r + a

2. dilations Dλ : r→ λr

3. rotations RM : r→Mr with M orthogonal

4. special conformal transformation Sb : r→ I ◦ Tb ◦ I(r), with inversion I : r→ r
|r|2

leave the metric tensor gµν invariant:

g′µν(r′) = Λ(r)gµν(r). (1.14)

This work sticks to Euclidean space, for Minkowski spacetime one needs to include boosts in the
rotation group.

Why are low dimensions special? A small conformal coordinate transformation rµ → rµ + εµ
changes the metrics as:

gµν(r)→ gµν − (∂µεν + ∂νεµ). (1.15)

The scale invariance condition Eq. (1.14) implies:

∂µεν + ∂νεµ = f(r)gµν . (1.16)

For a flat space (∂ρgµν = 0) this can be simplified to:

f(r) = 2
d
∂ρε

ρ. (1.17)
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Using Eq. (1.16) again yields:

2∂2εµ = (2− d)∂µf. (1.18)

Applying ∂µ once more and contracting, one finds:

(1− d)∂2f = 0. (1.19)

In d ≥ 3 this implies f(r) is a linear function of the coordinate r and is restricted to the above global
conformal transformations.
For d = 1, the condition (1.16) is trivially satisfied, since there is one coordinate. Consequently, any

smooth coordinate change f is conformal in 1D.
In d = 2, the RHS in (1.18) cancels to zero, which means that the constraints on ε reduce to the

Cauchy-Riemann differential equations. One can see this easily by writing z = r1 + ir2 and z̄ = r1− ir2.
The metric in these holomorphic and antiholomorphic coordinates then is

gµν =
(

0 1
2

1
2 0

)
, gµν =

(
0 2
2 0

)
. (1.20)

Eq. (1.16) then becomes

∂z̄ε(z, z̄) = 0, ∂z ε̄(z, z̄) = 0, (1.21)

which are the Cauchy-Riemann equations.

One point correlation function A basic notion of CFT is that of a quasiprimary operator φ(r).
Such operators transform in a specific way under global conformal transformations, and the results
summarized in this section are derived assuming the quasiprimary nature of all operators involved. In
a (unitary) CFT the expectation value 〈 . 〉 of any nontrivial quasiprimary field with scaling dimension
x > 0 in the infinite space is zero: 〈

φ(r)
〉

= δx,0. (1.22)

Only the identity operator 1 has vanishing dimension and
〈
1

〉
= 1.

Two point correlation function A correlation function of two fields transforms as

〈φ1(r1)φ2(r2)〉 =
∣∣∣∣∣∂r′

∂r

∣∣∣∣∣
x1/d

r=r1

∣∣∣∣∣∂r′

∂r

∣∣∣∣∣
x2/d

r=r2

〈φ1(r′1)φ2(r′2)〉 (1.23)

under conformal transformations r→ r′.
Dilation invariance r→ λr implies:

〈φ1(r1)φ2(r2)〉 = λx1+x2〈φ1(λr1)φ2(λr2)〉. (1.24)

From rotational and translational invariance, one can infer that

〈φ1(r1)φ2(r2)〉 = f(|r1 − r2|), (1.25)

where f must be a homogeneous function f(r) = λx1+x2f(λr).
This fixes f to the form:

〈φ1(r1)φ2(r2)〉 = C12
|r1 − r2|x1+x2

. (1.26)

Finally, the special conformal symmetry forces either x1 = x2 or C12 = 0.
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Three point correlation function Imposing translational, rotational and dilation invariance on the
correlator of three fields one finds:

〈φ1(r1)φ2(r2)φ3(r3)〉 = C
(abc)
123

ra12rb23rc13
. (1.27)

Here the dilations force a+ b+ c = x1 + x2 + x3.
Finally the special conformal transformation gives a set of constraints:

a+ c = 2x1
a+ b = 2x2
b+ c = 2x3

⇔
a = x1 + x2 − x3
b = x2 + x3 − x1
c = x3 + x1 − x2

(1.28)

This again determines the correlation function up to the prefactor C123:

〈φ1(r1)φ2(r2)φ3(r3)〉 = C123

rx1+x2−x3
12 rx2+x3−x1

23 rx3+x1−x2
13

. (1.29)

This restrictive power of the global conformal invariance diminishes in higher orders.

Higher order correlation functions Beginning with four point functions, certain so called anhar-
monic ratios of the coordinates are conformally invariant by themselves and can therefore appear
arbitrarily in correlation functions. In fourth order, there are two anharmonic ratios η, η′. So an
arbitrary function of two variables f(η, η′) appears in the correlation function:

〈φ1(r1)φ2(r2)φ3(r3)φ4(r4)〉 = f(r12r34
r13r24

,
r12r34
r23r14

)
4∏
i<j

rx/3−xi−xjij , (1.30)

where x =
∑
i xi.

Operator product expansions Fields φi, φj at nearby points r1, r2 can fuse together:

φi(r1)φj(r2) =
∑
k

Cijk (r1, r2, r)φk(r), (1.31)

where r is a point close to r1, r2 and Cijk (r1, r2, r) are structure constants. This formula is particularly
useful, when almost all of the Cijk (r1, r2, r) are zero.

1.1.2.2 Local conformal invariance in 2D

One can use the Laurent representation to express any small local conformal transformation as

z′ = z + ε(z), ε(z) =
∞∑
−∞

cnz
n+1. (1.32)

In contrast to the higher dimensional case, this contains an infinite number of generators:

` = −zn+1∂z, ¯̀= −z̄n+1∂z̄ (1.33)

These fulfill special commutation relations.
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Witt algebra The conformal algebra can be thought of as two copies of the infinite Virasoro algebra:

[`n, `m] = (n−m)`n+m,

[¯̀n, ¯̀
m] = (n−m)¯̀

n+m,

[`n, ¯̀
m] = 0. (1.34)

The six dimensional global conformal subalgebra is generated by `+ ¯̀ and i(`− ¯̀) for n = −1, 0, 1.

Primary fields Given a field with scaling dimension ∆ and planar spin s, the holomorphic and
antiholomorphic dimensions are:

h = 1
2(∆ + s), h̄ = 1

2(∆− s). (1.35)

In this work, one can restrict to s = 0, and h = h̄.
Primary fields (of dimension (h, h̄)) transform as

φ′(w, w̄) =
(

dw
dz

)−h(dw̄
dz̄

)−h̄
φ(z, z̄) (1.36)

under all local conformal transformations z → w.

Correlation functions The four point correlator slightly simplifies, one cross ratio η = x12x34
x13x24

is
sufficient in the parametrization (1.30):

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 = f(η, η̄)
4∏
i<j

z
h/3−hi−hj
ij z̄ij

h̄/3−h̄i−h̄j . (1.37)

In Sec. 3.2 use will be made of this technical formalism in the proof that local conformal invariance
and a complete family of operators satisfying abelian fusion in a field theory describing a multifractal
system imply generalized parabolicity of the multifractal spectrum.

Bosonization The bosonic free fields introduced above in Sec. 1.1.1.2 are an example of a conformal
field theory with central charge c = 1 (see Ref. [91]). The holomorphic field is given by φ(z = x+ it) =
Φ(t, x) − Θ(t, x) and the antiholomorphic field is φ(z̄ = x − it) = Φ(t, x) + Θ(t, x) in terms of the
notation introduced above.

1.1.3 Momentum space renormalization group

In Chaps. 2 and 3 momentum space RG-analyses are performed. The basic principle are outlined in
the following lines. Consider a general action S[φ] with couplings (gi) of a field φ living on momenta
|k| < Λ. The ultraviolet (UV) cutoff Λ is typically given by the reciprocal lattice spacing Λ ∼ a−1 for
condensed matter applications. The physical reason is that it is meaningless to consider fluctuations
on scales much smaller than the lattice constant a. In the infrared (IR), the sample size L cuts the
range of momenta L−1 . |k|.
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The partition sum for such an action S[φ] reads:

Z =
∫
Dφ exp

(
−S[φ]

)
. (1.38)

Usually one is interested in the long range behavior L & r � a corresponding to slow momenta k � Λ.
Momentum space RG provides a way to derive an effective action that does no longer depend on
the exact microscopic details k ∼ a−1. A reduced cutoff Λ̃ = Λe−` is chosen. This splits the field
φ = φ> + φ< in fast φ> and slow components φ< containing only Λ > k > Λ̃ and Λ̃ > k respectively.
The momentum shell Λ̃ < |k| < Λ is then eliminated by integrating over the fast degrees of freedom
φ<. at the expense of renormalized coupling (g̃i(`)). The procedure can be iterated until the one of
the gi reaches the strong coupling regime, or the cutoff reaches an external scale like the system size
or temperature. This is described in more detail in the next paragraph.
First, the field is split in fast and slow momentum components φ = φ> + φ< at the reduced cutoff

Λe−`. Let S0 = D(∇φ)2 be the kinetic part of the action S. In S0, the field components φ> and φ<
do not mix, since they live in different parts of momentum space and S0 is diagonal in momentum
space. This of course generalizes straightforwardly to arbitrary dispersions. One prepares to integrate
out the field by expanding the exponential. For this step, all couplings are assumed to be small:

Z =
∫
Dφ<Dφ> exp

(
−S0[φ>]− S0[φ<]− S1[φ>, φ<]

)
=
∫
Dφ<Dφ> exp

(
−S0[φ>]− S0[φ<]−

)(
1− S1[φ>, φ<] + 1

2S1[φ>, φ<]2 + . . .

)
. (1.39)

For this reason, one needs to stop the RG at strong coupling, since one cannot justify this step in that
case.
In the next step, one can perform the Gaussian integral over the fast modes φ>. By re-exponentiating

(still assuming the couplings to be small) one finds a new effective action:

Z =
∫
Dφ< exp

(
−S0[φ<]

)(
1− 〈S1[., φ<]〉> + 1

2〈, S1[., φ<]〉> + . . .

)

=
∫
Dφ< exp

(
−S0[φ<]

)
exp

(
−〈S1[., φ<]〉> + 1

2(〈S1[., φ<]2〉> − 〈S1[., φ<]〉2>) + . . .

)

=
∫
Dφ< exp

(
−S̃[φ<]

)
. (1.40)

In order to compare S̃[φ<] and S[φ<] one needs to rescale Λ̃ → Λ. Then one can read off how the
couplings in S change: (gi) → (g̃i) for a scale change `. By considering infinitesimal scale changes `
differential equations for the (gi) can be derived. These RG flow equations describe the evolution of
the couplings from small to larger scales. Starting from the microscopic bare (gi(` = 0)) one can in
principle obtain (gi(`)) at arbitrary length scales. The procedure is only valid to the point, where a
coupling becomes large (gi ∼ 1). This prevents the RG step based on integrating out a free fast field
shown above.
The fixed points of the RG flow equations are of special physical interest, since they can persist

to arbitrary large length scales. If a physical system is at criticality, it becomes scale invariant [92].
Therefore critical points in the phase diagram of the system appear as fixed points in the RG equation.
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To first order in the couplings, the RG equations around a fixed point (FP) usually look like:

dg′i
d` = dig

′
i +O(g2

j ), (1.41)

where a basis change gi → Uijg
′
j might be necessary to bring the equations to above form.

Couplings with

• di > 0 are called relevant

• di = 0 are marginal, one distinguishes marginally (ir)relevant by looking at higher orders in (gi)

• di < 0 are irrelevant

One may then keep the most relevant couplings for further analysis with more sophisticated methods.
In the case that there are no relevant couplings for a given set of parameters, a stable fixed point of

the theory is reached. Fixed points with m irrelevant and n−m relevant couplings can be thought of
as m dimensional phase boundaries in the full n dimensional parameter space.

1.1.4 Dealing with disorder

When treating models analytically, one usually assumes the disorder potential (or generic coupling)
to be Gaussian distributed. Then arbitrary moments of the disorder potential V can be expressed in
terms of the first and second moment:

〈V (x)〉 = 0, 〈V (x)V (x′)〉V = K(x− x′). (1.42)

In general the predictions derived for these models under the Gaussian assumption are valid for generic
disorder ensembles, except for pathological special cases [40]. A formal justification for this can be
derived using the central limit theorem, Gaussian disorder corresponds to infinitely many and infinitely
dense impurities [93]. The special case K(x−x′) = Dδ(x−x′), where every momentum component of
the disorder kernel Kk = D is present, is called Gaussian white noise.
In the language of field theory a random field V (x) is coupled to the density ρ of system. It appears

linear in the action S = S0 + Sdis.

Z[V ] =
∫
D(ψ, ψ̄) exp

(
−S0[ψ, ψ̄]−

∫
ddxdτV (x)ρ(x, τ)

)
(1.43)

In this setting, any observable depends on the configuration of V , one has to average over all configu-
rations of V :

〈O〉V =
∫
D(V ) 1

Z[V ]

∫
D(ψ, ψ̄)O[ψ, ψ̄] exp

(
−S[V, ψ, ψ̄]

)
exp

{
−
∫

ddxddx′V (x)K(x− x′)V (x′)
}

(1.44)

The partition sum Z[V ] is in the denominator of any expectation value of observables. Performing the
integral over configurations V is not straightforward at this stage. In this thesis, two distinct methods
for this disorder averaging step are used.
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1.1.4.1 Replicas

The so called replica trick is used to perform the disorder averages in Chap. 3. A short sketch of the
underlying concept is given here. The partition sum Z[V ] in the denominator of the expectation value
for the observable O

〈O〉S[V ] = 1
Z[V ]

∫
D(ψ, ψ̄)O[ψ, ψ̄] exp

(
−S[V, ψ, ψ̄]

)
(1.45)

may be formally rewritten as product of n− 1 Zs in the limit n to zero:

1
Z

= lim
n→0

Zn−1 = lim
n→0

Z . . . Z︸ ︷︷ ︸
n−1 times

. (1.46)

The argument V indicating dependence on the disorder configuration V is suppressed in this line.
In the average of an observable the action is then replicated n− 1 + 1 times from the denominator

(n−1) and the expectation value (1). The disorder can be integrated out yielding the following quartic
term mixing the replicas in the effective action:

〈O〉V = lim
n→0

∫ n∏
a=1

[
D(ψa, ψ̄a)

]
O(ψ1) exp

(
−Seff

)
, (1.47)

Seff [ψa, ψ̄a] =
n∑

a=1,b=1
S0(ψa, ψ̄a)−

∫
dxdx′dτdτ ′ρ[ψa(x, τ), ψ̄a(x, τ)]ρ[ψb(x′, τ ′), ψ̄b(x′, τ ′)]K(x− x′).

(1.48)

In pathological special cases, the limit n→ 0 is not well-defined. For non-interacting systems, there a
more controlled analytical approach.

1.1.4.2 Supersymmetry

Without interaction, it does not matter whether one writes the functional integral in terms of Grassman
(fermions) or ordinary complex variables (bosons). There is no difference between bosons and fermions
at single-particle level. The partition sum Z is given by (one over) the determinant of the matrix in
the exponential for fermions (bosons). Writing the model in terms of Grassman (ψ, ψ̄) and ordinary
complex variables (φ∗, φ) at the same time, Z is fixed to one:

Z =
∫
D(ψ, ψ̄, φ∗, φ) exp

(
ψ̄(H0 + V )ψ + φ∗(H0 + V )φ

)
= 1. (1.49)

Averaging over V again gives an effective interaction that is elastic and mixes bosons and fermions.
Observables are written either in bosonic or fermionic form. This method is used in Chap. 1. The
work in Chap. 3 can be safely restricted to just the bosonic sector of the action.

1.1.4.3 Transfer Matrix Method

Another way to derive the topological classification in one dimension (Tab. 1.1, column d = 1) is
to look at the transfer matrix ensembles arising in the different symmetry classes. The set-up is a
1D-system of finite length L with N channels attached to ideal leads at both ends in the limit N � L.
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The 2N × 2N transfer matrix M relates the N right movers and N left movers in the right lead to the
2N modes in the left lead. Current conservation implies that in general M ∈ U(N,N).

Imposing the constraints of the symmetry class on M , each space of transfer matrices can be related
to a (Cartan) symmetric space [9]. In table 1.1 one may observe, that the symmetric spaces of the
Hamiltonians are just shifted down by one to obtain the transfer matrix spaces. This is a consequence
of Bott-periodicity [3].
The intuitive reason why the transfer matrix is such a useful tool is as follows. For a given boundary

condition at one end of the wire, the transfer matrix gives the solution of the Schrödinger equation
(without boundary conditions) at the other end. Checking that the actual boundary conditions at
both leads are respected, eigenmodes of the wire are obtained. Away from criticality, the eigenvalues
ti usually behave exponentially in L. Hence it is natural to defined the Lyapunov exponents [94]
λi = 1

L ln ti. The sign of the λi determines at which end of the wire the modes sit: the exponentially
decaying solution has to be chosen (normalization of the wave function). A vanishing exponent λi
indicates critical states at that energy, extended over a large part of the wire.
Restricting to one chiral subspace, the sign of λi is well-defined and each sign configuration cor-

responds to a different component in the symmetric space [95]. That way it can be seen nicely how
different chiral topological phases have different edge mode structure. This approach is used in Chap.
2. In the next section a method particularly useful in 2D follows.

1.1.4.4 The non-linear sigma model

In this section the non-linear sigma model (NLσM) is derived for disordered non-interacting fermions
in d dimensions. The generalization to bosons or the supersymmetric case is straightforward. I will
follow the book of Efetov [96] and Ref. [97] closely. First, one needs to write the action of the system to
extract the retarded and advanced Green’s function. It is then most convenient to use field integration
variables in a form respecting the symmetries of the Hamiltonian [98]. For integration over disorder,
the replica trick can be employed. The arising effective interaction term can be decoupled with a
Hubbard-Stratonovich transformation of the appropriate momentum transfer channels. Integrating
out the fermions leaves us with an action S[Q] depending only on the Hubbard-Stratonovich field.
Deriving the low energy theory of S[Q], one finds that Q satisfies the non-linear constraint Q2 = 1.
In general, S[Q] is a non-linear sigma model over the symmetric space of the corresponding symmetry
class [98].
Our starting point is the time independent disordered action S[ψ, ψ̄, V ]:

S[ψ, ψ̄, V ] =
∫

ddrψ̄
(
−ω̂ +H0 + V + i0τ3

)
ψ ≡

∫
ddrψ̄G−1ψ. (1.50)

The fields ψ̄, ψ are fermionic and in this line the Green’s function G of the system described by H0 +V
is introduced. The disorder potential V couples to the density. The field ψ is chosen to carry an
advanced/retarded index τ . This ensures the appropriate ±i0 prescription of the Green’s function:

〈ψ̄Rω (r1)ψRω (r2)〉S[ψ,ψ̄,V ] = GR(r1, r2;ω). (1.51)

Expectation values non-diagonal in frequency and retarded/advanced space vanish.
Depending on the symmetry class, G satisfies certain linear constraints. As an example consider

spinless fermions with time reversal symmetry T 2 = 1. Let T act as transposition, then the Green’s

10



1.1 Methods

function obeys GT = G:

S[ψ, ψ̄, V ] = 1
2

∫
ddr

[
ψ̄G−1ψ − ψT

(
G−1

)T
ψ̄T
]

= 1
2

∫
drΨ̄G−1Ψ. (1.52)

In this step the doubled fields Ψ = (ψ, ψ̄T )σ and Ψ̄ = (ψ̄,−ψT )σ are introduced. The time reversal
operation acts as Ψ̄ = −ΨT iσ2 on the doubled fields.
Integrating out the disorder following the steps of Sec. 1.1.4.1, one obtains the replicated action:

Seff [ψ, ψ̄] = 1
2
∑
a

∫
ddrΨ̄aG

−1
0 Ψa + 1

16πντ
∑
ab

∫
ddrΨ̄aΨaΨ̄bΨb. (1.53)

A Hubbard-Stratonovich transformation makes this action quadratic in Ψ again. One can do so
exactly using a field containing all momentum components. Since a low energy/momentum theory is
of interest here, the focus rather is on the processes with low momentum transfer. There are three
channels: direct, exchange and cooper.∫

ddrΨ̄aΨaΨ̄bΨb =
∑

p1,p2,q

[(
Ψ̄a,p1Ψa,−p1+q

) (
Ψ̄b,p2Ψb,−p2−q

)
+
(
Ψ̄a,p1Ψa,p2

) (
Ψ̄b,−p2−qΨb,−p1+q

)
+
(
Ψ̄a,p1Ψa,p2

) (
Ψ̄b,−p1+qΨb,−p2−q

)]
(1.54)

The time reversal operation forces the last two terms (exchange, cooper) to coincide:(
Ψ̄b,−p1+qΨb,−p2−q

)
=
(
Ψ̄b,−p1+qΨb,−p2−q

)T
=
(
Ψ̄b,−p2−q(σ2)2Ψb,−p1+q

)
=
(
Ψ̄b,−p2−qΨb,−p1+q

)
.

(1.55)

The direct channel can be safely neglected, since it corresponds to scattering off impurities at low
momentum transfer. The other two channels are associated with Diffuson and Cooperon in the dia-
grammatic treatment and can be expected to give the dominant contributions.

Our decoupled action reads:

e−Seff [ψ,ψ̄] =
∫
DQ exp

−
πν

8τ

∫
ddr trQ2 − 1

2ddrΨ̄
(
G−1

0 + i

2τ Q
)

︸ ︷︷ ︸
≡G−1[Q]

Ψ

 . (1.56)

At this point, one can integrate over the fermions:

Z =
∫
D[ψ, ψ̄]e−Seff [ψ,ψ̄]

=
∫
DQ exp

−1
2tr log

(
H0 + i

2τ Q+ Σ3ω̂ + i0τ3

)
+ πν

8τ

∫
ddr trQ2

 (1.57)

The action for the Q field then is:

S[Q] = −1
2tr log

H0 + Σ3ω̂ + i0τ3︸ ︷︷ ︸
≡G−1

0

+ i

2τ Q

+ πν

8τ

∫
ddr trQ2. (1.58)

11



1 Fundamentals

Up to neglecting the direct interaction channel, this action is exact. This comes at the expense of
arbitrary high order interaction terms contained in the Q expansion of the logarithm.

The next step is to find a quadratic low energy theory. Let us first look for the saddle point of this
action:

S[Q0 + δQ] = tr log

H0 + Σ3ω̂ + i0τ3 + i

2τ Q0 + i

2τ δQ︸ ︷︷ ︸
≡G−1[Q]

+ πν

8τ

∫
ddr tr

(
Q2

0 + 2Q0δQ+ δQ2
)
,

∼
∑
q

(δQ)−q

2Ld(Q0)q − λ
∑
p

G−1[Q0]p,p+q

 . (1.59)

An ansatz diagonal in retarded/advanced and time reversal space is chosen: (Q0)p ≡ Λ. Then the
stationarity criterion reduces to:

πνΛ = i

Ld

∑
p

1
ω̂ − ξp + i0τ3 + i

2τΛ
(1.60)

Choosing Λ = τ3 is a solution of this equation. In fact there is a whole group G that leaves these mean
field equations invariant. One can equivalently put (Q0)p ≡ gΛg−1 for any g ∈ G. Here for spinless
fermions with time-reversal invariance G = Sp(4n).

One can decompose Q = gΛg−1 with a spatially slowly fluctuating g ∈ G to find the low energy field
theory around the saddle point. The second term gives a constant contribution, since Q2 = 1.
Under the trace, the matrices in the logarithm effectively commute and one can employ tr log

(
AB

)
=

tr log
(
A
)

+ tr log
(
B
)
:

tr log
(
G−1

0 [Σ3ω̂ + i0τ3] +Q
)

= tr log
(
G−1

0 [Σ3ω̂ + i0τ3](1 +G0[Σ3ω̂ + i0τ3]Q)
)

= tr log
(
G−1

0 [Σ3ω̂ + i0τ3]
)

+ tr log
(
1 +G0[Σ3ω̂ + i0τ3]Q

)
. (1.61)

The first term gives a constant contribution to the action, the second term is expanded up to second
order in Q:

tr log
(
1 +G0[Σ3ω̂ + i0τ3]Q

)
= tr

(
G0[Σ3ω̂ + i0τ3]Q

)
− 1

2tr
(
G0[Σ3ω̂ + i0τ3]QG0[Σ3ω̂ + i0τ3]Q

)
.

(1.62)

From symmetry reasoning and due to the constraint Q2 = 1, the terms in the soft-mode action are:

S[Q] = πν

2

∫
ddr tr

[
cD
(
∇Q

)2 − cωQ] . (1.63)

By comparison to the diffusion propagator and by computing ν = 〈G〉dis one can fix cD and cω to:

S[Q] = πν

2

∫
ddr tr

[
D

4
(
∇Q

)2 − ω̂Q] . (1.64)

This construction works analogous for the nine other symmetry classes. In Sec. 3.7.2 the sigma model
for class C is derived. Driven to criticality by a topological term (see Sec: 1.5.3), it describes the
statistics of critical wave functions in Spin Quantum Hall systems.
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1.2 Anderson transitions and Multifractality

1.2 Anderson transitions and Multifractality

In general, low dimensional systems (d ≤ 2) tend to localize in presence of disorder. By thinking
about arbitrarily weak impurities in the system as shallow potentials one can intuitively understand
this within elementary quantum mechanics: a shallow well still has at least one bound state in d = 1, 2
no matter how weak the potential. Bound states are exponentially localized. Formally this means that
there is a localization length ξ that is much smaller than the system size L. In the thermodynamic
limit ξ/L L→∞→ 0. Wave functions at nearby energies are not correlated, they sit in different wells of
the random potential and have an overlap exponentially suppressed with distance. The conductance
g of such insulating systems decays exponentially with L. It was therefore surprising that chiral wires
with an odd number of channels [99–101] can have perfectly transmitting eigenchannels. The average
conductance scales as a power law with L [99]. The mechanism behind this is topological protection
(which is discussed below in Sec. 1.3): the system is at the boundary of two topologically distinct
phases and therefore has to remain critical. There is no finite localization length ξ(L) ∼

√
L, yet the

wave functions are not fully delocalized as in a metal.
Another route to escape localization is considering larger dimensions d > 2 and sufficiently weak

disorder. Neglecting topological effects, in d > 2 the system is a diffusive metal for weak disorder
W and an insulator at strong disorder. At W ∗(d) there is a metal insulator transition where the
wavefunctions exhibit multifractality. The critical disorder strength W ∗(d) grows with d [9].

1.2.1 Multifractality

In my thesis I adopt the notation from Ref. [9] for the context of multifractality (MF). Critical
disordered systems can be characterized by the scaling of the distribution of powers of the wave
function |ψ|2, the so called inverse-participation ratios Pq:

Pq ≡ 〈
∫
ddr |ψ(r)|2q〉dis ∼ L−τq . (1.65)

With 〈.〉dis the disorder average is indicated and d is the spatial dimension of the system with linear
size L. For large system size L → ∞, the multifractal exponents τq are self-averaging [9]. In a good
metal, the wave function is spread across the entire d dimensional system. Normalization of ψ then
implies that |ψ(r)| ∝ L−d/2 for all r. Plugging this into the definition, one obtains Pq ∝ L(1−q)d in the
metal, i.e. τmetal

q = (q− 1)d. In general the function τq is non-decreasing (τ ′q ≥ 0) and convex (τ ′′q ≤ 0)
with τ0 = −d and τ1 = 0 (normalization of ψ).

The anomalous dimensions

∆q ≡ τq − d(q − 1) (1.66)

are defined relative to the scaling of a completely delocalized metallic wave function. In contrast the
perfect insulator has Pq that do not scale with L at all. This means all τ ins

q vanish identically for q > 0.
The converse is not true: for chiral wires considered in Chap. 2 all τq for q > 0 are zero at a critical
point, yet the systems are not insulating. The wave functions show nontrivial spatial correlations
〈|ψ(r)|2|ψ(0)|2〉 ∝ r−3/2 [39] and the localization length diverges with system size.
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1 Fundamentals

Boxing Numerically it can be favorable to subdivide a (L)d system into Nd boxes of size b, where
N ≡ L/b. The box probability µi ≡

∫
bi

ddr |ψ0(r)|d shows scaling behavior suitable to extract τq:

Nd∑
i=1

(µi)q ∼
(
b

L

)τq
. (1.67)

This kind of boxing is essential to handle negative values of q (where exact zeros of the wavefunction
have drastic effects) and correlated disorder (where one needs to restrict the analysis to boxes larger
than the disorder correlation length). In Chap. 4, the multifractal spectra of Dirac Hamiltonians with
correlated disorder are extracted using this method and compared to universal predictions for two
classes of theories, which are reviewed in Sec. 1.5.5 and Sec. 1.5.3.

1.2.1.1 Symmetries of (generalized) MF spectra

Due to the finite energy stacking in Chap. 4 one cannot properly access the local density of states
in a meaningful way. The analysis of LDOS moments and more generic composite objects of Green’s
functions is a powerful tool used in the other Chapters 2, 3. Multifractality implies the presence of
infinitely many relevant (in the RG sense) operators at the fixed point of an Anderson transition (AT).
In Chap. 2 the RG (ir)relevance of a multifractal interaction matrix element is probed. Contrastingly
a task in Chap. 3 is to find combinations of Green’s functions in order to probe (in principle) the
entire multifractal spectrum.
The anomalous dimensions ∆q defined above in Eq. (1.66) are in linear relation with the scaling

exponents xq of moments of the local density of states (LDOS) ν(r):

νq(r) ∝ L−xq , xq = ∆q + qx1. (1.68)

Here x1 describes the scaling of the average LDOS: ρ ≡ ν(r) ∝ L−x1 , and x0 = 0.
The MF exponents have the beautiful symmetry property [102]:

xq = xq∗−q, (1.69)

where q∗ only depends on the symmetry class (with q∗ = 1 for Wigner-Dyson classes).
It turns out that the notion of LDOS MF exponents xq can be generalized to more complicated com-

posite objects of Green’s functions showing pure scaling (in Sec. 3.6 such are explicitly constructed in
the class C NLσM). The generalized MF dimensions xλ can be labeled with a weight λ = (q1, q2, . . . , qn)
and are invariant under the action of the so called Weyl group W :

xwλ = xλ, ∀w ∈W. (1.70)

The weights λ label irreducible representations of the NLσM supersymmetric space G/K, this is
motivated below. The corresponding Weyl group W is generated by the following inversions and
permutations in weight space. Their action on the weight λ = (q1, q2, . . . , qn) is as follows:

(i) sign inversion of q̃j ≡ qj + cj/2 for any j ∈ {1, 2, . . . , n}:

qj → −cj − qj . (1.71)
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1.2 Anderson transitions and Multifractality

(ii) interchange of q̃i = qi + ci/2 and q̃j = qj + cj/2 for some pair i, j ∈ {1, 2, . . . , n}:

qi → qj + cj − ci
2 ; qj → qi + ci − cj

2 . (1.72)

The parameters ci only depend on the manifold G/K. In particular, cj = 1 − 2j for class A, and
cj = 1−4j for class C. The leading MF dimensions xq corresponds to weights λ = (q) in this notation.

When all of the qi are non-negative integers, one can translate a Green’s function pure-scaling
composite object Cλ into a pure-scaling operator Oλ in the NLσM framework (by analytic continuation
one can then extend this to generic complex qi in certain cases, see Sec. 3.7). In this case λ =
(q1, q2, . . . , qn) forms a highest weight under the action of the Lie algebra of G. With the usual
procedure [103] one can relate multipoint functions with sigma model operators:

Cλ1(r r1) . . . Cλn(r rn) =
〈
Oλ1(r1) . . .Oλn(rn)

〉
. (1.73)

The angular brackets indicate expectation value w.r.t. the NLσM action.
Postponing details to later sections, let us mention here important properties of the operators Oλ

that result from their explicit construction and the symmetry relation (1.69):

1. There are families Oλ of exact scaling operators in the σ model at its critical fixed point:〈
Oλ(r)

〉
∼ L−xλ , (1.74)

their scaling dimension is xλ.

2. There are Oλj , λj = (−c1, . . . ,−cj) with vanishing scaling dimension

xλj = 0,
〈
Oλj (r)

〉
= 1, (1.75)

even though it describes the scaling of a nontrivial moment of the LDOS, and, thus, is different
from the identity operator O0.

3. The Oλ satisfy the fusion rule OλOλ′ ∼
∑
µC

λ,λ′
µ Oµ.

These properties point out the resemblance of MF spectra and field theory, compare Ref. [104].
There are special families of operators Pλ that satisfy an Abelian OPE (1.31):

Pλ(r1)Pλ′(r2) ∝ r
xλ+λ′−xλ−xλ′
12 Pλ+λ′

(
r1 + r2

2

)
+ . . . (1.76)

In Sec. 3.3, such families are constructed for the bosonic class C NLσM. For generic λ there are
infinitely many pure scaling operators P ′λ that do not share this fusion property (other gradientless
operators appear on RHS). An example is given in Sec. 3.5.

1.2.2 CFT and Multifractality

This technical section dealing with the conformal field theory description of multifractal observables is
an excerpt from Ref. [105]. Heavy use of the notation in Sec. 1.1.2 is made. The formalism introduced
here is employed in Chap. 3 to prove the parabolicity constraint imposed by local conformal invariance
and abelian fusion.
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Here, a general discussion of multifractality at Anderson transitions (ATs) is presented, including
definitions of multifractal (MF) observables, their correlation functions, the MF spectra of scaling
dimensions, and relation to the field-theoretical renormalization group (RG). One central issue for us
is a description of MF correlation functions in terms of conformal field theory (CFT). As discussed
below, such a description in general does not hold, in view of the system-size dependence of the MF
correlation functions. At the same time, a certain subclass of MF correlators satisfying a “neutrality”
condition (1.83) is consistent with conformal invariance.

1.2.2.1 Multifractal multipoint functions and RG

Equation (1.74) can be understood from an RG point of view. One needs to run the RG from the
microscopic scale a up to the scale L, and a one-point function at this scale becomes a number of order
one. The result of the RG is the appearance of the scale factor L/a raised to the power −xq, which is
exactly Eq. (1.74). Similar arguments determine the behavior of multi-point functions. Let us consider
the two-point function

〈
Oq1(r1)Oq2(r2)

〉
. Now one can run the RG up to the scale r12 = |r1 − r2|,

which results in the renormalization factor r−xq1−xq212 . At this scale the two operators fuse to Oq1+q2 .
Then one can renormalize further up to scale L, which results in the additional factor (L/r12)−xq1+q2 .
Finally, at this scale the correlator is of order unity, and one gets

〈
Oq1(r1)Oq2(r2)

〉
∼ r−xq1−xq212

(
L

r12

)−xq1+q2

= r
xq1+q2−xq1−xq2
12 L−xq1+q2 . (1.77)

The same result is obtained from the Abelian OPE (1.76) combined with Eq. (1.74) applied to the
expectation value of Oq1+q2 .

Next consider the three-point function
〈
Oq1(r1)Oq2(r2)Oq3(r3)

〉
. To apply the RG argument, one

needs to know the hierarchy of distances between the three points. For example, let us assume that
r12 is the smallest distance: r12 � r13 ' r23 � L. Then there will be three stages of RG and two
fusions resulting in〈
Oq1(r1)Oq2(r2)Oq3(r3)

〉
∼ r−xq1−xq2−xq312

〈
Oq1+q2(r1/r12)Oq3(r3/r12)

〉
∼ r−xq1−xq2−xq312

(
r13
r12

)−xq1+q2−xq3
(
L

r13

)−xq1+q2+q3

= r
xq1+q2−xq1−xq2
12 r

xq1+q2+q3−xq1+q2−xq3
13 L−xq1+q2+q3 .

(1.78)

Similar expressions are obtained in other cases when the distances between the points satisfy different
inequalities. It is also easy to generalize these expressions to higher multipoint functions. In particular,
it should be clear from the discussion above that a generic n-point MF function

〈∏n
i=1Oqi(ri)

〉
, when

considered as a function of system size L at fixed pairwise distances rij (all much smaller than L) will
scale with L as 〈

Oq1(r1) . . .Oqn(rn)
〉
∝ L−xq1+···+qn . (1.79)

1.2.2.2 Relation of MF multipoint functions and CFT correlators

A quick comparison of MF correlators with those in a CFT indicates that not all MF multipoint
functions can be represented as CFT correlators. For example, even the one-point function (1.74)
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1.2 Anderson transitions and Multifractality

is consistent with Eq. (1.22) only if xq > 0. It is easy to see that for an extended range of q the
dimensions are negative xq < 0. (In fact, xq < 0 holds for any q satisfying q < 0 or q > q∗.) In addition
there is a non-trivial operator Oq∗ , distinct from the identity operator, whose dimension is zero, and
whose expectation value in the infinite system is one, see Eq. (1.75). This indicates that one cannot
expect all aspects of MF multipoint functions to be describable by a CFT.
The reader is encouraged to look at the two-point function (1.77). In general, it is L-dependent, at

variance with Eqs. (1.25) and (1.26). One has to notice the following: one can choose q2 = −q1, and
then the dimension xq1+q2 = x0 = 0. This implies that with this choice the two-point function stops
depending on the system size:

〈
Oq1(r1)O−q1(r2)

〉
∼ r−xq1−x−q112

(
L

r12

)−x0

= r
−xq1−x−q1
12 . (1.80)

Then the system size can be taken to infinity, and the two-point function can be compared with a two-
point function in a critical field theory. One can see that the above form is consistent with requirements
of rotational, translational and scale invariance, Eq. (1.25), but not with conformal invariance, Eq.
(1.26), since the dimensions xq1 6= x−q1 .
However, the presence of the special operator Oq∗ allows us to make another choice. Indeed, if one

chooses the special value q2 = q∗ − q1, the dimension xq1+q2 = xq∗ = 0. In this case one has

〈
Oq1(r1)Oq∗−q1(r2)

〉
∼ r−xq1−xq∗−q112

(
L

r12

)−xq∗
= r
−2xq1
12 . (1.81)

This two-point function is independent of the system size and is consistent with the CFT form〈
φq1(r1)φq∗−q1(r2)

〉
CFT
∼ r−2xq1

12 , (1.82)

since the two operators involved have the same dimensions.
This discussion and the scaling (1.79) suggest that CFT may apply only to such multipoint MF

functions
〈
Oq1 . . .Oqn

〉
where the sum of the indices qi is equal to q∗ (a sort of “neutrality” condition):

n∑
i=1

qi = q∗. (1.83)

An alternative choice
∑
i qi = 0 leads to MF multipoint functions that are well defined in the infinite

system, but are inconsistent with conformal invariance.
To illustrate this point, let us make the choice (1.83) in the three-point function (1.78):〈

Oq1(r1)Oq2(r2)Oq∗−q1−q2(r3)
〉
∼ rxq1+q2−xq1−xq2

12 r
−2xq1+q2
13 . (1.84)

If the general CFT expression (1.29) is specified to the case here and the symmetry relation (1.69) is
used one gets〈

φq1(r1)φq2(r2)φq∗−q1−q2(r3)
〉
CFT

∼ r
xq1+q2−xq1−xq2
12 r

xq2−xq1−xq1+q2
13 r

xq1−xq2−xq1+q2
23 . (1.85)

If one now assumes that the arrangement of points satisfies the inequality r12 � r13 ' r23, one can
replace r23 ≈ r13, and the three-point function simplifies to〈

φq1(r1)φq2(r2)φq∗−q1−q2(r3)
〉
CFT
∼ rxq1+q2−xq1−xq2

12 r
−2xq1+q2
13 , (1.86)
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which is the same as Eq. (1.84). On the other hand, the choice
∑
i qi = 0 leads to inconsistent

expressions. The MF three-point function (1.78) in this case becomes〈
Oq1(r1)Oq2(r2)O−q1−q2(r3)

〉
∼ rxq1+q2−xq1−xq2

12 r
−xq1+q2−x−q1−q2
13 , (1.87)

while the CFT expression (1.29) reduces to a different form〈
φq1(r1)φq2(r2)φ−q1−q2(r3)

〉
CFT
∼ rx−q1−q2−xq1−xq212 r

−2x−q1−q2
13 . (1.88)

This shows that m-point correlation functions of CFT can be related to m-point MF correlation
functions in an infinite system under the condition

∑m
i=1 qi = q∗. Let us return to the MF multipoint

functions with indices qi that do not satisfy this condition. As discussed above, they in general scale
with L and thus should be considered in a finite system. Such generic m-point MF functions in a finite
system can be related to m + 1-point CFT functions in an infinite system by adding another field to
ensure the condition

∑m+1
i=1 qi = q∗.

As the simplest example, let us consider the two-point function (1.82) (defined in an infinite system)
and place the operator φq∗−q1 at a large distance L (which is not the system size) from the point r1 = 0.
Then one can rewrite the two-point function as

Lxq1
〈
φq1(0)φq∗−q1(L)

〉
CFT
∼ L−xq1 . (1.89)

This has the same form as the scaling of a one-point MF correlation function in a system of size L, Eq.
(1.74). Similarly, if one places the operator φq∗−q1−q2 in the three-point function (1.85) at a distance
L� r12 from the points r1 and r2, one can replace r13 ≈ r23 ≈ L, which yields〈

φq1(r1)φq2(r2)φq∗−q1−q2(L)
〉
CFT
∼ rxq1+q2−xq1−xq2

12 L−2xq1+q2 . (1.90)

This can be rewritten as

Lxq1+q2
〈
φq1(r1)φq2(r2)φq∗−q1−q2(L)

〉
CFT
∼ rxq1+q2−xq1−xq2

12 L−xq1+q2 , (1.91)

which is exactly the same as Eq. (1.77). Thus, a three-point CFT function, which describes a
three-point MF function with q1 + q2 + q3 = q∗ in an infinite system, can also be related to a two-
point MF function (with arbitrary q1 and q2) in a finite system. It is natural to expect that such
relations continue to hold for higher multi-point correlators. For example, the four-point function
Lxq1+q2+q3

〈
φq1(r1)φq2(r2)φq3(r3)φq∗−q1−q2−q3(L)

〉
CFT

should reduce to the three-point function (1.78)
in the appropriate limiting case of separation of scales r12 � r13 ∼ r23 � L.

A brief recapitulation of the results so far follows. First of all, there are multi-point MF correlation
functions (1.79) with

∑
i qi 6= 0, q∗ that explicitly contain the system size L, exemplifying strong infrared

fluctuations that may grow with L. Secondly, there are MF correlators with
∑
i qi = 0 that can be

considered in an infinite system, consistent with scale invariance, but inconsistent with conformal
invariance. Finally, there are “good” MF correlators satisfying the neutrality condition

∑
i qi = q∗ that

are consistent with conformal invariance.
This analysis can be extended to the generalized MF correlation functions 〈Oλ1(r1)Oλ2(r2) . . .〉

involving the much broader class of gradientless operators Oλ, with λ = (q1, q2, . . . , qn), see Sec. 1.2.1.1.
Again, almost all such correlation functions are infrared-singular with respect to the system size L,
i.e., depend on L in a power-law fashion. There is a subset of them that exhibits L-independence.

18



1.3 Symmetry Classes and Topology

And within this subset, there is a still smaller subset of correlators whose scaling is consistent with
conformal invariance. Specifically, the corresponding condition is

∑
i λi = (−c1,−c2, . . . ,−cn) ≡ −ρb.

This consistency is not a guarantee of conformal invariance at ATs. While there is a wide-spread
folklore that scale invariance and locality imply conformal invariance, this is not the case in general,
see Ref. [106] for a comprehensive discussion of the relation between the two. All currently existing or
even envisioned proofs of conformal invariance following from scale invariance involve certain technical
assumptions such as unitarity (reflection positivity) of the field theory and discreteness of the spec-
trum of scaling dimensions. These assumptions are certainly violated in any viable theory of ATs, so
conformal invariance is not guaranteed to be a feature of ATs.
Understanding the difference of scale and conformal invariance is especially important in two dimen-

sions, where conformal invariance is particularly powerful due to the existence of an infinite-dimensional
Virasoro symmetry. In Sec. 3.2 one can see that assuming local conformal invariance in two dimensions
together with Abelian fusion leads to very stringent restrictions on the spectra of MF exponents.

1.3 Symmetry Classes and Topology

Here the famous topological classification completed by Altand and Zirnbauer in Ref. [7] is introduced.
That is more precisely non-interacting fermionic gapped local Hamiltionians with disorder (that can
be represented as matrices with dimension Ld) are considered. A short overview is given of how far
this classification is stable towards weak interaction.
Random matrix theory was introduced by Wigner [107] and generalized by Dyson [108]. The Wigner-

Dyson classification is complete if one demands the symmetry and topological protection to be present
over the whole energy spectrum. Weakening this requirement to the discrete symmetry being present
at a single energy in the spectrum leads to further symmetry classes. Among these are the chiral
classes [109, 110]. In condensed matter context, these are relevant for systems at half filling. Here the
Fermi energy is the special point in the spectrum where the additional symmetry is present. Altland
and Zirnbauer finally extended this theory to the superconducting Bogolyubov-de-Gennes Hamiltonian
ensembles [7] with effectively broken particle conservation.
In the following, the Altland-Zirnbauer symmetry classes are introduced briefly. It is sketched how

to find the number of topologically distinct phases in each class. Further, it is summarized how weak
interactions influence this. In Chap. 2 a superconducting wire in with anomalous time reversal and
particle hole symmetry (class BDI) is considered. The spin quantum Hall systems that are studied in
Chap. 3 reside in class C. The last chapter 4 deals with time reversal invariant superconductors with
different degrees of spin rotational symmetry (classes AIII, CI, DIII).

1.3.1 Fermionic Disordered Hamiltonians

Let H be an ensemble of hermitian quadratic matrices representing fermionic non-interacting gapped
local Hamiltionians. H can be interpreted as a manifold. Depending on the symmetries shared by all
H ∈ H, one can make general statements about the number of (path) connected components of this
manifold. Intuitively, there is no way from one to a distinct (path) connected component tuning the
parameters of the system (without closing the gap in the system or breaking the defining symmetries
of the ensemble).
Usually symmetries in quantum mechanics act as unitary operators U on the observables. If the

system possesses the symmetry acting as unitary U , the Hamiltonian is invariant: H = U †HU .
However symmetries can also be represented by antiunitary operators commuting with the Hamiltonian
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like time reversal T . The spectrum of the Hamiltonian H is preserved by these symmetries. Moreover
one can weaken this requirement and generalize to symmetries that are present at a single special
energy. Examples are the antiunitary particle-hole P symmetry anticommuting withH and the unitary
chiral symmetry C anticommuting with H. Anticommutating the symmetry means the spectrum is
symmetric around zero energy:

[U , H] = 0, {C, H} = 0, (1.92)
[T , H] = 0, {P, H} = 0. (1.93)

The chiral symmetry C, particle-hole symmetry P and time reversal symmetry T introduced in the
preceding lines are different from the conventional unitary symmetries and it turns out that their
presence or absence is sufficient to characterize the different ensembles of Hamiltionians.
As one can easily see, the conventional unitary commuting symmetries U factor out of the classifica-

tion. The reason is that H and U have common eigenspaces, more precisely there exists a convenient
basis where H is block diagonal. In formal mathematical language, the symmetries represented by
unitary commuting U form a group G. All Hamiltonians H in the ensemble can be decomposed into
irreducible representations with respect to the action of G. In the irreducible blocks, the elements of G
act trivial (multiplication by a phase). Each block then needs to be classified individually depending
on the presence or absence of the anomalous symmetries C,P, T .
These are either absent or unique and present and square to T 2 = ±1, P2 = ±1 and C2 = 1. One

can convince oneself of this by supposing there are two distinct time reversal symmetries T , T ′. In
general an antiunitary operator decomposes into a unitary operator and the complex conjugation K:
T = UK and T ′ = U ′K with U,U ′ unitary. By exploiting that H must also commute with T ′T

0 = [T , H] = [T ′, H] = [T ′T , H] = [U ′U∗, H], (1.94)

one finds a unitary operator U ′U∗ commuting with H.
Since the block is assumed to be irreducible this means U ′U∗ must be the identity up to a phase.

In this sense T is equivalent to T ′. Further by choosing T ′ = T one can show T 2 = ±1: Then
T 2 = UU∗ = λ11. Since UU∗ is real symmetric λ ∈ {−1, 1}. The cases P, C follow analogously. The
full rigorous proof is given in Ref. [111].
Since the presence of both T and P in a block implies the existence of C = T P, there are 10 =

3 · 3 · 2− 2 · 4 possible combinations of these symmetries. These are the ten Altland-Zirnbauer classes
(Tab. 1.1).

Each class is associated to the ensemble of hermitean matrices H obeying the corresponding sym-
metries. Interpreted as a group theoretic manifold, these from Riemannian symmetric spaces that are
either connected (0), have two components (Z2) or infinitely many (Z). The so called Cartan labels A,
AIII, AI, . . . are the historical name of the ten infinite families of symmetric spaces introduced by Elie
Cartan [6]. Depending on the dimension d of the system described by H, this is sufficient to determine
if and how many distinct topological phases there can be (see tab. 1.1).

1.3.2 Topological Invariants and Dimensionality

Given a general ensemble of Hamiltonians, the question arises what constraints locality and the dimen-
sion of space impose. A matrix element between two sites i, j has to decay sufficiently fast Hi,j → 0
as the distance between them becomes large dist(i, j)→∞. The function dist depends on the dimen-
sionality d. If (almost) all Hamiltonians in the ensemble satisfy such a property for a metric dist with
an associated dimension d, one can say that this ensemble is local in d dimensions.

20



1.3 Symmetry Classes and Topology

Class T P C d = 1 d = 2 d = 3 Realization Fermion NLσM
C 0 -1 0 - Z - SQH Sp(4n)/U(2n)
A 0 0 0 - Z - IQH U(2n)/U(n)⊗U(n)
D 0 +1 0 Z2 Z - MZM, TQH O(2n)/U(n)
CI +1 -1 1 - - Z 3D TSC Sp(4n)⊗ Sp(4n)/Sp(4n)
AIII 0 0 1 Z - Z 3D TSC, chiral TI U(2n)⊗U(2n)/U(2n)
DIII -1 +1 1 Z2 Z2 Z 3D TSC (3He-B) O(2n)⊗O(2n)/O(2n)
AI +1 0 0 - - - - Sp(4n)/Sp(2n)⊗ Sp(2n)
AII -1 0 0 - - Z2 2D, 3D TIs O(2n)/O(n)⊗O(n)
BDI +1 +1 1 Z - - MZM U(2n)/Sp(2n)
CII -1 -1 1 Z - Z2 3D chiral TI U(2n)/O(2n)

Table 1.1: Modified from Ref. [90]. The 10-fold way classification for strong (fully gapped), d-
dimensional symmetry-protected topological phases of fermions, i.e. topological insu-
lators (TIs) and topological superconductors (TSCs) [2–5]. The 10 classes are defined
by different combinations of the three effective discrete symmetries T (time–reversal),
P (particle–hole), and C (chiral or sublattice). For a d-dimensional bulk, any defor-
mation of the clean band structure that preserves T , P and C and does not close
a gap preserves the topological winding number. For a (d − 1)-dimensional edge or
surface theory, the equivalent statement is that any static deformation of the surface
(quenched disorder) that preserves T , P and C also preserves the “topological pro-
tection” against Anderson localization. Of particular interest here are classes C, A,
D on one hand, and classes CI, AIII, DIII on the other. Classes C, A, and D are
topological in d = 2, and describe the spin (SQHE), integer or charge (IQHE), and
thermal (TQHE) quantum Hall effects; all three can be realized as TSCs with broken
T . Classes CI, AIII, and DIII are topological in d = 3, and can describe 3D time-
reversal-invariant TSCs. (In this case, the physical time-reversal symmetry appears as
the effective chiral symmetry S in the table [2, 112].) The column “spin sym.” denotes
the amount of spin SU(2) symmetry preserved for TSC realizations of these 6 classes.
The 3D TSCs can host 2D massless Dirac (CI, AIII) or Majorana (DIII) surface the-
ories. The last column gives the symmetry structure of the non-linear sigma model
(NLσM) description (see Sec. 1.1.4.4) for each class, in terms of fermionic replicas [9].
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This mathematical property is already sufficient to reduce the general classification problem of the
Hamiltonian ensembles to classifying a Dirac operator defined on a compact space [3] that can then
be tackled with real/complex K-theory. This gives insights about the number of boundary modes in
d dimensional topological insulators see (tab. 1.1).

The problem is essentially reduced to determining how many topologically distinct mass terms can
be added to the corresponding Dirac’s equation.

1.3.3 Nonlocal Discrete Symmetries

The presence of non-local symmetries modifies the above results [113]. These symmetries further
restrict the choices of the mass term and therefore modify the classification. For a simple disordered
chain as investigated here there are no such additional symmetries.

1.3.4 Interactions

The topological classification discussed above is not stable towards weak interactions in general. Ar-
bitrarily small interactions can in principle open gaps between distinct phases [27]. For T -invariant
Majorana chains (non-int: BDI) this has been investigated by Fidkowski and Kitaev [26]. It is found
that the interaction can only gap between phases n ∈ Z and m = n mod 8. The proof uses matrix
product states, which ties it to 1D systems.
In general, Z is broken down to Zν in odd dimensions, where ν is a power of two [28]. These results

do not apply to strong interactions, where symmetry breaking can occur. As one can see in Sec. 2.5,
disorder introduces wave function multifractality that enhances interaction matrix elements. In one of
the models discussed there, an interaction term becomes relevant and induces spontaneous symmetry
breaking even for weak interaction. The topologically protected criticality goes away.

1.4 Criticality in 1D

The considerations before in Sec. 1.3 dealt with the question whether a system with given anomalous
symmetries can in principle be in a topologically nontrivial phase. In this section, the setting is that a
concrete (non-interacting local 1D) Hamiltonian is given. An overview is given how to obtain a winding
number that enumerates the different phases as function of the parameters of the given Hamiltonian.
From this, a full phase diagram of the system may be constructed. Here, only non-interacting chiral
Quasi-1D lattices with a gap, like the dimerized model (with interaction treated at mean field level)
investigated in Sec. 2.2.2.4, are considered. While this picture does not lead to many new insights into
the topological transition in the disordered case, it is amusing to note that the RG flow away from this
critical line is of Khmelnitskii-Pruisken type. This is a further connection between the works presented
in the following chapters.

1.4.1 Perfectly conducting channels: A, C, D, AII, DIII

In Sec. 1.5.3, the quantum Hall like topological systems in 2D are introduced. Interpreting the edge
of such systems between topologically distinct phases (indices p, q) as a 1D wire, one obtains p − q
perfectly transmitting channels. In these wires, backscattering is suppressed totally [9].
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1.4 Criticality in 1D

The same mechanism also exists in wires of classes AII, DIII or edges of quantum spin Hall systems
(AII). There is a distinct type of topological criticality in 1D having drastic impact on conductivity
and wavefunctions that is exhaustively discussed in the following.

1.4.2 Chiral Symmetry: AIII, BDI, CII, D, DIII

Commuting unitary symmetries can be used to bring H in block diagonal form. The chiral symmetry
is a unitary anticommuting symmetry. Still, by choosing a basis where C = σxK the Hamiltonians H
can be brought to block off-diagonal form:

H =
(

0 h
h† 0

)
. (1.95)

This is the most general form, the off-diagonal entries are related by hermiticity. The 2× 2 structure
depicted is the one the σx matrix acts in. This will be denoted as chiral basis in the following.

In Tab. 1.1, one can see that these classes support distinct topological phases in 1D. In presence of
disorder, the properties at criticality (topological transition) are universal for all classes [114]:

• broad distribution of g:

−〈ln g〉 ∼
√
L, 〈(ln g)2〉 ∼ L (1.96)

• broad distribution of localization length

ξtyp ∼ | ln ε|, ξav ∼ | ln ε|2 (1.97)

• the near ε ≈ 0 wave function

〈|ψ(x)ψ(0)|q〉 ∼ L−1|x|−
3
2 (1.98)

is a stretched exponential localized at x0 with a secondary maximum at x appearing with prob-
ability ∼ (x− x0)−

3
2

• the density of states

ρ(ε) ∼ 1
|ε ln3 ε|

(1.99)

is strongly singular

All these properties can be understood from the infinite randomness physics perspective, see Sec. 2.5
for a discussion.

1.4.2.1 Winding numbers

In the following, the formalism used to describe topological winding numbers in chiral wires in classes
AIII, BDI, CII, D, DIII is sketched. Peculiarities arising due to the Z2 classification of classes D, DIII
are not discussed here, the reader is referred to Ref. [115].
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Clean case Without disorder, one can work with the band structure of the model. The approach
described here follows the work of Schnyder et. al. [2]. Let un(k) be the Bloch states of the system.
The projector P on the occupied states can then be used to define the operator Q = 2P − 1, that
gives 1 for a particle and −1 for a hole. The idea behind this is that Q corresponds to the Hamiltonian
with each energy continuously deformed to ±1 (the Fermi level is set to zero energy). Topology is
diffeomorphism invariant, to extract topological properties, it is sufficient to restrict to Q:

P =
∑
n filled

∣∣∣un(k)
〉〈
un(k)

∣∣∣ , Q(k) = 2P (k)− 1. (1.100)

Since P is a projector, Q is unitary. The following expression is the winding number of the unitary Q
[2], that serves as topological index:

N [Q] = 1
2π

∫ 2π

0
dktr

(
Q−1(k)∂kQ(k)

)
= 1

2π

∫ 2π

0
dk∂ktr

(
lnQ(k)

)
. (1.101)

This can be motivated by the following facts: N [Q] is locally constant which is shown by rewriting
the equation in terms of the ln. The first homotopy group of the U(n) is π1(U(n)) = Z, so N [Q] can
range over all integers.
For the chiral classes (AIII, BDI, CII), H can be brought to block form (1.95), so Q may be replaced

by one chiral block h. Comparison to the transfer matrix formalism then yields that the number of
negative eigenvalues of Q corresponds to the number of negative Lyapunov exponents. This proves
that N [Q] defined above is indeed the topological index.

Since this heavily relies on the existence of a Brillouin zone, that is to say (discrete) translational
invariance, it cannot be used in presence of disorder.

1.4.2.2 Generalization to Disorder

Refs. [115, 116] point out that the key is to define the topological index in terms of how the sample
reacts to twisting the boundary conditions. I will briefly summarize this formalism in the following
lines.
For bipartite Hamiltonians possessing a chiral symmetry P one can define a non-unitary transfor-

mation Tφ:

Ps,s′ = (−1)sδs s′ , (1.102)

(Tφ)s,s′ = exp
(
−i s
L
φPs,s′δs s′

)
. (1.103)

The application of Tφ to the Hamiltonian effectively twists the boundary condition of the wave functions
ψ:

Hφ = TφHTφ, ψφ(s) = exp
(
i
s

L
φ(−1)s

)
ψ(s). (1.104)

With the transformation of the eigenfunctions, one can formulate the Green’s function Gφ of the sample
with boundaries twisted by a phase φ. Then the following formula generalizes the index introduced
above:

χ = 1
4π ln

(
G2π
G0

)
. (1.105)
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Figure 1.1: Left panel: Khmelnitzkii-Pruisken flow [117–119] of longitudinal and transverse con-
ductance (σxx, σxy) in the 2D IQHE. Non half-integer σxy (x axis) flows (gray arrows)
to the nearest integer as the system size L increases. Meanwhile, σxx (y axis) reaches
zero. For half-integer valued σxy (red dashed lines), one is at the boundary of two
topologically distinct phases (0, 1: white, blue) Right panel: RG flow of Khmelnitzkii-
Pruisken type [115] of the conductance g and the bare index χ̃ of a disordered topo-
logical chiral wire. (g, χ̃) correspond to (σxx, σxy) in IQHE. Non half-integer χ̃ (x
axis) flows to the nearest integer. Meanwhile, the conductance g (y axis) reaches
zero exponentially fast in L. For half-integer valued χ̃ (red dashed lines), one is at
the boundary of two topologically distinct phases (0, 1: white, blue). On the critical
lines g decays algebraically with L. In contrast to the Khmelnitzkii-Pruisken flow
there is no finite g∗ at the transition.

The “bare” index χ̃ defined this way is not locally constant, in presence of disorder there is no reason
why it has to be an integer. For short samples, χ̃ can take arbitrary real values. In the thermodynamic
limit L→∞ there are only two possibilities for χ ≡ χ̃(L→∞):

• χ ∈ Z: the system is a (topological) Anderson insulator, the conductance g approaches zero
exponentially fast g ∝ e−L/ξ

• χ ∈ Z + 1
2 : the system is at the boundary of two distinct phases and therefore critical, the

conductance decays algebraically g ∝ L−α

Using field theoretical methods these results are obtained by showing that (g, χ̃) have a similar two-
parameter flow diagram as the (σxx, σxy) Khmelnitskii-Pruisken flow [117–119] in the integer quantum
Hall effect (IQHE), see fig. 1.1. From the field theoretical point of view this is since in a chiral
non-linear σ-model (NLσM) a Θ-term is allowed. A brief sketch of the derivation follows in the next
section.
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Supersymmetric field theory The winding number defined in Eq. (1.105) can be expressed in terms
of the supersymmetric partition function Z[φ1, φ0]:

Z[φ1, φ0] =
〈∫
D(ψ,ψ) exp

{
iψĜφψ

}〉
(1.106)

Ĝφ = diag(G−iφ0 , Gφ1)bf . (1.107)

The phases φ1, φ0 are twists of the boundary condition in the fermionic and bosonic sectors. They act
as a source term and the “bare index” χ̃ can be found by integration/differentiation of Z in the usual
way:

χ̃ = 1
4π

∫ 2π

0
dφ
〈
∂φ det

(
Gφ
)

det
(
Gφ
) 〉

(1.108)

= 1
4π

∫ 2π

0
dφ1∂φ1 Z(φ1, φ0)

∣∣∣
φ0=iφ1

. (1.109)

As discussed in Sec. 1.1.4.2, due to supersymmetry fixing Z = 1 the disorder may be averaged
over. The emerging quartic effective interaction terms are decoupled using a Hubbard-Stratonovich
transformation. The domain of the integration variable Q thereby depends on the symmetry class.
The remaining quadratic action S[ψ,ψ,Q] is quadratic in the supervector ψ which can be integrated
over at this point.
The partition function can then be written only in terms of Q: Z =

∫
DQ exp

(
−S[Q]

)
. The action

reads:

S[Q] = 1
2w2 str(Q+Q−) + str ln

iη −Q+ −ĥ+
−ĥ− iη −Q−

 . (1.110)

The dependence on the twist angles φ is hidden in this expression. However one has to keep in mind
that it affects the boundary conditions of the Q field. At this stage one needs to find the quadratic low
energy/momentum theory. To this end a saddle-point expansion of S[Q] needs to be performed. For
this purpose the parametrization Q = ΣT , where Σ is the self-consistent Born-approximation (SCBA)
self-energy and T describes slow fluctuations living in the saddle point manifold is convenient.
Expanding the action in the slow fluctuations T one finds, using the standard gradient expansion of

the trace logarithm:

Z[φ = 0] =
∫
DT exp

(
a1str(T∂T−1) + a2str(T∂2T−1) + . . .

)
. (1.111)

Remembering the φ dependence of the boundary conditions T (L) = e2iφT (0)e2iφ, one finds the general
formula for Z[φ].

One can fix the constants a1, a2, by computing the index χ̃ with Eq. (1.109), this implies a1 = 2χ̃.
The corresponding term in the action can be identified as the topological winding number. Similar
considerations relate the a2 coefficient to the conductance g = a2. Knowing the microsopic details of
the model, one can compute a1, a2 on the other hand. These bare parameters in the action undergo
an RG flow analogous to Khmelnitskii-Pruisken flow in the 2D quantum Hall like phases.
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1.5 Criticality in 2D

The chapters 3 and 4 are concerned with 2D systems. Ref. [9] describes the mechanisms to escape
criticality in 2D, which are directly relevant to these studies. Additionally, in Chap. 4 numerical
evidence for a further mechanism in surfaces of bulk STI is shown. The results are recapitulated
in the language of the NLσM, in terms of the renormalization of the first coefficient in Eq. (1.64),
β(t) ≡ dt

d lnL with t = 1
2πg = ρD

2π in d = 2 + ε dimensions. In an insulating/metallic system β is
negative/positive, the conductivity becomes smaller/larger with increasing system size. Zeros of the
beta function correspond to criticality and multifractal behavior.

1.5.1 Broken spin rotation invariance: positive β function

The classes AII, D, DIII have a positive β(t < t∗) function at small t in 2D. This means there can be
a stable metallic phase depending on the parameters of the system. At weak disorder the conductance
∼ t−1 is typically large, if t < t∗ is reached, t scales to zero in the RG flow, i.e. the system is
metallic. In the opposite strong disorder limit, t is large and the system becomes insulating. At t∗
there is a metal-insulator transition. With the techniques introduced in Chap. 3 one can construct the
observables revealing the generalized multifractal spectrum in these classes and study its properties
numerically. Preliminary results [120] indicate violation of generalized parabolicity in these classes.

1.5.2 Chiral classes: vanishing β function

The sigma model of the chiral classes (AIII, CII, BDI) shows a peculiarity: Gade and Wegner found
the β function does not renormalize at any order in t [109, 110]! This means the conductance t−1 is
exactly marginal in RG sense and serves as a parameter labeling different fixed points. In addition to
the terms in Eq. (1.64), there is also the Gade term, that affects the renormalization of the LDOS,
which typically becomes strongly singular.

1.5.3 2D Quantum Hall type topological phases

In the time reversal breaking classes (A, C, D) one has an integer classified second homotopy group
π2(MF ) = Z which means the θ term

iStop(Q) = iΘN [Q], N [Q] = i

8π

∫
d2r trQ∂xQ∂yQ (1.112)

may appear in the NLσMs of these classes. The integer N [Q] is the winding number of the Q field
configuration.

Integer Quantum Hall criticality A paradigmatic example of topological phase transition is the
integer quantum Hall effect in the unitary Wigner-Dyson class A.
The Hall conductivity σxy of a 2D electron gas at sufficiently low temperature develops plateaus

quantized in units of e2/h. Given the background introduced in Sec. 1.3, one can think about the
plateaus as distinct topological phases, with the winding number given by the number of conductance
quanta observed at the plateau. The nature of the criticality emerging at the topological transition
(between the plateaus) is still an open problem.
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In the NLσM picture, the IQHE is described by a Khmelnitskii-Pruisken two parameter RG flow[118,
119]. The NLσM has an additional topological term:

S[Q] = 1
8

∫
d2r tr

[
−σxx(∇Q)2 + 2σxyQ∂xQ∂yQ

]
(1.113)

that measures the winding number of the Q field. The coefficient is the effectively quantized transverse
conductivity σxy. The flow diagram shown in Fig. 1.1 can however only be verified with a perturbative
RG analysis, when σxx is large. The fixed points occur at strong coupling σxx ∼ 1, where the RG is
not controlled any more.
An open question is whether the multifractal spectrum is parabolic:

∆q = θ q(1− q). (1.114)

Studies [51] of the Chalker-Coddington network model (see Sec. 1.5.3.1) indicate approximately
parabolic multifractality with θ ' 1/4 in Eq. (1.114). The longitudinal conductivity is known to
be σxxIQHPT ' 0.58 ± 0.02 [74] from numerical Kubo computations. Later studies [53] find substantial
deviations from parabolicity. Together with the arguments presented in Sec. 3.2 this indicates violation
of local conformal invariance at the IQH critical point.

Spin Quantum Hall criticality The SQH transition is well-studied numerically with the network
model [58, 77]. Certain observables can be studied analytically by a mapping to 2D classical percolation
(Ref. [54–58, 76] and an extension of that work in Sec. 3.8). The conductance distribution and exact
average longitudinal conductivity σxxSQH =

√
3/2 have been determined analytically in Ref. [76]. For

certain multifractal exponents there are exact analytical results available compatible with θ = 1/8
in Eq. (1.114) (assuming approximate parabolicity). The work done by me and collaborators in Ref.
[105] is extended in Chap. 3 showing the strong violation of generalized parabolicity in the subleading
multifractal spectrum. This confirms high precision numerical studies [59], that find a nonzero quartic
term in in the leading ∆q.

Thermal Quantum Hall criticality In class D one can formulate a large variety of distinct network
models and Hamiltonians [78–84], since there apparently is non-universality. In most models, the
topological phase transition is hidden by a broad thermal metal wedge in the phase diagram separating
the phases. In this region the system is weakly antilocalizing. The conjectured thermal quantum Hall
transition is therefore difficult to observe.
In Chap. 4 numerical evidence for the conjecture, that finite energy 3D time reversal invariant

topological superconductor (TSC) surface states match the phenomenology of quantum Hall criticality
is presented. Chap. 3 focuses on the class C NLσM and the multifractal spectrum in SQH transitions.

1.5.3.1 Chalker-Coddington network model

IQH The IQHE in a smooth random potential can be modeled with the Chalker-Coddington network
(CCN) [121]. Smooth here means that the correlation length of the potential is large. The electrons
then can be assumed to drift along equipotential lines. Deep in a topological phase, each of the electrons
performs cyclotron motion around its orbit in this picture. Increasing the energy to the percolation
threshold enables tunneling processes at the saddle points of the potential between the closed orbits.
This way electrons can delocalize at criticality.

28



1.5 Criticality in 2D

− + ++ + −

+ + +− − +

+ − −− + +

+ − −− − +

+ + ++ − +

− − +− + +

Figure 1.2: Left panel: Network model defined on square lattice. Each node has two incoming
and outgoing links. There is an amplitude to turn right and one to turn left at a node
(red or blue dot). Traveling along a link ei shown as directed arrow in the sketch
accumulates a phase Ui ∈ G.
Right panel: In the G =SU(2) version of the CC network model, disorder average
reduces the computation of certain observables to the sum over self-avoiding loops.
This reduces the quantum mechanical problem to studying probabilities in classical
percolation. The configuration is shown as +, − in the nodes. Paths separate + from
− regions. The closed loop in the part of the network shown is highlighted by a bold
line. By considering an infinite area or applying periodic boundary conditions, all
paths form closed loops.
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In the CCN, one assumes a square grid of nodes that are the “saddle points” of the random potential.
At each node, there are two outgoing and incoming links. The distance to criticality is encoded in the
scattering amplitudes ± cos θ, ± sin θ between the links. In each discrete time evolution step, one such
scattering event occurs and the electron traversing a link e acquires a random G = U(1) phase eiφe
with φe ∈ [0, 2π] uniformly.
By choosing different G, one can realize the other quantum hall like phases in 2D.

SQH The defining symmetry in class C implies that the evolution operator U satisfies the property
U = σyU∗σy in addition to unitarity. This means that the phases on the links e are in G = SU(2).
The average over these phase groups is amenable to an analytical treatment.
An important result was obtained in Ref. [58]: expressions involving n ≤ 3 Green’s functions at the

same finite broadening can be mapped to classical percolation.
One can restrict to paths satisfying the following two conditions in these cases:

• each network link is visited either zero or two times

• each node is visited zero, two or four times, the sum over (i) · cos4 θ, (ii) · sin4 θ, (iii) ·(− sin2 θ cos2 θ)
can be reduced to the sum over (i) · cos2 θ, (ii) · sin2 θ

These statements imply, that the sum over quantum mechanical amplitudes averaged over disorder
can be restricted to the sum over closed loops that can be interpreted as classical percolation hulls,
see Fig. 1.2.

Class D network models By using G = O(1) in analogy to the cases discussed above, one does not
find a topological transition [9]. Each of the (−1) network factors distributed with concentration p
is a topological defect, that cannot be gotten rid of by a continuous deformation [79]. These defects
completely destroy localization, such that the O(1) network model is always in the metallic phase. In
class D it is important how to introduce disorder, other network models show a different phase diagram.
The fermionic counterpart of the Random Bond Ising Model [80] for example does not contain this
metallic phase. In the Cho-Fisher model [71] the metal phase appears at strong defect concentration.
At low concentration, there two topologically distinct phases, it is not fully established whether there is
a direct topological transition, or the thermal metal wedge in the phase diagram persists to arbitrarily
weak disorder and “hides” the topological transition.

1.5.4 Topological Z2-theta term

The NLσM in the symplectic metal class AII and its superconducting analog class CII also have
nontrivial second homotopy group π2(MF ) = Z2. Since this is a subgroup of Z, the parameter Θ in
front of the winding number is restricted to the values 0, π. The action (1.112) then is sensitive only to
N [Q] even or odd. Graphene with long range disorder can be described by a Dirac model with random
scalar potential which in turn maps to a NLσM with such a Θ = π topological term [122].

1.5.5 Wess-Zumino-Novikov-Witten (WZNW) models

In Chap. 4 disordered surfaces of time-reversal invariant topological superconductors (AIII, CI, DIII)
are investigated. As it turns out, the critical surface states can be described by a NLσM with fermionic
manifold MF = H × H/H with H being U(n), Sp(n) or O(n), respectively. In general, topology of
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1.5 Criticality in 2D

the bulk manifests itself by a topological term in the corresponding surface NLσMs [9–11]. In the case
considered here a Wess-Zumino term SWZ(g) is emerges in the action (1.64) due to the topological
nontrivial bandstructure of the clean model.
In order to write down the Wess-Zumino term, one needs to extend g(x, y) to the third dimension

g(x, y, s):

iSWZ(g) = ik

24π

∫
d2r

∫ 1

0
dsεµνλStr(g−1∂µg)(g−1∂νg)(g−1∂λg). (1.115)

As usual ε is the Levi-Civita symbol and k the level of the theory. The topological ambiguity of above
integral arising since g(x, y, s) is not unique forces k to take integer values. At this point a comment
on existence and uniqueness of this extension are in order. The second homotopy group of H is trivial,
π2(H) = 0. This means that given two arbitrary maps f1, f2 : S2 → H one can interpolate between
them continuously, there is a continuous F : S2 × [0, 1] → H such that f(x, y, s = 0) = f1(x, y) and
f(x, y, s = 1) = f2(x, y). By identifying the sphere and the 2d plane, one is guaranteed a map g(x, y, s)
interpolating between g(x, y, s = 1) = g(x, y) and the constant map to identity g(x, y, s = 0) = 1. The
extension is not unique, nevertheless the choice of a specific extension leaves observables invariant.
Maps g : S3 → H are classified by the third homotopy group π3(H) = Z, hence iSWZ(g) is defined up
to a phase nk2πi with integer n. Since this is an integer multiple of 2π observables are not affected.
By employing advanced CFT methods, one can extract multifractality, LDOS and conductance at

criticality in these models. See Tab. 1.2 for an overview and references.
At zero energy the (generalized) multifractal spectrum is strictly parabolic (1.114). Consequently,

the infinite set of multifractal scaling dimensions is solely described by a single parameter θ. A
fundamental question addressed in this thesis, is which 2D Anderson transitions exhibit (generalized)
parabolicity. For a more specific and comprehensive discussion of WZNW models with finite energy
perturbation see Sec. 4.2.2.

1.5.6 Stacking in TSC surfaces

In Chap. 4 numerical evidence is gathered that TSC surface states away from the particle hole
symmetric point ensuring topological protection remain critical. Moreover independent of the energetic
distance from the center of the spectrum they share the same critical properties. These are truly
distinct from Gade-Wegner criticality introduced above in Sec. 1.5.2 and Wess-Zumino criticality (see
Sec. 1.5.5) at zero energy.
The conventional expectation was that finite energy ε 6= 0 breaks the defining chiral S symmetry,

producing a standard Wigner-Dyson class, so that [9] CI → AI (Anderson localized), AIII → A
(Anderson localized), and DIII → AII (Anderson localized or weak antilocalization).
Even more surprisingly than this conventional expectation being violated, the criticality exhibited

resembles Quantum Hall critical phenomenology. Therefore the numerics presented in Chap. 4 sup-
ports the conjectures AIII→ A, CI→ C and DIII→ D at relating time reversal invariant TSC at finite
energy with QH critical systems fine tuned to the critical point. Refs. [50, 126] claim that the QH
Pruisken model (1.113) could flow to a deformed WZNW. This would imply local conformal invariance
of the corresponding QH critical theory, which can be completely ruled out for the SQH transition
(see Sec. 3.9 for a discussion) and is unlikely for the IQH transition (Ref. [53]). The numerical data
presented in this work instead suggests that apparently the TSC surface WZNW flows to a Pruisken
model in presence of the energy perturbation breaking conformal invariance.

31



1 Fundamentals

AIII CI DIII

ν Z 2Z Z

x1/z
π−ν2λA

π(2ν2−1)+ν2λA
[67] 1

2|ν|+3 [63] − 1
2|ν|−3 (|ν| ≥ 3) [61, 123]

θ(ε = 0) |ν|−1
ν2 + λA

π [64, 65, 67] 1
|ν|+2 [64, 65, 124] 1

|ν|−2 (|ν| ≥ 3) [61]

σxx(ε = 0) ν
π

ν
π

ν
π

Table 1.2: Summary of properties for Wess–Zumino–Novikov–Witten criticality at zero energy.
The parameter ν is the level of the theory and the scaling of the density of states is
ρ(ε) ∝ |ε|x1/z. The WZNW model is locally conformally invariant, by the arguments
reviewed and generalized in Sec. 3.2 the multifractal spectrum is strictly parabolic,
∆q = −θ q(1 − q). The level determines the curvature θ. The longitudinal surface
conductivity σxx (for spin or heat transport at the boundary of the TSC, in units of
the appropriate conductance quantum [2, 125]) is quantized. In class AIII, there is
a peculiarity: the abelian disorder strength λA, which is defined in Eqs. (4.10) and
(4.11). The additional parameter λA is RG-marginal and addresses a continuum of
distinct zero-energy fixed points [64, 65, 67].
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2 Chapter 2

Disorder and interaction in chiral chains:
Majoranas vs complex fermions

In this chapter, I study the low-energy physics in topological chains of (real) Majorana fermions and
complex fermions in the presence of both interactions and disorder. Numerically there is qualitatively
a drastically distinct behavior between these systems, despite the fact they are (up to the total number
of degrees of freedom) equivalent in the non-interacting limit.
While in the non-interacting limit both models are equivalent (in particular, belong to the same sym-

metry class BDI and flow towards the same infinite-randomness critical fixed point), their behavior
differs drastically once interaction is added. Density-matrix renormalization group (DMRG) calcula-
tions show that the complex-fermion chain remains at the non-interacting fixed point. On the other
hand, the Majorana fermion chain experiences a spontaneous symmetry breaking and localizes for re-
pulsive interaction.
In order to understand the phenomena observed in the DMRG numerics, an RG analysis treating in-

teraction perturbatively is performed. The appropriate RG fixed point to study is of infinite-randomness
type. The interaction matrix elements from which the scaling dimension can be inferred are given by
two-point wavefunction correlators. Both numerically and analytically the critical eigenstate correla-
tions are studied. The Majorana chain is driven away from the infinite randomness fixed point by a
strongly relevant interaction operator. The interaction is irrelevant in the complex fermionic chain.
The contents of this chapter are based on Ref. [86], a work performed by collaborators and myself.

2.1 Introduction

Topological states of matter represent one of the central directions of the contemporary condensed
matter physics [127]. Systems with topological order are usually characterized by a gap in the bulk
and “metallic” states at the boundaries. These boundary states are robust against disorder-induced
Anderson localization as long as the disorder is not strong enough to close the gap in the bulk[122,
128–130].
One-dimensional (1D) systems with topological phases are considered a potential platform for quan-

tum computing[12–15], as the quantum state is stored non-locally and cannot be destroyed by local,
uncorrelated noise (as long as the noise is not strong enough to close the bulk gap). For non-interacting
systems, the symmetry classification (see Sec. 1.3) by Altland and Zirnbauer [131] combined with the
analysis of topologies [2, 3, 132, 133], extended also to various spatial symmetries [134, 135], has pro-

33



2 Disorder and interaction in chiral chains: Majoranas vs complex fermions

vided a systematic picture of possible topological states. Despite the progress on extending this classi-
fication to include weak interactions [26–28], it is still a formidable task to determine which topological
phases are present in a given interacting systems. While non-interacting topological phases are robust
against disorder-induced localization, this is not always the case for topological states in interacting
systems, see discussion in Sec. 1.3. In particular, in 2D superconductor systems, the combined effect
of disorder and interactions has been shown to break entirely the topological protection [29, 30]. The
underlying mechanism is that disorder renders the interaction relevant in the renormalization-group
(RG) sense; see also Refs. [136, 137] for related physics. The fact that the interplay of interaction and
disorder may crucially affect the physics has been known for a while [138]; recent works show that it
is also of central importance for topological states of matter.
In this work, the effect of disorder and interaction on the low energy physics of a chain of Majorana

quasiparticles commonly called Kitaev chain [32] is explored. Note that usually one studies the gapped
Kitaev chain, with zero-dimensional Majorana bound states at its ends. In particular attention is
payed to the combined effect of disorder and interaction on a gapless Majorana chain representing a
one-dimensional wire with counterpropagating Majorana modes. The most local interaction one can
have in this system is a four-point Majorana interaction [31]. Disorder is introduced by choosing the
hopping parameters from a random distribution. This model could potentially be realized by vortex
lattices [33–35] in a thin film topological superconductor. In general, chains of parafermions such
as Majoranas can also be realized in superconductor-ferromagnet structures along quantum spin Hall
edges [36]. Further, the (gapped) Kitaev chain Hamiltonian has been realized as an effective low energy
theory in InGaAs nanowires on top of a superconductor in a magnetic field [37]. A gapless Majorana
chain can be realized on the edge of an array of such wires [41]. Other platforms for generating
Majorana chains include chains of magnetic atoms on top of a superconductor [139], as well as cold
atoms in optical lattices [140]. The phase diagram of a clean interacting Kitaev chain was studied in
Ref. [31].
The Majorana model is compared to that of complex fermion hopping on a chain with the chemical

potential tuned to zero [38, 39]. In spin language (see Sec. 1.1.1), this model is equivalent to the
random bond XXZ model. In the absence of interaction, both Majorana and complex-fermion models
belong to the symmetry class BDI and are largely equivalent. The only difference between them is
that in the case of complex fermions each pair of states related through chiral symmetry represent
two independent single body states, while in the case of the Majorana chain each pair represents a
single state. However, the situation changes dramatically once one adds interaction. In the case of
complex fermions, previous work based on real-space RG analysis showed that weak interactions are
irrelevant in the RG sense [38, 40] and thus do not change the low energy properties of the system.
This system flows into a peculiar critical infinite-randomness fixed point. For the interacting disordered
Majorana chain, the behavior turns out to be very different. It is shown that interaction drives the
system away from the infinite randomness fixed point, which leads to localization in the case of (even
weak) repulsive interaction. The localization of a disordered Majorana chain with moderately strong
repulsive interaction was observed previously in Ref. [41]. Further it is explained why the above two
similar models behave so drastically different once interaction is added.
The outline of this chapter is as follows. The models are defined in Sec. 2.2. Further, previously

known results on the models are reviewed. In Sec. 2.3, the numerical results obtained with the density
matrix renormalization group[141] (DMRG) code OSMPS [142] are presented. First the clean inter-
acting Majorana chain driven out of criticality by staggering in order to explore emerging topological
phases is considered. Then the DMRG study of the combined effect of disorder and interaction follows,
both for complex fermions and for Majoranas. In the case of complex fermions, the properties of a
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random chain are not essentially influenced by interaction, in consistency with previous results. On
the other hand, the observations indicate that the interacting disordered Majorana chain localizes even
for weak repulsive interaction. This localization is accompanied by a spontaneous breaking of sym-
metry between two topological phases that manifests itself in correlation functions. To shed light on
the physical origin of these results, in Sec. 2.4 and 2.5 two complementary approaches are employed.
Specifically, in Sec. 2.4 momentum-space RG methods (introduced in Sec. 1.1.3) are used to inves-
tigate the effect of weak disorder on the interacting clean models. It is shown that disorder in both
models is strongly relevant rendering the clean fixed point unstable. The complementary approach in
Sec. 2.5 follows, where the start is from an exact treatment of disorder (which drives the system into
the infinite-randomness fixed point) and the interaction considered as perturbation. By combining
the RG treatment of interaction with a numerical study of wave-function correlations (see Sec. 1.2.1)
at the infinite-randomness fixed point, a relevant operator is identified in the case of the Majorana
chain. No such operator exists in the case of the complex fermionic chain in view of the cancellation
between Hartree and Fock contributions. This explains why the Majorana fermion chain is unstable
with respect to weak interaction, while the complex fermion chain is stable.

2.2 Models

In this Section two 1D models to be considered in this chapter are defined: that of complex fermions,
Sec. 2.2.1, and of Majoranas, Sec. 2.2.2. Briefly some previous results relevant to this work are reviewed.

2.2.1 Complex Fermion chain

The vanilla chiral wire is a spinless fermionic chain where the chemical potential is tuned to zero,

H =
∑
j

tj(c†jcj+1 + h.c.). (2.1)

Every hopping term is between an even (e) and an odd (o) site. The Hamiltonian possesses therefore
a sublattice symmetry which is represented by the operator S = τz, where τz is the Pauli matrix
operating on the even-odd subspace. By using the local U(1) gauge freedom, the hopping matrix
elements tj can always be chosen as reals. This implies a time reversal symmetry represented by
complex conjugation T = K with T 2 = 1. Further, the system possesses in addition the particle hole
symmetry P expressed by P = Kτz, with P2 = 1. These symmetries place the model in the BDI
symmetry class.
Disorder is introduced by making the hopping matrix elements random. This does not change

the symmetry classification. The most local interaction that can be added to this model is a two-
point nearest-neighbor density-density interaction. To keep the system at half filling, a chemical
potential proportional to the interaction strength has to be included. Since later it becomes clear that
the sublattice structure of the interaction is important, we generalize the interaction to act on sites
separated by a distance r:

H =
∑
j

tj(c†jcj+1 + h.c.) + g
∑
j

pjpj+r, (2.2)

pj = c†jcj −
1
2 . (2.3)

The couplings of this model for r = 1 are sketched in Fig. 2.1.
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Figure 2.1: Figure taken from Ref. [86]. Sketch of the couplings of the complex-fermion chain
with Hamiltonian (2.2) and r = 1. Couplings starting on odd sites are solid, those
starting on even sites are dashed. Odd sites have blue color and are labeled by +,
while even sites have red color and are labeled by −. The first few quartic interaction
terms involving the sites j and j + 1 are indicated by blue (odd j) and red (even j)
ellipses.

2.2.1.1 Spin representation

Using the Jordan-Wigner transformation, one can map the model (2.2) onto a random-bond, spin-1
2

XXZ chain:

Hspin =
∑
j

tj(σxj σxj+1 + σyj σ
y
j+1) + gσzjσ

z
j+r. (2.4)

The U(1) gauge freedom in the fermionic model corresponds to the spin-rotation symmetry in the
XY plane. While the two models (2.2) and (2.4) are equivalent, the Jordan-Wigner transformation is
non-local, and so is the mapping between the correlation functions. The spin representation turns out
to be particularly suitable for the DMRG analysis and will be used in this chapter.

2.2.1.2 Symmetries and topology

To show that the interaction does not change the symmetry class, the many body generalizations of the
above symmetries T = ÛTK,P = ÛPK, C = ÛC are considered, see Ref. [143]. They can be obtained
by defining the action of the symmetry operators on the creation and annihilation operators:

T̂ cj T̂
−1 = (UT )j,ici = cj , (2.5)

P̂ cjP̂
−1 = (UP )j,ic†i = (−1)jc†j , (2.6)

Ĉ = T̂ · P̂ . (2.7)

This defines the action of T̂ , P̂ , Ĉ on all operators and states in the Fock space. In this many-body
formulation, the time-reversal symmetry T̂ and chiral symmetry Ĉ are represented by anti-unitary
operators, while the particle hole symmetry P̂ is represented by a unitary operator. In contrast to the
single body symmetry operators P and C, the many body symmetry operators P̂ , Ĉ, T̂ all commute
with the Hamiltonian.
Now one can analyze the symmetries of the Hamiltonian (2.2). First, all couplings are real, implying

that T̂ commutes with H. Second, the term −1/2 in Eq. (2.3), which corresponds to a proper choice
of the chemical potential ensures that the model is invariant under P̂ . Further, the operators T̂ and P̂
square to unity. The interacting model belongs therefore to the symmetry class BDI. It was shown that
1D interacting systems of complex fermions belonging to this symmetry class (in absence of pairing
terms) have a Z4 topological invariant [28].
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2.2.1.3 Clean limit

Here the clean limit is briefly discussed. If all matrix elements tj are equal, tj = t, and the interaction
g is not too strong, the low-energy theory of the XXZ model (2.4) is the Luttinger liquid. This is a
conformal field theory with central charge c = 1. For the case of nearest-neighbor interaction, r = 1,
the corresponding condition is[144] |g| < t. For |g| > t the system is gapped.
One can drive the system away from the critical line by introducing a staggering, t2j = te and

t2j+1 = to, with te 6= to. This will in general open a gap. More precisely, investigating the RG
relevance of the corresponding term in the bosonization language (see analysis in Sec. 2.4 below), one
finds that the staggering immediately opens a gap for −1 < g/t < 0.7, i.e., almost in the whole range
of g/t corresponding to a critical theory. The gapped phases with te > to and te < to are topologically
distinct. This can be easily seen by observing that in the limit te → ∞, the fermion at the first site
decouples from the rest of the chain, thus representing a topological zero mode. This zero mode will
persist for te > to (although it will spread over a few sites). In the opposite case, to → ∞, there is
no zero mode. The c = 1 critical theory (Luttinger liquid) thus represents a boundary between two
topologically distinct phases.

2.2.1.4 Noninteracting limit

Consider now a non-interacting system (g = 0) but in the presence of disorder, i.e. with random
hopping matrix elements tj . This breaks translational symmetry j → j + 1 for a given realization of
disorder. However, if the distributions of even t2j and odd t2j+1 matrix elements are the same, the
system remains self-dual with respect to the transformation j → j + 1. In spin language, the model
corresponds to a disordered XY chain. Analytically, the problem can be treated with a real space
RG procedure [38]. At the self-dual point, the system is critical despite an RG flow towards strong
disorder. This very peculiar fixed point is termed infinite-randomness fixed point. By considering
the scaling of the disorder-averaged entanglement entropy, one can define an effective central charge
ceff = ln 2 characterizing this critical state [145–147].

2.2.2 Majoranas

To introduce the second model—the one that is which is of the central interest for this work—one
starts with a 1D chain of spinless fermions of length L with superconducting pairing matrix elements
∆j , hopping t̃j and local chemical potential µj . The pairing and hopping are chosen to be real. The
Hamiltonian reads

H =
L∑
j=1

µjc
†
jcj + t̃j(c†jcj+1 + c†j+1cj)

+ ∆j(cjcj+1 + c†j+1c
†
j). (2.8)

Now one rewrites each pair of fermionic creation and annihilation operators in terms of two Hermitian
Majorana operators γj = γ†j :

cj = (γ2j + iγ2j+1)/2; c†j = (γ2j − iγ2j+1)/2. (2.9)

The Majorana operators obey the commutation relations

{γi, γj} = 2δij ; γ2
i = 1. (2.10)
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Figure 2.2: Figure taken from Ref. [86]. Sketch of the couplings in the Majorana Hamiltonians
(2.13),(2.17). Couplings t2j are dashed, t2j+1 solid. Odd sites have blue color and
are labeled by +, while even sites have red color and are labeled by −. The first two
quartic interaction terms with couplings g(1)

1 and g(2)
1 are indicated by a blue and a

red ellipse, respectively. Translation by one site swaps even and odd hopping and
interaction terms.

Each Majorana operator represents half a degree of freedom. The Hamiltonian becomes now

H = i

2

L∑
j=1

[µjγ2jγ2j+1 + (−t̃j + ∆j)γ2j+1γ2j+2

+ (t̃j + ∆j)γ2jγ2j+3]. (2.11)

If the hopping and pairing terms are chosen such that t̃j = −∆j , this simplifies to

H =
2L∑
j=1

itjγjγj+1, (2.12)

where the notations t2j = µj/2 and t2j+1 = −t̃j were introduced. This model is known as Kitaev
chain[32].
The symmetries of the non-interacting Hamiltonian (2.8) are inspected in the following lines. The

pairing terms in Hamiltonian (2.8) break the global U(1) symmetry to the parity Z2. As usual for
Bogolyubov-de Gennes models, the Hamiltonian has a particle hole symmetry P = K. Since all
couplings are real, the system has time reversal symmetry T = τzK. Both symmetry operators square
to unity, thus the model belongs to class BDI. The product of those two symmetries yields the sublattice
symmetry C = τz.

In the following, the interaction term is included. Since γ2
n = 1, the most local interaction term

couples four neighboring Majoranas [31]:

H =
2L∑
j=1

itjγjγj+1 +
2L∑
j=1

gjγjγj+1γj+2γj+3. (2.13)

Below it will be allowed for randomness in the hopping matrix elements tj . If the values of the
interaction gj as well as the distribution of hopping matrix elements tj is the same for even and odd
sites, the model is self-dual under translation by one side.
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2.2.2.1 Symmetry and topology

The symmetries T ,P and C can be extended to the many-body setting in analogy with discussion in
Sec. 2.2.1.2 for the case of complex fermions. In terms of Majorana operators the symmetries read

T̂ γj T̂
−1 = (−1)jγj , (2.14)

ĈγjĈ
−1 = γj , (2.15)

Ŝ = T̂ · Ĉ. (2.16)

It is worth mentioning that for Bogolyubov-de Gennes Hamiltonians the particle-hole symmetry is not
a true many-body symmetry but rather a constraint related to the Fermi statistics, see discussion in
Ref. [148]. This puts the model in interacting symmetry-class BDI with Z8 topological classification,
see Ref. [26].
While the Hamiltonian (2.13) contains only nearest-neighbor Majorana hopping tj , any odd-range

hopping is in principle permitted by symmetry. In particular, as it is discussed below, the interaction
generates third nearest neighbor hopping on the mean-field level. An even-range hopping would couple
Majoranas from the same sublattice and break the chiral symmetry and the time-reversal symmetry.
Similarly, any interaction term containing an even number of Majorana operators belonging to even
sites (and thus an even number of operators from odd sites), is consistent with the T̂ and chiral
symmetries.

2.2.2.2 Spin representation

The interacting Kitaev chain (2.13) can be mapped onto a spin-1
2 -chain by means of Jordan-Wigner

transformation (see Sec. 1.1.1):

H =
L∑
j=1

t
(1)
j σxj −

L∑
j=1

t
(2)
j σzjσ

z
j+1

−
L∑
j=1

g
(1)
j σxj σ

x
j+1 −

L∑
j=1

g
(2)
j σzjσ

z
j+2. (2.17)

Here t(1)
j and t

(2)
j correspond respectively to odd (t2j−1) and even (t2j) hopping matrix elements of

Eq. (2.13), and similarly for the interaction couplings g. The couplings of this model are sketched in
Fig. 2.2.
It is interesting to note that the odd couplings g(1)

j and t(1)
j couple in the spin language to x com-

ponents, and the the odd couplings g(2)
j and t(2)

j to z components. Translation by one site (even-odd
transformation) exchanges g(1)

j ↔ g
(2)
j and t(1)

j ↔ t
(2)
j . Models related by this transformation are dual,

although this duality is less obvious in the spin representation than in the Majorana representation.
The spin representation will be used for the DMRG analysis below.

2.2.2.3 Noninteracting limit

In the non-interacting limit (g = 0) the Hamiltonian (2.17) describes the transverse Ising model. In the
clean translational-invariant case (no staggering, t(1) = t(2)) the system is critical with a 1D Majorana
low-energy theory and central charge c = 1

2 . In the presence of random hopping, the model is at the
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infinite-randomness fixed point [40] as noted above in the context of complex fermions in Sec. 2.2.1.4.
The difference between the two models in the absence of interaction is that two single-particle states
of the complex-fermion model correspond to a single state of the Majorana model. As a consequence,
the effective central charge at the infinite-randomness fixed point is halved, c = (ln 2)/2.

2.2.2.4 Clean limit

For the case of interacting model with homogenous couplings, tj = t and gj = g, Rahmani et al. [31]
have determined the phase diagram:

• Strong interaction. The system is gapped for very strong interactions of both signs (g > 250 or
g < −2.86). The translation symmetry gets spontaneously broken, and the transition between
the topologically distinct phases is of first order type.

• Attractive interaction. There is a critical phase up to very strong interactions 0 < g < 250. The
low energy theory is a single Majorana mode with central charge c = 1

2 . This phase is controlled
by the same fixed point as the transverse Ising model and therefore dubbed Ising phase.

• Weak repulsive interaction. For the case of repulsive interaction (g < 0), the Ising phase is stable
for sufficiently weak interactions, g > −0.28.

• Intermediate repulsive interaction. For repulsive interaction of intermediate strength, −2.86 <
g < −0.28, a phase emerges with coexisting Luttinger-liquid and Majorana modes. Alternatively,
one can say that a single Majorana mode of the non-interacting theory is promoted to three Ma-
jorana modes, which can be understood already by mean-field level treatment of the interaction.
The central charges in this phase is c = 3

2 .

2.3 DMRG results

In this section an overview over the DMRG numerics from Ref. [86] performed by one of my collabo-
rators is given. For DMRG methods, spin models are most convenient. Therefore the spin represen-
tations, Eq. (2.4) and Eq. (2.17) of the models are employed. The software OSMPS [142] was used
for the calculations. The maximum bond dimension was chosen to be 512, states with weight smaller
than 10−8 were truncated.

2.3.1 Interacting Majorana chain with staggering

This section presents the numerical DMRG results obtained by my collaborator in Ref. [86]. The
analytical reasoning in the next sections are based on these findings.

The main numerical observations are that disorder drives an interacting Majorana chain into different
localized phases if the interaction is repulsive. To obtain an overview over possible localized phases in
the Majorana model, first consider the clean model driven out of criticality by introducing staggering
is considered. The parameters of the Hamiltonian, Eq. (2.17) are chosen equal to t(1)

i = t1, t(2)
i = t2,

g
(1)
i = g1, and g(2)

i = g2. The system size is fixed to L = 96 spin sites (which corresponds to 2L = 192
Majorana sites). Parameters are chosen in such a way that the relation g1/t1 = g2/t2 is maintained; a
short-hand notation g/t is used for this ratio. The DMRG simulations explore the range −4 < g/t < 1
of the interaction strength, varying the staggering, 0 < t1/t2 = g1/g2 < ∞. For the staggering region
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2.3 DMRG results

0 < t1/t2 < 1, the hopping t1 = 1 is fixed and t2 is varied, while for staggering above the self-dual line
1 < t1/t2 <∞, t2 = 1 is fixed and t1 is varied.
The system with a given value of staggering t1/t2 is related to the system with inverse staggering

via duality transformation. In the Majorana representation, this transformation corresponds simply
to a translation by one lattice site. On the other hand, in the spin language of Eq. (2.17) the duality
transformation is much less trivial (and, in particular, non-local).
In the MPS representation the (von Neumann) entanglement entropy between two subsystems split

by a bond is readily available [142, 149]. In a critical 1D system of length L with open boundary
conditions, the bond entropy scales as a function of bond position x as [150]

S(x) = c

6 ln
(

2L
π

sin πx
L

)
+ γ (2.18)

where c is the central charge and γ the topological entanglement entropy. The slope of the dependence
of the entanglement entropy on the scaling function entering Eq. (2.18) can thus be used to extract
the central charge of the system. In gapped systems, the entanglement entropy saturates, i.e., c = 0.

In order to identify critical lines and regions, the central charge defined according to Eq. (2.18) is
plotted in Fig. 2.3 via a color map in the parameter plane spanned by the interaction strength g/t and
the staggering t1/t2. Further, in Fig. 2.4 the long-range spin-spin correlation 〈σzL/4σ

z
3L/4〉 are shown.

This plot helps to differentiate between topologically distinct gapped regions. Figure 2.5 provides an
overview over results that are discussed in more detail below. In this figure, numbers from 1 to 6 label
different regions; the corresponding distance dependences of spin correlations is shown (with the same
labels) in Fig. 2.6. On the self-dual line, t1/t2 = 1, the range of interaction strength −4 < g/t < 1
can be divided, in agreement with Ref. [31], into three intervals: the c = 1

2 Ising phase for attractive
and relatively weak repulsive interaction, g/t > −0.28, the c = 3

2 phase where the Ising sector coexists
with a Luttinger liquid sector for repulsive interaction in the interval −0.28 > g/t > −2.9, and a
gapped phase for even stronger repulsive interaction, g/t < −2.9. This distinction remains useful also
for understanding of phases in the presence of staggering, as discussed below.

2.3.1.1 Attractive and weak repulsive interaction

In the absence of staggering, t1/t2 = 1, the system remains in the non-interacting Ising phase for
attractive interaction and for repulsive interaction, −g/t < 0.28, as was found in Ref. [31]. Indeed, one
can observe in Fig. 2.3 that on the self-dual line the system is critical with a central charge of 1

2 at this
range of interactions. At finite staggering the system is gapped, with two topologically distinct phases
(labeled 2 and 3 in Fig. 2.5) that can be distinguished by the behavior of the spin-spin correlator. For
staggering t1/t2 = g1/g2 > 1, which corresponds to the topologically trivial phase in the fermionic
picture, it decays quickly with distance, see Fig. 2.4 and the top left panel of Fig. 2.6. On the other
hand, in the symmetry-broken phase in the spin language, t1/t2 = g1/g2 < 1 (which is topologically
non-trivial in the fermion language), the correlator saturates at a constant value of order unity at large
distance, Fig. 2.4 and the bottom left panel of Fig. 2.6. On the critical line t1/t2 = g1/g2 = 1, the
correlator decays slowly (algebraically), as expected, see middle left panel of Fig. 2.6.

2.3.1.2 Intermediate repulsive interaction

For stronger repulsive interaction −0.28 < g < −2.9, the clean system without staggering exhibits a
Luttinger liquid sector in addition to the Ising sector as has been already pointed out in Sec. 2.2.2.4.
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2 Disorder and interaction in chiral chains: Majoranas vs complex fermions

Figure 2.3: Figure modified from Ref. [86]. Central charge c of the clean interacting Majorana
chain vs interaction strength g1/t1 = g2/t2 ≡ g/t and staggering t1/t2 = g1/g2. On
the self-dual line (no staggering, i.e., t1/t2 = 1), the results agree with Ref. [31]: the
central charge is c = 1

2 for −g/t . 0.28 and is then c = 3
2 until the system becomes

gapped at strong repulsive interaction, −g/t > 2.9. In the Ising phase, the system
is gapped everywhere apart from the critical line (i.e., by any staggering t1/t2 6= 1).
On the other hand, in the Ising+LL phase, adding staggering produces an extend
critical region with c = 1, see also a schematic phase diagram in Fig. 2.5. The red
patch is a peculiar region where determination of c by means of Eq. (2.18) breaks
down, see Ref. [86] for more detail. In fact, this phase is gapped (as is also clear by
inspecting its dual, t1/t2 → t2/t1), i.e., the properly defined central charge is zero.

In this paper we will call this phase “Ising + LL” phase, where “LL” stands for “Luttinger liquid”. In
Ref. [31] this phase is called the “floating” phase, in analogy to a similar phase in the anisotropic next
nearest neighbor Ising model. It is characterized by a central charge of c = 3

2 . Our numerical data in
Fig. 2.3 confirm this behavior.
As Fig. 2.3 demonstrates, the staggering does not immediately lead to a gapped system in this

interaction range. Instead, there is an extended region of finite staggering with a central charge of
c = 1 around the no-staggering line. This can be understood as a result of the Luttinger-liquid sector
being stable to weak staggering, with the Ising sector becoming gapped. An argument based on RG
analysis is given in Sec. 2.4. More precisely, there are two such phases with c = 1, labeled 5 and 6 in
Fig. 2.5, which are separated by the line with c = 3/2 (label 4).

In these extended critical regions, the spin-spin correlator is an oscillating function of distance, as
detailed in Fig. 2.6. The oscillation decay above the no-staggering line (label 6, top right panel),
while their amplitude remains constant below this line (label 5, bottom right panel). On the line
without staggering, the oscillations decay very slowly (label 4, middle right panel). The non-decaying
oscillation in the extended critical region below the self-dual line are also visible in Fig. 2.4.
At extreme staggering t1/t2 = 0, the model reduces to the longitudinal Ising model. This model

exhibits a first order transition at the point g/t = 0.5. The critical region with central charge c = 1
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2.3 DMRG results

Figure 2.4: Figure modified from Ref. [86]. The 〈σz24σ
z
48〉 correlator between spins on the sites

i = 24 and i = 48 for the clean interacting Majorana chain as a function of interaction
strength g1/t1 = g2/t2 ≡ g/t and staggering t1/t2 = g1/g2. In the gapped phases (cf.
Figs. 2.3 and Fig. 2.5) the correlator is equal to zero above the self-duality line and
to unity below this line, thus helping to distinguish two topologically distinct phases.
In the critical region with c = 1 around the Ising + LL phase the correlator shows
an oscillatory behavior, cf. Fig. 2.6, right panels.

is separated from the gapped region of the Ising phase by a line connecting this point (g/t = 0.5 and
t1/t2 = g1/g2 = 0; marked by a black dot in Fig. 2.5) with the point of the Lifshitz transition on the
critical line (g/t ≈ −0.28 and t1/t2 = g1/g2 = 1; marked by a red star in Fig. 2.5). Additionally, there
is a vertical critical line (red) connecting the black dot to its dual. This line is also clearly visible in
the picture of the central charge, Fig. 2.3, as it has a central charge of c = 3

2 .
At variance with the horizontal c = 3

2 line that is determined by the condition of no staggering,
the vertical c = 3

2 line is not fixed by any simple symmetry. Thus additional checks were performed
to verify its position. First, in order to exclude finite-size effects, considered twice larger systems
(L = 192) are considered in this part of the phase diagram. The results demonstrated that neither the
obtained value c = 3

2 nor the position of the line change with L. This implies that the vertical c = 3
2

line is indeed a property of the system in the thermodynamic limit. Second, the precise location of
the line was looked at more carefully and found that it is not exactly at −g/t = 0.5, although very
close to it. As an example, it was found that the c = 3

2 line crosses the horizontal line t1/t2 = 0.72 at
−g/t ≈ 0.45. This indicates that the “vertical” c = 3

2 line is not exactly straight but rather shows a
small deviation from the line −g/t = 0.5.
Analogous to the horizontal (no-staggering) critical line, the value c = 3

2 can be understood as a
superposition of a Luttinger liquid (c = 1) and a Majorana mode (c = 1

2) due to a topological phase
boundary.
To shed light on the reason for the emergence of the vertical c = 3

2 line, I performed a mean-field
analysis by generalizing that of Ref. [151] to the problem. In this way, one can approximately mapped
an interacting fermionic Hamiltonian to a non-interacting (mean-field) one and obtained the condition
for gap closing. This condition yields a two-dimensional surface in the whole (three-dimensional) space
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2 Disorder and interaction in chiral chains: Majoranas vs complex fermions

Figure 2.5: Figure taken from Ref. [86]. Schematic phase diagram of the clean interacting
Majorana chain in the plane spanned by the interaction strength g1/t1 = g2/t2 ≡ g/t
and the staggering t1/t2. The labels from 1 to 6 correspond to the plots of the spin-
spin correlator as a function of distance in Fig. 2.6 which are labeled in the same
way. For −g/t . 0.28 the system on the self-dual line (t1/t2 = 1) is in the Ising phase
with central charge c = 1/2 (label 1). Introducing staggering yields two topologically
distinct gapped phases (labels 2 and 3). At the point −g/t ≈ 0.28 (marked by a
red star) the system undergoes a Lifshitz transition into the Ising+LL phase with
c = 3/2 (label 4). This Ising+LL phase intersects the projection plane also in the
vertical line at −g/t = 0.5 (red dashed-dotted line). For intermediate interactions,
a not too strong staggering leaves the system gapless but reduces its central charge
down to c = 1 (Luttinger liquid phases; bounded by green dashed and blue dotted
lines, labels 5 and 6). These lines are drawn schematically, their exact form has not
been determined. The black dot on the bottom of the diagram (g1/g2 = t1/t2 = 0
and −g/t = 0.5) marks the first-order transition in the longitudinal Ising model.
The blue square at −g/t ≈ 2.9 on the self-duality line t1/t2 = 1 is the point of the
transition to a gapped phase. The phase diagram is symmetric with respect to the
duality transformation that links points with the same value of g/t and inverse values
of t1/t2.
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of parameters (t2/t1, g1/t1, and g2/t1). The surface can be computed numerically. One can observe
numerically that this two-dimensional surface intersects the two-dimensional surface determined by
the condition t1/t2 = g1/g2 (that is used in the DMRG numerics) on two lines – the horizontal and
the vertical ones. The numerically obtained position of the vertical line is close to −g/t = 0.5. With
the superimposed extended Luttinger liquid phase, one has c = 3

2 on these lines. In analogy with the
horizontal line, the vertical line corresponds to the gap closing in the Ising sector, which corresponds
to a phase boundary between topologically distinct phases.
Another interesting point is the red patch appearing in the upper plane seemingly violating the

duality of the model. This is more than a numerical artifact and has to do with corrections to the
scaling form of the entanglement entropy (2.18) in gapped phases. In the Appendix of Ref. [86] a more
detailed discussion can be found.

2.3.1.3 Strong repulsive interaction

With increasing strength of repulsive interaction −g/t, the extended critical region around the no-
staggering line gradually shrinks, see Fig. 2.3. For sufficiently strong interaction −g/t > 2.9 this
region vanishes and, moreover, the line of no-staggering becomes gapped.

2.3.2 Interacting Majorana chain with disorder

In this part, the DMRG numerics that introduce disorder in the interacting Majorana chain model
are presented. The hopping tj was chosen as random independent variables, with a homogeneous
distribution over the interval [0.5, 1.5]. All hopping matrix elements have now the same distribution,
so that there is no staggering.
In general, critical lines can move in phase space as function of disorder strength [152, 153]. However,

the critical line at no staggering is pinned by self-duality. Therefore, it should remain critical in the
presence of both disorder and interaction unless spontaneous symmetry breaking takes place, see a
more detailed discussion in Sec. 2.3.2.2 below.
Since the average value of the hopping matrix elements is unity, the value of the interaction g has

now the same meaning as g/t in the analysis of the clean system. Three different ranges of interaction
strength were considered: (i) attractive interaction 0 < g < 250, (ii) weak repulsive interaction 0 >
g > −0.28 and (iii) medium repulsive interaction −0.28 > g > 2.86. The effective central charge in
these regions of interaction was calculated by analyzing the disorder-averaged entanglement entropy
via Eq. (2.18).

2.3.2.1 Attractive interaction

For attractive interaction 0 < g < 250, the clean system is in the Ising phase[31] with a central charge
of 1

2 , see Sec. 2.3.1.1 and left panel of Fig. 2.7. On the other hand, the disordered non-interacting
system has an effective central charge of ceff = ln 2

2 ≈ 0.35 as was found in Ref. [146]. The numerics
confirms this value.
Remarkably, in the presence of both disorder and interaction, the central charge returns to the value

of the clean system ceff = 1
2 , see Fig. 2.7 (right panel). For higher attractive interaction, the disorder

averaging requires less samples in order to give a smooth function of the entanglement entropy vs
scaling function than for lower interaction. This serves as an additional indication that disorder does
not play an important role for the Majorana chain with attractive interaction.
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2 Disorder and interaction in chiral chains: Majoranas vs complex fermions

Figure 2.6: Figure taken from Ref. [86]. Spin-spin correlator 〈σzL/4σ
z
L/4+i〉 for the clean Majorana

chain in spin formulation, Eq. (2.17), at weak repulsive interaction g/t = −0.10 (left)
and medium repulsive interaction g/t = −0.85 with no staggering, t1/t2 = 1 (middle),
and staggering t1/t2 = 1.39 (top) and t1/t2 = 0.72 (bottom). The labels from 1 to 6
correspond to those in Fig. 2.5. The system size is L = 190, in the indices L/4 denotes
the integer part [190/4] = 47. In the case of weak repulsive interaction, the correlator
is strictly positive, while in the case of medium repulsive interaction, the correlator
oscillates as a function of distance and can take on negative values. On the self-
dual line (middle), both correlators decay slowly (presumably algebraically) to zero.
Above the self-dual line the correlators decay in both regimes quickly (presumably
exponentially) to zero. Below the self-dual line, the correlator becomes constant
for weak repulsive interaction and oscillates with a constant amplitude for medium
repulsive interaction. The drop of the correlator in the bottom left panel (with label
2) near i = 3L/4 (i.e., at the right end of the curve) is a boundary effect.
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Figure 2.7: Entanglement entropy of the clean (left) and disordered (right) Majorana chain with
attractive interaction g = 1 vs the scaling function Eq. (2.18) for different system
sizes. For the clean system, the central charge is c = 1

2 in agreement with Ref. [31].
For the disordered system, the effective central charge is also found to be c = 1

2 .

2.3.2.2 Weak repulsive interaction

The clean system stays critical with c = 1
2 for weak repulsive interaction [31], −0.28 < g < 0, see

Sec. 2.3.1.1 and the left panel of Fig. 2.8. An important finding was that adding disorder leads
to localization, see right panel of Fig. 2.8. This appears to happen for arbitrarily weak repulsive
interaction and arbitrarily weak disorder. Due to duality, the critical lines have to be mirror symmetric
around the self-dual line with respect to staggering. This holds also when the system is disordered. For
this reason, the critical line cannot simply bend away from the self dual line. If the system localizes
on the self-dual line, there are therefore two possibilities: (i) the critical line splits up into two lines
with equal central charge, leaving a gapped region around the self-dual line, or (ii) the critical line
terminates, and the transition between the region above and below the self-dual line becomes first order.
It is shown in Appendix A.3 by treating the interaction at the mean-field level that the criticality is
pinned to the self-dual line for all interaction values and disorder strengths. This excludes the option
(i), thus implying that the possibility (ii) is realized.
Thus one can conclude that, for a disordered system with repulsive interaction, the symmetry gets

spontaneously broken, and the system undergoes a first-order transition on the self-dual line. This is
also reflected in the distance dependence of the spin correlation function. Specifically, it was found
that, depending on the disorder configuration, this correlation function shows one of two types of
behavior: it either very quickly decays to zero or fluctuates around a value of order unity. This is
illustrated in Fig. 2.9 where the results for two disorder configurations are shown. These two types of
behavior correspond to two topologically distinct phases, as is clear from the comparison of two panels
of Fig. 2.9 with the top left and bottom left panels of Fig. 2.6. In the latter figure, the topologically
distinct phases were induced by staggering (in a clean model) breaking explicitly the symmetry with
respect to the duality transformation. One can now see that adding disorder breaks spontaneously the
symmetry of the system on the no-staggering line, placing it into one of the two topologically distinct
phases. The transition between these two topological phases becomes thus first order.
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Figure 2.8: Entanglement entropy of the clean (left) and disordered (right) Majorana chain with
weak repulsive interaction g = −0.1 vs the scaling function Eq. (2.18) for different
system sizes. In the clean system, the central charge stays at c = 1

2 , while in the
disordered case the entanglement entropy saturates indicating localized behavior.

Figure 2.9: Spin-spin correlator 〈σzL/4σ
z
L/4+i〉 of the Majorana chain with weak repulsive inter-

action g = −0.1 at length L = 200. The two panels represent two different disorder
configurations. In the left panel, the correlator decays quickly to zero, which is anal-
ogous to the behavior in the presence of staggering g1/g2 = t1/t2 > 1, see top right
panel of Fig. 2.6. In the right panel, the correlation function fluctuates, staying of or-
der O(1). This is similar to the region with staggering g1/g2 = t1/t2 < 1, see bottom
right panel of Fig. 2.6. This behavior reflects the fact that disorder breaks sponta-
neously the symmetry with respect to duality transformation, placing the system in
one of two topological phases.
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Figure 2.10: Entanglement entropy of the clean (left) and disordered (right) Majorana chain
with medium repulsive interaction g = −0.5 vs the scaling function Eq. (2.18). The
central charge of the clean system is 3

2 as predicted [31]. On the other hand, the
entanglement entropy saturates for the disordered case, implying localization.

2.3.2.3 Medium repulsive interaction

If the repulsive interaction is in the interval −2.86 < g < −0.28 the clean system is in the Ising+LL[31]
phase which is characterized by a central charge of 3

2 , see Sec. 2.3.1.2 and left panel of Fig. 2.10. The
results show that, similar to the case of weak repulsive interaction, disorder leads to localized behavior
also in this range of interaction, see right panel of Fig. 2.10. This was also found in Ref. [41].
As in the case of weak repulsive interaction, the spontaneous symmetry breaking by disorder can

be visualized by inspecting the spin-spin correlation function for individual realizations of disorder.
Again two distinct types of behavior were found that are illustrated in Fig. 2.11: oscillations without
decay or with a quick decay. The behavior shown in the left panel of Fig. 2.11 corresponds to that
in the clean model in the Ising+LL phase with staggering g1/g2 = t1/t2 < 1, see bottom right panel
of Fig. 2.6, while the behavior shown in the right panel of Fig. 2.11 corresponds to that in the
clean model with staggering g1/g2 = t1/t2 > 1, see top right panel of Fig. 2.6. Thus, the symmetry
between the two topological phases gets broken spontaneously by disorder in full analogy with the
weak-repulsion regime. A comparison of Figs. 2.9 and 2.11 reveals an interesting difference between
the weak-repulsion and intermediate-repulsion topological phases. Specifically, in the latter case the
correlator shows oscillations around zero, thus changing sign.

2.3.3 Disordered Fermionic chain

It has been found that the (sufficiently weak) interaction for a disordered interacting fermionic chain,
Eq. (2.2), does not modify the behavior of the disordered system in Ref. [86]. Both for r = 1 and
r = 2 the interacting system remains critical and has the central charge c = ln 2 characteristic for the
infinite-randomness fixed point. The interaction must be RG irrelevant.
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Figure 2.11: Spin-spin correlators 〈σzL/4σ
z
L/4+i〉 of the Majorana chain for medium repulsive in-

teraction g = −0.5 with length L = 200. Two panels show results for two different
disorder configurations that lead to vastly different behavior. In the plot for the first
disorder configuration, the spin correlator oscillates around zero with an amplitude
essentially independent of distance. This behavior is analogous to the one induced
by staggering in the region below the self-dual line, see bottom right panel of Fig.
2.6. For the other disorder configuration, the spin-spin correlator oscillates and
quickly drops to zero. This behavior corresponds to the one induced by staggering
in the region above the no-staggering line, see top right panel of Fig. 2.6. The disor-
der thus breaks spontaneously the symmetry between the two topologically distinct
phases. In both phases, the correlator takes negative values for some distances, at
variance with the case of weak repulsive interaction, Fig. 2.9.

2.4 Renormalization group around the clean fixed point

Numerical results of Sec. 2.3.2 for a disordered interacting Majorana chain indicate that in the presence
of disorder an interaction of either sign becomes relevant. To get the corresponding analytical insight,
one has to consider a model with both interaction and disorder, which is an extremely challenging
problem. In this Section this problem is approached by starting from a clean interacting Majorana
chain and exploring the effect of weak disorder.

The stability of the clean fixed points of the interacting fermionic and Majorana models can be probed
by a weak-disorder momentum-space RG analysis, which is introduced in Sec. 1.1.3. For this purpose,
the low-energy theory is considered in the continuum limit. In the case of the complex fermionic chain,
this is a Luttinger liquid (LL) theory. In the Majorana case, it is either a Majorana theory (c = 1

2 ,
Ising phase) or a Majorana theory with an additional LL sector (c = 3

2 , Ising +LL phase), depending
on the interaction strength. The density-density parts of the interaction are quadratic in Luttinger
theory and renormalize the Luttinger parameter K.
In these continuum theories, disorder appears as a random-mass term. Choosing nonzero average

of the mass or a constant non-vanishing mass corresponds to staggering. By including such terms,
one can draw conclusions about the stability with respect to staggering, which is another goal of the
present section. This should help understanding the appearance of extended gapless phases that were
found by DMRG numerical analysis in Sec. 2.3.1.
It is shown below that at any of the fixed points of the clean Majorana chain (Ising or Ising +
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LL), the disorder becomes relevant and flows to the strong-coupling regime. This happens also for
the complex-fermion fixed point (Luttinger liquid) if the interaction is not too strong. This will lead
to the complementary analysis in Sec. 2.5, where disorder is treated exactly and the interaction as a
perturbation.

2.4.1 Majorana: c = 1/2 fixed point

The continuum decomposition in slow modes γR/L of the lattice Majorana operators γj is

γj = γR + (−1)jγL. (2.19)

For a Majorana low energy theory disorder corresponds to a random-mass term of the form:

Smaj
m =

∫
dτdx m(x)γR(τ, x)γL(τ, x). (2.20)

A constant mass m(x) = m0 corresponds to a staggering; it directly opens a gap of size m0.
The disorder is assumed to be Gaussian white noise with 〈m(x)m(y)〉 = Dδ(x − y); one can also

include a staggering by introducing a non-zero mean 〈m(x)〉 = m0. Treating the disorder by using
the replica trick, one straightforwardly finds that the term generated by disorder has (upon disorder
averaging) the scaling dimension 1 and is therefore relevant in the RG sense. This term drives the
system away from the clean fixed point. However, this does not necessarily mean that the system
becomes gapped. For example, in the non-interacting case (and in the absence of staggering) the
system flows to the critical infinite-randomness fixed point [40]. It means, however, that an analysis
based on RG around the clean fixed point is insufficient to understand the infrared physics of the
problem and suggests a complementary approach as implemented in Sec. 2.5.
Finally it should be noted that no relevant interaction term can be written down in a Majorana low-

energy theory. Indeed, the interaction should involve at least four Majorana operators with scaling
dimension 1

2 each and two derivatives with dimension −1. The most relevant term thus has scaling
dimension −2 and is strongly irrelevant.

2.4.2 Complex fermions: Luttinger liquid (c = 1) fixed point

Lattice operators cj are related to their continuum versions ψR/L as follows

cj = ijψR + (−i)jψL. (2.21)

In the presence of interaction g 6= 0, bosonization has to be employed. Here the following conventions
relating the fermionic fields ψR/L to the bosonic fields φ, θ are used:

ψR/L = UR/L exp
(
φ± θ

)
. (2.22)

The Klein factors UR/L are not important in any of the following considerations.
The exact dependence of the Luttinger parameter K on the parameters of the lattice model is

known[144]:

g/t = − cos
(
π/2K

)
. (2.23)
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Disorder and staggering introduce a mass term of the form:

SLL
m =

∫
dτdx m(x)(ψ†R(τ, x)ψL(τ, x) + h.c.). (2.24)

The scaling dimension of a constant mass term is 2 − K. This means that it is relevant for K < 2,
which corresponds, in terms of the microscopic parameters, to the interval −1 < g/t < 0.7 covering
almost the whole range of critical theories, |g/t| < 1.

The scaling dimension of the quartic term generated by disorder, as obtained by the replica field-
theory approach, is 3 − 2K. It depends thus on the Luttinger parameter K whether the disorder is
relevant or not. Specifically, for g/t < 0.5 the disorder is relevant, while for 0.5 < g/t < 1 the model
remains at the clean fixed point in the presence of weak disorder. The latter prediction has been
checked by DMRG [86] for the scaling of the entanglement entropy at strong attractive interaction,
g = 0.8, and sufficiently weak disorder. One finds c = 1, as expected for the system at the Luttinger-
liquid fixed point. Around the non-interacting limit, i.e. for K sufficiently close to unity, the disorder
is strongly relevant, as expected.
The allowed interaction terms are discussed briefly as perturbations to the Luttinger liquid fixed

point. They are of three types. First, the density-density interaction is marginal and simply modifies
the value of K. Second, terms that are of higher order in ψ or contain gradients are strongly irrelevant.
Finally, the staggering yields sine and cosine terms that are relevant in a range of K (in particular,
around the weak-interaction point K = 1). On the self-dual line, these latter terms are absent.

2.4.3 Majorana chain: Ising+Luttinger liquid (c = 3/2) fixed point

This subsection turns to the c = 3
2 fixed point of the clean Majorana chain that emerges in a range of

medium-strength repulsive interactions, as discussed above. It was suggested in Ref. [31] that, at this
fixed point, the low-energy theory consist of Majorana and Luttinger-liquid sectors, see also Sec. 2.2.2.4
and 2.3.1.2. This can be understood by considering the quadratic form of the action including the
third-nearest-neighbor hopping which is generated by mean-field treatment of the interaction (or,
alternatively, under RG flow):

H = i
∑
j

[
tjγjγj+1 + t′γjγj+3

]
. (2.25)

The third-nearest-neighbor hopping term modifies the dispersion such that there are now three Majo-
rana modes, or, equivalently, a fermionic mode emerge in addition to the Majorana mode. The lattice
Majorana operator γj then has the following low-energy decomposition [31]:

γj = 2γL + 2(−1)jγR
+ exp

(
−ik0j

)
Ψ†L + exp

(
+i(k0 + π)j

)
Ψ†R + h.c. , (2.26)

where k0 is the effective Fermi momentum. The interaction gγjγj+1γj+2γj+3 generates now the density-
density interaction of the fermions ΨR, ΨL. To treat this interaction exactly, the bosonization approach
is employed. Another interaction term couples the resulting Luttinger liquid to the Majoranas with
strength g′, see Eq. (A.2).
Next, the stability with respect to staggering is discussed. The kinetic term γjγj+1 has oscillatory

components with wave vectors ki = 0, k0, k0 +π, 2k0, 2k0 +π, and π. A constant mass term m(x) = m
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2.4 Renormalization group around the clean fixed point

Table 2.1: The RG scaling dimension and relevance range of couplings in the low-energy theory of
the Ising+LL phase. Forward scattering is gauged away, see Appendix A.1. The five
remaining (dimensionless) coupling constants corresponding to disorder are labeled
yki , where ki refers to the momentum component. The dimensionless interaction
strength is denoted by y′ = g′au−1, where a is the lattice spacing and u the LL
velocity. The clean Ising+LL phase of the Majorana chain is characterized by K < 1
and remains stable with respect to coupling between the Ising and LL sectors as long
as [31] 1

4 < K < 1.
coupling dimension relevant in
yk0 2− 1

2(K +K−1) 0.27 < K < 3.8
yk0+π 2− 1

2(K +K−1) 0.27 < K < 3.8
y2k0 3− 2(K +K−1) 0 < K < 2
y2k0+π 3− 2K K < 1.5
yπ 3− 2K−1 0.67 < K
y′ 1−K−1 1 < K

describing staggering couples to the π-component of the kinetic term:

Sm =
∫

d2r
[
−8mγLγR + 4m cos k0 cos 2θ

]
. (2.27)

The Majoranas are then immediately gapped out. On the other hand, the cosine term in the Luttinger-
liquid sector is relevant only for K > 1

2 . There is therefore a region of the interaction strength where
the Luttinger liquid is stable towards staggering. This explains the existence of the extended gapless
phase with c = 1 observed numerically, see Fig. 2.3 and the schematic phase diagram in Fig. 2.5.
Now the effect of disorder that is treated as a weak perturbation is analyzed. Combining the

oscillatory components of the kinetic term γjγj+1 (with the six wave vectors listed above) with the
corresponding Fourier components of the random mass yields non-oscillatory contributions. One there-
fore gets six independent disorder couplings Dki that coincide at the beginning of the RG flow but
renormalize differently. Details on implementation of the RG procedure are presented in Appendix A.1.
In Eq. (A.1), the disorder-induced terms in the action (with the replica formalism used to average over
disorder) are presented. While the forward scattering D0 cannot be gauged away straightforwardly, a
more detailed calculation shows that it does not change the results presented here.
In Table 2.1, the scaling dimensions of the disorder couplings resulting from the corresponding RG

equations are listed. They determine the range of K in which the disorder-induced terms are RG-
relevant. One can observe that at least one of the couplings is relevant for any value of K, i.e. the
disorder always drives the system aways from the clean fixed point. In analogy with the conventional
Giamarchi-Schulz RG [154], the RG equations for the disorder-induced couplings are complemented
by the flow equation for the Luttinger constant K:

∂K

∂`
= −1

2

[
K2 − (1 +K2)(3− 2K)

2

]
y2k0+π

+ 1
2

[
1− (1 +K2)(3− 2/K)

2

]
yπ. (2.28)
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2 Disorder and interaction in chiral chains: Majoranas vs complex fermions

Here y2k0+π = π−1D2k0+πau
−2 and yπ = 16 cos2 k0Dπau

−2 are dimensionless coupling constants for
the disorder-induced terms with momentum component ki in terms of lattice spacing a and Luttinger-
liquid velocity u. In Eq. (2.28), kept only the contribution of the couplings y2k0+π and yπ to the
renormalization of K has been kept. In principle, the other couplings yki also contribute to this
renormalization; however, they are less relevant for K around unity, so that their contributions have
been neglected.
A brief summary of main conclusions that can be drawn from this RG is as follows. First, the

Ising+LL clean fixed point is stable towards interaction. Indeed, this phase is characterized by a
repulsive interaction, hence K < 1, so that the y′ coupling is irrelevant. In fact, a higher order coupling
between the LL and Majorana sectors becomes relevant for very strong interaction [31], K < 1/4, so
that the range of stability in the absence of disorder is 1/4 < K < 1. Second, over an extended
parameter regime, the staggering is irrelevant in agreement with the numerical results of Sec. 2.3.1.2,
see Fig. 2.3. Third, and most importantly, the disorder at the Ising+LL fixed point always runs to
strong coupling. In other words, this fixed point is unstable with respect to disorder.
The results obtained in Sec. 2.4 demonstrate that the weak-disorder analysis is not sufficient for

Majorana chain, both in the c = 1/2 and c = 3/2 phases of the clean system. The RG relevance
of disorder is also supported by the analysis in Appendix A.3 where the exact treatment of disorder
is combined with mean-field treatment of the interaction. The disorder is also RG relevant for the
complex-fermion chain if the interaction is not too strong. These results motivate one to perform in
Sec. 2.5 a complementary analysis. One can start there from an exact treatment of disorder and will
include interaction as a weak perturbation.

2.5 Strong randomness fixed point: Eigenfunction statistics and effect
of interactions

In Sec. 2.4, one could see that the combined effect of interaction and disorder cannot be understood as a
perturbation around the clean interacting fixed point. Specifically, it has been established that disorder
is strongly relevant at the clean fixed point, thus quickly increasing under RG. It is known that, in the
absence of interaction, this RG flow leads to the critical infinite-randomness fixed point. It is thus a
natural question whether this fixed point is stable or not with respect to interaction. This question is
addressed in the present section. The analysis has much in common with the investigation of stability
of 2D surface states of disordered topological superconductors with respect to interaction [29, 30]. A
closely related physics controls the enhancement of superconducting and ferromagnetic instabilities
by disorder in 2D systems [137, 155]. Further, there are close connections with the analysis of the
anomalous scaling dimension of interaction in context of the study of decoherence and the dynamical
critical exponent at the quantum-Hall transition with short-range interaction[156–158].
In the clean system, the relevance or irrelevance of an operator can be often established by a relatively

straightforward power counting. As an example, this was done in Sec. 2.4 to show that interactions are
RG-irrelevant at the clean fixed point of the Majorana chain. In the presence of disorder, the situation
is much more complex, since the multifractal nature of wavefunctions as well as a non-trivial scaling
of the density of states have to be taken into account. Formally, this disorder-induced renormalization
of the interaction U can be expressed by an RG equation of the form [29, 30]

d lnU
d lnL = x1 − x(U)

2 . (2.29)
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2.5 Strong randomness fixed point: Eigenfunction statistics and effect of interactions

Here x1 is the scaling dimension of the density of states of a non-interacting system, with x1 > 0 and
x1 < 0 corresponding to the cases of vanishing and diverging density of states, respectively. Further,
x

(U)
2 is the scaling dimension of the four-fermion interaction operator with respect to the non-interacting

theory. For a detailed derivation of Eq. (2.29) the reader is referred to Appendix C of Ref. [30]. If the
right-hand side of Eq. (2.29) is positive, the interaction is relevant at the non-interacting fixed point;
otherwise it is irrelevant.
For a short-range interaction, and in the case when cancellations of the Hartree-Fock type (see below)

are not operative, the scaling dimension x
(U)
2 is equal to the dimension x2 of the squared density of

states (which is also a local four-fermion operator). For the clean system x2 is simply equal to 2x1 but
for a disordered system one has in general x2 < x1 in view of multifractality (characterizing strong
fluctuations of the density of states) [30, 87, 159]. Specifically,

x2 = ∆2 + 2x1, (2.30)

where ∆2 < 0 is the anomalous dimension of the fourth moment of the eigenfunction (〈U4
iα〉 in the

notations used below). In this situation of the maximally relevant interaction (no suppression due to
Hartree-Fock cancellation or other reasons), Eq. (2.29) takes the form

d lnU
d lnL = −x1 −∆2. (2.31)

The sum of two exponents −x1 and −∆2 in the r.h.s. of Eq. (2.31) determines the scaling with L of
the product νCH of the density of states ν and the Hartree-type correlation function CH [defined in
Eq. (2.48) below] for r = 0.
In general, x(U)

2 ≥ x2 since the effect of the interaction can be suppressed due to Hartree-Fock-type
cancellation. In this generic situation, one has, in analogy with Eq. (2.30),

x
(U)
2 = ∆(U)

2 + 2x1, (2.32)

where ∆(U)
2 is the anomalous dimension of the eigenstate correlation function CHF corresponding

to the matrix element of the interaction (and thus taking into account possible Hartree-Fock-type
cancellations; see, e.g., Eq. (2.47) for the case of complex fermions below). Substituting Eq. (2.32) into
Eq. (2.29), one gets

d lnU
d lnL = −x1 −∆(U)

2 . (2.33)

The sum of the exponents −x1 and −∆(U)
2 in the r.h.s. of Eq. (2.33) corresponds to the scaling with

L of the product νCHF of the density of states and the correlation function CHF . Below the explicit
form of this correlation function is determined by inspecting the expectation value of the interaction
operator and analyze the scaling of the product νCHF with L for the models of complex fermions
(Sec. 2.5.2) and for the Majorana model (Sec. 2.5.3).
If −x1 − ∆(U)

2 < 0, the interaction is RG-irrelevant, i.e., the non-interacting fixed point is stable
with respect to inclusion of not too strong interaction. In the opposite case, −x1 − ∆(U)

2 > 0, the
interaction is RG-relevant and drives the system away from the non-interacting fixed point. It was
found in previous works on the effect of interaction at critical points of higher spatial dimensionality
(d > 1, with a particular focus on 2D systems)[29, 30, 136, 137, 156–158] that both these scenarios can
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2 Disorder and interaction in chiral chains: Majoranas vs complex fermions

be realized. Whether the interaction is relevant or irrelevant depends on the specific non-interacting
critical theory considered (i.e., spatial dimensionality as well as symmetry and topology class). As is
shown below, both scenarios are also realized in the context of the present work (1D critical systems of
class BDI): the interaction is irrelevant in the case of complex fermions and relevant in the Majorana
model.
The present problem has much in common with d > 1 Anderson-localization critical points studied

in previous works where the multifractality induces strong correlations between eigenstates at different
spatial points and different energies (often referred to as Chalker scaling). In fact, critical singularities
are particularly strong in the present case. In the more conventional situation, both the density of
states ν and the eigenstate correlation function CHF (and, correspondingly, their product) exhibit a
power-law scaling with L, so that the indices x1 and ∆(U)

2 are constant (i.e., independent on L). On
the other hand, below it can be seen that in the present problem ν and (in the complex-fermion case)
CHF scale exponentially with

√
L, which means that x1 and ∆(U)

2 are L-dependent and increase (by
absolute value) at large L as

√
L/ lnL. This is a manifestation of the fact that the 1D critical point

studied here is characterized by very strong multifractality. The sign of −x1 − ∆(U)
2 at large L is of

interest here, since it controls the behavior (increase or decrease) of νCHF in the limit L→∞.
For systems of the symmetry class BDI in one dimension with an odd number of channels, the

density of states at low energies ε exhibits the well known Dyson singularity[39, 101, 160, 161]:

ν(ε) ∼ 1
ε| ln ε|3 . (2.34)

One can use this result to calculate the position of the n-th level in a system of the length L:∫ εn

0
ν(ε)dε = n

L
, (2.35)

which yields

εn ∼ exp

−c
√
L

n

 , c = O(1). (2.36)

The scaling (2.36) is verified numerically for the model with the nearest-neighbor hopping matrix
elements uniformly distributed over the interval tj ∈ [0, 1]. The numerical data shown in Fig. 2.12
fully confirm the analytical prediction, with the coefficient c ≈ 0.5. Thus, one can write down the
density of states around the lowest energy state ε1 as a function of the length L:

ν(0, L) ∼
exp

(
c
√
L
)

L
3
2

. (2.37)

This behavior is not of power-law type, i.e., it is not characterized by a critical exponent in the usual
sense. One can define, however, an L-dependent scaling exponent x1(L) = −∂ ln ν/∂ lnL, with the
result

−x1(L) = c

√
L

ln
(
L
) − 3

2 . (2.38)
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Figure 2.12: Figure taken from Ref. [86]. Numerical verification of Eq. (2.36) for the scaling of
energies of the low-lying single-particle states. Left: Average energy of the lowest
eigenstate ε1 as a function of the square root of the system size, confirming the
scaling − ln ε1 ∝

√
L. Right: average energy εn of the n-th eigenstate vs 1/

√
n in a

system of size L = 1000, confirming the scaling − ln εn ∝ n−1/2 for sufficiently low
energies. Combination of the scaling behavior observed in both panels confirms Eq.
(2.36).

The result (2.38) for the scaling dimension of the density of states is valid both for the Majorana
and complex fermions, since these models are equivalent in the absence of interaction. (The only
difference is that the number of states is halved in the case of Majoranas.) On the other hand, it will
be shown that the scaling dimension ∆(U)

2 of the interaction is completely different in these two models.
The scaling of interaction by a will be explored by a numerical approach, supporting the results by
analytical arguments.

2.5.1 Scaling of interaction

In order to determine the scaling of the interaction operators, the interaction matrix elements are
expressed in terms of linear combinations of products of single-particle eigenfunctions. These expression
in terms of the eigenfunctions are then numerically averaged over the disorder. The numerical results
will be also supported by analytical considerations (Appendix 2.5.4).
One can start by writing the most general non-interacting Hamiltonian of a 1D system of size L of

symmetry class BDI [159]:

H = 1
2
(

c†A c†B
)( 0 h

h 0

)(
cA
cB

)
, (2.39)

where h is a real matrix and cA,B, c†A,B are onsite operators acting on the two sublattices. In the case
of the complex fermionic chain, these are fermionic creation and annihilation operators, in the case of
the Majorana chain one has cA = γA = c†A and cB = iγB = −c†B, where γA,B are the real Majorana
operators in Eq. (2.12). Diagonalizing the L×L matrix in Eq. (2.39), one can rewrite the Hamiltonian

57



2 Disorder and interaction in chiral chains: Majoranas vs complex fermions

in the basis of operators which correspond to the single particle excitations of the system,

H = 1
2
(

d†+ d†−
)( ε 0

0 −ε

)(
d+
d−

)
, (2.40)

ci =
∑
α

Ui,αdα. (2.41)

Here ε is a diagonal matrix with eigenvalues 0 < ε1 < ε2 < . . . < εL/2. In the case of complex fermions,
the eigenvectors Uiα are just the conventional single-particle wavefunction Ψα(i). The ground state
|Ω〉 of the Hamiltonian can be written in terms of the operators d and the zero-particle state |0〉:

|Ω〉 =
∏

α,εα<0
d†α|0〉. (2.42)

This immediately yields the action of the d operators on the ground state:

dα|Ω〉 = 0 for εα > 0, (2.43)
d†α|Ω〉 = 0 for εα < 0. (2.44)

A general q-body interaction operator can be expressed as sum of products of annihilation and creation
operators of the following type:

Ô =
q∏
i=1

c†ai

2q∏
j=q+1

caj

=
∑
{αi,αj}

q∏
i=1

Uai,αid
†
αi

2q∏
j=q+1

Uaj ,αjdαj . (2.45)

The expectation value of the operator Ô over any eigenstate of a non-interacting system can now be
calculated by substituting Eq. (2.41) into Eq.(2.45):

〈Ô〉 =
∑
{αi,αj}

∏
i,j

Uai,αiUaj ,αj

〈 q∏
i=1

d†αi

2q∏
j=q+1

dαj

〉
. (2.46)

The expectation value that stands as a last factor on the right-hand side of Eq. (2.46) is non-zero only
if the states αi and αj are pairwise identical; in this case, it is equal to +1 or −1, depending on parity
of the permutation of indices. The right-hand side of Eq. (2.46) thus represents an algebraic sum of
products of single-particle eigenfunctions.
The terms in Eq. (2.46) are therefore the matrix elements of the interaction operator expressed as

products of the eigenvector amplitudes Uiα. For the conventional case of two-body interaction, q = 2,
Eq. (2.46) reduces, in accordance with the Wick theorem, to a sum over pairs of states α1, α2. For
a given choice of sites a1, . . . a4 and eigenstates α1, α2, there will be two different terms in Eq. (2.46)
(plus analogous terms obtained by an interchange α1 ↔ α2), that have a meaning of Hartree and
Fock terms. These two terms correspond to the order of subscripts α1α2α1α2 and α1α2α2α1 of d
operators in Eq. (2.46). As usual, the Fock term will enter with a relative minus sign due to Fermi
statistics. Below one can see that, in close analogy with Refs. [156–158], a major cancellation between
the Hartree and Fock terms will play a crucial role for the RG-irrelevance of the interaction in the
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2.5 Strong randomness fixed point: Eigenfunction statistics and effect of interactions

case of complex fermions. In the case of Majorana system, there is a third term, originating from
the following order of indices α1α1α2α2, as discussed in detail in Sec. 2.5.3. It has a meaning of the
Cooper term, and its emergence it is not surprising since Majorana excitations are characteristic for
superconducting systems. As is shown below, the presence of this term spoils the cancellation, making
the total interaction matrix element relevant in the RG sense.
In general, the disorder averaged value of matrix elements under consideration is a function of

the system size and of the energies of the q = 2 eigenvectors involved. To obtain the scaling of these
functions numerically, matrices of the form Eq. (2.39) for different system sizes were generated and the
lowest 20 eigenvectors calculated. Then for each pair of eigenvectors the corresponding matrix elements
entering Eq. (2.46) were calculated. This procedure yields pairs of energies and the associated matrix
elements, which then have to be averaged over disorder configurations. This is done by making a
histogram and averaging the matrix elements over each energy bin. It is worth emphasizing that for
the cases of logarithmic dependence of the matrix elements on energy, the correct choice of averaging
procedure is crucial. In these cases, the bin sizes are chosen such that the number of data points is
the same in every bin.
Even though here one is dealing with eigenstates of a non-interacting problem, the corresponding

numerical analysis is a rather challenging endeavour. This is particularly true in the regime of strong
Hartree-Fock cancellations that plays a central role below. In this situation, the default double precision
that provides approximately 15 decimal digits is by far insufficient. As will be shown below, the Hartree
and Fock terms can be the same within hundreds of digits for large systems. The calculations have
therefore been performed with at least 500 decimal digit floating point arithmetics.
Since for large (L � 1) systems full diagonalization becomes slow (typically O(L3))) and memory

intensive (at least O(L2))), a transfer matrix approach is chosen to compute the first few eigenvectors
Ui,εi . The characteristic polynomial λ(ε) is evaluated by L column expansions in O(L2). The first
20 eigenenergies εi closest to zero are obtained as roots of λ(ε). The εi are plugged into the transfer
matrix equation (A.3) to find Ui,εi .

For all following calculations, the hopping parameters are chosen to be uniformly distributed over
the interval tj ∈ [0, 1].

2.5.2 Complex fermion chain

Start with the model of the complex fermionic chain described by Hamiltonian Eq. (2.2). Due to
chiral symmetry, each state with positive energy has a partner state with negative energy. For zero
chemical potential, in the non-interacting ground state all states of negative energy are occupied and
all of positive energy are free. The relevance of the interaction in the infrared limit is controlled by its
matrix elements evaluated on low-lying eigenstates. To obtain the appropriate eigenstate correlation
function, the expectation value of the interaction, Eq. (2.46) is inspected. For each pair of sites i, j,
one has a contribution

〈c†ic
†
i+rcici+r〉 =

∑
αβγδ

UiαUiβUi+r,γUi+r,δ〈d†αd
†
βdγdδ〉

=
∑
{αβ}

(
UiαUiαUi+r,βUi+r,β

− UiαUiβUi+r,αUi+r,β
)
, (2.47)
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2 Disorder and interaction in chiral chains: Majoranas vs complex fermions

with the summation in the last expression going over pairs of filled states. The two terms in brackets
after the last equality sign in Eq. (2.47) correspond to the conventional Hartree and Fock diagrams.
Define the corresponding correlation functions of two single-particle eigenfunctions as functions of
energies, distance, and system size:

CH(εα, εβ, r, L) = 〈UiαUiαUi+r,βUi+r,β〉dis, (2.48)
CF(εα, εβ, r, L) = 〈UiαUiβUi+r,αUi+r,β〉dis, (2.49)
CHF(εα, εβ, r, L) = 〈UiαUiαUi+r,βUi+r,β

− UiαUiβUi+r,αUi+r,β〉dis, (2.50)

where 〈. . .〉dis denotes the disorder averaging. Below, the scaling of the full correlation function CHF =
CH−CF is analyzed in order to determine the scaling exponent ∆(U)

2 of the interaction. It was verified
in Refs. [156–158] that this scaling dimension also controls the scaling of interaction matrix elements
also in the second order of the perturbation theory. Thus it is expected that the analysis of the scaling
of the correlation function (2.50) with energy and the distance is sufficient for establishing the relevance
or irrelevance of the interaction near the non-interacting fixed point.
The following comment concerning the r dependence is in order here. The DMRG results presented

above dealt with short range interaction r ∼ 1 only. At the same time, one may be also interested in
effects of long-range interaction, in which case one needs to know the scaling of correlations functions
of the type (2.50) with r. Furthermore, the analysis of correlations of eigenstates at the infinite-
randomness fixed point constitutes by itself a very interesting problem (with r dependence being an
important ingredient), as it represents a remarkable example of strong-coupling Anderson-localization
critical point (see also a discussion in Sec. 2.6). Since the r dependence of the correlation functions
(2.48), (2.49), (2.50) can be tackled by the same approach, below the correlation functions not only
for r ∼ 1 but also for arbitrary r are analyzed. In the end, when the RG relevance of the short-range
interaction is studied, the focus is on the correlations at r ∼ 1. This comment applies also to the
Majorana chain, Sec. 2.5.3.

2.5.2.1 Single-wavefunction correlations

Terms where the two wavefunctions are identical, i.e. α = β, do not contribute to the interaction matrix
element CHF as the Hartree and Fock terms cancel each other exactly. Nevertheless, it is useful to start
the analysis by considering the single-wavefunction correlations for two reasons. First, they can be
particularly well understood analytically and can serve as a benchmark to the numerical calculations.
Second, it can be seen below that some of properties of the single-wavefunction correlations translate
to correlations of two eigenstates that are important for the interacting models. The two-point, single-
wavefunction correlation function C2 is defined to be:

C2(εα, r, L) = 〈UiαUiαUi+r,αUi+r,α〉dis. (2.51)
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Figure 2.13: Figure taken from Ref. [86]. Single-wavefunction correlation function for short even
distance, LC2(ε, r = 2, L), and short odd distance, C2(ε, r = 1, L), vs energy ε in
systems with size L from 100 to 10000 (distinct colors). For r = 2 the correlation
function is independent on energy, while for r = 1 it scales as ε2 (and thus is strongly
suppressed at low energy), as predicted analytically.
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Figure 2.14: Figure taken from Ref. [86]. Single-wavefunction correlation function for short
even distances C2(ε1, r = 2, L) (left panel) and short odd distances C2(ε1, r =
1, L) (right panel) vs system size L. For r = 2 the data confirm the analytically
predicted scaling, C2 ∼ L−1, see first line of Eq. (2.53). For odd distance, the
correlation function decreases quickly with L since the lowest energy ε1 approaches
zero exponentially fast, ε1 ∼ exp{−c

√
L} and in view of C2 ∝ ε21, see Appendix A.2.

For zero energy, the wavefunction Ur can be expressed exactly in terms of a given realization of
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disorder [39]. The zero-energy wavefunctions belong entirely to one of the two sublattices (i.e., vanish
on the other sublattice). If one looks at the wave function moments at a single point, their scaling is
similar to that of a fully localized wavefunction[39, 159]:

〈U2q
r 〉 ∼

1
L
, (2.52)

for q > 0. At the same time, the spatial decay of the correlation function C2 at zero energy is only
algebraic, which is a property of a critical system [39]:

C2(0, r, L) ∼

r−
3
2L−1, r even;

0 r odd.
(2.53)

For finite energy, this formula for even-r correlations is expected to hold as long as the distance r is
smaller than the localization length, r . ξε. The latter was predicted [39] to scale with energy as

ξε ∝ | ln ε|2. (2.54)

Using Eq. (2.36) with n = 1, one can see that ξε ∼ L for the lowest eigenstate.
As to odd-distance correlations, they are not exactly zero for a non-zero energy ε. Indeed, the

absence of odd-distance correlations, Eq. (2.53), is a consequence of the chiral symmetry which is
exact at ε = 0 but is violated at non-zero energy and gets progressively more strongly broken when
the energy increases. Thus, the odd-r correlations should be strongly suppressed relative to even-r
correlations at low energies, with the suppression becoming stronger with lowering energy. As shown
in Appendix A.2, the corresponding suppression factor is ∼ ε2 for odd r ∼ 1.

Now the analytical predictions are confronted with numerical simulations. In Fig. 2.13 the numer-
ically obtained energy dependence of the correlation function C2 is shown for fixed L = 1200 and
fixed small separation r. Specifically, r = 2 is chosen for the even case and r = 1 for the odd case.
It is seen that the even-distance correlations are essentially independent of ε. This is the expected
behavior: indeed, for r ∼ 1, the condition r � ξε is fulfilled as long as | ln ε| � 1, i.e., essentially
in the whole range of ln ε. On the other hand, the odd-distance correlations strongly increase with
energy. Specifically, the data unambiguously demonstrate the ε2 behavior of C2(ε, r, L) for small odd
r discussed above and derived analytically in Appendix A.2. It is worth emphasizing the enormously
broad range of variation of the energy ε and the correlation function C2 (odd r) in Fig. 2.13: about
130 and 260 orders of magnitude, respectively!
Finally, in Fig. 2.14 the dependence of the correlation function C2(ε1, r, L) on the system size L is

shown for even (r = 2) and odd (r = 1) distance. In the even case, the correlation function does not
depend on energy for small r, so that the fact that ε1 is different from zero and varies with L is of no
importance. The expected result is given by the first line of Eq. (2.53). The numerical data in the right
panel of Fig. 2.14 confirm the predicted L−1 scaling. For odd r the decay of C2(ε1, r, L) with L should be
exponentially fast due to C2(ε, r, L) ∼ ε2 and the fact that the energy ε1 approaches zero exponentially
with increasing L, see Eq.(2.36). This yields the analytical expectation C2(ε1, r, L) ∼ exp

(
−2c
√
L
)
,

in full agreement with the data in the right panel of Fig. 2.14.

2.5.2.2 Two wavefunction correlations

Matrix elements for two-wavefunction correlations, Eqs. (2.48)–(2.50), are calculated using two eigen-
states with different energies for a given disorder configuration, and then averaging over disorder. The
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2.5 Strong randomness fixed point: Eigenfunction statistics and effect of interactions

energy levels are on average distributed as εn ∼ exp
(
−c
√
L/n

)
, which means that, for L � 1 and

n ∼ 1, one of the energies will almost always be much larger than the other one. Since the energy
breaks the chiral symmetry, it is expected that the matrix elements will essentially depend only on the
larger of the two energies and only weakly on the lower one.
The correlation functions at criticality depend thus on the (larger) energy ε, the length L and the

distance r. As for the single-eigenstate correlation function, Sec. 2.5.2.1, the behavior for even and
odd distances r is very different. At low energy ε, and short even distances, it is natural to expect that
CH behaves, in similarity with with C2, as a power-law in r and L. Such a power-law behavior is also
analogous to that of eigenfunction correlation functions at critical points of localization-delocalization
transitions in systems of higher dimensionality, see Ref. [159]. As to the expected for of the energy
dependence, recall that, at the critical point that is studied, the logarithm of the energy scales as a
power law of the length, see Eq. (2.36). Therefore, it is natural to expect a power-law scaling of CH
with respect to ln ε. Therefore, for short even distances r and low energy ε, the correlation function
CH is expected to have the scaling form (see also [162]):

CH(0, ε, r, L) ∼ | ln ε|
α

rβLγ
, r – even. (2.55)

This equation should hold at criticality, so that the necessary condition is r . ξε. Now the exponents
α, β, and γ are determined by a numerical analysis. The numerical results are supported by analytical
considerations (details of which are presented in Appendix 2.5.4) yielding the values of the exponents
α and γ.
To find the exponent α in the critical scaling of CH , Eq. (2.55), in the right panel of Fig. 2.15 the

dependence of correlation functions is shown at small even distance (r = 2) and fixed L on the energy.
The slope yields α = 1. To determine γ, in the left panel of the same figure the dependence on the
system size L is plotted. Here the correlation functions are evaluated for two lowest eigenstates, so
that the energy ε is equal to ε2 = exp

(
−c
√
L/2

)
. The obtained scaling of CH is L−2; taking into

account the | ln ε2| ∼ L1/2 factor originating from the energy dependence of CH , on finds that γ = 2.
The scaling of CH in the critical regime is thus given by

CH(0, ε, r, L) ∼ | ln ε|
L2r

3
2
, r – even. (2.56)

The Fock correlation function CF for even r is found to behave in exactly the same way. This is what
should be expected: indeed, a particular case of a small even r is r = 0, for which CH and CF are
identically the same. The | ln ε|L−2 scaling of CH and CF for even r is confirmed also by an analytical
calculation of the averaged square of the Green function, see Appendix 2.5.4 for details.
As was discussed above, the effect of the interaction is controlled by the scaling of the Hartree-Fock

correlation function CHF = CH − CF . As the data in Fig. 2.15 clearly demonstrate, this function
is strongly suppressed (for small even r) as compared to CH and CF . This is also what is expected
analytically: as shown in Appendix A.2, the suppression factor is ∼ ε4. If the correlation function is
evaluated for two lowest eigenstates, the suppression factor becomes ∼ ε42 ∼ exp

(
−4c

√
L/2

)
. These

analytical predictions are fully confirmed by the numerical results, see Fig. 2.15.
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Figure 2.15: Figure taken from Ref. [86]. Hartree, Fock, and Hartree-Fock correlation functions
CH(ε1, ε, r = 2, L), CF (ε1, ε, r = 2, L), and CHF (ε1, ε, r = 2, L) for a small even
distance (r = 2). Upper left: Scaling of CH , CF with L at ε = ε2. The slope yields
the power-law scaling ∼ L−3/2, implying a relation γ−α/2 = 3/2 for the exponents
in Eq. (2.55). Upper right: Scaling with energy at fixed L = 4000. The slope implies
the scaling ∼ | ln ε| for CH , implying the exponent α = 1 in Eq. (2.55). In both
panels, the Fock correlation function is nearly equal to the Hartree one, which is a
characteristic feature of the critical regime for even r. As a result, CHF shown in
lower panels is strongly suppressed with respect to CH and CF . Lower left: Scaling
of CHF with L at ε = ε2. Lower right: Scaling of CHF with energy for L from 100
to 10000. The slope agrees with the analytical prediction CHF ∝ ε4.

The considerations now turn to the critical behavior of the correlation functions at odd r. One
expects that odd-distance correlation functions CH and CF are suppressed with respect to their even-r
counterparts. The reason for this is the same as for the the single-eigenfunction correlation function
C2, Sec. 2.5.2.1: odd-r correlations necessarily involve wavefunctions on different sublattices. As shown
in Appendix A.2, the suppression factor for CH and CF with odd r is the same (∼ ε2) as for C2. Again,
this translates into an exponential suppression with respect to L.
This expectation is fully supported by the numerical results shown in Fig. 2.16. Note that, in the

case of odd r, the Fock term is considerably smaller than the Hartree one (even though the dominant
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scaling factor is the same). This, the Hartree-Fock cancellation is not operative and CHF ' CH .
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Figure 2.16: Figure taken from Ref. [86]. Hartree, Fock, and Hartree-Fock correlation functions
CH(ε1, ε, r = 1, L), CF (ε1, ε, r = 1, L), and CHF (ε1, ε, r = 1, L) for a small odd
distance (r = 1). Left: Scaling with L at ε = ε2. Right: Scaling with energy.
Different colors represent different lengths from 100 to 10000. In both panels, the
Fock correlation function is much smaller than the Hartree one, so that CHF '
CH . The dominant scaling for both CH and CF is ∼ ε2 (which translates into
an exponential length dependence in the left panel). The data for the Fock term
suggest an additional power-law dependence on length.

One thus finds that the Hartree-Fock correlation function CHF is strongly suppressed at criticality
(i.e., at short distances r and low energies, so that r � ξε). This is valid both for even distances (due
to cancellation between Hartree and Fock terms) and for odd distances (due to different sublattices
entering). The suppression factor is ∼ ε4 for even r and ∼ ε2 for odd r.

One can return now to the question of RG relevance of the interaction which is determined by Eq.
(2.29). The right-hand-side of this equation characterizes the scaling of the product of the interaction
matrix element and the density of states with the system size L. The matrix element to be used
here is the Hartree-Fock correlation function, see Eqs. (2.47) and (2.50). If this product increases
(decreases) with L, the interaction is relevant (respectively, irrelevant). The density of states increases
exponentially with

√
L according to Eq. (2.37) or, equivalently, as 1/ε with energy (up to logarithmic

correction), see Eq. (2.34). On the other hand, the Hartree-Fock correlation function decreases as ε2
(odd r) or ε4 (even r). Thus, the suppression of the Hartree-Fock correlation function is stronger than
the increase of the density of states, and the product decays as a power of ε (and thus exponentially
with respect to

√
L). To illustrate this, in Fig. 2.17 the product ν(L)CHF (ε1, ε2, r, L) is plotted for

small even and odd distances (r = 2 and r = 1, respectively) as a function of L. One can see that
both functions decrease exponentially with

√
L as expected. This implies that the interaction in Eq.

(2.2) is irrelevant in the presence of disorder, and the system stays critical (at the infinite-randomness
fixed point), at least for sufficiently weak interaction. This is in agreement with the DMRG results
presented in Sec. 2.3 and with real-space-RG findings of Refs. [38, 40].
Above the focus was on the behavior of two-eigenstate correlation functions at criticality (r � ξε),

since such functions emerge when one explores the effect of short-range interaction (r ∼ 1). On the
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other hand, the behavior of the correlation functions at r & ξε may be of interest in other contexts.
This behavior is briefly discussed in the Appendix of Ref. [86].

20 40 60 80√
L

10−45

10−34

10−23

10−12
∝ exp(−.3

√
L)

∝ exp(−.9
√
L)

ν · CHF,o ν · CHF,e

20 40 60 80√
L

10−14

10−5

104 ∝ exp(.35
√
L)

∝ exp(−.35
√
L)

ν · CHF,o ν · CHF,e

Figure 2.17: Left panel: Figure taken from Ref. [86]. RG irrelevance of interaction at the infinite-
randomness fixed point of the complex-fermion chain. Product ν(L)CHF (ε1, ε2, r, L)
of the Hartree-Fock matrix element at criticality multiplied by the density of states
plotted versus the system size L, for odd (r = 1, blue symbols) and even (r = 2,
red symbols). Both for even and odd distances, the product decreases quickly with
L (as an exponential of

√
L), implying that the interaction is irrelevant.

Right panel: Figure taken from Ref. [86]. RG (ir)relevance of interac-
tion at the infinite-randomness fixed point of the majorana chain. Product
ν(L)CHF,{e,o}(ε1, ε2, r, L) of the Hartree-Fock correlation function and the density
of states is plotted versus the system size L. Blue symbols: νCHF,o for r = 2 quickly
decreases with L, implying RG irrelevance of the corresponding interaction terms.
Red symbols: νCHF,e for r = 4 quickly increases with L, indicating RG relevance
of the corresponding interaction term.

2.5.3 Majorana chain

Now the attention turns to the Majorana model. The simplest interaction term in this model was
presented in Eq. (2.13). However, as was already mentioned before, any fourth order interaction term
containing an even number of Majoranas on even sites (and an even number of those on on odd sites)
is consistent with the symmetries of the Hamiltonian. In fact, such terms will be generated by RG
even if one starts from the simplest term only as in Eq. (2.13).

The interaction in Eq. (2.13) is generalized by introducing a distance r separating two nearest-
neighbor pairs of Majoranas:

Hint =
L∑
j=1

γjγj+1γj+rγj+r+1. (2.57)

(r ≥ 2 is assumed to be even but it is not particularly important here.) Such a term is analogous to the
odd-r interaction term in the case of complex fermions, see Eq. (2.3), since it involves two operators
on even sites and two on odd sites.
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2.5 Strong randomness fixed point: Eigenfunction statistics and effect of interactions

The Majorana operators γi can be expressed in terms of the Bogoliubov operators dα using the
definitions cA = γA = c†A and cB = iγB = −c†B, and then diagonalizing the Hamiltonian matrix,
see Sec. 2.5.1. At variance with the complex fermion case, these 2L Bogolyubov operators are not
independent: each operator is related to its chiral conjugate with inverse sign of the energy, d†α = dᾱ.
Thus, one can express the Majorana operators by using only wavefunctions and Bogolyubov operators
associated with positive energies:

γj =
∑
εα>0

Uα,j(dα + d†α) (j even), (2.58)

γj =
∑
εα>0

iUα,j(dα − d†α) (j odd). (2.59)

Via the same token, the whole Hilbert space of the problem is obtained by acting with operators d†α
with εα > 0 on the vacuum state.

Substituting Eq. (2.59) into an interaction term in (2.57), one can evaluate the expectation value
of the interaction term over any basis state of the non-interacting Fock space. For example, averaging
over the non-interacting vacuum (that is annihilated by all dα with positive energies), one gets

〈γkγk+1γk+rγk+r+1〉
= −

∑
α>0;β>0

(
Uk,αUk+1,αUk+r,βUk+r+1,β

+Uk,αUk+1,βUk+r,αUk+r+1,β

−UkαUk+1βUk+r,βUk+r+1,α
)
. (2.60)

Three terms here correspond to the expansion of a Pfaffian that is a general form of the Majorana
Wick’s theorem[163].
The matrix element in Eq. (2.60) consists of three terms. The first of them is similar to a Hartree

term in the sense that amplitudes of each eigenstates enter at spatial points separated by a minimal
distance (one site). The other two terms are similar to Fock terms. In full analogy with the case of
complex fermions, correlation functions depending on two energies εα, εβ, distance r, and the system
size L are defined:

CH,o(εα, εβ, r, L) = 〈Uk,αUk+1,αUk+r,βUk+r+1,β〉dis, (2.61)
CF,1,o(εα, εβ, r, L) = 〈Uk,αUk+1,βUk+r,αUk+r+1,β〉dis, (2.62)
CF,2,o(εα, εβ, r, L) = 〈Uk,αUk+1,βUk+r,βUk+r+1,α〉dis, (2.63)
CHF,o(εα, εβ, r, L) = 〈Uk,αUk+1,αUk+r,βUk+r+1,β

+ Uk,αUk+1,βUk+r,αUk+r+1,β

− Uk,αUk+1,βUk+r,βUk+r+1,α〉dis. (2.64)

The subscript “o” serves to indicate that, as was explained above, these correlation functions bear
analogy with odd-r correlations introduced for the model of complex fermions.
The same analytical consideration as were used in the case of correlation functions (2.48) - (2.50)

with odd r suggest that all the correlation functions (2.61) - (2.64) should be suppressed by the factor
∼ ε2. Now it is shown by numerical analysis that the correlation functions (2.61) - (2.64) indeed behave
in a way very similar to the correlation functions (2.48) - (2.50) with odd r. One can observe that
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in the critical regime of not too large r (the condition is r � ξε) the function CF,1,o dominates. It is
also seen that the magnitude of this term is quite small. To understand the source of this smallness
and its parametric dependence, in Fig. 2.18 the dependence of the correlation functions on system size
L and on the energy ε is shown. The right panel clearly shows the ε2 scaling that is expected from
the analytical argument and is fully analogous to the scaling in Fig. 2.16. This is translated into an
exponential scaling with respect to

√
L of correlation functions evaluated on two lowest- energy states,

as is seen in the left panel of Fig. 2.18 and is again in full analogy with the corresponding behavior in
Fig. 2.16.
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Figure 2.18: Figure taken from Ref. [86]. Left: Scaling of the correlation functions
CH,o(ε1, ε2, r = 2, L), CF,1,o(ε1, ε2, r = 2, L), CF,2,o(ε1, ε2, r = 2, L), CHF,o(ε1, ε2, r =
2, L), Eqs. (2.61) - (2.64) with respect to system size L. Right: Scaling of the same
correlation functions with energy. Different colors represent L from 100 to 10000.
The data clearly demonstrated the ε2 scaling that is also expected analytically.

The ε2 scaling of the correlation functions (2.61) - (2.64) implies the RG irrelevance of the cor-
responding interaction term. Indeed, the density of states increases only as 1/ε with logarithmic
correction, see Eq. (2.34), and thus the suppression of the interaction wins over the increase of the
density of states. This will be verified numerically below (Fig. 2.17). As explained above, the reason
behind the ε2 suppression of the matrix elements is the fact that both even and odd sites are involved.
This tells one which correlation functions may escape such a suppression: those that involve sites
of one sublattice only, i.e., with all distances between the sites being even. Thus such a generalized
interaction term is considered:

Ô = γkγk+2γk+rγk+r+2, (2.65)

with an even r ≥ 4. Such a term is allowed by symmetries and will be generalized by RG from
the original interaction. This leads to introducing the corresponding generalization of the correlation
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functions (2.61) - (2.64):

CH,e(εα, εβ, r, L) = 〈Uk,αUk+2,αUk+r,βUk+r+2,β〉dis, (2.66)
CF,1,e(εα, εβ, r, L) = 〈Uk,αUk+2,βUk+r,αUk+r+2,β〉dis, (2.67)
CF,2,e(εα, εβ, r, L) = 〈Uk,αUk+2,βUk+r,βUk+r+2,α〉dis, (2.68)
CHF,e(εα, εβ, r, L) = 〈Uk,αUk+2,αUk+r,βUk+r+2,β

+ Uk,αUk+2,βUk+r,αUk+r+2,β

− Uk,αUk+2,βUk+r,βUk+r+2,α〉dis. (2.69)

The subscript “e” indicates that all distances between the sites involved are even, in analogy with
correlation functions (2.48) - (2.50) at even r.

In view of the analogy that has just been emphasized, one can expect that (i) the correlation
function CH,e scales similarly to CH , (2.48), and (ii) the correlation functions CF,1,e and CF,2,e scale in
the same way and, moreover, are equal in the leading order to CH,e, in analogy with the corresponding
behavior of CF , (2.49). However, since now there are three terms rather than two, the strong Hartree-
Fock compensation should not happen, leaving one with CHF,e ' CH,e. These expectation are fully
supported by the numerical simulations. In Fig. 2.19 it is shown that the r dependence of the correlation
functions (2.66) - (2.69) evaluated on two lowest-energy eigenstates in a system of size L = 400. All
four correlations functions CH,e, CF,1,e, CF,2,e, and CHF,e are nearly equal in the critical regime (not
too large r) and show the r−3/2 scaling in analogy with CH and CF . In fact, the overall behavior
of the correlation function CH,e (CF,1,e and CF,2,e) in Fig. 2.19 is remarkably similar to that of CH
(respectively, CF ) in Fig. 2.15. Now one can turn to the scaling of the correlation functions (2.66) -
(2.69) with energy ε and length L, see Fig. 2.19. The figure is very similar to the upper two panels of
Fig. 2.15 and confirms that CH,e, CF,1,e, and CF,2,e scale exactly in the same as CH with even r, (2.56).
Since the Hartree-Fock compensation is not operative now, the correlation function CHF,e scales in the
same way.
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Figure 2.19: Figure taken from Ref. [86]. Correlation functions (2.66)-(2.69) with r = 4. Left:
Scaling with the system size L of the correlation functions evaluated on two lowest-
energy eigenstates. The slope corresponds to a power law with an exponent 3/2.
Right: Dependence on energy at fixed L = 4000. The slope corresponds to the | ln ε|
scaling. The total scaling with L and ε is therefore the same as for the complex-
fermion correlation function CH with even r, Eq. (2.56).

69



2 Disorder and interaction in chiral chains: Majoranas vs complex fermions

Since the correlation function CHF,e decreases with L in a power-law fashion only, and the density
of states increases in an exponential way, they product should clearly increase exponentially. This is
explicitly demonstrated in Fig. 2.17. For comparison, it is also show there that the product νCHF,e
decreases with increasing L as discussed above. The exponential increase of νCHF,e indicates the RG
relevance of the corresponding interaction term. This explains why the interaction drives the system
away from the the infinite-randomness fixed point and establishes the spontaneous symmetry breaking
and localization, as exhibited by the DMRG results, Sec. 2.3.2.
At this point, the following comment is in order. The completeness of eigenstates in combination

with the chiral symmetry implies that
∑
εα>0 Uk,αUk+r,α is equal to zero for any even r 6= 0. As a result,

the correlation functions (2.66) - (2.69) are zero when summed over all states with positive energies.
Exactly such sums will arise if the expectation of the interaction (2.65) is calculated over the vacuum
state (or, more generally, over any Fock-space basis state). However, what actually is of interest here
is not this expectation value but rather the effect of non-diagonal matrix elements of the interaction.
In more conventional problems, it turns out that it is sufficient to study the scaling of the expectation
value to understand the effect of the interaction. It turns out that the situation with the term of the
type (2.65) in the present problem is more delicate. The full analysis of the effect of non-diagonal
matrix elements of such an interaction at the infinite-randomness fixed point is a very challenging task
that will be left to future work. The expectation is that two properties of the correlation functions
(2.66) - (2.69) that have been identified above—namely, (i) the contributions that, when multiplied
with the density of states, strongly increase with L and (ii) the absence of Hartree-Fock cancellation of
such contributions—will be also key ingredients of such a more sophisticated analysis, thus governing
the RG relevance of the interaction for the disordered Majorana chain.

2.5.4 Analytical approach to wave function correlations

In this subsection analytical results for the scaling of eigenfunction correlation functions at the infinite-
randomness fixed point are provided. These results complement, support, and explain the correspond-
ing numerical results in Sec. 2.5.
In Ref. [39] the average of one Green’s function in a non-interacting 1D model of class BDI was

computed by means of supersymmetry formalism that allowed to map the problem onto quantum
mechanics of a SU(1|1) spin. In order to obtain directly the correlation functions of two eigenstates,
one would need to average products of two Green’s functions with the corresponding energy and spatial
arguments. While the mapping on a supersymmetric quantum mechanics can be generalized to this
situation, the solution of the corresponding problem becomes extremely difficult. For this reason, below
a slightly different approach is chosen. By using the supersymmetry technique, the averaged square of
the Green’s function at an imaginary frequency is calculated. This average is related, by virtue of a
spectral decomposition, to the two-eigenstates correlation functions. The resulting conclusions on the
scaling of the two-eigenstates correlations are in agreement with the numerical findings in Sec. 2.5.

Following the formalism of Ref. [39] and map the original lattice model with random hopping onto
a continuous model of a Dirac fermion with random mass, cf. Sec. 2.4.1. The latter is considered to
be delta-correlated and gaussian-distributed disorder, with the strength W (which sets the ultraviolet
cutoff for the critical theory and can be set to unity). Within the mapping onto the supersymmetric
quantum mechanics, the averaged Green’s function at an imaginary frequency iω and with coinciding
spatial arguments is obtained from the ground state of the corresponding effective Schrödinger equation.
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In agreement with Ref. [39], one obtains:

〈G(iω)〉dis = a1W

iω| ln
(
ω/a0W

)
|2
. (2.70)

The constants a1 and a0 can be by a numerical solution of the effective Schrödinger equation of the
supersymmetric quantum mechanics; the results are a1 = 1 (which holds with a very high accuracy
and is apparently exact) and a0 ' 0.8. Extending this analysis to the averaged square of the Green’s
function, one obtains

〈G(iω)G(iω)〉dis = a2W

ω2| ln
(
ω/a0W

)
|2
, (2.71)

where a2 = 1/3 (which again holds numerically with a very high accuracy and should thus be ex-
act). Equations (2.70) and (2.71) are derived in the continuum-limit approximation to the effective
Schrödinger equation. By a numerical solution of the exact (discrete) equation, it was verified that
they hold with an outstanding accuracy. Specifically, as shown in Fig. 2.20, the relative correction to
Eq. (2.70) is of the order ω and that to Eq. (2.71) is of the order ω2. This means, in particular, that
all orders of expansion of Eqs. (2.70) and (2.71) in 1/| lnω| are fully reliable.
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Figure 2.20: Figure taken from Ref. [86]. In this plot, the validity of Eqs. (2.70) and
(2.71) for 〈G(iω)〉dis and 〈G(iω)G(iω)〉dis derived in a continuum-limit approx-
imation to the effective Schrödinger equation is verified numerically. For this
purpose, the numerically computed e1(ω) = iω〈G(iω)〉dis − | ln

(
ω/a0

)
|−2 and

e2(ω) = 3ω2〈G(iω)G(iω)〉dis − | ln
(
ω/a0

)
|−2 are plotted. The disorder strength

is set W = 1. The constant a0 ' 0.8 is determined to minimize the errors ei. It can
be seen that e1(ω) ∝ ω and e2(ω) ∝ ω2.

Now these results are connected to the correlation functions of eigenstates ψα(r) (which are con-
tinuum limit counterparts of the states ψiα studied numerically in Sec. 2.5. Since all arguments of
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2 Disorder and interaction in chiral chains: Majoranas vs complex fermions

Green’s functions that considered here are equal (they are set to r = 0), only eigenstates at this point
will enter. Using the spectral decomposition of the single-particle Green’s function, one gets

〈G(iω)〉dis =
∑
α

〈
ψ2
α(0)

iω − εα

〉
dis

=
∫

dε L ν(ε)〈ψ
2
α(0)〉dis
iω − ε

. (2.72)

The average entering here is 〈ψ2
α(0)〉dis = L−1 due to eigenfunction normalization. Further, the density

of states is
ν(ε) ' c2

ε| ln
(
ε/Λ

)
|3
, (2.73)

see Eq. (2.34), where c ∼ 1 is the constant defined in Eq. (2.36) and Λ ∼ 1 is an ultraviolet cutoff.
Substituting this in Eq. (2.72), one gets

〈G(iω)〉dis = c2
[

1
iω| lnω/Λ|2 + ln 2

iω| lnω/Λ|3

+ O(ω−1| lnω|−4)
]
. (2.74)

One can see that Eq. (2.74) is in full agreement with the result (2.70) of the supersymmetric calculation.
Indeed, not only the leading behavior agrees but also Eq. (2.70) can be expanded to bring it to the
form (2.74). This confirms that the formula (2.73) for the density of states that was used when deriving
Eq. (2.74) from the spectral decomposition (2.72) is correct. One can, of course, also obtain (2.73) by
performing an analytical continuation of Eq. (2.70). Note, however, that different models of disorder
were used in the numerical and analytical calculations, so that numerical value of the coefficient c2 in
Eq. (2.73) cannot be directly obtained from the analytical result.
Having satisfied ourselves that the spectral decomposition works properly for 〈G(iω)〉dis, one can

turn to 〈G(iω)G(iω)〉dis that provides information about correlations of different eigenfunctions. The
spectral decomposition now yields

〈G(iω)G(iω)〉dis =
∑
α

〈
ψ4
α(0)

(εα − iω)2

〉
dis

+
∑
α 6=β

〈
ψ2
α(0)ψ2

β(0)
(εα − iω)(εβ − iω)

〉
dis
. (2.75)

In Sec. 2.5, the following scaling of the eigenstates correlation functions entering Eq. (2.75) is found
numerically: 〈ψ4

α(0)〉dis = aL−1, Eq. (2.53), and 〈ψ2
α(0)ψ2

β(0)〉dis = bL−2 ln ε>, Eq. (2.56), where a and
b are numerical coefficients, and ε> is the larger of the two energies εα and εβ. Substituting them
into Eq. (2.75) and rewriting the sum over energies as integrals with the density of states (2.73), one
obtains

〈G(iω)G(iω)〉dis = c2
[

a

iω2| lnω/Λ|2 + a− (2/3)bc2

iω2| lnω/Λ|3

+ O(ω−1| lnω|−4)
]
. (2.76)

The two leading terms of Eq. (2.76) fully correspond to the expansion of the result (2.71) of the
supersymmetry-formalism calculation. This proves that the numerically found values of the exponents,
α = 1 and γ = 2, in the scaling of eigenstate correlations, Eq. (2.56), are indeed exact.
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2.6 Summary

2.6 Summary

In this part of the work the chief aim was understanding the behavior of disordered wires of Majoranas
and complex fermions in the presence of interaction. The models studied both belong to symmetry
class BDI and are completely equivalent (except for the smaller Majorana Hilbert space) in the non-
interacting limit. In particular, the low energy theory is governed by the infinite-randomness fixed
point. The intriguing question whether there is a fundamental difference between the Majorana and
complex fermions version of the problem was answered: they behave drastically distinct! Additionally,
the analysis presented above yields insight on the origin of this difference.
As mentioned above in 1D there are more methods available than in higher dimensions. Here the

full force of DMRG, bosonization, SCBA topological indices with mean field decoupled interaction and
infinite randomness RG were used.
The statistical properties of eigenfunction correlations in systems controlled by the infinite-randomness

fixed point were studied. A similar analysis is performed in Chap. 3, where multifractal eigenstate
correlations in spin quantum Hall systems are investigated. Here, it directly permits conclusions on
the (ir)relevance of interaction at the perturbative level. The main results from this work are:
(1) Together with my collaborators, I have determined phase diagrams and drew conclusions about

their observable properties (spin order, criticality). As basis of this, DMRG simulations of the mod-
els were employed. This provided access to the entanglement entropy and the spin-spin correlation
functions. In detail:
(i) The topological phase diagram of the Majorana chain was studied by artificially introducing

staggering. In Fig. 2.3 the central charge, obtained from the scaling of the entanglement entropy, is
visualized in parameter space and in Fig. 2.4 a spin-order phase diagram is shown. Using the corre-
spondence of spin order of the Jordan Wigner dual and topological order in the original model, one
obtains the full topological phase diagram shown in Fig. 2.5. Additionally the observed central charges
allow conclusions on the type of criticality at the phase boundaries. On the average translational sym-
metric line, up to moderate interaction, the numerics shows Ising (central charge c = 1

2) criticality. For
moderate repulsive interaction the DMRG simulations show Ising+LL (c = 3

2) criticality in agreement
with Ref. [31]. The critical line is surrounded by gapped topologically distinct phases and an extended
patch of LL (c = 1) criticality. The Ising sector that is still gapped in this phase, it is therefore natural
to assume that topological protection persists, despite there are gapless LL degrees of freedom. The
strongly interacting gapped phases show a rich phenomenology of density waves with different wave
vectors.
(ii) Gapped topological phases are robust towards weak disorder, however the phase boundaries

depend on disorder strength in general. When turning on disorder in the DMRG analysis it is therefore
most convenient to stay on the pinned self dual critical line in the phase diagram. The results obtained
depend on the sign of interaction: for attractive interaction, the scaling of the entanglement reveals
the system is still at criticality. Interestingly, the data in Fig. 2.7 suggests a central charge that (within
the numerical accuracy) agrees with clean Ising criticality (c = 1

2) despite the presence of disorder. For
repulsive interaction on the other hand the system localizes for weak repulsion (saturating entanglement
entropy). Even in the localized phase there is rich phenomenology: spin correlation functions Figs. 2.9,
2.10 and 2.11 show signs of topological ordering for half of the disorder configurations. In the other
half, the ordering is absent. The most probable explanation for this is that repulsive interaction and
disorder lead to spontaneous breaking of the translational symmetry.
(iii) Confirming the well known result in spin chains for nearest neighbor density-density interac-

tion, DMRG indicates disordered interacting complex fermions behave the same way as in the non-
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interacting case. Investigations of the entanglement [86] yield an effective central charge c ≈ ln 2,
which is a smoking gun pointing to infinite-randomness physics.
(2) I performed two kinds of RG analysis to understant the numericals results from (1): (i) First,

I have developed a Giamarchi-Schulz like weak-disorder RG. Fig. 2.3 indicates there are three clean
critical theories in the phase diagram: c = 1

2 (Ising), c = 3
2 (Ising+LL) and c = 1 (LL). The disorder

is strongly RG-relevant and quickly flows towards the strong-disorder regime driving the system away
from the clean FP. The RG flow becomes uncontrolled before reaching the infrared behavior.
(ii) Since the disorder flows to strong coupling, an RG analysis starting at the non-interacting infinite-

randomness fixed point seemed natural. The effect of the interaction was investigated perturbatively
from that point. To this end, the scaling of the interaction matrix elements had to be determined. I
studied the eigenfunction statistics in great detail. The difference between LDOS moments and generic
composite objects of eigenfunctions is maximally pronounced in the sense that a single wavefunction
looks localized and nontrivial correlations appear only with several points and wavefunctions. Further
there was a strong even/odd sublattice effect in all correlation functions studied. Using high precision
numerics, the correlation functions for both Hartree and Fock terms are computed. Due to the singular
LDOS, both terms grow quickly with increasing system size. However because there is a strong
cancellation between the two terms, their difference vanishes rapidly. Since this is even faster than the
divergence of the LDOS, the interaction is RG-irrelevant in the complex fermionic chain.
Contrarily in the Majorana model the interaction terms are spread over four sites. The unsuppressed

matrix elements with even separation scale similarly to the two point function CH introduced before
in Eq. (2.56) [86]. Due to non-conservation of particle number in the Majorana case there are three
non-vanishing contributions from Wick’s theorem in the matrix elements of the interaction. Since these
are each of the same magnitude (in leading order), there is no cancellation in the Majorana system.
Consequently such interaction terms are strongly relevant at the infinite randomness fixed point. This
explains the drastic difference of behavior between Majoranas and complex fermions seen in the DMRG
numerics.
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3 Chapter 3

Generalized multifractality in Spin
Quantum Hall systems

In this chapter, I coin the term generalized multifractality characterizing the scaling of arbitrary eigen-
state composite observables at Anderson-localization critical points opposed to leading multifractality
dealing with local density of states (LDOS) moments only.
The spin quantum Hall (SQH) transition in superconductors with anomalous particle-hole symmetry

(class C) is central to this chapter. Many of the mathematical constructions for pure-scaling eigenop-
erators and observables generalize straightforwardly to the other symmetry classes. In order to explore
generalized multifractality in SQH (and other) systems, I derive the pure-scaling observables in the field
theoretical framework of the non-linear sigma model (NLSM). Then a “translation” in terms of eigen-
state observables has to be found. Having obtained these, I perform numerical studies of the network
models for SQH and IQH transitions. As expected, the results show pure scaling in the corresponding
observables, which allows me to find the generalized multifractal spectrum. Remarkably the spectrum at
the SQH critical point strongly deviates from generalized parabolicity. These numerical indices imply
violation of the local conformal invariance (LCI) at this critical point.
Finally I give analytical arguments showing violations from generalized parabolicity explicitly in cer-

tain scaling exponents. This is sufficient to proof that SQH criticality does not obey LCI.
This section closely follows my publication Ref. [105].

3.1 Motivation

Anderson localization in disordered systems belongs to the most fundamental phenomena in condensed
matter physics [164, 165]. In particular, Anderson transitions between localized and delocalized phases
(or between topologically distinct localized phases) [9] attract much attention. This interest was
additionally enhanced by development of the symmetry classification of disordered systems [7, 98, 111]
(see Sec. 1.3), which has further extended the scope of Anderson transitions (in particular, to the area
of disordered superconductors); see [9] for review. A general discussion of Anderson transition and
multifractality can be found in Sec. 1.2 and Sec. 1.2.1.
A remarkable hallmark of critical points of Anderson transitions is the multifractality characterizing

the statistics of eigenfunctions and of the local density of states (LDOS). Multifractality of critical
eigenstates at various Anderson-transition critical points has been extensivlely explored analytically
and numerically [9]. It was demonstrated that the multifractality can be efficiently employed to
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determine the position of the critical point of the Anderson transition and the critical index of the
localization length [20, 21]. It was also shown that the multifractality survives in the presence of
Coulomb interaction [166]. Recently, the multifractality was used as an efficient tool to detect and
explore the emergent criticality of 2D surface states of topological superconductors [75, 88–90].
Direct experimental measurement of multifractality is a highly non-trivial task. Experimental ob-

servations of multifractality near metal-insulator transition were reported for sound waves [167] and
electrons in disordered semiconductors [22]. Strong fluctuations of the local density of states qualita-
tively analogous to multifractality were observed in experiments on superconductor-insulator transition
in disordered films [23, 24].
Recent works on interplay of multifractality and interactions have additionally emphasized the im-

portance of multifractality. In particular, it was predicted that the multifractality may enhance the
critical temperature Tc of superconductiors in three-dimensional [168–170] and two-dimensional (2D)
[171–175] systems. The multifractal enhancement of Tc in 2D superconductors was indeed observed
experimentally [176, 177]. Further, it was shown that the multifractality drives instabilities of surface
states of topological superconductors [61, 124] and leads to broad distribution of Kondo temperatures
in disordered metals with magnetic impurities [178–180].
It was shown in Refs. [181–185] that, within the non-linear σ model (which constitutes the field theory

of Anderson localization), the distribution of LDOS in Wigner-Dyson classes possesses a symmetry
relating the probabilities of values ν and ν−1 (with the average LDOS normalized to unity). This
was used in Ref. [102] to derive exact symmetry relations between multifractal exponents at Anderson
transitions in the Wigner-Dyson classes. It was later shown in Ref. [186] that these relations can be
understood as a manifestation of Weyl-group symmetry associated with the σ-model manifold and
can be extended to unconventional symmetry classes. In Ref. [87], a general classification of composite
operators without gradients was developed, which extends that of Refs. [187–189]. Further, in Ref. [87]
multiple symmetry relations between scaling exponents of composite operators were derived, which all
follow from the Weyl-group symmetry. Finally, Ref. [87] determined a “translation” of these composite
operators to eigenfunction correlation functions for the symmetry class A (unitary Wigner-Dyson
class).
The scaling of the whole set of composite operators characterizing critical eigenstates extends the

conventional notion of multifractality (which refers only to leading exponents τq characterizing moments
|ψ(r)|2q of eigenstate amplitude). I will thus term it “generalized multifractality”. The subleading
multifractal exponents manifest themselves in dephasing and broadening of localization transition in
an interacting system with a short-range interaction that is irrelevant in the renormalization-group
sense [158, 190, 191].
The spatial dimensionality d = 2 plays a special role in the context of Anderson localization. In

the most conventional symmetry class AI (orthogonal Wigner-Dyson class), d = 2 is the lower critical
dimension, so that a 2D system is always in the localized phase (although with an exponentially large
localization length for weak disorder). The situation is, however, different in other symmetry classes,
with a wealth of 2D Anderson-localization critical points [9]. Emergence of these critical points is
related either to peculiarities of the perturbative expansion (e.g., antilocalization in Wigner-Dyson
symplectic class AII) or to topology. A paradigmatic example of the localization-transition critical
point associated with topology is the plateau transition in the quantum Hall effect (which belongs to
the Wigner-Dyson unitary class A).
Multifractality at the quantum-Hall plateau transition and, more generally, physics of the corre-

sponding fixed point, has been attracting much interest. On the numerical side, the multifractal
spectrum is very close to parabolicity [51]; however, a high-precision numerics indicates small devia-
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tions [52, 53]. Many papers have attacked the problem of the character of the critical theory [42–50];
in particular, various versions of the Wess-Zumino-Novikov-Witten (WZNW) theory were conjectured.
Quite generally, such WZNW-type theories lead to a parabolic multifractality spectrum as for free
Gaussian fields. Another important argument in favor of parabolic multifractality was provided by
Ref. [60]. In was shown in that work that, for 2D Anderson transitions, the assumption of local con-
formal invariance, in combination with an assumption of Abelian fusion of composite operators, leads
to an exactly parabolic multifractal spectrum of moments of the local density of states: the exponent
τq is a quadratic function of q. A further interesting connection between WZNW models and quantum
Hall criticality is explored in Chap. 4.
The present work deals with a superconducting counterpart of the quantum Hall transition—the

spin quantum Hall (SQH) transition [54, 55]. It was found that mapping to percolation allows one to
obtain some critical exponents for the SQH transition exactly [56–58]. The multifractality spectrum at
the SQH critical point was studied numerically in Refs. [58, 77] and very recently in Ref. [59]. It was
found [58, 59] that the spectrum exhibits clear (although relatively weak) deviations from parabolicity.
These deviations are very interesting physically since, in combination with results of Ref. [60], they
hint to a possible violation of local conformal invariance.
In this work, I present a detailed analysis of the generalized multifractality at the SQH critical

point, supporting and complementing analytical study by numerical simulations. The key results are
as follows:

1. The implications of local conformal invariance (LCI) in 2D systems for the generalized multifrac-
tal spectrum are explored. The result of Ref. [60] stating that LCI implies parabolicity of the
LDOS multifractality can be extended. By assuming both LCI and Abelian fusion (1.76), one
can show that the generalized-multifractality spectrum exhibits “generalized parabolicity” and
is parametrized (for a given critical point) by a single constant.

2. One can develop explicitly two constructions of pure-scaling composite operators for σ-model of
class C, invoking heighest-weight vectors and the Iwasawa decomposition, respectively. These
composite operators both obey Abelian fusion rules. The Iwasawa decomposition is performed
in Sec. 3.3. The highest weight vector construction can be found in Ref. [105].

3. Using one-loop renormalization group an alternative family of pure-scaling operators is found in
Sec. 3.5 (invariant with respect to the action of the symmetry group of the σ-model and easier
to connect to the wavefunctions).

4. A “translation” of the scaling operators to the language of eigenstates of the Hamiltonian is
performed and explicit expressions for particularly interesting eigenstate correlators exhibiting
generalized multifractality are determined in Secs. 3.6, 3.7. Using the network model of class
C, it is verified numerically that these are indeed the proper scaling operators and determine
the corresponding exponents. Very remarkably, there is a strong violation of the generalized
parabolicity of the generalized-multifractality spectrum. In combination with the results proven
in (i) and (ii), this points out to a violation of the local conformal invariance at the SQH tran-
sition. While this is a rather surprising conclusion, there apparently is no alternative plausible
explanation of the numerical findings.

5. Exploiting the percolation mapping of certain observables in critical SQH systems, I show ana-
lytically that the generalized multifractal spectrum violates parabolicity in Sec. 3.8.
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The results in (ii) and a part of analytical results in (iv) represent an extension of the class-A
construction of Ref. [87] to class C. It should be emphasized, however, that this extension is far from
trivial, and the situation in class C turns out to be much richer than in class A. This complexity can
be traced back to the additional particle-hole degree of freedom (referred as “spin” in the term “spin
quantum Hall effect”) .
The mathematical constructions in the following Secs. 3.2, 3.3, 3.4, 3.5, 3.7 are excerpts from Ref.

[105] slightly modified to fit notation and style of this work.

3.2 Multifractality and CFT

In this section the attention is restricted to Anderson transitions (ATs) in two dimensions. The reason
is that in two dimensions, conformal symmetry is especially powerful due to local conformal invariance
(LCI) and the underlying infinite-dimensional Virasoro algebra. It is commonly expected that if a
2D theory satisfies global conformal invariance, it also satisfies the—much stronger—local conformal
invariance. The framework employed here relating multifractality to a field theory satisfying LCI is
introduced in Sec. 1.2.2. General fundamentals on conformal field theory can be found in Sec. 1.1.2 and
references therein. This infinite symmetry implies (together with the Abelian fusion) exact parabolicity
of MF spectra [60]. After reviewing the arguments of Ref. [60] that dealt with the the leading MF
spectra at the integer quantum Hall (IQH) transition, this section continues with an extension to other
symmetry classes [Eq. (3.20)] and also to generalized MF exponents [Eq. (3.25)].

3.2.1 Exact parabolicity of ∆q for the IQH transition under the assumption of local
conformal invariance

Bondesan et al. [60] considered the scaling operators Oq(r) in the context of the IQH transition in
2D and its description in terms of the Chalker-Coddington network model. This critical point belongs
to class A, so q∗ = 1 and xq = ∆q. The main results of [60] is that, under the assumption of local
conformal invariance, exact parabolic form of the dimensions ∆q holds:

∆q = bq(1− q), (3.1)

with constant b left undetermined.
In 2D CFT, where the points are specified by complex coordinates z, the two- and three-point

functions factorize into holomorphc and antiholomorphic factors (with possibly different holomorphic
and antiholomorphic dimensions h and h̄):〈

φ1(z1, z̄1)φ2(z2, z̄2)
〉
CFT
∼ z−2h

12 z̄−2h̄
12 , if h1 = h2 = h and h̄1 = h̄2 = h̄, (3.2)〈

φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)
〉
CFT
∼ zh3−h1−h2

12 zh2−h1−h3
13 zh1−h2−h3

23 z̄h̄3−h̄1−h̄2
12 z̄h̄2−h̄1−h̄3

13 z̄h̄1−h̄2−h̄3
23 .

(3.3)

The four-point CFT correlation functions in two dimensions can be written in terms of zij = zi − zj
and the cross-ratio η = z12z34/z13z24 as follows:

〈
φ1(z1, z̄1) . . . φ4(z4, z̄4)

〉
CFT

=
4∏
i<j

z
h/3−hi−hj
ij z̄

h̄/3−h̄i−h̄j
ij F (η, η̄), h =

4∑
i=1

hi, h̄ =
4∑
i=1

h̄i. (3.4)
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As in higher dimensions, the function F (η, η̄) cannot be determined from conformal symmetry alone.
To prove the exact parabolicity (3.1), Bondesan et al. considered a certain 4-point correlation

function that satisfies the neutrality condition (1.83). In that work the neutrality condition (1.83) was
achieved by considering n − 1 insertions of the operators Oqi plus one operator πc describing a point
contact in the network model [44, 192]. This operator can be written as the integral over a continuum
of q values, and it always contributes the definite scaling dimension (or the fusion channel) necessary
to have the correct total “charge” q∗ = 1.
In the notations used here the relevant correlator is

〈
Oq1(z1, z̄1)Oq2(z2, z̄2)Oq3(z3, z̄3)O1−q1−q2−q3(z4, z̄4)

〉
.

The operators Oq are expected to have hq = h̄q = ∆q/2, and the corresponding 4-point CFT correlator
is 〈

φq1(z1, z̄1)φq2(z2, z̄2)φq3(z3, z̄3)φ1−q1−q2−q3(z4, z̄4)
〉
CFT

=
4∏
i<j

|zij |∆/3−∆qi−∆qjF (η, η̄), (3.5)

∆ = ∆q1 + ∆q2 + ∆q3 + ∆q1+q2+q3 . (3.6)

In the following lines the argument of Ref. [60] is briefly summarized. The authors make two
essential assumptions: 1) correlation functions satisfying the neutrality condition (1.83) exhibit at the
IQH transition point the local conformal invariance, with the corresponding CFT operators φq being
Virasoro primaries; 2) the operators φq satisfy (the 2D variant of) the Abelian OPE (1.76):

φq1(z1, z̄1)φq2(z2, z̄2) ∝ |z12|∆q1+q2−∆q1−∆q2φq1+q2(z2, z̄2) + . . . (3.7)

It is important that no other primaries enter the Abelian OPE and the ellipses stand for contributions
from Virasoro descendants.
The Abelian fusion immediately implies that there is only one conformal block in the correlator

(3.5), that is F (η, η̄) = |f(η)|2. The holomorphic function f(η) is present in the holomorphic factor of
the correlator (3.5):

G(z1, . . . , z4) =
〈
φq1(z1)φq2(z2)φq3(z3)φ1−q1−q2−q3(z4)

〉
CFT

=
4∏
i<j

z
h/3−hqi−hqj
ij f(η), (3.8)

h = hq1 + hq2 + hq3 + hq1+q2+q3 . (3.9)

There are three possible fusion channels in this correlator, where each of the charges q1, q2, and q3
fuses with the neutralizing charge 1 − q1 − q2 − q3. These three channels lead to simple power-law
singularities (branch points) of the function f(η) at η = 1, 0 and ∞. For example, fusing q1 with q2,
and q3 with 1− q1 − q2 − q3 (so that |η| � 1) gives

G(z1, . . . , z4) ∼ zhq1+q2−hq1−hq2
12 z

hq1+q2−hq3−hq1+q2+q3
34 z

−2hq1+q2
13 . (3.10)

On the other hand, the right-hand side of Eq. (3.8) where the distances between points are chosen
appropriately (|z12|, |z34| � |z13| ≈ |z14| ≈ |z23| ≈ |z24|) becomes

G(z1, . . . , z4) ∼ f(η) zh/3−hq1−hq212 z
h/3−hq3−hq1+q2+q3
34 z

−2h/3
13 . (3.11)

Comparison of the two expressions gives that near η = 0

f(η ∼ 0) = ηhq1+q2−h/3[a0 +O(η)]. (3.12)
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The other two fusion channels give the forms of the singularities near the other two branch points:

f(η ∼ 1) = (1− η)hq2+q3−h/3[b0 +O(1− η)], f(η ∼ ∞) = (1/η)hq1+q3−h/3[c0 +O(1/η)]. (3.13)

The exponents characterizing the three branch points must be related. The argument is a simple
case of a more general one in Ref. [193]. Indeed, compactify the complex plane and go around all
three branch points along a contour C. Then, on the one hand, the total phase change (monodromy)
of the function f(η) acquired along the contour C is the product of the phases characterizing each of
the branch points. On the other hand, the contour C can be deformed to a point by extending it to
infinity, which means that the total monodromy is trivial (one). This gives the relation

h− hq1+q2 − hq1+q3 − hq2+q3 = M, (3.14)

where M ≥ 0 is a non-negative integer. Then the holomorphic function f(η) becomes

f(η) = ηhq1+q2−h/3(1− η)hq2+q3−h/3[a0 + a1η + · · ·+ aMη
M ]. (3.15)

Choosing q1 = q2 = q3 = 0, one can see that M = 0. This fixes the conformal block

f(η) = a0η
hq1+q2−h/3(1− η)hq2+q3−h/3. (3.16)

Moreover, the condition M = 0 gives a functional equation for the dimensions hq:

hq1+q2+q3 − hq1+q2 − hq1+q3 − hq2+q3 + hq1 + hq2 + hq3 = 0, (3.17)

or, for the full dimensions ∆q,

∆q1+q2+q3 −∆q1+q2 −∆q1+q3 −∆q2+q3 + ∆q1 + ∆q2 + ∆q3 = 0. (3.18)

This equation easily leads to the result (3.1). First, it immediately implies ∆0 = 0, as it should be.
Next, setting q1 = q and q2 = q3 = ε, one gets

∆q+2ε − 2∆q+ε −∆2ε + ∆q + 2∆ε = 0. (3.19)

Now one can expand up to second order in ε to get (∆′′q −∆′′0)ε2 = 0. Thus ∆′′q = ∆′′0 = const, which
implies that the function ∆q is a quadratic polynomial. A general quadratic polynomial that vanishes
at q = 0 and satisfies the symmetry property (1.69) is exactly of the form given in Eq. (3.1).

3.2.2 Generalizations

Now one can generalize the arguments of Ref. [60] summarized in Sec. 3.2.1 in two directions.

3.2.2.1 Other symmetry classes

First, the arguments are not specific to the IQH critical point but rather apply also to 2D critical points
of ATs in other symmetry classes. The assumptions are the same: (1) local conformal invariance of
correlation functions satisfying the neutrality condition, and (2) Abelian fusion. Under these assump-
tions, the arguments can be directly extended to all five symmetry classes (A, AI, AII, CI, and C)
identified in Refs. [87, 186] that exhibit the symmetry relation (1.69), with q∗ = 1 for Wigner-Dyson
classes, q∗ = 2 for class CI, and q∗ = 3 for class C. The result is the exact parabolicity,

xq = bq(q∗ − q) (3.20)

for the simple MF spectra. (Here the term “simple” is used in the sense of opposite to “generalized”.)
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3.2.2.2 Generalized mulifractality

Secondly, one can obtain a generalization of this parabolic form for all gradientless scaling operators
Oλ considered in [87], i.e., to generalized MF spectrum, see Sec. 1.2.1.1. As was pointed out in
Sec.1.2.1.1, there is a general operator O−ρb = O(−c1,−c2,...) with vanishing scaling dimension. Further,
as is discussed in Sec. 1.2.2.2, the correlation functions satisfying

∑
i λi = −ρb have scaling consistent

with conformal invariance. Now assume, as before, that the local conformal invariance holds for these
correlation functions and that Oλ are Virasoro primaries that satisfy the 2D version of the Abelian OPE
(1.76). Then the arguments of Ref. [60] presented in Sec. 3.2.1 can be straightforwardly generalized to
give the following equation for the dimensions xλ:

xλ+λ′+λ′′ − xλ+λ′ − xλ+λ′′ − xλ′+λ′′ + xλ + xλ′ + xλ′′ = 0. (3.21)

[This equation is a counterpart of Eq. (3.18).] Denote by ei = (0, . . . , 1, . . . , 0) (unit in the i-th place)
the standard basis in the weight space, and choose λ′ = ε′ei and λ′′ = ε′′ej :

xλ+ε′ei+ε′′ej − xλ+ε′ei − xλ+ε′′ej − xε′ei+ε′′ej + xλ + xε′ei + xε′′ej = 0. (3.22)

Then one can expand this to second order in ε′ and ε′′, denoting ∂i = ∂/∂qi:

xλ+ε′ei = xλ + ∂ixλε
′ + 1

2∂
2
i xλε

′2, xλ+ε′′ej = xλ + ∂jxλε
′′ + 1

2∂
2
j xλε

′′2,

xλ+ε′ei+ε′′ej = xλ + ∂ixλε
′ + ∂jxλε

′′ + 1
2∂

2
i xλε

′2 + 1
2∂

2
j xλε

′′2 + ∂i∂jxλε
′ε′′. (3.23)

Substituting these expansions into Eq. (3.22) gives ∂i∂jxλ = ∂i∂jx0 = const, which implies that xλ is
a quadratic function of qi. Thus, it is also a quadratic function of the shifted q̃i = qi + ci/2. But in
these variables xλ must be even due to the first type of the Weyl group actions (1.71), which restricts
it to

xλ =
∑
i

biq̃
2
i +B. (3.24)

The other type of Weyl group actions (1.72), which requires invariance of xλ with respect to the
interchange q̃i ↔ q̃j for any pair i, j, forces all coefficients bi to be equal: bi = −b. Finally, the constant
B is found from the requirement x0 = 0, which gives B = b

∑
i c

2
i /4, and

xλ = −b
∑
i

qi(qi + ci) = −b(λ, λ+ ρb). (3.25)

Thus, the generalized dimensions are proportional to the value of the quadratic Casimir operator in
the representation labeled by the highest weight λ. Now choosing λ = qe1, one can see that the
constant b is the same as in the simple MF spectrum (3.20). The generlized MF spectrum (3.25) is
thus parametrized by a single constant b. For the result (3.25) the term “generalized parabolicity” will
be used.

3.2.2.3 Generalized parabolicity of generalized MF spectra as a hallmark of local conformal
invariance at 2D ATs

Now two conditions under which the generalized parabolicity of generalized MF spectra of 2D systems
has been derived are discussed. Recall again that these are (1) local conformal invariance and (2)
Abelian fusion.
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First the second condition is discussed: the Abelian fusion of operatorsOλ. In Ref. [87], the operators
Oλ were explicitly constructed for class A by two approaches (Iwasawa decomposition and highest-
weight vectors), and the results do satisfy the Abelian fusion requirement. Furthermore, the methods
of Ref. [87] can be extended to other symmetry classes. This will be done in the present paper for class
C. Specifically, the Abelian fusion of the scaling operators Oλ follows from their derivation as highest-
weight vectors under the action of a Lie algebra, see Ref. [105]. Furthermore, it is a consequence of
the form of these operators as “plane waves” on the target space of the sigma model constructed by
means of Iwasawa decomposition in Sec. 3.3. These results thus provide an explicit verification of the
Abelian-fusion condition.
The situation with the assumption of the conformal invariance is much more delicate, as was already

mentioned at the end of Sec. 1.2.2.2. It is not known a priori whether it holds (in the narrow sense
explained above) at 2D critical points such as IQH or spin quantum Hall transitions. Therefore, the
generalized parabolicity of spectra of generalized MF dimensions in fact serves as a hallmark for the
local conformal invariance. By constructing explicitly eigenfunction correlations that correspond to
Oλ operators and by determining the corresponding scaling dimensions numerically, one can thus test
conformal invariance. This will be done below for the spin quantum Hall transition.

3.2.3 Beyond 2D: Non-parabolic MF spectra

While this paper focusses on 2D systems, the following comment on MF spectra beyond 2D is instruc-
tive at this point. The assumption of local conformal invariance (involving the infinite-dimensional
Virasoro algebra) was crucial for the above derivation of exact parabolicity of MF spectra (both sim-
ple and generalized). This assumption may or may not hold at a 2D AT critical point. However, it
definitely does not hold beyond 2D. Therefore, the derivation is certainly not applicable to systems of
other spatial dimensionality. Indeed, it is well known, both analytically and numerically, that the MF
spectra are in general not parabolic.
On the analytical side, the MF dimensions have been calculated by perturbative ε-expansion of the

σ models in 2+ε dimensions [188, 189]. All these results give parabolic spectra in the leading term but
exhibit deviations from exact parabolicity in higher orders in ε. In full consistency with the analytical
predictions, numerical evaluation of MF spectra at ATs in systems of spatial dimensionality d = 3, 4,
and 5 [21, 194–196] demonstrate significant deviations from parabolicity that grow with increasing d.
Furthermore, the limit d � 1 can be addressed by using the results for the ATs on the Bethe lattice
that show the MF acquires its strongest form in this limit [9], with the spectrum

∆q ' d(1/2− |q − 1/2|). (3.26)

This spectrum is piecewise linear rather than parabolic. Numerical results indeed approach this be-
havior with increasing d [194, 196]. A similar evolution of the MF spectrum, from a nearly-parabolic
spectrum (but still with some deviations) towards a piecewise-linear spectrum, is also found (both
analytically and numerically) for the model of power-law random banded matrices [9].

In Ref. [197], it was claimed that exact parabolicity (3.1) holds for all ATs in the standard Wigner-
Dyson classes in any dimension. Clearly, this statement is incorrect since it is in contradiction with the
whole body of analytical and numerical results that were just reviewed. For the benefit of the reader,
the crucial flaw in the argumentation of Ref. [197] is pointed out. The author of Ref. [197] obtained
the relation (3.18) from an ad-hoc assumption that all three-point MF correlation functions are just
products of simple power-law factors, see Eq. (9) in Ref. [197]. This assumption is in general incorrect.
In reality, the three-point functions reduce to different products of power-law factors in limiting cases
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that correspond to different hierarchical relations among distances between the points, as follows from
general RG arguments presented in Section 1.2.2.1; see, in particular Eq. (1.78). A similar assumption
of Ref. [197] for all multi-point MF correlation function [Eq. (19) there] is flawed for the same reason.
Only in the presence of local conformal invariance in 2D systems, much stronger constraints emerge
that allow one to prove the parabolicity.

3.3 Iwasawa decomposition

In this section the construction based on the Iwasawa decomposition is performed. For a bosonic
NLSM manifoldMB = G/K, this yields a family of pure scaling operators (as defined in Sec. 1.2.2)
that satisfy abelian fusion (1.76). The outline of the basic steps in this approach follows. In Sec. 3.3.1
a formal construction of the Iwasawa decomposition (3.33) for the Lie algebra g into the compact k, an
abelian part a and a nilpotent n is given. Sec. 3.3.2 explains how this can be used to obtain a general
parametrization of N -radial eigenfunctions to G/K-invariant differential operators. In Sec. 3.3.4 the
Iwasawa decomposition is performed for g = so∗(4n) (class C bosonic). Sec. 3.3.5 obtains the N -radial
eigenfunctions inMB = SO∗(4n)/U(2n).

3.3.1 Mathematical definition

One needs to:
1. begin with the (real) Cartan decomposition of the (real) Lie algebra g ofMB

g = k⊕ p, (3.27)

which is defined by the commutation relations:

[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k. (3.28)

2. choose a maximal Abelian subspace a ⊂ p.

3. consider the adjoint action [H, .] of elements H ∈ a on g. The eigenvectors Eα of this action
satisfy

[H,Eα] = α(H)Eα (3.29)

and are called restricted root vectors, and the eigenvalues α are called restricted roots. The
dimension mα of the restricted root space

gα = span {Eα} (3.30)

is called the multiplicity of the restricted root α, it holds mα ≥ 1. Restricted roots are linear
functions on a, and lie in the space a∗ dual to a. In the present context both a and a∗ have
dimension n. Basis elements in the space a∗, specified later, will be denoted in this section by ei
(i = 1, . . . , n). Notice that these basis vectors were called ei in Sections 1.2.2 and 3.2.

4. A system of positive restricted roots is defined by choosing some hyperplane through the origin
of a∗ which divides a∗ in two halves, and then defining one of these halves as positive. The Weyl
vector ρ is defined as the half-sum of positive restricted roots accounting for their multiplicities:

ρ =
∑
α>0

mαα =
n∑
i=1

ciei. (3.31)
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5. The components ci of the Weyl vector will be found later, see Eq. (3.67). Positive restricted
roots generate the nilpotent Lie algebra

n =
∑
α>0

gα. (3.32)

6. The Iwasawa decomposition

g = k⊕ a⊕ n (3.33)

can be thought of as real form of the complex root-space decomposition. One has

n = p⊕ (n ∩ k). (3.34)

of the real Lie algebra g = so∗(4n) into a maximal compact subalgebra k = u(2n) and the complemen-
tary subspace p.

3.3.2 N -radial eigenfunctions

The power of above Eq. (3.33) can be seen from exponentiating. This gives the Iwasawa decomposition
in global form:

G = NAK, (3.35)

which allows one to represent any element g ∈ G in the form g = nak, with n ∈ N = en nilpotent,
a ∈ A = ea diagonal, and k ∈ K = ek compact. This factorization is unique once the system of positive
restricted roots is fixed, and provides a very useful parametrization of the target space G/K. An
element a ∈ A is fully specified by n real numbers ei(ln a), which play the role of radial coordinates on
G/K. For simplicity, these radial coordinates will simply by denoted by ei. Thus ei may now have two
different meanings: either its original meaning as a basis element in a∗, or the new one as an N -radial
function ei(ln a) on G/K. It should be clear from the context which of the two meanings is being used.
Using the radial coordinates, the joint N -radial eigenfunctions of the Laplace-Casimir operators on

G/K take a very simple exponential form

ϕµ(Q) = e(ρ+µ)(ln a), (3.36)

where a is the a-factor in the Iwasawa decomposition of g in Q = gΛg−1, and

µ =
n∑
i=1

µiei (3.37)

is a weight vector in a∗. Also use the notation

qi = −(µi + ci)/2 (3.38)

will be used, in which the exponential functions (3.36) become

ϕµ ≡ ϕ(q1,q2,...,qn) = exp
(
− 2

n∑
i=1

qiei

)
. (3.39)
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To construct the exponential N -radial eigenfunctions explicitly as combinations of matrix elements
of Q, one can use the key fact that there exists a choice of basis in which elements of a and a ∈ A
are diagonal matrices, while elements of n are strictly upper triangular, and elements n ∈ N are
upper triangular with units on the diagonal. This has immediate consequences for the matrix QΛ:
since elements of K commute with Λ, the Iwasawa decomposition g = nak leads to QΛ = na2Λn−1Λ,
which is a product of an upper triangular, a diagonal, and a lower triangular matrices. In this form
the principal minors of the AA block of QΛ are simply products of diagonal elements of a2, which
are exponentials of the radial coordinates xi on G/K. These minors are basic N -radial spherical
functions on G/K which can be raised to arbitrary powers and multiplied to produce the most general
exponential functions (3.36). A great advantage of this construction is that is directly gives the general
positive scaling operators that can be raised to arbitrary powers and satisfy the Abelian fusion rules.
In the following details of the Iwasawa construction for the class C NLSM bosonic manifold SO∗(4n)/U(2n)

are presented.

3.3.3 Definitions and notations for the symmetric space G/K = SO∗(4n)/U(2n)
The basic vector space that is worked with here is

C4n = C2 ⊗ C2 ⊗ Cn, (3.40)

where the factors in the tensor product are the retarded-advanced (RA), spin, and replica spaces, in
this order. A standard notation for the matrix units will be used: Eij is the matrix with 1 in the i-th
row and j-th column, all other entries being zero. One can write this in terms of the matrix elements:
(Eij)kl = δikδjl. The range of indices in this definition is the dimension of the space in which Eij
act, and in various sections below it can be 2 for the RA space, n for the replica space, or 2n for the
product of the spin and replica spaces. The products and commutators of matrix units are easy to
find:

EijEkl = δjkEil, [Eij , Ekl] = δjkEil − δilEkj . (3.41)

One can introduce an additional notation for special matrices related to the tensor product structure
(3.40):

Σij ≡ σi ⊗ σj ⊗ In. (3.42)

Here σi are the usual 2 × 2 Pauli matrices, and the indices i and j are allowed to take the value 0,
which corresponds to the identity matrix σ0 = I2. For example Σ00 = I4n, and Σ30 = Λ, the usual Λ
matrix from the sigma model. The notations (3.42) are different from the ones used in Sections 3.4
and 3.5. The two sets are related by

τi = Σi0, Σi = Σ0i, τiΣj = Σij . (3.43)

Next, the following group involutions are defined:

Θi(g) ≡ Σi0(g−1)TΣi0, (3.44)

These preserve multiplication of matrices, and can be applied not only to group elements g, but to
any matrices, including the Q fields of the sigma model. Note that the involution Θ1 is closely related
(but not identical) with the “bar” operation defined in Eq. (3.141) in Sec. 3.5.
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The definition [198] of the group SO∗(4n) as the subgroup of the pseudo-unitary group SU(2n, 2n)
that preserves the symmetric bilinear from with the matrix Σ10 is used next. In this definition the
elements g ∈ SO∗(4n) satisfy

g†Σ30g = Σ30, gTΣ10g = Σ10. (3.45)

These conditions can be rewriten using the involutions (3.44):

Θ3(g) = g∗, Θ1(g) = g. (3.46)

The sigma model field (3.111) Q = gΛg−1, where g ∈ SO∗(4n), inherits certain symmetry properties
from the constraints (3.46). Applying the involutions Θ3 and Θ1 to Q and using Θ3(Λ) = Λ, and
Θ1(Λ) = −Λ, one gets

Θ3(Q) = Q∗, Θ1(Q) = −Q. (3.47)

Since Q2 = I4n, these constraints can be also written in the form

Σ30Q
TΣ30 = Q∗, Σ10Q

TΣ10 = −Q. (3.48)

Notice that the second constraint here is different from the one obtained in Sec. 3.4 in Eq. (3.114).
Rather, it is the one that appears for the transformed matrix Q̃ in Eq. (3.118), see the relevant
discussion and the transformation relating the two choices for Q in Sec. 3.4.
Writing Q as a block matrix in the RA space

Q =
(
QRR QRA
QAR QAA

)
, (3.49)

one obtains constraints on the blocks:

Q†RR = QRR, Q†AA = QAA, Q†RA = −QAR, (3.50)
QTRR = −QAA, QTRA = −QRA, QTAR = −QAR. (3.51)

The anti-symmetry of the off-diagonal blocks QRA and QAR will be important in what follows.

3.3.4 Cartan decomposition and generators of SO∗(4n)/U(2n)
The group SO∗(4n) is connected, so all its elements can be written as g = eZ , where Z are elements
of the Lie algebra so∗(4n). These satisfy the infinitesimal versions of Eqs. (3.45):

Z†Σ30 + Σ30Z = 0, ZTΣ10 + Σ10Z = 0, (3.52)

In terms of the Lie algebra involutions θi related to the group involutions (3.44)

θi(Z) ≡ −Σi0Z
TΣi0, (3.53)

constraints on Z can be written as

θ3(Z) = Z∗, θ1(Z) = Z. (3.54)
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If one writes the Lie algebra elements Z as block-matrices in the RA space, the constraints (3.52)
imply

Z =
(

A B
−B∗ A∗

)
, A† = −A, BT −B. (3.55)

The Cartan involution that determines the Cartan decomposition so∗(4n) = k⊕ p into even and odd
subspaces is θ2. It acts on generators Z as

θ2(Z) = −Σ20Z
TΣ20 =

(
A −B
B∗ A∗

)
. (3.56)

This gives one a very explicit description of the Cartan decomposition:

k =


(
A 0
0 A∗

)
, A† = −A

 , p =


(

0 B
−B∗ 0

)
, BT = −B

 . (3.57)

As expected, the subalgebra k = u(2n), the Lie algebra of K = U(2n), the maximal compact subgroup
in G = SO∗(4n).
Now one can separate the real and imaginary parts in Eq. (3.57):

k =


(
A1 + iA2 0

0 A1 − iA2

)
,
AT1 = −A1
AT2 = A2

 , p =


(

0 B1 + iB2
−B1 + iB2 0

)
,
BT

1 = −B1
BT

2 = −B2

 .
(3.58)

These forms allow one to write the generators of the two subsets in terms of tensors in the space (3.40).
For elements in k, the first factor should be diagonal, so it is either I2 or iσ3. For the first choice (I2),
the other two tensor factors should produce a real anti-symmetric matrix, which can be done choosing
one of the factors to be a symmetric matrix, and the other an anti-symmetric matrix. Likewise, for
the second choice (iσ3) one needs the other two factors to produce a real symmetric matrix, so the
factors can be either simultaneously symmetric or anti-symmetric. Introducing a short-hand notation
for the symmetric and anti-symmetric combinations of matrix units in the replica space

E+
ij = Eij + Eji, i 6 j,

n(n+ 1)
2 total, (3.59)

E−ij = Eij − Eji, i < j,
n(n− 1)

2 total, (3.60)

one gets the following eight groups of generators:

X00
ij ≡ σ0 ⊗ σ0 ⊗ E−ij , X01

ij ≡ σ0 ⊗ σ1 ⊗ E−ij , X02
ij ≡ σ0 ⊗ iσ2 ⊗ E+

ij , X03
ij ≡ σ0 ⊗ σ3 ⊗ E−ij ,

X30
ij ≡ iσ3 ⊗ σ0 ⊗ E+

ij , X31
ij ≡ iσ3 ⊗ σ1 ⊗ E+

ij , X32
ij ≡ iσ3 ⊗ iσ2 ⊗ E−ij , X33

ij ≡ iσ3 ⊗ σ3 ⊗ E+
ij .

(3.61)

The total number of generators here is 4n2 = (2n)2, the dimension of k = u(2n), as it should be.
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Similarly, for the elements in p, the first factor should be either iσ1 or iσ2, and for either of these
choices the remaining two factors should give a real anti-symmetric matrix. This gives the following
eight groups of generators:

Y 10
ij = iσ1 ⊗ σ0 ⊗ E−ij , Y 11

ij = iσ1 ⊗ σ1 ⊗ E−ij , Y 12
ij = iσ1 ⊗ iσ2 ⊗ E+

ij , Y 13
ij = iσ1 ⊗ σ3 ⊗ E−ij ,

Y 20
ij = iσ2 ⊗ σ0 ⊗ E−ij , Y 21

ij = iσ2 ⊗ σ1 ⊗ E−ij , Y 22
ij = iσ2 ⊗ iσ2 ⊗ E+

ij , Y 23
ij = iσ2 ⊗ σ3 ⊗ E−ij .

(3.62)

The total number of these generators is 4n2 − 2n = 2n(2n− 1), which is the dimension of the space p.

3.3.5 Iwasawa decomposition for SO∗(4n)/U(2n)
Choose the following set of Hermitian matrices as the maximal Abelian subspace a ⊂ p:

a = span
{
Hk = iσ2 ⊗ iσ2 ⊗ Ekk = Y22,kk/2, k = 1, . . . , n

}
. (3.63)

A generic element H ∈ a is H =
∑n
k=1 hkHk. The basis in the dual space a∗ is defined as elements

ei such that ei(H) = hi. These elements will later play the role of the radial coordinates on the coset
SO∗(4n)/U(2n).

To find restricted roots and restricted root vectors, one needs to find the commutators of H with
the generators (3.61) and (3.62). One needs both sets since the commutation relations (3.28) imply
that

[a, k] ⊂ p, [a, p] ⊂ k, (3.64)

so the eigenvectors of the adjoint action of a can only be linear combinations of generators from both
sets.
Straightforward computations show that the system of restricted roots consists of roots of normal

length ±xi ± xj (i 6= j) with multiplicity 4, and long roots ±2xj with multiplicity 1. This is the
root system Cn in the usual Cartan notation. The set of positive restricted roots can be chosen as
(multiplicities shown in brackets)

αij ≡ ei − ej , i < j (4), βij ≡ ei + ej , i < j (4), γi ≡ 2ei (1). (3.65)

The Weyl vector (the half-sum of positive restricted roots accounting for their multiplicities) is

ρ = (4n− 3)x1 + (4n− 7)x2 + . . .+ 5xn−1 + xn =
n∑
j=1

cjxj , cj = 4n+ 1− 4j. (3.66)

In the replica limit n→ 0 the components of the Weyl vector become

cj = 1− 4j. (3.67)

The positive restricted root vectors corresponding to the α, β, and γ roots are

E(1)
αij = X00

ij + Y 22
ij , E(2)

αij = X02
ij − Y 20

ij , E(3)
αij = X31

ij − Y 13
ij , E(4)

αij = X33
ij + Y 11

ij , (3.68)

E
(1)
βij

= X01
ij + Y 23

ij , E
(2)
βij

= X03
ij − Y 21

ij , E
(3)
βij

= X30
ij − Y 12

ij , E
(4)
βij

= X32
ij + Y 10

ij , (3.69)

Eγi = X30
ii − Y 12

ii . (3.70)

As was mentioned above, these vectors generate the nilpotent subalgebra n, and one gets the resulting
Iwasawa decomposition (3.33).
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3.3.6 Real scaling operators as N -radial functions

In this section I perform a unitary transformation of basis in the space (3.40) designed to bring the
generators of a into a diagonal form. There are infinitely many such transformations, and the one
chosen has an additional useful property that the resulting positive restricted root vectors are also
upper-triangular in the RA space. This is achieved with the help of the unitary matrix

U = 1√
2

(σ0 ⊗ E11 + σ1 ⊗ E12 − σ2 ⊗ E21 − iσ3 ⊗ E22)⊗ In, (3.71)

where the 2× 2 matrix units Eij in the spin space are used. While this is not a single tensor product
in the RA and spin spaces, conjugation with this matrix,

T (A) ≡ UAU−1, (3.72)

keeps such single products in the basis of a:

T (Hk) = σ3 ⊗ σ0 ⊗ Ekk, (3.73)

in the the saddle point

T (Λ) = −Σ12, (3.74)

as well as in the restricted root vectors:

T (E(1)
αij ) = σ0 ⊗ σ0 ⊗ E−ij + σ3 ⊗ σ0 ⊗ E+

ij = 2E11 ⊗ σ0 ⊗ Eij − 2E22 ⊗ σ0 ⊗ Eji,

T (E(2)
αij ) = iσ3 ⊗ σ1 ⊗ E+

ij + iσ0 ⊗ σ1 ⊗ E−ij = 2iE11 ⊗ σ1 ⊗ Eij − 2iE22 ⊗ σ1 ⊗ Eji,

T (E(3)
αij ) = −iσ0 ⊗ σ2 ⊗ E+

ij − iσ3 ⊗ σ2 ⊗ E−ij = −2iE11 ⊗ σ2 ⊗ Eij + 2iE22 ⊗ σ2 ⊗ Eji,

T (E(4)
αij ) = iσ3 ⊗ σ3 ⊗ E+

ij + iσ0 ⊗ σ3 ⊗ E−ij = 2iE11 ⊗ σ3 ⊗ Eij + 2iE22 ⊗ σ3 ⊗ Eji,

T (E(1)
βij

) = σ1 ⊗ σ0 ⊗ E−ij + iσ2 ⊗ σ0 ⊗ E−ij = 2E12 ⊗ σ0 ⊗ E−ij ,

T (E(2)
βij

) = −σ2 ⊗ σ1 ⊗ E−ij + iσ1 ⊗ σ1 ⊗ E−ij = 2iE12 ⊗ σ1 ⊗ E−ij ,

T (E(3)
βij

) = −iσ1 ⊗ σ2 ⊗ E+
ij + σ2 ⊗ iσ2 ⊗ E+

ij = −2iE12 ⊗ σ2 ⊗ E+
ij ,

T (E(4)
βij

) = −σ2 ⊗ σ3 ⊗ E−ij + iσ1 ⊗ σ3 ⊗ E−ij = 2iE12 ⊗ σ3 ⊗ E−ij
T (Eγi) = −2iσ1 ⊗ σ2 ⊗ Eii + 2σ2 ⊗ iσ2 ⊗ Eii = −4iE12 ⊗ σ2 ⊗ Eii. (3.75)

As claimed, the structure in the RA space is upper triangular: in the first factor one has either E11
and E22 or E12.
One can visualize the restricted root vectors for n = 3 as a schematic matrix diagram by indicating

the matrix positions where various generators have non-zero entries. For brevity one can write γi ≡ Eγi ,
α(i) ≡ E

(i)
αkl , β(i) ≡ E

(i)
βkl

with indices suppressed since they can be inferred from the matrix grid
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(uncolored cells have zero entries):

T (E) =



x1 α(14) α(23) β(14) γ1 β(23)

x2 γ2
x3 β(14) β(23) γ3
α(23) x1 α(14) γ1 β(23) β(14)

x2 γ2
x3 β(23) γ3 β(14)

−x1
−x2

α(14) −x3 α(23)

−x1
−x2

α(23) α(14) −x3



. (3.76)

This matrix can be made upper triangular by an additional permutation π of the basis vectors that
can be described explicitly as follows: for i ∈ 1, . . . , n, one has

π(i) = 2i− 1, π(n+ i) = 2i, π(2n+ i) = 4n+ 2− 2i, π(3n+ i) = 4n+ 1− 2i. (3.77)

This permutation re-sorts the diagonal entries of the matrix (3.76) as follows:

x1, . . . , xn, x1, . . . , xn,−x1, . . . ,−xn,−x1, . . . ,−xn → x1, x1, . . . , xn, xn,−xn,−xn, . . . ,−x1,−x1.
(3.78)

The permutation matrix Pπ that corresponds to π has the matrix elements (Pπ)ij = δπ(i),j , and can
be used to permute rows and columns of a matrix M as follows:

(PπM)ij = Mπ(i),j , (MP−1
π )ij = Mi,π(j). (3.79)

Then one can see that the conjugation of the matrix (3.76) by Pπ makes it fully upper-triangular.
Using the notation

M̃ ≡ PπT (M)P−1
π , (3.80)

for transformed matrices, one has

Ẽ =



x1 γ1
x1 γ1

x2 γ2
x2 γ2

x3 γ3
x3 γ3
−x3

−x3
−x2

−x2
−x1

−x1



. (3.81)
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3.3 Iwasawa decomposition

In the final basis the elements of a are diagonal matrices, while elements of n are strictly upper
triangular.
One can exploit consequences of the Iwasawa decomposition of G and the transformation T for the

sigma model field Q. First of all, in the original basis where Λ = Σ30 one can write g = nak with
n ∈ N , a ∈ A, and k ∈ K, and then

Q ≡ QΛ = nakΛk−1a−1n−1Λ = na2Λn−1Λ. (3.82)

Here kΛk−1 = Λ is used, and aΛa−1 = a2Λ, which is a special case of the first condition in Eq. (3.45)
for a Hermitian matrix a ∈ G. Now one can perform the transformation T , Eq. (3.72), as well as the
permutation Pπ. Using the notation (3.80), one gets

Q̃ = ñã2Λ̃ñ−1Λ̃. (3.83)

Using Eqs. (3.74) and (3.77), one can compute the matrix

Λ̃ = −PπΣ12P
−1
π = −σ1 ⊗ σ2 ⊗ In, (3.84)

where In is the n× n matrix with units on the “anti-diagonal”, that is, (In)ij = δi,n+1−j .
As should be clear from the previous discussion, the matrices ñ and ñ−1 are upper-triangular with

units on the diagonals, while ã is diagonal:

ã = diag(ex1 , ex1 , . . . , exn , exn , e−xn , e−xn , . . . , e−x1 , e−x1). (3.85)

Conjugation by Λ̃ converts ñ−1 into Λ̃ñ−1Λ̃ which is lower-triangular with units on the diagonal. This
results in the following structure of the AA block of the matrix Q̃:

Q̃AA =



1 ∗ . . . ∗ ∗
0 1 . . . ∗ ∗
...

... . . . ...
...

0 0 . . . 1 ∗
0 0 . . . 0 1





e−2xn 0 . . . 0 0
0 e−2xn . . . 0 0
...

... . . . ...
...

0 0 . . . e−2x1 0
0 0 . . . 0 e−2x1





1 0 . . . 0 0
∗ 1 . . . 0 0
...

... . . . ...
...

∗ ∗ . . . 1 0
∗ ∗ . . . ∗ 1


. (3.86)

Determinants of the lower-right 2m × 2m submatrices of Q̃AA give the basic positive N -radial eigen-
functions

d2m =
m∏
i=1

e−4xi = exp
(
− 4

m∑
i=1

xi

)
. (3.87)

One can form the most general N -radial eigenfunctions as products

ϕ(q1,...,qn) = d
(q1−q2)/2
2 d

(q2−q3)/2
4 . . . d

(qn−1−qn)/2
2(n−1) d

qn/2
2n , (3.88)

where one may take the qi to be arbitrary complex numbers. It is easy to see that the product (3.88)
is the same as the exponential eigenfunction (3.39), while the basic function d2m is ϕ(2,2,...) with m
twos in the subscript.
Notice that the doubling of the diagonal entries e−2xi for each i in Eq. (3.86) compelled me to

take determinants of sub-matrices of even size and raise the resulting functions to powers written as
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(qi − qi+1)/2. This is very similar to the appearance of minors of even size in the highest weight
vector construction in Ref. [105]. Those minors were of an anti-symmetric matrix, and thus were
squares of Pfaffians. In the Iwasawa formalism it is also possible to obtain directly the “Pfaffian”
solutions ϕ(1,1,...). Pfaffians can be defined only for anti-symmetric matrices, so one needs to look at
transformation properties of various matrices under transposition. For group elements g this property
is given in the second equation in (3.45). One can use this equation to derive the following consequence:

T (g)T = (UΣ10U
T )−1T (g)−1(UΣ10U

T ). (3.89)

A simple computation shows that UΣ10U
T = Σ10. Thus the rotated matrix T (g) satisfies the same

second equation in (3.45):

T (g)−1 = Σ10T (g)TΣ10. (3.90)

One can now look at

T (QΛ) = T (g)T (Λ)T (g)−1T (Λ) = T (g)Σ12Σ10T (g)TΣ10Σ12 = T (g)Σ02T (g)TΣ02, (3.91)

which means that T (QΛ)Σ02 is anti-symmetric. Now one can employ the Iwasawa decomposition
T (g) = T (n)T (a)T (k) and drop the last factor, since in T (QΛ) the group element g enters only in the
product gΛg−1, and k commutes with Λ:

T (QΛ)Σ02 = T (n)T (a)Σ02[T (n)T (a)]T . (3.92)

Next, everything is restricted to the AA block using the upper triangular structure of T (n) and the
diagonal nature of T (a) in the RA space, see Eq. (3.76). In this block Σ02,AA = σ2 ⊗ In, and one has

T (QΛ)AA(σ2 ⊗ In) = T (n)AAT (a)AA(σ2 ⊗ In)[T (n)AAT (a)AA]T . (3.93)

One can use the property of the Pfaffians Pf (MAMT ) = det
(
M
)
PfA, where A is anti-symmetric and

M arbitrary, to obtain

Pf [T (QΛ)AA(σ2 ⊗ In)] = det
[
T (n)AA

]
det
[
T (a)AA

]
Pf (σ2 ⊗ In). (3.94)

Since the determinant is basis-independent, one has

det
[
T (n)AA

]
= det[ñAA] = 1, det

[
T (a)AA

]
= det[ãAA] =

n∏
i=1

e−2xi . (3.95)

Finally, one gets the Pfaffian N -radial functions

pn ≡ ϕ(1,1,...) = exp
(
− 2

n∑
i=1

xi

)
= Pf [T (QΛ)AA(σ2 ⊗ In)]

Pf (σ2 ⊗ In) . (3.96)

This can be done for arbitrary number of replicas n, so one gets all basic Pfaffians this way, and the
most general N -radial functions

ϕ(q1,...,qn) = pq1−q21 pq2−q32 . . . p
qn−1−qn
n−1 pqnn . (3.97)

One should stress again the achievement of this section: the general N -radial eigenfunctions in Eqs.
(3.88) and (3.97) are parametrized by arbitrary complex numbers q1, . . . , qn and satisfy the Abelian
fusion. It was the combination of these two properties together with the local 2D conformal invariance
that allows one to derive the generalized parabolicity (3.25) in Section 3.2.2.2.
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3.4 Sigma model

In this section, the derivation of the class-C nonlinear sigma model is sketched following Ref. [105].
While doing this, notations and conventions employed throughout the following sections are introduced.
Starting from the non-interacting Bogoliubov-de Gennes (BdG) Hamiltonian, one can formulate a
bosonic (2+0)D action S0. Then one can employ the replica trick [199, 200] to average over disorder.
Following the conventional procedure of Hubbard-Stratonovich decoupling and gradient expansion [103,
201–203] described in Sec. 1.1.4.4, one arrives at the sigma model action, Eq. (3.112). The sigma-
model field Q lives on the symmetric space G/K = SO∗(4n)/U(2n). The derivation largely follows
similar lines as Refs. [204–206]. For the connection to the wave function statistics in Sections 3.6, 3.7,
the coupling (3.107) between the Q field of the sigma model and the bosonic field variables φ of the
action S0 is of crucial importance.

Systems in class C possess particle-hole and spin rotation symmetry:

πxH
Tπx = −H, σiHσi = H. (3.98)

Here πx is the first Pauli matrix in the BdG space, and σi are Pauli matrices in the spin space. When
written in the basis ψ = (ψ↑, ψ↓, ψ†↑, ψ

†
↓), the Hamiltonian has the following 4× 4 matrix form:

HBdG =

 1
2m(p− eA)2 − µ ∆̂

−∆̂∗ − 1
2m(p+ eA)2 + µ


π

. (3.99)

Here the matrix structure in the BdG space is shown explicitly (as indicated by the subscript π); each
entry is a 2× 2 matrix in the spin space. The matrix ∆̂ is antisymmetric ∆̂T = −∆̂ and σy∆̂σy = ∆̂
due to spin symmetry. This implies that ∆̂ = ∆σy, with a complex number ∆. The kinetic term
h = − 1

2m(p− eA)2 + µ is the same for each spin species. Note that p changes sign upon transposition.
As usual for BdG Hamiltonians with preserved spin, Eq. (3.99) decouples into two blocks. One thus

gets a 2× 2 matrix Hamiltonian for ψ = (ψ↑, ψ†↓)σ:

H =
(

1
2m(p− eA)2 − µ ∆

∆∗ − 1
2m(p− eA)2 + µ

)
σ

. (3.100)

Here and from now on, σ is the combined particle-hole and spin space. In general, one may have an
additional matrix structure due to orbital degrees of freedom, in which case ∆ is a symmetric complex
matrix ∆T = ∆. Here, one does not have additional orbital indices, so that ∆ is a complex number.
In this basis, spin SU(2) and particle-hole symmetry combine into

H = −σyHTσy. (3.101)

This particle-hole symmetry squares to minus one, which is the defining property of class C. The
network model that is studied numerically below is described by a scattering matrix corresponding to
a Hamiltonian of this kind.
One can employ a time independent (2 + 0)D replicated action [199, 200] to study the statistics

of wavefunctions of H. The action S is defined in such a way that the functional integral over the
corresponding fields goes with the weight e−S . In order to represent products of retarded and advanced
Green’s functions, one can double the space by introducing the additional 2 × 2 advanced-retarded
structure labeled by τ . Further n replicas are introduced, which allows one to compute products of
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m Greens functions (with m ≤ n) at energies ω̂ = diag(ω1, . . . , ωm, . . . , ωn). To conveniently include
finite ωi into the action, one can double the space once more by including the additional 2×2 space Σ.
This takes care of assigning each ωi a particle-hole partner −ωi. The (complex) bosonic field φ has a
replica index (1, . . . , n), a particle-hole index Σ and a spin index σ. One can write the action in terms
of a bivector

φ = (φ, iσyΣ1φ
∗) (3.102)

that additionally lives in advanced-retarded τ space:

S0 = −i
∫
dr
(
φ† φT iσyΣ1

)
τ

(
H + ω̂Σ3 + i0 0

0 H + ω̂Σ3 − i0

)
τ

(
φ

+iσyΣ1φ
∗

)
τ

= −i
∫
dr
[
φ†Hφ+ φT iσyΣ1iσyH

T iσyΣ1iσyφ
∗ + φ†ω̂Σ3φ+ φT iσyΣ1ω̂Σ3Σ1iσyφ

∗

+i0φ†φ− i0φT iσyΣ1Σ1iσyφ
∗
]

= −i
∫
dr
[
2φ†Hφ+ 2φ†ω̂Σ3φ+ 2i0φ†φ

]
. (3.103)

The doubling represented by the additional Pauli space Σ will be useful below to represent correlations
of wavefunctions of multiple eigenstates. The full bosonic bispinor φ satisfies the symmetry relation:

iτ1Σ1σyφ
∗ = φ . (3.104)

Up to now, I have considered a clean system, H = H0. Now, one can include disorder V , so that
the full Hamiltonian reads H = H0 + V . The matrix V can be assumed as white-noise distributed
matrix that contains all types of randomness (not involving the momentum p) respecting the class-C
symmetry (3.101): spatial fluctuations of complex order parameter ∆ (which couple to matrices σx and
σy) and of chemical potential µ (that couples to σz), i.e., V =

∑3
i=1 viσi. For simplicity, the disorder in

all components is assumed to have the same amplitude
√
λ, so that 〈vivj〉 = 2λδi,j . This assumption

is immaterial for the conclusions and results of this work, since they are only based on symmetries.
Disorder averages over this ensemble have the form of Gaussian integrals over the matrices V . These

integrals are fully determined by the second moment [98]:∫
dµ(V )tr(AV )tr(BV ) = λ tr(AB −AiσyBT iσy). (3.105)

To convince ourselves that Eq. (3.105) holds, it is convenient to expand the matrices A and B in terms
of Pauli matrices in the σ space: A =

∑3
i=0 aiσi and B =

∑3
i=0 biσi. Using tr(AB) =

∑3
i=0 aibi, it is

straightforward to see that both sides are equal to 2λ
∑3
i=1 aibi.

The matrices A,B are chosen to be the combinations
∑
a,Σ,τ φσ,a,Σ,τ (r)φ†σ′,Σ,a,τ (r), where a is the

replica index. Then one can use Eq. (3.105) to average over the disorder. As usual, the averaging
results in the emergence of a quartic term in the action:

Sint = λ

∫
dr

∑
ab,ττ ′,σσ′,ΣΣ′

φσ,a,Σ,τ (r)φ†σ′,a,Σ,τ (r)φσ′,b,Σ′,τ ′(r)φ
†
σ,b,Σ′,τ ′(r) . (3.106)

Following the conventional route, this “interaction” can be decoupled by means of a Hubbard-Stratonovich
transformation involving integration over a matrix field Q. This field couples to the fields φ in the
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following way: ∫
dr

∑
ab,σ,ΣΣ′,ττ ′

φ†σa,ΣτQ
τ,τ ′

Σa,Σ′bφσb,Σ′τ ′ . (3.107)

With the matrix structure in the retarded-advanced space (for which one can use the indices R and
A) written explicitly, this has the form

∫
dr

∑
σ,ab,ΣΣ′

trτ


 φ†a,Σ,σφb,Σ′,σ φ†a,Σ,σ(φ†iσy)b,−Σ′,σ

(iσyφ)a,−Σ,σφb,Σ′,σ (iσyφ)a,−Σ,σ(φ†iσy)b,−Σ′,σ

QRRΣa,Σ′b QRAΣa,Σ′b
QARΣa,Σ′b QAAΣa,Σ′b


 . (3.108)

Here Eq. (3.102) was used and taken into account that the matrix Σ1 acts on the index Σ via Σ 7→ −Σ.
Note that the matrix Q does not carry σ indices and that this coupling explicitly respects the spin (σ)
conservation.
Upon the Hubbard-Stratonovich decoupling, one gets the action:

S[φ, Q] =
∫
dr

 ∑
ab,σ,σ′,τ

φ†aΣτσ

(
H0δabδττ ′ +Qττ

′
Σa,Σ′bδσσ′ + Σ3ω̂ + i0τ3

)
φbΣ′τ ′σ′ + λ−1trQ2

 . (3.109)

The next step is to integrate over the φ fields. Since the action is quadratic in φ, this integration yields
an inverse determinant, and one finally gets the action that only depends on Q:

S[Q] = tr log
(
H0 +Q+ Σ3ω̂ + i0τ3

)
+ λ−1

∫
dr trQ2. (3.110)

This action has a manifold of saddle points

Q = gΛg−1 , Λ = τ3 , (3.111)

which form the target space of the nonlinear sigma model, Q ∈ G/K. For the present case of class C,
this target space is G/K = SO∗(4n)/U(2n). This form of the target space can be understood already
from the symmetry of the action (3.103): transformation of φ that respect the symmetry constraint of
φ and leave the main term (involving H) invariant, determine the group G, while the term proportional
to i0 breaks this symmetry down to K.
Allowing for slow spatial fluctuations of Q = gΛg−1 around the saddle point Λ = τ3, one obtains

the usual nonlinear sigma-model action [103, 201–206]

S[Q] = −πρ0
8

∫
dr tr

[
D0(∂Q)2 + 4i

(
Σ3ω̂ + i0τ3

)
Q
]
. (3.112)

Here ρ0 and D0 are the bare (ultraviolet) values of the density of states and diffusion constant, respec-
tively, so that σ0 = ρ0D0 is the bare spin conductivity.
The sigma-model field Q is a 4n× 4n matrix in the advanced-retarded × particle-hole (equivalently,

spin) × replica space [see also Eq. (3.40) below]. It satisfies two constraints. The first one is Eq. (3.111).
In addition, g inherits the symmetry (3.104), yielding

τ1Σ1g
TΣ1τ1 = g−1. (3.113)
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For the Q field, this implies

τ1Σ1Q
TΣ1τ1 = −Q. (3.114)

Constraints (3.111) and (3.113) [or, equivalently, (3.111) and (3.114)] determine the sigma-model target
space G/K = SO∗(4n)/U(2n).
In the following/preceding sections dealing with the Iwasawa decomposition on G/K in Sec. 3.3,

and renormalization group (RG) of generic operators composed of Q in Sec. 3.5, a slightly different
parametrization of G/K related by a unitary basis rotation is used. Specifically, the two parametriza-
tions of G/K are related by a rotation in Σ space:

Q = U−1
Σ Q̃UΣ, (3.115)

where

UΣ = diag(I2n,Σ1 ⊗ In)τ . (3.116)

Since UΣ commutes with τ3, the condition (3.111) holds also for Q̃ without any modifications. At the
same time, the condition (3.114) becomes

τ1Σ1U
T
Σ Q̃

TU∗ΣΣ1τ1 = −U−1
Σ Q̃UΣ, (3.117)

which, by using U∗Στ1Σ1U
−1
Σ = τ1 ⊗ IΣ, simplifies to

τ1Q̃
T τ1 = −Q̃. (3.118)

With all indices written explicitly, this implies

QAAa,b = Q̃AAa,b , QARa,b = Q̃ARa,−b, QRAa,b = Q̃RA−a,b, QRRa,b = Q̃RR−a,−b. (3.119)

Here I have introduced a convention (to be used below) that the structure in the Σ space is represented
by the sign ± of the the replicas a, b, i.e., positive replica indices a = 1, . . . , n correspond to the upper
component in the Σ space, and the negative indices −a to the lower component.

In the sequel, sometimes the tilde is omitted, i.e. Q for Q̃ is written to simplify notations. This will
be explicitly pointed out in the corresponding sections when this will be done.
Before closing this section, two interrelated comments are appropriate.

1. Up to now, the manifoldG/K = SO∗(4n)/U(2n) is considered, with n being a positive integer. As
is well known, the averaging over a quenched disorder requires either introducing supersymmetry
or the replica trick (n → 0). The supersymmetric formalism was used in Ref. [87] where the
classification of composite operators was developed. At the same time, as is clear from Ref. [87],
the most convenient way to build the composite operators is to use the boson-boson sector of
the supersymmetric sigma-model. In this sense, the supersymmetry approach to this problem
becomes very similar to using the replica trick for the bosonic fields. In other words, considering
the bosonic theory only is fully sufficient for these purposes. Most of the analysis can be performed
for the theory with a positive integer n. It will be pointed out below where the replica limit n→ 0
is essential (which could be equivalently replaced by making the theory supersymmetric).
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2. In general, the sigma-model (3.112) (when written in the supersymmetric form, i.e., also with
a compact sector) may contain also a topological term. In particular, this term plays a crucial
role for the emergence of the critical point of the SQH transition. However, in this work, the
sigma-model will be only used for determining the composite operators and for translating them
to the language of wave-function correlators. This analysis is based entirely on the symmetry of
the sigma model, for which the presence or absence of the topological term is fully irrelevant.
The scaling of the corresponding correlation functions at the critical point of the SQH transition
will be after this determined numerically.

3.5 RG

In this section, one more approach—the field-theoretic RG—is employed in order to determine the pure-
scaling operators in class C. The approach is based on the invariance property of the RG transformation
that works on functions (composite operators) O[Q] on the symmetric space G/K. Importantly, this
invariance holds to any order of RG. In view of this, eigenfunctions of one-loop RG are the pure-
scaling operators, cf. previous works for class A [158] and class AI [207]. A few general word on
renormalization group analysis can be found in Sec. 1.1.3.
One can use the one-loop RG to determine the class-C eigenoperators PCλ [Q] that are polynomials in

Q. These operators correspond to Young diagrams λ = (q1, q2, . . . , qn) with integers q1, . . . , qn satisfying
q1 ≥ q2 ≥ . . . qn > 0. Clearly, in each order |λ| ≡ q1 + q2 + . . .+ qn of the polynomial, there is a finite
number of such Young diagrams. For example, for |λ| = 2 there are two Young diagrams, (2) and (1,1);
for |λ| = 3 there are three of them, (3), (2,1), and (1,1,1), and so on. Further, RG preserves the order
|λ| of the polynomial. Thus, for each |λ|, the action of RG reduces to a matrix in the corresponding
subspace. Diagonalization of this matrix yields pure-scaling operators PCλ [Q]. These operators are
particularly convenient for mapping onto wave-function observables performed in Sec. 3.6. (To avoid
confusion, remember that the operators PCλ [Q] do not satisfy the Abelian fusion, at variance with the
N -radial operators (3.97) constructed in Sec. 3.3 by means of the Iwasawa decomposition.)

While the main focus is on the class C, for which G/K = SO∗(4n)/U(2n), it is instructive to also
briefly review the RG analysis for class A, for which G/K = U(n, n)/U(n) × U(n). This allows one
to point out important differences in eigenoperators between classes C and A. Furthermore, relations
between the eigenoperators of both classes are established, which will be useful in Sec. 3.6 for the
numerical evaluation of scaling exponents of the SQH transition.
In Sec. 3.5.1 the RG procedure is introduced and used to determine eigenoperators with the lowest

non-trivial degree of polynomial, |λ| = 2. In Sec. 3.5.3 this analysis is extended to eigenoperators of
higher degree, |λ| > 2; they are explicitly determined for |λ| = 3 and |λ| = 4.

Whereas the goal in this section is to determine pure-scaling operators by RG means, also the
eigenvalues of the one-loop RG are calculated. Specifically, after having inspected examples of not too
large |λ| in Secs. 3.5.2 and 3.5.3, in Sec. 3.5.4 a general statement that the one-loop RG operator is
proportional to Laplace-Beltrami operator on G/K is proven. This implies that eigenvalues of one-loop
RG satisfy generalized parabolicity.

3.5.1 Renormalization procedure

The RG procedure is implemented in the standard way by splitting the matrix g that defines the sigma-
model field Q = gΛg−1 in the slow (subscript “s”) and fast (subscript “f”) components, g = gsgf .
(This approach is also known as background field method; e.g., recent papers [207, 208] and references
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therein.) The matrix g is antiunitary, g−1 = τ3g
†τ3, and the same condition holds for gs and gf . The

fast field

gf = e−X = 1−X + 1
2X

2 + . . . (3.120)

is expanded in X . The matrix X does not contain the “gauge” (group K) degrees of freedom, i.e., it
anticommutes with Λ ≡ τ3:

X =
(

0 X
X† 0

)
τ

(3.121)

One thus has
Q = gΛg−1

= gsgfΛg−1
f g−1

s

= Qs + 2gsΛX g−1
s + 2gsΛX 2g−1

s + . . . , (3.122)
where Qs = gsΛg−1

s . For the one-loop analysis, it is sufficient to keep terms up to the order X 2.
To obtain the Gaussian fast-mode action Sf , one can expand the sigma-model action (3.112) to

lowest (quadratic) order in the fast fields X :

Sf [X ] = πσ0
2

∫
ddx

[
tr (∇X )2 + h2tr X 2

]
= πσ0

∫
ddx

[
tr (∇X†)(∇X) + h2trX†X

]
. (3.123)

Here the infrared cutoff h2 that regularizes the divergence in spatial dimensionality d ≤ 2 has been
included. In d = 2 dimensions, the one-loop integrals are logarithmic with respect to the ratio of the
ultraviolet and infrared cutoffs; in the bare theory, the ultraviolet regularization is usually provided
by the lattice spacing. One can also consider the theory in d = 2 + ε dimensions, with ε > 0, [188,
189]. The analysis that is performed here to determine the eigenoperators of RG is based solely on
symmetry, so that it is equally applicable in any spatial dimensionality. As one can see below, the loop
integral will enter as a constant If , whose value will be immaterial for the analysis.
Let δO be defined as the one loop renormalization contribution of an operator O(Q) with respect to

this fast action. It is obtained by expanding O up to second order in X ,

O[X ] = O(0) +O(1)[X ] + 1
2O

(2)[X ,X ] + . . . , (3.124)

where O(n) a n-linear form in X , and then performing the Gaussian averaging 〈. . .〉 with respect to X
with the action (3.123). One thus has

δO = 1
2

∫
DX O(2)[X ,X ] e−Sf [X ] ≡ 1

2〈O
(2)[X ,X ]〉. (3.125)

Every term in the RG flow δO thus originates from a single contraction of two fast fields and is
proportional to the fast-field propagator. Since the composite operators that are considered are local,
this propagator is taken at coinciding spatial points and thus involves the loop integral

If = 1
πσ0

∫
d2+εp

p2 + h2 . (3.126)

At one loop level, every term in δO is thus proportional to If by construction. In order to determine
the eigenoperators, one does not need the value of If , since it will simply stay as an overall prefactor
in matrices that one will have to diagonalize.
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3.5.2 RG for operators quadratic in Q.

I consider first the operators that are quadratic with respect to Q. The corresponding Young diagrams
λ are characterized by |λ| = 2. Obviously, there are two such Young diagrams: (2) and (1,1). To
derive the RG equations, one needs to look at the renormalization of the operators tr(AQBQ) and
tr(AQ)tr(BQ) with generic matrices A and B. Using the expansion (3.122), one gets

tr(AQBQ) = tr(AgsQfg−1
s BgsQfg

−1
s )

' tr(AQsBQs) + 4tr(g−1
s AgsΛX g−1

s BgsΛX )
+ 2tr(AgsΛX 2g−1

s BQs) + 2tr(AQsBgsΛX 2g−1
s ),

= tr(AQsBQs) + 4tr(ÃX B̃X ) + 2tr(B̃ÃX 2) + 2tr(ÃB̃X 2) ;
tr(AQ)tr(BQ) = tr(AgsQfg−1

s )tr(BgsQfg−1
s )

' tr(AQs)tr(BQs) + 4tr(g−1
s AgsΛX )tr(g−1

s BgsΛX )
+ 2tr(AgsΛX 2g−1

s )tr(BQs) + 2tr(AQs)tr(BgsΛX 2g−1
s )

= tr(AQs)tr(BQs) + 4tr(ÃX )tr(B̃X ) + 2tr(ÃX 2)tr(BQs) + 2tr(B̃X 2)tr(AQs) ,
(3.127)

where only terms of zeroth and second order in X are retained and

Ã = g−1
s AgsΛ , B̃ = g−1

s BgsΛ . (3.128)

To calculate δ[tr(AQ)tr(BQ)] and δtr(AQBQ), one should average according to Eq. (3.125) the
terms of second order in X in Eq. (3.127). This involves the following averages (with 1,2 being the
indices in the RA space):

〈tr(ÃX )tr(B̃X )〉 =
〈(

tr(Ã12X
†) + tr(Ã21X)

) (
tr(B̃12X

†) + tr(B̃21X)
)〉

= Ãβα12 B̃
δγ
12

〈
X†αβX

†
γδ

〉
+ Ãβα12 B̃

δγ
21

〈
X†αβXγδ

〉
+ Ãβα21 B̃

δγ
12

〈
XαβX

†
γδ

〉
+ Ãβα21 B̃

δγ
21

〈
XαβXγδ

〉
,

(3.129)

〈tr(ÃX B̃X )〉 =
〈

tr(Ã12X
†B̃12X

† + Ã22X
†B̃11X) + tr(Ã11XB̃22X

† + Ã21XB̃21X)
〉

= Ãδα12 B̃
βγ
12

〈
X†αβX

†
γδ

〉
+ Ãδα11 B̃

βγ
22

〈
X†αβXγδ

〉
+ Ãδα22 B̃

βγ
11

〈
XαβX

†
γδ

〉
+ Ãδα21 B̃

βγ
21

〈
XαβXγδ

〉
,

(3.130)

where α, β, γ, and δ are replica indices and the convention of summation over repeated indices is used.
Further, replacing B̃ in Eq. (3.130) by the unit matrix, one obtains

〈tr(ÃX 2)〉 = Ãδα11

〈
X†αβXβδ

〉
+ Ãδα22

〈
XαβX

†
βδ

〉
. (3.131)

The analysis up to now was general and thus was applicable to both classes A and C. To proceed
further, one should specify the fast-mode propagators, which are different for classes A and C.
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3.5.2.1 Class A

In class A, the manifold is G/K = U(n, n)/U(n) × U(n) and the only condition on g is pseudo-
unitarity, g−1 = τ3g

†τ3. The field X in Eq. (3.121) is correspondingly a generic complex matrix with
the propagator

〈X†αβXγδ〉 = Ifδαδδβγ ,

〈XαβXγδ〉 = 〈X†αβX
†
γδ〉 = 0 . (3.132)

Using Eq. (3.132) for the propagator in Eqs.(3.129) and (3.130), one gets

〈tr(ÃX )tr(B̃X )〉 = If tr(Ã12B̃21 + Ã21B̃12) = If tr
(
ÃP−B̃P+ + ÃP+B̃P−

)
= 1

2If tr(ÃB̃ − ÃΛB̃Λ) ; (3.133)

〈tr(ÃX B̃X )〉 = If (trÃ11trB̃22 + trÃ22trB̃11)

= If

[
tr
(
ÃP+

)
tr
(
B̃P−

)
+ tr

(
ÃP−

)
tr
(
B̃P+

)]
= 1

2If [trÃ trB̃ − tr(ÃΛ) tr(B̃Λ)] , (3.134)

where the P± = 1±Λ
2 are projectors on the advanced and retarded sectors. Substituting here now

Eq. (3.128) for Ã and B̃, one finds

〈tr(ÃX )tr(B̃X )〉 = 1
2If tr(QsAQsB −AB) ; (3.135)

〈tr(ÃX B̃X )〉 = 1
2If

[
tr(QsA) tr(QsB)− trA trB

]
. (3.136)

Below I will focus on the choice of matrices A and B satisfying (in the replica limit n→ 0) trA = trB =
tr(AB) = 0, so that the Qs-independent terms in the r.h.s. of Eqs. (3.135), (3.136) can be discarded. It
is important to note, however, that these terms play only a minor role also for more generic matrices A
and B: they only lead to an admixture of constant (Q-independent) terms to eigenoperators, without
affecting either the quadratic-in-Q structure of eigenoperators or the corresponding eigenvalues.

Equation (3.131) yields, with the class-A propagator (3.132),

〈tr(ÃX 2)〉 = If n (trÃ11 + trÃ22) = If n trÃ . (3.137)

Since one is interested in the replica limit n→ 0, the terms of the type 〈tr(. . .X 2)〉 thus do not give any
contribution. Using Eqs. (3.135) and (3.136) for the remaining averages in Eq. (3.127), one obtains the
following RG flow (that is conveniently presented in the matrix form) for the operators tr(AQ)tr(BQ)
and tr(AQBQ):

δ

(
tr(AQ)tr(BQ)

tr(AQBQ)

)
= (−2If ) ·

(
0 −1
−1 0

)
︸ ︷︷ ︸

=:MA
2

·
(

tr(AQ)tr(BQ)
tr(AQBQ)

)
. (3.138)

Consequently the eigenoperators are (the superscript “A” refers to class A)

PA(2)AB = tr(AQ)tr(BQ) + tr(AQBQ),

PA(1,1)AB = tr(AQ)tr(BQ)− tr(AQBQ) , (3.139)

100



3.5 RG

with eigenvalues 2If > 0 and −2If < 0, respectively. The first of them (increasing under RG) belongs
to the representation (equivalently, Young diagram) λ = (2) and the second one (decreasing under
RG) to λ = (1, 1). It is important to emphasize that the eigenvalues do not depend on the choice of
the matrices A and B: the operators PA(2) with any A and B belong to the same representation (2),
and the operators PA(1,1) with any A and B belong to the representation (1,1).
One important choice of the matrices A and B is A = B = Λ, which yields the operators

PA(2) = tr(ΛQ)tr(ΛQ) + tr(ΛQΛQ),

PA(1,1) = tr(ΛQ)tr(ΛQ)− tr(ΛQΛQ) . (3.140)

The special feature of this choice is that the operators (3.140) are K-invariant: they are invariant with
respect to rotations Q→ UQU−1 with U ∈ K, since all such U commute with Λ.

3.5.2.2 Class C

Now the above analysis is extended to the class C. There is then an additional symmetry operation,

O ≡ τ1O
T τ1 , (3.141)

that constrains g:

g = g−1 . (3.142)

This means X = −X . Since Λ = −Λ, this corresponds to Q being odd with respect to the operation
(3.141),

Q = −Q , (3.143)

see Eq. (3.118). Note that Q in this section is the same as Q̃ introduced in the end of Sec. 3.4, see
Eq. (3.115).
Combining Eq. (3.121) with X = −X , one finds that X is an antisymmetric complex matrix, X =
−XT . Therefore, expectation values with the Gaussian action (3.123) yield the following propagator:

〈X†αβXγδ〉 = If (δαδδβγ − δαγδβδ) ,

〈XαβXγδ〉 = 〈X†αβX
†
γδ〉 = 0 . (3.144)

It is important to recall, that, as discussed in the end of Sec. 3.4, the particle-hole index Σ is included
in the replica index, so that one has 2n replicas.

Substituting Eq. (3.144) into Eqs. (3.129), (3.130), one finds for the fast-field correlation functions
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that emerge in the RG analysis (3.127), with two factors of X originating from different Q fields:

〈tr(ÃX )tr(B̃X )〉 = If
[
tr(Ã12B̃21)− tr(Ã21B̃

T
12) + tr(Ã21B̃12)− tr(Ã12B̃

T
21)
]

= If
2

[
tr(ÃP−B̃P+)− tr(ÃP+B̃P−) + tr(ÃP+B̃P−)− tr(ÃP−B̃P+)

]
= If

2

[
−tr(ÃΛB̃Λ) + tr(ÃB̃)− tr(ÃB̃) + tr(ÃΛB̃Λ)

]
;

〈tr(ÃX B̃X )〉 = If
2
[
tr(Ã22)tr(B̃11)− tr(Ã22B̃

T
11) + tr(Ã11)tr(B̃22)− tr(Ã11B̃

T
22)
]

= If
2

[
tr(ÃP−)tr(B̃P+)− tr(ÃP−B̃P−) + tr(ÃP+)tr(B̃P−)− tr(ÃP+B̃P+)

]
= If

2

[
tr(Ã)tr(B̃)− tr(ÃΛ)tr(B̃Λ)− tr(ÃB̃)− tr(ÃΛB̃Λ)

]
. (3.145)

Substituting now Eq. (3.128) for Ã and B̃, one obtains

〈tr(ÃX )tr(B̃X )〉 = If
2
[
−tr(AB) + tr(AQsBQs) + tr(AB)− tr(AQsBQs)

]
,

〈tr(ÃX B̃X )〉 = If
2
[
tr(AQs)tr(BQs)− tr(A)tr(B) + tr(AB) + tr(AQsBQs)

]
. (3.146)

In addition, Eq. (3.127) contain terms of the type (3.131), with both factors of X originating from
the same Q field, i.e., entering in the form of X 2. Substituting Eq. (3.144) into Eq.(3.131), one gets

〈tr(ÃX 2)〉 = If (−1 + 2n) tr Ã = −If tr Ã . (3.147)

In the last equality sign, the replica limit n → 0 has been taken. At variance with the class A [see
Eq. (3.137)], such contributions remain non-zero in the replica limit in class C. In particular, such a
term is responsible for renormalization of operators of first order in Q [e.g., tr(ΛQ)] in class C:

δ tr(ΛQ) = 2〈tr(gsΛg−1
s ΛX 2)〉 = −2If tr(ΛQ). (3.148)

This operator belongs to the representation (1) and determines the scaling of the average LDOS.
The corresponding eigenvalue is −2If < 0, which means that the average LDOS is suppressed within
one-loop RG.
I return to the RG for operators that are quadratic in Q. Substituting Eqs. (3.146) and (3.147) into

Eq. (3.127), one obtains the RG equations

δ[tr(AQ)tr(BQ)] = 2If
[
−tr(AB) + tr(AQBQ)−

(
−tr(AB) + tr(AQBQ)

)
− 2tr(AQ)tr(BQ)

]
,

δtr(AQBQ) = 2If
[
tr(AQ)tr(BQ)− tr(A)tr(B) +

(
tr(AB) + tr(AQBQ)

)
− 2tr(AQBQ)

]
.

(3.149)

In full analogy with the class A [see comment after Eq. (3.136)], one can drop constant contributions
(those that do not contain Q). Furthermore, one can assume that, like the matrix Q, the matrices A
to B are odd 1 with respect to the symmetry operation (3.141):

A = −A , B = −B . (3.150)
1It is straightforward to check that choosing A and B to be even, A = A and B = B, does not bring anything new.
Specifically, the operator tr(AQ)tr(BQ) is then zero, and the operator tr(AQBQ) renormalizes to itself with the
eigenvalue −2If and thus belongs to the same representation (2) as the operator PC(2) from Eq. (3.155).
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Two choices of A and B will be particularly important for us. The first one is A = B = Λ, which
yields gauge-invariant operators [i.e., operators invariant with respect to the group K = U(2n)]. The
second choice is A = EaaΛ and B = EbbΛ, with Eaa and Ebb being projectors on two distinct replica
indices a and b. This choice of A and B will be useful for establishing connections with wavefunction
correlators in Sec. 3.6. In both cases, A and B are odd, i.e., satisfy Eq. (3.150). The RG equations
(3.149) then reduce to

δ

(
tr(AQ)tr(BQ)

tr(AQBQ)

)
= (−2If ) ·

(
2 −2
−1 3

)
︸ ︷︷ ︸

=:M2

·
(

tr(AQ)tr(BQ)
tr(AQBQ)

)
. (3.151)

To determine pure-scaling operators, one writes an operator O as a linear combination

O = c(1,1)tr(AQ)tr(BQ) + c(2)tr(AQBQ). (3.152)

Equation (3.151) then is translated into the RG flow of the coefficients c(1,1) and c(2):

δ

(
c(1,1)
c(2)

)
= (−2If ) ·

(
2 −1
−2 3

)
︸ ︷︷ ︸

=MT
2

·
(
c(1,1)
c(2)

)
(3.153)

Note that M2 from Eq. (3.151) acts transposed on the vector of coefficients. (It is necessary to
emphasize this since, at variance with class A, the matrix M2 is not symmetric for class C.) The
eigenvectors of MT

2 yield the operators

PC(2)AB = tr(AQ)tr(BQ) + tr(AQBQ),

PC(1,1)AB = tr(AQ)tr(BQ)− 2tr(AQBQ) , (3.154)

which are eigenoperators of the RG flow with eigenvalues −2If and −8If , respectively. The superscript
“C” serves to distinguish them from class-A eigenoperators (3.139). Importantly, the coefficients in
Eq. (3.154) do not depend on the choice of matrices A and B. In particular, for A = B = Λ one finds
the K-invariant pure-scaling operators to be

PC(2) = tr(ΛQ)tr(ΛQ) + tr(ΛQΛQ),

PC(1,1) = tr(ΛQ)tr(ΛQ)− 2tr(ΛQΛQ) . (3.155)

For another important choice mentioned above, A = EaaΛ and B = EbbΛ with two different replicas a
and b, one gets the pure-scaling operators

PC(2)ab = tr(ΛQaa)tr(ΛQbb) + tr(ΛQabΛQba),

PC(1,1)ab = tr(ΛQaa)tr(ΛQbb)− 2tr(ΛQabΛQba) , (3.156)

where Qaa, Qbb, Qab, and Qba are projections of Q on the corresponding replica subspaces.
From the Weyl-symmetry relations, Sec. 1.2.1.1, one knows that the eigenoperators belonging to

the representations (1) and (2) should scale in the same way under RG. These results are in full
agreement with this symmetry constraint: the operators PC(2)AB from the representation (2) have the
same eigenvalue −2If as the operator representing the average LDOS, i.e., representation (1), see
Eq. (3.148). The operator PC(1,1)AB that has the eigenvalue −8If (i.e., is “more irrelevant” in the
RG sense) belongs to the representation (1,1). As it is discussed below, the ratio 4 between the two
eigenvalues is a manifestation of the exact generalized parabolicity that is a property of one-loop RG.
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3.5.2.3 Gauge-invariant operators by K-averaging

In Sec. 3.5.2.2, the quadratic-in-Q pure scaling operators (3.154) have been determined. Two important
choices of the matrices A and B were discussed. One of them was to take A = B = Λ, which yields
K-invariant eigenoperators (3.155) that are linear combinations of the operators

O(2) = tr(ΛQΛQ) , O(1,1) = tr(ΛQ)tr(ΛQ) . (3.157)

The other choice was A = EaaΛ and B = EbbΛ, which leads to the eigenoperators (3.156), which are
linear combinations of

Oab(2) = tr(ΛQabΛQba) , Oab(1,1) = tr(ΛQaa)tr(ΛQbb) (3.158)

with the same coefficients. While the operators (3.158) are not K-invariant, one can make K-invariant
operators out of them by performing the averaging over the group K. This yields an alternative
way to K-invariant pure-scaling operators. The result should be the same as K-invariant operators
(3.155) determined above. In this subsection it is shown explicitly that this is indeed the case, which
constitutes a non-trivial consistency check of this analysis.
Let O[Q] be a composite operator. One can construct out of it an operator

〈
O[Q]

〉
K

by averaging
over the group K = U(2n): 〈

O[Q]
〉
K

=
∫
K
dµ(U)O[U−1QU ]. (3.159)

The operator (3.159) is K-invariant, i.e., it is invariant under transformations Q 7→ V −1QV with
V ∈ K, as immediately follows from the invariance of the Haar measure dµ(U) on K = U(2n).
The elements of K commute with Λ and thus have the block-diagonal form in the retarded-advanced

(τ) space, U = diag(U1, U2)τ . In order to perform the K-averaging of the operators (3.158), one thus
has to evaluate the following averages〈

tr(ΛQabΛQba)
〉
K

=
〈

(U−1
1 Q11U1)ab(U−1

1 Q11U1)ba + (U−1
2 Q22U2)ab(U−1

2 Q22U2)ba

−(U−1
1 Q12U2)ab(U−1

2 Q21U1)ba − (U−1
2 Q21U1)ab(U−1

1 Q12U2)ba
〉
K
,

(3.160)〈
tr(ΛQaa) tr(ΛQbb)

〉
K

=
〈

(U−1
1 Q11U1)aa(U−1

1 Q11U1)bb + (U−1
2 Q22U2)aa(U−1

2 Q22U2)bb

−(U−1
1 Q11U1)aa(U−1

2 Q22U2)bb − (U−1
2 Q22U2)aa(U−1

1 Q11U1)bb
〉
K
. (3.161)

Here the indices 11, 12, 21, and 22 correspond to retarded-advanced space, while a and b are two given
distinct replica indices. For class A, U1 and U2 are independent, and K = U(n) × U(n). In class C,
with the sigma-model field satisfying the additional symmetry constraint (3.118), one has U1 = U∗2 ,
and K = U(2n). To evaluate the averages in Eqs. (3.160), (3.161), one need averages of products of
matrix elements of matrices U and U∗ over the unitary group U(2n). The required averages are as
follows [209] (see also Appendix of Ref. [158]):

〈U∗aαUbβ〉U(2n) = V1δabδαβ, (3.162)

〈U∗aαUbβU∗cγUdδ〉U(2n) = V1,1
(
δabδαβδcdδγδ + δadδαδδcbδγβ

)
+ V2

(
δcbδαβδadδγδ + δabδαδδcdδγβ

)
,

(3.163)
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where Vλ are the Weingarten functions [210],

V1 = 1
2n , V1,1 = 1

4n2 − 1 , V2 = − 1
2n(4n2 − 1) . (3.164)

First use Eq. (3.163) to evaluate the averages in the second line of Eq. (3.161) (denote U1 = U∗2 ≡ U):

〈
(U−1

1 Q11U1)aa(U−1
2 Q22U2)bb

〉
U(2n)

=
〈
U−1
aαQ

11
αβUβa(U∗)−1

bγ Q
22
γµ(U∗)µb

〉
U(2n)

=
〈
U∗αaUβaU

∗
νλUσρ

〉
U(2n)

δbρδσγδµνδλbQ
11
αβQ

22
γµ

=
(
V1,1

(
δαβδaaδνσδλρ + δασδaρδνβδλa

)
+ V2

(
δνβδaaδασδλρ + δαβδaρδνσδλa

))
δb,ρδσγδµνδλbQ

11
αβQ

22
γµ

=V1,1
(
δbρδρ,bQ

11
ααδνγQ

22
γµδµν + δb,aδσγδµβδabQ

11
σβQ

22
γµ

)
+ V2

(
δbλδλbQ

11
αβδαγQ

22
γµδµβ + δαβδaρδνσδλaδbρδσγδµνδλ,bQ

11
αβQ

22
γµ

)
=V1,1tr

(
Q11

)
tr
(
Q22

)
+ V2tr

(
Q11

(
Q22

)T)

=− V1,1

(
tr
(
Q11

))2
− V2tr

((
Q11

)2
)
. (3.165)

Further, one can calculate in the same way the terms in the second line of Eq. (3.160):

〈
(U−1

1 Q12U2)ab(U−1
2 Q21U1)ba

〉
U(2n)

=
〈
U−1
aαQ

12
αβ(U∗)βb(U∗)−1

bγ Q
21
γµUµa

〉
U(2n)

=
〈
U∗αaUµaU

∗
νλUσρ

〉
U(2n)

δbρδσγδβνδλbQ
12
αβQ

21
γµ

=
(
V1,1

(
δαµδaaδνσδλρ + δασδaρδνµδλa

)
+ V2

(
δνµδaaδασδλρ + δαµδaρδνσδλa

))
δbρδσγδβνδλbQ

12
αβQ

21
γµ

=V1,1
(
δbρδρbQ

12
µβδβνδνγQ

21
γµ + δbaδabδαγQ

12
αβQ

21
γνδβ,ν

)
+ V2

(
δbρδρbδαγQ

12
αβQ

21
γνδβν + δb,aδνγδβνδabQ

12
σβQ

21
γα

)
=V1,1tr

(
Q12Q21

)
+ V2tr

(
Q12

(
Q21

)T)
=
(
V1,1 − V2

)
tr
(
Q12Q21

)
=
(
V1,1 − V2

) [
tr
(
14n×4n

)
− tr

((
Q11

)2
)]

. (3.166)
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Finally, there is a term of the following type both in Eq. (3.160) and Eq. (3.161):〈
(U−1

1 Q11U1)ab(U−1
1 Q11U1)cd

〉
U(2n)

=
〈
U−1
aαQ

11
αβUβbU

−1
cγ Q

11
γµUµ,d

〉
U(2n)

=
〈
U∗αaUβbU

∗
γcUµd

〉
U(2n)

Q11
αβQ

11
γµ

=
[
V1,1

(
δαβδabδγµδcd + δαµδadδγβδcb

)
+ V2

(
δγβδabδαµδcd + δαβδadδγµδcb

)]
Q11
αβQ

22
γµ

=V1,1
[
(trQ11)2δabδcd + tr(Q11Q11)δadδcb

]
+ V2

[
tr(Q11Q11)δabδcd + (trQ11)2δadδcb

]
=
[
V1,1

(
trQ11

)2
+ V2tr

((
Q11

)2
)]

δabδcd +
[
V1,1tr

((
Q11

)2
)

+ V2
(
trQ11

)2
]
δadδcb . (3.167)

In the above transformations, the symmetry property of Q was used,(
Q11 Q12
Q21 Q22

)
= Q = −Q =

(
−QT22 −QT12
−QT21 −QT11

)
, (3.168)

as well as the constraints

1 = Q2 =
(
Q11Q11 +Q12Q21 Q11Q12 +Q12Q22

Q21Q11 +Q22Q21 Q22Q22 +Q21Q12

)
, 0 = TrQ = TrQ11 + TrQ22 . (3.169)

Substituting Eqs. (3.165), (3.166), and (3.167) into Eqs. (3.160) and (3.161), one obtains〈
tr(ΛQaa) tr(ΛQbb)

〉
U(2n)

= 2V1,1
(
trQ11

)2
+ 2V2tr

((
Q11

)2
)
, (3.170)〈

tr(ΛQabΛQba)
〉
U(2n)

= V2
(
trQ11

)2
+ (2V1,1 − V2)tr

((
Q11

)2
)
−
(
V1,1 + V2

)
tr
(
14n×4n

)
.

(3.171)

In the replica limit n→ 0, the last term in Eq. (3.171) vanishes, and one obtains〈Oab(1,1)
Oab(2)

〉
U(2n)

=
(

2V1,1 2V2
V2 2V1,1 − V2

)
︸ ︷︷ ︸

=:K2

·
(
O(1,1)
O(2)

)
, (3.172)

where notations for basis operators introduced in Eqs. (3.157) and (3.158) were used.
Equation (3.172) is a central result of this subsection. Here its implications are discussed. Consider

a K-invariant operator O that is quadratic in Q. One can expand it in the basis O(1,1), O(2) or,
alternatively, in the basis 〈Oab(1,1)〉U(2n), 〈Oab(2)〉U(2n):

O = c(1,1)O(1,1) + c(2)O(2) = c′(1,1)〈O
ab
(1,1)〉U(2n) + c′(2)〈O

ab
(2)〉U(2n) . (3.173)

According to Eq. (3.172), the corresponding vectors of coefficients are related by the matrix KT
2 :(

c(1,1)
c(2)

)
= KT

2

c′(1,1)
c′(2)

 . (3.174)
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It is known from Sec. 3.5.2.2 that, in order for the operator O to be an invariant operator, the vector
(c(1,1), c(2))T should be an eigenvector of the matrix MT

2 defined in Eq. (3.153). Furthermore, the
operation of U(2n) averaging commutes with RG, so that the RG flow of the coefficients c′(1,1), c

′
(2) is

described by the same equation (3.153). Therefore, for O to be an invariant operator, (c′(1,1), c
′
(2))

T

should also be an eigenvector of MT
2 . In view of Eq. (3.172), both conditions are compatible if and

only if the matrix KT
2 has the same eigenvectors as MT

2 . In other words, KT
2 should commute with

MT
2 , or, equivalently, K2 should commute with M2. To demonstrate that this is indeed the case, the

matrix K2 is represented in the form

K2 = 2(V1,1 + V2)
(

1
1

)
− V2 ·

(
2 −2
−1 3

)
︸ ︷︷ ︸

=M2

, (3.175)

which obviously commutes with M2.
This analysis thus shows that the eigenoperators can be also obtained as eigenvectors of the matrix

KT
2 . Explicit verification of the fact that M2 and K2 commute serves as a non-trivial check of the

calculation.

3.5.3 Generalization to operators of higher degree, q ≡ |λ| > 2
Her the RG analysis is extended to determine the polynomial pure-scaling operators of higher degree,
q ≡ |λ| > 2.
Begin with considering the basis of K-invariant operators

O(q1,...,ql) =
l∏

i=1
tr
(
(ΛQ)qi

)
, (3.176)

where (q1, . . . , ql) are partitions of q, i.e., q1 + q2 + . . .+ ql = q and q1 ≥ q2 ≥ . . . ≥ ql > 0. This is an
extension of the basis (3.157) to arbitrary integer q ≥ 2. As I am going to discuss, the RG does not
mix operators of different degree q = |λ|. Within given q it acts according to

δ


O(1,...1)

...
O(q)

 = Mq


O(1,...1)

...
O(q)

 . (3.177)

I will derive the rules for calculating the matrixM for classes A and C for any q below, and will present
it explicitly for q = 3 and 4.
Any invariant operator of degree q can be expanded in terms of the basis operators,

O =
∑

(q1,...,ql)
c(q1,...,ql)O(q1,...,ql) , (3.178)

where the sum goes over the partitions of q. The RG evolution of the coefficients is determined by the
matrix MT :

δ


c(1,...1)

...
c(q)

 = MT
q


c(1,...1)

...
c(q)

 . (3.179)

107



3 Generalized multifractality in Spin Quantum Hall systems

Thus, determining eigenvectors of the matrix MT
q , one finds invariant pure-scaling operators of degree

q.
In order to derive the RG rules, it is useful to inspect an example. Consider the operator tr

(
AQBQ

)
tr
(
CQ

)
.

Splitting Q in slow and fast modes and expanding in fast fields according to Eq. (3.122), and keeping
only the terms of zeroth and second order in X , one gets

tr
(
AQBQ

)
tr
(
CQ

)
= tr

(
AQsBQs

)
tr
(
CQs

)
+ 2tr

(
AgsΛX 2g−1

s BQs
)

tr
(
CQs

)
+ 2tr

(
AQsBgsΛX 2g−1

s

)
tr
(
CQs

)
+ 2tr

(
AQsBQs

)
tr
(
CgsΛX 2g−1

s

)
+ 4tr

(
AgsΛX g−1

s BgsΛX g−1
s

)
tr
(
CQs

)
+ 4tr

(
AgsΛX g−1

s BQs
)

tr
(
CgsΛX g−1

s

)
+ 4tr

(
AQsBgsΛX g−1

s

)
tr
(
CgsΛX g−1

s

)
. (3.180)

Averaging now over the fast fields X , one finds contributions of three types. In the contributions of the
first type, both factors X originate from the same Q, thus entering as X 2. In the contribution of the
second type, two factors of X come from two different Qs under the same trace. Finally, in the terms of
third type, two X s originate from different Qs under different traces. One has already encountered all
three types of contributions [see Eq. (3.127)] when developing the RG for q = 2 operators in Sec. 3.5.2.
By using this, one can generalize the results obtained there, Eqs. (3.151) and (3.138), to the RG rules
valid for any q. I do it now separately for classes A and C.

3.5.3.1 Class A

I first derive general RG rules in class A. The contributions δd(. . .) originating from two X factors
coming from two distinct traces fuse these two traces into a single one, see the first line of Eq. (3.138)
:

δd

[
tr
(
(ΛQ)qi

)
tr
(
(ΛQ)qj

)]
= 2Ifqiqj · tr

(
(ΛQ)qi+qj

)
. (3.181)

The prefactor qiqj accounts for qi places where the fast field X can occur in (ΛQ)qi and qj places where
another X can occur in (ΛQ)qj . For every of these (identical) qiqj terms, one can use the first line of
Eq. (3.138) with A = (ΛQs)qi−1Λ and B = (ΛQs)qj−1Λ, which yields the r.h.s. of Eq. (3.181). If the
operator is a product of a larger number of traces, each pair of them will produce such a contribution.
Further, the contributions δs(. . .) originating from two X factors coming from the same trace cut

this trace into two pieces in all possible ways, see the second line of Eq. (3.138) :

δstr
(
(ΛQ)qi

)
= 2If

qi−1∑
qj=1

qj · tr
(
(ΛQ)qj

)
tr
(
(ΛQ)qi−qj

)

= If qi

qi−1∑
qj=1

tr
(
(ΛQ)qj

)
tr
(
(ΛQ)qi−qj

)
. (3.182)

Indeed, the two fast fields can come from Q matrices in arbitrary positions k and k + qj , where
1 ≤ k < k + qj ≤ qi. For each such contribution, one can use the second line of (3.138) with
A = (ΛQ)qj−1Λ and B = (ΛQ)qi−qj−1Λ. Note that contributions originating from the X 2 factors
(i.e. with both X fields coming from the same Q) vanish in the class A due to the replica limit, see
Eq. (3.137) and the comment after it. If the operator is a product of several traces, then each of them
will produce a contribution δs(. . .) according to Eq. (3.182).
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Applying these rules, one can find the matrix MA
q determining the renormalization of operators of

degree q, Eq. (3.177). For q = 3 and 4 one gets:

(MA
2 )T = (2If )

(
0 1
1 0

)
, (MA

3 )T = (2If )

 0 1 0
3 0 3
0 2 0

 ,

(MA
4 )T = (2If )


0 1 0 0 0
6 0 2 3 0
0 1 0 0 2
0 4 0 0 4
0 0 4 3 0

 . (3.183)

For convenience, I have also included here the q = 2 result, Eq. (3.138). The transposed matrices
(MA

q )T are listed in Eq. (3.183) since, according to Eq. (3.179), eigenvectors of (MA
q )T determine

the eigenoperators of RG, i.e., pure-scaling operators. The results for the K-invariant pure scaling
operators of class A readPA(1,1)

PA(2)

 =
(

1 −1
1 1

)
︸ ︷︷ ︸
≡PA2

(
tr(ΛQ)tr(ΛQ)

tr(ΛQΛQ)

)
,


PA(1,1,1)
PA(2,1)
PA(3)

 =

1 −3 2
1 0 −1
1 3 2


︸ ︷︷ ︸

≡PA3

tr(ΛQ)tr(ΛQ)tr(ΛQ)
tr(ΛQ)tr(ΛQΛQ)

tr(ΛQΛQΛQ)

 ,


PA(1,1,1,1)
PA(2,1,1)
PA(2,2)
PA(3,1)
PA(4)


=


1 −6 3 8 −6
1 −2 −1 0 2
1 0 3 4 0
1 −2 1 0 −2
1 6 3 8 6


︸ ︷︷ ︸

≡PA4


tr(ΛQ)tr(ΛQ)tr(ΛQ)tr(ΛQ)

tr(ΛQ)tr(ΛQ)tr(ΛQΛQ)
tr(ΛQΛQ)tr(ΛQΛQ)
tr(ΛQΛQΛQ)tr(ΛQ)

tr(ΛQΛQΛQΛQ)

 . (3.184)

One can fix the freedom in the overall prefactor in each of the eigenoperators by choosing the coefficient
in front of O(1,1,...,1) to be unity. As proven below in Sec. 3.5.4, eigenvalues mA

(q1,...,qn) of the one-loop
RG matrix (MA

q )T are proportional to quadratic Casimir invariants,

mA
(q1,...,qn) = −If

∑
j

qj(−cAj − qj), (3.185)

where cAj = 1− 2j, see Sec. 1.2.1.1. This serves as an additional control of numerical calculations and
allows one to unambiguously associate Young diagrams with the eigenvectors of MT

q .

3.5.3.2 Class C

Now I perform the analysis for class C. For q = 2, the RG rules are given by Eq. (3.151). In order to
generalize them to operators with higher q, it is useful to trace the origin of various terms in Eq. (3.151)
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by inspecting the derivation, Eqs. (3.146)–(3.149). The upper right element −2 of the matrix M2 in
Eq. (3.151) originates from two fast fields X coming from different traces. It is analogous to class A
but contains an additional factor of two. One thus has

δd

[
tr
(
(ΛQ)qi

)
tr
(
(ΛQ)qj

)]
= 4Ifqiqj · tr

(
(ΛQ)qi+qj

)
. (3.186)

The lower left element 1 of the matrix M2 in Eq. (3.151), as well as the contribution −1 to the lower
right element, originate from two fast fields X coming from the same trace but different Q fields.
Finally, the remaining contribution −2 to the lower right element originates from two fast fields X
coming from the same Q matrix. This leads to

δs〈tr
(
(ΛQ)qi

)
〉 = 2If

qi−1∑
qj=1

qj tr
(
(ΛQ)qj

)
tr
(
(ΛQ)qi−qj

)
− Ifqi(qi − 1)tr

(
(ΛQ)qi

)
− 2Ifqi tr

(
(ΛQ)qi

)

= Ifqi

qi−1∑
qj=1

tr
(
(ΛQ)qj

)
tr
(
(ΛQ)qi−qj

)
− Ifqi(qi + 1) tr

(
(ΛQ)qi

)
. (3.187)

In the first line of Eq. (3.187), the first two terms come from a contraction of two X fields originating
from different Q fields, and the last term from the contraction within the X 2 factor originating from
a single Q field.

Using these rules, one can determine the matrices Mq that govern the renormalization of operators
of degree q in class C according to Eq. (3.177). The results for q = 3 and 4 read (the q = 2 result
found above is also included for completeness):

MT
2 = (−2If )

(
2 −1
−2 3

)
, MT

3 = (−2If )

 3 −1 0
−6 4 −3
0 −4 6

 ,

MT
4 = (−2If )


4 −1 0 0 0
−12 5 −2 −3 0

0 −2 6 0 −2
0 −8 0 7 −4
0 0 −8 −6 10

 . (3.188)

These are class-C counterparts of class-A results given by Eq. (3.183). It is adequate to recall that the
matrices MT

q control the renormalization of coefficients c(q1,q2,...), see Eq. (3.179). Calculating their
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eigenvectors, one finds the eigenoperators:PC(1,1)
PC(2)

 =
(

1 −2
1 1

)
︸ ︷︷ ︸
≡PC2

(
tr(ΛQ)tr(ΛQ)

tr(ΛQΛQ)

)
,


PC(1,1,1)
PC(2,1)
PC(3)

 =

1 −6 8
1 −1 −2
1 3 2


︸ ︷︷ ︸

≡PC3

tr(ΛQ)tr(ΛQ)tr(ΛQ)
tr(ΛQΛQ)tr(ΛQ)

tr(ΛQΛQΛQ)

 ,


PC(1,1,1,1)
PC(2,1,1)
PC(2,2)
PC(3,1)
PC(4)


=


1 −12 12 −32 48
1 −5 −2 −4 −8
1 −2 7 8 −2
1 1 −2 2 4
1 6 3 −8 −6


︸ ︷︷ ︸

≡PC4


tr(ΛQ)tr(ΛQ)tr(ΛQ)tr(ΛQ)

tr(ΛQ)tr(ΛQ)tr(ΛQΛQ)
tr(ΛQΛQ)tr(ΛQ)tr(ΛQ)

tr(ΛQΛQΛQ)tr(ΛQ)
tr(ΛQΛQΛQΛQ)

 . (3.189)

In analogy with class A, the eigenvalues m(q1,...,qn) of the class-C one-loop RG matrix (Mq)T are
proportional to quadratic Casimir invariants,

m(q1,...,qn) = −If
∑
j

qj(−cCj − qj), (3.190)

where cCj = 1− 4j, see Sec. 1.2.1.1. This statement (which I have verified numerically up to the order
q = 15) will be proven in full generality in Sec. 3.5.4,

3.5.3.3 Invariant operators in class C by U(2n) averaging for q > 2.

As was demonstrated in Sec. 3.5.2.3, and alternative way to obtain the K-invariant operators is to
perform the K ≡ U(2n) averaging of fixed-replica operators (replica indices a1, . . . , aq). This yields an
alternative basis in the space of K-invariant operators. Any K-invariant operator can be expanded
in the one and the other basis, and the corresponding coefficients are related by the matrix KT

q , see
Eqs. (3.172), (3.173), and (3.174) for q = 2, which are directly extended to arbitrary q:

〈
O
a1...aq
(1,1,...,1)

...
O
a1...aq
(q)


〉
U(2n)

= Kq


O(1,1,...,1)

...
O(q)

 ,

c(1,1,...,1)

...
c(q)

 = KT
q


c′(1,1,...,1)

...
c′(q)

 , (3.191)

where

O = c(1,1,...,1)O(1,1,...,1) + . . .+ c(q)O(q) = c′(1,1,...,1)〈O
a1,...,aq
(1,1,...,1)〉U(2n) + c′(q)〈O

a1,...,aq
(q) 〉U(2n) . (3.192)

For q = 3, one finds

KT
3 =

 1 0 0
0 1 0
0 0 1

V(1,1,1) +

 0 1
2 0

3 −1
2

3
2

0 2 −3
2

V(2,1) +

 0 0 1
4

0 1 −3
4

2 −1 1

V(3), (3.193)
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where, as before, Vλ are Weingarten functions. As was explained in Sec. 3.5.2.3, the consistency
requires that KT

q commutes with the RG matrix MT
q . Indeed, a straightforward check shows that all

the matrices in front of the Weingarten coefficients Vλ in Eq. (3.193) commute with MT
3 , Eq. (3.188).

An analogous calculation for q = 4 yields

KT
4 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

V(1,1,1,1) +


0 1

2 0 0 0
6 −1

2 1 3
2 0

0 1 −1 0 1
0 4 0 −3

2 2
0 0 4 3 −3

V(2,1,1)

+


0 0 1

4 0 0
0 1

2 −1
2 0 1

2
3 −1

2
5
4 0 −1

4
0 0 0 3

2 −1
0 2 −1 −3

2
5
4

V(2,2) +


0 0 0 1

4 0
0 2 0 −3

4 1
0 0 0 3

2 −1
8 −2 4 5

2 −2
0 4 −4 −3 4

V(3,1)

+


0 0 0 0 1

8
0 0 1 3

4 −3
4

0 1 −1
2 −3

4
5
8

0 2 −2 −3
2 2

6 −3 5
2 3 −5

2

V(4). (3.194)

Again, it was verified that the matrices multiplying the Weingarten coefficients Vλ in Eq. (3.194)
commute with MT

4 , Eq. (3.188). This is an explicit demonstration of the fact that eigenoperators can
also be obtained as eigenvectors of KT

q , see Sec. 3.5.2.3.

3.5.4 Generalized parabolicity of one-loop RG eigenvalues

In Ref. [211], it was shown that the one-loop β function characterizing the RG flow of the coupling
constant in non-linear sigma models over Riemannian manifolds M is given by a purely geometrical
property of the manifold—the Ricci curvature. Here I prove that the one-loop RG scaling dimensions
describing the flow of gradientless operators f(Q) in sigma models over symmetric spaces G/K are
given (up to an overall constant) by Casimir invariants or, equivalently, by eigenvalues of the Laplace-
Beltrami operator on G/K [that acts on functions f(Q)]. A consequence of this result is the exact
generalized parabolicity of one-loop RG scaling dimensions.
Consider an arbitrary function (“composite operator”) f(Q), which is a map G/K → C. I begin the

proof by noticing that the one-loop RG operator D acting on an function f(Q) can be written in the
form

Df(Q) = 1
2

∫
p
dµ(X ) d2

dt2
f(gse−tXΛetX g−1

s )
∣∣∣∣∣
t=0

e−Sf [X ], (3.195)

where Sf [X ] is the action (3.123) and the integration runs over the tangent space p to the manifold
G/K, see Eq. (3.27). The second derivative in t extracts two fast fields X in all possible ways from all Q
fields in f(Q), and the Gaussian integral over the manifold G/K then yields the one-loop contractions.

One can choose a basis {Xi} in p satisfying the symmetry constraints of the class-C sigma-model,
X †i = Xi and τ3X †i τ3 = −Xi. [A natural choice of this basis was given in Eq. (3.62).] Then X =

∑
i yiXi,
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with real and independent coefficients yi. Further one can demand orthonormality with respect to the
trace tr

(
XiXj

)
= δij . The fast-mode action (3.123) then is diagonal in yi,

Sf [{yi}] = πσ0
2
∑
i

(
∇yi∇yi + h2yiyi

)
. (3.196)

Using for brevity etadXO ≡ e−tXOetX , one can rewrite Eq. (3.195) as

Df(Q) = 1
2
d2

dt2

∫
p
dµ({yi})f(gs(et

∑
i
yiadXiΛ)g−1

s ) · e−Sf [{yi}]
∣∣∣∣∣
t=0

. (3.197)

I rewrite the second derivative via

d2

dt2
f(gs(et

∑
i
yiadXiΛ)g−1

s )
∣∣∣∣∣
t=0

=
∑
ij

yiyjX̂ ′i X̂ ′jf(Q) , (3.198)

where X̂ ′i is the derivative in the direction X ′i = gsXig−1
s on the manifold G/K:

X̂ ′if(Q) = ∂tf(gs(et adXiΛ)g−1
s )|t=0 = ∂tf(et adX′

iQ)|t=0. (3.199)

It is easy to see that {X ′i} has a meaning of the basis in the tangent space to sigma-model manifold at
the point Q.
Substituting Eq. (3.198) into Eq. (3.197), one obtains

Df(Q) =
∑
ij

(
X̂ ′i X̂ ′jf(Q)

)
·
∫
p
dµ({yl}) yiyj e−Sf [{yl}] (3.200)

The gaussian integral here is exactly the one-loop integral defined by Eq. (3.126),∫
p
dµ({yl}) yiyj e−Sf [{yl}] = Ifδij , (3.201)

so that

D = If
∑
i

X̂ ′i X̂ ′i . (3.202)

Thus, the one-loop RG operator is proportional to the Laplacian
∑
i X̂ ′i X̂ ′i . Therefore, the RG eigenval-

ues are proportional to the quadratic Casimir invariants. It follows that the spectrum of one-loop RG
eigenvalues satisfies the generalized parabolicity, as has been already stated (and numerically verified)
for classes A and C, Eqs. (3.185) and (3.190). As the above proof is very general, I believe that it is
applicable to all ten symmetry classes.
It is crucial to emphasize that the generalized parabolicity of the one-loop RG is violated by higher-

loop contributions. In general, the generalized multifractal spectra are not parabolic, see also the
discussion in Sec. 3.2.3.
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3.6 Wavefunction combinations with one spin component

In this section, I derive eigenfunction correlators that correspond to pure-scaling sigma-model operators
determined in Sec. 3.5. Let me emphasize, that this “translation” to the wave-function language is not
unique: there are many wave-function observables that correspond to the same sigma-model composite
operator, i.e., belong to the same representation and scale in the same way. In the present section,
the focus is on correlation functions that involve only one spin component of wave functions (say, spin
up). In Sec. 3.6.1, the necessary steps are performed: (i) express correlators of wave functions ψσ
in terms of retarded and advanced Greens functions; (ii) find linear combinations Sσ of the bosonic
action variables φσ that map one-to-one (in the sense of correlation functions) to ψσ; (iii) determine
the Q-field combinations that remain after integrating out S and connect them to operators whose
RG flow has been derived above. Finally, (iv) one has to take into account connections between the
different parametrizations Q and Q̃ of the sigma-model manifold. Overall, one finds that the single-
spin wave-function combinations translate into Q-field operators in class C in the same manner as in
the class-A sigma-model.
Having derived pure-scaling eigenstate correlation functions (Sec. 3.6.1), one can determine the

scaling exponents numerically by simulating the appropriate network model. While this perfectly
works at the conventional quantum-Hall transition, it turns out that there is a major computational
difficulty for implementing this with a high accuracy at the SQH transition. The point is that, apart
from the simplest case of the representations (q) corresponding to the conventional multifractality,
the eigenstate correlations for class C obtained in this way have an indefinite sign for an individual
disorder realization and exhibit very strong fluctuations. As a result, one has to perform averaging over
a very large number of disorder realizations in order to reach a reasonable accuracy for the exponents.
This is done for the (1,1) exponent in Sec. 3.6.3. At the same time, for exponents corresponding
to Young diagrams with q > 2 [such as (2,1), (1,1,1), (3,1), (2,1,1), (2,2), etc] this would require
truly outstanding numerical efforts, which go beyond this work. In view of this, I develop two further
alternative approaches to determine numerically these exponents.
One of these approaches is presented in Sec. 3.6.2. The focus there is on Young-symmetrized wave

function combinations |Ψλ|2 of ψ↑ that are manifestly positive and show pure scaling of representation
λ in class-A systems [87]. This makes them very suitable for numerical averaging. In class C, these
combinations [except for LDOS moments λ = (q)] do not map to pure-scaling operators of the sigma-
model. One thus could naively think that studying numerically these correlators does not bring any
useful information about the class-C scaling. Luckily, the situation turns out to be much more favorable.
Using these results for the coefficients of pure scaling operators PAλ (3.184) in class A and PCλ (3.189)
in class C as obtained in Sec. 3.5.3, in Sec. 3.6.2 mixing matrices relating the two are derived.
Remarkably, these matrices have many zero entries, implying that one is able to access numerically
some subleading exponents of class C by investigating the scaling of eigenoperators of class A.
In Sec. 3.6.3 numerical results for the exponents accessible within this framework are presented.

Since the finite-size effects and the need for ensemble averaging proliferate with increasing q, the
numerics is restricted here to q ≤ 4. The key results are the scaling exponents collected in Table 3.2.
Crucially, one finds that the generalized parabolicity is violated strongly: the exponents deviate up
to 50% from the values that they would take for a spectrum satisfying the generalized parabolicity.
For comparison, the results of the class-A network-model numerics are presented in Table 3.1. There,
deviations from parabolicity are much weaker (of the order of several percent).
A second approach for obtaining class-C generalized MF exponents from sign-definite correlation

functions is developed in Sec. 3.7 below. The idea is to explore correlation functions that involve both
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3.6 Wavefunction combinations with one spin component

spin projections on the same site. As is shown there, correlation functions involving the total density
|ψ| =

√
|ψ|2↑ + |ψ|2↓ turn out to be very useful in this connection.

3.6.1 Translation dictionary

In this subsection, I am going to derive a “dictionary” to translate correlations of wave functions ψ
into those of bosonic field variables φ of the replicated action and further to the sigma-model (Q-field)
language. Linear combinations S of the bosonic variables φ are chosen, such that the translation of S
to ψ is one-to-one. One then restrict the wave-function combination to a singe spin component (e.g.,
spin up). Mapping the single-spin expressions to Q-field correlation functions and averaging over a
certain subgroup Ud of the gauge group K = U(2n), one obtains sigma-model composite operators as
studied in Sec. 3.5.

3.6.1.1 From wave functions to Green’s functions

One can introduce retarded and advanced Green’s function:

ĜR/A(ε, r1, r2) = 〈r1|
1

ε− Ĥ ± i0
|r2〉. (3.203)

The hat indicates the matrix structure representing the two-by-two combined spin and particle-hole
space of the Hamiltonian (3.100). To extract eigenstate correlations, one uses a connection between
the eigenstates ψα,σ(r) (where σ is the spin index) and the Green’s functions in a given disorder
configuration

GRσ1σ2(ε, r1, r2)−GAσ1σ2(ε, r1, r2) = 2πi
∑
α

δ(ε− ωα)ψ∗α,σ1(r1)ψα,σ2(r2) . (3.204)

Here ωα are exact eigenenergies in that disorder configuration. This implies the correspondence [87,
103]

1
2πiν(ε)

(
GRσ1σ2(ε, r1, r2)−GAσ1σ2(ε, r1, r2)

)
←→ ψ∗α,σ1(r1)ψα,σ2(r2)

∣∣∣
ωα≈ε

(3.205)

in averages 〈. . .〉 over disorder configurations V . Here ν(ε) is the average density of states This cor-
respondence is extended to eigenstate composite objects of higher order and allows one to relate the
corresponding averages to averaged products of Green’s functions [87, 103].
The components of the Green’s function are not independent. In view of the particle-hole symmetry

(3.101) of the Hamiltonian, the Green’s functions satisfy

iσyĜ
R(ε, r1, r2)iσy = ĜA(−ε, r2, r1)T . (3.206)

When written explicitly in terms of the components, this reads−GR↓↓(ε, r1, r2) GR↓↑(ε, r1, r2)
GR↑↓(ε, r1, r2) −GR↑↑(ε, r1, r2)

 =

GA↑↑(−ε, r2, r1) GA↓↑(−ε, r2, r1)
GA↑↓(−ε, r2, r1) GA↑↑(−ε, r2, r1)

 . (3.207)

One can see that the symmetry operation connects the retarded Green’s function at positive energy
to the advanced one at negative energy and opposite spin components.
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3.6.1.2 From Green’s functions to averages over bosonic vector fields

In order to express composite objects built out of Green’s functions in terms of field-theoretic averages,
it is useful to introduce the following linear combinations of the bosonic integration variables φ:

S↑,a = φ↑,a + ieiαaφ∗↓,−a ,

S↓,a = φ↓,a − ieiαaφ∗↑,−a , (3.208)

with arbitrary phases αa. These fields have the useful property of only having “particle-conserving”
contractions with respect to the Gaussian action S0[φ∗, φ;V ], Eq. (3.103), defined for the Hamiltonian
H = H0 + V in a given disorder configuration V :

i〈S∗↓,a(r1)S↓,a(r2)〉S0[φ∗,φ;V ] = GR↓↓(ωa; r1, r2) +GR↑↑(−ωa; r2, r1)
= GR↓↓(ωa; r1, r2)−GA↓↓(ωa; r1, r2),

i〈S∗↓,a(r1)S↑,a(r2)〉S0[φ∗,φ;V ] = GR↓↑(ωa; r1, r2)−GR↓↑(−ωa; r2, r1)
= GR↓↑(ωa; r1, r2)−GA↓↑(ωa; r1, r2). (3.209)

Other non-zero contractions can be obtained by complex conjugation and the particle-hole operation.
Combining this with Eq. (3.205), one get〈〈

S∗↓,a(r1)S↓,a(r2)
〉
S0[φ∗,φ;V ]

〉
V

= −1
2πν(ε)

〈
ψ∗α,↓(r1)ψα,↓(r2)

〉
V

∣∣∣∣∣
ωα≈ε

,〈〈
S∗↓,a(r1)S↑,a(r2)

〉
S0[φ∗,φ;V ]

〉
V

= −1
2πν(ε)

〈
ψ∗α,↓(r1)ψα,↑(r2)

〉
V

∣∣∣∣∣
ωα≈ε

. (3.210)

This shows a one-to-one correspondence between ψ and S (since the interest is only in scaling, the
prefactor is omitted):

ψ∗α,σ1(r1)ψα,σ2(r2) ←→ S∗σ1,a(r1)Sσ2,a(r2) . (3.211)

The correspondence is understood in the sense of averages that are explicitly shown in Eq. (3.210).
This correspondence is straightforwardly extended to higher-order products by using the fact that the
action S0[φ∗, φ;V ] is Gaussian and diagonal in replicas. As an example,

ψ∗α,σ1(r1)ψα,σ2(r2)ψ∗β,σ3(r3)ψβ,σ4(r4) ←→ S∗σ1,a(r1)Sσ2,a(r2)S∗σ3,b(r3)Sσ4,b(r4) . (3.212)

Note that the wave-function indices α, β, γ, . . . are translated into the replica indices a, b, c, . . .. For
this reason, below the replica indices a, b, c, . . . will be also used as eigenfunction labels.

3.6.1.3 From bosonic vector fields to the sigma-model field Q

The next step is to find the dictionary that translates the vector fields S of the replica field theory into
the matrix field Q of the sigma-model. Upon the Hubbard-Stratonovich transformation, one obtains
the theory with the action S[φ, φ∗, Q], see Eq. (3.109). Intergrating over the fields φ, φ∗, one translates
any composite object O[φ, φ∗] into its sigma-model counterpart 〈O[φ, φ∗]〉S[φ,φ∗,Q] expressed in terms
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3.6 Wavefunction combinations with one spin component

of the field Q. For the objects that are bilinear in S fields (or, equivalently in φ fields), one has

〈S∗↓,a(r1)S↓,b(r1)〉S[φ,φ∗,Q] = ie−iαaQAR−b,−a − ieiαbQRAa,b +QRRa,b + eiαb−iαaQRR−b,−a (3.213)
= −ie−iαaQARa,b − ieiαbQRAa,b +QRRa,b − eiαb−iαaQAAa,b ≡ Q00

ab, (3.214)
〈S∗↑,a(r1)S↑,b(r1)〉S[φ,φ∗,Q] = −ie−iαaQARa,b + ieiαbQRA−b,−a +QRRa,b + eiαb−iαaQRR−b,−a

= −ie−iαaQARa,b − ieiαbQRAa,b +QRRa,b − eiαb−iαaQAAa,b ≡ Q00
ab, (3.215)

〈S↓,a(r1)S↓,b(r1)〉S[φ,φ∗,Q] = 0, (3.216)
〈S∗↓,a(r1)S∗↑,b(r1)〉S[φ,φ∗,Q] = QARb,−ae

−iαa−iαb +QRAa,−b − ie−iαbQRRa,−b + ie−iαaQRRb,−a

= −QARa,−be−iαa−iαb +QRAa,−b − ie−iαbQRRa,−b − ie−iαaQAAa,−b ≡ Q01
ab, (3.217)

〈S↓,a(r1)S↑,b(r1)〉S[φ,φ∗,Q] = QAR−a,b +QRA−b,ae
iαa+iαb − iQRR−a,beiαa + iQRR−b,ae

iαb

= QAR−a,b −QRA−a,beiαa+iαb − iQRR−a,beiαa − iQAA−a,beiαa ≡ Q10
ab, (3.218)

〈S∗↓,a(r1)S↑,b(r1)〉S[φ,φ∗,Q] = 0. (3.219)

The right-hand sides can be straightforwardly read off from the coupling (3.107) of Q and φ fields in
the action S[φ, φ∗;Q]. One has introduced here the short-hand notations Qpp

′

ab with p, p′ = 0, 1.

Translating composite objects of higher order in S, S∗ fields amounts to using Wick’s theorem, since
the action S[φ, φ∗, Q] is Gaussian with respect to φ, φ∗ fields. However, since this action is not diagonal
in replicas (due to the coupling to the Q field), many terms arise. A drastic simplification occurs if
one assumes (which is fully sufficient for the purposes of calculating scaling exponents) that all ri are
far apart from each other in comparison to the microscopic scale a controlling the decay of averaged
single-particle Green’s function, |ri − rj | � a. Then one only has to retain contractions that are
diagonal in spatial coordinates. In the special case of the network model that is used for numerical
simulations in this paper, the condition ri 6= rj is sufficient since all contractions between different
spatial points are identically equal to zero. With only one spin component, further simplifications occur.
First, one only needs the contraction rule (3.214). Second, by averaging over the phases αa, αb, . . .,
i.e., over the diagonal subgroup Ud = U(1)2n of the gauge group U(2n), one ends up in the space
of sigma-model composite operators spanned by products of traces of the type tr (EaaΛQEbbΛQ . . .),
where Eaa is the projector on replica a as defined above. As the simplest example, this is shown for
composite operators that are of fourth order in S, S∗ fields and thus map on sigma-model composite
operators that are quadratic in Q fields (i.e., q = 2 operators). There are two such independent
composite operators (the spin index is skipped, which is the same for all S fields), |Sa(r1)|2|Sb(r2)|2
and S∗a(r1)Sb(r2)Sb(r1)S∗a(r2); they will be called the Hartree and Fock terms, respectively, for obvious
reason. For the Hartree term one gets, according to Eq. (3.214),

〈Q00
aaQ00

bb 〉Ud =
∫ 2π

0

∫ 2π

0

dαadαb
(2π)2

(
−ie−iαaQARa,a − ieiαaQRAa,a +QRRa,a −QAAa,a

)
×
(
−ie−iαbQARb,b − ieiαbQRAb,b +QRRb,b −QAAb,b

)
=
(
QRRa,a −QAAa,a

) (
QRRb,b −QAAb,b

)
= tr

(
EaaΛQ

)
tr
(
EbbΛQ

)
≡ Oab(1,1) . (3.220)
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Similarly, one has for the Fock term:

〈Q00
abQ00

ba〉Ud =
∫ 2π

0

∫ 2π

0

dαadαb
(2π)2

(
−ie−iαaQARa,b − ieiαbQRAa,b +QRRa,b − eiαb−iαaQAAa,b

)
×
(
−ie−iαbQARb,a − ieiαaQRAb,a +QRRb,a − eiαa−iαbQAAb,a

)
= QRRa,b Q

RR
b,a +QAAa,b Q

AA
b,a −QARa,b QRAb,a −QRAa,b QARb,a = tr

(
EaaΛQEbbΛQ

)
≡ Oab(2) . (3.221)

Thus, after the Ud averaging, one has obtained the operators Oab(1,1) and O
ab
(2) as defined in Eq. (3.158).

This is straightforwardly generalized to q > 2 composite operators, and one obtains a mapping of
the composite operators of S fields to the sigma-model operators of the type

O
a1...aq
(i,j,...) = tr

(
Ea1a1ΛQ · · ·EaiaiΛQ

)
tr
(
Eai+1ai+1ΛQ · · ·Eai+jai+jΛQ

)
. . . . (3.222)

Recalling the direct correspondence between the S fields and eigenstates ψ, one thus gets a correspon-
dence between eigenstate observables and sigma-model composite operators:

Oab(1,1) ←→ |ψa(r1)|2|ψb(r2)|2 ,

Oab(2) ←→ ψ∗a(r1)ψb(r1)ψ∗b (r2)ψa(r2) ,

Oabc(1,1,1) ←→ |ψa(r1)|2|ψb(r2)|2|ψc(r3)|2 ,

Oabc(2,1) ←→ ψ∗a(r1)ψb(r1)ψ∗b (r2)ψa(r2)|ψc(r3)|2 ,

Oabc(3) ←→ ψ∗a(r1)ψb(r1)ψ∗b (r2)ψc(r2)ψ∗c (r3)ψa(r3) ,

Oabcd(1,1,1,1) ←→ |ψa(r1)|2|ψb(r2)|2|ψc(r3)|2|ψd(r4)|2 ,

Oabc(2,1,1) ←→ ψ∗a(r1)ψb(r1)ψ∗b (r2)ψa(r2)|ψc(r3)|2|ψd(r4)|2 ,

Oabcd(2,2) ←→ ψ∗a(r1)ψb(r1)ψ∗b (r2)ψa(r2)ψ∗c (r3)ψd(r3)ψ∗d(r4)ψc(r4) ,

Oabcd(3,1) ←→ ψ∗a(r1)ψb(r1)ψ∗b (r2)ψc(r2)ψ∗c (r3)ψa(r3)|ψd(r4)|2 ,

Oabcd(4) ←→ ψ∗a(r1)ψb(r1)ψ∗b (r2)ψc(r2)ψ∗c (r3)ψd(r3)ψ∗d(r4)ψa(r4) . (3.223)

The spin index for wave functions is suppressed here (and in the rest of Sec. 3.6) since it is the same for
all of them (e.g., all wave functions have spin up). The symmetrized version of the operators Oa1...aq

(i,j,...)

over the symmetric group Sq is denoted by OS{a1...aq}
(i,j,...) :

O
S{a1...aq}
(i,j,...) = 1

q!
∑
σ∈Sq

tr
(
Eσ(a1)σ(a1)ΛQ · · ·Eσ(ai)σ(ai)ΛQ

)
tr
(
Eσ(ai+1)σ(ai+1)ΛQ · · ·Eσ(ai+j)σ(ai+j)ΛQ

)
. . . .

(3.224)

(For q = 2 the symmetrization is redundant: Oab(1,1) ≡ O
S{ab}
(1,1) and Oab(2) ≡ O

S{ab}
(2) .) The symmetrized

operators OS{a1...aq}
(i,j,...) obey the same RG equations of Sec. 3.5.3.2 as the K-invariant operators. Thus,

pure-scaling operators are constructed from them according to Eq. (3.189). At the same time, was just
shown, the operators OS{a1...aq}

(i,j,...) correspond to eigenstate observables (3.223) (with Sq-symmetrization
over energies corresponding to symmetrization over replica indices). Therefore, by using Eq. (3.189),
one also obtains the pure-scaling combinations of eigenstates. This is done in Sec. 3.6.2.
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There is the following technical subtlety in the above derivation. The choice of the sigma-model
manifold that was used in the derivation of the sigma-model in Sec. 3.4 is slightly different from that
used in Sec. 3.5.2.2 for derivation of RG equations. The connection was explained in detail in the
end of Sec. 3.4 where the former parametrization was denoted Q and the latter Q̃, see Eq. (3.115) for
explicit relation between them. In the present section (Sec. 3.6) the Q parametrization is used, since it
is most conveneint for the mapping of eigenstate observables to the sigma-model composite operators.
At the same time, at the last step, fact that composite operators (3.224) renormalize according to RG
equations derived in Sec. 3.5.2.2 is used. To demonstrate this fully rigorously, one should reexpress
Eq. (3.224) in terms of the Q̃-field and verify that these operators satisfy the conditions for validity of
the RG equations of Sec. 3.5.2.2. This is done in B.2.

3.6.2 Generalized multifractality: Pure-scaling eigenstate observables

Now on is in a position to write down the pure-scaling observables in terms of eigenfunctions. First this
is demonstrated for the case of q = 2. Then there are two eigenstates (labeled by a and b corresponding
to replica indices in the field theory) and two spatial point r1 and r2. Two basis combinations are the
Hartree (H) and Fock (F ) terms, as given by Eq. (3.223) (with symmetrization over indices a, b)

Oab(1,1) ←→
1
2
(
|ψa(r1)|2|ψb(r2)|2 + |ψb(r1)|2|ψa(r2)|2

)
≡ H ,

Oab(2) ←→
1
2
(
ψ∗a(r1)ψb(r1)ψ∗b (r2)ψa(r2) + ψ∗b (r1)ψa(r1)ψ∗a(r2)ψb(r2)

)
≡ F . (3.225)

Using Eq. (3.156) [the same matrix of coefficients appears also in Eqs. (3.154) and (3.155), and is
denoted PC2 in Eq.(3.189)], one can write down the q = 2 pure-scaling observables as combinations of
these two basis combinations:

PC(2) ←→ H + F ,

PC(1,1) ←→ H − 2F . (3.226)

The operator PC(2) is a representative of the conventional multifractality and can be realized also with
a single eigenfunction, as |ψa(r)|4. On the other hand, the subleading operator PC(1,1) goes beyond the
conventional multifractality and is a representative of the generalized multifractalty. In the same way,
pure-scaling operators for q > 2 can be obtained.
By using the class-C network model it is verified numerically, that PC(1,1) is realized by H − 2F and

determined in this way the corresponding scaling exponent, see Sec. 3.6.3. There is, however, the
following computational difficulty in determining the exponents of subleading operators in this way.
For an individual realization of disorder, the quantity H − 2F has an indefinite sign, and its typical
magnitude is of the same order as H and F . Only after the averaging one obtains 〈H − 2F 〉 that is
strongly suppressed with respect to 〈H〉 and 〈F 〉. This should be contrasted to the case of class A:
the operator PA(1,1) corresponds to H − F which can be written as an absolute value squared, is thus
strictly positive and small for any realization of disorder. In view of this, the numerical evaluation of the
scaling exponent PC(1,1) by calculating the average 〈H−2F 〉 requires much larger computational efforts
than the analogous calculation (of the average 〈H − F 〉) in class A. For this reason, this approach
is numerically implemented in the present work only for the (1,1) operator but not for subleading
operators with q > 2 for which still more extensive computational efforts are needed. Two alternative
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3 Generalized multifractality in Spin Quantum Hall systems

approaches that are used to determine some of subleading exponents with higher q are described below
(in this section and in Sec. 3.7).
The first of these alternative approaches is based on expressing the sigma-model scaling operators
PCλ in terms of a linear combination of the class-A scaling operators PAλ′ . According to the analysis of
Ref. [87], the wave-function observable |Ψλ|2, with Ψλ obtained by a combination of symmetrization and
antisymmetrization of the product of eigenstate amplitudes according to a Young diagram λ (“Young
symmetrization”), maps onto PAλ in the sigma-model language. Thus, expanding PCλ over PAλ′ , one
simultaneously obtains an expansion of the pure-scaling eigenstate observable of class C corresponding
to the diagram λ over the pure-scaling eigenstate observables |Ψλ′ |2 of class A. The idea is to invert
this expansion and to determine numerically the scaling of |Ψλ|2, i.e., of PAλ , in a system of class C.
Since |Ψλ|2 is strictly positive, this can be done quite efficiently. This scaling will be determined by
the most relevant (in the RG sense) operator PCλ′ out of those that contribute to PAλ . This allows one
to determine some (although not all) of the subleading scaling expionents in class C.
The construction of |Ψλ|2 corresponding to a Young diagram λ is briefly sketched; see Appendix A

of Ref. [87] for a detailed exposition. Consider a Young diagram λ = (q1, q2, . . .) with |λ| = q, as well
as q distinct eigenfunctions ψ1, . . . , ψq and q points r1, . . . , rq. One can put the indices of ψ and r in
two Young tableaux of shape λ (i.e., with the first row having the length q1, the second row the length
q2, and so on). As an illustration, consider the following example for λ = (3, 2, 1):

Tψ = ψ2 ψ4 ψ6
ψ1 ψ5
ψ3

Tr = r6 r2 r3
r1 r5
r4

. (3.227)

One associates with the pair of these two tableaus the corresponding (unsymmetrized) product Ψ(3,2,1)(Tψ, Tr)
of wave function amplitudes:

Ψ(3,2,1)(Tψ, Tr) = ψ1(r1)ψ2(r6)ψ3(r4)ψ4(r2)ψ5(r5)ψ6(r3).

The next step is to introduce the operator aλ of symmetrization within the rows of a Young tableau
and the operator bλ of antisymmetrization within the columns. The Young symmetrizers are defined
as cλ = bλaλ and c̃λ = aλbλ. The Young-symmetrized combinations are given by

Ψλ(cλTψ, Tr) = Ψλ(Tψ, c̃λTr) (3.228)

and

Ψλ(Tψ, cλTr) = Ψλ(c̃λTψ, Tr) . (3.229)

As shown in Ref. [87], the squared absolute values of these Young-symmetrized products of eigenfunc-
tions map, in the case of class A, to the pure-scaling sigma-model operator PAλ .
Absolute values squared of Young-symmetrized eigenstate combinations (which are pure-scaling
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3.6 Wavefunction combinations with one spin component

observables for class A) are listed for the first few Young diagrams:

|Ψ(2)|2 = 1
2 |ψa(r1)ψb(r2) + ψb(r1)ψa(r2)|2 ,

|Ψ(1,1)|2 = 1
2 |ψa(r1)ψb(r2)− ψb(r1)ψa(r2)|2 ,

|Ψ(3)|2 = 1
6 |ψa(r1)ψb(r2)ψc(r3) + ψb(r1)ψa(r2)ψc(r3) + ψc(r1)ψb(r2)ψa(r3) ,

+ ψb(r1)ψc(r2)ψa(r3) + ψc(r1)ψa(r2)ψb(r3) + ψa(r1)ψc(r2)ψb(r3)|2 ,

|Ψ(2,1)|2 = 1
4 |ψa(r1)ψb(r2)ψc(r3)− ψc(r1)ψb(r2)ψa(r3) + ψb(r1)ψa(r2)ψc(r3)− ψc(r1)ψa(r2)ψb(r3)|2 ,

... (3.230)

Since linear combinations of these expressions will be discussed, it is important to comment on their
normalization. The symbol Y (λ) denotes the number of terms in Ψλ produced by the Young sym-
metrization. Up to order q = 4, the values of Y (λ) are given in the following table:

λ Y (λ) λ Y (λ)
(1,1) 2 (1,1,1,1) 24
(2) 2 (2,1,1) 12

(1,1,1) 6 (2,2) 16
(2,1) 4 (3,1) 12
(3) 6 (4) 24

Writing down |Ψλ|2 as a sum of monomials, one gets exactly Y (λ) terms of modulus-squared type.
The prefactor of |Ψλ|2 in Eq. (3.230) is chosen to be equal to Y (λ)−1, so that the total prefactor of
these terms is unity. This has the consequence that |Ψλ|2 maps precisely to PAλ given by Eq. (3.184).
(Recall that all entries in the first column of matrices in Eq. (3.184) have been fixed to be equal to
unity.)
The next step is to establish a connection between the class-A eigenoperators PAλ and class-C eigen-

operators PCλ . Using Eq. (3.184) for PAλ and Eq. (3.189) for PCλ , one findsPC(1,1)
PC(2)

 =
(

1 −1
3

0 1

)PA(1,1)
PA(2)

 ,


PC(1,1,1)
PC(2,1)
PC(3)

 =

1 −4
5

1
5

0 1 −1
4

0 0 1



PA(1,1,1)
PA(2,1)
PA(3)

 ,



PC(1,1,1,1)
PC(2,1,1)
PC(2,2)
PC(3,1)
PC(4)


=


1 −9

7 − 4
35

27
35 −1

7
0 1 −2

9 −4
9

1
9

0 0 1 −1
2 0

0 0 0 1 −1
5

0 0 0 0 1





PA(1,1,1,1)
PA(2,1,1)
PA(2,2)
PA(3,1)
PA(4)


. (3.231)

Replacing the sigma-model operators PAλ′ on the right-hand side of these equations by |Ψλ′ |2, wave-
function combinations that scale like PCλ are obtained. For example, for λ = (1, 1), one gets PC(1,1) ←→
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3 Generalized multifractality in Spin Quantum Hall systems

|Ψ(2)|2− 1
3 |Ψ(1,1)|2. This is, of course, exactly the H−2F expression from Eq. (3.226) (up to an overall

factor). The corresponding numerical results for PC(1,1) are shown below in Sec. 3.6.3 (see Fig. 3.1). As
has been already explained, this type of numerics suffers from very strong fluctuations, which become
even stronger with increasing |λ| ≡ q. One therefore has to choose a different route for q = 3, 4.
Inverting the matrices in Eq. (3.231), one finds

PA(1,1,1)
PA(2,1)
PA(3)

 =


1
15 − 1

10 0
0 1

8 − 1
24

0 0 1
6



PC(1,1,1)
PC(2,1)
PC(3)

 ,



PA(1,1,1,1)
PA(2,1,1)
PA(2,2)
PA(3,1)
PA(4)


=



1
35 − 1

14 − 1
40 0 0

0 1
18

1
72 − 1

18 0
0 0 1

16 − 1
20

1
80

0 0 0 1
10 − 1

40
0 0 0 0 1

8





PC(1,1,1,1)
PC(2,1,1)
PC(2,2)
PC(3,1)
PC(4)


. (3.232)

Naively, one could expect that, in class C, all PAλ will be dominated by the most relevant operator PC(q).
This is not the case, however, due to zero entries at the upper right corner of the matrix. Equations
(3.232) thus lead to non-trivial predictions amenable to numerical investigations. Specifically, when
computing the q = 3 eigenstate combinations |Ψλ|2 corresponding to PAλ in a system of class C, one
should see that PA(3) and P

A
(2,1) exhibit both the leading (3) scaling (with the exponent xλ equal to zero

due to Weyl symmetry), while PA(1,1,1) has the leading contribution from the representation (2, 1). By
Weyl symmetry, the scaling exponent xλ of (2, 1) should be identical to the exponent of (1, 1) obtained
for q = 2. For q = 4, there should be three operators—PA(4), P

A
(3,1), and P

A
(2,2)—showing the leading (4)

scaling, the operator PA(2,1,1) should be dominated by representation (3, 1), and the operator PA(1,1,1,1)
by the representation (2, 2).

In Sec. 3.6.3, these predictions are verified and used for determining the scaling exponents by nu-
merical simulations on the network model.

3.6.3 Numerical computations

In this subsection, I present results of numerical evaluation of generalized multifractal exponents by
using the Chalker-Coddington network models [U(1) model for class A and its SU(2) generalization for
class C]. For class C, two approaches outlined in Sec. 3.6.2 are used: the direct evaluation of a class-C
pure scaling operator and the path going through strictly positive Young-symmetrized wave-function
combinations |Ψλ|2. These numerics fully confirms all existing analytical predictions, including those
based on Weyl symmetry as well as those resulting from relations between class-A and class-C scaling
observables derived in Sec. 3.6.2. Obtained numerical results for the exponents at the SQH transition
are summarized in Table 3.2. Remarkably, one finds strong deviations from generalized parabolicity
for the subleading exponents [(1,1), (2,1), (3,1), (2,2)]. In Sec. 3.7 these results will be corroborated
by an alternative approach (based on obervables involving both spin projections), where also further
subleading exponents will be determined numerically.
While the main focus in this work is on class C, all exponents for Young diagrams with q ≤ 4 for the

conventional (class-A) IQH transition are also determined numerically, see Table 3.1 below. At variance
with the SQH transition, one finds here only weak deviations from the generalized parabolicity.
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3.6 Wavefunction combinations with one spin component

3.6.3.1 The Chalker-Coddington network models

An intuitive picture of quantum Hall criticality is imagining the electrons to drift along equipotential
lines of the disorder potential. Near saddle points of the potential, tunneling between distinct lines
is allowed. The Chalker-Coddington network model [121] adds further simplification to this picture:
the random geometry derived from extremal points of the potential landscape is replaced by a square
network, with electrons acquiring a random U(1) phase when traveling along a link. The SU(2) version
of the Chalker-Coddington network model describes spin quantum hall criticality [54, 56]. The network
models have been to be very useful for numerical investigation of localization transitions in 2D systems
of various symmetry classes, see the reviews [9, 212] and Sec. 1.5.3.1.
Multifractality of eigenstates of the network scattering matrix U is analyzed numerically using the

conventional sparse-matrix techniques [58, 77, 213]. For each realization of disorder, four eigenstates
with lowest positive energies are determined. (When speaking about the energy in the context of
the network model, one actually means the quasienergy ε corresponding to the eigenvalue eiε of the
network evolution operator U .) The systems studied are of linear size L = 128 . . . 1024, and the
ensemble averaging is performed over at least 105 configurations. For each realization of disorder,
there also is an average over L2 positions of the “center of mass” of the set of involved spatial points
ri.

3.6.3.2 Scaling considerations

To investigate the scaling of an operator with q ≤ 4, I consider eigenstate combinations defined on q
lowest-energy eigenstates and at q distinct points r1, . . . , rq, see Sec. 3.6.2. The exponents of interest
control the power-law scaling of the corresponding observables with L, see general discussion of scaling
in Sec. 1.2.2. To improve the statistics, the scaling with the distance r is also considered. All the
distances |ri − rj | between the involved q points are kept to be of the same order: for q = 4 the points
form a square, and for q = 3 a triangle with approximately equal side lengths. When investigating
a combination O[ψ] of order q that is dominated by a pure-scaling operator P(q1,q2,...), one has (see
Sec. 1.2.2)

L2qO[ψ](r1, r2, . . .) ∼
(
|ri − rj |

L

)∆(q1,q2,...)

, ∆(q1,q2,...) ≡ x(q1,q2,...) − qxν , (3.233)

where xν ≡ x(1) is the scaling dimension of the operator Q that controls the scaling of the density
of states. In class A (and all other Wigner-Dyson classes) the density of states is not critical, i.e.,
x(1) = 0. For the SQH transition, xC(1) = 1

4 is known exactly from mapping to percolation. The slope
of the log-log plot of L2qO[ψ] versus r/L thus yields the exponent ∆(q1,q2,...).
As discussed in Sec. 3.2, if the theory satisfies local conformal invariance, the generalized MF spec-

trum would obey generalized parabolicity. (The second assumption is the abelian fusion that has been
shown explicitly.) For the IQH and SQH transitions, the generalized parabolicity would imply the
following form of the dimensions x(q1,q2,...) of scaling operators:

IQH: xA,para(q1,q2,...) = b
[
q1(1− q1) + q2(3− q2) + q3(5− q3) + . . .

]
, (3.234)

SQH: xC,para(q1,q2,...) = 1
8
[
q1(3− q1) + q2(7− q2) + q3(11− q3) + . . .

]
. (3.235)

For the SQH transition, the exact values of the exponents xC(1) = xC(2) = 1
4 imply that, if the generalized

parabolicity (3.235) holds, the prefactor should be exactly 1/8. For the IQH transition, none of the
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3 Generalized multifractality in Spin Quantum Hall systems

exponents is rigorously known analytically, which leaves a freedom in the prefactor b. It was conjectured
in a recent paper [50] that the IQH critical point is described by a certain model of WZNW type,
which would give strict generalized parabolicity with b = 1

4 . As already pointed out in Sec. 1.5.3,
high-precision numerical studies reveal small but clear deviations from parabolicity of the standard
MF spectrum x(q), both for the IQH [52, 53] and the SQH [58, 59] transitions. For the IQH transition,
if one looks for the best parabolic approximation to the spectrum x(q), one finds b in the range 0.26 –
0.27, depending on the range of q where the fit is performed.

3.6.3.3 Numerical results

In Fig. 3.1numerical results for the scaling of L2q|Ψλ|2 with r/L are shown, where Ψλ are Young-
symmetrized eigenstate combinations as defined in Sec. 3.6.2. For class C, the spin projection is fixed,
ψ ≡ ψ↑, for all combinations considered here. In both the class A and the class C, these combinations
map to the operators PAλ [Q] of the sigma-model.

In the case of IQH transition (class A), PAλ [Q] are pure-scaling operators. The corresponding results
for L2q|Ψλ|2 are shown in the left panels of Fig. 3.1 for the operators with q = 2 (top), q = 3 (middle),
and q = 4 (bottom). The numerical results provide an excellent confirmation of the prediction that
L2q|Ψλ|2 exhibit scaling corresponding to the representation λ: one can observe nice fans representing
distinct scaling exponents. The fitted slopes are shown by full lines; the corresponding values of
numerically determined exponents ∆A,num

λ are collected in Table 3.1. For those IQH exponents that
have been found numerically previously, the results are in full agreement with previous data. In
particular, the value ∆A,num

(2) ≈ −0.54 is in excellent agreement with previous values [51–53], which
are in the range between −0.54 and −0.55 with error bars within ±0.01. (In Refs. [52] and [53],
the values of ∆A,num

(q) /q(1 − q) were shown only up to q = 1.5 and q = 1.75, respectively, so that a
small extrapolation to q = 2 is needed.) For λ = (1, 1) one finds ∆A,num

(1,1) ≈ 0.57, which is slightly
below the value ∆A,num

(1,1) ≈ 0.62± 0.05 of Ref. [158] but agrees within the error bars given there. The
exponents corresponding to λ = (2, 1) and (2,2) represent a very useful test for the numerics, since they
are exactly zero by virtue of the Weyl symmetry. Thus, their obtained numerical values provide an
estimate for numerical errors associated with finite-size effects and finite statistics. For λ = (2, 1) one
gets ∆A,num

(2,1) ≈ 0.01, indicating an excellent accuracy of the numerics, ±0.01, for q ≤ 3. For λ = (2, 2)
one gets a somewhat larger deviation from the exact value, ∆A,num

(2,2) ≈ 0.04, which is not surprising,
since errors increase with increasing q. One can see, however, that the numerics remains very good
also for q = 4.
When compared to the conjecture of Ref. [50] (exact generalized parabolicity with b = 1/4), the

results for the IQH transition are fully consistent with those of Refs. [52, 53]: the exponents deviate
from the spectrum proposed in Ref. [50] by ∼ 10%. At the same time, the numerical values of the
exponents are rather close to those that would follow from generalized parabolicity with b ≈ 0.27.
Deviations from parabolicity were observed in Refs. [52, 53] where the MF spectrum ∆(q) was studied
with a high accuracy for fractional q in the range from q = −0.5 to q = 1.75. This is favorable for
detecting relatively small deviations, since the numerical accuracy is especially high in this range of
q. In principle, this analysis can be extended also to generalized MF exponents with continuously
changing q. Since the main focus in this paper is on generalized multifractality at SQH transition,
further studies of the IQH transition are left to later work.
In the right panels of Fig. 3.1 the results of numerical simulations for a network model of class

C are shown. In the top panel, the scaling of eigenfunction combinations corresponding to class-C

124



3.6 Wavefunction combinations with one spin component
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Figure 3.1: Figure taken from Ref. [105]. Numerical determination of generalized parabolicity
at IQH (top) and SQH (bottom) transitions, for q = 2 (left), q = 3 (middle), and
q = 4 (right) eigenstate observables. Data result from simulations on class-A (top)
and class-C (bottom) network models, with averaging over 105 realizations of disor-
der. Top panels show Young-symmetrized eigenstate combinations L2q|Ψλ|2, which
correspond to pure-scaling operators PAλ [Q] of class A, collapsed as functions of r/L.
Full lines are fits to the data; the corresponding exponents ∆num

λ are given in Ta-
ble 3.1. Dashed lines correspond to the generalized parabolic spectrum (3.234) with
b = 1/4, as would follow from the WZNW model proposed in Ref. [50]; the corre-
sponding values are given in Table 3.1 as ∆para, b=1/4

λ . For each λ, data points for one
fixed value of r of order unity are highlighted as bold dots, in order to visualize the
L-dependence at a fixed r. Bottom left panel shows the class-C pure-scaling observ-
ables (3.226) with q = 2. The bottom middle and right panels display the scaling of
Young-symmetrized combinations L2q|Ψλ|2 (which correspond to PAλ [Q]) with q = 3
and 4 in a class-C network model. They allow to access the class-C exponents for the
representations (3), (2,1), (4), (3,1), and (2,2). The extracted exponents ∆num

λ (full
lines) are collected in Table 3.2. The dashed lines in the bottom panels correspond
to generalized parabolicity (3.235); the corresponding exponents ∆para

λ are also listed
in Table 3.2. A strong violation of the generalized parabolicity at the SQH transition
is evident.
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eigenoperators, H + F ∼ PC(2) and H − 2F ∼ PC(1,1), is shown, see Eq. (3.226) and the first line of
Eq. (3.231). For the subleading operator PC(1,1), one can observe stronger fluctuations and deviations
from scaling at large L. As explained above, they are related to the fact that the corresponding
eigenstate combination H − 2F is sign-indefinite, and, as a result, the averaging becomes insufficient
for large L. Since these difficulties become more severe with increasing q, for q = 3 (middle panel)
and q = 4 (bottom panel) the alternative approach outlined in Sec. 3.6.2 is used. Specifically, the r/L
dependence of strictly positive Young-symmetrized combinations L2q|Ψλ|2 are plotted. According to
Eq. (3.232), this allows one to access the exponents corresponding to representations (3) and (2,1) for
q = 3 as well (4), (3,1), and (2,2) for q = 4, see the discussion below Eq. (3.232).
The data shown in Fig. 3.1 fully confirm the analytical predictions. The combinations |Ψ(3)|2 and
|Ψ(2,1)|2 for q = 3, as well as |Ψ(4)|2, |Ψ(3,1)|2, and |Ψ(2,2)|2 for q = 4 indeed show the leading scaling.
At the same time, the combinations |Ψ(1,1,1)|2, |Ψ(2,1,1)|2 and |Ψ(1,1,1,1)|2 exhibit the subleading scaling,
yielding the exponents ∆C

(2,1), ∆C
(3,1), and ∆C

(2,2), respectively.
The values of the class-C exponents are shown in Table 3.2. Recall that the eigenfunction exponents

∆C
λ are related to the field-theory exponents xCλ via ∆C

λ = xCλ − qxC(1), with x
C
(1) = 1/4 for the SQH

transition. One can see that the numerical data very well respect all analytically known exact values
and relations (from the mapping to percolation and from Weyl symmetry). These include xC(2) = 1/4,
xC(3) = 0, and xC(1,1) = xC(2,1). Some deviation between the numerically found xC(1,1) and x

C
(2,1) is due to a

somewhat larger error in xC(1,1) related to strong fluctuations of the H − 2F combination, as explained
above. In Sec. 3.7 an alternative (and more accurate) numerical calculation of xC(1,1) will be presented,
which perfectly fulfils the identity xC(1,1) = xC(2,1).

The central observation from the obtained values of the exponents is a very strong violation of
generalized parabolicity by the subleading exponents [representations (1,1), (2,1), (3,1), and (2,2)].
This will be fully confirmed and reinforced in Sec. 3.7 where these and further exponents will be
obtained by a complementary approach. The deviations of numerical values ∆num

λ from the values ∆para
λ

that would follow from generalized parabolicity (also shown in the table) are very big—of the order
of ∆para

λ . These deviations are more than an order of magnitude larger than numerical uncertainties
(that can be estimated from the accuracy with which analytically known exponents andWeyl-symmetry
relations are reproduced). This strong violation of generalized parabolicity in class C represents one of
central results of this paper. As was explained in Sec. 3.2.2.3, it has a very fundamental implication:
a violation of local conformal invariance at the SQH transition.

3.7 Modulus square wavefunction combinations

In Sec. 3.6, two approaches to the numerical determination of the exponents characterizing the gener-
alized multifractality in class C were developed. First, exact pure-scaling operators (obtained earlier
by RG) were translated to eigenstate expressions. The difficulty with direct application of this ap-
proach is that the corresponding subleading eigenstate combinations are sign-indefinite and fluctuate
very strongly. It thus used it directly only for the (1,1) operator that has the form H − 2F directly,
see upper right panel of Fig. 3.1. Even in this case of the simplest subleading observable, fluctuations
are very strong and require very extensive numerical efforts (in Sec. 3.8 LP 30LCC are accessible and
the H − 2F cancellation works out beautifully). In view of this, it is intuitive to use a complemen-
tary approach for determining other exponents based on studying strictly-positive Young-symmetrized
combinations corresponding to pure-scaling operators of class A. However, this way does not allow
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rep. λ ∆num
λ ∆para, b=1/4

λ

q = 2 (2) −0.54 −1
2

(1,1) 0.57 1
2

q = 3 (3) −1.66 -3
2

(2,1) 0.01 0
(1,1,1) 1.61 3

2

q = 4 (4) −3.12 -3
(3,1) −1.10 -1
(2,2) 0.04 0
(2,1,1) 1.10 1
(1,1,1,1) 3.12 3

Table 3.1: Table taken from Ref. [105]. Scaling exponents of generalized multifractality at
the IQH transition (class A) for eigenstate observables from representations λ =
(q1, q2, . . .) with q ≡ q1 + q2 + . . . = 2, 3, and 4. The exponents ∆num

λ are determined
numerically as shown in the left column of Fig. 3.1. For comparison, the exponents
∆para, b=1/4
λ are presented, corresponding to the generalized parabolicity (3.234) with

b = 1/4, as would result from the WZNW theory conjectured in Ref. [50]. The values
∆(2,1) = ∆(2,2) = 0 highlighted by boldface are exact (enforced by Weyl symmetry;
independent of presence or absence of generalized parabolicity).
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rep. λ ∆num
λ ∆num,|ψ|

λ ∆para
λ

q = 2 (2) −0.25 −0.25 −1
4

(1,1) 0.79 0.74 1
2

q = 3 (3) −0.75 −0.75 −3
4

(2,1) 0.50 0.49 1
4

(1,1,1) — 1.17 3
2

q = 4 (4) −1.5 −1.5 -3
2

(3,1) −0.01 −0.02 -1
4

(2,2) 0.91 0.86 1
2

(2,1,1) — — 5
4

(1,1,1,1) — — 3

Table 3.2: Table taken from Ref. [105]. Scaling exponents of generalized multifractality at the
SQH transition (class C) for eigenstate observables with q ≡ |λ| ≤ 4. The expo-
nents ∆λ shown in the table are related to the field-theoretical exponents xλ via
∆λ = xλ− qx(1) with x(1) = 1/4. The exponents ∆num

λ are determined numerically by
using eigenstate combinations with a single spin projection, see right panels of Fig. 3.1.
The exponents ∆num,|ψ|

λ are obtained by a complementary numerical approach using
observables involving the total density |ψ| (spin up and spin down), Fig. 3.4. The sym-
bol “—” means that the exponent was not determined by the corresponding approach.
The agreement between both sets of numerical exponents is very good. Some deviation
between two numerical values of the (1,1) exponent is attributed mainly to the error
in the value ∆num

(1,1) because of strong fluctuations of the corresponding sign-indefinite
combination H−2F . The Weyl symmetry implies exact relations ∆(2,1) = ∆(1,1)−1/4
and ∆(2,1,1) = ∆(1,1,1)−1/4; the first of them is nicely fulfilled by the numerically found
exponents. The last column displays the exponents ∆para

λ corresponding to the general-
ized parabolic spectrum, Eq. (3.235). The values ∆(2) = −1/4 and ∆(3) = −3/4 shown
in boldface are exact and thus independent of the status of generalized parabolicity.
Strong deviations from the generalized parabolicity are clearly seen in all subleading
exponents that have been determined numerically.
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one to access exponents that are on the more RG-irrelevant side of the spectrum, including (1,1). In
this section, a third approach is developed that, on one hand, deals with strictly positive observables
and, on the other hand, allows one to determine numerically the (1,1) exponent and various other
subleading exponents not accessible by the class-A-to-class-C approach of Sec. 3.6. The central idea of
the approach developed in this section is to exploit observables built out of |ψ| =

√
|ψ↑|2 + |ψ↓|2 and

thus involving both spin projections at each of the relevant spatial points ri. Below a physical motiva-
tion of this approach is given and justified by establishing a connection with sigma-model pure-scaling
operators obtained by the Iwasawa decomposition, and demonstrate numerically its efficiency. For
those exponents that are determined numerically by two approaches (i.e., both here and in Sec. 3.6),
one finds a very good agreement.

3.7.1 Physical motivation

In class C, the wave function ψ = (ψ↑, ψ↓) is an intrinsically two-component object: there is the
combined spin and particle-hole space. In Sec. 3.6, only one spin component (say, ψ↑) was used to
construct pure-scaling observables. Here I will use the total density

|ψ| ≡
√
|ψ↑|2 + |ψ↓|2, (3.236)

where both components at the same spatial point enter simultaneously. [Everywhere below in Sec. 3.7
the notation |ψ| has the meaning defined by Eq. (3.236).] To demonstrate why this is useful, first
consider in detail observables that are of fourth order with respect to wave functions (which corresponds
to q = 2 in this classification). There are two distinct representations (2) and (1, 1), and one can
construct operators in each of them as linear combinations of Hartree (H) and Fock (F ) terms (3.225).
In class A the pure-scaling observables are (here ψ abbreviates the two wave functions involved)

CA(2)[ψ] = H[ψ] + F [ψ] , CA(1,1)[ψ] = H[ψ]− F [ψ] , (3.237)

whereas in class C the pure-scaling combinations involving only ψ↑ are

CC(2)[ψ↑] = H[ψ↑] + F [ψ↑] , CC(1,1)[ψ↑] = H[ψ↑]− 2F [ψ↑] . (3.238)

The only difference here is in the coefficient 2 in the subleading operator: H − 2F in class C instead
of H − F in class A. This seemingly small difference, is, however, connected in a profound way with
properties of critical eigenstates.
Introduce the ratio R characterizing the local similarity of the two eigenstates involved:

R = ψ1(r2)ψ2(r1)
ψ1(r1)ψ2(r2) . (3.239)

Note that the U(1) freedom in the definition of the eigenfunctions does not affect R. It is easy to see
that the ratio of the Fock and Hartree terms is expressed through R as follows:

F [ψ]
H[ψ] = R+R∗

1 +RR∗
. (3.240)

Clearly, the ratio F/H satisfies −1 ≤ F/H ≤ 1 and reaches its maximum value unity only for R = 1.
Thus, the class-A subleading observable H − F satisfies H − F ≥ 0 and is equal zero only for R = 1.
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Further, the average value 〈H−F 〉 is suppressed by a power of L in comparison with 〈H+F 〉. It follows
that the ratio F/H should be nearly unity, and thus R should be parametrically close to unity, in any
disorder realization in class A. This is very well seen in Fig. 3.2, which shows how the distribution of
R at the IQH transition point evolves with increasing L. The distribution tends, in the limit L→∞,
to a delta-function at R = 1.
The situation in class C is very different. Here 〈H[ψ↑]〉V = 2〈F [ψ↑]〉V in the limit L → ∞. Since

the value 1/2 is located in the middle of allowed values of F/H, the ratio 〈F 〉/〈H〉 = 1/2 does not by
itself tell anything about the values of F/H in individual realizations of disorder. As shown in Fig.
3.3, the distribution of the ratio R built out of ψ↑ remains broad (with width of order unity) in the
large-L limit. Consequently, the distribution of F/H is broad as well. This is exactly the property
that was already emphasized several times: while H[ψ↑]−2F [ψ↑] is parametrically small after disorder
averaging, it is of the same order as H[ψ↑] + F [ψ↑] in a typical disorder realization.
One thus faces the following observation: while two adjacent-in-energy critical eigenstates are nearly

identical locally in class A (R ≈ 1), this does not hold for class C. At the same time, it is natural
to expect that some form of a strong local similarity of eigenstates is a general property of Anderson
transitions. A qualitative difference between classes A and C is the existence of the spin degree of
freedom in class C. These considerations suggest to look at local correlations between total densities
(3.236) of two eigenstates. The corresponding ratio S (which is real and positive) is defined as:

S = |ψ1(r2)| |ψ2(r1)|
|ψ1(r1)| |ψ2(r2)| , (3.241)

with |ψ| being defined by Eq. (3.236). The distribution of S at the SQH critical point is shown in the
bottom panel of Fig. 3.3. Remarkably, one can see the same behavior as for the distribution of R in class
A: evolution, in the large-L limit, towards the delta-distribution at S = 1. Thus, total densities |ψ1| and
|ψ2| are indeed strongly correlated locally. Broad fluctuations of the ratio R (characterizing one spin
component) are therefore related to relative rotations in the spin space between two eigenfunctions.
Since S in class C behaves in the same way as R in class A, it is natural to build Hartree and Fock

combinations from total densities. In full analogy with Eq. (3.240),

F [|ψ|]
H[|ψ|] = 2S

1 + S2 . (3.242)

In the large-L limit, one has S → 1, and the differenceH[|ψ|]−F [|ψ|] yields the subleading combination
(1,1). This was exactly the goal: to determine the combination that is expected to scale as (1,1) and
is strictly positive in any realization of disorder.
Below it is demonstrated numerically that this approach indeed works very well, can be extended to

other subleading combinations, and is supported by an analytical derivation connecting |ψ| observables
with the sigma-model operators.

3.7.2 Young-symmetrized combinations of |ψ|: Relation to the sigma model

As motivated above, the squared Young-symmetrized combinations are considered. They read
∣∣∣∣Ψλ

[
|ψ|
]∣∣∣∣2

analogous to (3.230) but constructed on absolute values |ψ| of eigenstates that involve both spin pro-
jections, Eq. (3.236). For the lowest subleading operator (1,1), this combination is∣∣∣∣Ψ(1,1)

[
|ψ|
]∣∣∣∣2 =

(
|ψa(r1)| |ψb(r2)| − |ψb(r1)| |ψa(r2)|

)2
. (3.243)
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Figure 3.2: Figure taken from Ref. [105]. Distributions of the real part ReR (left) and the
imaginary part ImR (right) of the ratio R, Eq. (3.239), characterizing the “local
similarity” of two eigenstates at the IQH transition (class A). Different colors corre-
spond to different system sizes, varying from from L = 96 (blue) to L = 1024 (red).
The peak at R = 1 becomes sharper with increasing L, implying that R → 1 at
L → ∞ with probability unity. This visualizes the suppression of the pure-scaling
subleading combination H −F with respect to H +F for any realization of disorder.

In order to rigorously prove analytically that this combination yields the (1,1) scaling, one should
map it onto a sigma-model composite operator. While this is in principle possible, the mapping is
technically cumbersome in view of the square involved in the definition of |ψ|. One can thus restrict
to showing how this derivation works in a closely related but technically simpler case.
Consider the Young-symmetrized expression built on |ψ| and corresponding to the Young diagram

(3,1):

∣∣∣∣Ψ(3,1)
[
|ψ|
]∣∣∣∣2 =

(
|ψa(r1)|2|ψb(r2)|2 − |ψb(r1)|2|ψa(r2)|2

)2

=
(
|ψa(r1)|2

)2 (
|ψb(r2)|2

)2
+
(
|ψb(r1)|2

)2 (
|ψa(r2)|2

)2

− 2|ψa(r1)|2|ψb(r1)|2|ψa(r2)|2|ψb(r2)|2. (3.244)

Note that it can be written as∣∣∣∣Ψ(3,1)
[
|ψ|
]∣∣∣∣2 =

∣∣∣∣Ψ(1,1)
[
|ψ|
]∣∣∣∣2 ∣∣∣∣Ψ(2)

[
|ψ|
]∣∣∣∣2

=
(
|ψa(r1)| |ψb(r2)| − |ψb(r1)| |ψa(r2)|

)2 (
|ψa(r1)| |ψb(r2)|+ |ψb(r1)| |ψa(r2)|

)2
,

(3.245)

i.e., it can be intuitively viewed as a result of fusion of (3.243) with
∣∣∣∣Ψ(2)

[
|ψ|
]∣∣∣∣2 that has the leading

scaling corresponding to representation (2). By construction, the combination (3.244) is manifestly
positive and free of square roots. One can thus translate it to the sigma-model language by using the
rules derived above.
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Figure 3.3: Figure taken from Ref. [105]. Top: Distributions of the real part ReR (left) and the
imaginary part ImR (right) of the ratio R, Eq. (3.239), at the SQH transition (class
C). The ratio R is built in this case out of eigenfunctions components with fixed spin
projection (all spins up). Different colors correspond to different system sizes, varying
from from L = 96 (blue) to L = 1024 (red). It is seen that the distribution remains
broad (with width of order unity) at L→∞. This illustrates that, while H − 2F is
a subleading combination in average, it is typically of the same order as the leading
combination H +F . Bottom: Distribution of the ratio S, Eq. (3.241), characterizing
local similarity of total densities (spin up and down) of two eigenstates. The peak at
S = 1 becomes sharper with increasing L, in close similarity to the behavior of the
distribution of R in class A, Fig. 3.2. This implies that the combinationH[|ψ|]−F [|ψ|]
does not contain the leading operator [Young diagram (2)] and scales according to
the subleading one [Young diagram (1,1)], see top left panel of Fig. 3.4.
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First, the translation to vector field variables S is performed by using Eq. (3.210):〈∣∣∣∣Ψ(3,1)
[
|ψ|
]∣∣∣∣2
〉
V

∼
〈〈
C(3,1)[S]

〉
S0

〉
V
, where

C(3,1)[S] =
(
|Sa|2(r1)

)2 (
|Sb|2(r2)

)2
+
(
|Sb|2(r1)

)2 (
|Sa|2(r2)

)2
− 2|Sa|2(r1)|Sb|2(r1)|Sb|2(r2)|Sa|2(r2).

(3.246)

Here |S|2 ≡ |S↑|2 + |S↓|2. One can further translate this to the sigma-model language as outlined in
Sec. 3.6.1.3. Discarding contractions of S variables at different points, one finds:

〈C(3,1)[S]〉S[φ,φ∗,Q] = 2〈
(
|Sa|2

)2
〉S[φ,φ∗,Q]〈

(
|Sb|2

)2
〉S[φ,φ∗,Q] − 2〈|Sa|2|Sb|2〉S[φ,φ∗,Q]〈|Sa|2|Sb|2〉S[φ,φ∗,Q].

(3.247)

Using Eqs. (3.213)–(3.219), one can translate the building block for generic combinations containing
|ψ|2i at distinct sites ri:

〈|Sa|2|Sb|2〉S[φ,φ∗,Q] =
∑
σσ′

(
〈|Saσ|2〉〈|Sbσ′ |2〉+ 〈S∗aσSbσ′〉〈S∗bσ′Saσ〉+ 〈S∗aσS∗bσ′〉〈Sbσ′Saσ〉

)
= 4Q00

aaQ00
bb + 2Q00

abQ00
ba + 2Q01

abQ10
ba . (3.248)

This is valid also for equal replica indices, a = b, in which case the last term vanishes. Substituting
Eq. (3.248) into Eq. (3.247), one obtains

〈C(3,1)[S]〉S[φ,φ∗,Q] = 72
(
Q00
aaQ00

bb

)2
− 8

(
2Q00

aaQ00
bb +Q00

abQ00
ba +Q01

abQ10
ba

)2

= 8
(
5Q00

aaQ00
bb +Q00

abQ00
ba +Q01

abQ10
ba

) (
Q00
aaQ00

bb −Q00
abQ00

ba −Q01
abQ10

ba

)
. (3.249)

This contains the operator

PC(1,1) = Q00
aaQ00

bb −Q00
abQ00

ba −Q01
abQ10

ba (3.250)

as a factor. It follows from the construction based on the Iwasawa decomposition in Sec. 3.3 that PC(1,1)
in this form is exactly the (1,1) composite operator that satisfies Abelian fusion. Indeed, according to
Eq. (3.96), a complete family of eigenoperators satisfying Abelian fusion is generated by Pfaffians of
the matrices ((

T (Q̃Λ)
)AA

Σ2

)
m

=

 Q01 Q00

−
(
Q00

)T
Q10


m

. (3.251)

Here the subscript m indicates a projection to first m replicas (out of their total number of n). On
the left-hand side, T is the conjugation defined by Eq. (3.72), which is applied to Q̃ matrix satisfying
Eq. (3.118). Since the matrix is restricted to the advanced-advanced block and the first m replicas, its
size is 2m× 2m. The right-hand side is obtained by computing the action of T explicitly and choosing
appropriate phases αai in Eqs.(3.213)–(3.219), where Qij is introduced. The Pfaffian of the 2m× 2m
matrix (3.251) is a scaling operator in the representation (1, . . . , 1)m. For m = 2 one thus finds that

Pf
((
T (Q̃Λ)

)AA
Σ2

)
2

= −Q00
aaQ00

bb +Q00
abQ00

ba +Q01
abQ10

ba (3.252)
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is a pure scaling operator in representation (1, 1) that satisfies Abelian fusion. This is exactly what
was stated below Eq. (3.250).
The other factor in Eq. (3.249) is a linear combination of operators belonging to the representations

(2) and (1, 1). In view of the Abelian rules, fusion of the (1,1) operator, Eq. (3.250), and the dominant

contribution (2) from the other factor yields (3,1). Therefore, the leading behavior of
∣∣∣∣Ψ(3,1)

[
|ψ|
]∣∣∣∣2 is

indeed governed by an operator from the representation (3, 1).

3.7.3 Numerical results

In Fig. 3.4 the results of the numerical study of the r/L dependence of
∣∣∣∣Ψλ

[
|ψ|
]∣∣∣∣2 are presented, where

Ψλ

[
|ψ|
]
are Young-symmetrized combinations of |ψ|, on the class-C network model. For q = 2 and

q = 3, one obtains the scaling of all the corresponding class-C operators: (2) and (1,1) for q = 2 as
well as (3), (2,1), and (1,1,1) for q = 3. For q = 4 one can only get the scaling of (4), (3,1) and (2,2) in
this way. At the same time, one cannot get access to (2,1,1) and (1,1,1,1) scaling, as the corresponding∣∣∣∣Ψλ

[
|ψ|
]∣∣∣∣2 numerically shows the admixture of the more relevant contribution (2,2). An interesting

question is how to improve the construction to get access to all generalized-multifractality exponents
via strictly positive observables; I do not have an answer to this question at the present stage.
The exponents ∆num, |ψ|

λ obtained in this way are presented in Table 3.2 and are in a very good
agreement with exponents ∆num

λ obtained from single-spin observables, Fig. 3.1. For λ = (1, 1), the
accuracy of ∆num, |ψ|

(1,1) is somewhat higher than that of ∆num
(1,1) since fluctuations are not so strong because

I deal here with a strictly positive observable. The analytically known exponents ∆(2) and ∆(3) are
perfectly reproduced. Further, the Weyl-symmetry relation ∆(2,1) = ∆(1,1) − 1/4 is also excellently
fulfilled.
In the bottom right panel of Fig. 3.4, the numerical data for Ψ(q/2,q/2)[|ψ|] obtained out of two

eigenstates as (Ψ(1,1)[|ψ|])q/2 = (H[|ψ|] − F [|ψ|])q/2 is shown. Since Ψ(1,1)[|ψ|] is a strictly positive
observable corresponding to the representation (1,1), one expects that (Ψ(1,1)[|ψ|])q/2 should exhibit
the scaling of (q/2, q/2). All numerical tests perfectly confirm this. First, the value of the exponent
∆(2,2) obtained in this way is in excellent agreement with ∆num, |ψ|

(2,2) = 0.86 found by using four eigen-
states. Second, the Weyl symmetry requires that x(q/2,q/2) is invariant with respect to the symmetry
transformation q → 10−q. While I was able to perform the numerics controllably up to q = 5 only (for
larger q a still larger number of disorder realizations is needed), it is sufficient to see that the behavior
of xnum, |ψ|

(q/2,q/2) is fully consistent with the required maximum at q = 5. In fact, xnum, |ψ|
(q/2,q/2) turns out to

be approximated rather well by a parabola x̃para
(q/2,q/2) = b̃q(10 − q)/2 (which clearly satisfies the Weyl

symmetry) with b̃ = 2/13 = 0.154. For comparison, in the same panel also the conventional (leading)
multifractal spectrum x

num, |ψ|
(q) obtained from the scaling of (H[|ψ|] + F [|ψ|])q/2 is shown. The Weyl

symmetry for this spectrum is q → 3− q and is again perfectly fulfilled. In the figure one can further
see the parabolic approximation xpara

(q) = bq(3− q). While it appears to describe the data rather well,
the parabolicity was found to be only approximate in Refs. [58, 59]. Deviations from parabolicity in
x(q) are seen more clearly if one plots the ratio x(q)/q(3 − q); it is not necessary to study them here
since they were explored recently in great detail and with very high accuracy in Ref. [59].
As was already emphasized above, the numerical results for generalized-miltifractality scaling expo-

nents collected in Table 3.2 demonstrate a strong vioaltion of generalized parabolicity. The exponents
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Figure 3.4: Figure taken from Ref. [105]. Generalized multifractality at the SQH transition
(class C) studied via Young-symmetrized eigenstate combinations built out of the
total density |ψ|(r), Eq. (3.236), for observables of order q = 2 (top left), q = 3 (top
right), and q = 4 (bottom left). Full lines are fits to the data; the corresponding
exponents ∆num, |ψ|

λ are given in Table 3.2 and are fully consistent with exponents
∆num
λ obtained from single-spin observables, Fig. 3.1. The dashed lines correspond

to generalized parabolicity (3.235); the corresponding exponents ∆para
λ are also listed

in Table 3.2. A strong violation of the generalized parabolicity at the SQH transition
is evident. Bottom right: Scaling dimensions x(q) and x(q/2,q/2) extracted from eigen-
state combinations |H+F |q/2 and |H−F |q/2, respectively, formed with |ψ|. The Weyl
symmetry dictates that x(q) is symmetric around q = 3/2, and x(q/2,q/2) is symmetric
around q = 5. Solid lines are parabolas xpara

(q) = bq(3−q) and x̃para
(q/2,q/2) = b̃q(10−q)/2

with b = 1/8 and b̃ = 2/13 = 0.154. They serve as guides to the eye, illustrating that
the numerical data fulfil the Weyl symmetry very well. Note that the parabolicity
of x(q) [and, most likely, of x(q/2,q/2) as well] is only approximate. Deviations from
parabolicity in x(q) at relatively small q were explored systematically in Refs. [58,
59]; they are seen much better if one plots x(q)/q(3 − q). The fact that b̃ [chosen
to optimize the fit to x(q/2,q/2)] is substantially different from b is a manifestation of
strong violation of generalized parabolicity.
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corresponding to representations (1, 1), (2, 1) , (3, 1) and (2, 2) strongly deviate from their “parabolic
values”. Another manifestation of this fact is a substantial difference of the prefactors b and b̃ in the
parabolic fits in the bottom right panel of Fig. 3.4. Indeed, the generalized parabolicity would imply
not only that these parabolic fits are exact but also that b̃ = b.

The agreement between different numerical approaches and the fulfilment of all exact analytical re-
sults (values of exponents and Weyl-symmetry relations) should make one confident that the numerical
results for the exponents are accurate. Thus, the strong violation of generalized parabolicity at the
SQH transition observed in the numerics is indeed the genuine property of the SQH critical point and
not a finite-size effect. In combinations with the results Sec. 3.2, this means that the local conformal
invariance must be violated in the field theory describing the SQH critical point. Indeed, the Abelian
fusion was implicitly demonstrated In Sec. 3.3. Thus, as was emphasized in Sec. 3.2.2.3, violation of
generalized parabolicity of the generalized-multifractality spectrum of a 2D system implies violation
of local conformal invariance.

3.8 Percolation mapping

Certain observables in the SU(2) version of the Chalker-Coddington network model at criticality can
be mapped to probabilities of the classical percolation problem. The SU(2) average turns the quantum
mechanical coherent sum over all amplitudes into a sum over self-avoiding walks (SAW) with uniform
weight. This mapping exists for products of q = 1, 2, 3 Green’s functions. The scaling dimension of
LDOS moments x(1), x(2), x(3) can be computed this way. Products of Green’s functions with finite level
broadening γ also involve products of distinct wave functions that do not behave as pure LDOS powers
but show subleading multifractality. Since the mapping to percolation is exact (up to approximations
used in the evaluations of probabilities), one should therefore have access to x(1,1), x(2,1), x(1,1,1) as well.
In this section, I search for these subleading generalized multifractal exponents, which serves as an
independent verification of the results in this chapter so far.
For this purpose, first the notation for the correlation functions and classical percolation probabili-

ties is introduced in Sec. 3.8.1. Then in Sec. 3.8.2 the mapping to percolation in the SAW picture from
Ref. [58] is applied. Subsequently, the analytical properties of the classical percolation probabilities
are reviewed and the consequences for the correlation functions are discussed in Sec. 3.8.3. Numerical
simulations of classical percolation are performed (Sec. 3.8.4) in order to verify these analytical cal-
culations. The key result of this section is the relation of the multifractal scaling dimension in SQH
systems and scaling dimensions of hull operators in classical percolation.

3.8.1 Notation

For the purposes here, a description of the network model in terms of the “Floquet” operator U (time
evolution over one discrete timestep) is appropriate. Due to the unitarity of U , the eigenvalues lie on
the unit circle in the complex plane.

Uψi = eiεiψi (3.253)

Anomalous particle hole symmetry gives the quasienergy εi a partner −εi. The wave function ψiα(e)
lives on the links e and carries a spin index α.

One can define the “Floquet” Green’s function as

G(e′, e; z) = 〈e′|(1− zU)−1|e〉. (3.254)
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Since the evolution operator U is unitary, its poles lie in the unit circle. For z < 1 the von Neumann
series for this expression converges.
The defining class C symmetry acts like[

G(e, e′; z−1)
]†

= 1−G(e′, e; z∗), (3.255)[
G(e, e′; z)

]†
= −(iσ2)

[
G(e, e′; z)

]T
(iσ2) (3.256)

on the Green’s function. Here the Pauli matrix σ2 acts in spin space. Since it connects the expressions
for z−1 and z∗, one can use this to extend the series to all |z| 6= 1.

Here the correlation functions of 2q wave functions ψi, ψj are studied for q = 1, 2, 3. As an example
the case q = 2 is discussed in more detail in the following. It is convenient to introduce Hartree D(1,1)
and Fock D(2) term with the following spin structure:

D(2)(e′, e; ε1, ε2) =
〈∑
ijαβ

ψ∗iα(e)ψjα(e)ψiβ(e′)ψ∗jβ(e′)δ(ε1 − εi)δ(ε2 − εj)
〉
, (3.257)

D(1,1)(e′, e; ε1, ε2) =
〈∑
ijαβ

|ψiα(e)|2|ψjβ|2δ(ε1 − εi)δ(ε2 − εj)
〉
. (3.258)

on links e, e′ in the network model. Spin indices are denoted by α, β. These expressions are analogous
to Hartree and Fock terms introduced in Sec. 3.6.

One can express D(2),D(1,1) in terms of the Green’s function (3.254). The results contain traces over
the spin space:

D(2)(e′, e; ε1, ε2) = (2π)−2
〈

Tr
[
GR(e, e′; eiε1)−GA(e′, e; eiε1)

] [
GR(e, e′; eiε2)−GA(e′, e; eiε2)

]〉
,

(3.259)

D(1,1)(e′, e; ε1, ε2) = (2π)−2
〈

Tr
[
GR(e, e; eiε1)−GA(e, e; eiε1)

]
Tr
[
GR(e′, e′; eiε2)−GA(e′, e′; eiε2)

]〉
.

(3.260)

The energy arguments eiε1 = z = e−γ , eiε2 = w = e−δ are continued analytically to the imaginary axis:

D(2)(e′, e; γ, δ) = (2π)−2
〈

Tr
[
G(e, e′; z)−G(e′, e; z−1)

] [
G(e, e′;w)−G(e′, e;w−1)

]〉
, (3.261)

D(1,1)(e′, e; γ, δ) = (2π)−2
〈

Tr
[
G(e, e; z)−G(e, e; z−1)

]
Tr
[
G(e′, e′;w)−G(e′, e′;w−1)

]〉
. (3.262)

The calculation is drastically simplified by choosing γ = δ (for generic γ 6= δ the percolation mapping
from Ref. [58] no longer applies):

(2π)2D(2)(e′, e; γ, γ) =
〈∑
ijαβ

ψ∗iα(e)ψjα(e)ψiβ(e′)ψ∗jβ(e′)Im 1
−εi + iγ

Im 1
−εj + iγ

〉
, (3.263)

(2π)2D(1,1)(e′, e; γ, γ) =
〈∑
ijαβ

|ψiα(e)|2|ψjβ(e′)|2Im 1
−εi + iγ

Im 1
−εj + iγ

〉
. (3.264)

One can define Dλ(e, . . . ; γ) for other Young diagrams λ in an analogous fashion.
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3.8.1.1 Scaling of D(2), D(1,1)

The energy denominator is symmetric under the exchange of i, j. There are two types of contributions
one from i = j and one from i 6= j that contains the subleading scaling:

(2π)2D(2)(e′, e; γ, γ) =
〈∑
i,αβ

|ψiα(e)|2|ψiβ(e′)|2
(

Im 1
−εi + iγ

)2

+
∑

i 6=j,αβ
ψ∗iα(e)ψjα(e)ψiβ(e′)ψ∗jβ(e′)Im 1

−εi + iγ
Im 1
−εj + iγ

〉
,

(2π)2D(1,1)(e′, e; γ, γ) =
〈∑
i,αβ

|ψiα(e)|2|ψiβ(e′)|2
(

Im 1
−εi + iγ

)2

+
∑

i 6=j,αβ
|ψiα(e)|2|ψjβ(e′)|2Im 1

−εi + iγ
Im 1
−εj + iγ

〉
. (3.265)

The terms with only one eigenstate summation will give pure leading x(2) scaling, there is only one
wavefunction in the terms summed over. The terms with two eigenstate summations additionally
contain a subleading x(1,1) contribution.

However, the terms with one eigenstate summation are suppressed in the thermodynamic limit
L→∞:
〈∑
i,αβ

|ψiα(e)|2|ψiβ(e′)|2
(

Im 1
−εi + iγ

)2〉
' L2

∫
dεν(ε)

(
Im 1
−ε+ iγ

)2 〈∑
αβ

|ψiα(e)|2|ψiβ(e′)|2
〉∣∣∣∣∣∣∣

εi∼ε

= aL−2
∫
dεν(ε)

(
Im 1
−ε+ iγ

)2

(r/ξγ)∆(2)

' 7
6aL

−2ρ(γ)γ−1(r/ξγ)∆(2) , (3.266)

here ν(ε) = ν0ε
−1/7 is the density of states, ξγ = γ−

4
7 the correlation length, and

〈
|ψiα(e)|2|ψiβ(e′)|2

〉∣∣∣∣
εi∼ε

=

aL−4(r/ξε)∆(2) holds with a constant a.
The scaling of the correlation functions in the thermodynamic limit L → ∞ is therefore given by

∆(2) and subleading ∆(1,1) power laws. The ratios in front of the coefficients of these power laws can
be inferred from RG analysis of the class-C NLSM in Sec. 3.5, this is going to be discussed in more
detail below Eq. (3.268). All these consideration lead to the result

D(2)(e′, e; γ, γ) ' cρ(γ)2L4
〈∑
αβ

ψ∗iα(e)ψjα(e)ψiβ(e′)ψ∗jβ(e′)
〉∣∣∣∣∣∣∣

εi,εj∼γ

' c′ρ(γ)2
(
(r/ξγ)∆(2) − (r/ξγ)∆(1,1)

)
,

D(1,1)(e′, e; γ, γ) ' cρ(γ)2L4
〈∑
αβ

|ψiα(e)|2|ψjβ(e′)|2
〉∣∣∣∣∣∣∣

εi,εj∼γ

' c′ρ(γ)2
(
2(r/ξγ)∆(2) + (r/ξγ)∆(1,1)

)
,

(3.267)
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where c and c′ are constants. In the following it is convenient to switch to the variable z = e−γ < 1
for γ > 0 to characterize the uniform broadening.

From Eq. (3.154) in Sec. 3.5, the combinations of Dλ which reveal subleading scaling are known:PC(1,1)
PC(2)

 ∼ (1 −2
1 1

)
︸ ︷︷ ︸
≡PC2

(
D(1,1)(e, e′; z)
D(2)(e, e′; z)

)
. (3.268)

At small r/ξγ 2D(2)(e′, e; γ, γ) ≈ D(1,1)(e′, e; γ, γ) holds, subtracting D(1,1)−2D(2) reveals the subleading
∆(1,1) scaling.

3.8.2 Mapping to percolation

In Ref. [77], it is pointed out that the SU(2) average reduces the coherent quantum mechanical
sum over amplitudes appearing in traces over two or three Greens functions to a classical sum over
non-intersecting paths. The average over the quantum mechanical expectation value is reduced to a
probability of classical self-avoiding walks.
For q = 1, 2, 3 Green’s functions the mapping obeys the following rules:

• The quantum mechanical average over traces of products of G(ri, r′i; γ)− 1 is replaced by a sum
over paths from ri to r′i. In the end, there only is a non-vanishing contribution, when each link
is traversed exactly 0 or 2 times by the paths.

• Paths of length 2N are weighted with a factor z2N .

• Each spin trace gives a factor −1. The negative sign originates from the SU(2) average, since
〈Uk〉SU(2) = ck1 with c2 = −1

2 < 0 and all other ck = 0 for k > 0.

The sum over all possible self-avoiding paths traversing these links can then be interpreted as classical
percolation partition sum. The full quantum mechanical problem is then re-expressed in terms of the
classical percolation probabilities introduced in Tab. 3.3. These are probabilities to find loops (=self
avoiding closed paths) of given lengths N,N ′, . . . running through certain links e → e′, . . . in a given
order. Sometimes it is useful to specify the path length Nee′ between two links traversed. The following
identities between the probabilities introduced in Tab. 3.3 are satisfied:∑

N

P (e, e′;N) =
∑
N

P1(e, e′;N) = P (e, e′),

P (e, e′;N) +
∑
N ′

P (e;N |e′;N ′) = P (e;N),∑
N

P (e;N) = 1. (3.269)

The first one relates the probability P (e, e′) to find e, e′ in the same loop to the sum of P, P1 over all
loop lengths N . The middle one states the probability P (e;N) to find a link e in a loop of length N
is equal to the sum of finding e and a fixed e′ in the same loop and finding e′ in an arbitrary distinct
loop of length N ′. The last one is normalization of the probability.
In the following, the mapping is applied to SU(2) symmetrized expressions with q = 1, 2, 3 Green’s

functions or 2q = 2, 4, 6 wavefunctions respectively. These will be labeled by Young diagrams λ with
|λ| = q.
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3 Generalized multifractality in Spin Quantum Hall systems

Table 3.3: Probabilities involved in the mapping to classical percolation.
probability description
P (e;N) loop of length N running through link e
P (e, e′;N) loop of length N running through links e→ e′

P1(e, e′;N) loop running through links e→ e′, where Nee′ = N
P (e;N |e′;N ′) loops of lengths N,N ′ running through links e, e′
P (e, e′, e′′;N) loop of length N running through links e→ e′ → e′′

P1(e, e′, e′′;N) loop running through links e→ e′ → e′′, where Nee′′ = N
P (e, e′;N |e′′;N ′) loop of length N running through links e→ e′

and loop of length N ′ running through link e′′
P1(e, e′;N |e′′;N ′) loop of length N running through links e→ e′,

where Nee′ = N and loop of length N ′ running through link e′′
P (e;N |e′;N ′|e′′;N ′) loops of lengths N,N ′, N ′′ running through links e, e′, e′′

3.8.2.1 One Green’s function: q = 1

In this order, there is only one SU(2) symmetrized expression: TrG(e, e; γ) corresponding to the LDOS
〈ν(γ, e)〉.

(1) For the average LDOS this means:

(2π)D(1)(e; z) = ρ(γ)
〈∑

α

|ψα(e)|2
〉

=
〈

Tr(G(e, e; z))− Tr(G(e, e; z−1))
〉
. (3.270)

The expectation values of the Green’s functions can be turned into sums over percolation probabilities:〈
Tr(G(e, e; z))

〉
= 2−

∞∑
N=1

P (e;N)z2N ,

〈
Tr(G(e, e; z−1))

〉
=
∞∑
N=1

P (e;N)z2N . (3.271)

The only contribution comes from the loops containing link e traversed exactly twice. The second line
is obtained with Eq. (3.256) and assuming 0 < z < 1 real. The spin trace over the identity gives the
constant term in the first line.
Putting everything together and using the normalization of the probability, this yields the percolation

expression for the LDOS

(2π)D(1)(e; z) = 2
∞∑
N=1

P (e;N)(1− z2N ). (3.272)

This expression does not depend on the link e and reveals the well-known x1 = 1
4 scaling when one

evaluates the percolation sum on the RHS.

3.8.2.2 Two Green’s functions: q = 2

In the case of two Green’s functions or four wavefunctions respectively, the two SU(2) invariant com-
binations are labeled with λ = (2) and λ = (1, 1). These correspond to Fock and Hartree term.
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3.8 Percolation mapping

(2) First there are the Fock-like terms:

〈
Tr(G(e, e′; z)G(e′, e; z))

〉
= −2

∞∑
N=1

P (e, e′;N)z2N ,

〈
Tr(G(e, e′; z)G(e′, e; z−1))

〉
= −2

∞∑
N=1

P1(e, e′;N)z2N . (3.273)

Since e, e′ are distinct, there is no contribution from the unit operator as above. There are two paths
contributing: one goes e → e′ → e → e′ picking up zNee′ with the first G and e′ → e with the second
G picking up zN−Nee′ or vice versa. The other cases can be obtained with Eq. (3.255).

Ref. [77] uses an invariance argument that requires explicit averages over the link SU(2) groups:

〈
Tr(G(e, e′; z)G(e, e′; z))

〉
=
∫

SU(2)
dµ(Ue)dµ(Ue′)

〈
Tr(U †eG(e, e′; z)Ue′U †eG(e, e′; z)Ue′)

〉
. (3.274)

One then needs the following integral for the average over a link SU(2) appearing in above RHS:∫
SU(2)

dµ(U)UαβUγδ = c1δαβδγδ + c2δαδδγβ. (3.275)

By contracting different indices in this expression, the identities∫
SU(2)

dµ(U)TrUTrU = 1,
∫

SU(2)
dµ(U)TrU2 = −1,

∫
SU(2)

dµ(U)TrUUT = 0 (3.276)

follow and one can infer c1 = 1
2 and c2 = −1

2 in Eq. (3.275).
Finally, one finds the desired identity

〈
Tr(G(e, e′; z)G(e, e′; z))

〉
= 1

2
(
Tr(G(e, e′; z)G(e, e′; z))− Tr(G(e, e′; z))Tr(G(e, e′; z))

)
(3.277)

from the SU(2) integrals.
One has to express G(e′, e, z−1) in terms of G(e, e′, z) using Eqs. (3.255), (3.256):

G(e′, e, z−1) = 1(e′, e)−
[
G(e′, e, z∗)

]†
= 1(e′, e) + ε

[
G(e, e′, z∗)

]T
ε (3.278)

This implies (one can drop 1 since e, e′ are distinct)〈
Tr
[
G(e, e′, z)G(e′, e, z−1)

]〉
=
〈

Tr
[
G(e, e′, z)ε[G(e, e′, z)]T ε

]〉
= −

〈
Tr(G(e, e′; z)G(e, e′; z))− Tr(G(e, e′; z))Tr(G(e, e′; z))

〉
= −2

〈
Tr(G(e, e′; z)G(e, e′; z))

〉
.

(3.279)

In the second line it has been used that:

(iσ2)ij(iσ2)kl = δijδkl − δilδkj . (3.280)
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Putting all contribution for this correlation function together, one obtains

(2π)2D(2)(e, e′; z) = −4
∞∑
N=1

P (e, e′;N)z2N + 2
∞∑
N=1

(P1(e, e′;N) + P1(e′, e;N))z2N

= 4
∞∑
N=1

[
P (e, e′;N)− P1(e, e′;N)

]
(1− z2N ). (3.281)

The last line is obtained using
∑
N P (e, e′;N) = P (e, e′) =

∑
N P1(e, e′;N). Note that P1 appears

symmetrized over its argument, this turns out to be the case also for higher correlation functions, where
it is convenient to use the convention that all probabilities are symmetrized over the link arguments
when they appear as P̄ in the equations. For instance 2P̄1(e′, e;N) = P1(e, e′;N) + P1(e′, e;N) here.

(1,1) In the Hartree-like case, due to the traces around each G, the unit operator can contribute
giving rise to cross terms. The result reads:

〈
Tr(G(e, e; z))Tr(G(e′, e′; z))

〉
= 4− 2

∞∑
N=1

[
P (e;N) + P (e′;N)

]
z2N

+
∞∑

N,N ′=1
P−(e, e′;N,N ′)z2(N+N ′) +

∑
N

P (e, e′;N)z2N ,

〈
Tr(G(e, e; z))Tr(G(e′, e′; z−1))

〉
= 2

∞∑
N=1

P (e′;N)z2N −
∞∑

N,N ′=1
P−(e, e′;N,N ′)z2(N+N ′),

−
∑
N

P (e, e′;N)z2N

〈
Tr(G(e, e; z−1))Tr(G(e′, e′; z−1))

〉
=

∞∑
N,N ′=1

P (e;N |e′;N ′)z2(N+N ′) +
∑
N

P (e, e′;N)z2N . (3.282)

One can use the identity

P (e;N) = P (e, e′;N) +
∑
N ′

P (e;N |e′, N ′) (3.283)

to rewrite:

(2π)2D(1,1)(e, e′; z) = 4
∞∑
N=1

P (e, e′;N)z2N + 4
∞∑

N,N ′=1
P (e;N |e′;N ′)z2Nz2N ′

− 4
∞∑
N=1

[
P (e;N) + P (e′;N)

]
z2N + 4

= 4
∞∑
N=1

[
P (e, e′;N) + P−(e, e′;N)

]
(1− z2N ), (3.284)

where P−(e, e′;N) =
∑
M

(
P (e;M |e′;N) + P (e;N |e′;M)− P (e;N −M |e′;M)

)
. (3.285)

The auxiliary function P−(e, e′;N) introduced here is a linear combination of percolation probabilities,
it can assume negative values.
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3.8.2.3 Three Green’s functions: q = 3

There are three SU(2) invariant correlation function in this order that can be labeled with Young
diagrams λ = (3), (2, 1) and (1, 1, 1):

D(3)(e, e′, e′′; z) = (2π)−3
〈

Tr
(
(G(e, e′; z)−G(e, e′; z−1)) · (G(e′, e′′; z)−G(e′, e′′; z−1))

· (G(e′′, e; z)−G(e′′, e; z−1))
)〉

,

D(2,1)(e, e′, e′′; z) = (2π)−3
〈

Tr
(
(G(e, e′; z)−G(e, e′; z−1)) · (G(e′, e; z)−G(e′, e; z−1))

)
· Tr

(
(G(e′′, e′′; z)−G(e′′, e′′; z−1))

)〉
,

D(1,1,1)(e, e′, e′′; z) = (2π)−3
〈

Tr
(
(G(e, e; z)−G(e, e; z−1))

)
· Tr

(
(G(e′, e′; z)−G(e′, e′; z−1))

)
· Tr

(
(G(e′′, e′′; z)−G(e′′, e′′; z−1))

)〉
. (3.286)

(3) For the trace enclosing all three Green’s functions G one has to deal with:〈
Tr(G(e, e′; z)G(e′, e′′; z)G(e′′, e; z))

〉
= −

∞∑
N=1

[
3P (e, e′, e′′;N) + P (e′′, e′, e;N)

]
z2N ,

〈
Tr(G(e, e′; z−1)G(e′, e′′; z−1)G(e′′, e; z−1))

〉
=
∞∑
N=1

[
P (e, e′, e′′;N) + 3P (e′′, e′, e;N)

]
z2N ,

〈
Tr(G(e, e′; z)G(e′, e′′; z)G(e′′, e; z−1))

〉
= −2

∞∑
N=1

P1(e, e′, e′′;N)z2N ,

〈
Tr(G(e, e′; z)G(e′, e′′; z−1)G(e′′, e; z))

〉
= −2

∞∑
N=1

P1(e′′, e, e′;N)z2N ,

〈
Tr(G(e, e′; z−1)G(e′, e′′; z)G(e′′, e; z))

〉
= −2

∞∑
N=1

P1(e′, e′′, e;N)z2N ,

〈
Tr(G(e, e′; z−1)G(e′, e′′; z−1)G(e′′, e; z))

〉
= 2

∞∑
N=1

P1(e′′, e′, e;N)z2N ,

〈
Tr(G(e, e′; z−1)G(e′, e′′; z)G(e′′, e; z−1))

〉
= 2

∞∑
N=1

P1(e′, e, e′′;N)z2N ,

〈
Tr(G(e, e′; z)G(e′, e′′; z−1)G(e′′, e; z−1))

〉
= 2

∞∑
N=1

P1(e, e′′, e′;N)z2N . (3.287)

For the first term with only zs there are four possible paths: in a loop connecting e, e′, e′′ go from e to
e′ with one additional loop, then fo from e′ to e′′ and from e′′ to e. There are two other contributions
like this where the full loop starts at e′, e′′. In the fourth contribution, a loop going from e, e′′, e′

is involved. The second term traverses only the part of the loop connecting e, e′, e′′ twice, which is
why the probability P1(e, e′, e′′;N) for e, e′, e′′ in a loop of arbitrary length appears with N being
the distance from e to e′′. The prefactor 2 is obtained as in the q = 2 case. The definitions of the
probabilities appearing in this expression can be found in Tab. 3.3.
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3 Generalized multifractality in Spin Quantum Hall systems

This gives

(2π)3D(3)(e, e′, e′′; z) =
∞∑
N=1

[
−4P (e, e′, e′′;N)− 4P (e, e′′, e′;N)

+ 6P1(e, e′, e′′;N) + 6P1(e, e′′, e′;N)
]
z2N (3.288)

for the correlation function. Note that both P and P1 appear fully symmetrized in their arguments in
this expression. It is convenient to use the convention that all probabilities appearing as P̄ should be
understood as symmetrized over the link arguments.

For z = 1, the expression simplifies to:

(2π)3D(3)(e, e′, e′′; z) = 4P̄ (e, e′, e′′), (3.289)

since
∑
P̄ (e, e′, e′′;N) = P̄ (e, e′, e′′) and

∑
P̄1(e, e′, e′′;N) = P̄ (e, e′, e′′). This implies the interesting

decomposition

(2π)3D(3)(e, e′, e′′; z) = (2π)3D(3)(e, e′, e′′; z = 1) +
∞∑
N=1

[
8P̄ (e, e′, e′′;N)− 12P̄1(e, e′, e′′;N)

]
(1− z2N ).

(3.290)

The first term on the RHS does not scale with energy γ, but has nontrivial r−
3
4 scaling. This is related

to the multifractal scaling dimensions x(3) = 0 by Weyl symmetry and ∆(3) = −3
4 . As indicated in

above remark, the P̄ , P̄1 are defined as P, P1 fully symmetrized over their arguments e, e′, e′′.
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(2,1) In the second case, there are two spin traces:

〈
Tr(G(e, e′; z)G(e′, e; z))Tr(G(e′′, e′′; z))

〉
=
∞∑
N=1

[
P (e, e′, e′′;N) + P (e, e′′, e′;N)

]
z2N

+ 2
∞∑
N=1

P (e, e′;N |e′′;N ′′)z2Nz2N ′′ − 4
∑
N

P (e, e′;N)z2N ,

〈
Tr(G(e, e′; z−1)G(e′, e; z−1))Tr(G(e′′, e′′; z))

〉
=
∞∑
N=1

[
P (e, e′, e′′;N) + P (e, e′′, e′;N)

]
z2N

+ 2
∞∑
N=1

P (e, e′;N |e′′;N ′′)z2Nz2N ′′ − 4
∑
N

P (e, e′;N)z2N ,

〈
Tr(G(e, e′; z)G(e′, e; z))Tr(G(e′′, e′′; z−1))

〉
= −

∞∑
N=1

[
P (e, e′, e′′;N) + P (e, e′′, e′;N)

]
z2N

− 2
∞∑
N=1

P (e, e′;N |e′′;N ′′)z2Nz2N ′′ ,

〈
Tr(G(e, e′; z−1)G(e′, e; z−1))Tr(G(e′′, e′′; z−1))

〉
= −

∞∑
N=1

[
P (e, e′, e′′;N) + P (e, e′′, e′;N)

]
z2N

− 2
∞∑
N=1

P (e, e′;N |e′′;N ′′)z2Nz2N ′′ ,

〈
Tr(G(e, e′; z)G(e′, e; z−1))Tr(G(e′′, e′′; z))

〉
= 2

∞∑
N=1

P1(e, e′;N |e′′;N ′′)z2Nz2N ′′ − 4
∑
N

P1(e, e′;N)z2N ,

〈
Tr(G(e, e′; z−1)G(e′, e; z))Tr(G(e′′, e′′; z))

〉
= 2

∞∑
N=1

P1(e, e′;N |e′′;N ′′)z2Nz2N ′′ − 4
∑
N

P1(e, e′;N)z2N ,

〈
Tr(G(e, e′; z)G(e′, e; z−1))Tr(G(e′′, e′′; z−1))

〉
= −2

∞∑
N=1

P1(e, e′;N |e′′;N ′′)z2Nz2N ′′ ,

〈
Tr(G(e, e′; z−1)G(e′, e; z))Tr(G(e′′, e′′; z−1))

〉
= −2

∞∑
N=1

P1(e, e′;N |e′′;N ′′)z2Nz2N ′′ . (3.291)

Here P (e, e′;N |e′′;N ′′) is the probability to find e, e′ in a loop of length N and e′′ in a distinct loop of
length N ′′. The function P1(e, e′;N |e′′;N ′′) is similar, the length Nee′ = N of the path from e to e′ is
fixed in this case. The prefactor 2 is obtained as in the q = 2 case. The definitions of the probabilities
appearing in this expression can be found in Tab. 3.3.
This gives

(2π)3D(2,1)(e, e′, e′′; z) = 4
∞∑
N=1

[
P (e, e′, e′′;N) + P (e, e′′, e′;N)

]
z2N

+ 8
∞∑

N,N ′′=1

[
P (e, e′;N |e′′;N ′′)− P1(e, e′;N |e′′;N ′′)

]
z2Nz2N ′′ − 8

∞∑
N=1

[
P (e, e′;N)− P1(e, e′;N)

]
z2N .

(3.292)
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For z = 1, the expression simplifies to:

(2π)3D(2,1)(e, e′, e′′; z = 1) = 8P̄ (e, e′, e′′), (3.293)

since
∑
N

(
P (. . . ;N)− P1(. . . ;N)

)
vanishes. One can again split the z = 1 part from the correlation

function

(2π)3D(2,1)(e, e′, e′′; z) = (2π)3D(2,1)(e, e′, e′′; z = 1)− 4
∞∑
N=1

[
P (e, e′, e′′;N) + P (e, e′′, e′;N)

]
(1− z2N )

− 8
∞∑
N=1

∑
M

(
P (e, e′;N −M |e′′;M)− P1(e, e′;N −M |e′′;M)

) (1− z2N )

+ 8
∞∑
N=1

[
P (e, e′;N)− P1(e, e′;N)

]
(1− z2N ). (3.294)

(1,1,1) In the last case, each Green’s function is enclosed by a trace:〈
Tr(G(e, e; z))Tr(G(e′, e′; z))Tr(G(e′′, e′′; z))

〉
= 23 − 22∑

N

[
P (e;N) + P (e′;N) + P (e′′;N)

]
z2N

+ 2
∑
NN ′

[
P (e;N |e′;N ′) + P (e;N |e′′;N ′) + P (e′;N |e′′;N ′)

]
z2Nz2N ′

+ 2
∑
N

[
P (e, e′;N) + P (e′, e′′;N) + P (e, e′′;N)

]
z2N −

∑
NN ′N ′′

P (e;N |e′;N ′|e′′;N ′′)z2Nz2N ′z2N ′′

−
∑
NN ′

[
P (e, e′;N |e′′;N ′) + P (e, e′′;N |e′;N ′) + P (e′, e′′;N |e;N ′)

]
z2Nz2N ′ ,〈

Tr(G(e, e; z))Tr(G(e′, e′; z))Tr(G(e′′, e′′; z−1))
〉

= 22∑
N

[
P (e′′;N)

]
z2N

− 2
∑
NN ′

[
P (e;N |e′′;N ′) + P (e′;N |e′′;N ′)

]
z2Nz2N ′

− 2
∑
N

[
P (e, e′;N) + P (e, e′′;N) + P (e, e′′;N)

]
z2N +

∑
NN ′N ′′

P (e;N |e′;N ′|e′′;N ′′)z2Nz2N ′z2N ′′

+
∑
NN ′

[
P (e, e′;N |e′′;N ′) + P (e, e′′;N |e′;N ′) + P (e′, e′′;N |e;N ′)

]
z2Nz2N ′ ,〈

Tr(G(e, e; z))Tr(G(e′, e′; z−1))Tr(G(e′′, e′′; z−1))
〉

= 2
∑
NN ′

P (e′;N |e′′;N ′)z2Nz2N ′

+ 2
∑
N

P (e′, e′′;N)z2N −
∑

NN ′N ′′

P (e;N |e′;N ′|e′′;N ′′)z2Nz2N ′z2N ′′

−
∑
NN ′

[
P (e, e′;N |e′′;N ′) + P (e, e′′;N |e′;N ′) + P (e′, e′′;N |e;N ′)

]
z2Nz2N ′ ,〈

Tr(G(e, e; z−1))Tr(G(e′, e′; z−1))Tr(G(e′′, e′′; z−1))
〉

=
∑

NN ′N ′′

P (e;N |e′;N ′|e′′;N ′′)z2Nz2N ′z2N ′′

+
∑
NN ′

[
P (e, e′;N |e′′;N ′) + P (e, e′′;N |e′;N ′) + P (e′, e′′;N |e;N ′)

]
z2Nz2N ′ . (3.295)

As indicated in Tab. 3.3, here P (e;N) stands for the probability of a loop of length N running
through the link e. With P (e;N |e′;N ′) the probability of e, e′ being in distinct loops of length N,N ′ is
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meant, whereas P (e, e′;N) is the probability of e, e′ being in the same loop of length N . Additionally,
P (e;N |e′;N ′|e′′;N ′′) is needed where e, e′, e′′ are in distinct loops. Finally for P (e, e′;N |e′′;N ′) the
links e, e′ are in a loop of length N and e′′ is in a distinct loop of length N ′. This means

(2π)3D(1,1,1)(e, e′, e′′; z) = 8− 8
∑
N

[
P (e;N) + P (e′;N) + P (e′′;N)

]
z2N

+ 8
∑
NN ′

[
P (e;N |e′;N ′) + P (e;N |e′′;N ′) + P (e′;N |e′′;N ′)

]
z2Nz2N ′

− 8
∑

NN ′N ′′

P (e;N |e′;N ′|e′′;N ′′)z2Nz2N ′z2N ′′ + 8
∑
N

[
P (e, e′;N) + P (e′, e′′;N) + P (e, e′′;N)

]
z2N

− 8
∑
NN ′

[
P−(e, e′;N |e′′;N ′) + P−(e, e′′;N |e′;N ′) + P−(e′, e′′;N |e;N ′)

]
z2Nz2N ′ . (3.296)

With the identity∑
N ′N ′′

P (e;N |e′;N ′|e′′;N ′′) +
∑
N ′

[
P (e, e′;N |e′′;N ′) + P (e, e′′;N |e′;N ′) + P (e′, e′′;N |e;N ′)

]
+ P (e, e′, e′′;N) + P (e, e′′, e′;N) = P (e;N) (3.297)

stating that a loop running through e of length N can either run through two other points e′, e′′, one
of them, or just through e, one can find:

(2π)3D(1,1,1)(e, e′, e′′; 1) = 16P̄ (e, e′, e′′). (3.298)

Once more, one can split off the z = 1 contribution in the correlation function to obtain:

(2π)3D(1,1,1)(e, e′, e′′; z) = (2π)3D(1,1,1)(e, e′, e′′; 1) + 8
∑
N

[
P (e;N) + P (e′;N) + P (e′′;N)

]
(1− z2N )

− 8
∑
N

∑
M

(
P (e;N −M |e′;M) + P (e′;N −M |e′′;M) + P (e;N −M |e′′;M)

) (1− z2N )

− 8
∑
N

[
P (e, e′;N) + P (e′, e′′;N) + P (e, e′′;N)

]
(1− z2N ) + 8

∑
K+M+L=N

P−(e;L|e′,M |e′′;K)(1− z2N )

+ 8
∑
N

∑
M

(
P (e, e′;N −M |e′′;M) + P (e, e′′;N −M |e′;M) + P (e′, e′′;N −M |e;M)

) (1− z2N ).

(3.299)

3.8.3 Percolation Analytics

In the following lines the connection of the multifractal exponents x(1), x(1,1) to the scaling dimensions
xhull
n of hull operators [214] in classical percolation theory is motivated. For this purpose, the scaling

behavior of the probabilities P from Tab. 3.3 needs to be derived.
In Ref.[214] the scaling dimensions of the n-hull operators are introduced as:

xhull
n = 4n2 − 1

12 , xhull
1 = 1

4 , xhull
2 = 5

4 , xhull
3 = 35

12 . (3.300)
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These are related to the probability Pn ∼ (p − pc)νx
hull
n for n infinite clusters (their boundaries form

the loops of interest here) to touch at a point [214] in a system detuned from the percolation threshold
pc. The Pk can be related to the more complicated conditional probabilities from Tab. 3.3 of interest
here. The argument goes as follows: replacing the correlation length introduced due to finite distance
from the percolation threshold ξp ∼ (p− pc)−ν by the length scale ξN ∼ N

4
7 related to the loop length

N , one finds P (N)
n ∼ (ξN )−xhull

n for large (compared to (ξN )) clusters to touch in a system at criticality.
In particular, this means P (N)

1 ∼ N−
1
7 and P (N)

2 ∼ N−
5
7 .

The probability P
(N)
1 to find a large cluster near a point X includes all long loops P1(N) ∼∫

N dN P (e;N). Therefore dividing by N relates P1 to the probability P (e;N) ∼ 1
NP

(N)
1 ∼ N−

8
7

for finding a long loop running through a link e. The same argumentation relates P (e, e′;Nee′ ∼
N,Ne′e ∼ N) and P (e;N |e′;N ′ ∼ N) to N−2P

(N)
2 . For higher functions analogous arguments exist.

The probabilities P (e, e′;N) and P1(e, e′;N) can be obtained summing over P (e, e′;Nee′ = N,Ne′e =
N ′) for different (N,N ′) domains. This also includes P (e;N |e′;N ′ � N) with Nr ∼ r

7
4 , where only

one path is part of a large cluster. By above argument, this function is then determined by the one-hull
operator P (e;N |e′;N ′ � N) ∼ N−

8
7 .

These results were derived in continuum field theory, the probability of a loop of length N going
through links e, e′, e′′, . . . nearby a node X with separation r � N

4
7 is closely related to the probability

of a loop of length N passing the node X: P (e, e′, e′′, . . . ;N) ∼ N−
8
7 . To find the appropriate r scaling,

one can eliminate N by integration and repeat above argument. The probabilities P (r)
n ∼ (r)−xhull

n

generalize as well to touching clusters large compared to r. This means that
∫
Nr

dNP (e, e′, e′′, . . . ;N) ∼
(P (r)

1 )n. As a consequence one finds P (e, e′, e′′, . . . ;N) ∼ r(1−n)xhull
1 N−

8
7 for N � r

7
4 .

As another example consider the function P (e;N |e′;N ′ ∼ N) ∼ N−
19
7 in this regime of large

N � Nr. The integral
∫
Nr

dNdN ′P (e;N |e′;N ′ ∼ N) is dominated by N ∼ N ′ and scales like (P (r)
1 )2.

This means that P (e;N |e′;N ′ ∼ N) ∼ rxhull
2 −2xhull

1 N−
19
7 .

For all other functions in Tab. 3.3, the scaling properties in the different parameter regimes can be
found by applying similar arguments.

3.8.3.1 The case q = 1

In Sec. 3.8.2, the derivation of the percolation expression for the LDOS

(π)D(1)(e; z) =
∑
N

P (e;N)(1− z2N ) (3.301)

is sketched.
By the argument given above, P (e;N) = P (N) ∼ N−

8
7 at large N � 1. One can use the following

coarse estimate for the percolation sum, since for q = 1 there is only one scaling exponent:∑
N

N−
8
7 r−

1
4 (1− z)2N ∼

∫ ∞
γ−1

dN N−
8
7 (1− z2N )

∼
∫ ∞
γ−1

dN N−
8
7 ∼ γ−

1
7 . (3.302)

Hence it holds

D(1)(e; z) ∼ γ
1
7 ∼ (a/ξγ)xhull

1 , (3.303)
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where ξγ ∼ (1/γ)
4
7 is the correlation length, xhull

1 = 1
4 and a is the lattice constant. From this the

relation x(1) = xhull
1 between the multifractal scaling exponent for the LDOS and the one hull operator

follows.

3.8.3.2 The case q = 2

From the above scaling consideration it follows that D(2),D(1,1) must contain the subleading scaling.
One can start from the percolation expressions obtained above:

(π)2Dλ(e′, e; z) =
∑
N

D(N)
λ (e, e′)(1− z2N ),

D(N)
(2) (e, e′) =

[
P (e′, e;N)− 1

2P1(e, e′;N)− 1
2P1(e′, e;N)

]
,

D(N)
(1,1)(e, e

′) =
[
P (e′, e;N) + P−(e′, e;N)

]
. (3.304)

The symbol P (e, e′;N) denotes the probability to find e, e′ in the same loop of length N . Similarly
P1(e, e′;N) stands for the probability to find e, e′ in the same loop where N is the length from e to e′.
One also needs the probability P (e,N) to find e in a loop of length N and P (e;N |e′;N ′) to find e in
a loop of length N and e′ in a distinct loop of length N ′ (see Tab. 3.3).

On the one hand, P and P1 are the building blocks of the Fock-term D(2). On the other hand by the
argument in the beginning of this section, only xhull

1 and xhull
2 contribute to P and P1. Both of these

arguments indicate that these functions are linear combinations of two pure power laws. Moreover this
holds for P− appearing in the Hartree term D(1,1) as well.
Consequently, the following scaling asymptotics must hold:

P (e, e′;N) ≈ N−
8
7 r−

1
4

(
#1 + #2(rN−

4
7 )y
)
,

P1(e, e′;N) ≈ N−
8
7 r−

1
4

(
#3 + #4(rN−

4
7 )y
)
,

P−(e, e′;N) ≈ N−
8
7 r−

1
4

(
#5 + #6(rN−

4
7 )y
)
. (3.305)

Here the first term comes from the one hull contributions and the second from the two hull operator,
therefore y = xhull

2 − xhull
1 . The constants #i are numerical coefficients and the second term is a small

correction in the scaling limit r
7
4 � N since y > 0.

For the leading contributions, one can even make statements about the relations of coefficients:

P (e, e′;N) =
∞∑

M=0
P (e, e′;Ne,e′ = N −M,Ne′,e = M)

≈
Nr∑
M=0

P (e, e′;Ne,e′ = N,Ne′,e = M) +
Nr∑
M=0

P (e, e′;Ne,e′ = M,Ne′,e = N) ∼ N−
8
7 ,

P1(e, e′;N) =
∞∑

M=0
P (e, e′;Ne,e′ = N,Ne′,e = M) ≈

Nr∑
M=0

P (e, e′;Ne,e′ = N,Ne′,e = M) ∼ N−
8
7 .

(3.306)
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In each sum, only the terms responsible for leading scaling are kept. These originate from the bound-
aries N ′ ∼ 1 or N ∼ 1 of the summation domains:

P (e, e′;Ne,e′ = N,Ne′,e = N ′) ≈ c


r

3
4N−

19
7 , N ∼ N ′ � r

7
4

r−
1
4N−

8
7 , N ′ ∼ r

7
4 , N � r

7
4

r−
1
4 (N ′)−

8
7 , N ∼ r

7
4 , N ′ � r

7
4

. (3.307)

It follows P (e, e′;N) ≈ P1(e, e′;N) + P1(e′, e;N) for large N .
Consequently it holds

P (e, e′;N) ≈ cN−
8
7 r−

1
4

(
1 + #1(rN−

4
7 )
)
,

P1(e, e′;N) ≈ cN−
8
7 r−

1
4

(
1
2 + #2(rN−

4
7 )
)
, (3.308)

here the #i are numerical coefficients distinct from those above in Eq. (3.305). The percolation
numerics in Sec. 3.8.4 shows that for r = 1 these asymptotics describe the actual expressions very well
even for small N ∼ 1.
Similarly to the considerations for P (e, e′;Ne,e′ = N,Ne′,e = N ′), for P (e;N |e′;N ′) the asymptotic

scaling behavior depends on the parameter region:

P (e;N |e′;N ′) ≈ c′


r

3
4N−

19
7 , N ∼ N ′ � r

7
4

r−
1
4N−

8
7 , N ′ ∼ r

7
4 , N � r

7
4

r−
1
4 (N ′)−

8
7 , N ∼ r

7
4 , N ′ � r

7
4

. (3.309)

In the auxiliary function P− from Eq. (3.285) the leading scaling form the boundaries N,N ′ ∼ 1
cancels exactly:

P−(e, e′;N) ≈ c′′r
3
4N−

12
7 . (3.310)

Having obtained asymptotics for all probabilities occurring in Hartree and Fock term, next one has to
think about how to evaluate the sums over loop length N .
With the scaling form (3.308) one finds for sums over N of the power laws occuring in the correlation

functions (3.284), (3.281):

∑
N

N−
8
7 r−

1
4 (rN−

4
7 )x(1− z2N ) ∼

∫ ∞
h r

7
4
dN N−

8
7 r−

1
4 (rN−

4
7 )x(1− z2N )

= 2
1
7 + 4

7xΓ(−1
7 −

4
7x)γ

1
7 + 4

7xr−
1
4 +x +O(γ r

5
4 ) (3.311)

Note that the regulator h cutting off the integral at the lower boundary, where the scaling form does
not hold any more, does not appear in the result at this order. By choosing small γ the errors in this
approximation (conversion of sum to integral, use of asymptotic scaling form) get arbitrarily small.
Hence for x = 0, 1 (or more precisely x < 3

2) this calculation justifies the identification of power law
terms in N in D(N)

λ (e, e′) and power laws in γ in Dλ(e, e′; z).
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One can rewrite this introducing the correlation length ξγ = γ−
4
7 and apply the result directly to

the Fock term:

D(2)(e, e′; z) ∼ ξ
− 1

2
γ

(
c0(r/ξγ)−

1
4 + c1(r/ξγ)

3
4

)
. (3.312)

At this stage, one can already read off ∆(2) = −1
4 and ∆(1,1) = 3

4 . In the Hartree term, this treatment
is not sufficient, since it does not include the double sum of the joined probability P (e,N |e′, N ′) hidden
in the auxiliary function P−(e′, e;N). The summation there can be treated with∑

N

P−(e′, e;N)(1− z2N ) ∼
∫ ∞
γ−1

dN N−
12
7 r

3
4

∼ γ
5
7 r−

5
4 = ξ

− 1
2

γ (r/ξγ)
3
4 . (3.313)

As claimed above, the contribution from P− show subleading ∆(1,1) = 3
4 scaling.

Finally this has the consequence:

D(1,1)(e, e′; z) ∼ ξ
− 1

2
γ

(
2c0(r/ξγ)−

1
4 + c2(r/ξγ)

3
4

)
. (3.314)

An improved estimate of the sums is necessary in order to also confirm the ratio c1 = −c2 expected
from the RG analysis (3.268). The percolation analytics nicely confirm ∆(2) = −1

4 and ∆(1,1) = 3
4 or

x(2) = 1
4 and x(1,1) = 5

4 found in the SQH numerics in Sec. 3.7.3, compare Tab. 3.2.
Corrections to the leading scaling of probabilities in classical percolation are common and have been

studied in Refs. [215–218] for other observables. An astonishing cancellation mechanism must be in
place to let only the pure ∆(2) and ∆(1,1) pure power laws expected from the multifractality picture in
these correlation functions survive.

3.8.3.3 The case q = 3

For the higher order correlation functions, one can proceed with the scaling analysis the same way.
The first thing to note is that the correlators in Eqs. (3.290), (3.294) and (3.299) all admit the
decomposition:

Dλ(e, e′, e′′; z) = Dλ(e, e′, e′′; z = 1) +
∞∑
N=1
D(N)
λ (e, e′, e′′)(1− z2N ). (3.315)

The first term

Dλ(e, e′, e′′; z = 1) = cλ
∑
N

P (e, e′, e′′;N) ∼ r−
3
4γ0 (3.316)

does not scale with energy (corresponding to x(3) = 0) but with r−
3
4 (corresponding to ∆(3) = −3

4).
In order to reproduce the expected subleading multifractal exponent x(2,1) = 5

4 , the coefficients
D(N)
λ (e, e′, e′′) have to show r

1
2N

12
7 scaling. However, the leading scaling of probabilities appearing in

D(N)
λ (e, e′, e′′) is P (e, e′, e′′;N) ∼ r−

1
2N−

8
7 . These terms must cancel out to be consistent with Weyl

symmetry x(2,1) = x(1,1).
In the following, this cancellation in the correlation functions Dλ is shown for λ = (3), (2, 1) and

(1, 1, 1).
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(3) From Eq. (3.290) one can read off the decomposition (3.315) for λ = (3):

D(N)
(3) (e, e′, e′′) = 8P̄ (e, e′, e′′;N)− 12P̄1(e, e′, e′′;N). (3.317)

Here P̄ stands for symmetrization over permutations of all links.
One can use an analogous representation of P and P1 as in the q = 2 case:

P (e, e′, e′′;N) =
∑
MK

P (e, e′, e′′;Nee′ = N −M −K,Ne′e′′ = M,Ne′′e = K),

P1(e, e′, e′′;N) =
∑
MK

P (e, e′, e′′;Nee′ = N −M,Ne′e′′ = M,Ne′′e = K). (3.318)

The dominant contributions arises in the region where one summation variable is ≈ N and the other
two are small ≈ Nr � N . One finds

P (e, e′, e′′;N) ≈
∑

K,M≈Nr
P (e, e′, e′′;Nee′ = N,Ne′e′′ = M,Ne′′e = K)

+
∑

M≈Nr,K≈N−Nr
P (e, e′, e′′;Nee′ = N −M,Ne′e′′ = M,Ne′′e = K)

+
∑

K≈Nr,M≈N−Nr
P (e, e′, e′′;Nee′ = K,Ne′e′′ = M,Ne′′e = N),

P1(e, e′, e′′;N) ≈
∑

M≈Nr,K≈Nr
P (e, e′, e′′;Nee′ = N −M,Ne′e′′ = M,Ne′′e = K)

+
∑

M≈N−Nr,K≈Nr
P (e, e′, e′′;Nee′ = N −M,Ne′e′′ = M,Ne′′e = K). (3.319)

This implies for the ratio of the leading coefficients:

2P (e, e′, e′′;N) ≈ P1(e, e′, e′′;N) + P1(e′′, e, e′;N) + P1(e′, e′′, e;N),
2P (e, e′, e′′;N) ≈ 3P1(e, e′, e′′;N), (3.320)

which causes the leading order r−
1
2N−

8
7 cancellation in D(N)

(3) from Eq. (3.317).

(2,1) From Eq. (3.294) one can read off the decomposition (3.315) for λ = (2, 1):

D(N)
(2,1)(e, e

′, e′′) = −4(P̄ (e, e′, e′′;N) + P̄ (e, e′′, e′;N))

− 8
∑
M

(
P̄ ′(e, e′;N −M |e′′;M)− P̄ ′1(e, e′;N −M |e′′;M)

)
+ 8(P (e, e′;N)− P̄1(e, e′;N)) (3.321)

The symmetrization in this case is more complicated, since this correlation function treats e′′ differently
than e, e′. In certain cases the symmetrization P̄ ′ over e, e′ is needed, in others symmetrization P̄ over
all links can be used as well.
There are the exact identities:

P (e, e′;N) = P (e, e′, e′′;N) + P (e, e′′, e′;N) +
∑
M

P (e, e′;N |e′′;M),

P1(e, e′;N) = P1(e, e′′, e′;N) + P (e, e′, e′′;Nee′ = N) +
∑
M

P1(e, e′;N |e′′;M). (3.322)
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With these, it follows directly that

8(P (e, e′;N)− P1(e, e′;N)) ≈ 4P (e, e′;N)
≈ 4(P (e, e′, e′′;N) + P (e, e′′, e′;N)) + 4

∑
M

P (e, e′;N |e′′;M). (3.323)

As a consequence of this identity, the coefficients of the correlation function then become

D(N)
(2,1)(e, e

′, e′′) ≈ −4
∑
M

(
2P (e, e′;N −M |e′′;M)− 2P1(e, e′;N −M |e′′;M)− P (e, e′;N |e′′;M)

)
≈ −4

∑
M

(
P (e, e′;N |e′′;M) + 2P (e, e′;M |e′′;N)− 2P1(e, e′;N |e′′;M)− 2P1(e, e′;M |e′′;N)

)
.

(3.324)

The leading order term∼ r−
1
2N−

8
7 in this expression cancels, since 2P (e, e′;N |e′′;M) ≈ P1(e, e′;N |e′′;M)

and 2P (e, e′;M |e′′;N) ≈ 2P1(e, e′;M |e′′;N) hold for large N and small M .

(1,1,1) From Eq. (3.294) one can read off the decomposition (3.315) for λ = (2, 1):

D(N)
(1,1,1)(e, e

′, e′′) = 24P̄ (e;N)− 24P̄ (e, e′;N)− 24
∑
M

[
P̄ (e,N −M |e′,M)− P̄ (e, e′;N −M |e′′;M)

]
+ 8

∑
MK

P (e;N −M −K|e′;M |e′′;K) (3.325)

The bar P̄ of a probability indicates symmetrization over all link permutations.
There are the exact identities:∑

N ′N ′′

P (e;N |e′;N ′|e′′;N ′′) + 3
∑
N ′

P̄ (e, e′;N |e′′;N ′) + 2P̄ (e, e′, e′′;N) = P (e;N),∑
N ′′

P (e;N |e′;N ′|e′′;N ′′) + P (e, e′′;N |e′;N ′) + P (e;N |e′, e′′;N ′) = P (e,N |e′, N ′). (3.326)

These put into each other lead to relations of the probabilities appearing in these coefficients:

3P (e;N)− 3P (e, e′;N) = 3
∑
MK

P (e;N |e′;M |e′′;K) + 6
∑
M

P (e, e′;N |e′′;M),

3P (e,N |e′, N ′)− 6P (e, e′′;N |e′;N ′) = 3
∑
N ′′

P (e;N |e′;N ′|e′′;N ′′). (3.327)

Using the exact identities, one finds:

D(N)
(1,1,1)(e, e

′, e′′) = 24
∑
MK

P̄ (e;N |e′;M |e′′;K) + 48
∑
M

P̄ (e, e′;N |e′′;M)− 24
∑
M

P̄ (e, e′;N −M |e′′;M)

− 24
∑
MK

P̄ (e;N −M |e′;M |e′′;K) + 8
∑
MK

P (e;N −M −K|e′;M |e′′;K) (3.328)

It is easy to see that the leading order ∼ r−
1
2N−

8
7 cancels.

The treatment in this section confirms that x(3) = 0 and x(2,1) = xhull
2 = 5

4 . In the multifracality
picture, these exponents can be derived directly from lower orders using Weyl symmetry x(3) = x(0) and
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x(2,1) = x(1,1). It is intriguing to see how this Weyl symmetry emerges from the classical percolation
calculation.
In principle one could try to find x(1,1,1) in this picture as well. However, the cancellations occuring

are far more complicated and other corrections than the pure scaling of the hull operators might have
to be taken into account. In the percolation simulations performed here, z = x(1,1,1) − x(1) is not
accessible due to insufficient averaging and finite size effects. See Tab. 3.4 for a summary.

3.8.4 Percolation Numerics

In this section, numerical simulations supporting the calculations from Sec. 3.8.3 are performed. For
this purpose 10000 random disorder configurations in a classical system of linear size L = 32768 with
periodic boundary conditions are analyzed statistically. A configuration is described by L× L binary
degrees of freedom (black/white). The percolation threshold is pc = 0.5 in 2D, this means black and
white dots are to be distributed uniformly with equal probability. One can think about the degrees of
freedom to sit at the nodes of the network. Black (white) means, the paths running through this node
turn left (right). This is the distinction to the quantum network, where always both paths are taken
weighted with different scattering amplitudes for left and right.
In the classical network, one obtains a set of closed loops for each configuration including all 2 ·L ·L

links. The probabilities from Tab. 3.3 are then obtained by counting the number of loops satisfying the
desired properties and averaging over disorder. These numerically obtained probabilities are compared
to the analytical scaling expectations and the correlation functions Dλ are computed numerically.

3.8.4.1 The case q = 1

There is only the probability P (e;N) in this order

(π)D(1)(e; γ) =
∑
N

P (e;N)︸ ︷︷ ︸
=:D(N)

(1)

(1− z2N ). (3.329)

Interestingly, there are virtually no subleading corrections in the numerics (Fig. 3.5), the pure leading
N−

8
7 behavior accurately describes the numerical data up to N > 12 very well. This agrees with the

hull operator picture, where one does not expect contributions from other than the one-hull operator
with dimension xhull

1 = 1
4 . In other words the LDOS scaling is given by D(1)(e; γ) ∼ γ

1
7 = (ξγ)−xhull

1 .
This implies x(1) = xhull

1 and relates the quantum mechanical multifractal scaling dimension at the
SQH transition with a scaling dimension of a hull operator in classical percolation.

3.8.4.2 The case q = 2

In this order, one has to analyze:

(π)2D(2)(e′, e; γ) =
∑
N

[
P̄1(e′, e;N)− P (e′, e;N)

]
︸ ︷︷ ︸

=:D(N)
(2)

(1− z2N ), (3.330)

(π)2D(1,1)(e′, e; γ) ∼
∑
N

P (e′, e;N) + P−(e′, e;N)︸ ︷︷ ︸
=:D(N)

(1,1)

(1− z2N ), (3.331)
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N
8
7P(e;N)
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Figure 3.5: Scaling of the probability P (e;N) (blue). Apparently, there are no subleading cor-
rections, only the pure leading N−

8
7 behavior. The numerics were performed for

L = 32768 and averaged over C = 10000 · 2L2 configurations (ensemble+system).

Table 3.4: Comparison of numerics in the SU(2) Chalker Coddington network (CCN) model
at SQH critical point from Sec. 3.7 with expectations from generalized parabolicity
hypothesis and the exact exponents from the percolation mapping assuming subleading
scaling. The percolation numerics (see Fig. 3.6) is consistent with the CCN results.
Generalized parabolicity is violated strongly in systems with linear size L ≤ 32768.
SU(2) CCN numerics hull operator percolation numerics gen. parabolicity

x(1) 0.25 xhull
1 = 1

4 0.25 1
4

x(2) 0.25 xhull
1 = 1

4 0.25 1
4

x(3) 0.0 ≡ 0 ≡ 0 0
x(1,1) 1.25 xhull

2 = 5
4 1.25 1

x(2,1) 1.25 xhull
2 = 5

4 1.25 1
x(1,1,1) 1.91 ? ? 9

4

compare Eq. (3.284) and Eq. (3.281).
One claim in the analytics section Sec. 3.8.3 is that the auxiliary function P−(e, e′;N) from Eq.

(3.285) scales like N
12
7 for large N . In Fig. 3.6, data indicating P−(e, e′;N) ∼ N

12
7 is shown. A linear

fit P−(e, e′;N) = cNy− is performed that finds y− ≈ 1.05. Consequently one can conclude that this
numerical result agrees well with the analytic prediction y = xhull

2 − xhull
1 = 1.

From the RG analysis of the class-C NLSM, one would expect that D(1,1) ≈ 2D(2). In Fig. 3.6
the coefficients D(N)

λ in front of (1 − z2N ) are evaluated numerically for D(2),D(1,1) as functions of
loop lengths N . One can clearly observe the cancellation between D(1,1) and 2D(2). The subleading
exponent indeed satisfies y ≈ 0.97 in agreement with x(1,1) ≈ 5

4 or ∆(1,1) ≈ 3
4 from the SU(2) CCN

model numerics.
Further it holds that the numerical results y ≈ 0.97 and y− ≈ 1.05 and the analytical expectation

y = 1 are all mutually consistent up to the numerical accuracy. The obtained relations x(1) = xhull
1 = 1

4
and x(1,1) = xhull

2 = 5
4 of multifractal scaling dimensions and hull operator dimensions in classical

percolation also agree with the CCN numerical simulations performed in Sec. 3.7.3, see Tab. 3.4.
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Figure 3.6: Top panel: The function P−(e, e′;N) defined in Eq. (3.284) for e, e′ nearest neighbors.
This P− is not a probability and can assume negative values due to finite size effects
and insufficient averaging (orange). Left panel: P−(e, e′;N) compared to different
power laws: N−

8
7 , N−

12
7 corresponding to y = 1 and N−

11
7 corresponding to y = 3

4 .
Right panel: P−(e, e′;N)N

12
7 , deviations from this power law are small (compare to

horizontal purple line). Purple dashed line represents ypara = 3
4 expectation from

generalized parabolicity hypothesis, there are strong deviations. A linear fit of P−
yields y− ≈ 1.05 for N < 500. Bottom panel: Coefficients of Hartree D(1,1)(e, e′) term
(orange), Fock term D(2)(e, e′) (red/blue) and Hartree minus two Fock (purple). The
links e, e′ are chosen to be either horizontal or vertical nearest neighbors. Left panel:
comparison to N−

8
7 (orange, blue) N−

12
7 (purple) scaling. Right panel: the terms

are normalized to the expected power law. Deviations for H − 2F from pure N−
12
7

scaling are small. A linear fit of H − 2F yields y ≈ 0.97 for N < 500. The purple
dashed line represents ypara = 3

4 which would hold for generalized parabolicity.
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3.8.4.3 The case q = 3

In Sec. 3.8.3, the reader could observe, that each of the q = 3 correlation functions can be decomposed
as:

(2π)3D(λ)(e, e′, e′′; z) = (2π)3D(λ)(e, e′, e′′; z = 1) +
∞∑
N=1
D(N)

(λ) (e, e′, e′′)(1− z2N ). (3.332)

The z = 1 term is responsible for the leading x(3) = 0 scaling. The coefficients D(N)
(λ) (e, e′, e′′) in the

second term contain the probabilities P1(e, e′, e′′;N), P (e, e′, e′′;N) ∝ N−
8
7 r−

1
2 for r < N

4
7 . Naively

estimating the sum leads to xnaive
(2,1) = 1

4 scaling, which would violate the Weyl symmetry relation
x(2,1) = x(1,1). There must be a cancellation P (e, e′, e′′, N) ≈ 3

2P1(e, e′, e′′, N) at large N , and the next
to leading term must go as N−

12
7 r

1
2 determined by xhull

2 in order for x(2,1) = x(1,1) to hold.
The percolation simulations in Figs. 3.7 nicely confirm this expectation for the N scaling.

(3) Using the symmetrizated notation for the probabilities, one can recast Eq. (3.290) to yield:

(2π)3D(3)(e, e′, e′′; z) = (2π)3D(3)(e, e′, e′′; z = 1) +
∞∑
N=1
D(N)

(3) (e, e′, e′′)(1− z2N ),

D(N)
(3) (e, e′, e′′) = 8P̄ (e, e′, e′′;N)− 12P̄1(e, e′, e′′;N). (3.333)

The large N behavior of D(N)
(3) (e, e′, e′′) is shown in Fig. 3.7. In this regime, D(N)

(3) (e, e′, e′′) is negative.
As expected the probabilities P̄ , P̄1 scale like N

8
7 for large N . Contrarily, D(N)

(3) (e, e′, e′′) behaves like
N

12
7 for large N , which confirms the cancellation mechanism proposed in Eq. (3.320) in Sec. 3.8.3.

(2,1) In Fig. 3.7, the same analysis for D(N)
(2,1)(e, e

′, e′′) is performed. For the correlation function
from Eq. (3.294) one has to be careful, since e′′ is not equivalent to e, e′ in the definition of D(2,1).
Therefore symmetrization has to be restricted to interchanging e, e′. In case where this difference
becomes important the restricted symmetrization is indicated by the symbol P̄ ′. The expression
studied numerically reads:

(2π)3D(2,1)(e, e′, e′′; z) = (2π)3D(2,1)(e, e′, e′′; z = 1) +
∞∑
N=1
D(N)

(2,1)(e, e
′, e′′)(1− z2N ),

D(N)
(2,1)(e, e

′, e′′) = −4(P (e, e′, e′′;N) + P (e, e′′, e′;N))

− 8
∑
M

(
P (e, e′;N −M |e′′;M)− P̄ ′1(e, e′;N −M |e′′;M)

)
+ 8(P (e, e′;N)− P̄1(e, e′;N)). (3.334)

Again D(N)
(2,1)(e, e

′, e′′) is negative for large N . The cancellation mechanism proposed in Eq. (3.324)
in Sec. 3.8.3 is operative here as well, since D(N)

(2,1)(e, e
′, e′′) behaves like N

12
7 for large N . The linear

combinations of probabilities appearing in this expression scale like N
8
7 for large N .
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Figure 3.7: Coefficients of D(N)
λ (e, e′, e′′) term (purple). The links e, e′, e′′ are chosen to be either

horizontal or vertical (next) nearest neighbors. Left hand side: comparison to N−
8
7

(blue, red, orange) N−
12
7 (purple) scaling. Right hand side: the terms are normalized

to the expected power law. Deviations of Dλ from pure N−
12
7 scaling are small. This

is consistent with x(2,1) = x(1,1) by Weyl symmetry. Top panel: Fock like term λ = (3)
from Eq. (3.333) and the probabilities P (e, e′, e′′;N) (blue), P1(e, e′, e′′;N) (red).
Middle panel: Coefficients of mixed D(N)

(21)(e, e
′, e′′) term from Eq. (3.334) (purple) and

the probabilities P (e, e′, e′′, N) (blue), (P−P1)(e, e′, N) (red), (P−−P1,−)(e, e′, e′′, N)
(orange). Bottom panel: Coefficients of Hartree like D(N)

(111)(e, e
′, e′′) term from Eq.

(3.335) (purple) and the probabilities P−(e, e′|N) =
∑
M P−(e;N |e′;M)−P−(e;N −

M |e′;M) (orange), P−(e, e′; e′′|N) =
∑
M P−(e, e′;N |e′′;M)−P−(e, e′;N−M |e′′;M)

(red) and P−(e; e′; e′′|N) =
∑
MK P−(e;N −M −K|e′;M |e′′;K) (blue).
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(1,1,1) Finally, numerical data for D(N)
(1,1,1)(e, e

′, e′′) is shown in Fig. 3.7. Here it is convenient to
introduce auxiliary functions due to the complexity of the expression:

(2π)3D(1,1,1)(e, e′, e′′; z) = (2π)3D(1,1,1)(e, e′, e′′; z = 1) +
∑
N

D(N)
(1,1,1)(e, e

′, e′′)(1− z2N ),

D(N)
(1,1,1)(e, e

′, e′′) = 24P̄ (e;N)− 24
∑
M

P̄ (e;M |e′;N −M)− 24P̄ (e, e′;N)

+ 8
∑
MK

P (e;N −M −K|e′;M |e′′;K) + 24
∑
M

P̄ (e, e′;N −M |e′′;M)

= P−(e, e′, e′′|N) + P−(e, e′; e′′|N) + P−(e; e′; e′′|N), (3.335)

P−(e, e′, e′′|N) = 24
∑
M

[
P̄ (e;M |e′;N)− P̄ (e;N −M |e′;M)

]
,

P−(e, e′; e′′|N) = 24
∑
M

P̄ (e, e′;N −M |e′′;M),

P−(e; e′; e′′|N) = 8
∑
MK

P (e;N −M −K|e′;M |e′′;K). (3.336)

In this formula P̄ indicates symmetrization over all permutations of e, e′, e′′. All of the auxiliary
functions P−(. . . |N) show leading N−

8
7 scaling. One can clearly see the cancellation of these leading

N−
8
7 terms, the coefficientsD(N)

(1,1,1)(e, e
′, e′′) scale likeN−

12
7 . This confirms the analytical considerations

in and around Eq. (3.328).
From Eq. (3.189) one can extract the scaling behavior of DλD(1,1,1)(e, e′, e′′; z)

D(2,1)(e, e′, e′′; z)
D(3)(e, e′, e′′; z)

 ∼
 4 36 20
−4 −6 10
4 −9 5


︸ ︷︷ ︸

∼(PC3 )−1


PC(1,1,1)
PC(2,1)
PC(3)

 . (3.337)

The last column is the leading PC(3) scaling. This x(3) = 0 or ∆(3) = −3
4 scaling purely comes from

Dλ(e, e′, e′′; z = 1) ∼ r−
3
4 . All subleading scaling is contained in

∑
N D

(N)
λ (e, e′, e′′)(1 − z2N ). The

leading coefficients D(N)
λ (e, e′, e′′) = cλN

− 12
7 should satisfy c(3)/c(21) = 3

2 and |c(111)/c(21)| = 6. The
numerics shows these relations are satisfied approximately, see Fig. 3.8. The cancellation mechanism
that is proposed in Sec. 3.8.3 and verified here numerically implies x(2,1) = 5

4 or ∆(1,1) = 1
2 in

accordance with the Weyl relation x(2,1) = x(1,1). Up to this order, the percolation analytics and
simulations agree perfectly with each other the CCN SQH numerics presented in Sec. 3.7.3.
However, the accuracy of the percolation numerics is not sufficient to find the most subleading

exponent x(1,1,1) accessible within this formalism. It is natural to assume, that x(1,1,1) is related
to xhull

3 . As can be seen in Tab. 3.4, this does not match well the CCN exponent. Many other
common [215–218] mechanisms for corrections to such correlation functions are known to exist, which
could be responsible for this discrepancy. Further in Eq. (3.311) it can be seen that the one-to-one
correspondence between power law scaling of percolation probability P in N and correlation function
D in the broadening γ is only accurate up to O(γr−

7
4 ). If this contribution does not cancel out, it

would dominate over terms related to xhull
3 and lead to x(1,1,1) = 7

4 matching the CCN numerical result
x(1,1,1) ≈ 1.92 well.
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Figure 3.8: Coefficients of third order terms D(N)
(1,1,1)(e, e

′, e′′), D(N)
(2,1)(e, e

′, e′′) and D(N)
(3) (e, e′, e′′)

from Eqs. (3.335) (blue), (3.334) (red) and (3.333) (purple) scaled with N
12
7 . De-

viations from N
12
7 are relatively small, yet large enough to prevent the extrac-

tion from the lowest order (1, 1, 1) exponent. Extracting approximate constants
from the fits the relations expected from Eq. (3.337) between the coefficients are
roughly satisfied: D(N)

(1,1,1)(e, e
′, e′′) ≈ 13N−

12
7 , D(N)

(2,1)(e, e
′, e′′) ≈ −2.7N−

12
7 and

D(N)
(3) (e, e′, e′′) ≈ −3.1N−

12
7 . The numerics were performed for L = 32768 and aver-

aged over C = 10000 · 2L2 configurations (ensemble+system).

3.9 Conclusions

This chapter introduced the notion of generalized multifractality, referring to the scaling exponents of a
family of composite wavefunction observables at Anderson-transition criticality. The central attention
goes to the SQH transition where I (i) constructed families of pure scaling composite wavefunction
observables, (ii) performed numerics extracting the multifractal spectrum, (iii) showed analytically
that generalized parabolicity is violated in SQH systems using the percolation mapping. The parts
(i), (ii) were performed with the class C NLSM, however the mathematical constructions/numerical
algorithms described there generalize straightforwardly to the other symmetry classes.
In more detail, the key results in this part comprise:

1. Me and my collaborators introduced the notion of generalized multifractality and reviewed its
description by a field theory possessing conformal invariance. A point to emphasize once more
is that one must sharply distinguish between global conformal invariance and the stronger local
conformal invariance (LCI) that can occur in 2D. Building on this framework, for 2D systems
me and my collaborators have shown that the generalized multifractal spectrum of scaling ex-
ponents exhibits generalized parabolicity (parametrized by a single constant) provided that the
two conditions are satisfied: (i) existence of a family of pure scaling composite operators and
satisfying the Abelian fusion rules, and (ii) local conformal invariance.

2. Within the class C NLSM, I have explicitly constructed pure-scaling composite operators. These
are not unique and different operator families have different properties (e.g. positivity, abelian
fusion), which is why two approaches were used: (i) The Iwasawa decomposition yields pure
scaling operators that are strictly positive and can be raised to arbitrary complex powers and
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satisfy abelian fusion. (ii) For composite operators that have polynomial structure in the Q-field
of the class C NLSM I have derived one-loop RG rules. This RG approach is a further way
towards a family of pure-scaling composite operators. These in general do not have further nice
properties, but were directly related to wave function combinations.

3. The link between the NLSM and observables of the system is the translations of polynomials in
Q to composite objects of eigenstates. For the polynomial pure-scaling operators obtained from
sigma-model RG this “translation” follows the usual rules. For particular cases I managed to
relate the pure-scaling operators from the Iwasawa construction to observables composed of total
densities in spin space.

4. Knowing the pure scaling observables, I investigated the generalized multifractal spectrum nu-
merically. For this purpose exact diagonalization was applied to network models in classes C
and A, revealing the pure scaling exponents at the SQH and IQH transitions. In class C, both
two families of wavefunction observables were studied and the exponents were found to agree
with each other where ever a comparison was possible. In summary, the validity of the operators
found analytically was confirmed by the numerics and a subset of the multifractal exponents was
computed numerically.

5. In these lines implications of the IQH transition numerical studies are discussed. Zirnbauer
conjectured a WZNW theory in Ref. [50] that implies generalized parabolicity with prefactor
b = 1/4 for the multifractal spectrum. The numerical results at large q = 2, 3, 4 yield relatively
small but clear deviations, confirming previous high precision IQH numerics [52, 53].

6. By exploiting the mapping of certain observables in the class C network model to classical
percolation, I could find exact analytical expressions (the scaling dimensions of n-hull operators)
for certain scaling dimensions. Classical percolation analytics, numerical classical percolation
simulations and above mentioned quantum CCN numerical studies all agree nicely on x(1,1) =
x(2,1) = 5

4 and manifestly rule out generalized parabolicity once and for all. Consequently SQH
criticality cannot be described by a local conformal invariant field theory.

The work presented in this chapter has a fundamental implication: SQH criticality is not locally
conformal invariant! This can be seen by putting above points together: The Iwasawa constuction
gives an operator family with abelian fusion. According to the CFT proof reviewed in Sec. 3.2
the existence of such a family in a theory with local conformal invariance (LCI) implies generalized
parabolicity. However, both numerically and analytically deviations in the generalized multifractal
spectrum from parabolicity were found. Thus LCI is violated at the SQH transition, in particular a
WZNW CFT description of SQH criticality is ruled out.
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4 Chapter 4

Disordered Surfaces of time reversal
invariant topological superconductors

Certain two-dimensional (2D) Dirac fermion theories describe the low energy quasiparticles on the
surfaces of time-reversal invariant, three-dimensional (3D) topological superconductors (TSCs), exposed
to quenched disorder. With my collaborators, I performed numerical studies on these theories, with
the remarkable finding that they exhibit a novel to this point not yet fully understood mechanism of
topological protection against Anderson localization [75, 88, 89].
Apparently, there is a connection between 3D TSCs in classes AIII, CI, and DIII, and 2D quantum

Hall criticality in classes A, C, and D. Neglecting the topological term, from the non-linear σ-model
(NLSM) picture one can derive, that most TSC surface states should Anderson localize for arbitrarily
weak disorder (CI, AIII), or exhibit weak antilocalizing behavior (DIII).
Contrasting the naive picture sharply, the numerical studies presented in this chapter instead indicate

spectrum-wide surface quantum criticality. This means, there is robust eigenstate multifractality over a
whole “energy stack” of critical wave functions. Surprisingly, for class AIII the multifractality spectrum
and conductance distribution in the stack matches the phenomenology of the class A integer quantum
Hall (IQH) transition. Analogously the surface stacks of class CI TSCs seem to show class C spin
quantum Hall (SQH) like criticality. Finally a third kind of critical stacking can be observed in class
DIII TSCs. For the lowest winding number, the surface theory is a single Majorana cone with velocity
disorder. Restricting to nematic disorder, one observes stacking probably corresponding to the class D
thermal quantum Hall (TQH) transition.
By means of bosonization, the disordered Dirac theories under consideration can be represented as

perturbed 2D Wess–Zumino–Novikov–Witten (WZNW) sigma models; the conjecture is that these are
related to Pruisken models with the topological angle Θ = π at finite energy. A further interesting
aspect of the stacked Dirac theories (CI, AIII, DIII) is that they can be used in the description of dirty
d-wave quasiparticles in high-Tc cuprates.
The contents of this chapter are published as a review article in Ref. [90] on Refs. [88, 89] written

by collaborators and myself. Moreover my numerical work extending Ref. [75] is also presented.

4.1 Motivation

Topological phases of non-interacting fermions are classified according to the “10-fold way” [2–5]. The
same scheme (also referred to as the Altland–Zirnbauer or Cartan classification) applies to a seemingly
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4 Disordered Surfaces of time reversal invariant topological superconductors

unrelated problem, that of the Anderson (de)localization in the presence of quenched disorder [7–9].
In fact, topology and disorder are closely intertwined in condensed matter physics. In both cases, one
seeks to characterize not the details of a particular band structure or disorder configuration, but the
physics that robustly persists under smooth deformations of the Hamiltonian that preserve defining
symmetries.
In each spatial dimension, five of the ten classes admit topologically nontrivial phases (see Tab. 1.1).

Three of the five topological classes are characterized by an integer-valued winding number ν ∈ Z [3,
4]; the other two classes in each spatial dimension have Z2 invariants. In two dimensions (2D), the
three classes correspond to three different versions of the integer (non-interacting) quantum Hall effect.
These are the charge, spin, and thermal quantum Hall effects in classes A, C, and D; the latter two
arise in theories of 2D d+ id and p+ ip topological superconductors (TSCs). In three dimensions (3D),
the topological classes with winding numbers ν ∈ Z can describe time-reversal invariant TSCs [2]. The
three TSC classes are distinguished by the degree of spin symmetry preserved in every quasiparticle
band structure or disorder realization; these are U(1), SU(2), and no spin symmetry for classes AIII,
CI, and DIII, respectively. Although TSCs have yet to be conclusively identified in nature, fermionic
topological superfluids in classes A and DIII are believed to be realized in thin-film 3He-A and bulk
3He-B, respectively [2, 219, 220].
Topologically nontrivial phases host gapless edge or surface states at the sample boundary [17–

19] that are robust to local perturbations. In particular they should be protected from Anderson
localization [2, 10, 11]. The topological protection for 1D and 2D boundary modes is in conflict with
the natural tendency of low-dimensional states to localize in the presence of arbitrarily weak disorder
[9, 16]. For 1D chiral or helical edge modes, the route of escape is that elastic backscattering is strictly
prohibited [17, 18, 221, 222]. Surfaces offer a richer variety of possibilities, where topological bands
often feature massless 2D Dirac or Majorana fermions. The suppression of pure backscattering for the
single 2D Dirac fermion cone is insufficient to prevent quantum interference. Without the restriction
to 1D (only forward and backward) in a wire, elastic impurity scattering can still occur at all other
angles. In order to resolve the puzzle in this case, it is necessary to use more technical tools like the
nonlinear sigma model to gain further insight. For the simplest 3D topological insulator (TI), one finds
protection of the 2D surface states from localization throughout the entire bulk energy gap. This is
understood as due to weak antilocalization enabled by strong spin-orbit coupling, and the presence of
a Z2 topological term that nullifies the metal-insulator transition in the symplectic class [9, 122, 128,
130, 223, 224].
The 2D surface states of bulk 3D TSCs in classes AIII, CI, and DIII are typically predicted to

appear as massless Dirac or Majorana fermions. Different from graphene or TI surface states, time-
reversal invariant quenched disorder enters into these surface theories in a peculiar way. Due to the
“fractionalization” of the Hilbert space associated with confinement at the sample boundary and the
natural particle-hole symmetry present in a superconductor, 2D Dirac TSC surface theories admit only
quenched gauge-field disorder [2, 8, 61]. In classes AIII and CI, minimal realizations involve U(1) and
SU(2) vector potentials. The minimal realization of a class DIII surface consists of a single Majorana
cone; in this case, disorder can only modulate the velocity components of the cone. Since it couples
to the stress tensor, this is called “quenched gravitational disorder” (QGD) [89]. Although class CI
and AIII 2D Dirac models with gauge disorder could be robustly realized as TSC surface states, these
were originally studied two decades ago in the context of the high-Tc cuprate superconductors [62].
Indeed, by suppressing interpair, internode, and/or intranode elastic impurity scattering in a 2D d-
wave superconductor, one can realize all three minimal surface models in classes CI [63–66, 225], AIII
[67, 226], and DIII [89].

164
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Figure 4.1: Figure taken from Ref. [90]. “Stacked” quantum criticality at the surface of a bulk
topological superconductor (TSC). Panel (a) depicts classical geometric critical phe-
nomena in 2D, as can occur when fluid floods a landscape. Criticality arises at
the percolation threshold (middle), where fine-tuning of the fluid level makes travel
across the landscape equally difficult by land or by sea. By contrast, at the surface
of a bulk TSC with quenched disorder that preserves time-reversal symmetry, the
numerical studies [75, 88, 89] reviewed in this chapter demonstrate a “stacking” of
critical eigenstates throughout the surface energy spectrum, schematically indicated
in (b). Panel (c) depicts position-space probability density maps for dirty TSC 2D
surface eigenstates, as could be measured in the local density of states probed by
scanning tunneling microscopy (STM). Eigenstates at different energies ε are shown
for a single class DIII surface Majorana cone, subject to a particular realization
of nematic quenched disorder in the components of its velocity (nematic “quenched
gravitational disorder” [89]). Eigenenergies ε are measured in units of the momentum
cutoff Λ (with average Fermi velocity set equal to one), and lengths are measured in
units of 2π/Λ. While low-energy states are plane-wave like in this case, states with
energies 0.2 < ε < 1.5 exhibit quantum critical rarification. The multifractal fluctu-
ations of the wave function intensity appear to be universal, independent of ε and
of the disorder strength, forming a “stack” of quantum-critical states. Importantly,
evidence for Anderson localization is observed only at high energies, well above the
ultraviolet cutoff for TSC surface states in all three classes CI, AIII, and DIII; stack-
ing statistics improve for increasing system sizes and disorder strengths [75, 88, 89].
Results are obtained by exact diagonalization of the continuum Dirac theory with
periodic boundary conditions, defined in momentum space (so as to avoid fermion
doubling) [89]. The “stacked” critical states for class AIII and CI TSC surface states
match the known critical statistics of the class A charge and class C spin quantum
Hall plateau transitions, respectively [75, 88]. [Since the class C transition shares a
few exactly known critical exponents with 2D classical percolation [56], one can say
that the stacking in class CI realizes critical percolation without fine-tuning [75], as
sketched in panel (b). This mapping between SQH criticality and classical perco-
lation is generalized in Sec. 3.8. ] The finite-energy critical fluctuations observed
in class DIII, shown in (c), may correspond to the thermal quantum Hall plateau
transition in class D.
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4 Disordered Surfaces of time reversal invariant topological superconductors

The recent numerical evidence of Refs. [75, 88, 89] is reviewed, indicating that the class AIII, CI,
and DIII Dirac surface theories evade Anderson localization via a highly unusual mechanism. These
2D Dirac models exhibit a “stack” of critical states at finite energies, see Fig. 4.1. The statistics of
these states at different energies (away from zero) are identical.
In particular, the multifractal spectrum of wave function fluctuations and the distribution of the

Landauer conductance for finite-energy class AIII Dirac surface states appear to match the universal
values associated with the integer quantum Hall (IQH) transition in class A [88]. In Chap. 3, the
generalized multifractal spectrum of such IQH critical systems is studied. This is surprising for a
number of reasons. First, the critical state associated with the IQHE typically obtains only with
fine-tuning of the magnetic field or particle density. This is because the IQH effect is a quantum
phase transition separating topologically distinct plateaus. Instead, at the surface of a TSC, every
finite-energy state appears to feature its own plateau transition. Second, the quantum Hall effect
lacks time-reversal symmetry (TRS), yet the findings in Ref. [88] show an energy-stacking of IQH
states without TRS breaking. For the TSC with full spin SU(2) symmetry (class CI), the finite-energy
surface states [75] mimic the class C spin Quantum Hall (SQH) transition phenomenology precisely [9,
54–58, 76, 77]. Finally, for the minimal realization of a class DIII surface with QGD, stacking occurs
for a new class of wave function quantum criticality. This is hypothesized to be related to the thermal
Quantum Hall (TQH) transition in class D [78–85].
The 2D Dirac surface models studied here are equivalent to Wess–Zumino–Novikov–Witten (WZNW)

nonlinear sigma models [8], modified by the addition of the nonzero quasiparticle energy. The latter
couples to the trace of the principal chiral field, a strongly relevant perturbation. At zero energy (the
surface Dirac point), these models are also quantum critical, and have been long understood thanks to
the exact solution via conformal field theory [61–68]. By contrast, there is very little known analytically
of the finite-energy behaviour in the perturbed WZNW models. Ludwig et al. [67] investigated the
minimal single-node class AIII Dirac model (corresponding to the surface of a class AIII TSC with
winding number ν = 1). These authors argued that all states at finite energy should Anderson
localize. A mechanism for the finite energy states to escape this fate was conjectured by Ostrovsky
et al. [122]. They showed that a gradient expansion yields the Pruisken model that describes the
integer quantum Hall effect. For odd winding numbers ν, the Pruisken model has a theta term with
topological angle Θ = π, corresponding to the class A IQH transition. This result was confirmed for
ν = 1 by numerics [227]. While this argument supports quantum-critical stacking for odd ν, it predicts
Anderson localization for even ν (despite the Z classification for class AIII) [10, 122, 224]. There is no
indication of this even/odd effect numerically [88], and both ν = 1, 2 show clear indications of class
A IQH criticality in the multifractal spectra and conductance distribution [9, 51, 69–74]. Numerical
evidence for class A IQH stacking has also been very recently reported for a single Dirac cone with
generic disorder [228].
The key numerical findings for class AIII, CI, and DIII finite-energy surface theories [75, 88, 89] are

summarized. For class CI, the previous calculations in Ref. [75] are extended to larger system sizes,
and a finite-size scaling analysis of the multifractal spectrum is provided. Further results for the Kubo
conductivity for class CI and AIII surface states are presented.
Beyond the connection to the hypothetical class D thermal TQH physics, Ref. [89] found that the

single 2D Dirac or Majorana cone subject to nematic QGD matches the phenomenology observed in
STM studies of the high-Tc cuprate superconductor BSCCO [229–234], see Sec. 4.5.1. The field of
experimental studies of disordered superconductors is very rich by itself. Many theoretical scenarios
for the disorder-driven superconductor-to-insulator transition involve enhanced Cooper pairing, due to
multifractal rarification [61, 124, 168, 169, 172]. Reporting an increase in Tc with increasing disorder,
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Ref. [235] recently added experimental support for this. Furthermore there are indications that mul-
tifractal superconductor physics provides an adequate description of transition metal dichalcogenides
[236–238]. It is also interesting to note that the chiral model for twisted bilayer graphene is effectively
described by a class CI surface Dirac Hamiltonian [239–241]. However, the most prominent and well-
studied experiments revolve around the mystery of the spatial inhomogeneity in the high-Tc cuprate
superconductors [234]; the results reviewed here call for a re-evaluation of the role of disorder in these
materials.

4.1.1 Outline

First I give a brief overview about topological surface theories is given in Sec. 4.2.1. Starting with
the topological classification an overview about the corresponding σ models (see Table 1.1 in Sec. 1.3)
is given, including the conventional expectations for the finite-energy behavior. The key results of
WZNW theory relevant for zero-energy states of time-reversal invariant superconducting classes are
reviewed in the Fundamentals in Sec. 1.5.5. Here, the role of the energy perturbation and how the
modified WZNW model can be deformed “by hand” into the Pruisken model is explained in Sec. 4.2.2.
The main part is organized as a review of the most important numerical results for the class AIII,

CI, and DIII surface theories. Each section about these theories covers the numerically obtained
multifractal spectra, and for class AIII the Landauer conductance distribution. Additional results [90]
include Kubo conductivity computations for classes AIII and CI, as well as larger system sizes and a
finite-size analysis for class CI, winding number ν = 2 multifractal spectra.

4.2 Modeling topological surfaces

4.2.1 Dirac surface theories and topological classification

Here 2D surface theories of 3D bulk time reversal (T )-invariant topological superconductors (TSCs)
with different degrees of spin symmetry are considered. These reside in classes AIII, CI, or DIII,
as indicated in Table 1.1 in Sec. 1.3. For any superconducting realization of a class, physical time-
reversal symmetry T corresponds to the effective chiral symmetry S in this table. This symmetry
transmutation is due to the “automatic” particle-hole invariance associated with the self-conjugate
(Balian-Werthammer) spinor formulation of any Bogoliubov-de Gennes Hamiltonian [2, 112]. These
bulk phases can be topologically non-trivial, and are indexed with integer-valued winding numbers.
The form of the 2D surface band structure for a clean topological phase in general depends upon some

details of the bulk and of the surface orientation. A large class of TSC surface states in classes AIII,
CI, and DIII take the form of massless Dirac or Majorana fermions. This has been demonstrated using
bulk lattice models in (e.g.) Refs. [125, 242–244]. Generic T -invariant quenched disorder introduced
at the surface translates into random abelian and/or nonabelian vector potentials in the low-energy
surface Dirac theory. A generic Hamiltonian is [2, 61]

H = σ̂ ·

(−i∇) +
∑
i

Ai(r) τ̂ i
 . (4.1)

Although this is a single–particle Hamiltonian for (2+1)-D surface quasiparticles, it is frequently useful
to alternatively interpret H as the Lagrangian density for an imaginary time (2+0)-D theory of 1D
relativistic fermions. The pseudospin Pauli matrices σ̂1,2 then act separately on the spaces of left-
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and right-movers [61]. The matrices {τ̂ i} act upon an N -dimensional color space, and couple to the
nonabelian vector potential Ai. The color generators have to be compatible with the symmetry of the
class. In class AIII, for a bulk winding number ν = N , there can be generic U(N) disorder that encodes
elastic scattering between the colors. Thus all Hermitian N ×N generators {τ̂ i} are allowed, including
the identity matrix [U(1) abelian vector potential disorder]. For class DIII, these are restricted to
antisymmetric generators of SO(N). In class CI, the winding number ν = N ≡ 2M is always even,
and the matrices {τ̂ i} generate the Lie algebra Sp(2M).
The key defining characteristic of a topological surface is the anomalous representation of a defining

bulk symmetry. For surface states of 3D TSCs, this is the chiral/physical time-reversal symmetry. For
the Hamiltonian in Eq. (4.1), it is encoded by the condition

σ̂3H +H σ̂3 = 0. (4.2)

This version of chiral symmetry is anomalous, i.e. cannot arise without fine-tuning from the continuum
Dirac description of a 2D lattice model [2, 61]. It can be shown that Eq. (4.2) implies that the class
CI, AIII, or DIII nonlinear sigma model (NLσM) encoding Anderson (de)localization physics [9] is
augmented by a Wess–Zumino–Novikov–Witten (WZNW) term [2, 8]. Without the WZNW terms,
the NLσMs in these classes are termed “principal chiral models” or principal chiral NLσMs. An
introduction and more references to chiral NLσMs with or without WZNW term can be found in Sec.
1.5. The minimal realizations of Eq. (4.1) for topological class CI, AIII, and DIII surfaces have winding
numbers ν = N = {2, 1, 1}, respectively.

By contrast, the minimal “non-topological” version of class CI possesses four colors of 2D Dirac
fermions [62]. Incorporating disorder, the generic continuum Dirac model corresponding to a dirty 2D
d-wave superconductor is perturbed by random mass, vector, and scalar potential terms. This model
is believed to Anderson localize for arbitrarily weak disorder at all energies; it corresponds to the
class CI principal chiral nonlinear sigma model without the WZNW term [62, 245]. At the same time,
the d-wave model can be fine-tuned to realize any of the three topological models as exemplified by
Eq. (4.1) [62, 89]. Suppressing elastic scattering between pairs of nodes gives two copies of the ν = 2
class CI WZNW model (nodes in a pair are related by T ). Further suppressing scattering between
nodes within a pair breaks each ν = 2 CI model into two ν = 1 AIII WZNW models, with only U(1)
vector disorder. Suppressing even this still allows random fluctuations of the velocity components,
which correspond to “quenched gravitational disorder” in class DIII [89]. This example displays a
general rule: a non-topological class CI, AIII, or DIII model (associated e.g. to a 2D lattice model) can
always be fragmented into topological components, provided restrictions are placed upon scattering
between the different Dirac colors. These restrictions cannot, however, typically be realized exactly in
a microscopic 2D model with lattice-scale disorder.
The averages over ensembles of disordered H in Eq. (4.1) can be described by the NLσM theory [9].

Using fermionic replicas, the topological surface-state WZNW Dirac models are associated with the
group manifolds G(2n) ∈ {U(2n), Sp(4n),O(2n)} for classes AIII, CI, and DIII, respectively, as shown
in Table 1.1. Here n → 0 denotes the number of replicas. The conventional expectation is that any
non-standard symmetry class such as these must reduce to a standard Wigner–Dyson class (A, AI, or
AII) at finite eigenstate energy ε 6= 0. This is because ε 6= 0 formally breaks the defining particle–hole
or chiral symmetry. Classes AIII, CI, and DIII exhibit G ⊗ G symmetry at zero energy, but this
is reduced to the diagonal subgroup G for ε 6= 0 (see also Sec. 4.2.2). One would therefore expect
that finite-energy states in classes AIII, CI, and DIII reside in classes A, AI, and AII, respectively,
characterized by the symmetry reduction in the NLσM from the group manifolds to the corresponding
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Grassmannians,

G(2n)⊗G(2n)
G(2n) ' G(2n)→ G(2n)

G(n)⊗G(n) , (4.3)

see Table 1.1. Class AI always localizes in 2D, as does class A unless fine-tuned to the IQH transition;
class AII can exhibit weak antilocalization for sufficiently weak disorder [9, 16].
Although the focus stays limited to Dirac surface theories in this work, there are other possibilities.

Bulk TSCs or fermionic topological superfluids that arise by pairing higher-spin fermions (e.g., S = 3/2)
can give rise to surface Hamiltonians that also exhibit the anomalous chiral symmetry in Eq. (4.2).
These have larger minimal winding numbers |ν| > 1, and the bulk winding number can be reflected
through nonlinearity of the surface band structure, instead of N = |ν| colors of linearly-dispersing
Dirac fermions [75, 246–249]. Numerical studies suggest that the disorder-induced physics of these
surfaces is the same as in the Dirac models studied here [75, 248, 249].

4.2.2 Class AIII, CI, and DIII WZNW models over U(2n), Sp(4n), and O(2n)
The statistics of the spatial fluctuations for eigenstates of 2D disordered systems are described by the
non-linear sigma model (NLσM) framework [9]. Specifically, for the class AIII, CI, or DIII topological
surface-state Hamiltonian in Eq. (4.1), this sigma model becomes a Wess–Zumino–Novikov–Witten
(WZNW) model, familiar from conformal field theory (CFT). This class of models is introduced in
Sec. 1.5.5. Using non-abelian bosonization [62–68] and conformal embedding theory [61], one can
derive exact results for the scaling of generic operators in the energy ε → 0 limit. In particular, for
the density of states (DOS) ρ(ε) as a function of the surface quasiparticle energy ε, one has

lim
ε→0

ρ(ε) ' |ε|x1/z. (4.4)

Here x1 = 2− z is the scaling dimension of the operator encoding the first moment of the local density
of states at ε = 0, and z denotes the dynamic critical exponent. For surface states of a bulk TSC
with winding number ν, the scaling exponent x1/z is summarized for the different WZNW models in
Table 4.1. The multifractal spectrum for the WZNW models at ε = 0 is exactly parabolic:

∆q = θ q(1− q). (4.5)

Table 4.1 summarizes how θ depends upon the class and winding number.
The WZNW action for 2D dirty Dirac or Majorana TSC surface states with winding number ν reads

S = ν

8πlφ

∫
d2r Tr

[
∇Q̂† · ∇Q̂

]
− iν

12πlφ

∫
d2r dR εabc Tr

[(
Q̂†∂aQ̂

) (
Q̂†∂bQ̂

) (
Q̂†∂cQ̂

)]
− λA ν

2

8π2

∫
d2r Tr

[
Q̂†∇Q̂

]
· Tr

[
Q̂†∇Q̂

]
+ iω

2

∫
d2r Tr

[
Λ̂
(
Q̂+ Q̂†

)]
. (4.6)

See e.g. Ref. [61] for a derivation of this action from the disordered Dirac theory defined by Eq. (4.1).
The zero-energy surface theory for classes CI and AIII is described by the top line equation (4.6). The
WZNW term is the second one on this top line, and requires extending the field configurations from
the 2D surface into the 3D bulk [61, 250]; the parameter lφ is the Dynkin index of the corresponding
group. For class AIII only, an additional parameter appears even at zero energy, which is the marginal
disorder strength λA that encodes the strength of abelian vector potential disorder.
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The parameter ω on the second line of Eq. (4.6) is the ac frequency at which the conductivity of the
NLσM is to be evaluated. With ω 6= 0, states at finite energy can be accessed. This parameter couples
to the imaginary (“tachyonic”) mass term (i/2) Tr

[
Λ̂(Q̂+ Q̂†)

]
, where Λ̂ = diag {1̂n,−1̂n} grades in

the retarded/advanced space [9]. Since it is a strongly relevant perturbation, nonzero ω drives the
theory away from quantum critical point described by the WZNW conformal field theory.
The field Q̂(r) is a (2n)×(2n) [(4n)×(4n)] element of the matrix group U(2n), O(2n), [Sp(4n)] for

classes AIII, DIII [CI]. It satisfies the nonlinear constraint Q̂†(r) Q̂(r) = 1̂, where 1̂ denotes the identity
matrix. In the end, the replica limit n→ 0 has to be taken [9, 61].
For ω = 0, the WZNW model in Eq. (4.6) is exactly solvable via CFT [61, 63–68, 225, 251].

Exact results for the DOS scaling [Eq. (4.4)], multifractal spectrum [Eq. (4.5)], and conductivity are
summarized in Table 4.1.

Finite energy behavior The ac frequency parameter ω in Eq. (4.6) reduces theG⊗G group symmetry
of the WZNW model down to the diagonal subgroup G. Real nonzero ω gives oscillatory contributions
to the functional integral over Q̂ unless a further constraint is imposed,

Q̂ = Q̂†, Tr
[
Q̂
]

= 0 (4.7)

(after absorbing the matrix Λ̂ by a left-group translation Λ̂Q̂ → Q̂). Then, the ω term and the λA
term (class AIII) on the second line of Eq. (4.6) are projected to zero.
In this constrained case, Bocquet, Serban, and Zirnbauer [79] (see also [62, 224]) derived a deforma-

tion of the WZNW term to the topological term in the Pruisken model:

S → σx,x
8

∫
d2r Tr

[
∇Q̂ · ∇Q̂

]
− σx,y

8

∫
d2r εij Tr

[
Q̂ ∂iQ̂ ∂jQ̂

]
, (4.8)

where

σx,x = ν/π, σx,y = ν/2. (4.9)

In the context of quantum Hall type criticality in 2D, the Pruisken model is discussed in Sec. 1.5.
For classes CI and DIII, the Pruisken model only applies if the target manifold for the constrained

Q̂ is taken to be that of classes C and D, respectively. Although ω 6= 0 reduces the symmetry of
the WZNW action down to the diagonal G subgroup, this information is insufficient to determine the
target manifold G/H of the effective NLσM governing the Anderson (de)localization physics of the
finite-energy states. In the case of class CI with G = Sp(4n) (using fermionic replicas, Table 1.1), there
are two possible scenarios for the finite-energy NLσM. Either H = Sp(2n) ⊗ Sp(2n) (the orthogonal
Wigner-Dyson class AI), or H = U(2n) (class C). The former choice is the conventional one that
guarantees Anderson localization at all finite energies [9]; the latter is realized in the stacking scenario,
wherein Eq. (4.8) describes the spin quantum Hall plateau transition [9, 54–58, 76, 77].
Although there is no ambiguity in the target manifold for finite-energy class AIII states (which

reside in class A), the “derivation” of Eq. (4.8) from Eq. (4.6) via the imposition of the constraint in
Eq. (4.7) poses another problem. Eq. (4.9) implies that the topological angle Θ = 2πσx,y is an odd
(even) multiple of 2π for odd (even) winding numbers ν. This even-odd effect is not observed in the
numerics here and in Refs. [75, 88]. In other words, imposing Eq. (4.7) by hand directly to the fields
gives coefficients of the Pruisken model that are not compatible with numerics. This does not rule
out this analytical ansatz as a description of the problem, as the following explanation clarifies. The
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AIII CI DIII

ν Z 2Z Z

x1/z
π−ν2λA

π(2ν2−1)+ν2λA
[67] 1

2|ν|+3 [63] − 1
2|ν|−3 (|ν| ≥ 3) [61, 123]

θ(ε = 0) |ν|−1
ν2 + λA

π [64, 65, 67] 1
|ν|+2 [64, 65, 124] 1

|ν|−2 (|ν| ≥ 3) [61]

σxx(ε = 0) ν
π

ν
π

ν
π

θ(ε 6= 0) ' 1/4 (IQH) [88, 227] ' 1/8 (SQH) [75] ' 1/13 (TQH?) [89]

σxx(ε 6= 0) ' 0.58± 0.02 [74] =
√

3
2 [76] ?

Table 4.1: Table taken from Ref. [90]. Summary of known properties for the 2D disordered Dirac
models [Eq. (4.1)] in classes AIII, CI, DIII that can exhibit Wess–Zumino–Novikov–
Witten (“stacked”) criticality at zero (nonzero) energy. The zero energy properties of
WZNW models are discussed in Sec. 1.5.5. Here these are the allowed bulk TSC wind-
ing numbers ν, the scaling of the surface density of states ρ(ε) ∝ |ε|x1/z, the curvature
of the parabola θ controlling the surface multifractal spectrum via ∆q = −θ q(1− q),
and the longitudinal surface conductivity σxx (for spin or heat transport at the bound-
ary of the TSC, in units of the appropriate conductance quantum [2, 125]). The top
four rows describe the zero or near-zero energy critical features of dirty 2D TSC surface
states, which are known analytically from conformal field theory. In class AIII, these
results depend on the winding number ν and the abelian disorder strength λA, which
is defined in Eqs. (4.10) and (4.11). The additional parameter λA is RG-marginal and
addresses a continuum of distinct zero-energy fixed points [64, 65, 67]. The last two
rows detail the recent numerical findings of Refs. [88], [89], and [75]. These charac-
terize the “stacked” criticality of TSC surface states at finite energy, where each state
in the stack exhibits identical statistical properties. The results for the finite-energy
multifractal spectra and conductance statistics are consistent with a stacking of the
class A integer quantum Hall (IQH) and class C spin quantum Hall (SQH) transition
states for class AIII and CI Dirac models, respectively. A detailed introduction to
quantum Hall criticality can be found in Sec. 1.5.3. The stacked criticality observed
for finite-energy class DIII states is conjectured to describe the thermal quantum Hall
(TQH) transition in class D [89]. Note that the numerical results for finite-energy class
DIII states have only been obtained for quenched gravitational disorder, i.e. modula-
tion of the velocity components for the single Majorana cone associated with winding
number ν = 1. The multicolor DIII model with |ν| = N > 2 colors has not yet been
studied numerically (but see Refs. [248, 249]).

actual physical RG flow of the full WZNW theory is that ω runs to the strong coupling regime. The
other coefficients are likely to receive renormalization well before the Q̂ field is reduced to the target
manifold associated with Eq. (4.7). Consequently, the physical Pruisken model parameters can deviate
from the values stated in Eq. (4.9).
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4 Disordered Surfaces of time reversal invariant topological superconductors

4.3 Axial U(1) spin symmetry: class AIII

In this section the numerical results from Ref. [88] for the 2D Dirac TSC surface theory in class AIII,
and the AIII WZNW → A IQH stacking conjecture are reviewed. As pointed out in Sec. 4.2.2, it
is important to distinguish between even and odd winding numbers. Computational effort increases
quickly with increasing ν, hence the analysis is restricted to ν = 1, 2.

One Dirac node, U(1) vector potential dirt (AIII, ν = 1) The winding number ν = 1 AIII surface
theory can be realized with a single Dirac cone (addressed with Pauli matrices σ̂1,2).

H (1)
AIII = σ̂ ·

[
−iv∇+ A(r)

]
, Aa(r)Ab(r′) = λA δ

ab δ(2)
ξ (r− r′). (4.10)

Here v is the Fermi velocity (which will be set equal to one). Disorder enters as a random abelian U(1)
vector potential σ̂ · A = σ1A

1 + σ2A
2 with disorder strength λA; the overline · · · denotes an average

over disorder configurations. The delta function δ(2)
ξ (r− r′) is smeared out by a correlation length ξ in

the numerics described below.

Two Dirac nodes, U(1) ⊕ SU(2) vector potential dirt (AIII, ν = 2) The winding number ν = 2 AIII
model can be realized by adding a second Dirac cone (addressed by the color space τ3 = ±1). There is
not only the Abelian U(1) vector potential A0 with strength λA, but also a non-abelian SU(2) vector
potential Ai (i ∈ {1, 2, 3}) with strength λ:

H (2)
AIII ≡ σ̂ ·

[
−iv∇+ A0(r) + Ai(r) τ̂i

]
,

Aa0(r)Ab0(r′) = λA δ
ab δ(2)

ξ (r− r′), Aai (r)Abj(r′) = λ δab δij δ
(2)
ξ (r− r′).

(4.11)

In the limiting case of λA = 0, the full SU(2) spin symmetry as well as particle hole symmetry are
restored. This puts the model into class CI, identical to the ν = 2 CI Hamiltonian in Eq. (4.18).

4.3.1 Multifractal analysis

For the class AIII dirty Dirac theories described above, at zero energy (the surface quasiparticle Dirac
point) the WZNW theory [Eq. (4.6) with ω = 0] predicts exact parabolicity with curvature [Eqs. (1.66),
(4.5), and Table 4.1]

θν = |ν| − 1
ν2 + λA

π
, (4.12)

depending on winding number ν and abelian disorder strength λA. With momentum-space exact
diagonalization [227], the multifractal statistics of the low-energy states for the ν = 1 Hamiltonian
(4.10) were shown to match this expression.
Ref. [88] further analyzes the conductance and the finite-energy multifractal properties. In Fig. 4.2(f)

the multifractal spectrum of the ν = 1 model [Eq. (4.10)] with linear size L = 60ξ is analyzed. Here ξ
denotes the common correlation length of the disorder potentials, which are taken to be Gaussian dis-
tributed [88]. At finite energies, the anomalous multifractal spectrum ∆q is compared to the parabolic
approximation for the class A IQH with θIQH = 0.25 [Eqs. (1.66), (4.5), and Table 4.1]. Great agree-
ment is found over a wide energy range. In the high-energy tail ε ∼ 2~v/ξ, there are larger deviations.
This can be explained since close to the energy cutoff the system seems untouched by the disorder and
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4.3 Axial U(1) spin symmetry: class AIII

matches the clean DOS [see Fig. 4.2(a)]. Panel (b) in Fig. 4.2 moreover confirms that the low-energy
integrated DOS N(ε) scales as expected from WZNW theory [Eq. (4.4) and Table 4.1].
The results for the ν = 2 surface theory (4.11) with the same linear size L = 60ξ are shown in

Fig. 4.3. In panel (f) there is a comparison of finite-energy multifractal spectra to the class A IQH
parabola with θIQH = 0.25. In the high-energy tail ε ∼ 2~v/ξ there are deviations for the same reason
as in the ν = 1 case.

4.3.2 Landauer conductance

The transport calculations are performed by slicing the system in the x direction and subsequently
recasting the time-independent Schrödinger equation H (1)

AIII ψ = εψ in terms of the transfer matrix,
using the method of Ref. [223]. Clean, highly doped leads are attached to the system at x = 0 and
x = Lx. The conductance G is then computed from the transmission block t of the scattering matrix
S between the leads.

The finite-size resistance normalized to the sample width Ly/G(Lx) is expected to depend linearly
on Lx

Ly/G(Lx) = LyR0 + 1
σ
Lx. (4.13)

Gauge invariance and chiral symmetry force the contact resistance R0 to zero for each configuration
[251, 252]. The data in Fig. 4.2(c) for zero energy E = 0 is consistent with the WZNW theory
conductivity result σxxAIII,ν=1 = e2/hπ, see Table 4.1. (Here the quoted conductance quantum e2/h is
appropriate for charged electrons at the surface of a chiral topological insulator in class AIII [243]. At
the surface of a class AIII TSC, this should be replaced by the spin conductance quantum ~/8π [2,
125].)
The finite-energy crossover scale ζ(E) is defined as the length Lx where Ly/G deviates by 5% from

the E = 0 result. This is shown in Fig. 4.2(d). It follows the scaling ζ(E) ∼ E−1/z, consistent with
the z determined from the DOS scaling. Physically, ζ(E) separates class AIII WZNW critical scaling
for shorter length scales from class A IQH scaling at larger ones; ζ(E)→∞ as E → 0.

Finally the conductivity at finite energy is analyzed in Fig. 4.2(e). For 0 < E . ~v/ξ, there is a
plateau at σ ' 0.55(e2/h) in fair agreement with the value σxxIQH = 0.58±0.02 e2h obtained by Schweitzer
and Markoš [74] via the Kubo formula for a lattice model tuned to the class A IQH (Table 4.1). At
larger energies E, the conductivity at the accessible length scales increases with energy. This is expected
for the semiclassical Drude conductivity, which goes as σxx ∼ (e2/h)(1/W 2), where W 2 is the disorder
strength [253]. For these large energies, the available length scales are insufficient to decide which
scenario, Anderson localization or IQH criticality, is realized at the largest length scales.
Results for the ν = 2 model are depicted in Fig. 4.3. The largest scattering region of the ν = 2

sample is (Lx = 350ξ) × (Ly = 400ξ). The consistency check of the crossover length ζ in Fig. 4.3(c)
works just as in the ν = 1 case. The dynamical critical exponent z matches with the expected DOS
scaling in Fig. 4.3(b). The conductivity as a function of energy shown Fig. 4.3(e) matches σxxAIII,ν=2
for very low energies. At finite energies it slightly drops to σxxIQH. This drop cannot be resolved in the
Kubo computations in Fig. 4.6 and is discussed in the next subsection.
A complementary perspective on the results in Fig. 4.3 for the ν = 2 surface theory is the following.

Consider ramping up the non-abelian disorder strength WN from zero. In Fig. 4.4, results for the
conductivity are shown for WN = 0, 1, 2, 3 at fixed abelian disorder strength WA = 2.1 and fixed
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Figure 4.2: Numerical Landauer conductance and multifractal analysis from Ref. [88] for the
winding number ν = 1 AIII Hamiltonian, defined by Eq. (4.10). The random abelian
vector potential strength is

√
λA ≡ W = 2.3. (a) The DOS ρ(E) versus energy

E, as calculated from momentum-space exact diagonalization (ED), is most strongly
affected by disorder around the Dirac point (E = 0). (b) The integrated DOSN(E) =∫ E

0 dε ρ(ε) is plotted versus energy. The predicted scaling form implied by Eq. (4.4)
is governed by the disorder-dependent dynamical critical exponent z = 1 + W 2/π.
(c) Quantum transport results for the resistance normalized to system width. The
energies are from top to bottom Eξ/~v = 0, 0.003, 0.01, 0.03, 0.1, 0.3, 0.7, 1.2. (d) The
crossover correlation scale from the transport calculation scales as ζ(E) ∼ E−1/z.
This scale (not to be confused with the fixed disorder correlation length ξ) governs
the crossover at energy E between WZNW and class A IQH criticalities at smaller
and larger length scales, respectively. (e) Conductivities extracted from the slope
of the curves in panel (c), compared to the established value of the class A IQH
critical conductivity (solid gray, see Table 4.1). (f) Anomalous part of the multifractal
spectrum ∆(q) extracted from box-size scaling of ED eigenstates for box sizes beyond
the crossover correlation length ζ(E), as extracted in (d). The data correspond to
Eξ/~v = 0.01, 0.03, 0.1, 0.3, 0.7, 1.2 (bottom to top).
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Figure 4.3: Numerical results from Ref. [88] for the topological class AIII surface model with
two Dirac nodes (ν = 2), defined by Eq. (4.11). The abelian and non-abelian vector
potential disorder strengths are

√
λA ≡WA = 2.2 and

√
λ ≡WN = 1.5, respectively.

(a) The DOS as a function of energy, as calculated from ED. (b) The integrated
DOS N(E) =

∫ E
0 dε ρ(ε) plotted versus energy. The predicted scaling form implied

by Eq. (4.4) is governed by the dynamical critical exponent z = 7/4 +W 2
A/π, which

depends only on the abelian disorder strength. (c) Quantum transport results for
the resistance normalized to system width. The energies are from top to bottom
Eξ/~v = 0, 0.003, 0.01, 0.03, 0.1, 0.3, 0.7, 1.2. (d) The crossover correlation length
from the transport calculation scales as ζ(E) ∼ E−1/z. (e) Conductivities extracted
from the Lx ≥ 200ξ slopes of the curves in panel (c), compared to the established
value of the class A IQH critical conductivity (see Table 4.1). (f) Anomalous part of
the multifractal spectrum ∆(q) extracted from box-size scaling of ED eigenstates for
box sizes beyond the correlation length ζ(E) as extracted in (d). The data correspond
to Eξ/~v = 0.003, 0.01, 0.03, 0.1, 0.3, 0.7, 1.2 (bottom to top).
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4 Disordered Surfaces of time reversal invariant topological superconductors

Figure 4.4: Numerical transport results from Ref. [88] for the topological two-node class AIII
Dirac model [ν = 2, Eq. (4.11)], with abelian and non-abelian vector potential dis-
order of strengths WA = 2.1 and increasing WN = 0, 1, 2, 3 at energy E = 0.03~v/ξ.
The left panel shows the bare resistance data, while the right panel depicts the bulk
conductivities obtained from linear fits to the bare resistance data above Lx = 200ξ.
These plots establish the crossover of the two-node model from the finite-energy con-
ductivity plateau equal to 2×σxxIQH in the absence of internode scattering, to a plateau
with value 1× σxxIQH in its presence.

energy E = 0.03~v/ξ. For WN = 0, the two nodes are decoupled and the conductivity is close to
2× σxxIQH, as expected for two replicas of the single node case. For WN = 1, 2, 3 the nodes are coupled
and the conductivity is close to the value 1× σxxIQH.

Finally, there is further numerical evidence for the IQH-stacking scenario obtained in Ref. [88]. First,
the full Landauer conductance distribution was computed for both ν = 1, 2 class AIII Dirac models
in Ref. [88]. These were calculated for square samples of various sizes, at several energies throughout
the surface-state spectrum. The results for both ν = 1, 2 were found to be consistent with the known
distribution for the class A IQH [254]. Second, the results for the “anomalous” (WZNW) Dirac models
defined by Eqs. (4.10) and (4.11) were benchmarked against identical calculations for nontopological
class A and class AIII (Gade) 2D Dirac models. The Gade model [68, 109, 110] arises as the continuum
description of a 2D bipartite lattice model with pure intersublattice hopping. These nontopological
models were shown to exhibit clear signs of Anderson localization at finite energy, as expected. It is
noteworthy that additionally multifractal spectra were computed for surface states of a bulk 3D lattice
model for a class AIII TSC in Ref. [88]. The results are consistent with those presented above.

4.3.3 Kubo conductivity

In this subsection, further results testing the AIII WZNW→ A IQH stacking conjecture are presented,
this time computing the dc surface conductivity via the Kubo formula. In natural units e = 1, ~ = 1,
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4.3 Axial U(1) spin symmetry: class AIII

A A

A A

A

A

Figure 4.5: Figure taken from Ref. [90]. Numerical Kubo conductivity σxxdc computed with
Eq. (4.17) for the strongly disordered AIII ν = 1 model [Eq. (4.10)], as function of
the broadening η. The disorder strength is λA = 5. A logarithmic scale for η in units
of the local level spacing ∆ε is chosen. There is convergence to a plateau of σxxdc as
function η as the linear system size N increases. At small energies ε� Λ, σxxdc tends
to the WZNW value associated with the zero-energy state of the Dirac theory (red
dashed). For finite energies ε . Λ, a value of σxxdc compatible with the universal IQH
result σxxIQH (green dashed) is found. States at ε ≈ Λ are not affected much by the
disorder and therefore do not show universal conductance values. This confirms the
Landauer computation in Fig. 4.2(e).

177



4 Disordered Surfaces of time reversal invariant topological superconductors

Figure 4.6: Figure taken from Ref. [90]. Same as Fig. 4.5 for the AIII ν = 2 model [Eq. (4.11)].
The nonabelian disorder strength is λ = 5, while the abelian strength is λA = 0.2.
The WZNW value (red dashed) and the universal IQH result (green dashed) are very
close to each other. The convergence of σxxdc is not as clear as in Fig. 4.5. Since the
model incorporates the 2D color space [Eq. (4.11)], only systems with N ≤ 80 are
numerically accessible. The data does not show signs of the conventionally expected
Anderson localization σxxdc → 0 at finite energies for this even-winding number class
AIII system. In contrast to the more precise Landauer computation presented in
Figs. 4.3(e) and 4.4, One cannot distinguish the zero- and finite-energy behavior.
States at ε ≈ Λ are not affected much by the disorder and therefore do not show
universal conductance values.
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4.3 Axial U(1) spin symmetry: class AIII

the Kubo formula relates the dc conductivity σabdc to the current-current response function Kab(ε):

σabdc = 1
4π

∫ ∞
−∞

[
−df(ε)

dε

]
Kab(ε), (4.14)

Kab(ε) ≡ 1
L2

∫
r,r′

Tr
[
σ̂a ρ̂(ε; r, r′) σ̂b ρ̂(ε; r′, r)

]
. (4.15)

The finite size conductivity σabdc must be evaluated with spectral densities ρ̂(ε; r, r′) broadened by a
finite η of the order of the level spacing around energy ε:

ρ̂(ε; r, r′) = i
[
ĜR(ε; r, r′)− ĜA(ε; r, r′)

]
= 2π

∑
l

[
η/π

(ε− εl)2 + η2

]
ψl(r)ψ†l (r

′), (4.16)

where ψl(r) is an exact eigenstate. One can employ

Kab(ε) =
(

2π
L

)2∑
l,m

[
η/π

(ε− εl)2 + η2

] [
η/π

(ε− εm)2 + η2

]
〈l|σ̂a|m〉〈m|σ̂b|l〉 (4.17)

to compute the Kubo conductivity with eigenenergies εl and states |l〉 from exact diagonalization.
The result should be virtually independent of the broadening η chosen around the local level spacing
∆ε. Calculations are performed for the momentum-space version of the continuum Hamiltonians in
Eqs. (4.10) and (4.11), with quantized momenta corresponding to a finite-size torus and an ultraviolet
energy cutoff Λ.
The Kubo conductivity σxxdc is computed via Eq. (4.17) for the strongly disordered AIII ν = 1 model

as a function of the level broadening η. A logarithmic scale for η in units of the local level spacing
∆ε is chosen (the critical DOS ν(ε) ∝ εα is responsible for the dependence ∆ε ∝ ε−α). For large
enough systems, σxxdc as function η should depend only weakly on η. The tendency of σxxdc to converge
towards a plateau value is used as a measure of finite size effects. The results are shown in Fig. 4.5.
At small energies ε � Λ, σxxdc tends towards the WZNW value σxxAIII,ν=1 = 1/π (Table 4.1). For finite
energies ε . Λ, one finds a value of σxxdc compatible with the universal IQH result σxxIQH ≈ 0.58 (green
dashed). States at high energies ε ≈ Λ are only weakly affected by the disorder and therefore do not
show universal conductance values. Further this confirms the Landauer computation in Ref. [88], see
Fig. 4.2(e).
For the AIII ν = 2 model, the results are shown in Fig. 4.6. The WZNW value σxxAIII,ν=2 = 2/π

(red dashed) and the IQH result σxxIQH ≈ 0.58 (green dashed) are numerically close to each other.
The convergence of σxxdc is not as clear as for the ν = 1 case, Fig. 4.5. Since one needs an additional
color space to realize this model [Eq. (4.11)], only systems with N ≤ 80 are numerically accessible.
The data does not show signs of the conventionally expected Anderson localization σxxdc → 0 in the
thermodynamic limit N →∞ at finite energies for ν = 2 (i.e., even winding numbers). In contrast to
the more precise Landauer computation performed in Ref. [88], presented in Figs. 4.3(e) and 4.4, one
cannot distinguish the zero- and finite-energy behavior. Finite size effects estimated by the fluctuation
of σxxdc (η) are larger than the numerical difference of the expected conductivities σxxIQH ∼ σxxAIII,ν=2.
States at ε ≈ Λ are not affected much by the disorder and therefore do not show universal conductance
values.
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Figure 4.7: Figure taken from Ref. [90]. Multifractality in the CI ν = 2 model, for the largest
system size N = 72, at weak λ = 3.5, intermediate λ = 5.5, and strong disorder
λ = 7.0. The system is a (2N + 1) × (2N + 1) grid in momentum space; Λ is the
ultraviolet energy cutoff for the clean Dirac spectrum. Near-zero energy states and
finite-energy states are compared to the class CI-WZNW (red dashed) and class C-
SQH parabolic spectra (green dashed). With increasing disorder, there are fewer and
fewer states that match the CI-WZNW prediction, and the crossover scale moves
towards zero energy. Fig. 4.8 exhibits a finite-size analysis of ∆q for q = 2, 3.
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Figure 4.8: Figure taken from Ref. [90]. Finite energy ∆q for q = 2, 3 in the class CI ν = 2
model as function of system size N = 32, . . . 72. The green lines are exact analytical
predictions ∆2 = −1/4, ∆3 = −3/4 for the class C SQH (see Table 4.1). The
red points are average values for ∆q in the energy range 0.2 . ε/Λ . 1; Λ is the
ultraviolet cutoff for the clean Dirac spectrum. Error bars indicate the variance.
When increasing N , the ∆q converge and fluctuations diminish for both intermediate
and strong disorder W ≡ λ.
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Figure 4.9: Figure taken from Ref. [90]. The density of critical states (DOCS) versus the total
density of states (DOS) for the class CI model. A state is termed critical when it
matches the expected multifractal spectrum τq for the class C-SQH within 4% for
at least 75% of the 0 < q < qc, where qc = 4. At zero energy one expects class CI
WZNW-criticality and at finite energies SQH-criticality, see Fig. 4.8. With increasing
system size N or disorder strength λ, the amount of WZNW-critical states decreases
in favor of class C-SQH critical finite-energy states. (The green curve labeled “WZW”
denotes the density of critical class CI-WZNW states). Superimposed in light gray
is the inverse-participation ratio P2, which shows that states away from zero energy
are less rarified, as predicted by the stacking conjecture.
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Figure 4.10: Figure taken from Ref. [90]. Numerical Kubo conductivity σxxdc for the class CI
model, computed with Eq. (4.17), for moderate disorder as function of the level
broadening η. A logarithmic scale for η in units of the local level spacing ∆ε is
chosen. Numerical results are compared to the exact zero-energy WZNW result
σxxCI,ν=2 = 2/π (red dashed) and to the exact average value for the class C SQH
σxxSQH =

√
3/2 (green dashed), see Table 4.1. For most energies (except the smallest),

there is convergence as a function of η as N increases, and σxxdc does not depend on
η significantly, i.e. shows a plateau. For the purposes here only the finite energies
are crucial, but at strong disorder λ & 3 convergence also becomes poor there.
The increased finite-size effects near zero energy disable one from going to the
strongly disordered regime, where more of the spectrum is SQH-critical, according
to the multifractal analysis presented in Figs. 4.7–4.9. Crucially, though, one only
observes evidence for Anderson localization deep in the high-energy Lifshitz tail.
This again contradicts the conventional picture that all finite-energy states localize
in the orthogonal class AI (Secs. 4.2.1 and 4.2.2).
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4.4 Full SU(2) spin symmetry: class CI

A class CI topological surface can be described by the following Dirac Hamiltonian:

HCI = σ̂ ·
[
(−i∇) + Ai(r) τ̂ i

]
, Aai (r)Abj(r′) = λ δab δij δ

(2)
ξ (r− r′), (4.18)

where σ̂ ≡ σ̂1 x̂+ σ̂2 ŷ. The winding number ν = 2k is always even for class CI; disorder that preserves
physical time-reversal and spin SU(2) symmetry appears as the color gauge potential Ai, where the
2k × 2k color-space matrices {τ̂ i} generate the color group Sp(2k) [61, 124, 242]. For the minimal
case k = 1, Eq. (4.18) is identical to the ν = 2 class AIII Hamiltonian with vanishing abelian disorder
[λA = 0 in Eq. (4.11)].

In Ref. [75], extensive studies for several values of ν lead to the class CI WZNW → C spin quantum
Hall plateau transition (SQH) stacking conjecture. Instead of employing Sp(2k) generators, for k > 1
a dispersion-modified version of the Hamiltonian in Eq. (4.11) was used to study class CI with higher
winding numbers in [75]. In lieu of reproducing this data, here additional simulations for larger systems
(Nmax = 72 vs. Nmax = 46) are shown, with focus on the minimal winding number ν = 2. In this case
one can use Eq. (4.18), where the color generators {τ̂ i} are Pauli matrices.

4.4.1 Multifractal analysis

The multifractal spectrum ∆q is computed numerically [Eqs. (1.67) and (1.66)] using exact diagonal-
ization of the continuum Dirac Hamiltonian in Eq. (4.18) in momentum space. Results are shown for
∆q, computed for the largest available system size, at various energies in Fig. 4.7. With increasing
disorder strength λ, fewer and fewer states match the zero-energy class CI WZNW prediction [Eq. (4.5)
with θ = 1/4]. Instead they converge towards the parabolic approximation to the SQH spectrum with
θSQH = 0.125 (see Table 4.1). In Chap. 3 deviations of the SQH spectrum from exact parabolicity are
discussed. Strong violations of generalized parabolicity in the subleading multifractal spectrum were
found. However, the deviations from parabolicity are small in the leading multifractal spectrum ∆q in
the range of q considered here.
In Fig. 4.8 ∆q for q = 2, 3 at finite energies ε/Λ & 0.2 are shown. The red dots mark the average

values over that part of the spectrum with the standard deviation given by the error bars. With
increasing system size, the error bars shrink and there is convergence towards the θSQH = 1/8 parabola.
In contrast with the conventional reduction to the orthogonal Wigner–Dyson class AI at finite energy
(which would imply Anderson localization of all finite-energy states, see Secs. 4.2.1 and 4.2.2), one
instead sees evidence for “stacked” universal quantum criticality, consistent with the SQH.
Following Ref. [75], in Fig. 4.9 stacking throughout the energy spectrum is analyzed statistically. In

each panel, the total density of states (DOS) is plotted, as well as the density of critical states (DOCS).
The latter is defined as follows. The DOCS is determined by the proportion of critical states at finite
energy matching the class C SQH θSQH = 1/8 parabolic ansatz, within the tolerance criterion that
75% of the τq with q ∈ [0, qc] have to match the parabolic τ θq up to 4% accuracy. Here qc(θ) ≡

√
2/θ is

the termination threshold [9, 75, 226]. In addition to the DOS and SQH DOCS, in Fig. 4.9 the DOCS
for matching the zero-energy class CI WZNW prediction [Eq. (4.5) with θ = 1/4, Table 4.1] is also
exhibited. As indicated by the results in Fig. 4.9, more (less) of the spectrum matches the class C
SQH (class CI WZNW) prediction as the system size N or disorder strength λ is increased. Since the
class C SQH states exhibit weaker multifractality than the CI WZNW states, this is strong evidence
against Anderson localization.
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a b c d e

Figure 4.11: Figure taken from Ref. [90]. Visualization of quenched gravitational disorder
(QGD): the spatial components of the random metric tensor projected on a flat 2D
space. A 2×2 tensor vij can be visualized by the quadratic form {x : vijxixj = r2}
for some fixed r > 0. Different classes of disorder (a)–(e) are considered (see text):
(a) flattening/steepening + nematic disorder v21 = v12 = 0, (b) rotations + ne-
matic disorder δv11 = δv22 = 0, (c) flattening/steepening + rotations δv11 = δv22
and δv12 = −δv21 (conformal spin s = 0), (d) full nematic disorder δv11 = −δv22
and δv12 = δv21 (conformal spin s = −2, 2), (e) generic disorder.

4.4.2 Kubo conductivity

The Kubo conductivity is computed the same way as for the AIII surfaces in Sec. 4.3.3. In Fig. 4.10,
the numerical Kubo results for selected energies across the spectrum is shown. Near zero energy,
one expects the exact WZNW result σxxCI,ν=2 = 2/π (Table 4.1). This result holds for every disorder
configuration, in the infinite system-size limit. For weak disorder λ . 1 one can observe this in the
numerics. Finite-size effects seem to grow quickly with increasing disorder, which makes the most
interesting regime λ & 3, where SQH multifractality has spread over a wide range of the energy
spectrum, difficult to reach numerically. This is the reason for the derivation from the exact WZNW
result for λ = 2, 2.5 shown. At higher energies, the multifractal spectrum suggests class C SQHP
criticality. The average value of the conductivity is known to be σxxSQH =

√
3/2 [76].

Although finite-size effects remain relevant near zero energy, the results indicate convergence towards
a finite conductivity, coincident with the Cardy value, at finite energies. This is again in contrast with
the conventional expectation of Anderson localization in the orthogonal class AI (Secs. 4.2.1 and 4.2.2).
On the other hand, for very high energies ε & Λ (in the Lifshitz tail), one observes localization in ∆q.
This is consistent with σxxdc → 0 observed here, as shown for energy ε = 2Λ in Fig. 4.10.

4.5 Broken spin rotation symmetry: class DIII

4.5.1 Majorana surface fluids, quenched gravitational disorder, and possible
relevance to high-Tc cuprates

The simplest bulk topological superconductor resides in class DIII, with the minimal winding number
ν = 1; this would be a solid-state analog of 3He-B [2, 219, 220], as has been proposed e.g. in CuxBi2Se3
[255–261] NbxBi2Se3 [262–265], and β-PdBi2 [266, 267]. In this case, superconductivity and strong
spin-orbit coupling imply that neither charge nor spin transport is well-defined at the surface.
The surface theory consists of a single massless Majorana cone. In contrast to the surface Hamil-

tonian in Eq. (4.1) (which applies for class DIII with winding numbers |ν| ≥ 3), the only continuous
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4.5 Broken spin rotation symmetry: class DIII

symmetry available to gauge by disorder is Poincaré invariance, i.e. “gravitational” coupling to the
stress tensor.
Here the results of Ref. [89] are reviewed, in which the effects of “quenched gravitational disorder”

(QGD) for a single 2D cone were studied. Time-reversal invariant perturbations, such as a charged
impurity, couple only to the spatial–spatial components of the stress–energy tensor T ab, with a, b ∈
{1, 2} [89]. The most generic surface Hamiltonian takes the form

H = −1
2
∑

a,b=1,2

∫
d2r vab(r)

(
ψ̄iσ̂a

↔
∂bψ

)
, (4.19)

where the bidirectional derivative A
↔
∂B = A∂B− (∂A)B. For the Majorana surface theory, ψ̄ = ψTσ̂1.

The four velocity components are the isotropic Fermi velocity of the clean Majorana cone, perturbed
by quenched random fluctuations:

{
v11(r) ≡ 1 + δv11(r), v22(r) ≡ 1 + δv22(r), v12(r), v21(r)

}
. In

Ref. [89], five different variants of that model were considered. The variants are visualized in Fig. 4.11,

(a) Independent {δv11, δv22}, v12 = v21 = 0. Local isotropic flattening or steepening of the Dirac
cone and nematic squishing of the cone.

(b) Independent {v12, v21}, δv11 = δv22 = 0. Local pseudospin rotations (antisymmetric part v12a =
−v21a) and nematic squishing of the Dirac cone (symmetric part v12s = +v21s).

(c) Independent {δv11 = δv22, v12 = −v21}. Local isotropic flattening or steepening of the Dirac
cone and pseudospin rotations.

(d) Independent {δv11 = −δv22, v12 = v21}. Local nematic squishing of the Dirac cone.

(e) Independent {δv11, δv22, v12, v21}. The generic model.

Without further restrictions, the generic theory (e) is realized. For a fully isotropic bulk superfluid,
it can be shown that electric potentials couple only through the isotropic flattening or steepening of the
surface Majorana cone, model (c) [89]. Crystal field effects will however generically enable off-diagonal
QGD (nonzero {v12, v21}). Model (d) is another interesting special case, since pure nematic QGD
couples only to the holomorphic T (z) and antiholomorphic T̄ (z̄) stress tensor components (using the
language of 2D conformal field theory) [89].
It is important to emphasize that QGD as in Eq. (4.19) will generically be present in any 2D massless

Dirac material. At zero energy (the Dirac point), short-range correlated QGD is strongly irrelevant.
This is why it is typically ignored, compared to mass, scalar, or vector potential perturbations [as in
Eq. (4.1)]; short-ranged correlated disorder in the latter is marginal at tree level. The very surprising
finding in [89], reviewed below, is that while weak QGD is indeed irrelevant near zero energy, it appears
to induce quantum-critical stacking of states with weak, but universal multifractality, similar to the
class AIII and CI systems studied above. This occurs because nonzero energy is a strongly relevant
perturbation to the (2+0)-D Dirac-point theory. For QGD, the latter can also be cast as a modified
version of the WZNW model in Eq. (4.6) with ν = 1 and λA = 0; again ω 6= 0 drives this model
away from the zero-energy WZNW fixed point (in this case, equivalent to free fermions), towards some
strong coupling regime. The numerical results presented in Figs. 4.13, 4.12 indicate that this is another
version of the critical stacking scenario.
QGD might be important in the high-Tc cuprate superconductors [89]. As reviewed in Sec. 4.2.1,

the generic Bogoliubov–de Gennes Hamiltonian for a 2D d-wave superconductor with non-magnetic
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4 Disordered Surfaces of time reversal invariant topological superconductors

disorder resides in the non-topological version of class CI; in contrast to Eq. (4.1), the low-energy
Dirac theory for the four independent quasiparticle colors features mass, scalar, and vector potentials.
This model is known to Anderson localize at all energies [62]. If however one assumes that sufficiently
long-wavelength disorder dominates, which does not scatter between the colors, then one obtains four
independent copies of the class AIII ν = 1 WZNW Hamiltonian in Eq. (4.10) [62]. Given the class AIII
WZNW → class A IQH stacking conjecture, this would imply relatively strong multifractality (wave
function rarification) at finite energy, along with a strongly renormalized low-energy density of states.
This is not seen in experiment. However, nematic QGD [as in models (b) and (d), described above]
in fact produces a phenomenology similar to that observed in STM maps of the local density of states
in BSCCO [89, 229–234]. This includes plane-wave like states at low energy, with a linear-in-energy
density of states, but energy-independent, nanometer-scale critical inhomogeneity at finite energies
[89]. See also Fig. 4.1 and Table 4.1.
Models (b) and (d) with nematic QGD show the most robust stacking of critical eigenstates with

universal statistics, as reviewed below. In the context of the cuprates, this is interesting because of the
potential role of nematicity in these materials [268, 269]. In particular, evidence for quenched random
nematicity has emerged in recent studies of the pseudogap phase [270].
The natural generalization of the stacking conjectures in classes AIII and CI is: class DIII WZNW→ class

D thermal quantum Hall (TQH) criticality. As reviewed in Sec. 1.5.3, very little is known about the
TQH transition. The multifractal spectra presented in Fig. 4.13 may constitute the first (indirect)
results substantiating a universal description of this transition.

4.5.2 Multifractal analysis

In Ref. [89], models (a)–(e) were studied for a large range of N = 32, . . . , 96. In all five models, there
are critical states at finite energy matching a θ = 1/13 parabolic ansatz for ∆q [Eqs. (1.66) and (4.5),
Table 4.1]. As for class CI in Sec. 4.4 and Fig. 4.9, one can define the density of critical states (DOCS)
as follows. This is the proportion of states at finite energy matching the tolerance criterion that 85%
of the τq within the range q ∈ [0, qc] match the parabolic τ θq ansatz with θ = 1/13 up to 4% accuracy;
here qc = 5.1 is the termination threshold [9, 89, 226]. The DOCS is plotted for all three models in
Fig. 4.12.
As the disorder strength is increased, the critical swath shrinks for model (a) and even more strongly

for (c). In Fig. 4.11 and in the definition below Eq. (4.19), one can see that both of these models feature
local isotropic flattening and steepening of the Dirac cone. Near zero energy in these models, there are
stronger multifractal (rarified) states visible in the superimposed second IPR P2 (gray) in Fig. 4.12.
At high energies near the cutoff there is a crossover to localized Lifshitz tail states.
In the absence of the isotropic flattening and steepening, models (b), (d) instead exhibit an increasing

number of critical states (improved “stacking”) with increasing disorder. Models (b) and (d) are similar,
except that for the latter, rarified zero-energy states set in at intermediate disorder, see Fig. 4.12.
Indeed models (b) and (d) are related by local diffeomorphisms in the gravitational formulation of the
problem [271]. Since there are more independent disorder terms in (d), it is mapped to a (b) with
effectively stronger disorder. One must note however that the interpretation of diffeomorphisms is
different than in general relativity or 2D quantum gravity [272–274]: at the surface of a dirty class
DIII TSC, there is a preferred coordinate system (x, y) that measures physical distances across the
surface, given the flatness of physical spacetime. Disorder modulates the Majorana surface fluid in a
way that is mathematically identical to gravity, but geodesic distances are not directly measurable.
Model (e) containing generic disorder exhibits a wide swath of critical states for weak disorder.
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Figure 4.12: This figure shows the total density of states (DOS) and the density of critical states
(DOCS) for the QGD, models (a)–(e), defined in and below Eq. (4.19). Results
were obtained by diagonalizing the Hamiltonian from Eq. (4.19) over a (2N + 1)×
(2N + 1) grid in momentum space, with cutoff N = 96 here [89]. Data is plotted
for the five different models at fixed dimensionless disorder strength λ = 0.2; strong
disorder corresponds to λ & 0.393. The DOCS counts the number of states with
critical statistics (multifractal spectra) that match a universal ansatz with a certain
fitness criterion (see caption of Fig. 4.13). Also plotted is the second IPR P2 (gray
dots), defined by Eq. (1.65). For models (a, c, e), a large swath of the spectrum
appears critical for weak disorder. However, as the disorder strength is increased,
the swath shrinks [89]. The IPR P2 shows that states outside of the swath are
more rarified or localized than the critical ones. The linear-in-energy DOS of the
clean limit is strongly distorted and filled-in at low energies, which happens in
models (a, c, e) for all λ & 0.2. These strong disorder effects are likely induced
by the velocity component responsible for isotropic flattening or steepening of the
cone. By contrast, models (b, d) show plane-wave states near zero energy for weak
disorder. Rarification near zero energy sets in for strong disorder; for model (d) the
crossover is already visible at λ = 0.2 shown here. The critical swath is larger and
more robust to disorder strength in models (b, d), compared to (a, c, e). Models
(b, d) both contain nematic disorder and exclude isotropic flattening.
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4 Disordered Surfaces of time reversal invariant topological superconductors

Figure 4.13: Anomalous multifractal spectrum ∆q [Eq. (1.66)] for an energy bin of states selected
from the DOS with the highest percentage of critical states from Ref. [89]. Here the
spectrum is shown for model (b), evaluated for the six different disorder strengths.
The solid red curve denotes an average over the 15 states in the bin; the shaded red
region indicates the standard deviation. The green curve is the parabolic ansatz for
∆q = −θ q(1− q), with θ = 1/13. States contributing to the critical count (DOCS)
in Fig. 4.12(b) match the parabolic ansatz within a certain threshold (see text) over
the range 0 < q ≤ qc = 5.1.
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However, this shrinks with increasing disorder strength, similar to models (a) and (c).
The robustness of the anomalous multifractal spectra selected from an energy bin where the ratio

of the DOCS to DOS is maximized with respect to disorder is shown in Fig. 4.13 for the exemplary
model (b). Tuning over a whole order of magnitude in the disorder strength, the results are robust for
q not to close to the termination threshold qc. The deviations are easily understood by the absence of
ensemble averaging in the numerics.
Excitingly the behavior of models (b), (d) closely parallels observations from STM studies of BSCCO

[233, 234]. The cuprate superconductor shows quasiparticle interference at low energies, suggestive
of plane wave states modified by rare internode scattering, but strongly inhomogeneous, energy-
independent spectra at higher energies. The inhomogeneous, energy-independent spectra could po-
tentially be associated with the “stacked” multifractality, robustly exhibited here for models with
nematic QGD [89].

4.6 Discussion

Central to this chapter is the quantum-critical stacking conjecture [75] formulated in detail in Sec. 4.2.
It states that the surface states of bulk STI in class CI, AIII, and DIII are (i) topologically protected
from Anderson localization (ii) closely resemble the phenomenology of Quantum Hall criticality. With
my collaborators I was able to gather supporting numerical indications for the conjecture. In Table 4.1,
the stacking-conjecture expectations for the conductance distribution and multifractal spectrum and
numerical benchmarks of these expectations are summarized in short. In more detail, the results from
Secs. 4.3–4.5 for the different symmetry classes are recapitulated in the next paragraphs.

AIII The numerical analysis performed in Ref. [88] clearly confirms the class AIII→ A IQHT stacking
conjecture for ν = 1, 2. Multifractality in the surface theory, at the boundary of a bulk lattice model,
and in the conductance distribution derived within the scattering matrix formalism were shown to
match the universal IQHT characteristics. These impressive results are reviewed in Sec. 4.3.
Ref. [122] gives an analytical argument why this should happen for ν = 1 (or rather all odd ν).

Notably, however, the even-odd effect implied by the NLσM-based derivation in Ref. [122] is absent
[see also Eqs. (4.6) and (4.8), above]. Remarkably in the numerics, both ν = 1, 2 show a stack of IQHT
critical states at finite energy.
My determination of the Kubo σxxdc conductivity using exact diagonalization of momentum space

models in Sec. 4.3.3 additionally supports these remarkable results .

CI Next, the fully spin symmetric case was considered in Sec. 4.4. In Ref. [75], TSC systems in class
CI are considered for both small and large (ν ≥ 8) winding numbers ν. The stacking conjecture in this
case corresponds to: CI WZNW → class C SQHT. I reproduced some of the results for the minimal
winding number ν = 2 in larger (N = 72 vs N = 46) systems giving stronger indications that the
observations are not plagued by finite-size effects.
Additionally with my finite-energy Kubo conductivity computations in Sec. 4.4.2 I was able to show

that there is a reasonable agreement with the class-C SQHT conjecture (see Table 4.1). What is most
important, the conductivity clearly tends towards a finite value, in contradiction with the conventional
picture expectation of Anderson localization in this class.
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DIII Finally, the generic time-reversal topological superconductor with no spin symmetry at all re-
siding in class DIII also shows clear signs of stacking at finite energy. Only the minimal ν = 1 single
Majorana surface cone is considered. This case is special, since time-reversal invariant disorder couples
to the stress tensor, producing “quenched gravitational disorder” (QGD). Usually this perturbation is
irrelevant and negligible compared to other kinds of disorder.
In this case, the natural stacking conjecture relates DIII WZNW → class D thermal quantum

Hall transition (TQHT) and is not straightforward to probe numerically. This is due to the absence
of observations/calculations of a TQHT with universal multifractal and conductance statistics, see
Sec. 1.5.3 for a discussion.
Nevertheless these studies are interesting, since model (b) is similar to the phenomenology of STM

observations in the high-Tc cuprate BSCCO [89, 229–234]. This is not a topological material, however
the low-energy Dirac quasiparticle description of a 2D d-wave superconductor reduces to independent
“topological” components when interpair and/or internode scattering is suppressed by hand [62, 89].
At this point a general comment on the models investigated numerically is in order. It is worth

emphasizing that at the surface of a 3D topological phase, at energies of order the gap, the 2D surface
states deconfine and merge with the bulk continuum. The pure continuum 2D Dirac theories studied
here cannot capture this, for the numerics the spectrum is cut off in momentum space. Eigenstates
with energies close to the cutoff show neither stacking nor can they extend into a bulk (since this
is a pure surface model). Studies of surface states of a bulk TSC lattice model in [88], show results
consistent with the stacking scenarios articulated in this thesis, indicating the pure surface description
is not an issue.
The class CI, AIII, and DIII WZNW topological surface theories show a remarkable property: the

longitudinal surface charge / spin / thermal conductivity at zero energy is quantized. Both disorder
and interactions do not break this exact quantization [9, 67, 125, 225, 251]. The results presented here
obtained by collaborators and myself indicate the even more stunning correspondence of 2D quantum
Hall criticality in classes C, A, and D and surfaces of bulk topological superconductors in classes CI,
AIII, and DIII at finite energy.
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5 Chapter 5

Conclusion and outlook

5.1 Summary

In this thesis I have studied interacting topological systems in low dimensions in presence of disorder.
At the Anderson transition critical points in (effectively) non-interacting theories, there is the infinite
spectrum of relevant operator that causes nontrivial multifractal eigenstate correlations. In each chap-
ter the study of eigenstate correlation yielded novel surprising insights on the systems. Remarkably, in
certain parameter regimes the low energy of each of the models under consideration here is governed by
a Pruisken (type) RG flow. For the quantum Hall like phases in 2D, this is well known. Further, Chiral
wires in 1D with staggering show this kind of flow in the “bare” topological index/average conductivity
plane, however the fixed points are of infinite randomness type with g∗ approaching zero algebraically.
Surprisingly, the surface states of disordered time-reversal invariant topological superconductors (TSC)
mimic quantum Hall phenomenology at finite energies.
Chapter 2 is devoted to disordered chiral wires. In 1D there are more “tools” available in the

sense that (i) with density matrix renormalization group (DMRG) there exists a numerical approach
available to study the interacting disordered model directly (ii) employing bosonization one can study
the stability of the interacting theory towards disorder. The most remarkable result of this chapter is
the difference between Majoranas and complex fermions that emerges when turning on interactions.
In the next chapter of this work (Chap. 3) the focus is on criticality at 2D Quantum Hall type

Anderson transitions. In particular the observables allowing access to the generalized multifractal
spectrum were studied. Many of the results obtained generalize to all symmetry classes and topological
or metal insulator transition, however the main point of concern was the Spin Quantum Hall (SQH)
transition. Numerical simulations of the network model and both analytics and numerics on the
percolation mapping prove that the multifractal spectrum of the SQH transition is not compatible with
a (Virasoro) CFT description of SQH criticality. In particular, this excludes any WZNW description
of the SQH critical theory. As can be seen in the next chapter of this work, there apparently is a
connection of finite-energy perturbed WZNW models and QH criticality.
Finally the work presented in Chap. 4 is concerned with Wess-Zumino-Novikov-Witten (WZNW)

type surface theories of 3D bulk topological superconductors. At zero energy it is well-known that
these show a perfectly parabolic multifractal spectrum and quantized conductance, which is robust to
disorder and weak interactions. However at the finite energy something even more surprising happens:
There is a stack of states whose phenomenology mimics QH criticality. Numerical evidence obtained
by my collaborators and myself and heuristic analytical arguments supporting this correspondence are
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reviewed. Apparently a finite energy perturbation of the WZNW models breaks the symmetry group
of the NLσM action in a way that one ends up in an effective Pruisken model.

In the following lines the key results of the individual chapters are summarized in more detail:

5.1.1 Summary: Disorder and interaction in chiral chains

In this part of the work the chief aim was understanding the behavior of disordered wires of Majo-
ranas and complex fermions in presence of interaction. The models studied both belong to symmetry
class BDI and are completely equivalent (except for the smaller Majorana Hilbert space) in the non-
interacting limit, the low energy theory is governed by the infinite-randomness fixed point. I could
answer the intriguing question whether there is a fundamental difference between the Majorana and
complex fermions version of the problem: they behave drastically distinct!
As mentioned above in 1D there are more methods available than in higher dimensions, I could use

the full force of DMRG, bosonization, SCBA topological indices with mean field decoupled interaction
and infinite randomness RG here in order to find: (1) Together with my collaborators, I have deter-
mined phase diagrams and drew conclusions about their observable properties (spin order, criticality).
As basis of this, DMRG simulations of the models were employed. This provided access to the entan-
glement entropy and the spin-spin correlation functions. (2) I performed two kinds of RG analysis to
understant these numericals results: (i) First, I have developed a Giamarchi-Schulz like weak-disorder
RG. Disorder is strongly relevant, which implies approach (ii) is more appropriate. (ii) The second
RG analysis is starting at the non-interacting infinite-randomness fixed point. Using high precision
numerics, the correlation functions for both Hartree and Fock term are computed. In certain cases,
there is a strong cancellation between the two terms, their difference vanishes rapidly. In the complex
fermion chain, this mechanism is operativem the interaction is RG-irrelevant. In the Majorana chain,
there is no such cancellation.
This explains the drastic difference of behavior between Majoranas and complex fermions seen in

the DMRG numerics.

5.1.2 Summary: Generalized multifractality at the Spin Quantum Hall transition

This chapter introduced the notion of generalized multifractality, referring to the scaling exponents of a
family of composite wavefunction observables at Anderson-transition criticality. The central attention
goes to the SQH transition where I (i) constructed families of pure scaling composite wavefunction
observables, (ii) performed numerics extracting the multifractal spectrum, (iii) showed analytically
that generalized parabolicity is violated in SQH systems using the percolation mapping. The parts
(i), (ii) were performed with the class C NLSM, however the mathematical constructions/numerical
algorithms described there generalize straightforwardly to the other symmetry classes.
The work presented in this chapter has a fundamental implication: SQH criticality is not locally

conformal invariant! This can be seen putting above points together: The Iwasawa/HWV constuction
give an operator family with abelian fusion. According to the CFT proof the existence of such a family
in a theory with LCI implies generalized parabolicity. However, both numerically and analytically
deviations in the generalized multifractal spectrum from parabolicity were found.
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5.1.3 Summary: Disordered surfaces of time reversal invariant topological
superconductors

Central to this chapter is the quantum-critical stacking conjecture formulated in detail in Sec. 4.2. It
states that the finite energy surface states of bulk TSC in class CI, AIII, and DIII are (i) topologically
protected from Anderson localization (ii) closely match the phenomenology of Quantum Hall criticality.
In particular, this conjecture applies to the conductance distribution and multifractal spectrum. In
Table 4.1 predictions from the conjecture for these observables are summarized.
Throughout the chapter numerical evidence supporting the conjuecture is gathered. Employing

exact diagonalization on a Dirac model for the surface states, the multifractal spectrum and the Kubo
conductivity for different winding number TSCs in CI, AIII and DIII are computed. Additionally
Landauer scattering matrix computations and bulk exact diagonalization studies in class AIII are
reviewed.
The class CI, AIII, and DIII WZNW topological surface theories show a remarkable property: the

longitudinal surface charge / spin / thermal conductivity at zero energy is quantized. Both disorder
and interactions do not break this exact quantization. The numerical evidence presented in this chapter
indicates the stunning correspondence of 2D quantum Hall criticality in classes C, A, and D and bulk
TSC finite energy surface states in classes CI, AIII, and DIII. This is an even more suprising property
of TSC in these classes!

5.2 Outlook and further directions

Over the course of the work, the main questions posed in the beginning of the thesis could be answered.
At the same time, each of the projects has opened many intriguing directions that can be pursued in
the future. Especially promising are the chiral wires where the focus in this work has been purely on
ground state properties. Recently such systems at finite energy density attracted much attention in
the context of topology and MBL [275, 276].
Since the thesis involved numerical studies, one point in all parts is to improve the numerics. The

algorithms employed were DMRG (cost ∼ L(lnL)α), exact diagonalization (∼ L6 for 2D) and perco-
lation numerics (∼ L2). All of the computational time / memory costs are faster than linear which
is why one cannot just rely on Moore’s law (doubling of computational power every 12. . . 48) months,
but should study complementary approaches.
A more exhaustive list on what can be done in the future in the individual parts follows:

5.2.1 Outlook: Disorder and interaction in chiral chains

There are many possible future research directions for this project:

1. Reference [277] is a generalization of the clean interacting Majorana chains to quasi-1D (ladders).
One can think about the effect of disorder on these ladder systems and even more general higher
dimensions and other lattice types.

2. Instead of changing the spatial dimension one can also look at the other symmetry classes. In
particular it is interesting to study interacting Majorana models in 1D, quasi-1D and 2D, since
superconducting systems without further symmetries fall in this class. A further related question
is, whether the difference between complex fermions and Majoranas persists.
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3. Apparently the sign of the interaction in the Majorana model has a drastic impact on the phe-
nomenology. Repulsive interaction leads to localization, attractive interaction to novel criticality.
Therefore it is desirable to understand the effect of the sign analytically. Another point is to
find out what exactly happens in the novel critical phase. The numerical results yield a central
charge larger than the value at infinite randomness and slightly larger than in the clean case.

4. In this work, the ground state properties of the models were explored thoroughly. The sponta-
neously broken symmetry in the Majorana model is expected to be restored at high temperatures.
The system most likely undergoes a many-body (de-)localization (MBL) transition. The field of
MBL has prospered well over the last decade [278–281]. More recently the interplay of MBL and
topology, which will be observable in this model as well, has attracted a lot of attention [275,
276].

5. Reference [114] predicts a “superuniversality” forcing the critical theories of all five symmetry
classes possessing a chiral symmetry (BDI, AIII, CII, D, DIII) to coincide. Therefore a complete
analysis of the properties of eigenfunction composite objects at the infinite-randomness fixed
point is desirable.
At this fixed point, the wavefunctions are stretched exponentials, consequently they share proper-
ties with trivially localized wavefunctions. On the other hand, most observables show nontrivial
critical features. A lot of these closely resemble those observed in MBL transitions on random
regular graphs [282].

6. A further possible generalization is to study crossovers to Sachdev-Ye-Kitaev (SYK) type [283]
physics. In the model considered in this thesis, the interaction is short range, one would have
to add random interaction terms coupling a macroscopic number of sites. In Refs. [284, 285]
coupled quantum dots are studied, which can be thought of as an intermediate stage between
the original SYK quantum dot and the short range interaction model. By interpolating between
the models, a crossover from infinite randomness to SYK phenomena could be studied.

5.2.2 Outlook: Generalized multifractality at the Spin Quantum Hall transition

This work paves the way for further analytical and numerical studies of generalized multifractality at
Anderson transitions. Some of the most prospective research directions include:

1. In future projects, one can extend the work in the class C NLSM to the other symmetry classes.
Of particular interest is the superconducting class D hosting disordered Majorana systems. Both
the conventional metal-insulator transition and the topological thermal quantum Hall transition
in 2D are possible in such systems. Exploiting that supersymmetry imposes relations between
classes C and D, one can directly obtain the class D pure scaling observables from those explored
in this chapter. Moreover preliminary results [120] indicate many other relations between different
symmetry classes.
These superuniversality conjectures are supported by preliminary numerical studies [120] of the
metal-insulator transition in the 2D Ando model in the symplectic Wigner-Dyson class AII. The
pure scaling operators have the same form as in the class-C NLSM. Duality then extends this
result to the orthogonal Wigner-Dyson class AI that was studied in Ref. [207]. Future studies of
metal insulator transitions should verify these conjectures for all classes.
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2. In Sections 3.6 and 3.7 it is pointed out that the difference between pure-scaling NLSM operators
leads to a drastic qualitative distinction in the observables between class A and class C. Even
the simplest subleading pure-scaling observables have indefinite sign and fluctuate wildly from
one disorder configuration to another. This makes the numerical network model studies com-
putationally challenging. At this point it is important to state again that the complementary
investigations of classical percolation in Sec.3.8 show this problem is purely related to insufficient
ensemble averaging. This phenomenon is related to the presence of spin in class C and is there-
fore likely relevant to all spinful symmetry classes. A future challenge is to extensively study the
character of eigenstate correlations in critical spinful systems.

3. An intriguing question is whether generalized parabolicity is violated in other 2D Anderson
transitions. Preliminary results indicate the violation of generalized parabolicity also in the class
AII MIT in the Ando model [120].

4. Finally, many interesting questions arise when one “switches on” the electron-electron interaction.
One can closely follow the program set up in Refs. [166] and [207] for the Wigner-Dyson classes.
There it was shown within a perturbative RG analysis that generalized multifractality survives
the presence of Coulomb interaction. In this context, one should distinguish between a long-range
(Coulomb) and a short-range (screened) interaction.

5.2.3 Outlook: Disordered surfaces of time reversal invariant topological
superconductors

One can refine and generalize the numerics performed so far:

1. By switching to iterative Arnoldi techniques rather than full diagonalization one may increase the
system sizes drastically: The Chalker-Coddington network models for (S)QH effects studied in
Chap. 3 have more than an order of magnitude larger linear sizes L = O(1000). The scattering
matrices of these are sparse, every site can scatter only into its nearest neighbors. For the
determination of the eigenvectors itself, one does not need sparsity of the Hamiltonian, one just
needs to find an efficent way to compute the resolvent map (that is dense in general even for sparse
Hamiltonians). For completely generic dense matrices the compotational task of determining the
resolvent operators has the same complexity as full diagonalization. The Hamiltonian matrices
of the models here are banded in k-space. Exploiting the banded structure may lead to a more
efficient way of finding the resolvent map.

2. The Landauer conductance for class AIII was computed in Ref. [88]. One should compute this
quantity in the other classes CI, DIII as well. From the stacking conjecture one expects to find
the analytical result [76] for the SQH network model conductance. The situation in class DIII is
more complicated, since there is no clear concept of TQH criticality. Recently the exploration of
phase diagrams in 2D class D systems gained new attention [85, 286].

3. A further direction is the analysis of higher winding numbers in class DIII systems. In many
aspects, the winding ν = 1 is very different from the higher ν WZNW models. It remains to be
checked whether θε 6=0 = 0.077 (Table 4.1) is stable to changes of ν as in the other classes.

4. Finally another point concerning class DIII: One needs to find evidence for the existence of the
conjectured TQH plateau transition in class D in the presence of disorder, and check for the
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existence of a universal thermal conductivity and multifractal spectrum in order to compare
with the stacked criticality in the DIII results.

In the above points the solid numerical evidence for stacking using many different observables is
summerized. However the current analytical understanding of this phenomenon is heuristic at best.
Therefore one needs to develop novel analytical means:

1. Reference [11] derives an interesting form of bulk-boundary correspondence for all symmetry
classes. A winding number of the critical surface states is constructed and shown to be equal
to the winding number of the bulk. A fruitful direction of research might be to investigate the
applicability of these concepts to the critical stacks at finite energies.

2. Another goal is to improve the NLσM expansion that gives the class AIII WZNW → A IQHPT
prediction for odd winding numbers.

3. Majoranas in class DIII can also be described as gravitational theory [271], this different per-
spective may yield new approaches to tackle the problem.

4. Once a candidate field theory is found, one can investigate the effects of interparticle interactions
on stacked critical states.

Finally, a key problem is to understand the depth of the relationship implied by the stacking of classes
A, C, D topological quantum phase transitions (the Hall plateau transitions) at the surface of classes
AIII, CI, and DIII TSCs. Although this connection has been revealed indirectly here, through studies
of the effects of disorder on TSC surface theories, it suggests a more intrinsic, topological relationship
between these classes (which govern topological phases with integer-valued invariants in two and three
dimensions). One idea is the following. Is it possible to reproduce the critical statistics studied here
by studying an entanglement cut [287] for a clean bulk TSC Hamiltonian? Instead of averaging over
disorder configurations at a physical surface, perhaps one can average over bulk quasiparticle band
structures.
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A Appendix A

Disordered interacting chains

This appendix is based on Ref. [86].

A.1 Weak-disorder RG around the Ising + LL fixed point of the
interacting Majorana chain

In this Appendix, details of the weak-disorder RG treatment of the interacting Majorana chain in the
Ising+LL fixed point are provided, Sec. 2.4.3. The starting point is the effective mean-field Hamiltonian
(2.25) including the third-nearest-neighbor hopping as well as a weak randomness in the nearest-
neighbor hopping t+ δtj , supplemented with the interaction term gγjγj+1γj+2γj+3.

Using the low energy expansion (2.26) for the nearest-neighbor hopping operator γjγj+1 yields
oscillatory contributions with wave vectors ki = 0, k0, k0 +π, 2k0, 2k0 +π, and π that can be dropped
in the clean case. In the presence of randomness, they couple, however, to the corresponding Fourier
harmonics of disorder δtj . The replica trick is employed to average over disorder. As a result, the
following terms in the action representing effective “interactions” between different replica species a, b
are generated:

Sk0 = −8(1− cos k0)
πa

Dk0

∫
dxdτdτ ′

∑
a,b

[
iγaLγ

b
L sin

(
φa + θa − φb − θb

)
+ iγaRγ

b
R sin

(
φa − θa − φb + θb

)
− iγaLγbR sin

(
φa + θa − φb + θb

)]
,

Sk0+π = −8(1 + cos k0)
πa

Dk0+π

∫
dxdτdτ ′

∑
a,b

[
iγaLγ

b
L sin

(
φa − θa − φb + θb

)
+ iγaRγ

b
R sin

(
φa + θa − φb − θb

)
− iγaLγbR sin

(
φa − θa − φb − θb

)]
,

S2k0 = − 1
π2a2D2k0

∫
dxdτdτ ′

∑
a,b

cos
(
2φa − 2φb

)
sin
(
2θa
)

sin
(
2θb
)
,

S2k0+π = − 1
(πa)2D2k0+π

∫
dxdτdτ ′

∑
a,b

cos
(
2φa − 2φb

)
,

Sπ = − 8
πa
Dπ

∫
dxdτdτ ′

∑
a,b

[
4γaLγaRγbRγbL + cos2 k0 cos

(
2θa
)

cos
(
2θb
)]
. (A.1)
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Each term Ski is labeled by the corresponding momentum component ki. Some of the terms allow
for a simple physical explanation. In particular, the action term S2k0+π represents the backscattering
between the right and left Fermi-point of the emergent Luttinger-liquid sector, while Sπ corresponds
to backscattering processes commensurate with the lattice. The RG equations summarized in Table
2.1 and Eq. (2.28) are then inferred in analogy with Ref. [154]. The most relevant terms are S2k0+π
and Sπ. The contribution of the term S2k0+π to the renormalization of K, Eq. (2.28), is analogous to
backscattering in Giamarchi-Schulz RG. For the other term, Sπ, the duality exchanging φ ↔ θ and
K ↔ K−1 may be used to find the contribution to K.
While the forward scattering can be completely gauged away in the standard Giamarchi-Schulz RG,

here the transformation gauging it out generated additional terms. However, a direct inspection shows
that they are irrelevant in the RG sense.
The interaction generates a replica-diagonal term that couples the Luttinger-liquid and Majorana

sectors:

Sint = −g′
∫

dxdτ
∑
a

γaLγ
a
R(ΨLΨR + Ψ†LΨ†R)

= −2g′
∫

dxdτ
∑
a

γaLγ
a
R cos

(
2θa
)
. (A.2)

This term is RG-irrelevant in the range of interest, K < 1; the corresponding dimensional coupling is
denoted y′ in Table 2.1. Higher terms respecting the symmetry are, of course, also generated. It can
be checked by dimension counting that all terms arising due to interaction remain irrelevant in the
range 1/4 < K < 1.

A.2 Origin of low-energy suppression of wave function correlations in
disordered complex-fermion chain

In this Appendix, analytical arguments are presented explaining the origin of the suppression of eigen-
state correlations in a complex-fermion chain at low energies found numerically in Sec. 2.5.2. An
eigenvector Ui+1,ε of Hamiltonian (2.39) fulfills the following transfer matrix equation:

(
Ui+1,ε
Ui,ε

)
=
(
ε/ti+1 −ti/ti+1

0 1

)(
Ui,ε
Ui−1,ε

)
(A.3)

For zero energy, ε = 0, two sublattices are decoupled, so that the wave function lives on one sublattice.
For finite (but small) ε the wave function on the second sublattice is suppressed by ε. This implies
the suppression of the correlation functions C2(ε, r, L), CH(εα, εβ, r, L), and CF (εα, εβ, r, L) for odd r
by a factor ∼ ε2>, where ε> is the larger of two energies εα, εβ. This suppression is indeed numerically
observed, see Fig. 2.13 and the right panel of Fig. 2.16 which make evident the ε2> scaling of the odd-r
correlation functions. As is seen in this figure, for odd r the Fock term is substantially smaller than
the Hartree one, so that there is no cancellation between them and CHF ' CH .
For even r, an even stronger suppression holds for the Hartree-Fock correlation function. As an

198
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example, consider r = 2. Using the transfer-matrix equation (A.3), one gets the relation

|Ui,εα |2|Ui+2,εβ |
2 + |Ui+2,εα |2|Ui,εβ |

2

− 2Ui,εαUi+2,εαUi+2,εβUi,εβ

= 1
t22+i

(
ε2α|Ui+1,εα |2|Ui,εβ |

2

−2εαεβUi,εαUi+1,εαUi+1,εβUi,εβ + ε2β|Ui,εα |2|Ui+1,εβ |
2
)
. (A.4)

The left-hand side of Eq. (A.4) is the difference between the Hartree and Fock terms that enters the
correlation function CHF for r = 2. On the other hand, the right-hand-side is the linear combination
of CH and CF terms for r = 1, each of them multiplied by a factor quadratic in energies. This proofs
that CHF for r = 2 is suppressed by an additional factor ∼ ε2> in comparison with the r = 1 correlation
function CHF ' CH ,

CHF (εα, εβ, 2, L) ∼ ε2>CHF (εα, εβ, 1, L). (A.5)

The same argument holds for other even r. This is fully supported by the numerical data, as shown
in Fig. A.1 where the ratio CHF (ε1, εn, 2, L)/CHF (ε1, εn, 1, L) multiplied by ε−2

n is plotted for different
n, as a function of L. The reader is reminded that εn scales exponentially as a function of L and n,
see Eq. (2.36). Each of the factors CHF (ε1, εn, 2, L), CHF (ε1, εn, 1, L), and ε−2

n , when taken separately,
changes within an enormous range of many dozens of decades, see, e.g. Figs. 2.15 and 2.16. On the
other hand, the product plotted in Fig. A.1 changes only weakly (at most linearly in L, which means
logarithmically in ε), in full agreement with the analytical argument.
Since it was shown above that the odd-r correlation function in the right-hand side of Eq. (A.5)

scales as ε2>, the even-r Hartree-Fock correlator should scale as ε4> according to this equation. The ε4>
scaling of CHF for even r is indeed observed numerically, see Fig. 2.15.

A.3 Disordered Majorana chain with mean-field treatment of
interaction in the Ising + LL phase

In this Appendix, an analysis of the disordered Majorana chain that treats disorder exactly and the
interaction on the mean-field level is presented. This approach is in a sense complementary to those
in the main text of the paper. In the weak-disorder RG of Sec. 2.4 the interaction was treated exactly
and the disorder was considered as a perturbation. Contrary to this, the analysis of Sec. 2.5 considered
disorder exactly and the interaction perturbatively. Here, the disorder is treated by using the field-
theoretical σ model approach. This treatment is essentially exact, in analogy with Sec. 2.5. The
key differences with Sec. 2.5 are that (i) a sufficiently strong repulsive interaction for which the clean
system is in the Ising+LL phase is considered, and (ii) the interaction is included on the mean-field
level only. This allows one to obtain the phase diagram of the system in the plane spanned by the
disorder strength and the staggering. The phase diagram contains four distinct topological phases. Of
course, from Sec. 2.5 and from the numerical study in Sec. 2.3.2 it is known that including effects of
interaction beyond the mean-field level destabilizes the system on the critical line. This means that the
transitions between the topological phases are in fact not of second order (as found in the mean-field
treatment below) but rather of first order. On the other hand, the phase diagram is expected to remain
applicable also beyond the mean-field level.
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Figure A.1: Ratio CHF (ε1, εn, 2, L)/CHF (ε1, εn, 1, L) multiplied by ε−2
n for the first twenty levels

n (in distinct colors) as a function of L. The data show only a weak (at most linear)
dependence on L (that corresponds to a logarithmic energy dependence), which
should be contrasted to the exponential L dependence of both entering correlation
functions CHF and of the energy εn. This confirms the analytic prediction in Eq.
(A.5), with possible logarithmic-in-energy corrections.
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At mean-field level with respect to the interaction, the third nearest neighbor hoppings are generated
and the nearest-neighbor hopping is renormalized. The full mean-field Hamiltonian, including the
randomness δtj in the nearest neighbor hopping, reads

HMF
I+LL = i

2
∑
j

[
(t1 + t2 + (−1)j(t1 − t2) + 2δtj)γjγj+1

+((t′1 + t′2) + (−1)j(t′1 − t′2))γjγj+3
]
. (A.6)

By choosing t1 6= t2 or t′1 6= t′2, the system can be staggered. The random component δtj of the hopping
is assumed to have Gaussian statistics, with zero average.
The formalism presented in Refs. [115, 288] for a particular model can be extended to the case of

generic banded Hamiltonians. For convenience, the computations were performed in class AIII instead
of BDI (i.e., allowing for complex δtj). The results for AIII shown here remain essentially the same
for the class BDI as can be checked numerically using transfer matrices.
The calculations proceed by integrating out the disorder using the supersymmetry formalism. After

Hubbard-Stratonovich decomposition and saddle-point expansion (which yields the self-consistent Born
approximation), one arrives at a non-linear sigma model describing the disordered wire. The action
describes the soft modes T ∈ GL(1|1):

S[T ] = χ̃str(T∂T−1)− ξ̃2

4 str(T∂2T−1). (A.7)

There are two coupling constants here: ξ̃ has a meaning of the bare conductance, and χ̃ of the bare
topological index. Under RG, these coupling constants get renormalized. The theory thus exhibits a
two-parameter RG flow, which is largely analogous to the Khmelnitskii-Pruisken flow for the 2D theory
describing the quantum Hall effect.
Except for the case of half-integer bare values, χ̃ flows to the nearest integer value, which is the

actual topological index χ. Half-integer values of χ̃ are stable under RG-flow and correspond to
critical theories at the boundary of two topologically distinct phases. To determine the phase diagram,
one thus should compute the dependence of the bare index χ̃ on parameters of the chain. These
dependences are obtained when one derives the σ model from the microscopic model, as sketched
above. Details of this calculation are skipped, since it is analogous to that carried out for a different
microscopic model in Ref. [115], which is briefly reviewed in Sec. 1.4. A general 1D non-interacting
Hamiltonian H with chiral symmetry and with translational invariance in average can be written as:

H = hn
∑
i

a†i+nbi +
∑
i

rn,ia
†
i+nbi + h.c. (A.8)

Here ai and bi are operators on two sublattices, hn are the average hopping matrix elements, and rn,i
are random contributions to hopping that are characterized by zero mean and by the variance〈

rn,ir
∗
m,j

〉
= wnδi,jδn,m. (A.9)

One finds the following result for the bare index χ̃ in terms of the parameters of H:

χ̃ =
∑
q

h−(q)v+(q)
Σ2

0 + h+(q)h−(q)
+
∑
n

nun, (A.10)
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where

h−(q) =
∑
n

hne
−inq, (A.11)

h+(q) =
∑
n

hne
inq, (A.12)

v+(q) =
∑
m,n

(n−m)unhmeimq, (A.13)

un = w2
n∑

mw
2
m

, (A.14)

and the self-energy Σ0 is a solution of the equation∑
n

w2
n

∑
q

1
Σ2

0 − h+(q)h−(q)
= 1 (A.15)

representing the self-consistent Born approximation.
The Hamiltonian (A.6) is a particular case of Eq. (A.8). The nearest and third nearest neighbor

hopping of Eq. (A.6) are encoded in terms of Eq. (A.8) in h1 = t1, h2 = t′1, h0 = t2, and h−1 = t′2.
Further, the randomness in the nearest neighbor hopping of Eq. (A.6) translates into u0 = 1/2 and
u1 = 1/2. The resulting phase diagram in the parameter plane spanned by disorder strength w and
staggering t′1 − t′2 is shown in Fig. A.2.

The analytical results (black lines show the corresponding phase boundaries) are compared with
those of direct transfer matrix numerics in in Fig. A.2. Four topological phases ( with χ = −1, 0,
1, and 2) as obtained by the latter approach are shown by different colors in Fig. A.2. An excellent
agreement between the analytical and numerical data is observed. This is quite non-trivial since (i)
the σ model derivation holds in the limit of large number of channels, N � 1, whereas this model
corresponds to N = 3, (ii) the analytical calculation of parameters of the σ model is controlled fir weak
disorder, w/t� 1, whereas a very good agreement also for w/t ∼ 1 is found here.

The self-duality transformation ensures that the zero-staggering line (t′2 = −0.7 in Fig.A.2) is critical
within this mean-field analysis. An important observation is that the critical line is adjacent only to
0 (green) and 1 (blue) topological phases for finite disorder.
In the clean DMRG analysis, Sec. 2.3.1, only two distinct topological phases were observed, which

correspond to the green and blue phases of Fig. A.2. The other two phases (red and yellow) can only be
reached by adding the third nearest neighbor hopping explicitly [31] since otherwise the Hamiltonian
(A.6) with the corresponding parameters can not be obtained as a mean-field Hamiltonian of an
interacting Majorana chain. When disorder is added to the mean-field model, one can observe that
the parameter space for the red and yellow phases shrinks.
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Figure A.2: Phase diagram of the mean-field Hamiltonian (A.6) describing the Ising+LL phase
of the disordered Majorana chain. The parameters t′1 = −0.7 and t2 = t1 = t = 1
are fixed. The phase diagram is shown in the plane spanned by disorder w and the
hopping t′2. The zero staggering corresponds to t′2 = t′1 = −0.7. Black lines are phase
boundaries as obtained analytically via mapping on the σ model from the condition
that the bare index χ̃ is half-integer. Colored regions are four distinct topological
phases with the values of the topological index χ equal to -1 (red), 0 (green), 1
(blue), and 2 (yellow), as obtained from the transfer-matrix numerics. A perfect
agreement between numerical and analytical results is observed. At zero disorder,
w = 0, and zero staggering, t′1 − t′2 = 0, three critical lines meet, yielding a critical
theory with central charge c = 3/2.
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B Appendix B

Generalized multifractality at the SQH
transition

This appendix is based on Ref. [105].

B.1 Class A eigenoperators

In this Appendix, the analytical expressions for the coefficients of the K-invariant scaling operators PAλ
are derived for arbitrary Young diagrams λ = (q1, . . . , qn). These operators for |λ| ≡ q ≡ q1 + . . .+qn =
2, 3, and 4 are determined in Sec. 3.5.3.1, see Eq. (3.184).
To find P̃Aλ analytically, Young-symmetrized expressions for eigenoperators from Ref. [87] are used.

Subsequently they are expressed in terms of the characters χ of representations of the symmetric group
Sq. These operators (that will be denoted as P̃Aλ ) are plane waves in the Iwasawa construction and
also highest-weight vectors, and are not K-invariant. One can then perform the U(n)×U(n)-averaging
of these combinations to derive the K-invariant operators.
It is convenient to define Q = QRR − QAA + QRA − QAR for the following lines. Further, let

νij = tr
(
EijQ

)
be matrix elements of Q, and Sq the symmetric group. In Ref. [87], expressions for

eigenoperators in terms of Young-symmetrized products of matrix elements νij of Q were derived. As
an example, start with the most antisymmetric operators (1, 1, . . . , 1). According to Ref. [87], the
determinant of the q × q subblock ν̂q of the matrix ν̂,

P̃A(1,1,...,1) ≡ det ν̂q =
∑
σ∈Sq

sign(σ)
q∏
i=1

νi σ(i) , (B.1)

belongs to the representation (1, 1, . . . , 1). The opposite extreme is the most symmetrized operator,
which is given by the permanent of the same matrix,

P̃A(q) = perm ν̂q ≡
∑
σ∈Sq

q∏
i=1

νi σ(i) , (B.2)

and belongs to the representation (q). For a generic representation (Young diagram) λ, the operator
P̃Aλ is obtained by applying the corresponding combination of symmetrization and antisymmetrization
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operations [87]. One can express the scaling operators P̃Aλ in terms of the immanants of the matrix ν̂q
(multilinear forms invariant under permutations generalizing the determinant):

P̃Aλ = Immλ ν̂ ≡
∑
σ∈Sq

χλ(σ)
∏
i

νi σ(i) , (B.3)

where χλ is the character of the λ representation of Sq. In the special case of λ = (1, 1, . . . , 1), this
character reduces to the sign function on Sq. For λ = (q) one obtains χ(q) = 1. This formula can
be found from mapping the generic Young-symmetrized wave-function combinations in Ref. [87] to
sigma-model operators. The Young symmetrization makes the characters χλ(σ) to appear naturally
in the above expression [289].
Now one can perform the U(n)× U(n) averaging of Eq. (B.3) to obtain the K-invariant operators.

In the cycle decomposition of Sq, each equivalence class can be labeled by a Young diagram µ with
|µ| = q. Let [µ] be the equivalence class containing σ. Under U(n) × U(n) averaging, and to leading
order in the replica limit n→ 0, one has〈 q∏

i=1
νi σ(i)

〉
U(n)×U(n)

' n−qOµ , (B.4)

where Oµ are basis K-invariant operators defined in Eq. (3.176). Thus, one obtains for the expansion
of K-invariant operators PAλ in basis operators Oµ

PAλ =
∑
µ

#[µ]χλ(µ)Oµ , (B.5)

where #[µ] denotes the number of elements in the equivalence class [µ]. One can read off the matrices
of coefficients (PAq )λµ ≡ #[µ]χλ(µ) of the K-invariant operators. In Eq. (3.184), these matrices of
coefficients, as obtained from RG, were shown for q = 2, 3, and 4.

B.2 Transformations of the Q-field

In this Appendix, technical details to the transformation from the sigma-model field Q to the field
Q̃ that is most convenient for the derivation of RG equations are provided. This transformation is
used in Sec. 3.6.1.3 in course of establishing the mapping between sigma-model composite operators
and eigenstate observables. The fields Q and Q̃ represent two different parametrization of G/K [see
Eqs. (3.114) and (3.118)]; they are related by the rotation Q̃ = UΣQUΣ, Eq.(3.115), with the matrix UΣ
given by UΣ = diag(1,Σ1)τ , Eq. (3.116). The operators in the Q-representation in Sec. 3.6.1.3 contain
products of traces of the type O = tr(· · ·EaiaiΛQ · · · ), see Eq. (3.222) and its Sq-symmetrized version,
Eq. (3.224). When transformed to the Q̃-representation, this becomes O = tr(· · ·UΣEaiaiΛUΣQ̃ · · · ).
When deriving the RG rules above, it was assumed that the matrices multiplying the sigma-model
field are odd with respect to the operation (3.141); see Eq. (3.150). A subtlety arises since the matrix
UΣEaiaiΛUΣ does not satisfy this requirement. It is shown, however, in this Appendix that this is not
essential, and the operators (3.224) undergo the same RG equations as derived in Sec. 3.5.3.2, so that
the pure-scaling observables are constructed from them according to Eq. (3.189). To prove this, it is
shown that the operators O are equivalent to Õ = tr(· · · ẼaiaiΛQ̃ · · · ) by using gauge transformations
〈O〉Ub = Õ with a certain subgroup Ub ⊂ K ≡ U(2n). The newly introduced matrices

ẼaiaiΛ = 1
2diag(Eai,ai + E−ai,−ai ,−Eai,ai − E−ai,−ai)τ (B.6)
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are odd under the symmetry operation (3.141) as required.
The average of O over the subgroup Ub of the full gauge group K = U(2n) is computed:

〈tr(· · ·EaiaiΛQ · · · )〉Ub =
∫
Ub
dµ(U)tr(· · ·UΣUEaiaiΛU †UΣQ̃ · · · ) , (B.7)

where µ is the Haar measure on Ub. Choose Ub to be the block-diagonal subgroup Ub = U(2)nΣ ⊂ U(2n)
with n two-by-two blocks in particle-hole space Σ. These n blocks correspond to n replica indices
1, . . . n. Here one needs to distinguish between the matrix Eaiai living in 2n × 2n combined replica
and particle-hole (Σ) space (that are represented by associating with each replica ai a replica −ai, see
Sec. 3.4) and the matrix En×nai,ai living in the n×n replica space. They are related by Eaiai = En×nai,aiΣ+,
where Σ± = (1Σ ± Σ3)/2 and 1Σ is the identity matrix in Σ space. For computing the average over
the matrix U ∈ Ub it is advantageous to simplify:

UΣUEaiaiΛU †UΣ =
(

1
Σ1

)
τ

(
Uai

U∗ai

)
τ

(
En×nai,aiΣ+

En×nai,aiΣ+

)
τ

(
1
−1

)
τ

(
U †ai

UTai

)
τ

(
1

Σ1

)
τ

=
(
En×nai,aiUaiΣ+U

†
ai
−En×nai,aiΣ1U

∗
aiΣ+U

T
aiΣ1

)
τ

. (B.8)

Here Uai is the two-by-two Σ-space block of the matrix U corresponding to the replicas ai and −ai.
Now one can integrate over the n independent U(2) subgroups, out of which Ub is composed. Since

all ai are assumed to be distinct in the considered composite operators O, the integrals decouple and
one finds 〈UaiΣ+U

†
ai〉U(2) = 〈U∗aiΣ+U

T
ai〉U(2) = 1

21Σ. Since 1Σ = Σ+ + Σ− and En×nai,aiΣ± = E±ai,±ai , one
obtains

〈tr(· · ·EaiaiΛQ · · · )〉Ub = tr(· · · ẼaiaiΛQ̃ · · · ) , (B.9)

with the matrix ẼaiaiΛ defined in Eq. (B.6). This proves that the operators O = tr(· · ·EaiaiΛQ · · · )
undergo the same RG flow as Õ = tr(· · · ẼaiaiΛQ̃ · · · ) since they coincide up to terms that vanish upon
the averaging over a subgroup of the gauge group. Since ẼaiaiΛ is odd under the operation (3.141), the
RG flow equations derived in Sec. 3.5.3.2 apply. This completes the justification of applying Eq. (3.189)
for pure-scaling operators of class C (derived in Q̃ parametrization) to eigenstate basis combinations
corresponding to operators in Q-representation, Eq. (3.223). The corresponding analytical predictions
are verified numerically in Sec. 3.6.3.3.
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