
Trusted SoC Realization for Remote Dynamic IP
Integration

Zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS (Dr.-Ing.)

von der KIT-Fakultät für

Elektrotechnik und Informationstechnik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

M. Sc. Nadir Muhammad Khan
geboren in Peshawar (Pakistan)

Tag der mündlichen Prüfung: 30.11.2021

Hauptreferent: Prof. Dr.-Ing. Dr. h. c. Jürgen Becker

Korreferent: Prof. Dr.-Ing. Jörg Henkel

Abstract

Nowadays, field-programmable gate arrays (FPGAs) offer enormous computational

power and flexibility. Furthermore, they are often integrated on a single chip with

embedded multi-core processors, DSP engines, and memory controllers. This makes

them suitable for large and complex applications. Simultaneously, the progress made

in the field of high-level synthesis and availability of standardized interfaces (such

as Advanced eXtensible Interface 4) led to the development of specialized and novel

functionalities by design houses. All this created a need for outsourcing or licensing

FPGA intellectual properties (IPs). A pay-per-use IP licensing model where these IPs

are protected from all the market participants will benefit the developers of the IPs.

Also, FPGA system developers are usually small to medium enterprises that can benefit

from it in terms of time-to-market and per-unit cost.

In academia and industry, several IP licensing models and protection solutions are

available that can be deployed; however, they are prone to multiple security challenges.

In some cases, the proposed security measures caused unnecessary resource overhead

and restrictions for the system developers, i.e., they are restricted from using the

essential features of their device. Furthermore, they do not address two functional

challenges: the floorplanning of the IP on the programmable logic (PL) and the

generation of IP’s end-product (bitstream) independent of the overall design.

In this work, a pay-per-use licensing scheme is proposed and realized using a security
framework (SFW) to address all these challenges. The scheme is pragmatic, less restrictive

for the system developers, and offers security against IP theft. Furthermore, measures

are taken to protect the system from an IP that has malicious circuitry in it. The SFW

comprises a trusted operating system (OS), a rich OS, several supporting components

(e.g., TrustZone logic, side-channel attack (SCA) resistant decryption engine), and

software components, e.g., bitstream analysis. A device running the SFW can be

considered a trusted device that can directly communicate with a repository or an IP core

developer to acquire the IP in an encrypted form. The decryption and authentication

I

Kurzfassung

of the IP happen on the device, which reduces the attack surface and makes them less

prone to IP theft attacks. Also, the plaintext IP is stored in a protected memory of

the trusted OS. The plaintext IP is then analyzed and only configured on the PL if it

is authentic and has no malicious circuitry. The bitstream analysis functionality and

the SFW subcomponents make it possible to partition the PL resources into secure and

non-secure ones, i.e., extending the trusted execution environment (TEE) concept to the

PL. This is the first work so far that has extended the TEE to the PL.

The aforementioned SCA-resistant decryption engine is an advanced encryption

algorithm’s implementation that is modified to resist electromagnetic and power

consumption leakages. The protected design has two countermeasures where the first

one supports implementation diversity and moving target defense, while the second

one only supports implementation diversity. These countermeasures are scalable even

at run-time. The evaluation of these countermeasures also includes scalability’s effect

on the area overhead and security strength.

In addition, the earlier mentioned functional challenge of floorplanning IPs is addressed

by proposing mixed-integer linear programming based fine-grained Automatic Floor-
planner, which targets recent, larger, and complex FPGA devices. The floorplanner maps

a set of IPs on the FPGA by creating precise reconfigurable regions. This maximizes the

remaining available resources for the overall design. The second functional challenge

is that existing tools do not provide a flow to generate IPs in a standalone environment.

The challenge is addressed by proposing an independent IP generation flow. This flow

can be used by the market participants to generate IPs of a design independent of the

overall design without compromising IPs’ compatibility with the overall design.

II

Zusammenfassung

Heutzutage bieten field-programmable gate arrays (FPGAs) enorme Rechenleistung

und Flexibilität. Zudem sind sie oft auf einem einzigen Chip mit eingebetteten

Multicore-Prozessoren, DSP-Engines und Speicher-Controllern integriert. Dadurch

sind sie für große und komplexe Anwendungen geeignet. Gleichzeitig führten

die Fortschritte auf dem Gebiet der High-Level-Synthese und die Verfügbarkeit

standardisierter Schnittstellen (wie etwa das Advanced eXtensible Interface 4) zur

Entwicklung spezialisierter und neuartiger Funktionalitäten durch Designhäuser. All

dies schuf einen Bedarf für ein Outsourcing der Entwicklung oder die Lizenzierung

von FPGA-IPs (Intellectual Property). Ein Pay-per-Use IP-Lizenzierungsmodell, bei

dem diese IPs vor allen Marktteilnehmern geschützt sind, kommt den Entwicklern der

IPs zugute. Außerdem handelt es sich bei den Entwicklern von FPGA-Systemen in der

Regel um kleine bis mittlere Unternehmen, die in Bezug auf die Markteinführungszeit

und die Kosten pro Einheit von einem solchen Lizenzierungsmodell profitieren können.

Im akademischen Bereich und in der Industrie gibt es mehrere IP-Lizenzierungsmodelle

und Schutzlösungen, die eingesetzt werden können, die jedoch mit zahlreichen

Sicherheitsproblemen behaftet sind. In einigen Fällen verursachen die vorgeschlagenen

Sicherheitsmaßnahmen einen unnötigen Ressourcenaufwand und Einschränkungen

für die Systementwickler, d. h., sie können wesentliche Funktionen ihres Geräts nicht

nutzen. Darüber hinaus lassen sie zwei funktionale Herausforderungen außer Acht:

das Floorplanning der IP auf der programmierbaren Logik (PL) und die Generierung

des Endprodukts der IP (Bitstream) unabhängig vom Gesamtdesign.

In dieser Arbeit wird ein Pay-per-Use-Lizenzierungsschema vorgeschlagen und unter

Verwendung eines security framework (SFW) realisiert, um all diese Herausforderungen

anzugehen. Das vorgestellte Schema ist pragmatisch, weniger restriktiv für Systemen-

twickler und bietet Sicherheit gegen IP-Diebstahl. Darüber hinaus werden Maßnahmen

ergriffen, um das System vor einem IP zu schützen, das bösartige Schaltkreise

enthält. Das „Secure Framework“ umfasst ein vertrauenswürdiges Betriebssystem, ein

III

Kurzfassung

reichhaltiges Betriebssystem, mehrere unterstützende Komponenten (z. B. TrustZone-

Logik, gegen Seitenkanalangriffe (SCA) resistente Entschlüsselungsschaltungen) und

Softwarekomponenten, z. B. für die Bitstromanalyse. Ein Gerät, auf dem das

SFW läuft, kann als vertrauenswürdiges Gerät betrachtet werden, das direkt mit

einem Repository oder einem IP-Core-Entwickler kommunizieren kann, um IPs in

verschlüsselter Form zu erwerben. Die Entschlüsselung und Authentifizierung des IPs

erfolgt auf dem Gerät, was die Angriffsfläche verringert und es weniger anfällig für

IP-Diebstahl macht. Außerdem werden Klartext-IPs in einem geschützten Speicher des

vertrauenswürdigen Betriebssystems abgelegt. Das Klartext-IP wird dann analysiert

und nur dann auf der programmierbaren Logik konfiguriert, wenn es authentisch ist

und keine bösartigen Schaltungen enthält. Die Bitstrom-Analysefunktionalität und die

SFW-Unterkomponenten ermöglichen die Partitionierung der PL-Ressourcen in sichere

und unsichere Ressourcen, d. h. die Erweiterung des Konzepts der vertrauenswürdigen

Ausführungsumgebung (TEE) auf die PL. Dies ist die erste Arbeit, die das TEE-Konzept

auf die programmierbare Logik ausweitet.

Bei der oben erwähnten SCA-resistenten Entschlüsselungsschaltung handelt es sich

um die Implementierung des Advanced Encryption Standard, der so modifiziert

wurde, dass er gegen elektromagnetische und stromverbrauchsbedingte Leckagen

resistent ist. Das geschützte Design verfügt über zwei Gegenmaßnahmen, wobei die

erste auf einer Vielzahl unterschiedler Implementierungsvarianten und veränderlichen

Zielpositionen bei der Konfiguration basiert, während die zweite nur unterschiedliche

Implementierungsvarianten verwendet. Diese Gegenmaßnahmen sind auch während

der Laufzeit skalierbar. Bei der Bewertung werden auch die Auswirkungen der

Skalierbarkeit auf den Flächenbedarf und die Sicherheitsstärke berücksichtigt.

Darüber hinaus wird die zuvor erwähnte funktionale Herausforderung des IP Floor-

planning durch den Vorschlag eines feinkörnigen Automatic Floorplanners angegangen,

der auf gemischt-ganzzahliger linearer Programmierung basiert und aktuelle FPGA-

Generationen mit größeren und komplexen Bausteine unterstützt. Der Floorplanner

bildet eine Reihe von IPs auf dem FPGA ab, indem er präzise rekonfigurierbare

Regionen schafft. Dadurch werden die verbleibenden verfügbaren Ressourcen für

das Gesamtdesign maximiert. Die zweite funktionale Herausforderung besteht darin,

dass die vorhandenen Tools keine native Funktionalität zur Erzeugung von IPs in einer

eigenständigen Umgebung bieten. Diese Herausforderung wird durch den Vorschlag

eines unabhängigen IP-Generierungsansatzes angegangen. Dieser Ansatz kann von

den Marktteilnehmern verwendet werden, um IPs eines Entwurfs unabhängig vom

Gesamtentwurf zu generieren, ohne die Kompatibilität der IPs mit dem Gesamtentwurf

zu beeinträchtigen.

IV

Preface

The presented work has been accomplished while I was a research associate at the FZI

Research Center for Information Technology, from February 2017 to September 2021.

During this period, I was also a Ph.D. student at the Institute for Information Processing

Technologies (ITIV) at the Karlsruhe Institute of Technology (KIT).

From earlier on, my interests were to gain knowledge and work in digital design and

security. I was fortunate enough to work as a digital designer in the industry for a

couple of years. The opportunity of researching the security of embedded systems

showed up at the right time, and I am happy to have availed it. I am thankful to

Prof. Dr-Ing. Dr. h. c. Jürgen Becker for offering this opportunity and believing in

my capabilities. He also deserves sincere gratitude for his guidance and support that

enabled me to pursue the research work at his institute. In his supervision, the most

appreciatable traits were the freedom of exploring the research topics and the trust in

the direction of the research I wanted to follow.

I also thank Prof. Dr.-Ing. Jörg Henkel from the Chair for Embedded Systems (CES) at

KIT for the discussions, questions, feedback, and accepting the invitation to be one of

my reviewers. I also owe my gratitude to Dr. Lars Bauer from CES for reviewing the

thesis and offering sound advice throughout the work. I am pleased to have worked

with them on several topics.

Furthermore, I thank the colleagues at FZI, ITIV, and other institutes for their friendship

and support. I am privileged to have worked with these competent people and

appreciate the exciting discussions, questions, ideas, and feedback. I want to mention

some of them who made this journey pleasant and interesting (in no particular order):

Arthur Silitonga, Bo Liu, Brian Pachideh, Carsten Tradowsky, Jorge Castro-Godínez,

Manuel Haerdle, Thomas Bruckschloegl, Sven Nitzsche, Stefan Schatz, and Victor

Pazmino. While working at FZI, I had the opportunity to supervise several students.

Their hard work and dedication also deserve special thanks as they helped achieve the

V

Vorwort

goals I had set.

I want to thank my parents, Nisar Muhammad Khan and Parveen Nisar, for always

supporting my decisions and motivating me to pursue the doctorate. I also want to

thank my wife, Noreen Wali, for her support and care. She stood with me through thick

and thin and was always there to celebrate all our achievements. Last but not least, I

want to mention my two years old son Ibrahim Khan, who brought joy to our lives.

. . .

Karlsruhe, den December 15, 2021

M. Sc. Nadir Muhammad Khan

VI

Contents

Abstract . I

Zusammenfassung . III

Preface . V

1 Introduction . 1

1.1 Participants of the FPGA IP Market . 3

1.2 Types of IP Licensing Models . 3

1.3 Delivery Format . 4

1.4 FPGA IP Market Challenges . 5

1.5 Contributions and Outline . 7

2 Background . 11

2.1 Reconfigurable Devices . 11

2.1.1 Basic Components . 12

2.1.2 Topology . 12

2.1.3 Programming Technology . 13

2.1.4 Dynamic Partial Reconfiguration (DPR) 16

2.2 Information Assurance . 17

2.2.1 Key Storage . 18

2.3 Cryptographic Algorithms . 20

2.3.1 Hashing Functions . 20

2.3.2 Symmetric Key Algorithms . 21

2.3.3 Asymmetric Key Algorithms . 24

2.4 Secure Boot . 27

2.5 Trusted Execution Environment (TEE) . 28

2.5.1 Applications . 29

2.5.2 Hardware Support . 29

2.5.3 ARM TrustZone . 30

VII

Contents

3 Security Threats . 31

3.1 Theft Attacks . 32

3.1.1 SCAs on Cryptographic Implementations 32

3.1.2 DDR Memory Attacks . 33

3.1.3 Probing . 34

3.1.4 Readback Attack . 34

3.2 IP Misuses . 35

3.2.1 Cloning . 35

3.2.2 Reverse Engineering . 35

3.3 Malicious IPs . 36

3.3.1 Tampering Configured Designs . 36

3.3.2 Hardware Trojans . 37

4 Countermeasures against SCAs . 39

4.1 Related Work . 41

4.2 Proposed Countermeasures . 42

4.2.1 Target Function Relocation (TFR) 42

4.2.2 Noise Generation (NG) . 43

4.3 Implementation . 44

4.3.1 AES Serial . 45

4.3.2 Noise Module . 45

4.3.3 Partial Reconfiguration Controller (PRC) 45

4.3.4 SBOX Noise Select and Trigger Logic (SNTL) 45

4.3.5 Bare-Metal Application . 46

4.3.6 Configuration Times . 46

4.3.7 Scalability — Variants Generation and Deployment 47

4.3.8 Scalability — Resource Overhead 48

4.3.9 Throughput Overhead . 49

4.4 Evaluation . 49

5 Automatic Floorplanning of IPs . 55

5.1 State of the Art . 55

5.2 Problem Definition . 57

5.3 Device Representation . 58

5.3.1 FPGA Layout . 58

5.3.2 Grid Reduction and Granularity 59

5.3.3 FPGA Partitioning . 61

5.4 MILP Modeling . 61

5.4.1 Constants definition . 61

5.4.2 Control Variables . 62

VIII

Contents

5.4.3 Problem Linearization . 62

5.4.4 Constraints . 63

5.4.5 Objective Functions . 63

5.5 Experimental Results and Evaluation . 64

6 Standalone Generation of IPs . 67

6.1 Requirements . 67

6.2 Third Party Tools . 68

6.3 Proposed Solution using FV Tools . 70

7 IP Licensing Schemes . 73

7.1 Existing Proposals in the FPGA IP Market 73

7.1.1 Features or Limitations . 75

7.2 Assumptions . 78

7.2.1 Target Platform Features . 78

7.2.2 Trust on FV’s Devices and TTP . 78

7.3 Threat Model . 79

7.4 Trusted Platform . 79

7.4.1 Establish Trust on the Processing System (PS) 79

7.4.2 Extending TEE to the Programmable Logic (PL) 81

7.5 Proposed IP Licensing Scheme . 83

7.5.1 IP Core Enrollment . 83

7.5.2 Preparing Security Framework (SFW) 83

7.5.3 IP Licensing . 85

8 Implementation . 87

8.1 Memory Partitioning . 89

8.2 Restricting Configuration Interfaces . 89

8.2.1 Blocking PCAP . 89

8.2.2 Isolating PRC from rich OS . 90

8.3 Standalone Generation of IPs and SD’s Design 90

8.3.1 Design Partitioning . 91

8.3.2 Floorplanning . 92

8.3.3 Static Design Generation . 93

8.3.4 SD’s Protected Design . 95

8.3.5 CV’s Design . 95

8.4 Trusted and Rich Operating Systems . 96

8.5 Trusted Applications (TAs) . 96

8.5.1 Asymmetric Encryption/Decryption 97

8.5.2 Authentication of Encrypted IPs 97

IX

Contents

8.5.3 Symmetric Encryption/Decryption 98

8.5.4 PRC Configuration and Trigger . 98

8.5.5 Partitioning of the Programmable Logic (PL) 98

8.6 Integration and Secure Boot . 100

8.7 Application Execution . 100

8.7.1 Encrypted Bitstream . 100

8.7.2 Plain-text Bitstream . 101

9 Security Analysis and Possible Security Enhancements 103

9.1 Malicious System Developer . 104

9.1.1 SCAs on Decryptions . 104

9.1.2 SCAs on DDR Memory . 105

9.1.3 Readback Attack . 106

9.2 Breach of Trust by the TTP . 107

9.3 Malicious Core Vendor . 107

9.4 TrustZone . 108

9.5 Variants of the Scheme . 108

9.6 Performance Evaluation . 108

10 Conclusion . 111

10.1 Future Work . 112

10.1.1 Trust in Devices . 112

10.1.2 Application Development . 113

X

Contents

Abbreviations . 115

List of Figures . 117

List of Tables . 119

Bibliography . 121

Supervised Student Research . 135

Own publications . 137

XI

1 Introduction

Field programmable gate arrays (FPGAs) are general-purpose semiconductor devices

that can be (re-)programmed after manufacturing. Among the programmable logic

devices, they offer the highest configurable resources and can be used to realize more

complex designs. They evolved from having fewer simple configurable logic blocks

(CLBs), and programmable interconnects to complex chips combining heterogeneous

configurable resources such as CLBs, blocks of random access memory (BRAMs), digital

signal processing (DSP) blocks, etc. Furthermore, their variants are available where

they are integrated with embedded multi-core processors, DSP engines, and memory

controllers, commonly known as programmable system-on-chip (SoC) FPGAs. Few

examples of their usage are accelerating algorithms, digital signal/image processing,

network infrastructures, ASIC prototyping, aerospace, defense, consumer electronics,

industrial motor control, scientific instruments, and security systems [137].

Since these devices offer enormous computational power and flexibility, they are used

to implement large and complex systems. Also, their support of the dynamic partial

reconfiguration (DPR) feature enables them even to host larger designs. Using DPR, a

library of functionalities can be provided to the device via a non-volatile memory (NVM)

and programmed dynamically over an existing functionality that is no longer in use.

However, the development of such systems or applications often requires significant

effort and competencies in several disciplines, e.g., machine learning, cryptography,

computer vision. To overcome these challenges, system developers can outsource their

system’s sub-functionalities to specialized third parties. Similarly, FPGA design of

novel algorithms or efficient implementation of existing ones can be licensed from

specialized third parties. This need to outsource or license designs/sub-functionalities

created an FPGA intellectual property (IP) market ecosystem. Figure 1.1 shows an SoC

FPGA, where IPs of specialized applications are integrated. For example, the developer

of this system can license FPGA IPs of automotive or computer vision applications.

1

1 Introduction

Figure 1.1: IPs of specialized applications configured on an SoC FPGA

Furthermore, these designs can be implemented at higher abstraction levels using

high-level synthesis tools [92] as they have improved significantly over the years. The

availability of standardized IP interfaces (such as Advanced eXtensible Interface 4

(AXI4) [125]) and DPR-like features also benefit the FPGA market by making the

development and integration of FPGA designs easier.

An essential aspect of the FPGA IP market is considering the security of these devices,

which can be viewed from two perspectives. Firstly, these devices are increasingly used

in applications that need security against adversaries interested in bypassing the security

of such applications. Secondly, the devices are used to implement sophisticated and

complex systems that require significant investment, which must be protected against

piracy [88], reverse engineering [11, 95], or tampering. To address the security threats

from both viewpoints, the device vendors provide several protection mechanisms.

However, for the second case, the focus is mainly on protecting the system developer’s

IPs. This makes the devices vulnerable in cases where system developers are licensing

IPs from other parties. In terms of security, this work is focused on highlighting these

vulnerabilities and offer solutions to protect third party IPs. In addition, security threats

to the system caused by these IPs are also considered and countered.

Like this work, others have developed tools, flows, and proposed licensing models to

protect the assets of individual participants of the FPGA IP market. However, they have

not addressed several functional and security challenges. To explain them and their

solutions, it is important first to present the participants of the FPGA IP market, types

of IP licensing models, and delivery format of the FPGA-based IPs. All these topics are

2

1.1 Participants of the FPGA IP Market

presented below in the same order as their mention. Then, challenges are outlined, and

the chapter concludes with the contributions of the thesis.

1.1 Participants of the FPGA IP Market
The participants of the FPGA IP market are introduced here, and their names are kept

the same as are presented in other related work [25, 174, 176, 82, 157].

• Hardware Manufacturer: It is a semiconductor foundry that manufactures

integrated circuits (ICs). There are companies, such as Intel, that do both

design and manufacturing of ICs. However, the complexity and cost aspect

of manufacturing led to the existence of companies that only do the design. They

are known as fab-less semiconductor companies, e.g., Xilinx. Similarly, there

are Pure Play foundries that only do the manufacturing of ICs, e.g., Taiwan

Semiconductor Manufacturing Company.

• FPGA Vendor (FV): They design and sell FPGA and SoC chips. They offer families

of products with varying sizes of programmable logic (PL) and hard-wired

functionalities for security and flexibility.

• IP Core Vendor (CV): These are design houses that provide IP cores. Their

specialty can be an efficient implementation of algorithms or a novel algorithm

for solving a problem.

• System Developer (SD): These participants are the consumers of the IP cores

designed by CVs. SDs provide a complete solution or product, where parts can

be outsourced to IP core vendors (CVs).

• Trusted Third Party (TTP): It is a role that can be played by a third party, which

supports the process of IP licensing as a neutral and trustworthy entity. Their

service can include managing encryption keys as well as IP or device registration.

1.2 Types of IP Licensing Models
The IP licensing model can be either perpetual (one-time) or non-perpetual. The

non-perpetual licensing can be per-use or periodic, or a combination of both. In software,

the discussion of perpetual versus pay-per-use licensing started quite earlier, which

suggests that the latter will lead to a lower cost without a large up-front payment [27].

Furthermore, it leads to a more significant investment in product development under

most conditions, which results in higher software quality [22]. These findings are

3

1 Introduction

also applicable to FPGA-based IPs because they are similar to software IPs from a

delivery and utilization perspective. For example, both can be delivered digitally via a

communication channel as their implementation’s end-product is in digital form.

Both types of IPs are implemented using programming languages and are processed

by tools to generate the end-product that can function on a device. The register

transfer level (RTL) description of an FPGA IP can be implemented using hardware

description languages (HDLs) such as Verilog, VHDL, or System-Verilog. Then, the

implementation is processed by the FPGA vendor (FV) tools to generate a device-specific

bitstream (FPGA configuration data). Similarly, a software IP can be implemented using

programming languages (e.g., C/C++ or Java). The implementation is then processed

by several tools (compiler, assembler, linker, etc.) to generate an application executable.

A perpetual IP licensing model for FPGA-based IPs will lead to a large up-front payment.

Usually, FPGA applications are low volume, and paying higher fees for IPs will result

in a higher per-unit cost, discouraging SDs from licensing IPs under such models.

On the other hand, a pay-per-use licensing model will result in lower per-unit costs.

Furthermore, the continued revenue from the licensed IP to the CV creates an incentive

to invest more into the quality of their IP. In conclusion, the pay-per-use model will

benefit the FPGA IP market and its participants. However, it is essential that the model

is simple, feasible, and provides security assurances to the CVs that their IP will not

be overused [88], reverse engineered [11, 95], or sold to another party by the system

developer (SD). Also, SDs would require assurances that the licensed IP is authentic

and free of malicious behavior.

1.3 Delivery Format
For FPGAs, an IP can be delivered as design files (RTL description) or configuration

data, commonly known as bitstream. The RTL description is implemented using

HDLs and then processed by the FPGA vendor (FV) tool to generate a device-specific

bitstream. Both forms need to be encrypted before delivery to avoid IP theft attacks

[88], e.g., reverse engineering and cloning. However, encrypted RTL-based IPs would

require support from the FV tools to decrypt, integrate, and process them to generate

their bitstreams. In addition, the generated bitstreams need to be in an encrypted form

for protection. All this indicates a substantial effort in developing these features in

the FV tools, which means IP core vendors (CVs) would require to share their revenue

with the FV and trust them with their IPs. Xilinx’s SignOnce IP Licensing [136] is an

example of one such approach. Alternatively, open-source or tampered FV tools can be

4

1.4 FPGA IP Market Challenges

used to avoid these shortcomings; however, they are often hard to use (lack of support)

and require continued maintenance. Also, companies, specifically CVs, would avoid

using tampered and/or non-certified tools because they might have a backdoor that

can be used to access the plain-text IPs. Another major drawback of using encrypted

RTL-based IPs is that they are processed with FV tools on a workstation, which leads to

a large attack surface that includes but is not limited to the FV tool, operating system,

and memories.

Alternatively, encrypted bitstream-based IPs (𝐼𝑃𝐸𝑛𝑐𝐵𝑖𝑡) can be decrypted on the FPGA

device and do not require further processing, which reduces the attack surface and

makes them less prone to IP theft attacks. Physical attacks [175, 94] on the device can be

used to extract their plain-text form, but these attacks are also valid for the encrypted

bitstream generated for RTL-based IPs. Therefore, like most other IP licensing schemes

[25, 42, 176, 82, 157, 158], this work focuses on distributing 𝐼𝑃𝐸𝑛𝑐𝐵𝑖𝑡 .

1.4 FPGA IP Market Challenges
As argued in Section 1.2, non-perpetual or pay-per-use licensing is the approach that

benefits the FPGA IP market in terms of IP quality, a steady stream of revenue for

CVs, and affordability for SMEs. It is also established, in Section 1.3, that delivering

𝐼𝑃𝐸𝑛𝑐𝐵𝑖𝑡 offers the highest level of security against IP theft or overuse. Of course, only

encrypting IP will not solve all the security issues, but it is the starting point. Since

these are the obvious choices, a large number of proposed solutions are based on them.

The primary goal of IP licensing models is securing IPs, and therefore the existing

solutions are focused on it. However, they have ignored other challenges such as

generation of IPs independent of the overall FPGA design, floorplanning of the IPs on

the FPGA, or detecting malicious behavior in an IP to protect SD’s design. In addition,

some security and feasibility challenges are also not addressed by these solutions.

For an overview, all these challenges are presented below.

1. Side-Channel Attacks: In almost all the IP licensing models, decryption engines

on the device decrypt the 𝐼𝑃𝐸𝑛𝑐𝐵𝑖𝑡 . These engines implement cryptographic

algorithms that are, in theory, secure against mathematical attacks. However,

their implementations suffer from physical attacks that are commonly known as

side-channel attacks (SCAs). Using SCAs, an adversary can extract the secret key

used in the decryption process and can, therefore, access the IP in plaintext form

(𝐼𝑃𝑃𝑙𝑎𝑖𝑛𝐵𝑖𝑡) (see Section 4).

5

1 Introduction

2. Manual Floorplanning: As mentioned in Section 1.3, licensed IPs must be

delivered as encrypted bitstreams. The first step in generating an IP’s bitstream

would be its floorplanning on the PL. However, existing FPGA vendor tools only

offer manual floorplanning of IPs on the PL. Manually placing IPs on the PL can

lead to inefficient utilization of the PL resources because modern FPGAs, unlike

initial ones, have an irregular distribution of heterogeneous resources such as

CLBs, BRAMs, DSPs, etc. Additionally, designs (IPs) are often realized using

more than one type of resource.

3. Standalone Generation of Design’s Bitstream: DPR feature, supported by major

FVs (See Section 2.1.4), can generate a bitstream of a sub-design specific to a PL

region, which can be afterward configured on that PL region using configuration

interfaces. However, the DPR flow follows an incremental design methodology,

which means IPs can only be realized after the static design (see Figure 2.2) is

implemented. The static design is like a stencil, where the missing pieces are IPs.

Without it, an IP cannot be implemented, and therefore its end-product cannot

be generated. Using the DPR feature means that CVs would require access to the

SD’s proprietary design, which in itself is a security threat to SD’s design. This

is the second functional challenge that is not addressed by any of the existing IP

licensing models.

4. Readback Attack: The next challenge to the FPGA IP market is the Readback

attack from which all existing solutions suffer. Readback is a debug feature that

can read out the configuration data even if the device’s security features are

enabled. This way, an adversary can access the plaintext IP (𝐼𝑃𝑃𝑙𝑎𝑖𝑛𝐵𝑖𝑡). The attack

is explained in detail in Section 3.1.4.

5. Malicious IP: Another critical issue is the existence of malicious functionalities

in IPs. Such malicious IPs can impact the system by changing its functionality,

degrade performance or cause leakage of secret information. The insertion of

malicious functionality by man-in-the-middle can be avoided by delivering IPs

in an authenticated encrypted form. However, it cannot be ensured that the CV

has not inserted such functionality. A malicious functionality can be a Trojan

or an attempt to tamper other PL regions that are not reserved for the IP (see

Section 3.3).

6. Relying on TTP: Some of the mentioned challenges can be mitigated by introduc-

ing a trusted third party (TTP) that mediates between CVs and SDs by managing

secret keys or confidential data. Most of the existing licensing models rely on a

TTP; however, the degree to which each party can rely on the TTP can also cause

6

1.5 Contributions and Outline

security problems. In most cases, they have or can easily have IP’s bitstream in

plaintext form.

7. Restricting Access of SD’s to their Device: Some of the existing solutions reduce

the degree of trust on the TTP by proposing countermeasures like core installation

modules (CIMs) [25, 42, 54, 82, 157, 158] or restricting SD’s access to the processing

system (PS) [39]. However, this leads to the blockage of PL or PS resources used

by their owner (SDs), which is also not a favorable outcome.

8. Hardware Modification: Some older licensing models [41, 42, 120] require

modification of FPGA devices to carry out their schemes. Such modifications

make a scheme inapplicable for available products and require the development

of new devices. In addition, they prevent the adoption of schemes by the industry.

1.5 Contributions and Outline
The main contributions of this thesis are listed below. They address all the challenges

presented in Section 1.4.

• The first challenge to the FPGA IP market is side-channel attacks that are countered

by proposing two countermeasures. They are based on the moving target and

implementation diversity concepts. Individual contributions specific to these

countermeasures are:

– A complete implementation of the countermeasures is done and presented.

An automated flow is implemented that generates different scaled variants of

the countermeasures. Furthermore, the implementation diversity part of the

countermeasures can be scaled up/down dynamically (see Section 4.3.7).

This makes the design easily adaptable to different scenarios and is a

significant improvement over other similar work.

– The implementation is realized and evaluated on the Xilinx Zynq UltraScale+

MPSoC ZCU102.

– Scaled variants of both countermeasures are evaluated individually and

combined to create a more secure system. Furthermore, the effect of

scalability on the resource overhead and security strength is presented.

Details of the proposed countermeasures, their implementation, and evaluation are
presented in Chapter 4.

• The second challenge, manual floorplanning, is addressed by implementing mixed-

integer linear programming (MILP) based fine-grained Automatic Floorplanner,

7

1 Introduction

which targets recent, larger, and complex FPGA devices, e.g., Xilinx Zynq Ultra-

Scale+ XCZU9EG-2FFVB1156 MPSoC. The floorplanner maps a set of IPs on the

FPGA by creating an optimized floorplan of reconfigurable regions (RRs). The

floorplanner considers the distribution of heterogeneous resources on FPGA’s

layout and the resources utilized by the IPs. The objective of the floorplanner is

to have minimum resource waste, which leads to higher resources for the static

design (see Figure 2.2) as the static design’s logic cannot be placed in the RRs of

the resulted floorplan.

The details of the floorplanner are presented in Chapter 5, including related work, problem
definition, device representation, MILP modeling, experimental results, and evaluation.

• The following contribution of the thesis is solving the problem of generating IPs

independently, i.e., the third challenge to the FPGA IP market. The work explains

the reasons why existing FV tools do not support independent IP generation.

Afterward, several requirements are presented and argued that if FV tools fulfill

them, they can generate compatible bitstream-based designs independently. This

makes the work general and can be adopted to any FV tools or devices. In the next

step, one of the requirements is analyzed that causes the lack of support. Then,

several third party tools are presented that can overcome the lack of support.

Since these tools also have limitations, a flow is presented that uses a trusted third

party to solve this problem. The added advantage is that it matches the target use

case, i.e., IP licensing schemes. Most IP licensing schemes utilize a third party

who is responsible for security-specific tasks.

The details of this contribution are presented in Chapter 6.

• Challenges from 4 to 8, presented in Section 1.4, are addressed with the thesis’s

main contribution: a pay-per-use IP licensing scheme and its realization using a

security framework (SFW). The scheme is practical, less restrictive for SDs to use

their device, offers security against IP theft, and protects the system from malicious

IPs. The SFW consists of a trusted execution environment (TEE), a rich execution

environment (REE), software modules for authentication, decryption, and analysis

of bitstreams. Furthermore, it also includes several hardware components that

are configured on the programmable logic (PL). Details of this contribution are

presented below.

– The TEE has access to the encrypted IPs, where they are decrypted, au-

thenticated, and analyzed for malicious behavior using trusted applications

(TAs).

– The bitstream analysis makes sure that the IP is targeted to the location of

the PL resources assigned to it. This feature allows the partitioning of the

8

1.5 Contributions and Outline

PL into a secure and non-secure region, i.e., extending the TEE concept to

the PL.

– The secure region contains components supporting the SFW, such as Trust-

Zone logic, a configuration controller, and interconnects. It also has RRs for

all licensed IPs.

– The non-secure region is for SDs, where they can configure their custom

designs (IPs).

– The configuration and readback of the secure PL region can only be issued

by the TEE. (Re-)configuration and readback of the non-secure PL region

are still possible from the non-secure master (REE) via an API implemented

in the TEE. This way, security is extended to the PL without affecting the

available features like DPR and readback. Here, the term non-secure only

means that the resources are non-secure for the unprotected licensed IPs

because SD has full access to them.

– The REE is for system developers (SDs) to run their applications. Further-

more, SDs can also configure their IPs (self-developed) on the non-secure PL

region.

– Validation of the scheme is done by implementing it on a Xilinx Zynq

UltraScale+ MPSoC ZCU102.

The details of the IP licensing model are presented in Chapter 7, and the implementation
issues are discussed in Chapter 8.

Holistically, the work tries to solve the practicality and security challenges of the FPGA

IP market. The work is the first usage of a trusted execution environment (TEE) for

IP protection and TEE extension to the programmable logic. The proposed security

framework isolates some device assets to provide a TEE while keeping most of the

device resources and features available to the system developer. The processing of

IPs (e.g., decryption, analysis, and configuration) happens in a trusted environment,

significantly reducing the attack surface. In addition, physical attacks on the decryption

engines and memory are investigated, and measures are implemented to counter these

attacks.

9

2 Background

The work described in this chapter was published in [179] and is joint work with co-authors
Sven Nitzsche, Asier Garciandia López, and Jürgen Becker. More details on contributions is
found in Section 1.5.

This chapter explains the relevant background knowledge required to understand the

contributions of the thesis, which is presented in two parts. The first one is about

reconfigurable devices, where their structure, types, and features (e.g., DPR) are briefly

discussed. These details will help understand automatic floorplanning and standalone

generation of IPs presented in Chapters 5 and 6, respectively.

The second part of the chapter presents the background knowledge in security. In-

formation assurance and its properties (e.g., confidentiality, integrity, authentication)

are introduced in this part. Since IPs are processed by the devices in the IP licensing

scheme use case, establishing these properties on the device will ensure that processed

IPs are secure. A system or device can have these properties using several security

mechanisms, e.g., cryptographic algorithms, trusted execution environment (TEE), and

secure boot. These sub-topics are also presented in the second part of the chapter.

2.1 Reconfigurable Devices
Reconfigurable or programmable logic devices (PLDs) are integrated circuits that can

be configured with any digital circuit or even reconfigure to update existing ones after

manufacturing. Programmable logic arrays, generic array logic, complex programmable

logic devices, and field-programmable gate arrays (FPGAs) are some examples of PLDs.

The rest of the section focuses on FPGAs, where a discussion is presented on the basic

components, topology, and programming technology. Afterward, the DPR feature is

discussed.

11

2 Background

2.1.1 Basic Components
The basic components of an FPGA are logic-, input/output- (I/O), wiring blocks, a clock

network, a configuration/scan chain, and a test circuit [53]. A generalized discussion is

provided below.

• Logic Block: A logic block can be implemented as a lookup table (LUT), a

multiplexer, or a product term logic. A product term logic means an AND-OR

array structure. These implementation methods have a programmable part, which

can be updated to realize any logic circuit [53].

• Input/Output Block: These are the blocks that connect I/O pins and the wiring

blocks. In addition, they have flip-flops to hold values and control circuits such

as the pull-up, pull-down, I/O directions, slew rate, and open drain.

• Wiring Block: Wiring channels, connection- and switch blocks can be collectively

called wiring blocks. They provide connection between logic blocks and between

logic and I/O blocks.

• Others: The logical functionality or connectivity of all the blocks discussed above

is determined by the value written in their respective configuration memory. A

configuration chain exists on FPGAs, which can be used to write the configuration

data bits to all configuration memories serially. Besides this, FPGAs have clock

networks, scan chains, and testing circuits.

The logic and routing resources of the device do not represent a specific functionality

and need to be programmed (configured) to realize one. Logic blocks, after program-

ming, are set to represent a sub-functionality, while the wiring/routing resources are

programmed to realize the desired connectivity between the logic blocks. Collectively

along with IO and other blocks, the device provides the desired functionality.

The storage of configuration information in the resources can be done using static

random access memory (SRAM), anti-fuse, or flash memory. Each type of memory has

its pros and cons that are discussed in Section. 2.1.3.

2.1.2 Topology
The FPGA layout can be realized in several ways based on the arrangement of logic

and interconnect resources. In [127], authors classified them into five categories: island

style, row-based, sea-of-gates, hierarchical, and one-dimensional structures. The details

can be found in [127]. An island-style architecture of the FPGA, along with the basic

components, is shown in Figure 2.1.

12

2.1 Reconfigurable Devices

Figure 2.1: Island-style FPGA structure [53]

2.1.3 Programming Technology
FPGAs are roughly categorized based on the semiconductor technologies used for the

manufacturing of the configuration memory. The technologies considered so far are

erasable programmable read-only memory (EPROM), electrical EPROM, flash, anti-fuse,

and SRAM. Among them, anti-fuse, flash, and SRAM are common and commercially

successful. A discussion on them is presented below.

Anti-fuse

Anti-fuse, as the name suggests, performs the opposite function to a fuse. This

type of memory provides volatile storage that is initially in an open state, having an

impedance in the order of a few giga-ohms [127]. The application of a high voltage

changes it permanently to the conducting state representing a digital circuit. Actel’s

programmable logic interconnect circuit element and QuickLogic’s ViaLink are some

examples that use this technology, whose structure and features are discussed in [4, pp.

28-29].

The pros of a programmable cell-based on Anti-fuse are as follows:

• Small size in comparison to SRAM and Flash memory cells;

• Nonvolatile, therefore, does not require external storage for configuration data on

power down.

• Highly resistant to Reverse engineering;

13

2 Background

• Robust against soft errors.

The cons are as follows:

• Cannot be re-programmed;

• Requires a special programmer;

• Programming takes longer;

• The programming yield is less than 100

Flash Memory

This type of memory uses non-volatile storage offered by EPROM, EEPROM, and flash

memory technologies. A typical transistor based on these technologies has two gates

instead of one, a control and a floating one. When current flows through the transistor,

electrons are trapped on the floating gate because it is isolated. The charge on the

floating gate is non-volatile and can be removed by exposing it to ultraviolet light in

EPROMs and applying an electrical field in the case of flash and EEPROMs [127]. More

details about the flash memory, its structure, types, and functionality can be found in [4,

pp. 25-26].

The pros of a programmable cell-based on Flash memory are as follows [4, pp. 30]:

• Non-volatile;

• Has lower size than that of SRAM;

• Can immediately operate on power-up;

• Can be re-programmed;

• Strong against soft errors.

The cons are as follows:

• Requires a high voltage for re-configuring in comparison to SRAM;

• State-of-the-Art CMOS process cannot be used;

• Restriction on the number of re-configurations.

14

2.1 Reconfigurable Devices

SRAM

SRAM is a random access memory that retains data as long as power is being supplied.

They are usually composed of a positive feedback loop (two CMOS inverters) and

two pass transistors (PT). Information is stored in the feedback loop, which can be

overwritten using the PT [4]. As mentioned in Section 2.1.1, a configurable logic block

can be implemented using LUTs and MUXs. LUTs act as a memory that stores the truth

table of a logical expression. Both LUTs and MUXs can be implemented using static

memory. FPGAs using this type of memory are called SRAM-based FPGAs, and they

are currently the mainstream devices.

The pros of a programmable cell-based on Static memory or SRAM are as follows [4,

pp. 31]

• State-of-the-Art CMOS process can be used;

• Run-time partial reconfiguration is supported;

• No limitation on the number of reconfigurations.

The cons are as follows:

• Volatile;

• Memory size is larger;

• Harder to secure the configuration data;

• Higher sensitivity to soft errors;

• Higher on-resistance and load capacity.

Target Programmable Technology

As mentioned in Section 1.3, the delivery format chosen for this work is FPGA’s

configuration data (bitstream) instead of RTL description. Furthermore, the section

discourages integration of IPs on a workstation as that would increase the attack

surface. Instead, features like DPR (see Section 2.1.4) should be used to generate IP’s

end-product and deliver its encrypted form to the device, i.e., to avoid integrating

IPs with static design on a workstation. Therefore, anti-fuse FPGAs cannot be used

for the proposed work as they can only be configured one-time and in a monolithic

form, i.e., would require tools on a workstation for integration. Also, flash memory

FPGAs are not suitable for this work because they are limited by the number of allowed

15

2 Background

Reconfigurable

Region (RR)

Reconfigurable

Region (RR)

FPGA RD1

RD2

RD3

RD4

Reconfigurable

Designs (RD)

Static Region

Figure 2.2: Dynamic partial reconfiguration flow

reconfigurations (about 10,000 times), and they do not offer DPR.

On the other hand, SRAM-based FPGAs can be reconfigured any number of times and

support DPR. Furthermore, advanced CMOS process technologies can be applied for

their manufacturing, leading to higher integration and performance. Even though their

non-volatile nature makes them vulnerable to additional attacks such as probing and

readback in comparison to the other types; however, they are the only one that supports

configuration of encrypted IPs on the device. Hence, the focus of this work is only on

SRAM-based FPGAs.

2.1.4 Dynamic Partial Reconfiguration (DPR)
Partial reconfiguration is a feature where parts of the PL can be reconfigured instead

of configuring the entire PL. Dynamic reconfiguration means that the configuration

can be done in run-time, i.e., while other designs are functioning. Combining these

two results in DPR, which means a region of the FPGA can be reconfigured while

designs on other regions can still stay active. Figure 2.2 shows this flow. The feature

was introduced almost two decades ago, and today almost all available SRAM-based

FPGAs support it.

Usually, different configurations (designs) are available to the device using a non-volatile

memory and are configured onto the hardware on demand. This dynamic upgrading

of the hardware provides new possibilities. Therefore, this technique is currently the

subject of intense research in academia. More details about the feature can be found

in [164].

More details of the DPR flow can be found in [147].

16

2.2 Information Assurance

2.2 Information Assurance
The protection and risk management of information during its processing, storage,

and transmission is called information assurance. It has five pillars [135], also called

fundamental properties. An information system must have these properties to ensure

that its data is protected against security threats. A brief description of these properties

is given below.

1. Authentication: It is the process of verifying the identity of a user or a system.

It also means to verify that the data produced or transmitted by a user is the

producer or sender of that data.

2. Integrity: This property refers to the accuracy and consistency of the information

over its life cycle. This can be achieved by protecting it from unauthorized

tampering or modifications.

3. Availability: As the name suggests, it refers to the availability of data to be used

or modified by an authorized user.

4. Confidentiality: This property refers to the protection of data being accessed by

an unauthorized user. It is ensured with the use of cryptography.

5. Non-repudiation: In essence, non-repudiation is similar to authentication as it

refers to the verification of the origin of data. This prevents possible denial that a

data is sent by a specific user.

The properties mentioned above are essential for the security of the information or IPs

in an embedded system. The use case of the proposed work is an IP licensing scheme,

where FPGA-based IPs are delivered to the devices. The IPs must be kept confidential

during their transmission, use, or storage to protect them against IP misuses (see

Section 3.2). Also, the receiver must be able to authenticate that the IPs are produced

by the IP core vendor (CV). Also, it needs to be made sure that the IPs are not tampered

with, i.e., their integrity is not compromised.

Information assurance properties can be achieved using cryptographic algorithms. For

example, they can provide Confidentiality of the data at rest or transit using symmetric

or asymmetric encryption. Similarly, Authentication/Non-repudiation of data can be

achieved with the use of hashing functions (see Section 2.3.1) and digital signature

schemes (see Section 2.3.3). Together they also offer Integrity of the data at rest, in

use, or at transit. Integrity can also be achieved using hashing functions and message

authentication codes (MACs) (see Section 2.3.2). MACs are based on symmetric

cryptographic algorithms, and digital signature schemes are based on asymmetric

17

2 Background

algorithms. All the mentioned algorithms are cryptographic and are presented in

Section 2.3.

Cryptographic algorithms are essential in achieving these properties; however, they

also require other security mechanisms to protect devices against security threats. One

such security mechanism is Secure Boot. This feature offers the possibility to boot

the device with authentic encrypted system files, e.g., boot loaders, firmware, and

operating systems. In the absence of such mechanisms, an adversary can boot the

device with system files that have malicious functionality to steal information, IPs, or

encryption keys. A detailed discussion on the Secure Boot mechanism, specific to the

target device, is present in Section 2.4, which is preceded by cryptographic algorithms

for ease of understanding.

Other security mechanisms essential for security are specific to the storage or usage of

the keys used by cryptographic algorithms. If these keys are not properly protected,

an adversary can steal them, which will compromise the entire system’s security. The

hacking of the first generation gaming console from Microsoft, namely Xbox, is a good

example of not protecting the key in use. In 2002, Andrew Huang developed a hardware

board to intercept data transfer over the HyperTransport bus of the Xbox [51]. Since

the symmetric encryption key used to protect the secure boot loader was going over

the bus in plaintext form, he was able to read it. This led to the execution of malicious

code on the device. Therefore, key storage techniques need to be investigated, whose

details are presented in the following section.

2.2.1 Key Storage
In SoC FPGAs, cryptographic algorithms are available in three ways: the hardwired

dedicated decryption engine (DDE) of the device, a custom cryptographic IP core

programmed on the PL, or a software application running on the processing system

(PS). Also, hardware security modules (HSMs) [84] or trusted platform modules

(TPMs) [2] can be used to perform some security operations. However, if HSMs/TPMs

are used for decryption, the plaintext returning from them can be read over a bus/port.

The use case of this work is an IP licensing scheme where IPs need to be decrypted

securely, i.e., without exposing them on a bus. Therefore, HSMs/TPMs are not used

or even discussed anymore, and the rest of the discussion is focused on the first three

ways of using cryptographic primitives.

18

2.2 Information Assurance

DDEs are usually used by the secure boot mechanism. They can also be used for

decrypting FPGA IPs. They are implemented with specialized hardware processors

that are only used for security-specific operations where keys are stored in protected

storage. For example, Xilinx Zynq UltraScale+ devices offer to store the key in volatile

battery-backed RAM (BBRAM) or non-volatile eFUSE storage locations. Furthermore,

the key stored in eFUSE can be either plaintext or obfuscated (i.e., encrypted with the

device family key or with a key generated by a physically unclonable function (PUF)).

Also, the key loading path to the device is write-only, and there is no physical data path

to read back either key (For details, see Chapter 12 of [141]). With all these built-in

security features, it can be stated that the encryption keys used by the DDEs on the

target device are secure. In this work, DDE is used for the Secure Boot mechanism (see

Section 2.4) and not for the decryption of IPs.

As mentioned earlier, cryptographic operations can also be performed using an FPGA IP

or a software application. For these implementations, devices do not offer any security

features or protected storage. A simple solution can be hard coding the cryptographic

key in the software or FPGA IP implementation. However, keys can be extracted from

the software code using reverse engineering. In the case of FPGA implementation,

the readback attack (see Section 3.1.4) can be used to read FPGA’s configuration data.

Afterward, reverse engineering [96] of the configuration data will yield the key.

Among others, the secure storage-specific challenges can be solved using a trusted

executed environment (TEE). TEEs are secure and isolated environments assisted by the

hardware where trusted applications (TAs) run. This isolation is system-wide, where

resources, applications, and even read-write operations are partitioned into secure and

non-secure. Cryptographic algorithms can be implemented as a TA where secret keys

are hardcoded in it. Since TAs execute inside the TEE, they will be secure even if the

keys are hardcoded in them.

A limitation of the hardware-assisted isolation (TEEs) is that the existing technologies

only partitions PS’s resources. For the PL, only read-write transactions among PS and

PL are distinguished as secure or non-secure. This means reconfiguration and readback

features performed on the PL are not differentiated as secure or non-secure. Even a

non-secure environment or resource can access the entire PL region. This is countered

by partitioning the PL into secure and non-secure regions (see Section 7.4.2), which is

one of the focuses of the proposed work. In cases where the TEE concept is extended to

the PL, hard-coded keys inside the FPGA-based IP’s implementation will also be secure.

19

2 Background

Since this work uses cryptographic algorithms, secure boot mechanism, and TEE to

protect the device and IPs, background information on these topics is presented in the

following sections.

2.3 Cryptographic Algorithms
Cryptography is the science of converting secret messages with the intention of hiding

their meaning [99]. The secret and hidden messages are commonly referred to as

plaintext and ciphertext, respectively. The process of converting plaintext to ciphertext

is called encryption, and the reverse of this process is called decryption. In this

field, techniques and algorithms are developed to offer security in the presence of an

adversary.

The main two main branches of cryptographic algorithms are symmetric- and asymmetric-

key algorithms. The main difference among them is that symmetric algorithms use the

same key for encryption and decryption. However, the asymmetric ones use different

keys. There is another type of algorithms that does not use any key for computation

called hashing functions. Here, first, the hashing functions are presented that are

followed by symmetric- and asymmetric-key algorithms.

2.3.1 Hashing Functions
These cryptographic primitives are widely used in a range of protocols. However, they

were created to support other cryptographic primitives to implement integrity and

authenticity properties. Hash functions compute a message-digest of data, which is

short and has a fixed length. Data, in this case, can be of any length. The message

digest is also commonly called a hash value and can be seen as the fingerprint of the

data. These functions do not require any key for computing the hash value [99, pp. 293].

The motivation behind using hash functions is to compute a fixed-length short message

from it, which can be transmitted along with the data. Since computing the hash value

does not require any key, the receiver can compute the hash of the received data and

compare it with the received hash value. The verification will ensure that data integrity

is not compromised. However, suppose data and its hash value are sent as plaintext.

In that case, an adversary can modify the data and update the hash value with the new

hash value computed from the modified data. Therefore, at least the hash value must

be sent as ciphertext. Using hash functions to support other cryptographic primitives

for data integrity and authentication are discussed in Section 2.3.3 and 2.3.2.

20

2.3 Cryptographic Algorithms

Non-secure Channel

Alice Bob

Adversary

Secure channel
(Key K shared)

Ciphertext =

EncryptK(Plaintext)

Encrypted message

Plaintext =

DecryptK(Ciphertext)

Cannot decrypt

messages

without

Figure 2.3: Secure communication between Alice and Bob on a non-secure channel

2.3.2 Symmetric Key Algorithms
As the name suggests, this class of algorithms relies on similar cryptographic keys for

both encryption and decryption. The keys can be identical or can be easily converted into

each other. This implies that the communicating entities share a common secret, which

is one of the drawbacks of these algorithms because the distribution of the shared secret

would require a secure channel. Figure 2.3 shows a secure communication between

Alice and Bob on a non-secure channel using a shared key, which was distributed via

a secure channel. Even if an adversary acquires secure messages, he can not decrypt

them as he does not have the shared secret. The secure channel shown in Figure 2.3 can

be implemented using asymmetric-key cryptography, which is commonly used for key

distribution.

Another important fact is that the strength of these algorithms can benefit from making

them public. It seems that making the algorithm secret will improve security. However,

this is a disadvantage as secret algorithms cannot be tested by other cryptographers.

Examples of symmetric key algorithms are data encryption standard (DES), triple-DES

(3DES), and advanced encryption standard (AES). Their details can be found in [99].

Here, background information on AES is presented as one of the contributions of this

work is a side-channel attack (SCA) resistant AES implementation (see Chapter 4).

21

2 Background

Plaintext

Key Addition

Key k

Substitution Byte

Shift Rows

Mix Columns

Subkey Generation

Key Addition

Substitution Byte

Shift Rows

Key Addition

Subkey Generation

Subkey Generation

Ciphertext

Round =1..n-1

Round = n

k0

k1..kn-1

kn

Figure 2.4: AES Encryption flow diagram

Advanced Encryption Standard (AES)

The US National Institute of Standards and Technology (NIST) called in 1997 for

proposals for a new block cipher, an encryption algorithm that can be applied to a

group of bits called blocks. The call was influenced by the security and implementation

weaknesses found in DES and 3DES. The evaluation process of the submitted proposals

was open and done by the international scientific community organized by NIST. Among

the proposal, the Rĳndael block cipher was proposed by two Belgian cryptographers

that can have a block and key size of 128, 192, and 256 bits. In 2001, NIST selected

Rĳndael with a block size of 128 bits and a key size of 128, 192, and 256 bits as the new

22

2.3 Cryptographic Algorithms

Alice Bob

{Plaintext, MAC}
Plaintext

MAC

MAC

computation

Verification

(==)
True/False

kPlaintext

MAC`

MAC

computation
k

MAC`

MAC

Figure 2.5: MAC computation and verification overview

block cipher, commonly known as AES.

AES performs four different operations on a block of data in several rounds. The number

of rounds depends on the key size, which are 10, 12, and 14 for the key width of 128

bits, 192 bits, and 256 bits, respectively. AES operations are substitution byte (SBOX),

shift rows, mix columns, and key addition. An AES round has all four operations in the

order they are presented except the final round, which does not have the mix columns

function. AES encryption starts with Key Addition operation followed by all the rounds

as shown in Figure 2.4. More details about its operations and the decryption process

can be found in [99].

Message Authentication Codes (MACs)

Message authentication codes (MACs) are widely used to provide message integrity

and message authentication. These algorithms are used to compute a short fixed-length

code/tag from a message, which is then appended to the message. As shown in

Figure 2.5, Bob computes a MAC from the plaintext using a key, which is then appended

with the plaintext. Afterward, this data is sent to Alice. After receiving the message,

Alice would like to know whether the data is modified during the transmission or not.

So she computes MAC value (MAC’) from the plaintext and compares it with the MAC

23

2 Background

value received from Bob. Since only Alice and Bob have the common key, only they can

generate or verify a valid MAC.

MACs use the same key, which means they do not provide non-repudiation, i.e., one

cannot say with certainty who created the MAC among the people who have the

shared symmetric key. However, the non-repudiation limitation does not exist with

digital signatures (See Section 2.3.3), which is the asymmetric equivalent of MACs. The

advantage of MACs over digital signatures is that they are faster to compute. HMAC

(Hashing MAC) is a type of MAC where key is appended at the start/end of the data,

and its hash value is computed. Alternatively, MACs can also be computed from

symmetric encryption algorithms such as AES. More details about MAC, its properties,

and types can be found in [99].

2.3.3 Asymmetric Key Algorithms
As mentioned in Section 2.3.2, one of the drawbacks of symmetric cryptography is key

distribution. Even if the key distribution challenge is solved, the algorithms would

require a large number of keys as each pair of users would require a separate key [99].

These drawbacks can be overcome using asymmetric cryptography (also known as

public-key cryptography) that was introduced to the public in 1976 by Whitfield Diffie

and Martin Hellman [24].

Asymmetric encryption relies on a pair of keys per user, where messages are encrypted

with one key and decrypted by the other. The basic idea is that one key of the pair

is made public, called the public key, while the other is kept secret and is referred to

as the private key. One of the advantages of asymmetric cryptography is that it can

be used to distribute keys used in symmetric algorithms over a non-secure channel.

The key distribution and secure communication over a non-secure channel are shown

in Figure 2.6, where Alice sends a secret key to Bob after encrypting it with Bob’s

public key. After receiving the key, Bob decrypts the ciphertext with his private key.

Now that both parties have a common key, they can securely communicate. Since only

Bob’s private key can decrypt the message, an adversary cannot eavesdrop on their

communication. Asymmetric ciphers are computationally several times slower than

symmetric ciphers; that is why the former is used for key distribution while the latter

for encryption large data blocks. Public key cryptography also offers other security

mechanisms such as non-repudiation, identification, and encryption [99, pp. 154].

The only remaining challenge with public-key cryptography is regarding the authen-

ticity of the public key, i.e., how can one be sure that a public key is of the entity that

24

2.3 Cryptographic Algorithms

Non-secure ChannelAlice Bob

Adversary

Ciphertext = EncryptKpub
(Plaintext) Plaintext = DecryptKpri

(Ciphertext)

Kpub

Ciphertext

(Kpub, Kpri) = Key

Cannot decrypt

messages

without

Figure 2.6: Secure communication from an entity (Alice) to another one (Bob) using Asymmetric Cryptography

claims its ownership? In practice, the issue is solved with certificates. Certificates

are issued to users or organizations by trusted authorities who bind a public key to a

certain identity [99, pp. 344]. Another minor issue with this branch of cryptography is

that the keys are very long, which results in slower execution times. Further details on

these issues can be found in [99, pp. 155].

RSA cryptosystem

Asymmetric ciphers can be implemented using one-way functions. One-way functions

are the ones where it is easy to compute the function 𝑓 (𝑥) = 𝑦 but hard to compute

its inverse 𝑓 −1(𝑦) = 𝑥. For example, finding two large prime numbers and computing

their product can be considered a one-way function, whose inverse would be finding

the prime factors from the product. This is an integer factorization problem that is

considered computationally infeasible for large numbers (e.g., 1024 bits or more). This

principle is the basis for the Rivest–Shamir–Adleman (RSA) cryptosystem, a family of

asymmetric ciphers proposed by Ron Rivest, Adi Shamir, and Leonard Adleman in

1977. Other families of asymmetric ciphers are based on Discrete Logarithm Problem

and Elliptic Curves.

Since these algorithms use large numbers, they are computationally several times

slower than symmetric ciphers. Therefore, they are mainly used for encrypting small

pieces of data, e.g., keys used in symmetric ciphers or signing hashes in the case of

digital signatures. In this work, RSA is used for distributing symmetric cipher keys (see

Section 8.5.1) used for the FPGA IPs. Furthermore, encrypted IPs are also authenticated

using RSA asymmetric cipher (see Section 8.5.2). As the technical details of the algorithm

25

2 Background

Alice BobKpub

Plaintext, Signature

Plaintext

Signature

Signature

computationVerification

Plaintext, Signature

True/FalseKpub
Kpri

Figure 2.7: Digital Signatures

are beyond the scope of this work, they are not presented here. However, they can be

found in [99, pp. 173-199].

Digital Signatures

The cryptographic algorithm discussed so far are focused on providing encryption

and data integrity. These security measures are enough against an external adversary;

however, there are several scenarios where legitimate users can act in an untrustworthy

fashion. For example, users communicating using a shared key can agree on the

price of an object, but later one of them denies sending the message. The property of

information assurance dealing with this situation is called non-repudiation, which is

the verification of data’s origin. This can be achieved using a public key cryptographic

algorithm called digital signatures.

Digital signatures can be seen as an asymmetric key equivalent of MACs, as they share

some functional properties such as offering message integrity. As shown in Figure 2.7,

Bob computes a signature of a plaintext using his private key (Kpri). Afterward, he

sends both the signature and the plaintext to Alice. Since she already has access to

Bob’s public key (Kpub), she can verify the validity of the signature. Since every user is

responsible for keeping their private key secret, Alice can be confident that Bob cannot,

in the future, deny that he sent the message. Furthermore, any modification of the

plaintext by an adversary can be detected as the verification process will show that the

signature is not valid, i.e., digital signatures also offer message integrity.

26

2.4 Secure Boot

2.4 Secure Boot
In FPGAs, the secure boot mechanism is traditionally implemented using a hardwired

dedicated decryption engine (DDE) and NVM-based keys. An encrypted bitstream is

provided to the device from an external storage medium (e.g., Flash memory), where

DDE decrypts it and configures it on the PL [105]. In Xilinx Ultrascale and Ultra-

scale+ architecture-based FPGAs, DDE is an AES - Galois/counter mode (AES-GCM)

decryption and authentication logic. The encryption keys for which can be stored in

dedicated RAM or eFUSE. Even though AES-GCM is a self-authenticating algorithm

with symmetric keys, these architectures also provide an alternative authentication

way using RSA-2048 (For details see [134]).

Since SoCs have a hardwired PS, their secure boot mechanism involves more com-

ponents. This mechanism can be used to boot authentic encrypted system files (e.g.,

boot loader, firmware, and OSes) on the SoC FPGAs. Zynq Ultrascale+ MPSoC is an

example of SoC FPGA that utilizes dedicated state machines, a platform management

unit (PMU), and a configuration security unit (CSU) to do the system boot-up process.

CSU is the DDE, which contains a triple-redundant processor for controlling boot

operation and a crypto interface block.

Once Zynq Ultrascale+ MPSoC is powered up, the dedicated state machine performs a

series of mandatory and optional tasks. Then, it sends an immutable ROM code to the

PMU, whose integrity is validated against a golden copy stored in the device using the

secure hash algorithm 3 (SHA3) engine. Once these security operations are completed,

PMU sends an immutable ROM code to the CSU, which is again validated against a

golden copy using the SHA3 engine. At this stage, reset to the CSU is released. So far,

the hardware root of trust (ROT) was established using immutable ROM codes (PMU’s

and CSU’s) whose integrity was validated. As CSU is at the center of the secure boot

process, it enforces the hardware ROT once enabled. It also maintains the device’s

security state by prohibiting switching between secure and non-secure states without a

full power-on reset. In addition, CSU is used for the public key’s validation, revocation,

authentication, and decryption of the first stage boot loader (FSBL). Once all these

operations are completed, CSU releases the reset to the specified processing unit. Here,

a summary of the boot process is presented that is focused on the security aspects;

further details on it can be found in Chapters 11 and 12 of [141].

27

2 Background

Figure 2.8: Architecture of the Trusted Execution Environment

2.5 Trusted Execution Environment (TEE)
GlobalPlatform, in TEE System Architecture version 1.2 [36], defines a TEE as "An

execution environment that runs alongside but isolated from an REE (Rich Execution

Environment). A TEE has security capabilities and meets certain security-related

requirements: It protects TEE assets from general software attacks, defines rigid

safeguards as to data and functions that a program can access, and resists a set of

defined threats. There are multiple technologies that can be used to implement a TEE,

and the level of security achieved varies accordingly".

Both TEE and REE have access to resources such as processing core, RAM, ROM,

etc. However, at any given time, only one of them is accessing a resource. When

a TEE accesses resources, they are isolated from REEs unless access is authorized.

A controlling TEE considers all of its non-shared resources to be trusted, and these

resources are only accessible by other trusted resources. This makes it a closed-trusted

system. There may be some resources that all execution environments can access. Also,

some REE-specific resources can be made accessible to a TEE, but the opposite may

not be allowed. The execution environment’s isolation requires support from both

software and hardware. The TEE architecture is shown in Figure 2.8. Details about the

architectural specification and interfaces are given in [36].

28

2.5 Trusted Execution Environment (TEE)

TEEs offer a secure environment for trusted applications (TAs) by protecting their

execution code and data. TEEs also offer high processing speeds and a large amount of

memory in comparison to other security environments [38]. Their primary purpose is

the protection of device and TA assets, which is achieved by security features such as

isolation from the rich OS, isolation from other TAs, application management control,

binding (Secure Boot), trusted storage, trusted access to peripherals, and state of the art

cryptography [38].

2.5.1 Applications
As discussed in Section 2.2.1, TEEs offer an excellent solution to store and manage

keys used by the cryptographic algorithms, which is one of the reasons TEE is used

for the use case of the proposed work. Furthermore, the TEE isolates both the PS and

PL configuration interfaces (see Section 3.1.4), memory regions, TAs, and peripherals.

These security features are requirements for an IP licensing scheme, which is the

proposed work’s use case.

Other TEE applications can be implementing bio-metric authentication solutions, e.g.,

face/fingerprint/voice recognition. User’s private data used as credentials can be

stored in isolated resources to ensure the Rich OS does not have access to it. For

example, users’ fingerprint-specific data (e.g., Hash value) must only be accessible from

specific TAs inside the TEE. Also, applications like contactless payments and mobile

wallets require handling user credentials that could benefit from using a TEE.

Copyrighted data such as movies, music, and books can also be protected using a TEE.

They are protected during transmission via encryption; however, it is decrypted on the

device for consumption. TEEs can make sure that the decrypted content can only be

viewed or heard on the authorized device and can not be copied to an external storage

or the memory regions of the rich OS.

2.5.2 Hardware Support
Several hardware technologies support secure and isolated environments. ARM

TrustZone (TZ), Intel Software Guard Extensions [23], IBM SecureBlue++ [12] and

RISC-V MultiZone
TM

Security [30] are examples from industry. AMD Secure Processor

(formerly known as Platform Security Processor) [32] and Intel Trusted Execution

Technology [91] are not mentioned as an example because the former utilizes ARM TZ

while the latter relies on a trusted platform module (TPM) and cryptographic techniques

to provide trust on the device. In academia, several approaches [21, 28, 50, 74, 98] have

29

2 Background

been proposed. The focus of this work is using ARM TrustZone to provide IP licensing;

hence only this technology is discussed.

2.5.3 ARM TrustZone
Arm TrustZone (TZ) is a hardware-based system-wide security solution that is available

on recent Arm application processors and microcontrollers. Several TZ components

(e.g., the TZ Protection Controller and TZ Address Space Controller [6]) can be used to

logically partition the system into a non-secure and secure world. With this partition, a

single processor core can execute code from the non-secure and the secure world in a

time-sliced manner. When the processor is executing code from the non-secure world

(REE), it enters a non-secure state where it can only access resources of the non-secure

world. In the opposite case, when the processor enters a secure state, it can access

resources located in both worlds. The switching between the secure and non-secure

world is managed by a security monitor that ensures that the current world’s state of the

processor is securely stored before it leaves the current world. Furthermore, it makes

sure that the state of the world the processor is switching to is also correctly restored.

The access to secure world resources from a non-secure world is restricted by hardware

logic present in the TZ-enabled advanced microcontroller bus architecture AXI buses.

This hardware logic includes an extra control signal for each read/write channel on the

system bus. These additional bits are called non-secure (NS) bits [6].

[3] provides more details and [104] provides a comprehensive survey on the relevant

work. Even though TZ was proposed in 2002, it got more attention during the last few

years from both industry and academia [5, 29, 77, 85, 112, 123].

30

3 Security Threats

The work described in this chapter was published in [179] and is joint work with co-authors
Sven Nitzsche, Asier Garciandia López, and Jürgen Becker. More details on contributions is
found in Section 1.5.

As discussed in Section 1.3, IPs can be delivered in encrypted form as RTL code or

bitstream, and each format has its risks regarding IP theft. However, RTL ones are

prone to more attacks, and licensing schemes using them add extra inefficiencies. For

example, one of the main problems with RTL-based IPs is that they are processed with

FV tools on a workstation, which leads to a large attack surface that includes but is not

limited to the FV tool, operating system, memories. On the other hand, bitstream-based

IPs (𝐼𝑃𝑃𝑙𝑎𝑖𝑛𝐵𝑖𝑡) are delivered in encrypted form (𝐼𝑃𝐸𝑛𝑐𝐵𝑖𝑡), which does not require any

pre-processing. 𝐼𝑃𝐸𝑛𝑐𝐵𝑖𝑡 can be directly decrypted and configured on the device, which

reduces the attack surface to the programmable device. Therefore, this chapter mainly

focuses on the security threats specific to bitstream-based IP and the programmable

device. These threats are categorized into three types and are presented below.

1. Theft-Attacks: The first type of attacks are the ones that try to breach the device’s

security to get access to the confidential data inside the device. The confidential

data can be 𝐼𝑃𝑃𝑙𝑎𝑖𝑛𝐵𝑖𝑡 , the cryptographic key(s) used to encrypt the 𝐼𝑃𝑃𝑙𝑎𝑖𝑛𝐵𝑖𝑡 , the

cryptographic key(s) to protect the secure boot process or communication of the

device with the outside world. These attacks are named as Theft Attacks (see

Section 3.1).

2. IP Misuses: These attacks are specific to 𝐼𝑃𝑠𝑃𝑙𝑎𝑖𝑛𝐵𝑖𝑡 . At the end of a successful

attack of the first type, an adversary can get 𝐼𝑃𝑠𝑃𝑙𝑎𝑖𝑛𝐵𝑖𝑡 . Afterward, he can make

this type of attack. Also, these attacks apply to IPs delivered in plaintext form, i.e.,

without encrypting them. These attacks are named IP Misuses (see Section 3.2).

31

3 Security Threats

3. Malicious IPs: The third type of attacks are the ones where a malicious function-

ality is inserted in the IP to harm the overall system. These attacks are named as

Malicious IPs (see Section 3.3).

3.1 Theft Attacks

3.1.1 SCAs on Cryptographic Implementations
Modern key-based encryption algorithms are, in theory, considered mathematically

secure; however, this assumption is not valid for their respective implementations.

Attacks that can take advantage of specific implementation characteristics of cryp-

tographic algorithms are among the most common type of side-channel attacks.

They reveal secret information of the implementation’s inner state, which then, in

turn, can be used to reconstruct the cryptographic key in use [52]. Common side

channels in the case of SCAs on cryptographic algorithm’s implementations are power

consumption, execution time, acoustic and electromagnetic (EM) radiation. A power

analysis attack, for example, exploits the data-dependent nature of the switching

activity of a cryptographic implementation. Since these attacks can be non-invasive

and only use information extracted from physical observation, it is not easy to detect

them. Consequently, one cannot be sure if a secret key is already compromised [52].

Using SCAs, an adversary can acquire data leaked by their implementation and use

statistical methods to acquire cryptographic keys [175, 61, 90, 121]. Differential power

analysis [63], and correlation power analysis [33] are examples of such statistical

methods.

On SoC-based FPGA devices, there are three ways that cryptographic algorithms are

realized, which are presented in the following subsections. All of these implementations

are vulnerable to side-channel attacks.

Hardwired DDEs

Hardwired dedicated decryption engines (DDEs), discussed in Section 2.4, are used

to provide a secure boot mechanism of the device. Since DDEs are at the center of

the secure boot process, it enforces the hardware root of trust (ROT) once enabled.

Moreover, they maintain the security state of the device. If they are compromised (i.e.,

keys are acquired using SCAs), all the subsequent security measures are compromised,

and secret assets of the device can be accessed.

32

3.1 Theft Attacks

In addition to the secure boot mechanism, DDE is often used to provide security to

bitstream-based IPs by decrypting them on the device before configuration. If an

adversary acquires DDEs’ keys, they will have access to the IPs in plaintext form.

FPGA IP

The second way an SoC device can offer cryptographic functionality is by offering a

custom cryptographic IP core programmed on the PL. These IPs can be used for secure

communication by the device. SCAs can also compromise them, which will again lead

to a range of attacks, such as an adversary can pretend to be the device or an adversary

can listen to the communication of the device.

Software IP

The third and final way cryptographic functionality can be implemented is to use

a software application running on the processing system (PS) of the device. These

implementations can also suffer from SCAs, and the result will be the same as discussed

in the last section.

3.1.2 DDR Memory Attacks
Double data rate (DDR) memory or DDR synchronous dynamic random access memory

(SDRAM) is a common type of memory used as random access memory (RAM) for

modern processors. These memories are volatile; however, they retain their contents

for several seconds after losing power. This is another side-channel that the SCAs can

exploit. For example, an attacker can do a hard reset of the target machine and acquire

memory contents. This attack is commonly known as a cold-boot attack [47]. The

attack can target all software applications because their sensitive code and data are

often placed in the DDR memory in plaintext form.

Modern DDR memories also suffer from a reliability challenge known as Rowhammer.
This issue emerged due to an increase in DRAM cell density and a decrease in capacitor

size over the past decades. Rowhammer is the bit flip in a specific row of the memory

by repeatedly accessing its neighboring rows [59]. It is considered a threat to data

integrity where an adversary or unprivileged user tampers the data without accessing

it. However, recently another work named RAMBLEED [67] shows its effect on data

confidentiality. Using that attack, an adversary can leverage rowhammer-flipped bits

to read the value of neighboring bits. Attack like these are more relevant to this work,

as plaintext bitstream of IPs are stored in the DDR memory (see Chapter 8).

33

3 Security Threats

These attacks are more severe in cases where cryptographic algorithms are implemented

as software applications that keep the keys and the decrypted data in the memory. For

example, if 𝐼𝑃𝐸𝑛𝑐𝐵𝑖𝑡 is decrypted using a software application, the decryption key, and

𝐼𝑃𝑃𝑙𝑎𝑖𝑛𝐵𝑖𝑡 will be stored in the DDR memory, which can be stolen using these attacks.

3.1.3 Probing
As the programmable logic (PL) in SRAM-based FPGAs/SoCs is volatile, the full

bitstream needs to be configured on the PL every time the device is turned on.

Furthermore, the partial bitstreams (IPs) generated using DPR flow are configured in

run-time on the PL using programming interfaces. Both types of bitstreams need to

be provided to the device using non-volatile memory (NVM). This frequent transfer

from NVM to the PL makes them more vulnerable to probing attacks, which is

capturing bitstream using an electrical probe [26]. Another probing attack is recently

published [126], where an optical probe was used against the Dedicated Decryption

Engine (DDE) of a device to capture the bitstreams in plain-text form.

3.1.4 Readback Attack
Readback is a feature provided for most FPGA families. It allows reading the FPGA’s

configuration data for debugging [145, pp. 176]. However, this feature can also be used

to obtain secret information (e.g., keys, proprietary algorithms). Xilinx’s SoC-based

FPGA devices include a PS that has full access to the PL. The PS can read configuration

data using its processor configuration access port (PCAP). In Xilinx devices (both

SoC or non-Soc FPGAs), readback is also supported from the programmable logic

via an internal configuration access port (ICAP). According to Xilinx’s Zynq-7000 SoC

manual [150, pp. 783], both processor configuration access port (PCAP) and ICAP are

trusted channels, and they can be used to read out bitstream even when an encrypted

bitstream is loaded onto the FPGA. We verified this behavior on a Zynq UltraScale+

device by reading out the configured bitstream via PCAP when bitstream encryption

was enabled. In theory, readback can be disabled by setting the bitstream.readback.security
property to Level1 while generating bitstreams. Level1 security implies that the readback

feature is disabled, and Level2 implies that both readback and reconfiguration features

are disabled [140, pp. 289]. This setting is part of the full bitstream where the security

bits (SBITS) field of the control register 0 of the device is set with the defined security

level [145, pp. 157, 163]. However, this setting can be disabled by updating the SBITS

of the Control Register 0 from PS.

34

3.2 IP Misuses

Similarly, custom logic (e.g., reconfiguration controllers) on the PL can read out the

configuration data using ICAP. PS does not have direct access to ICAP; however, it could

have access to the reconfiguration controller that can directly access ICAP. Furthermore,

a malicious user can configure a configuration controller on the PL while connecting it

to the ICAP. Using these two scenarios, ICAP could be used to launch this attack.

3.2 IP Misuses
Successful theft attacks will lead to the acquisition of the IP by an adversary. Once the

plaintext IP is stolen, it can suffer from multiple IP misuses that are presented in the

following sections.

3.2.1 Cloning
Cloning is the unauthorized use of intellectual property that might require little or

no modification. In the case of bitstream IPs, it would be creating a copy of the IP’s

configuration data to overuse and sell. This way, an adversary can avoid paying extra

licensing fees and even sell to get revenue from the IP with minimal engineering cost.

FPGAs are off-the-shelve products, and the configuration data (bitstream) is easy to

duplicate, which makes FPGA-based IPs very sensitive to this misuse.

Several countermeasures can avoid this cloning attack. For example, friend or foe

identification, device identifier detection, watermarking, using a physically unclonable

function (PUF), and bitstream encryption. These countermeasures are explained in

detail in [156].

3.2.2 Reverse Engineering
It is the process of analyzing an existing IP, in bitstream format or as design files

(RTL/netlist), with the intention of learning the innovation behind it. This allows an

adversary to create the IP with minimum research and development effort, causing

the IP owner and their competitors an unfair disadvantage. Even though the act of

reverse engineering is slightly more challenging with bitstream-based IPs compared

to the design files, still the bitstream obfuscation does not provide any cryptographic

security. It can be reverse-engineered to design files [96]. Furthermore, the design can

be modified to gain access to the protected data or the communication by the device.

This combination of reverse engineering and modification is commonly known as

tampering. Several countermeasures against reverse engineering are presented in [156].

35

3 Security Threats

3.3 Malicious IPs
There is another type of attack that makes use of malicious circuitry in the bitstream of

an FPGA IP. They are categorized into two types, namely, tampering configured designs

and hardware trojans. They are presented in the following sections.

3.3.1 Tampering Configured Designs
To better explain this attack, a short description of bitstream’s structure is needed. The

bitstream of the target device consists of three sections, namely bus width auto-detection,

sync word, and configuration data [145, pg. 154]. The configuration data is composed

of commands and data. Examples of configuration commands are no operation, writing

configuration registers, or writing memory frames. The configuration memory frames

are the smallest addressable segments of the FPGA configuration memory space, and

all operation acts upon an entire frame. Each frame is uniquely addressed, which is

referred to as frame address. The command specific to writing a frame is called "Write

frame address register" (opcode 30002001 in hex) [145, pp. 156].

When the bitstream of IP is generated, it contains frame addresses of the frames (PL

resources) that are assigned to the IP. For example, a system developer (SD) is licensing

IPs from two different core vendors (CVs) to build a system shown in Figure 3.1. From

the system specification, Region IP1 is reserved for IP1 and the other region is reserved

for IP2. If the developer of IP1 generates a bitstream that has "Write frame address

register" commands with addresses of the region reserved for IP2, the configuration

process will lead to tampering of IP2. Similarly, a malicious CV can tamper the static

design (see Figure 3.1), which belongs to the SD.

Region

IP2

Region

IP2

Static Design

Processing

System

Processing

System

Region

IP1

Region

IP1

Figure 3.1: Prcoessing system with two IPs on the PL

36

3.3 Malicious IPs

Payload outputData input

Trigger Payload

T1

T2

T3

Figure 3.2: Example Hardware Trojan [156]

3.3.2 Hardware Trojans
Here, only those hardware Trojans are considered that are inserted in the bitstream of

an IP. They usually have a trigger and a payload circuit, and they are activated under

a rare condition making their detection harder by randomizing the input vector, as

shown in Figure 3.2 [156]. They can be used to change the functionality, degradation of

performance, or information leakage (see [117] for more details). Even though IPs are

delivered in authentic encrypted form, which ensures that a man-in-the-middle cannot

insert a Trojan in the IP. However, a malicious IP core vendor (CV) can insert Trojans in

their IP to launch a software-based power side-channel attacks [161]. These attacks do

not require physical access to the device, and with them, an adversary can compromise

the security of the device remotely.

Furthermore, Trojans can create logical or electrical conflicts to cause malfunction or

damage to the device. This attack was first introduced by Hazdic et al. [162] in 1999.

Similarly, FPGA power-hammering attacks can be used to damage the device. They use

short and self-oscillating circuits to increase power consumption. The work of La et

al. [68] demonstrates that malicious circuits with just 3% of logic on an Ultra96 FPGA

board can consume the power that is usually consumed by the entire FPGA.

37

4 Countermeasures against SCAs

The work described in this chapter was published in [178] and is joint work with co-authors
Benjamin Hettwer, and Jürgen Becker. More details on contributions is found in Section 1.5.

This chapter addresses side-channel attacks (SCAs), the first challenge to the FPGA IP

market among the ones outlined in Section 1.4. These attacks are a significant threat to

the modern cryptographic algorithms that are, in theory, considered mathematically

secure. However, the same cannot be stated about their implementations because

they often leak secret information about their internal state via side-channels, e.g.,

power consumption [83], electromagnetic (EM) emission [34], and execution time [62].

Once side-channel information is collected, an adversary can run statistical methods

to extract the cryptographic keys. The statistical analysis method can be differential

power analysis [64], and correlation power analysis [16].

Over the years, researchers and industry developed several methods to counter SCAs.

For instance, masking aims to randomize intermediate values that are internally

processed by the cryptographic device to break the connection between the secret

(respectively some intermediate value that depends on the secret) and its power foot-

print [83]. In contrast, hiding countermeasures are different from masking because their

goal is to change the power characteristics directly and thus reduce the signal-to-noise

ratio (SNR). There is a particular class of hiding techniques that use DPR available on

modern FPGAs to increase the SCA resistance of cryptographic systems [87].

These methods aim for randomizing the structure and execution process of a cryp-

tographic hardware implementation while maintaining functional correctness. DPR-

based SCA countermeasures often create only moderate overhead because the employed

reconfiguration infrastructure can be reused for other purposes as well, e.g., to build a

fault-tolerant system [93, 109].

39

4 Countermeasures against SCAs

This chapter presents two countermeasures against SCAs. The first, Target Function

Relocation (TFR), relocates the target function using DPR. Furthermore, the target

function is implemented using different algorithms with varying power consumption.

The selection of the target function’s implementation, its location on the FPGA, and

the time interval between DPR operations are made using the outputs of random

number generators (RNGs). The moving target approach serves as a countermeasure

against EM-based measurement setups, while the implementation diversity approach

counters power analysis-based attacks. The second countermeasure is a Noise Generator

(NG), where different noise modules are implemented at an algorithmic level and are

configured on a single location. Here, the selection process is also random.

The proposed countermeasures are scalable, which means the number of locations and

implementations can be increased or decreased depending on the use case. Furthermore,

several versions of each countermeasure are implemented and evaluated to show the

relationship between resource overhead and achieved security.

The main contributions presented in this chapter are:

• DPR is used in several use cases (e.g., accelerators, communication systems), and

its support requires additional logic such as a reconfiguration controller. This

work proposes to utilize these additional resources to strengthen the security of

these systems.

• A complete implementation of both countermeasures is done and presented.

An automated flow is implemented that generates different scaled variants of

the countermeasures. Furthermore, the implementation diversity part of the

countermeasures can be scaled up/down dynamically (See 4.3.7). This makes

the design easily adaptable to different scenarios and is a major improvement

compared to other similar work.

• The implementation is realized and evaluated on the Xilinx Zynq UltraScale+

MPSoC ZCU102, a state-of-the-art platform for advanced automotive and Internet

of Things (IoT) applications based on 16 nm production technology.

• Scaled variants of both countermeasures are evaluated individually and combined

to create a more secure system. Furthermore, the effect of scalability on the

resource overhead and security strength is presented.

The rest of the chapter is organized as follows: Section 4.1 provides state-of-the-art

countermeasures against SCAs. The proposed countermeasures and their implemen-

tations are discussed in Sections 4.2 and 4.3, respectively. Afterward, the evaluation is

presented in Section 4.4.

40

4.1 Related Work

4.1 Related Work
The first DPR-based countermeasure against physical attacks has been presented by

Mentens et al. [86]. DPR was used to introduce temporal jitter by adding or removing

registers between subfunctions of an implementation of the AES. Additionally, spatial

jitter could be generated by relocating the subfunctions to four different positions

on the chip. However, the number of different configurations that were achieved in

that specific approach was comparably low (maximum ten) and thus increased the

complexity for a skilled adversary only marginally. Furthermore, the evaluation was

only done on paper without performing any power or EM measurements.

In 2011, Güneysu and Moradi exploited the dynamic reconfigurability of selected FPGA

components to build a set of generic SCA countermeasures [43]. First, Gaussian noise

was generated using lookup tables (LUTs) in shift register mode. Second, a Substitute

Byte (SBOX) scrambling scheme was suggested using the dual-port feature of block

RAM (BRAM). Third, several Digital Clock Managers were stacked together to create a

randomized clock for the cryptographic core. The proposed countermeasures can be

easily combined with arbitrary cryptographic implementations.

Sasdrich et al. employed fine-grained reconfiguration of LUTs (i.e., CFGLUTs) to

randomize the SBOX of a PRESENT implementation [113]. This was achieved by

splitting up the masked-SBOX into two parts with a register in between during runtime.

Additionally, the register was pre-charged with the content of dummy encryption

to avoid a hamming distance leakage. However, the scheme is only practical for

cryptographic schemes with smaller (e.g., 4x4) SBOXs, but not for ciphers with a larger

SBOX such as AES.

Hettwer et al. proposed implementation diversity in combination with DPR to protect

cryptographic circuits [49]. From a single netlist of an AES implementation, a number

of functionally-invariant physically-different circuits were created by randomizing

the placement and routing process. The generated configurations are dynamically

exchanged during runtime using DPR. However, since the complete AES was recon-

figured, the resource and memory overhead is quite large while achieving only an

increased SCA resistance of factor three.

The work proposed in [15] is similar to this; however, they did not implement most

of their claims. For example, like the proposed work, they claimed to use DPR for

the configuration of SBOX regions and randomized the selection of location for the

target function, its implementation, and the time interval between DPR operations

41

4 Countermeasures against SCAs

(i.e., between consecutive relocations). Instead, they used twelve static versions of the

AES engine, i.e., did not implement and evaluate the stated claims. Furthermore, they

discussed the usage of relocatable partial bitstreams, which means a single SBOX’s

partial bitstream can be relocated to any location by changing the frame addresses

of the bitstreams. However, it was mentioned that this feature is only part of their

future work. In order to simulate the effect of DPR, they mixed up traces from different

configurations. The results indicate that it can improve CPA resistance by more than

two orders of magnitude. However, the authors stress that a fully operational system is

required to determine the actual number of traces needed to break the system, which

is not available up to now.

4.2 Proposed Countermeasures
In this chapter, two DPR based countermeasures are proposed that utilizes the concepts

of moving target (relocating target function) and implementation diversity. Sec-

tions 4.2.1 and 4.2.2 introduce these countermeasures, respectively, while Section 4.3

discusses their implementation in detail.

4.2.1 Target Function Relocation (TFR)
The relocation part of the TFR countermeasure is achieved by having multiple

reconfigurable regions (RRs) for the target function of an encryption algorithm. This

serves as a countermeasure against location-based SCAs such as EM attacks. The term

target function refers to the operation(s) of a cryptographic implementation, which an

adversary typically attacks (e.g., the SBOX of an AES in our case). The target function is

the main cryptographic operation in the power leakage model of the attacked device (see

Equation (4.2)), which is assumed to have a measurable influence on the deterministic

part of power or EM traces [83]. Localized EM-based attacks are usually conducted

with small probes having a diameter smaller than one millimeter. The probe is moved

over the chip using a spot size smaller than the probe diameter, and a certain number of

traces are acquired from every position. An attack is then performed for all positions to

find the most suitable probe position. Moving the target function randomly to different

positions on the chip using DPR makes EM attacks substantially harder because the

traces for a single location are mixed up with EM radiations from different logical

elements of the cryptographic circuit. In general, if there are 𝑙 different locations for

the target function, it can be expected that at least 𝑙 times more EM traces are needed

to recover the secret key [49].

42

4.2 Proposed Countermeasures

Hardware Trigger (390KHz)

Partial

Reconfiguration

Controller

ICAP

Input Select (100MHz)

Random

Number

Generator

(390 KHz)
Control

Logic

random in

SBOX/Noise Select &

Trigger Logic

Noise Module

Key

Schedule

Control

Logic

sbox in

sbox out

AES Serial
Shift

Rows

Mix

Columns

SBOX and Noise

Bitstreams from Memory

Random

Number

Generator

(100 MHz)

SBOX0

SBOX15

Figure 4.1: Block diagram of the SCA-resistant AES.

In order to achieve implementation diversity, the target function is implemented in

several ways, where each implementation generates a different power footprint. The

underlying motivation is that the distinct physical layout (placement and routing) of

each target function’s implementation induces a varying charging capacitance when

the implementation is continuously replaced using DPR. This affects the dynamic

power consumption of the target function and connected resources (e.g., registers) and

counters power measurement-based SCAs. These implementations will be referred to

as reconfigurable modules (RMs). RNGs are used to select location (i.e., RR), target

function’s implementation (i.e., RM), and the time interval between DPR operations.

These issues are discussed in detail in Section 4.3.

4.2.2 Noise Generation (NG)
For this countermeasure, the noise generation module can be implemented in several

ways and is configured on an RR. In this work, hardware description language (HDL)

implementations of a Gaussian noise generator [80], three pseudo-RNGs [19, 70, 106]

and two sine wave generators [119, 130] are used as basic noise sources, which are taken

from open sources. All noise modules are scaled by cascading several of their instances

in series so that they have a significant influence on power consumption. Afterward, all

possible combinations of the six basic noises are generated that resulted in 63 different

noises, which can be calculated using Equation (4.1):

𝐶 =

𝑛∑
𝑟=1

𝑛!

𝑘!(𝑛 − 𝑘)! (4.1)

43

4 Countermeasures against SCAs

𝐶 represents the total possible combinations, and 𝑛 is the number of noises among

which 𝑘 noises are chosen for a specific combination.

Like the TFR countermeasure, the selection of a noise RM for configuration and the

time interval between DPR operations are made randomly. Both countermeasures

are general and can be implemented for any encryption algorithm. Implementation

differences of the RMs for the target function and noise modules can be at an algorithm-,

synthesis- and/or circuit-level. Algorithm-level differences among RMs mean that

the RMs are implemented using different algorithms, e.g., an AES SBOX implemented

using LUTs and combinational logic. Synthesis-level differences would be changes in

the logic structure, placement, and routing. Circuit-level would be fine-grained changes

to specific paths such as clock inputs of flip-flops. The two latter cases are discussed

in detail by Bow et al. in [15]. In this work, RMs differ on the algorithmic level that

creates variants with a more distinct power footprint than only changing placement

and routing. The number of RMs can be easily increased by combining algorithmic,

synthesis- and circuit-level methods.

4.3 Implementation
The baseline design used for implementing the countermeasures is an 8-bit serial

AES-128 encryption core, which requires 264 LUTs and 253 registers. The target board

used in the measurement setup is a Xilinx ZYNQ UltraScale+ system-on-chip (SoC)

evaluation board. Since the processing system (PS) is used to deliver plain-text data

and key to the core, it is interfaced with the PS using Advanced eXtensible Interface 4

(AXI4). It is also assumed that the target system has a partial reconfiguration controller

(PRC) module, which can be used for the configuration of other logic. Therefore, the

AXI-interfaced AES and PRC, along with AXI interconnect blocks, are considered the

reference design for this work, which requires 3317 LUTs, 4014 registers and 922 CLBs.

The implementation takes 210 clock cycles for single encryption, where each round

of AES is computed in 21 cycles. For TFR, SBOX is selected as the target function, as

discussed in Section 4.2.1. The reference AES design uses only one SBOX for computing

substitute byte functionality for each byte in all the rounds and key scheduling. The

block diagram of the SCA-resistant AES is shown in Figure 4.1. The functionality of the

sub-modules is presented in the following sections.

44

4.3 Implementation

4.3.1 AES Serial
AES Serial is a modified version of the reference design. It has 16 SBOXs instead of one,

and for each SBOX, an RR is created so that they can be placed on different locations

of the programmable logic (PL). However, at any clock cycle, only one of the 16 SBOXs

will be used during the operation of an AES encryption. Therefore, multiplexers are

added at the inputs and outputs (IOs) of the SBOXs, as shown in Figure 4.1. More

details about the selection of an SBOX and its IOs are discussed in Section 4.3.4.

Four different HDL implementations of the AES SBOX are used in this work: a LUT-

based implementation, an inverse LUT-based, inverse on Gallois field implementation

taken from opencores.org [131] and Canright’s implementation of a compact SBOX [18].

Partial bitstreams are generated for each implementation targeting all the RRs. Since

there are 16 RRs and four RMs, we have a total of 64 partial bitstreams.

4.3.2 Noise Module
The purpose of this module is the contribution of power consumption noise to the overall

design. As mentioned earlier in Section 4.2.2, several HDL-based implementations are

taken from open sources [19, 70, 80, 106, 119, 130] and by scaling and combining them,

63 different versions are generated. Here, scaling a noise module means using several

instances of the module to create its scaled-up version. An extra RM for the noise

module is generated that does not have any design, making 64 RMs. An RR is created

for the noise module, and partial bitstreams specific to that RR for all 64 versions are

generated.

4.3.3 Partial Reconfiguration Controller (PRC)
Xilinx’s PRC is used for the configuration process, which is activated by a hardware

trigger. The configuration is done using the internal configuration access port (ICAP).

Further details about the usage of dynamic partial reconfiguration (DPR) and PRC can

be found in [144] and [147], respectively.

4.3.4 SBOX Noise Select and Trigger Logic (SNTL)
SNTL is the central controller, which applies countermeasures to the AES module. It

chooses values for all the parameters of the countermeasures, and afterward, sends

necessary control signals to other modules, e.g., hardware trigger to the PRC. This is

done using a control logic and two RNGs, namely RNG390KHz and RNG100MHz. Three

random values from the RNG390KHz, namely SBOXImpl, TargetLocation, and TriggerTime,
are used by the control logic for the TFR countermeasure. The control logic uses

45

4 Countermeasures against SCAs

SBOXImpl to select an SBOX bitstream (RM) and configures it on the location indicated

by TargetLocation value. The configuration process is triggered when a counter inside

the control logic reaches the TriggerTimeTRF value. For the NG countermeasure, two

random values (NoiseImpl and TriggerTimeNG) are taken from RNG390KHz. The control

logic uses NoiseImpl value to select a noise implementation and TriggerTimeNG to generate

a hardware trigger to start the (re)-configuration.

Since the configuration process runs in parallel with AES encryption, SNTL is also

equipped with the functionality to select an SBOX that should be used by the AES

design during the encryption process. As stated earlier, an AES encryption takes 210

clock cycles. For each clock cycle, a different SBOX is selected and is provided with

the correct input value (i.e., sbox_in in Figure 4.1). The rest of the SBOXs are given a

random value to further reduce the SNR of the correct SBOX calculation. These random

values (SBOXInputJ) are taken from RNG100MHz. The SBOX selection is also made using

a random value (SBOXSelect) from RNG100MHz. Since the AES design is running at

100 MHz frequency, an RNG running at the same frequency is used for the SBOX’s IO

selection and delivering random values to the inputs of all other SBOXes. Also, the PRC

may be currently reconfiguring the selected SBOX. In that case, a complement of the

SBOXSelect value is used for the selection process because the output of the selected

SBOX will be invalid.

The SBOX’s IO selection and providing random values at the input of non-selected

SBOXes happen in a single clock and for each of the 210 clock cycles. In other words,

the AES design, including the countermeasures, has the same latency and takes the

same number of clock cycles as the reference design.

4.3.5 Bare-Metal Application
A bare-metal application running on the PS moves all the partial bitstreams (RMs) from

the non-volatile memory (NVM) to the RAM. Afterward, PRC’s registers are updated

with the memory location and size of the RMs. AES Serial is then continuously provided

with plain-text and key values and reading the ciphertext once encryption is completed.

A self-test has been implemented to ensure that the AES core works correctly.

4.3.6 Configuration Times
Since all RRs of the TFR countermeasure are equal in size, the bitstreams generated

for them will have the same size, which is 179.5 KB. As mentioned earlier, PRC does

the configuration of the bitstreams using ICAP. The bandwidth of ICAP is 3.2 Gb/s

at 100 MHz [147], which means PRC will reconfigure SBOX in 0.488 ms. For the NG

46

4.3 Implementation

countermeasure, there are 64 RMs generated for the same RR, where each is 203.7 KB

in size. Consequently, the configuration time for the noise module is 0.509 msec.

4.3.7 Scalability — Variants Generation and Deployment
Both the countermeasures can be implemented in several configurations to generate

different variants. Variants can differ based on the number of reconfigurable regions

(#𝑅𝑅𝑠), reconfigurable modules (#𝑅𝑀𝑠), or a combination of both that are used in the

design. Variants that differ in terms of #𝑅𝑅𝑠 require changes to the design flow. This

is mainly because for each RR, a dummy design with interface definition needs to be

instantiated in the system while connecting it with other sub-designs. Furthermore, a

constraint file is required, which provides information about the physical location of

the RR. This file can be generated by doing floorplanning of the RRs manually. For

further details about these steps or Xilinx’s DPR flow, please see [147].

The other case is where variants differ only in terms of #𝑅𝑀𝑠, i.e., the number of #𝑅𝑅𝑠 is

fixed. This scenario can fully take advantage of the proposed work’s scalability feature

because the design flow needs to be run only once. The deployed countermeasure can

be scaled up or down in run-time, i.e., the rest of the system does not require resetting.

For scaling up the countermeasure, only additional partial bitstreams for the additional

RMs need to provided to the device using non-volatile memory (e.g., flash). Afterward,

PRC’s registers need to be updated to support more #𝑅𝑀𝑠. For example, if #𝑅𝑅𝑠 is

fixed to two and #𝑅𝑀𝑠 is initially set to four. The design flow will be run to generate

full and partial bitstreams. For each RR, four partial bitstreams will be generated,

making a total of eight. This cryptographic design, including the countermeasure, can

be configured and activated on the device. In this example, we suppose that the design

is scaled up from four RMs to eight RMs per RR while #𝑅𝑅𝑠 is kept the same. As

stated earlier, only new RMs’ partial bitstreams need to be generated and provided to

the device. This means the additional four partial bitstreams per RR are provided to

the device. Furthermore, PRC’registers need to be updated for the newer variant to

take effect. Similarly, if the countermeasure needs to be down-scaled to four RMs, only

PRC’s registers need to be updated to support fewer #𝑅𝑀𝑠.

The purpose of scaling up the countermeasures is to provide higher security, which

leads to higher resource consumption. The resource overhead caused by scaling is

discussed in the following section, and its impact on the security strength is presented

in Section 4.4.

47

4 Countermeasures against SCAs

Table 4.1: Resource consumption overhead and memory requirement with TFR (4 RMs)

Designs LUT FF CLB Overhead Memory
(CLB) (MB)

AES-Reference 3317 4014 922 - 0

AES-TFR (2 RRs) 3626 4172 991 1.07× 1.43

AES-TFR (4 RRs) 3898 4357 1089 1.18× 2.87

AES-TFR (8 RRs) 4447 4655 1247 1.35× 5.74

AES-TFR (16 RRs) 5556 5252 1422 1.54× 11.48

4.3.8 Scalability — Resource Overhead
As mentioned in the last section, several variants of the countermeasures can be

generated by using different values for #𝑅𝑅𝑠 and #𝑅𝑀𝑠. Using variable values for both

parameters will lead to a high number of variants. Therefore, one parameter is set to

a fixed value, while the other is kept variable to have a reasonable number of variants.

This way, the effect of each parameter can be evaluated individually for both resource

overhead and security.

For the first countermeasure, TFR, variants are generated by setting #𝑅𝑅𝑠 = {2, 4, 8, 16}
and #𝑅𝑀𝑠 = 4. Table 4.1 shows the resources consumed by each variant in comparison

to the reference design. For the second countermeasure, NG, variants are generated by

setting #𝑅𝑅𝑠 = 4 and #𝑅𝑀𝑠 = {8, 16, 32, 64}. The resource overhead for each variant

for the latter case is shown in Table 4.2.

The presented results show that the proposed countermeasures have a different impact

on resource consumption. For example, only 7% of extra resources are required by

the TFR countermeasure with 2 RRs, and as the #𝑅𝑅𝑠 grow, the resource overhead

also grows linearly. In the case of NG, the resource overhead is 18% for 8 RMs case.

However, the NG countermeasure overhead does not grow linearly with the number of

noise modules, e.g., 25% for 64 RMs. The results show that the number of #𝑅𝑀𝑠 has a

comparatively smaller effect on the resource overhead; however, the same is not valid

in the case of memory consumption (see Table 4.2).

Both countermeasures can be easily combined, and their resource overhead will be the

sum of their respective overheads. For example, the look-up tables (LUTs), flip-flops

(FFs), and configurable logic blocks (CLBs) consumed by combining AES-TFR (16 RRs,

4 RMs) and AES-NG (1 RR, 64 RMs) are 7042, 7889, and 1657, respectively. This is an

80% increase of CLB resources as compared to the reference design.

48

4.4 Evaluation

Table 4.2: Resource consumption overhead and memory requirement with NG (1 RR)

Designs LUT FF CLB Overhead Memory
(CLB) (MB)

AES-Reference 3317 4014 922 - 0

AES-NG (8 RMs) 4597 6337 1089 1.18× 1.63

AES-NG (16 RMs) 4662 6398 1098 1.19× 3.26

AES-NG (32 RMs) 4680 6482 1113 1.21× 6.51

AES-NG (64 RMs) 4803 6651 1157 1.25× 13.03

As stated earlier, all the partial bitstreams generated for the TFR countermeasure

have the same size, which is 179.5 KB. As the countermeasure is scaled, more partial

bitstreams will be required, which will lead to higher memory. Similarly, all the partial

bitstream generated for the NG countermeasure has the same size of 203.7 KB. The

memory requirements for all the variants of TFR and NG countermeasures are shown

in Table 4.1 and 4.2, respectively.

4.3.9 Throughput Overhead
As mentioned in Section 4.3.4, AES with TFR countermeasure has 16 SBOXs, and for

each of the 210 clock cycles of the AES encryption, the output value of a randomly

selected SBOX is used for the computation. It is also ensured that if an SBOX is

configured, it is not chosen as its output will be invalid. This whole selection process

happens in a single clock without any latency. Furthermore, PRC’s configuration

process and the selection process run parallel to the AES encryption, which means that

the TFR countermeasure does not affect the throughput of the AES encryption.

Similarly, in the case of NG countermeasure, the selection and configuration of noise’s

partial bitstream happen in parallel to the encryption process. Therefore, the NG

countermeasure also does not have any throughput overhead. Finally, the combination

of both countermeasures also does not affect the throughput of the encryption process.

4.4 Evaluation
For the evaluation of the security gain of TFR and NG countermeasures, EM measure-

ments from a Xilinx ZYNQ Ultrascale+ MPSoC have been acquired. The EM traces

have been collected by measuring the current through a decoupling capacitor of the

FPGA’s power supply as initially proposed by O’Flynn and Chen [97]. The signal was

49

4 Countermeasures against SCAs

captured using an ICR HV500-75 near-field probe by Langer EMV and a Picoscope

6404D oscilloscope with an anti-aliasing low-pass filter. Also, external amplifiers are

not used except the one integrated into the probe. The sampling rate of the oscilloscope

has been set to 1250 MS/s using a bandwidth of 500 MHz. 100, 000 traces have been

recorded for several configurations of the design. In order to increase the SNR, an

averaging factor of 250 has been applied to each trace. This means that encryption

of a certain plaintext has been repeated 250 times, and the average trace of all these

encryptions has been saved for analysis. Averaging is a common technique to lower

the effect of noise-generating countermeasures such as TFR and NG proposed. After

pre-processing, we calculated the Pearson correlation coefficient between the traces

and a register transition (hamming distance power leakage) that occurs during the first

round in the serialized AES calculation. The hypothetical (power) leakage 𝑙 model can

be represented as:

𝑙 = 𝐻𝑊(𝑆𝐵𝑂𝑋(𝑃𝑇[0] ⊕ 𝐾[0]) ⊕ 𝑆𝐵𝑂𝑋(𝑃𝑇[4] ⊕ 𝐾[4])) (4.2)

where 𝐻𝑊 , 𝑃𝑇, 𝐾 are the abbreviations for Hamming weight, plain-text, and AES key,

respectively. 𝑆𝐵𝑂𝑋 represents the sub bytes operation in the AES calculation, which

is chosen as the target function due to its non-linearity property. This is beneficial

for SCAs as it introduces many bit-flips in the AES state and significantly affects the

circuit’s overall power consumption. The registers which hold the AES state are placed

directly after the SBOX in both the reference and the protected designs. State transitions

of registers (respectively flip-flops) cause the highest instantaneous power leakage in

a cryptographic hardware implementation. The leakage of the combinatorial logics

(e.g., AddRoundKey) is much lower. From an attacker’s perspective, it would also be

possible to target the mix columns operation. However, this would require guessing 64

bits of the key instead of 16. Such an attack would take much more time (up to several

months) and traces than an attack against the SBOX output, even in an unprotected

setting. That is why the SBOX is the main target in SCAs, which is protected by the

TFR countermeasure in the proposed approach.

Having the results of the correlation analysis, the required number of traces to break

the design 𝑛𝐴 can be derived by:

𝑛𝐴 ≈ 28

𝜌2
. (4.3)

50

4.4 Evaluation

Table 4.3: Attack results for different configurations

Design Security (𝑔𝑠𝑒𝑐)
AES-Reference 1.0

AES-TFR (2 RRs) 4.53

AES-TFR (4 RRs) 11.45

AES-TFR (8 RRs) 14.26

AES-TFR (16 RRs) 17.95

AES-NG (8 RMs) 6.73

AES-NG (16 RMs) 7.25

AES-NG (32 RMs) 12.11

AES-NG (64 RMs) 40.02

AES-TFR (16 RRs) + NG (64 RMs) 94.9

where 𝜌 is the maximum correlation value for the correct leakage hypothesis [83]. Using

this number, security gain 𝑔𝑠𝑒𝑐 is defined as the ratio between the number of traces

needed to break a protected design and the number of traces needed to break the

unprotected reference design:

𝑔𝑠𝑒𝑐 =
𝑡𝑟𝑎𝑐𝑒𝑠 𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑

𝑡𝑟𝑎𝑐𝑒𝑠 𝑢𝑛𝑝𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑
(4.4)

The results for the corresponding designs can be found in Table 4.3. From there,

several observations can be made. The protection level increases with the number of

configurations used for both countermeasures. For instance, for AES-TFR with two

RRs, 4.53 times more traces are needed to break the design compared to the reference

AES, while almost 18 times more traces are needed when 16 placement locations (RRs)

are used for the target function. The NG countermeasure also benefits from a higher

number of configurations, although all partial bitstreams are placed in the same RR.

When all 64 available noise RMs are used, the number of traces needed to extract the

correct key (byte) is almost 40 times the traces required for the reference design and

approximately 36 times more than that required for the design with 8 RMs. As discussed

earlier, the resource overhead (in terms of CLBs) only increases by seven percent when

scaling from eight RMs to 64 RMs. Combining the fully-fledged versions of TFR and NG

(i.e., with 16 RRs and 64 noise modules) gives a security gain of factor 95. This number is

much higher than for all other configurations of the proposed design. A reason for this

security gain is that the reconfiguration of the target function and NG module is done

51

4 Countermeasures against SCAs

in parallel with the encryption, which again is a source of noise and makes SCAs harder.

Our measurement setup requires 120 traces to recover the encryption key from the

reference design. However, when both the countermeasures are added, this number

increases to 11 200. Although this boundary is still low, the countermeasures can be

easily scaled to a higher number of configurations (e.g., by exploiting implementation

diversity as proposed in [49]). Since the reference design is broken with few traces,

the measurement setup used can be considered a high-quality one, and the presented

evaluation a worst-case scenario.

The TFR scheme can also be applied to masked S-Box designs to achieve a higher level

of protection. Suppose a first-order masking scheme would give resistance against

one million power traces. Then, the TFR and NG countermeasures would require the

adversary to acquire probably more than 100 million traces. We expect that such a

system composed of masking and hiding would also be resistant against second-order

attacks, as it has been shown in related work [114], especially with a higher number of

reconfigurable modules.

The resource overhead of the proposed design compared to related work is illustrated in

Table 4.4. In contrast to the work of Hettwer et al. [49], the proposed countermeasures

achieve a much higher security gain (i.e., 3 vs. 95) while having the same number

of configurations. Furthermore, memory and resource overhead is lower, and

there is no throughput penalty. Other works based on partial reconfiguration have

either no experimental results [86] or are not fully implemented [15]. The masking

approaches presented in [43] and [113] can have, theoretically, an unlimited number of

configurations (depending on the entropy of the RNG), thus achieving a high level of

randomization and protection. However, as mentioned before, scaling improves the

security strength of the countermeasures.

Potential future work can be generating more implementations for the target function

and noise modules using synthesis- and circuit-level methods [15, 49]. This will

increase the amount of memory required for keeping the implementation (partial

bitstreams). The overhead can be reduced by implementing a bitstream modification

functionality, which will modify the partial bitstream specific to one RR for all the target

RRs. However, there are two limitations to this approach. The first is that the source

and target RR should have the same number of heterogeneous resources. Secondly,

the resources must be organized exactly. If these are done, then modifying the frame

addresses in the source bitstream with the target RR’s frame addresses will be enough

for relocating the partial bitstream. Suppose the static design is using the routing

52

4.4 Evaluation

Table 4.4: Comparison of TFR and NG countermeasure with related work

Configurations Resources1 Throughput1 Memory1

LUT FF BRAM

[86] 10 N/A N/A 0 6.66× 91 kB

[43]
2 N/A 1706 1169 8 0 N/A

[113] N/A 1236 388 0 3.03× N/A
[49] 128 5270 3986 0 N/A 788.48 MB

[15] 12 N/A N/A N/A N/A N/A
Proposed

3
128 3725 3875 0 0 24.51 MB

1
Overhead compared to unprotected design

2
S-Box Scrambling (i.e., Masking)

3
AES-TFR (16 RRs) + NG (64 RMs)

resources of the target RRs. In that case, a reconfiguration will overwrite the routing

of static design inside the target RR. This is the second limitation, which can be solved

by using third party tools (GoAhead [10]) that can block routing resources of the RRs.

This will restrict the routing of the static design to go through the RRs.

53

5 Automatic Floorplanning of IPs

The work described in this chapter was published in [177] and is joint work with co-authors Jorge
Castro-Godínez, Shixiang Xue, Jörg Henkel, and Jürgen Becker. More details on contributions
is found in Section 1.5.

The next challenge for the FPGA IP market is manual floorplanning of IPs on the

programmable logic (PL) (see Section 1.4), which is addressed in this chapter. In the

FPGA domain, floorplanning of IPs can be defined as the geometrical placement of

IPs on the FPGA’s PL where corresponding IPs will be implemented. The purpose

of floorplanning is to achieve higher density and/or performance. Dynamic partial

reconfiguration (DPR), introduced in Section 2.1.4, can be used for the generation of

compatible IPs and the static design. However, the flow and tools provided by the

FPGA vendors (FVs) do not provide automatic floorplanning of the IPs or RRs. This

chapter presents an automatic floorplanning approach that is based on mixed-integer

linear programming (MILP). The following section presents the state-of-the-art of

floorplanning FPGA-based IPs. Afterward, the floorplanning problem is defined in

Section 5.2. The inputs to the problem are resources consumed by the IPs and the target

device’s layout (see Section 5.3). The problem is solved using an automatic floorplanner

whose MILP model is presented in Section 5.4. Finally, the chapter concludes with

experimental results and evaluation presented in Section 5.5.

5.1 State of the Art
Floorplanning of IPs on the FPGA fabric is an optimization problem for which reducing

the resource wastage and the communication costs between different partial modules

are the objective functions [107, 108, 116]. The complexity of this problem has increased

over the years. Initial FPGAs presented a grid-like structure of homogeneous CLBs, but

modern FPGAs present an irregular distribution of heterogeneous resources considering

BRAMs and DSPs beside the CLBs. In addition, designs are also implemented with

heterogeneous resources. This increases the complexity of finding a solution where

55

5 Automatic Floorplanning of IPs

the location selected for each design satisfies resource requirements while reducing the

overall resource usage.

Several academic tools offer floorplanning of IPs on heterogeneous [107, 108, 116], or

homogeneous [89, 153] FPGAs. Since modern FPGAs have heterogeneous resource

distribution, only the tools that consider heterogeneity can provide a floorplan where

resource waste of any type can be kept minimum. Among them, [107] and [116] can

provide optimal solutions when the number of IPs is small. However, as this number

grows, the solution space grows exponentially. For the latter case, these approaches

can only provide sub-optimal solutions.

The floorplanning challenge has been addressed by performing optimization based

on MILP [107, 116], simulated annealing [89, 153] and genetic algorithms [108]. The

rest of the section is focused on MILP-based approaches as the proposed work is also

MILP-based.

In [107], the authors propose two algorithms based on MILP. The first, heuristic optimal

algorithm (HOA), proposes to improve over solutions achieved by other approaches

based on heuristics [13, 132]. HOA considers a sequence pair representation of the

floorplan to fix the geometrical relations between the reconfigurable regions (RRs). The

second, optimal algorithm (OA), does not rely on fixed sequence pairs but promises no

overlapping among RRs. For OA, this work claims to provide optimal solutions for small

IPs performing a full design exploration for the placing problem. When looking for

placement of large IPs, OA uses an initial solution provided by HOA. In comparison, OA

takes more time than HOA, differing in the definition of non-overlapping constraints:

OA is harder to solve than HOA, but it can explore a much bigger search space and find

better solutions.

The granularity of reconfiguration defined by the approaches proposed in [107] is a

tile, which is the smallest allowed RR. In their work, a tile is a clock region high with

the width of a single CLB. The floorplanning was done for Xilinx Virtex-5, which

has 20 CLBs (4 BRAMs or 8 DSPs) in a column per clock region. The FPGA fabric is

partitioned in portions, which contain tiles with the same type of resources. Regarding

the objective functions of the placement optimization, HOA and OA aim to reduce

global wire length by decreasing the distance between RRs that communicate with each

other and resource waste.

Similar to [107], a recent work, FLORA [116], proposes a MILP approach with a

fine-grained modeling strategy of the FPGA resources. Abiding by partial reconfigu-

56

5.2 Problem Definition

ration (PR) constraints, defined by the FPGA manufacturer, this work reports better

performance than the optimal approach OA presented in [107]. However, it is not

clear how the implementation of FLORA surpasses the results provided by OA [107].

FLORA states that it is faster because the optimization problem is better formulated,

and better solutions are found because of their fine-grained FPGA model. However,

the granularity of 1 CLB width and one clock domain height is presented as the one

used throughout the paper, which is the same as used in [107].

On the other hand, authors in [108] presented improvements over their MILP work [107].

This work addresses the floorplanning in two phases: In the first phase, an exhaustive

exploration is performed to generate the design space, and a conflict graph is used

to define the feasible FPGA sections that can be used for the placement of the PR

blocks. These sections are described in terms of the actual physical position of the

FPGA resources in the entire FPGA floorplan. In the second phase, the design space

is explored using a genetic algorithm (GA). The results provided by the GA are then

enhanced with a local search function based on the steepest descent heuristic, achieving

local optimal solutions for a given input solution space. This work claims to find global

optima by using this mixture of GA and local search.

The proposed floorplanner is an improved version of the OA floorplanner presented

in [107]. Major improvements are related to complex fine granularity and supporting

recent FPGAs, such as Xilinx UltraScale+ architecture.

5.2 Problem Definition
Finding the best geometrical placement for a set of RRs, 𝑅 = {𝑅1 , ..., 𝑅𝑛}, within the

total available area on the FPGA fabric is an optimization problem where the objective

is to reduce resource waste. Each RR is characterized by a vector 𝑐𝑖 ,𝑡 , where 𝑐𝑖 ,𝑡 denotes

the number of resources required by 𝑅𝑖 for each type 𝑡 ∈ {𝐶𝐿𝐵, 𝐵𝑅𝐴𝑀, 𝐷𝑆𝑃}.

The inputs for this problem are:

1. a representation of the FPGA fabric. In other words, a description of the resource

distribution on the FPGA area, i.e., its layout and the pattern in which the resources

are distributed (See Section 5.3);

2. resource utilization report of the partial modules, which can provide the necessary

information regarding resource requirement for each partial areas: 𝑐𝑖 ,𝑡 ;

Regarding required resources, the resource utilization report of each IP provides

information about how many LUTs, flip flops (FFs), CARRY blocks, DSPs, and BRAMs

57

5 Automatic Floorplanning of IPs

are needed. For BRAMs and DSPs, values from the report can be used directly. However,

the minimum number of CLBs for an IP needs to calculated using Equation (5.1) because

each SLICE of the UltraScale+ FPGA contains 8 LUTs, 16 FFs, and 1 CARRY8 Block.

𝑛𝐶𝐿𝐵 = 𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑚𝑎𝑥(𝑛𝐿𝑈𝑇𝑠/8, 𝑛𝐹𝐹/16), 𝑛𝑐𝑎𝑟𝑟𝑦/1)) (5.1)

The solution to the problem is a floorplan that has the left-most, bottom-most coordi-

nates: 𝑥𝑖 , 𝑦𝑖 and the width, height: 𝑤𝑖 , ℎ𝑖 for each RR 𝑅𝑖 . This floorplan can specify a

selection of block shapes and overlap-free placements of physical blocks.

5.3 Device Representation
This section presents the target device’s layout and defines its representation while

focusing on the trade-off between resource wastage and ease in finding an optimal

floorplan solution. The target device is a Xilinx Zynq UltraScale+ XCZU9EG-2FFVB1156

MPSoC. This platform integrates a feature-rich 64-bit quad-core (or dual-core) ARM

Cortex-A53 and dual-core ARM Cortex-R based processing system (PS) and Xilinx PL

UltraScale+ architecture in a single device.

5.3.1 FPGA Layout
The FPGA layout of the target device is divided into 7 rows. The top 4 rows have 4

columns while the rest have 3, which makes a total of 25 rectangular clock regions,

as shown in Figure 5.1. In the layout, resources such as CLBs, DSPs, BRAMs, and

interconnects are distributed column-wise, i.e., each column over all the rows has a

specific resource type. For instance, the clock region X2Y0 is shown in Figure 5.2, which

X0Y6 X1Y6 X2Y6 X3Y6

X0Y5 X1Y5 X2Y5 X3Y5

X0Y4 X1Y4 X2Y4 X3Y4

X0Y3 X1Y3 X2Y3 X3Y3

Processing

System

X1Y2 X2Y2 X3Y2

X1Y1 X2Y1 X3Y1

X1Y0 X2Y0 X3Y0

Figure 5.1: Full PL layout of Xilinx Zynq UltraScale+ XCZU9EG-2FFVB1156 MPSoC

58

5.3 Device Representation

CLB

Site
BRAM

Site DSP Site
12 BRAM

Sites

12 DSP

Sites 60 CLBs

X2Y0

Figure 5.2: Clock Region X2Y0

has several columns of resources. Each of its columns consists of either 60 CLB, 12 DSP,

or 12 BRAM sites.

5.3.2 Grid Reduction and Granularity
For the target device architecture, Xilinx Ultrascale+, the smallest allowed RR varies

based on the resource type and is called programmable unit (PU). PUs for the considered

resource types are described below and shown in Figure 5.3. Further details can be

found in [147].

• CLB PU: Two adjacent CLBs and the shared interconnect.

• BRAM PU: One BRAM site, five adjacent CLBs, and the shared interconnects.

• DSP PU: One DSP site, five adjacent CLBs, and shared interconnects.

Since a single CLB PU can be reconfigured, the granularity for the floorplanning can be

set to 1 CLB PU (1 BRAM or DSP PU). Such a fine granular floorplanner will expand

59

5 Automatic Floorplanning of IPs

CLB Site BRAM Site

0

1

Interconnect DSP Site

DSP PU/TileBRAM PU/TileCLB Tile

CLB PU

Figure 5.3: Part of the layout of Xilinx Zynq UltraScale+ XCZU9EG-2FFVB1156 MPSoC. Smallest PUs with

dotted line.

the solution space, and finding an optimal (or a sub-optimal) solution would take too

long. Therefore, 5 CLB PUs, 1 BRAM PU, or 1 DSP PU is chosen as the smallest allowed

RR for the proposed floorplanner and will be referred to as a tile. Furthermore, a DSP

or BRAM PU is height equivalent to that of 5 CLB PUs, as shown in Figure 5.3, which

will make the FPGA layout model consistent.

This granularity can be compared to other floorplanners [107, 116], where an entire

column of a clock region was considered as the smallest PU. On the target device, this

would be 120 CLBs (or 60 CLBs+12 DSPs sites). Considering the worst-case example,

if the resource requirement of a reconfigurable design is 121 CLBs, floorplanners [107]

and [116] will create an RR of 240 CLBs, with a resource waste of 49.5%. In comparison,

the proposed floorplanner will assign an RR of 130 CLBs with a resource waste of only

6.9%;

60

5.4 MILP Modeling

5.3.3 FPGA Partitioning
The next step in the device representation is dividing FPGA resources into portions.

Each clock region has a grid-like structure similar to that of clock region X2Y0 (see

Figure 5.2). Also, along the layout’s height, columns inside the clock regions are of the

same resource type. Figure 5.1 shows the layout where the clock regions in the first

column are X0Y6, X0Y5, X0Y4, and X0Y3. Columns 4 and 6 inside these clock regions

are of CLB type, and column 5 is the shared interconnect between them. These three

columns (4-6) are grouped to create the first portion (POR1). POR1 has a total of 240

CLB PUs that is equal to 48 CLB tiles. Similarly, POR2 consists of columns 7 to 10,

where column 7 is composed of BRAMs, column 10 of CLBs, and the middles ones

are dedicated BRAM, and general interconnects. A total of 67 portions are required to

characterize the PL part of the target device. The target device model is made available

at [58].

5.4 MILP Modeling
This subsection presents the model of the device and the floorplanning algorithm that

is based on MILP. Parameters and variables are defined first, which is followed by

problem linearization, MILP constraints, and the objective function. This section ends

with a comparison of results against related work.

5.4.1 Constants definition
Following are the constants of the model.

𝑃 := set of portions;

𝐹 := set of forbidden areas;

𝑅 := indexes of the rows. Each row is a clock

region high, numbered from 1 to 7;

𝑁 := set of RRs;

𝑐𝑛,𝑡 := resource of type 𝑡 required by 𝑛𝑡ℎ RR;

𝑊 := width of the FPGA in terms of columns;

𝑝𝑥1𝑖 := left-most coordinate of a portion;

𝑝𝑥2𝑖 := right-most coordinate of a portion;

𝑑𝑝,𝑡 := resources of type t in a tile within portion p;

𝑡 := resource type {𝐶𝐿𝐵𝑠, 𝐵𝑅𝐴𝑀𝑠, 𝐷𝑆𝑃𝑠};

61

5 Automatic Floorplanning of IPs

0

CLB PU BRAM PU DSP PU

1 12 24

Figure 5.4: Index of PUs for POR1

5.4.2 Control Variables
Control variables are the variables that define an RR. For each RR 𝑅𝑖 ∈ 𝑅, we define the

following variables:

𝑎𝑛,𝑟 := set to 1 if region 𝑛 occupies row 𝑟, binary variable;

𝑛 := index of a RR, 𝑛 ∈ 𝑍+;

𝑥𝑛 := left-most position of 𝑛𝑡ℎ RR, 𝑥𝑛 ∈ 𝑍+;

𝑤𝑛 := width of a 𝑛𝑡ℎ RR, 𝑤𝑛 ∈ 𝑍+;

𝑦1𝑛 := lowest row occupied by 𝑛𝑡ℎ RR, 𝑦1𝑛 ∈ 𝑍+;

𝑦2𝑛 := highest row occupied by 𝑛𝑡ℎ RR, 𝑦2𝑛 ∈ 𝑍+;

5.4.3 Problem Linearization
Floorplanning is treated as a linear problem by indexing both axes of the layout. Along

the 𝑦 axis, each clock region is considered as a row, and they are indexed from 1 to

7. For the 𝑥 axis, the portions are composed of tiles, smallest RRs, and are indexed

as depicted in Figure 5.4. Some columns do not contain any logic resources, such as

input-output (IO) columns. The indexing of portions can be seen as stretching the

layout horizontally consisting of smaller columns where each column is a tile (5 CLB

PUs or 1 BRAM/DSP PU). This is shown in Figure 5.4. The final layout can be seen as

a grid of 7 rows and 1560 columns. The resource calculation of a given width 𝑤 inside

a single portion 𝑝𝑖 can be obtained by a linear function:

𝑓𝑖(𝑤) := 𝑤 · 𝑑𝑝,𝑡 . (5.2)

62

5.4 MILP Modeling

5.4.4 Constraints
Constraints that enforce the correct behavior of the MILP model are listed below.

• An RR must occupy consecutive rows, i.e., RR should occupy row 2 if it has

occupied row 1 and 3.

• An RR must occupy consecutive columns, i.e., RR should occupy column 2 if it

has occupied columns 1 and 3 in a portion.

• An RR should stay within the horizontal limits of the overall PL layout.

• An RR should stay within the vertical limits of the overall PL layout.

• The highest row occupied by a region should be greater than or equal to the lowest

row occupied by the region.

𝑦2𝑛 ≥ 𝑦1𝑛 (5.3)

• Each RR must contain all the needed resources for each resource type.

∀𝑡 ∈ 𝑇, (5.4)

𝛿(𝑛, 𝑡) ≥ 𝑐𝑛,𝑡 (5.5)

• Two RRs cannot overlap each other in the same row.

• Two RRs cannot share a column within a clock region.

5.4.5 Objective Functions
Multiple objectives can be used while creating an optimal floorplan. However, here

the focus is only on resource waste. Wasted Resources (𝑊𝑅𝑐𝑜𝑠𝑡) is the difference

between the resource required by the partial modules and the resource occupied by the

corresponding RRs.

𝑊𝑅𝑐𝑜𝑠𝑡 =

𝑁∑
𝑛=1

∑
𝑡∈𝐶𝐿𝐵,𝐵𝑅𝐴𝑀,𝐷𝑆𝑃

𝑘𝑡 · (𝛿𝑛,𝑡 − 𝑐𝑛,𝑡), (5.6)

𝑘𝑡 denotes the weight factor associated with wasting a resource of type 𝑡, 𝛿𝑖 ,𝑡 the resource

footprints inside of a 𝑅𝑖 and 𝑐𝑖 , 𝑡 the resource requirement by the partial module.

63

5 Automatic Floorplanning of IPs

Table 5.1: Comparisons between proposed floorplanner and the one report in [107] for Xilinx Virtex-5

XC5VLX110

of [107] Proposed
IPs WRcost Solution Type WRcost Solution Type

5 (1.71%) Optimal 117 (0.97%) Optimal

10 0 Optimal 0 Optimal

15 111 (0.91%) Sub-Optimal 0 Optimal

20 101 (0.83%) Sub-Optimal 0 Optimal

25 91 (0.75%) Sub-Optimal 0 Optimal

5.5 Experimental Results and Evaluation
The proposed solution has been implemented in MathProg, a subset of the AMPL

language, and solved with Gurobi Optimizer [46]. Experiments were executed on

an AMD Ryzen 9 3900X 12-Core Processor (24 CPUs 3.8GHz) with 64 GB RAM.

Comparisons between the proposed approach and the one reported in [107] were

performed by using the same synthetic test suite used in [107], and they are available

at [58]. The benchmark consists of pseudo-random circuits with several RRs in the range

of {5, 10, 15, 20, 25} where each occupies 70% resources on the target device of [107], i.e.,

Xilinx Virtex-5 XC5VLX110. All the RRs require CLBs, 3 to 7 require BRAMs, and 1 or

2 require DSPs. The evaluation metric is the resource waste (𝑊𝑅cost) calculated using

Equation (5.6), where weight 𝑘𝑡 for each resource type 𝑡 ∈ {𝐶𝐿𝐵, 𝐵𝑅𝐴𝑀, 𝐷𝑆𝑃} is set to

1. This implies that𝑊𝑅cost is the number of unused resources in an RR. The stopping

criteria of the search are either reaching the optimum or a time limit of 3600 seconds.

A comparison between the proposed floorplanner with the floorplanner from [107] for

the Xilinx Virtex-5 XC5VLX110 device is presented in Table 5.1. We decided to compare

our floorplanning approach against the one reported in [107], as it presented complete

details for re-implementation. Another work proposed improvements over [107],

in [116], but does not provide enough details for re-implementation and to perform a

fair comparison. The improvement achieved by the proposed floorplanner in resource

waste relies on the assumption that the Xilinx Virtex-5 device allows the smallest

allowed PU/RR of 10 CLBs/DSPs/BRAMs. However, the smallest allowed PU/RR on

this device is an entire column [101] for each resource type 𝑡 ∈ {𝐶𝐿𝐵, 𝐵𝑅𝐴𝑀, 𝐷𝑆𝑃}
and the results are only presented to show the effect of fine granularity.

64

5.5 Experimental Results and Evaluation

Table 5.2: Comparisons between proposed floorplanner and the one report in [107] for Xilinx Zynq UltraScale+
XCZU9EG-2FFVB1156 MPSoC, Runtime 3600 Sec.

of IPs
Resource Waste (%)

Solution Type
[107] Proposed

5 549 (4.53%) 407 (3.36%) Sub-Optimal

10 551 (4.51%) 270 (2.22%) Sub-Optimal

15 637 (5.18%) 134 (1.10%) Sub-Optimal

20 483 (3.95%) 29 (0.23%) Sub-Optimal

25 469 (3.86%) 73 (0.06%) Sub-Optimal

For Xilinx Zynq UltraScale+ XCZU9EG-2FFVB1156 MPSoC, the target device for the

presented floorplanner, a device model for [107] and proposed floorplanner is created.

This device has more resources, complex resource distribution, and a smaller allowed

RR. Therefore, an optimal solution cannot be found for any of the cases in 3600 seconds.

Therefore, Gurobi Optimizer is run while setting parameter MIPFocus to 1. MIPFocus
parameter, when set to 1, makes the optimizer find a good quality sub-optimal solution

rather than focusing on the optimal one [45]. For finding the optimal solution, MIPFocus

can be set to 2, and the solver needs to be run for a longer period.

A comparison between our proposed floorplanner and the one reported in [107] using

the same benchmark is presented in Table 5.2. This shows a clear improvement in

our approach over the reported work [107]. It is also important to mention that the

benchmark is used without scaling it for the target device. Since the target device is

approximate twice the size of Xilinx Virtex-5, the benchmarks roughly cover 30% of the

PL. The proposed and reported floorplanner could not find any solution for any cases

when the benchmark is scaled to occupy 70% of the device. Furthermore, the 5-IPs use

case of the benchmark was run for a longer period to find an optimal solution. However,

even after approximately 27 hours of run-time, the floorplanner could not find a better

solution than the one found in 3600 seconds. Both of these cases can be attributed to the

large solution space. For the latter one, it can be assumed that the optimal solution will

have a minor improvement over the sub-optimal solution and requires more effort than

the benefit. However, these challenges can be solved by adjusting the floorplanning to

find a solution by only focusing on a few clock regions, which is shown for the use case

presented in Section 8.3.2.

As mentioned in Section 5.3.2, the granularity of [107] is 40 CLBs, and that of the

proposed floorplanner is 10 CLBs. Furthermore, each IP in the synthetic benchmarks

65

5 Automatic Floorplanning of IPs

Table 5.3: Earlier found sub-optimal solutions by the proposed floorplanner for Xilinx Zynq UltraScale+.

of IPs Resource Waste (%) Run-time (seconds)
5 3.56% 62

10 2.41% 207

15 1.30% 216

20 0.28% 266

25 0.25% 370

has a multiple of 40 resources for each IP. Since these IPs fit perfectly on the columns of

the Virtex-5 device, the resource waste is lower for both the floorplanners. However, in

the case of the target device, shown in Table 5.2, these IPs do not fit the column, which

can be seen in the higher resource waste for [107]’s floorplanner.

Even though the proposed floorplanner was run for 3600 seconds, solutions presented

in Table 5.2 were found earlier. For example, for 5-, 10-, 15-, 20-, and 25-IPs, the

reported sub-optimal solutions were found in 1550, 2774, 2105, 3440, and 976 seconds.

Furthermore, other good quality solutions were found even earlier with a negligibly

small difference in resource waste compared to the ones found in 3600 seconds. They

are presented in Table 5.3. In conclusion, the proposed floorplanner can be used to find

good quality sub-optimal solutions within a few minutes.

The proposed floorplanner can also work with other devices, even with the devices from

other FVs. For this, devices need to be modeled while considering the supported gran-

ularity of partial reconfiguration. Floorplanning is solved with Gurobi Optimizer [46],

which is used as a black box, where both the floorplanning and the device model are

inputs. Other researchers can replicate the work by implementing the floorplanner

using the variables and constraints defined in Section 5.4. Device models for Xilinx

Virtex-5 XC5VLX110 and Xilinx Zynq UltraScale+ XCZU9EG-2FFVB1156 MPSoC are

made public [58], and they can be used as a reference for modeling other devices.

66

6 Standalone Generation of IPs

The work described in this chapter was published in [177] and is joint work with co-authors Jorge
Castro-Godínez, Shixiang Xue, Jörg Henkel, and Jürgen Becker. More details on contributions
is found in Section 1.5.

The third challenge, among the ones presented in Section 1.4, is the generation of IPs

independent of the overall (static) design. Use cases such as IP licensing schemes

and ASIC prototyping require that the participants can generate their end products

(bitstreams) independent of each other’s design, i.e., without sharing designs to avoid

reverse engineering [11, 95]. Furthermore, these end products need to be compatible

with each other. It is also equally important that the bitstreams should be generated

using FV tools because companies that are consumers of the IPs (SDs) avoid using end

products generated with non-certified or tampered tools. Therefore, the following work

is focused on FV tools and third party tools that work along with FV tools to generate

IPs.

6.1 Requirements
As mentioned earlier, FPGA vendor tools do not support generation of IPs independently.

To explain the reason behind this limitation, several requirements are defined and

presented below.

1. Devices and corresponding tools must support partial reconfiguration.

2. Reconfigurable designs (RDs) should not use any placement resources outside its

reconfigurable region (RR).

3. RDs should not use any routing resources outside its RR.

4. Static design should not use any placement resources inside the RRs.

5. Static design should not use any routing resources inside the RRs.

67

6 Standalone Generation of IPs

It is important to mention that if a tool satisfies all these requirements, it will support

the generation of IPs independent of the overall design. The requirements are general

and can be applied to other tools; however, they are only discussed for the target device

and corresponding FV tools in the following section.

Major FPGA vendors fulfill the first requirement. For example, PR is supported using

Vivado for all Ultrascale
TM

, Ultrascale+TM
, and nearly all 7 Series devices (see [147,

pp. 6-7]). Requirements 2 and 3 are specific to the RD (IP) using only the resources

inside its RR, and major FV tools support them (see [147, pp. 34, 75]). Even though

requirement 4 is supported by FV tools, 5
th

one is not (see [147, pp. 34]). This means

the routing of the static design is going through the RR, and an IP generated for that RR

without the static design’s routing information will not be compatible with the static

design. In other words, if such IP is configured on the FPGA, it will tamper with the

static design’s routing.

To solve this problem, we investigated third party tools whose results can be imported

into the FV tools. Here, the focus is blocking all the routing resources inside an RR so

that these resources are not used by the static design. A discussion on third party tools

is presented in the following section.

6.2 Third Party Tools
Major FV devices and tools support DPR, which can be used to implement IPs. However,

these tools work on an incremental design methodology, e.g., static design needs to be

implemented (where the placement and routing will be preserved) before implementing

IPs. Hence, there is a need for a tool or a flow that can generate IPs with no information,

or very little, about the static design.

Among the third party tools, only GoAhead [10] has been reported to assist in the

generation of IPs for an IP licensing scheme [133]. GoAhead uses the notion of planning

to define what belongs to the static design and what part of the design will be placed

in reconfigurable containers, particularly by automating low-level design aspects of the

process. This tool is more focused on the efficient utilization of a DPR flow to improve

re-usability and resource utilization.

For static design, GoAhead creates all the required VHDL templates and physical

implementation constraints. These constraints prevent the usage of the resource

primitives inside a RR by the static design. Blocking static design from using placement

resources within an RR is easy, and it is supported by FV tools, e.g., Xilinx Vivado Design

68

6.2 Third Party Tools

Suite and Intel Quartus Prime. However, doing the same for the routing resources is

a much harder problem and is not supported by FV tools. To achieve this, GoAhead

can be used to create blocker macros for all the routing resources inside the RRs. The

macros show that the resources are occupied, and this way, routing of the static design

can be avoided to go through the RRs. Blocking of the routing and placement resources

has also been used by ReCoBus-Builder [60] and OpenPR [122]. However, all these tools

are based on xilinx development language (XDL), which Xilinx no longer supports for

its current FPGAs. Therefore, these external tools are incompatible with recent Xilinx

devices (such as UltraScale, Ultrascale+, and beyond) [128]. Furthermore, blocking all

the routing resources within all the RRs can make overall routing extremely hard.

Recently another tool, called RapidWright, has been proposed to work with Vivado

to produce highly customized implementations [73]. RapidWright constitutes the

progression of previously proposed tools RapidSmith [71, 72] and RapidSmith 2 [48].

This tool can generate pre-implemented modules, such as partial IPs, by using Vivado

to synthesize, place, and route them. However, considering its documentation,

RapidWright can not generate partial bitstreams independent of the static design.

Blocking of routing and placement resources can be done by ReCoBus-Builder [60],

OpenPR [122] and GoAhead [10]. As mentioned earlier, these tools do not support

recent Xilinx devices [128]. However, even if these tools are further developed to

support recent devices, the solution will have the following limitations:

• If most of the PL resources are used by IPs, all the blocked routing resources

inside RRs will cause Vivado’s router to fail while routing the static design.

• The same problem will occur if multiple IPs are floorplanned close to each other.

This would require iterative intervention into the floorplanning model.

• Floorplanning of the RRs can be adjusted in a way that enough routing resources

are available for the static design’s routing by providing gaps between the RRs.

However, this will make the floorplanning problem even harder to solve and will

increase resource waste.

Because of the mentioned limitations and the implied performance disadvantages, we

propose a different approach where only FV tools can be used to generate IPs and SD’s

design independent of each other. Even though the discussion is specific to Xilinx tools,

the approach can easily be used for devices from other FVs, provided they support

partial reconfiguration.

69

6 Standalone Generation of IPs

RR of PPSDRR of PPSD

RRIP1RRIP1

RRIP3RRIP3

RRIP2RRIP2

RRIP4RRIP4

Static Design (incl. NPSD)

Figure 6.1: Floorplanned static design including SD non-protected design and all the RRs

6.3 Proposed Solution using FV Tools
This section presents the concept of the independent IP generation (IIPG) flow. The flow

can be implemented using any FPGA vendor tools that fulfill the requirement 1, 2, and

3 presented in Section 6.1. The latest devices and tools from the two major FVs, namely

Xilinx and Intel, fulfill these requirements; therefore, the flow can be implemented for

their devices. Since the implementation and evaluation of this work is targeted for a

device from Xilinx, their terminologies and DPR flow is used while presenting the IIPG

flow. A short description of the DPR flow is presented in Section 2.1.4, and more details

about it can be found in [147].

The IIPG flow is explained by showing interaction among the participants of the FPGA

IP market, which was introduced Section 1.1. Using IIPG, multiple IP core vendors (CVs)

and a system developer (SD) can generate bitstreams of their designs independently.

Furthermore, these bitstreams (designs) will be compatible with full bitstream (overall

FPGA design); and can be configured on the RRs of the already configured full bitstream.

The IIPG flow is implemented using a tool command language (TCL) script that performs

DPR using Vivado. The individual steps of the flow are shown in Figure 6.2, and are:

1. CVs publish the functionality, supported interfaces, and resource consumption of

their IPs. The information is made available on an IP store where SDs can search

for the IPs they require.

70

6.3 Proposed Solution using FV Tools

2. An SD selects IPs from the IP store and acquires their information Info{IPJ}.

3. SD partitions its design into two parts: the protected part (PPSD) and the non-

protected part (NPSD). PPSD consists of all those functionalities that SD wants to

protect from getting shared with CVs. NPSD part is the functionalities, which are

either open source or not critical enough to be protected.

4. SD creates a static design in which wrappers with desired interfaces and port

definitions are defined for all the selected IPs. A similar wrapper is created for

the PPSD. NPSD is part of the static design; however, all the IPs and PPSD are

instantiated as reconfigurable designs (RDs). RDs in the DPR flow only require

the interface and port definition.

5. RRs are created according to the resource requirement of all the RDs, and RDs

are assigned to them. RRs of CVs’ design and SD’s protected design are shown in

Figure 6.1

6. Floorplanning of the RRs is done using the fine-grained floorplanner, which is

presented in Section 5. The static design is also shown in Figure 6.1.

7. The created static design has SD’s non-protected design and all the connections

among the modules. SD shares the static design with all the CVs.

8. SD generates bitstream of the static design and PPSD from static design. Since

PPSD’s bitstream is generated from the static design, it will be compatible with

the full bitstream.

9. Each CV generates bitstreams of their respective IPs using the static design. IPs’

bitstream will also be compatible with the full bitstream as they are generated

from the same static design.

71

6 Standalone Generation of IPs

SD

{Info{IPJ}, PKCV} {Info{IPJ}, PKCV}

IP Store

CV

1. CVs publish information

about the their IPs

2-6. SD creates the

static design

RR of

PPSD

RRIP1

RRIP3

RRIP2

RRIP4

7. SD shares the static design

with all CVs

8. SD generates bitstream of

their design

RR of

PPSD

RRIP1

RRIP3

RRIP2

RRIP4

RR of

PPSD

RRIP1

RRIP3

RRIP2

RRIP4

RR of

PPSD

RRIP1

RRIP3

RRIP2

RRIP4

RRIP1 RRIP2
RRIP3

9. Each CV generates bitstreams of their

respective IPs using the static designRR of

PPSD

RRIP1

RRIP3 RRIP4

RRIP2

All bitstream are compatible as they are

generated from the same static design

Figure 6.2: Independent IP Generation (IIPG) Flow

72

7 IP Licensing Schemes

The work described in this chapter was published in [179] and is joint work with co-authors
Sven Nitzsche, Asier Garciandia López, and Jürgen Becker. More details on contributions is
found in Section 1.5.

This chapter presents a novel, feasible and secure IP licensing scheme for FPGA devices

to address the remaining challenges presented in Section 1.4. The following section

evaluates existing proposals in the FPGA IP market. Furthermore, several features or

limitations are defined in it, and the related schemes are summarized based on these

features in Table 7.1. Afterward, basic prerequisites and assumptions are explained

in Section 7.2, threat model in 7.3, and the Trusted Platform concept is discussed in

Section 7.4. Finally, the proposed scheme is presented in Section 7.5.

7.1 Existing Proposals in the FPGA IP Market
The Virtual Socket Interface Alliance published a technical paper that outlines three

methods of securing the virtual components called deterrence, protection, and detection.

Deterrence is the use of legal systems to prevent the infringement of IPs, e.g., patents,

copyrights, trade secrets, contracts, and lawsuits. In a protection approach, CVs take

active measures to prevent illegitimate use of their IP, e.g., licensing agreements and

encryption. In a detection approach, CVs detect the theft origin after unauthorized

use of their IP has been discovered, e.g., IP watermarking [154, 163] and fingerprinting

techniques [17, 20, 69]. Among them, protection methods [25, 57, 82] are more effective

because they make IP infringement difficult and costly. The proposed work focuses on

protection; hence the state-of-the-art discussion will concentrate on this category.

In 2001, Kean [56] proposed that a secret key in a non-volatile memory and an encryption

circuitry on the FPGA can protect FPGA’s configuration data (bitstream) against piracy

and reverse engineering. The main attack considered for that work was monitoring

73

7 IP Licensing Schemes

the wire that transfers bitstream from serial erasable programmable read-only memory

(EPROM) to an FPGA. The encryption circuitry will encrypt the bitstream before it

is stored on the serial EPROM. On startup, the encrypted bitstream will be loaded,

decrypted, and then configured on the device. The following year, he proposed an IP

protection scheme [57], where a secret key is stored in the FPGA that is only known

to the device. Also, each device has a unique identifier. The secret key is used to

generate security tokens using the device ID and a user key, which the TTP provides.

Using this scheme, TTP can create tokens that allow secure communication with the

FPGA once it leaves its possession. One of the major drawbacks of this scheme is

the use of design files that leads to placing higher trust in the TPP. Also, it requires

support/customization of the FV tools.

Simpson et al. [120] presented a software IP authentication scheme using a physically

unclonable function (PUF). One of the work’s weaknesses is not implementing a PUF

instead assuming that a secure one exists. Secondly, assuming that encryption can

be used for bitstream security without getting into details can be considered another

shortcoming of the work. Similar schemes are proposed by Guajardo et al. [41, 66]

while focusing on implementing reliable and secure PUFs. On SW-IP protection using

PUF, Gora et al. also presented their design flow in [39]. They proposed to use an

integrity kernel that validates a security kernel, which is then used to perform the

decryption of SW-IP. The problem with this approach is that it will restrict the SD from

using their device’s PS. However, if restrictions are reduced, a malicious SD can reverse

engineer the kernel to perform IP theft attacks. Furthermore, the integrity kernel’s

binary is stored in FPGA’s configuration memory, which can be read out using the

readback attack (see Section 3.1.4) and then reverse engineered to a netlist [11, 95].

There are other schemes [25, 42, 54, 82, 157, 158] where a TTP stores a unique key

on the device and provides a core installation module (CIM), in encrypted form, that

supports the metering process. Güneysu et al. [42] proposed it first and used it for

the public-key cryptography-based key-agreement protocol between the CV and the

device. An extension of the proposal for the protection of multiple cores was presented

in [25]. Others [54, 158] proposed minor improvements such as reducing complexity

and not requiring any hardware modification to the existing devices. Later, [82, 157]

proposed more structured IP licensing schemes utilizing CIM to decrypt IP cores with

symmetric cryptography. For the protection of IP cores, most of the schemes rely on a

TTP, and a straightforward way would be that TTP is responsible for the programming

of keys on the device and encrypting IP cores. However, this would require placing

a higher trust in the TTP. The usage of CIM was mainly to reduce the degree of trust

in the TTP. Even though CIM usage could cause PL resource waste but this can be

74

7.1 Existing Proposals in the FPGA IP Market

avoided by reusing these resources once CIM has served its purpose [157]. CIMs only

offer an additional reverse engineering step in terms of security, as they can be read out

using the readback attack. Afterward, they can be reverse engineered to a netlist [11,

95], which will lead to the extraction of keys stored in them.

Then, there are other schemes [41, 100, 120, 124, 155] that used PUFs for generating

secret keys to avoid placing trust on the TTP. If reliable and secure PUFs are used, that

will consume higher resources on the PL. Even though recent devices (e.g., the Xilinx

Zynq UltraScale+ MPSoC ZCU102) are equipped with them; however, this would mean

placing higher trust in the FV. Another IP licensing scheme [176] was proposed by the

author that provides protection against IP theft without relying on any TTP. In it, a

software application is used for the decryption and configuration of the IP cores. The

application is protected using a hardware-assisted software protection solution that

uses a tamper and side-channel attack (SCA) resistant hardware component. However,

the scheme suffers from readback attacks, discussed in Section 3.1.4, restricted usage of

the PS or kernel tampering attacks.

7.1.1 Features or Limitations
For SotA comparison, here, several features are presented. The first two features are

based on two limitations that are not addressed by almost all the IP licensing schemes

and are explained in detail in Chapter 5 and 6, respectively. The rest of the features

were defined in [179]. A short description of each feature is given below, and SotA

comparison using these features is presented in Table 7.1.

• Independent IP Generation (IIPG): Whether the scheme addresses or supports

the generation of IPs/RRs independent of the overall design.

• Automatic Floorplanning of IPs/RRs (AF): Whether the scheme addresses or

provides support for the floorplanning of IPs/RRs on the PL.

• Readback Attack Resistance (RBAR): Whether the scheme is resistant to readback

attacks or not.

• Minimal Hardware Modification (MHM): Whether the scheme can use commer-

cially available devices without any modification or not. Modifications of devices

can be adding additional security components; however, they should be avoided.

|They make a scheme inapplicable for available devices, and therefore, will not

be adopted by the industry.

• Malicious Functionality Detection (MFD): Whether the scheme offers mechanisms

to detect the presence of malicious functionalities in the IP core or not. A malicious

75

7 IP Licensing Schemes

function can be a Trojan or an attempt to tamper with other PL regions that are

not reserved for the IP.

• Side-Channel Attack Resistance (SCAR): Whether the scheme is resistant to side-

channel attacks or not.

• TTP Access Prevention (TTPAP): Whether a third party can easily extract the IP

cores or not (as they may have access to devices, IPs, or secret keys).

Among the defined features, the support or lack of support for the first five ones is

shown with only two symbols, i.e., For IIPG, AF, RBAR, MFD, and MHM features, the

▩ symbol shows schemes’ support of these features, and lack of support is indicated

with the □ symbol. However, for SCAR and TTPAP features, the degree of support is

shown with three symbols. Schemes that have not addressed SCAs are marked with the

□ symbol. The ones marked with the ▦ have only suggested utilizing SCA-resistant

cryptographic primitives without providing any implementation details. Finally, ▩
symbol highlights the schemes whose implementations are resistant to SCAs. For the

TTPAP feature, □ represents the schemes where TTP has access to both keys and IPs,

and ▦ shows that the TTP only has access to the keys but not the IPs. Most of the

schemes, including the proposed one, are in this category. Finally, ▩ is used for the

schemes where IPs and keys are not accessible to the TTP, e.g., the scheme presented

in [176].

The IIPG is discussed in detail in Chapter 6, where it is mentioned that only Vliegen et

al. [133] has addressed this issue. However, they only mentioned the use of a third party

tool GoAhead [10] for standalone generation of IPs without providing any technical

details (For details see 6.2). Still, Table 7.1 shows their scheme supporting this feature

along with the proposed one. The second feature, namely automatic floorplanning,

is not addressed by any IP licensing schemes except the proposed one, which is also

reflected in Table 7.1.

As discussed in Section 2.4, booting of the device in a secure way is achieved by using

the internal dedicated decryption engine (DDE) of the device. These engines are also

used to decrypt IPs before their configuration, and several schemes rely on DDEs for

this purpose. Since the keys used by the DDEs are programmed by a trusted third party

(TTP), such schemes will place higher trust on the TTP that leads to lesser support of

the TTPAP feature. Among the schemes, another scheme proposed by the author [176]

avoids relying on any TTP, which is the only scheme shown to have full support for

this feature in Table 7.1. Other schemes try to reduce the amount of trust placed on the

TTP using a physical unclonable function (PUF) or core installation modules (CIMs).

76

7.1 Existing Proposals in the FPGA IP Market

Table 7.1: Comparison among the existing IP licensing schemes, where ▩ represents full support, ▦ shows

partial support and □ represents a lack of support.

Year Schemes IIPG AF RBAR MFD MHM SCAR TTPAP
2002 Kean [57] □ □ □ □ ▩ □ □

2006 Bossuet [14] □ □ □ □ ▩ □ □

2006 Simpson [120] □ □ □ □ □ □ ▦

2007 Guajardo [41] □ □ □ □ □ □ ▦

2007 Güneysu [42] □ □ □ □ □ ▦ □

2008 Drimer [25] □ □ □ □ □ ▦ □

2010 Gora [39] □ □ □ □ ▩ □ ▦

2012 Maes [82] □ □ □ □ ▩ ▦ ▦

2012 Pappala [100] □ □ □ □ ▩ □ ▦

2012 Gaspar [35] □ □ □ □ ▩ ▦ □

2014 Zhang, L [157] □ □ □ □ ▩ ▦ ▦

2015 Zhang, L [158] □ □ □ □ ▩ □ ▦

2015 Sun [124] □ □ □ □ ▩ □ ▦

2015 Zhang, J [155] □ □ □ □ ▩ 𝑁/𝐴 ▦

2012 Vliegen [133] ▩ □ □ □ ▩ □ ▦

2019 Khan [176] □ □ □ □ ▩ ▦ ▩

2019 Khan [174] □ □ ▩ □ ▩ ▦ ▦

2020 Proposed Work. ▩ ▩ ▩ ▩ ▩ ▩ ▦

However, these solutions lead to higher resource overhead and only insert an additional

reverse engineering (RE) step.

Also, all the published schemes do not support RBAR, and MFD features except

the proposed scheme and [174], where [174] is an earlier concept of the proposed

work, published by the author. The proposed scheme utilizes the TEE, whose SotA is

presented in the following section.

In the case of the SCAR feature, schemes [14, 39, 41, 57, 100, 120, 124, 133, 158] that

did not address side-channel attacks are marked with □. The rest of the schemes

except the proposed one addressed the issue; therefore, they are shown in Table 7.1 as

partially supporting this feature. The proposed scheme is shown in Table 7.1 to have

full support for this feature because it is the only scheme that provides the concept and

77

7 IP Licensing Schemes

implementation of an SCA resistant AES implementation that is used for the decryption

of IPs.

7.2 Assumptions

7.2.1 Target Platform Features
To allow a broad range of hardware platforms to be usable, requirements on the available

hardware features should be as low as possible. However, the protection of IPs can only

be guaranteed if they are secured against external access at any point in the device at

all times. The following components form the basis for such protection.

• Cryptographic Primitives: Cryptographic primitives allow for the protection of

bitstreams or software using encryption and authentication. Dedicated circuits

should be available to process these primitives. The required keys must be stored

locally; therefore, a secure key vault should be available as well. It is assumed

that these hardware implementations are secure against side-channel and other

attacks. State-of-the-art is SHA-3/RSA4096 for authentication and AES256 for

encryption. Other algorithms may be used as long as they are reasonably sound.

• Secure Boot: FPGAs offer the possibility to boot a device with authentic encrypted

system files (e.g., boot loaders, firmware, and OSes) using secure boot mechanisms.

These files are considered trustworthy and can be distributed and stored securely.

The respective keys must be pre-configured on the device for this purpose. The

internal cryptographic hardware engine is typically used for decryption and

authentication. Therefore, Secure Boot is considered resistant against SCAs as

well. To prevent subsequent manipulation of the keys, devices with Secure Boot

offer the possibility to block reading or overwriting the keys once they have been

programmed. This secure boot process represents the initial immutable root of

trust on which all subsequent security measures are based.

7.2.2 Trust on FV’s Devices and TTP
FPGA vendors (FVs) have access to their devices during manufacturing, which provides

all fundamental roots of trust, including identification numbers and the secure key

vault. Since the devices are commercially available and used, malicious behavior or

weakness in them will likely be found and, consequently, damage their reputation.

Therefore, it can be assumed that the devices are trustworthy. Secondly, several keys

specific to secure boot and the security framework (SFW) are programmed by a trusted

third party (TTP) during an FPGA device’s enrollment before its use (see Section 7.5).

All these security tasks imply that the TTP must be trustworthy. However, measures

78

7.3 Threat Model

are taken to reduce the degree of trust placed in the TTP, i.e., its access to the IPs is

restricted (See Section 7.1 and 9.2). Ideally, the FV can also play the TTP role because

fewer participants will reduce security leaks. However, this is not mandatory.

7.3 Threat Model
The most valuable assets in an IP licensing scenario are the bitstreams of IPs and

cryptographic keys present in the device. Appropriate measures must be taken to

ensure that both are protected against unauthorized access, as far as this is possible

with devices available on the market. Based on the categorization of attackers and their

capabilities, according to Abraham et al. [1], this work is limited to measures that protect

against any attacks except those carried out by Funded Organizations. The latter have

access to advanced technology and well-equipped laboratories that, for instance, can be

used for sophisticated physical attacks. Protection against such attacks is not feasible

with a mere licensing scheme and matching software alone but must be implemented

directly in the hardware (i.e., the FPGA itself). Explicitly, however, the possibility of

a non-trustworthy system designer is considered, who may use readback or similar

attacks to extract protected IPs. This also includes anyone who has physical access to

the device, e.g., a customer of the system developer. Furthermore, the possibility of a

hostile core vendor (CV) is also considered who can insert a malicious functionality in

their IP to attack SD’s device.

7.4 Trusted Platform

7.4.1 Establish Trust on the Processing System (PS)
In general, the goal of a licensing scheme should be to secure the target platform

against IP theft attacks and misuse, discussed in Chapter 3, without restricting the SD’s

access to the device and its features. The first step towards this goal is to distribute

IPs as encrypted bitstreams and have decryption keys pre-configured on the devices.

However, this approach has several shortcomings:

• SDs can readout configuration data using configuration interfaces, which is

discussed in Section 3.1.4.

• IPs may include malicious content such as Trojans or tamper with the SD’s design.

A malicious bitstream can only be detected by analyzing the IP’s decrypted form.

• IP-specific software applications cannot be protected.

79

7 IP Licensing Schemes

Non-Secure World Secure World

Un-Trusted Application

(User Mode)

Trusted Application

(User Mode)

Non-Secure Kernel

(Privileged Mode)

Secure Kernel

(Privileged Mode)

Secure Monitor

Figure 7.1: Secure and non-secure world concept

• All CVs either have to use the same key to encrypt their bitstreams, or a TTP needs

to do this encryption step on CVs’ behalf. However, this would lead to multiple

security challenges [57].

For most SoCs, the PS is the main controller with access to all the device components. If

SDs have full control of the PS, some of the above drawbacks cannot be countered, such

as readback attacks. An alternative would be restricting SD’s access to the PS; however,

this would restrict many of the device features from being used by the SD. A solution

would be partitioning the PS into secure and non-secure worlds (see Figure 7.1), where

only the latter one will be in the control of the SD. This can be achieved using TrustZone

technology (see Section 2.5.3), which provides a TEE-based trusted OS and a rich OS.

Their access rights are presented below:

• Trusted OS has access to all components of the device. It acts as a secure master

and cannot be accessed once running, apart from predefined APIs. SDs can

neither control nor modify this OS.

• Rich OS is under SD’s full control. They have direct access to most peripherals as

long as they are configured as non-secure in the TEE. Other secure peripherals

can only be accessed by making requests to the trusted OS.

Figure 7.1 shows the general software setup with ARM Trusted Firmware as a base layer

that configures TrustZone on startup and acts as a security monitor once the system is

running. The purpose of this security monitor is to separate trusted and rich OSes but

still allow communication between them using security monitor calls, which provide

rich OS applications’ access to the APIs of the trusted OS.

Processing units, interfaces, and sections of the main memory can be defined as secure

or non-secure. For example, for the secure configuration of an encrypted IP, two regions

of the main memory are declared secure, as shown in Figure 8.1. One of them contains

80

7.4 Trusted Platform

the trusted OS, while the trusted OS uses the other to store the decrypted bitstreams.

Since the rich OS does not have access to these memory regions, even a plain-text

bitstream is secure.

As mentioned in Section 3.1.4, configuration access ports (PCAP or ICAP) can be used

to launch the readback attack. This attack can be avoided if rich OS is restricted

from accessing the configuration interfaces. Even though the target device and its

development flow provide partitioning of resources into sub-systems (secure and

non-secure), the same is not valid for PCAP, i.e., PCAP cannot be isolated from rich OS

using isolation flow [151]. Secondly, the ICAP is on the PL, and restricting its access

from the rich OS is not supported by the TEE implementation on the target device.

More details on this are presented in the following section.

7.4.2 Extending TEE to the Programmable Logic (PL)
The basic concept of TEE is the isolation of PS resources. In this work, the discussion is

focused on ARM TrustZone, which is an implementation of the TEE. As mentioned in

Section 2.5.3, TrustZone is a system-wide approach to security with hardware-enforced

isolation built into the PS. Among other security features such as isolated execution,

this approach also offers secure, and non-secure read/write transactions that can be

used to isolate access to the IPs on the PL. However, this approach does not offer any

isolation or security for the configuration/programming of the PL.

The TEE concept can be extended to the configuration process by managing the access

to the configuration interfaces and bitstream analysis. This is achieved by partitioning

the PL into a secure and non-secure region, as shown in Figure 7.2. The configuration

and readback of the secure PL region can only be issued by the secure masters (trusted

OS). However, (re-)configuration and readback of the non-secure PL region are still

possible from the non-secure master (rich OS). Here, SD’s design and other open-source

IPs can be configured/readback by the trusted OS using a predefined API, therefore,

not restricting SD from using features of the device. This way, security is extended

to the PL without affecting the available features like reconfiguration and readback.

Here, the term non-secure only means that these PL resources are non-secure for the

unprotected licensed IPs because SD has full access to them. In other words, SD’s

proprietary software in rich OS or hardware IPs in the non-secure PL region are secure

from other parties. For example, in cases where the system is used by SD’s customer.

The distinction between target regions of bitstreams is made by analyzing the addresses

of frames they are writing. Frames are the smallest sections of the PL that can be

81

7 IP Licensing Schemes

04xx – 3Axx 3Dxx – 70xx 73xx-9Axx 9Dxx-C2xx
18

X0Y6 X1Y6 X2Y6 X3Y6

04xx – 3Axx 3Dxx – 70xx 73xx-9Axx 9Dxx-C2xx
14

X0Y5 X1Y5 X2Y5 X3Y5

04xx – 3Axx 3Dxx – 70xx 73xx-9Axx 9Dxx-C2xx
10

X0Y4 X1Y4 X2Y4 X3Y4

04xx – 3Axx 3Dxx – 70xx 73xx-9Axx 9Dxx-C2xx
0C

X0Y3 X1Y3 X2Y3 X3Y3

Processing

System

4Cxx – 70xx 73xx-9Axx 9Dxx-C2xx
08

X1Y2 X2Y2 X3Y2

4Cxx – 70xx 73xx-9Axx 9Dxx-C2xx
04

X1Y1 X2Y1 X3Y1

4Cxx – 70xx 73xx-9Axx 9Dxx-C2xx
00

X1Y0 X2Y0 X3Y0

Clock Region Frame Address's 3rd

Byte

Frame Address's 1st

& 2nd Byte

Non-secure

PL Region

Secure PL

Region

Figure 7.2: FPGA layout with clock regions, respective frame addresses and partition into Secure and

Non-secure PL regions.

programmed individually. They are identified by their unique address, the frame

address. Bitstreams mainly consist of a sequence of commands alternating between

setting the target frame address and writing to it. The frame address ranges for the

target device are shown in Figure 7.2.

The partitioning process begins with the analysis of the bitstream where frame address

writes are identified. Here, a list of properties is presented that must be satisfied by the

bitstream analysis process for a successful configuration.

1. Clock region X3Y1 can never be reconfigured or readback, i.e., partial bitstreams

must not have any frame addresses specific to clock region X3Y1 because it is

reserved for the SFW components. SFW components are PRC, TrustZone logic,

and connection to ICAP. This clock region is selected for the SFW components

because it has the physical connection between PL and ICAP.

2. SD’s bitstreams must only have frame address specific to the non-secure PL region.

82

7.5 Proposed IP Licensing Scheme

3. Bitstreams of the licensed IPs must only have frame addresses specific to the RRs

reserved for them. RRs of the licensed IPs are created in the secure PL region

except X3Y1 clock region.

7.5 Proposed IP Licensing Scheme
The protocol of the proposed IP licensing scheme consists of three steps, which are IP

core enrollment, preparing SFW, and IP licensing:

7.5.1 IP Core Enrollment
Core vendors (CVs) enroll their IPs with the TTP by sharing their public key (𝑃𝐾𝐶𝑉)

and information about the IPs, such as cost, functionality, resource consumption, and

throughput. This is shown as step 1 in Figure 7.3. Afterward, TTP enrolls the IP and

publishes the details in its store. From where SDs can choose and initiate the licensing

procedure.

7.5.2 Preparing Security Framework (SFW)
The second part of the scheme is preparing the SFW, which is from steps 3 to 12 in

Figure 7.4. A system developer interested in licensing IPs can browse through a TTP’s IP

store and select the ones that meet its requirements shown in step 3. Based on its system

and the IP’s information available on the store, the SD specifies IP implementation

requirements such as the area required on the PL, interface, etc. In step 4, the SD

specifies the requirements, which are reserving PL resources for its designs and IPs, and

interfaces among them. Then, it requests FPGA devices (𝐹𝑖) along with the SFW that

supports IP licensing, which is shown as step 5. Alternatively, an SDs can also request

SFW for their own devices; however, they need to send the devices to the trusted third

party (TTP) because physical access is necessary for programming the device keys (Step

10).

2. Enroll IPJ:{#IP, Info{IPJ}, PKCV}, and

publish the details on the IP Store

Trusted Third PartyCore Vendors

{Info{IPJ},PKSD}
1. Enroll IP Cores IPJ’s

information and its public

key PKCV

Figure 7.3: Steps of IP Enrollment

83

7 IP Licensing Schemes

6. Generate Static Design by

i. Reserving resources for the SD’s

design on the PL

ii. Automatic Floorplanning of the IPs

on rest of the PL

iii. Adding functional & security logic

7. Generate random SFW specific private-

public key pair {SKSFW, PKSFW}

8. Store SKSFW in the trusted OS

9. Generate random device keys, program it

in the Fi and prepare secure boot image

(BI).

10. Enroll device/s: {#DI, #SD, PKSD, PKSFW}

11. Deliver BI and Fi

Trusted Third PartySystem Developer

{BI, Fi}

{PKSD, Req}

12. Devices is ready, and boots with SFW

3. Acquire the chosen IP core

Information {Info{IPJ}, PKCV}

4. Specify requirements, i.e., floorplan

of SD’s design, and interfaces among

IPs and SD’s design

5. Request device/s Fi and Security

Framework (SFW) while providing

its public key PKSD and

Requirements

Figure 7.4: Steps of Preparing the SFW

Once the TTP receives the request, it performs step 6, which is generating the static

design. This step requires reserving PL resources for the SD’s design (See Chapter. 6

Standalone Generation of IPs), Automatic Floorplanning of the IPs (See Chapter. 5)

and specify interfaces among the IPs and SD’s design. This static design includes a

secure and a non-secure PL region, as shown in Figure 8.4 and 8.1. The secure region

contains components supporting the SFW, such as TrustZone logic, a configuration

controller, and interconnects. Also, it has reconfigurable regions for all the licensed

IPs. The non-secure one is reserved for the SD’s design, which the SD specified in step 4.

In step 7 and 8, TTP generates an asymmetric key pair for the SFW, a private- (𝑆𝐾𝑆𝐹𝑊)

and a public key (𝑃𝐾𝑆𝐹𝑊), and stores 𝑆𝐾𝑆𝐹𝑊 in the trusted OS, respectively. Then,

random device keys are generated and programmed into the device. These keys are

used to generate a protected bootable image (BI) of the SFW along with the bootloader,

firmware, and the static design (full bitstream) using the secure boot feature [142]. This

is shown as step 9 in Figure 7.4.

In step 10, TTP enrolls devices into their database. For each device, the TTP creates

an entry in their database that has information about the device identity (#𝐷𝐼), SD’s

identity (#𝑆𝐷), SD’s public key (𝑃𝐾𝑆𝐷), and the public key of the SFW 𝑃𝐾𝑆𝐹𝑊 . Then,

the devices and matching bootable images are delivered to the SD, shown as step

11 in Figure 8.1. For higher security, unique keys can be generated for each device,

which means a unique bootable image needs to be created for each device. Also,

each trusted OS can have a unique private key (𝑆𝐾𝑆𝐹𝑊). Alternatively, keys can be

84

7.5 Proposed IP Licensing Scheme

generated for a batch of devices, which would simplify the boot image generation

because a single image can be used for all the devices in a specific batch, provided they

all have the same 𝑆𝐾𝑆𝐹𝑊 . Finally, shown in step 11, SD has the devices running the SFW.

Since #𝐷𝐼 is unique for every device, it can be used to verify whether a device is legally

produced or not during enrollment. However, the TTP needs a list of legally produced

devices from the FPGA vendors (FVs) for this to work.

7.5.3 IP Licensing
The third part of the scheme is acquiring the IP in bitstream form from the CV. In step

13, the SD makes a licensing request to the CV by providing its identity (#𝑆𝐷), the

identities of the device (#𝐷𝐼) and IP (#𝐼𝑃). After receiving this request, in step 14, the

CV verifies the identities and uses #𝑆𝐷 and #𝐷𝐼 to acquire the static design and public

keys of SD and SFW from the TTP. Since SD and CV have each other’s public keys, they

can start an authenticated secure communication.

Afterward, in step 15, CV generates the requested IP’s bitstream (𝐼𝑃𝑗) using the static

design. CV can also add a fingerprint [17, 20, 69] in the IP that includes SD’s and CV’s

information. This can help in identifying the source after IP theft is discovered.

This work considers two delivery paths for bitstream-based IPs. The preferred way is

to establish a direct communication channel between a device and a CV, e.g., via the

internet. As mentioned earlier, every device has a public-private key pair, where the

private key (𝑆𝐾𝑆𝐹𝑊) is pre-programmed in the device’s SFW, and the corresponding

public key (𝑃𝐾𝑆𝐹𝑊) is made public. Also, CV as an organization is assumed to have

a private-public key pair. Since both CV and device have public keys, they can

start mutually authenticated and encrypted communication using network security

protocols, e.g., transport layer security (TLS) [31]. With such secure communication,

bitstreams can be transferred as plain-text without compromising them during transfer.

On the target device, the communication channel is established by the trusted OS,

which means IPs are stored in a secure region of the main memory when received.

Therefore, IPs cannot be accessed by the rich OS.

Alternatively, IP bitstreams can be delivered using a non-secure channel. This delivery

method is shown in Figure 7.5 from step 16 to 20. In this approach, a random symmetric

bitstream key (𝐾𝐵) is generated, and 𝐼𝑃𝑗 is encrypted using this key shown as step 16.

Afterward, in step 17, 𝐾𝐵 is encrypted with the public key of the SFW (𝑃𝐾𝑆𝐹𝑊) running

on the device for whom this IP was requested. Then, in step 18, the encrypted 𝐼𝑃𝑗

85

7 IP Licensing Schemes

14. Verify #SD and #DI. Get SD’s public

key PKSD
, SFW’s public key PKSFW and

Static Design using #SD and #DI

15. Generate IPJ using the Static Design

16. Generate random key KB and encrypt

IPJ with it EncKB
{IPJ}

17. Encrypt KB with SFW’s public key

EncPKSFW
{KB}

18. Deliver EncKB
{IPJ} and EncPKSFW

{KB}

Core VendorSystem Developer

13. Request the IP core

while providing

#SD, #DI, and #IP {#SD, #DI, #IP}

EncKB
{IPJ}, EncPKFSW

{KB}

19. Device running

SFW will decrypt

EncPKSFW
{KB} using

SKSFW to get KB

20. EncKB
{IPJ} is

decrypted using KB

Figure 7.5: Steps of Licensing IPs

(𝐸𝑛𝑐𝐾𝐵
{
𝐼𝑃𝑗

}
) is delivered along with the encrypted bitstream key 𝐾𝐵 (𝐸𝑛𝑐𝑃𝐾𝑆𝐹𝑊 {𝐾𝐵})

to the SD.

An SD can provide both 𝐸𝑛𝑐𝐾𝐵
{
𝐼𝑃𝑗

}
and 𝐸𝑛𝑐𝑃𝐾𝑆𝐹𝑊 {𝐾𝐵} to the device after booting it up.

The trusted operating system running on the device can then decrypt 𝐸𝑛𝑐𝑃𝐾𝑆𝐹𝑊 {𝐾𝐵}
using 𝑆𝐾𝑆𝐹𝑊 . Afterward, it can use 𝐾𝐵 to decrypt 𝐸𝑛𝑐𝐾𝐵

{
𝐼𝑃𝑗

}
. These are the two final

steps of the schemes, shown as step 19 and 20 in Figure 7.5.

86

8 Implementation

The work described in this chapter was published in [177, 179] and is joint work with co-authors
Sven Nitzsche, Asier Garciandia López, Jorge Castro-Godínez, Shixiang Xue, Jörg Henkel, and
Jürgen Becker. More details on contributions is found in Section 1.5.

This chapter presents the implementation of the proposed licensing scheme discussed

in the previous chapter. Furthermore, IPs used in the implementation are floorplanned

using the Automatic Floorplanner presented in Chapter 5, and are generated inde-

pendent of the static design using the flow presented in Chapter 6. The proposed

licensing scheme can be realized on any platform that supports the features presented

in Section 7.2. In this work, a Xilinx Zynq UltraScale+ XCZU9EG-2FFVB1156 MPSoC is

chosen as the target device, which has a quad-core Arm Cortex-A53, a dual-core Arm

Cortex-R5F real-time processor, a Mali 400 MP2 graphics processing unit (GPU), and

a PL fabric in a single device. Xilinx Vivado Design Suite 2018.3 and corresponding

PetaLinux Tools are used to create the final implementation.

The implementation starts with creating a project for the target device, where a block

design is defined. The block design instantiates a Zynq Ultrascale+ MPSoC, partial

reconfiguration controller (PRC), AXI interconnects, TrustZone logic, ICAP primitive,

SD’s protected design (PPSD), SD’s non-protected design (NPSD)), and licensed IPs are

instantiated. Among them, PRC, TrustZone logic, and the connection to ICAP support

the SFW and are referred to as SFW components. This main design will be used to create

the static design (see Section 6.3), which will be shared with all the CVs and the SD.

They will use it to generate partial bitstreams of their respective designs. Therefore, all

designs that need protection should only be declared as reconfigurable designs (RDs),

which are SFW components, IPs, and PPSD. Static design can be generated without

including implementation details of its sub-modules that are defined as reconfigurable.

However, interface definition of the sub-modules is required. The block diagram of the

project is shown in Figure 8.1.

87

8 Implementation

ARM Cortex-

A53

S_AXI_HP0

M_AXI_GP0 AXI

Interconnect

TZ Logic

RD

RD

DDR3

Memory

Controller

PL
(Secure Region)

PS

AXI

Interconnect

Secure OS

Secure

memory for

Bitstream

DDR3

PRCICAP

Non-Secure

memory for

Bitstream

SD’s

Design

PL
(Non-secure

Region)

Figure 8.1: Block diagram of PS and PL showing memory and PL partitioning into secure and non-secure

region

For an overview of this chapter, an outline of the implementation aspects of the proposed

work is presented below

• In the current implementation, IP’s encrypted and decrypted (plain-text) bit-

streams are stored in the DDR memory. Since the plain-text one can be accessed

by the rich OS, it needs to be stored in a non-secure partition of the memory.

This partitioning of memory into secure and non-secure regions is discussed in

Section 8.1.

• As explained in Section 3.1.4, configuration interfaces can be used to readback

the configuration data from the PL. This is avoided by isolating the configuration

interfaces from the rich OS and is discussed in Section 8.2.

• Afterward, the use of independent IP generation (IIPG) flow (see Section 6) for

the generation of the static design, full and partial bitstreams is discussed (see

Section 8.3). This section also includes the use of automatic floorplanning (see

Section 5) for the current implementation (see Section 8.3.2).

• Section 8.4 provides details about the Trusted and Rich OSes.

• After that, the implementation details of several trusted applications (TAs) are

presented in Section 8.5.

88

8.1 Memory Partitioning

• All the components outlined so far can be collectively called the security framework

(SFW). In Section 8.6, integration of all the sub-components of the SFW is discussed.

Furthermore, this section ends with the generation of a Secure Boot Image of the

SFW.

• Finally, Section 8.7 provides the execution flow of the two use cases of the proposed

work, which is the configuration of an encrypted and plain-text bitstream.

8.1 Memory Partitioning
The PS setting of Xilinx Vivado offers an isolation feature, which is used to define

a secure sub-system. In this sub-system, parts of the main memory are declared as

secure. This feature utilizes AXI transaction inhibitors in addition to the ARM Trust

zone infrastructure. For the Zynq Ultrascale+ MPSoC, these inhibitors use the Xilinx

memory and peripheral protection units to block transactions between AXI masters

and slaves [149, pp. 50]. As shown in Figure 8.1, 256 MB of memory, starting from

address 0x60000000, is reserved for the trusted OS, and 16 MB of memory, starting from

0x45000000, is reserved for storing the decrypted bitstream of an IP. These settings can

only be configured by the first stage boot loader (FSBL) [151], [149, pp. 50, 58], which

means a custom FSBL needs to be generated rather than using the default one generated

by Petalinux. Once the block design, including the PS, is configured, a hardware

platform specification is generated as an HDF file and is exported to the Xilinx software

development kit (XSDK). XSDK is used to generate the FSBL that manages the memory

partitioning specific settings on the target device.

8.2 Restricting Configuration Interfaces
The configuration data can be written to or read out from the PL using the configuration

interfaces, e.g., ICAP or PCAP. If the rich OS has access to these interfaces, it can perform

the readback attack or write to a secure PL region. These attacks can be avoided by

restricting access to these interfaces from the rich OS. However, the target device and

the corresponding vendor tools do not provide a straightforward way of restricting

these interfaces.

8.2.1 Blocking PCAP
In this implementation, PCAP is used to configure the full bitstream (static design).

Afterward, it is disabled by enabling ICAP, which is then used to configure SD’s

protected design and IPs. Enabling ICAP requires clearing the CSU_PCAP_CTRL
register in function XFsbl_HookAfterBSDownload of the FSBL source code. However, the

89

8 Implementation

rich OS still can enable PCAP using the FPGA manager driver, which in turn has access

to the Xilfpga library of the platform management unit’s (PMU) firmware. This library

runs at the highest privilege level (EL3) and will give the rich OS access to enable PCAP

and configure the PL [152, pp. 598-600]. Therefore, removing this library from the

PMU firmware is also necessary. This is done by generating custom PMU firmware

using XSDK. By utilizing both custom FSBL and PMU firmware, PCAP is disabled for

both OSes.

8.2.2 Isolating PRC from rich OS
Since PCAP is disabled for both OSes, the next step is to restrict rich OS’s access to

ICAP while still allowing the trusted OS to perform PL configuration. Configuring the

PL via ICAP is done using Xilinx’s PRC [144]. It has an AXI4-Lite register interface to

the PS, as shown in Figure 8.1. Once a bitstream is copied to a specific RAM address,

the PRC’s bitstream address and size register can be updated with that information.

Afterward, a software or hardware trigger to the PRC can start the PL configuration

process [144].

The AXI Interconnect IP connecting the PS and the PRC can be set to declare that

the latter is a secure slave. However, even after applying this setting, the non-secure

master (rich OS) has access to the PRC. Furthermore, PRC’s AXI input interface does not

have TrustZone specific signals such as AWPRORT. As shown in Figure 8.1, a custom

TrustZone logic is placed between the AXI interconnect and the PRC to block rich OS’s

access to the PRC. TrustZone logic only allows secure AXI read/write transactions to

the PRC registers, i.e. when the AWPROT(1) signal is low. This way, only the secure

master (trusted OS) can read/write PRC’s registers.

Furthermore, an API is provided to the rich OS, using which it can set PRC’s registers

to only non-secure memory, where SD’s plain-text bitstream can be copied. Using the

API, rich OS can trigger the configuration process. However, the configuration will only

start if bitstream analysis (discussed in Section 8.5.5) of the SD’s bitstream confirms

that it targets a non-secure PL region. The same is true for the readback operation.

Individual steps for configuring an encrypted bitstream on the secure and a plain-text

bitstream on the non-secure PL regions are explained in Section 8.7.

8.3 Standalone Generation of IPs and SD’s Design
The section presents the independent IP generation (IIPG) flow implemented for the

target device. The main design is real-time object labeling (ROL) which is a stream-based

90

8.3 Standalone Generation of IPs and SD’s Design

Table 8.1: Synthesis Report of the Designs for the PL.

Designs
CLBs

BRAMs DSPs
Luts Regs CARRY8
SD’s Main Design and IPs

ROL 2220 2721 0 27 0

lzrw1-comp 1088 1186 24 0 1

kvcordic 377 254 0 0 0

xtea 320 162 0 0 0

b163-arith 245 489 0 0 8

Licensed IPs
RGB2HSV 555 616 74 0 0

CED 2667 3933 350 17 0

MDCT 1220 1932 80 0 0

DCT_AAN 644 550 32 0 4

Sha256 1169 1031 52 0 0

AES-T 471 137 0 9 0

AES-S 264 253 0 0 0

AES-R1 1336 533 0 0 0

AES-R2 613 312 0 5 0

video processing design that performs connected component analysis and labeling [9].

Its sub-modules are run length encoder, label selection, merger resolution, and feature

calculation [153]. The design is considered to be developed by an SD who would like to

add more functionality to it in the future. Also, there are other functionalities that the SD

requires, for which external IPs are acquired. These IPs are either internal or taken from

open sources. The IPs are lzrw1-comp [115], kvcordic [55], xtea [103], b163-arith [8],

RGB2HSV core, canny edge detector (CED) [7], MDCT Core [65], DCT Core [129],

Sha256 [102] and several AES implementations namely AES-T, AES-S, AES-R1, and

AES-R2. Synthesis results of the main designs and IPs are presented in Table 8.1.

8.3.1 Design Partitioning
As shown in Table 8.1, ROL, lzrw1-comp, kvcordic, xtea, and b163-arith are considered

to be SD’s designs. The rest of the IPs belong to CVs. First SD’s designs are divided

into PPSD and NPSD (see Section 6.3). ROL is considered to be PPSD and the rest of

the SD’s IPs are considered to be NPSD. PPSD and CV’s IPs need to be protected from

91

8 Implementation

Table 8.2: Resources assigned to each Reconfigurable Region.

Designs CLBs CLBs+25% BRAMs DSPs
RGB2HSV 74 93 0 0

CED 350 438 18 0

MDCT 153 192 0 0

DCT_AAN 81 102 0 4

Sha256 143 179 0 0

AES-T 59 74 10 0

AES-S 33 42 0 0

AES-R1 167 209 0 0

AES-R2 77 97 5 0

sharing, so they are declared as RDs. NPSD and interfaces between PS and the RDs are

made part of the static design. The next step is the floorplanning of all the RDs, which

is explained in the following section.

8.3.2 Floorplanning
Chapter 5 discusses in detail the proposed floorplanner. As mentioned earlier, the

resource consumption of BRAMs and DSPs for each RD can be taken directly from

their synthesis report. The report shows CLBs consumption in terms of LUTs, FFs, and

CARRY blocks, which are presented in Table 8.1.

The resource consumption information taken from synthesizing the designs has some

inaccuracy, and for some designs, the FV tool cannot run a successful placement.

Secondly, the designs of IPs and the static design could be complex and require more

routing resources. Therefore, 25% of CLB resources are added for each reconfigurable

region (RR), which in turn will also increase the routing resources. The 25% margin

will guarantee that the designs can be routed in all cases. The fixed margin value is

applied to all RRs; however, some can be routed with lower values. But the added

advantage in resource waste is less than the effort required to run the entire flow several

times. Resources calculated from Equation (5.1) and 25% added margin for CLBs are

shown in Table 8.2.

As mentioned in Section 5.2, floorplanner results are the left-most, top-most coordinates:

𝑥𝑖 , 𝑦𝑖 and the width, height : 𝑤𝑖 , ℎ𝑖 for each RR 𝑅𝑖 . These values are used to create

constraint files where RRs are defined on FPGA’s layout, and they are assigned to the

92

8.3 Standalone Generation of IPs and SD’s Design

CLB PU DSP PU BRAM PU

X1Y0 X2Y0

X1Y1 X2Y1

Sha256

DCT_ANN

AES-T

AES-R1

AES-R2

MDCT

CED

R

G

B

2

H

S

V

AES-S

BRAM siteCLBDSP site

Figure 8.2: Floorplanned IPs on the X1Y0 and X2Y0 clock regions of the target device.

corresponding RDs. The generated floorplan of the RRs is shown in Figure 8.2. Since

the licensed IPs are smaller and can fit into two clock regions, they are floorplanned

only on X1Y0 and X2Y0 clock regions. Part of the X1Y0 and X2Y0 is also shown where

resource types and smallest PUs can be seen. Similarly, an RR is placed on X1Y1 for

SD’s protected design.

Resource consumption of the licensed IPs is 61% of the target region (4.4% of the device).

Since the target area and resource consumption are small, an optimal solution is found

in 20 seconds. For the IP licensing use case, usually, a large part of the PL is reserved

for SD’s design. If floorplanning of the licensed IPs is restricted to few clock regions, an

optimal solution for the target area can found in a very short time. However, in cases

where most of the PL is covered with licensed IPs, IPs can be divided into several groups,

and each can be floorplanned while targeting different regions. This way, an optimal

solution for each group specific to their target region can be found. Alternatively, the

optimization model can be solved with a time limit to find a sub-optimal solution.

8.3.3 Static Design Generation
Once the floorplanning is done, a static design can be generated that will be shared with

all the CVs. Major FPGA vendors support the partial reconfiguration feature for their

devices, which allows to dynamically change a sub-module implementation within an

active design [147]. The flow requires defining an RR on the PL for each reconfigurable

93

8 Implementation

X0Y6 X1Y6 X2Y6 X3Y6

X0Y5 X1Y5 X2Y5 X3Y5

X0Y4 X1Y4 X2Y4 X3Y4

X0Y3 X1Y3 X2Y3 X3Y3

Processing

System

X1Y2 X2Y2 X3Y2

X1Y1 X2Y1 X3Y1

X1Y0 X2Y0 X3Y0

Clock

Region

Non-secure

PL Region

Secure PL

Region

SFW

Components

IPs

PPSD

Figure 8.3: Clock regions used for the floorplanning of PPSD, Licensed IPs and the SFW components

module (RM). Furthermore, the flow requires full design instantiating the RM and

several RM implementations. The flow ultimately generates a full bitstream for the

active (full) design and partial bitstreams for each RM implementation.

Standard DPR flow supported by Xilinx Vivado [147] requires an HDL file with only

name and I/O port definition for the reconfigurable designs (RDs). SFW components,

IPs, and SD’s protected part are RDs that are defined in Verilog HDL. The previously

created design has an instances of all RDs, a Zynq Ultrascale+ MPSoC, an ICAP

primitive, and SD’s non-protected design. The interface used for the licensed IPs is

AXI4-Lite, and SD’s protected design is wrapped with an AXI4-Stream interface [138].

All the RDs are connected with the PS, and other system settings are adjusted.

As discussed in Section 7.4.2, PL is partitioned into secure and non-secure PL region

for extending the TrustZone concept to the PL. The licensed IPs and SFW components

will be placed in the secure PL regions. That is why the IPs are floorplanned using

the Automatic Floorplanner on X1Y0 and X2Y0 clock regions, as shown in Figure 8.3.

The floorplanner is used to create a constraint file that is added in the flow where all

the RRs for the IPs are defined and assigned to their respective RDs. The next step is

94

8.3 Standalone Generation of IPs and SD’s Design

defining an RR for the SFW components. This RR is created in the X3Y1 clock region

because it is the secure PL region (see Figure 8.3). Furthermore, the ICAP interface is

physically located here. Further details about this are presented in Section 9.

It is important to mention that the term non-secure only means that the PL resources

are non-secure for the unprotected licensed IPs or SFW components because SD has

full access to them. In other words, SD’s hardware IPs in the non-secure PL region

are secure from other parties. For example, in cases where SD’s customer uses the

system. Here, the goal is to offer flexibility to the SD in using their device (for details,

see Section 7.4.2). The final floorplanning step is defining an RR for the SD’s protected

design (PPSD) in the non-secure PL region (see Figure 8.3) and assigning it to the PPSD

in the constraint file.

The next step is converting the block design to HDL files. After this, synthesis,

optimization, placement and routing of the block design is done using Vivado

commands synth_design, opt_design, place_design, and route_design, respectively [146].

After these steps, the design is stored as xilinx design checkpoint (DCP) [146]

(full_design.dcp). full_design.dcp can be used to generate full bitstream at this stage,

and it can be shared with several parties who can generate their respective bitstreams

with it. Furthermore, full_design.dcp does not have any implementation information

specific to SD’s protected design, SFW components or IPs.

The earlier discussed HDF file (hardware platform specification) is also generated at

this stage and used in a PetaLinux project (See the following section).

8.3.4 SD’s Protected Design
SD synthesizes the protected design for the target device and writes it as a DCP file

(pp_synth.dcp). After this, SD opens full_design.dcp and updates their protected black-box

design with pp_synth.dcp while inserting buffers for all the other CV’s design. Then,

optimization, placement, and routing are done using Vivado’s commands opt_design,

place_design, and route_design. In the end, bitstreams are generated for the PPSD and the

static design.

8.3.5 CV’s Design
CV synthesizes their IP for the target device and writes it as a DCP file (ipi_synth.dcp).

They have the static design full_design.dcp, which is opened. Afterward, CV updates

their IP’s black-box instance in the static design with ipi_synth.dcp and does optimization,

95

8 Implementation

placement, routing, and generate a bitstream for their IP.

The static design’s bitstream is called full bitstream, while PPSD and IP’s bitstreams are

called partial bitstream. They all are compatible because they are generated from the

same implemented static design.

8.4 Trusted and Rich Operating Systems
PetaLinux is a software development kit targeting Xilinx SoCs. For the trusted OS, the

open portable trusted execution environment (OP-TEE) is used, which is an open-source

project maintained by TrustedFirmware.org (previously by Linaro [78]). OP-TEE’s

architectural details can be found in [75]. It was designed as a companion to a

non-secure Linux Kernel running on an ARM processor using TrustZone technology.

OP-TEE implements TEE Internal Core API v1.1.1 and the TEE Client API v1.0 [36].

The former one is the API exposed to the trusted applications, and the latter is the API

that describes how to communicate with a TEE [77].

Among the OP-TEE components, we have used build, optee_os and optee_client. They

are part of an open-source project whose repository is available at [76]. build is a full

OP-TEE developer setup for the OP-TEE project. We have created a local repository of

build, optee_os, optee_client, and trusted applications. The Makefile that is part of the build
setup creates a PetaLinux project whose configuration is imported from the HDF file.

The script adds optee_os to the board support package (BSP) recipe and optee_client and

all applications to the application recipes of the project. The secure memory address

and size are set according to Section 8.1 during the configuration of the project. The

script downloads optee_os, optee_client and applications, and builds the project. The

build process generates an EL3 runtime firmware (bl31.elf), the rich OS (u-boot.elf),

and the trusted OS (bl32.elf). It also generates an FSBL and a PMU firmware. However,

they will later be replaced with custom versions, as discussed previously.

8.5 Trusted Applications (TAs)
There are two ways to implement trusted applications, user-mode TAs (UMTAs) and

pseudo TAs (PTAs). UMTAs are fully featured TAs as specified by the GlobalPlatform

API TEE specifications [36]. PTAs are implemented directly in the OP-TEE core tree and

are statically built into the OP-TEE core blob. Details on the communication, invoking,

locations, and privileges of UMTAs and PTAs can be found in [79].

96

8.5 Trusted Applications (TAs)

Registering and read-write operations on physical address spaces are implemented as

PTA and are built into the OP-TEE core blob. Among others, PRC registers and two 16

MB memory blocks, a secure and a non-secure one, are registered with OP-TEE OS. The

isolation of both memory blocks is discussed in Section 8.1 and shown in Figure 8.1. The

rest of the functionalities are implemented as UMTAs, and they are presented below.

8.5.1 Asymmetric Encryption/Decryption
The asymmetric cipher RSA is implemented in the trusted OS using the following

functions [37]:

• TEE_AllocateTransientObject is used to allocate an uninitialized transient object

that is used to hold a cryptographic key of size 4096 bits.

• TEE_PopulateTransientObject is used to populate the transient object with the SFW

private key 𝑆𝐾𝑆𝐹𝑊 .

• The algorithm argument in TEE_AllocateOperation function is set to𝑇𝐸𝐸_𝐴𝐿𝐺_𝑅𝑆−
𝐴𝐸𝑆_𝑃𝐾𝐶𝑆1_𝑉1_5.

• Finally, TEE_AsymmetricDecrypt is used to perform the decryption.

8.5.2 Authentication of Encrypted IPs
The authentication of encrypted IP is implemented in the trusted OS using the following

functions [37]:

• A digest or hash handle of type TEE_OperationHandle is defined and initialized.

• The digest handle is updated using TEE_AllocateOperation, where the algorithm

argument is set to TEE_ALG_SHA256, which represents secure hash algorithm 2

(SHA-2) with a hash value of 256 bits (SHA256).

• Then, TEE_DigestUpdate and TEE_DigestDoFinal functions are used to calculate

the hash of the encrypted IPs.

• Finally, the TEE_AsymmetricVerifyDigest function is used to compare the signed

hash provided to the trusted OS with the hash computed in the previous step.

The signed hash is calculated on a workstation and signed with the SFW public

key (𝑃𝐾𝑆𝐹𝑊). The transient object holding 𝑆𝐾𝑆𝐹𝑊 , created in steps 1 and 2 of

Section 8.5.1, is used for the comparison (verification) of the provided signed hash

and the hash computed in step 3 of this section.

97

8 Implementation

8.5.3 Symmetric Encryption/Decryption
Similarly, the symmetric cipher AES is implemented in the trusted OS with cipher block

chaining mode and a key size of 256 bits, using the following functions [37]:

• TEE_AllocateTransientObject is used to allocate an uninitialized transient object.

• TEE_PopulateTransientObject is used to populate the transient object that will hold

the AES key.

• In TEE_AllocateOperation, the algorithm argument is set to𝑇𝐸𝐸_𝐴𝐿𝐺_𝐴𝐸𝑆_𝐶𝐵𝐶−
_𝑁𝑂𝑃𝐴𝐷.

• Finally, TEE_CipherInit, TEE_CipherUpdate and TEE_CipherDoFinal functions are

used to perform encryption or decryption.

The AES key used here is provided by the rich OS side, which is encrypted with the

SFW public key (𝑃𝐾𝑆𝐹𝑊).

8.5.4 PRC Configuration and Trigger
As already discussed, a PRC is instantiated in Vivado and will be used to configure

partial bitstreams. Physical addresses of the PRC’s internal registers are taken from

the address editor window of Vivado. As the functionality to read and write physical

addresses is already implemented as PTA, that functionality can be used to implement

PRC configuration and trigger registers [144].

8.5.5 Partitioning of the Programmable Logic (PL)
Figure 8.4 shows that the layout of the PL consists of 25 clock regions. Each clock region

has multiple columns of reconfigurable resources and interconnects. Configuration

data specific to a column is known as the configuration frame. Each column is uniquely

addressed, called frame address [147, pp. 133-134]. Frame addresses are 32-bit wide,

where the 16 least significant bits (LSB) (1st and 2nd byte) uniquely identify a column

on the x-axis. The next 8 bits (from 16 to 23) represent the clock region row, which is

shown as the last column of Figure 8.4. For example, columns inside the clock region

X2Y5 are addressed from 1473xx to 149Axx.

Partial bitstreams of IPs are generated by assigning a reconfigurable region (RR) to

them, where RRs represent IP’s placement location on the PL. If the partial bitstream

of an IP is generated whose RR was placed in the clock region X2Y5, it will have only

frame addresses from 1473xx to 149Axx. In this work, PL is divided into two regions.

The top four rows (total 16 clock regions) are defined as the non-secure region and the

98

8.5 Trusted Applications (TAs)

04xx – 3Axx 3Dxx – 70xx 73xx-9Axx 9Dxx-C2xx
18

X0Y6 X1Y6 X2Y6 X3Y6

04xx – 3Axx 3Dxx – 70xx 73xx-9Axx 9Dxx-C2xx
14

X0Y5 X1Y5 X2Y5 X3Y5

04xx – 3Axx 3Dxx – 70xx 73xx-9Axx 9Dxx-C2xx
10

X0Y4 X1Y4 X2Y4 X3Y4

04xx – 3Axx 3Dxx – 70xx 73xx-9Axx 9Dxx-C2xx
0C

X0Y3 X1Y3 X2Y3 X3Y3

Processing

System

4Cxx – 70xx 73xx-9Axx 9Dxx-C2xx
08

X1Y2 X2Y2 X3Y2

4Cxx – 70xx 73xx-9Axx 9Dxx-C2xx
04

X1Y1 X2Y1 X3Y1

4Cxx – 70xx 73xx-9Axx 9Dxx-C2xx
00

X1Y0 X2Y0 X3Y0

Clock Region Frame Address's

3rd Byte

Frame Address's

1st & 2nd Byte

Figure 8.4: FPGA layout with clock regions and respective frame addresses.

lower three rows as the secure. PL partitioning is enforced with a trusted application

that performs bitstream analysis. This application goes through a bitstream’s content

and extracts frame addresses that are preceded by the opcode of the "Write frame

address register" command (opcode 30002001 in hex) [145, pp. 156].

As discussed in Section 7.4.2, PL’s partitioning into secure and non-secure regions

is only for readback and reconfiguration. An SD can use these features only for the

non-secure PL region using the rich OS. Bitstream analysis of SD’s bitstream will stop the

configuration if it has frame addresses that belong to the secure region. Also, licensed

IPs will only be configured on the PL if its bitstream has frame addresses specific to

the region assigned to it. This will avoid licensed IPs’ placement into the non-secure

region, which will secure them against IP theft attacks. Also, configuration of licensed

IPs will not tamper other PL regions (e.g., SD’s or other CVs’ designs). An additional

security measure of the bitstream analysis module restricts the reconfiguration of the

X3Y1 clock region after the initial configuration. This is because the design element that

gives access to the ICAP is located in this clock region. In addition, SFW components

(PRC, TrustZone logic, and connection to ICAP) are also placed in this clock region.

This security measure will guarantee that these components cannot be tampered with,

99

8 Implementation

and connectivity to the ICAP is only allowed from them. A detailed discussion on this

is provided in Sections 3.1.4 and 7.4.2.

8.6 Integration and Secure Boot
In the integration process, the secure boot feature [142] supported by the target device is

used to create an authentic and encrypted boot image with the following components:

• Custom FSBL and PMU Firmware generated by XSDK (see Section 8.2.1).

• The full bitstream of the PL design generated by Vivado (see Section 8.3.3).

• EL3 runtime firmware (bl31.elf), rich OS (u-boot.elf) and trusted OS (bl32.elf)

generated by Petalinux tools (see Section 8.4).

Afterward, a 256-bit bitstream encryption key (𝐾𝐵) and a 128-bit initialization vector (𝐼𝑉)

are generated, and partial bitstreams are encrypted using AES in cipher block chaining

mode. As discussed in Section 8.5.1, a 4096-bit public-private key pair was generated

where the private key is hardcoded in the trusted applications used for decryption and

authentication. The public key of that pair is used to encrypt the bitstream key 𝐾𝐵 and

𝐼𝑉 using RSA. The OpenSSL toolkit is used in both cases.

8.7 Application Execution

8.7.1 Encrypted Bitstream
In the IP licensing use case, core vendors provide their IP as an encrypted bitstream

𝐸𝑛𝑐𝐾𝐵
{
𝐼𝑃𝑗

}
. The bitstream encryption key (𝐾𝐵) is encrypted with the 𝑃𝐾𝑆𝐹𝑊 of the

public-private key pair, where 𝑆𝐾𝑆𝐹𝑊 is inside the trusted OS. Furthermore, a hash

of 𝐸𝑛𝑐𝐾𝐵
{
𝐼𝑃𝑗

}
is generated and signed with 𝑃𝐾𝑆𝐹𝑊 . The encrypted IP, the signed

hash, and encrypted bitstream key are provided to the platform. The execution flow,

including authentication, decryption, and configuration on the target platform, are

presented below.

• 𝐸𝑛𝑐𝑃𝐾𝑆𝐹𝑊 {𝐾𝐵}, 𝐸𝑛𝑐𝐾𝐵
{
𝐼𝑃𝑗

}
and signed hash are read from the storage device into

a buffer.

• A hash of the 𝐸𝑛𝑐𝐾𝐵
{
𝐼𝑃𝑗

}
is computed and verified against the provided signed

hash. If the verification process passes, the process continues with the following

steps; otherwise, it aborts.

• 𝐸𝑛𝑐𝑃𝐾𝑆𝐹𝑊 {𝐾𝐵} is decrypted with 𝑆𝐾𝑆𝐹𝑊 , and 𝐸𝑛𝑐𝐾𝐵
{
𝐼𝑃𝑗

}
is decrypted using 𝐾𝐵.

100

8.7 Application Execution

• Then bitstream analysis is performed on 𝐼𝑃𝐽 , and if it has no malicious content,

e.g., a target-location mismatch, the execution process will proceed to the next

step. Otherwise, it will be aborted.

• 𝐼𝑃𝐽 is moved from the trusted OS buffer to the secure memory shown in Figure 8.1.

• PRC registers are updated with the address and size of 𝐼𝑃𝐽 ’s location in RAM.

• Finally, PRC’s software trigger register is written, which initiates the PL configu-

ration process.

8.7.2 Plain-text Bitstream
The implemented application can configure a plain-text bitstream 𝐼𝑃𝐽 on the PL. This

feature is for configuring a bitstream in a non-secure region of the PL. In the IP licensing

use case, this bitstream could be either SD’s IP or an open-source one, whose protection

from the SD is not required. The execution flow of the configuration is presented below.

• 𝐼𝑃𝐽 is read from the storage device into a buffer.

• 𝐼𝑃𝐽 is moved to the secure memory, shown in Figure 8.1, to avoid tampering

during the configuration or bitstream analysis process.

• Then bitstream analysis is done on 𝐼𝑃𝐽 . If it is addressed to the non-secure PL

region, the next step will be performed. Otherwise, this execution process will be

aborted.

• PRC registers are updated with the address and size of 𝐼𝑃𝐽 ’s location in RAM.

• Finally, PRC’s software trigger register is written, which initiates the PL configu-

ration process.

101

9 Security Analysis and Possible
Security Enhancements

The work described in this chapter was published in [179] and is joint work with co-authors
Sven Nitzsche, Asier Garciandia López, and Jürgen Becker. More details on contributions is
found in Section 1.5.

The purpose of the proposed trusted platform is to protect assets against any attacker

according to the assumptions and threat model presented in Section 7.3. The main

assets in the presented scheme are:

• IP bitstreams provided by core vendors (CVs).

• The security framework (SFW) cryptographic keys.

• The device cryptographic keys for decrypting and authenticating the boot-loader,

firmware, full bitstream, and the trusted OS.

Among those, IP bitstreams are the most important asset, and everything else solely

exists to protect them.

In general, three entities are participating in the considered IP licensing scenario.

Their communication is shown in Figures 7.3, 7.4 and 7.5. Sensitive data such as the

assets described above are always protected using encryption and authentication when

they are transmitted among participants or stored on external non-volatile memory.

Therefore, an attacker can only obtain them in encrypted form. Since the cryptographic

algorithms used in this scheme are considered computationally secure, breaking them,

if possible at all, would require effort beyond the financial benefit.

Therefore, an attacker’s only way to access IPs is to extract the device keys using

physical attacks such as side-channel or fault-injection attacks and use them to decrypt

the SFW. Afterward, he needs to reverse engineer the SFW to extract its private key.

Then, he needs to emulate a device with a valid device identity, for which a specific IP is

103

9 Security Analysis and Possible Security Enhancements

licensed. However, only the participants of the licensing process know this information.

If the attacker gets this information, too, he can get access to the plain-text bitstream.

Furthermore, the stolen IP is tailored for a specific device and SD design; the attacker

cannot easily perform cloning or tampering attacks. He may learn about the IP’s novelty

by reverse engineering. In short, access to the device to do physical and multiple reverse

engineering attacks makes this scenario highly unlikely.

Anyone with physical access to the device can perform physical attacks, including

system developers (SDs) and their customers. The following section will discuss

possible physical attacks for each participating entity, assess them, and propose possible

countermeasures.

9.1 Malicious System Developer
Among the participants, SDs can benefit the most from successful IP theft attacks to

avoid licensing fees. For example, they could pay for an IP for a single device and then

use it for multiple. Since the device is in their possession, they can perform several

attacks on different assets. These attacks are discussed in the following sections.

9.1.1 SCAs on Decryptions
There are three types of keys that can be compromised if a successful side-channel

attack is performed. The first are device keys used for secure boot. If compromised,

an SD can get access to the plain-text SFW. Then they could extract the SFW’s private

key (𝑆𝐾𝑆𝐹𝑊) and consequently access plain-text IP bitstreams. However, the secure

boot feature of modern devices typically includes protection against physical attacks.

For example, Xilinx’s Ultrascale and later devices include asymmetric authentication,

side-channel attack protection, and other anti-tamper features [143]. Therefore, the

secure boot process can be considered sufficiently trustworthy.

The other assets that can be compromised using SCAs are the keys used in decryptions,

e.g., decryption of the bitstream key (𝐸𝑛𝑐𝑃𝐾𝑆𝐹𝑊 {𝐾𝐵}) using SFW’s private key (𝑆𝐾𝑆𝐹𝑊),

and decryption of the encrypted IP (𝐸𝑛𝑐𝐾𝐵
{
𝐼𝑃𝑗

}
) using bitstream key (𝐾𝐵). Both

decryptions are implemented in software and are part of a trusted application. An

attacker could observe side-channel information of the decryption process and use it to

extract the corresponding keys. A possible countermeasure would be an SCA resistant

software [111] implementation of the encryption algorithms.

104

9.1 Malicious System Developer

Alternatively, an SCA resistant hardware [44] implementation can also be used for the

decryption processes. Chapter 4 presents one of the contributions of the thesis, where

a reference AES design is modified with two countermeasures against SCAs. These

countermeasures offer substantial resistance against SCAs in cases where power is

either recorded using an EM probe over the chip or by measuring the voltage drop

across an internal resistor. As presented in the evaluation, a security gain of factor

95 is achieved with an 80% additional CLB resources. The security strength can be

further improved by scaling the countermeasures. Another possibility is applying

these countermeasures to masked SBOX designs to achieve a higher level of protection.

Suppose a first-order masking scheme gives resistance against one million power traces.

Then, these countermeasures would make the adversary acquire probably more than

100 million traces. A system composed of masking and hiding would also be resistant

against second-order attacks, as it has been shown in related work [26], especially with

a higher number of reconfigurable modules.

Also, a security monitor IP core can be used to counter SCA attempts [139] by monitoring

device temperature, power supply voltages, and user clocks.

9.1.2 SCAs on DDR Memory
Even though DDR memory is volatile, it retains its contents for several seconds after

losing power. Therefore, an attacker can do a hard reset of the target machine and

acquire memory contents. This attack is commonly known as a cold-boot attack [47].

The attack can be launched on the example implementation to extract bitstream keys

inside trusted OS, which is in the DDR memory’s secure part. However, this can be

avoided by running OP-TEE (trusted OS) entirely in on-chip memory, which is also the

preferred way suggested by its developers [78]. Alternatively, sensitive code and data

can be protected against cold boot attacks by encrypting the trusted application before

storing it in the DDR memory and only decrypting it within the PS before execution as

proposed in [159].

Secondly, a cold boot attack can also be performed on the secure part of the DDR memory,

where bitstreams are stored in plaintext form. However, this could be easily avoided

using one of the following two workarounds. The first would be updating the trusted

application that handles decryption of bitstreams to configure the PL on the fly, i.e.,

not using DDR memory and reconfiguration controller (PRC) for the PL configuration.

However, this would require Xilfpga library-like functionality, discussed in Section 8.2.1,

in the trusted OS to configure bitstream via PCAP. The second workaround is specific

to the PRC configuring PL via ICAP. Here, decryption can be done using AES core

105

9 Security Analysis and Possible Security Enhancements

(preferably the protected one presented in Chapter 4) followed by the configuration via

PRC. In these cases, a cold boot attack would only yield encrypted data and, therefore,

would be effectively mitigated.

9.1.3 Readback Attack
Readback is a debug feature that can be used to read out the configuration data even

if the device’s security features are enabled. It is because configuration interfaces

(PCAP/ICAP) are considered trusted channels. This feature and its usage as an attack

are discussed in Section 3.1.4. Since none of the existing IP licensing schemes restricts

SD’s control on their device, they all are prone to this attack (see Table 7.1).

In the proposed work, SD’s access to these interfaces is restricted. Section 8.2.1 provides

implementation details on how access to the PCAP is stopped from both trusted and

rich OSes, which will avoid reading out configuration data from this interface. If access

to the second interface (ICAP) is also blocked from both OSes, the device will not be

able to perform partial reconfiguration or readback. Without the former feature, IP

licensing will not work. Therefore, access to ICAP is only allowed from the trusted OS.

An API implemented in the trusted OS is made available to the rich OS for indirect

access to the ICAP. Here, the purpose of REE’s indirect access is to allow SDs to have

both readback and reconfiguration features, i.e., the scheme is less restrictive in terms

of available features.

The indirect access or isolation of ICAP from the rich OS is made by extending the TEE

to the PL. The concept is presented in Section 7.4.2, and implementation details are in

Sections 8.5.5 and 8.2.2. The basic idea is to partition the PL into secure and non-secure

regions. rich OS has full access to the reconfiguration and readback features of the

non-secure PL region and no access to the secure PL region. On the other hand, trusted

OS has full access to the entire PL.

Since SD has full access to the non-secure PL region, he can try to perform the

readback attack by placing a reconfiguration controller on the non-secure PL region

while connecting it to ICAP. However, this scenario would not work because PL’s

connection to the ICAP lies physically in the X3Y1 clock region. Reconfiguration

of this clock region is not allowed in any case (see Property 1 in Section 7.4.2), and

therefore he cannot configure the routing resources that provide connection to the ICAP.

106

9.2 Breach of Trust by the TTP

Similarly, regions defined for licensed IPs can launch this attack in a potential CV-SD

collaboration case. However, this scenario is also not possible because reconfiguration

of clock region X3Y1 is never allowed. Furthermore, Property 3 defined in Section 7.4.2

states that bitstreams of the licensed IPs must only have frame addresses specific to the

RRs reserved for them.

9.2 Breach of Trust by the TTP
As discussed in Section 7.2.2, the proposed scheme places trust in the trusted third

party (TTP). However, measures are taken to reduce the degree of this trust. Section 7.1

defines three levels of trust in the TTP for IP licensing schemes. The first level is high

trust, which applies to the schemes where TTP has access to both keys and plaintext

IPs. Schemes where the TTP only has access to keys are considered to trust moderately.

Finally, schemes where TTP is not involved or does not have access to keys and IPs,

place minimal trust in the TTP. The proposed scheme makes sure that IPs are not

accessible to the TTP; therefore, it places moderate trust in the TTP. Other schemes use

core installation modules (CIMs) to reduce the amount of trust in the TTP [82, 157],

which introduces an extra reverse engineering step. The proposed scheme can easily

adopt the utilization of CIMs. In this case, CVs configure their CIMs on the device,

which includes the bitstream decryption key (𝐾𝐵).

In limited use cases, where devices are connected to a public network such as the

internet, a malicious functionality in the trusted OS could communicate plain-text IPs

to the TTP; however, these IPs are device-specific and PL’s region-specific. TTP could

do minor damage by a cloning attack or learn some novelty using reverse engineering,

which of course, would require effort.

9.3 Malicious Core Vendor
Since core vendors do not have physical access to the device, their attack possibilities are

limited. The only attack option would be to hide a malicious sub-circuit in their IP core

that damages or manipulates the SD design. Such hardware Trojans may be detected at

run-time during bitstream analysis as part of the decryption and configuration process.

A possible Trojan detection method using machine learning is presented in [110]. Such

a machine learning algorithm can be trained remotely and then deployed as part of

the SFW. Based on the Trojan taxonomy of Shakya et al. [117], this would detect any

Trojan inserted during the IP design phase, no matter whether they are RTL-based

or gate-level. Furthermore, modification of the SD’s design and the secure PL region

(Other IPs regions and SFW components) is avoided by analyzing the IP’s bitstream.

107

9 Security Analysis and Possible Security Enhancements

IPs are only configured on the PL if they have frame address specific to the RRs reserved

for them (see Property 3 in Section 7.4.2).

9.4 TrustZone
Regarding the security of TrustZone-based TEEs, Machiry et al. [81] presented a class of

vulnerabilities called BOOMERANG. These vulnerabilities allow the REE application

to read and write any memory location. Furthermore, they developed an automated

framework and used it to detect bugs within popular TEEs such as QSEE, Trustonic,

OP-TEE, Huawei-TEE, and SierraTEE. In another work, Gross et al. in [40] exploited

a faulty TZ implementation to break the memory isolation on the target device. A

detailed discussion on the security of TZ and TZ-based TEEs are presented by Pinto

and Santos in [104]. The proposed work assumes that ARM TZ’s implementation on

the respective target device, including the supplied firmware, is secure. Attacks due to

a faulty implementation are not considered.

9.5 Variants of the Scheme
The proposed scheme can have multiple variants. For example, a batch of devices can

be programmed with the same keys, and the same security framework (SFW) can be

booted on all those devices. This would make the implementation more manageable,

however, at the cost of reduced security. Alternatively, a unique key per device and a

unique public-private key pair for the SFW can be programmed. This approach will

require more effort but will also provide higher security.

The scheme can also be used to license IPs per device on a duration base, which

would require IP’s delivery via a secure channel and a continuous internet connection.

Furthermore, license validity monitoring functionality needs to be implemented in the

trusted OS or secure PL region.

9.6 Performance Evaluation
The overhead on the device for the proposed scheme is minimal. The PL of the device

has no metering or core installation module (CIM) bitstream [25, 42, 82]. If a malicious

TTP/FV is considered and a CIM is used, like in [157], the programmable resources

can be occupied by other designs once the CIM decrypts the respective IP. The only

overhead will be on the PS, where a lightweight trusted OS is running. The execution

times of the trusted applications depend on the IP size, encryption algorithms, and the

108

9.6 Performance Evaluation

Table 9.1: Decryption of bitstream encryption key (KB) using RSA.

Size of the RSA key 1024 bits 4096 bits

Size of the 𝐾B (AES key) 256 bits

Size of encrypted 𝐾B (𝐸𝑛𝑐{𝐾B}PKSFW
) 1024 bits 4096 bits

Execution time for decrypting 𝐸𝑛𝑐{𝐾B}PKSFW
207 ms 812 ms

key-widths.

As shown in Table 9.1, an encrypted bitstream key (𝐸𝑛𝑐{𝐾B}PKSFW
) is decrypted in 207

ms when RSA with a key width of 1024 bits is used. The decryption time increases to

812 ms when RSA with a key width of 4096 bits is used. As mentioned in Section 8.5.2,

authentication is the generation of a hash of the encrypted IP and verifying it against

the provided signed one. During authentication, only the signature verification can

be affected when RSA keys of different widths are used. However, with both key

widths (1024 and 4096 bits), the verification took 6 ms. The execution time of hash

computation only varies with the varying size of the IP. Therefore, the execution time

of the authentication step is shown in Table 9.2, where results are provided for two

IPs with sizes of 379 and 720 KB. The Table also shows the execution time of all the

functionalities affected by changing the size of the encrypted IPs.

As presented in Table 9.2, the encrypted IP (𝐸𝑛𝑐{𝐼𝑃J}KB
) of 379 KB is authenticated

and decrypted in 6 and 3 ms, respectively. Its bitstream analysis part takes 38 ms, and

moving to the physical memory takes roughly 53 ms. On the other hand, 𝐸𝑛𝑐{𝐼𝑃J}KB

of 720 KB is authenticated in 8 ms, decrypted in 5 ms, analyzed in 51 ms, and moved to

the physical memory in 61 ms. Partial reconfiguration controller (PRC) registers can be

updated in 112 ms, and TA’s invoking overhead is 45 ms, which is the same for both

the IPs. Configuration of IPs using the PRC (ICAP), with a bandwidth of 3.2 Gb/s

at 100 MHz [148], takes 0.97 and 1.84 ms for IPs of 379 and 720 KB size, respectively.

The overall execution times for all four combinations with two RSA key widths and

two bitstream sizes are also presented in Table 9.2. The PRC registers update step can

be skipped if the registers are set at the design time, which will reduce the overall

execution time for each case by 112 ms.

109

9 Security Analysis and Possible Security Enhancements

Table 9.2: The execution time of the functionalities along with different RSA keys and encrypted IPs

(Enc{IPJ}KB) sizes. Bitstream encryption key (KB) width is 256 bits.

Size of IPJ and Enc{IPJ}KB 379 KB 720 KB
Authentication of 𝐸𝑛𝑐{𝐼𝑃J}KB

6 ms 8 ms

Execution time for decrypting 𝐸𝑛𝑐{𝐼𝑃J}KB
3 ms 5 ms

Execution time for PL partitioning 38 ms 51 ms

Moving 𝐼𝑃J to physical memory 53 ms 61 ms

PRC’s registers update 112 ms

Overhead of invoking TA 45 ms

Configuration time of 𝐼𝑃J using PRC 0.97 ms 1.84 ms

Total execution time with RSA key of 1024 bits 464 ms 1069 ms

Total execution time with RSA key of 4096 bits 489 ms 1094 ms

110

10 Conclusion

This dissertation, in a nutshell, tries to answer the question: can one trust a device with

his intellectual property (IP)? A continued examination and improvement of security

mechanisms will ensure that they are resistant to future security threats. Organizations

like Globalplatform or Trusted Computing Group are created for this reason. They

publish and revise the specification of TEEs and TPMs, respectively. For this work, the

same philosophy is followed where publicly available security mechanisms are used

to realize trust on a device. The target use case is licensing FPGA-based IPs, where

multiple IP core vendors (CVs) can deliver their protected IPs directly to the device.

Since the IPs are only decrypted inside the trusted device, CVs can be confident that

their IPs will not end up with an adversary.

Trust establishment starts with an IP licensing model where practicality, security, and

least restrictiveness are the main focuses. The device is equipped with a TEE-based

security framework, which isolates some device assets to provide a trusted environment

for security-related tasks. The rest of the device assets are available to the system

developer (SD) for their IPs. A significant contribution of this work is the extension of

this concept to the programmable logic (PL) of the device. Some of the assets on the

PL are isolated and used only for security-related tasks, while the rest are used by the

SD’s design. This isolation on the PL is enforced by limiting access of the SD to the

configuration interfaces and bitstream analysis. The bitstream analysis functionality

ensures that licensed IPs are only configured on the PL regions reserved for them. This

is done to protect SD’s logic from modification/damage from a malicious licensed IP.

Bitstream analysis also ensures that SD design does not tamper or readback licensed

IPs or other security-related implementation on the PL.

This dissertation considers everyone as a potential attacker except the trusted third

party (TTP). The broader attacker model is used so that all the security threats can be

analyzed and necessary countermeasures can be either developed or proposed. Also,

a malicious TTP scenario is considered, and countermeasures are proposed from the

111

10 Conclusion

literature. This work also considers threats from malicious CVs whose intention can be

to damage or leak information from the system.

Unlike other related IP licensing models, the focus of this dissertation is not limited

to only security threats. Here, challenges specific to practicality are also considered,

which are floorplanning of IPs and generation of IPs independent of the static design.

The floorplanning challenge is solved by a fine-grained MILP-based floorplanner that

supports the latest heterogeneous FPGA devices. The floorplanner shows a clear

improvement in resource wastage when compared with other existing floorplanners.

The second practice issue, IPs’ independent generation, is also addressed. The main

solution to this challenge is a use case-specific flow, which only uses FV tools to generate

the bitstream of IP and the static design.

Last but not least, the dissertation also provides two countermeasures against side-

channel attacks (SCAs). The countermeasures are based on moving target and imple-

mentation diversity concepts. The basic idea of the moving target is physically moving

a target function of the encryption algorithm on the PL using DPR. Moving target is

effective against EM-based SCAs as they usually use a small probe, which is moved over

the chip to find the suitable position (i.e., the target function). Randomly moving the

target function to different positions makes traces from all positions mixed up; therefore,

it counters position-based attacks. The implementation diversity works by having

multiple implementations of the target function that are functionally equivalent but

have different physical layouts. These implementations are continuously reconfigured

on the same location, which results in varying dynamic power consumption. This acts

as a countermeasure against power measurement-based SCAs.

10.1 Future Work
The future work can be considered from two viewpoints. The first one is improving the

trust in the device, and the second is developing applications running on the device

that offers specific functionality.

10.1.1 Trust in Devices
In this dissertation, trust in devices is established using a security framework (SFW).

This trust can be further extended by adding remote attestation functionality for the

system developer (SD) and IP core vendors (CV). Remote attention is a technology,

which offers evidence to remote entities about the authentication of its hardware and

112

10.1 Future Work

software configuration. A multi-tenet concept of remote attestation can be investigated

to find a trade-off between resource overhead and extension of trust. This multi-tenet

concept will allow CVs to monitor the state of their IP (both software and FPGA one),

and SDs can monitor the overall state of the device.

The device’s internal decryption engines (DDEs) offer several protection mechanisms

like secure storage, tamper, or SCA resistance. Further research can be done on these

engines, where they use public-key cryptography, including unique key generation

and decryption. Furthermore, it must be ensured that the private key never leaves

the DDE and is stored in secure storage. The public key can be made available via an

interface with a specified protocol. In the presence of these details, mechanisms can be

used to issue digital certificates to such devices. IP core vendors can establish a secure

communication channel with the devices, simplifying IP licensing models. Where IPs

can be securely delivered to these devices.

Shepherd et al. in [118] defined three On-Device adversaries, namely Application,

Kernel, and Hardware adversaries. The proposed work is focused mainly on hardware

adversaries, and throughout the work, attacks due to a faulty TEE implementation are

not considered. Protection against application and kernel adversaries could also be

another future direction.

10.1.2 Application Development
Examples of applications running on the trusted device are detecting malicious

functionality in an IP and decryption engines. These functionalities can be both

in software or hardware. The first example, Malicious IPs, is presented in Section 3.3.

The malicious functionality can be tampering configured-designs or hardware Trojans.

The tampering of configured design is implemented using bitstream analysis. However,

for the detection of Trojans, only ideas are presented in Section 9.3.

Trojan detection for FPGA-based IPs is an exciting research area and can be one of the

future research directions. Shakya et al. [117] categorized Trojan detection techniques

into pre-silicon-, post-silicon detection, and design for trust. Post-silicon detection

includes techniques that detect Trojans in manufactured chips. These techniques

usually apply to the physical layout of the chip and can be considered in cases where

the hardware manufacturer is considered a potential attacker. The other two techniques

can be further investigated.

113

10 Conclusion

The pre-silicon detection includes functional testing [117] and structural analysis [160]

techniques, which analyze HDLs for redundant code or conditional statements that are

rarely triggered. These techniques can only be used with the proposed trusted device

if the device’s TEE delivers IP’s bitstream to a trusted cloud, where the IPs are reverse

engineered to netlist [11, 95].

The design for trust techniques includes run-time monitoring, detecting an increase

in side-channel activity, or machine learning-based Trojan detection in the bitstream

(Section 9.3). These techniques can be further researched and implemented as an

application on the device.

Even though detecting an increase in the side-channel activity is discussed specifically

for hardware Trojan, this technique can be generalized to detect SCAs performed on

the decryption engines of the device. This could be another topic for future research

where an application provides security detection/protection functionality.

114

Abbreviations

AES advanced encryption standard

AES-GCM AES - Galois/counter mode

AXI4 Advanced eXtensible Interface 4

CIM core installation module

CLB configurable logic block

CSU configuration security unit

CV IP core vendor

DDE dedicated decryption engine

DES data encryption standard

DPR dynamic partial reconfiguration

DSP digital signal processing

EM electromagnetic

EPROM erasable programmable read-only memory

FPGA Field programmable gate array

FSBL first stage boot loader

FV FPGA vendor

HDL hardware description language

HSM hardware security module

IC integrated circuit

ICAP internal configuration access port

IIPG independent IP generation

IP intellectual property

LUT lookup table

MAC message authentication code

MILP mixed-integer linear programming

NG Noise Generator

NIST National Institute of Standards and Technology

NVM non-volatile memory

PCAP processor configuration access port

115

Abbreviations

PL programmable logic

PLD programmable logic device

PMU platform management unit

PRC partial reconfiguration controller

PS processing system

PU programmable unit

RD reconfigurable design

REE rich execution environment

RM reconfigurable module

RNG random number generator

ROT root of trust

RR reconfigurable region

RTL register transfer level

SBOX substitution byte

SCA side-channel attack

SD system developer

SFW security framework

SoC system-on-chip

SRAM static random access memory

TA trusted application

TEE trusted execution environment

TFR Target Function Relocation

TPM trusted platform module

TTP trusted third party

116

List of Figures

Figure 1.1: IPs of specialized applications configured on an SoC FPGA 2

Figure 2.1: Island-style FPGA structure [53] . 13

Figure 2.2: Dynamic partial reconfiguration flow 16

Figure 2.3: Secure communication between Alice and Bob on a non-secure channel 21

Figure 2.4: AES Encryption flow diagram . 22

Figure 2.5: MAC computation and verification overview 23

Figure 2.6: Secure communication from an entity (Alice) to another one (Bob)

using Asymmetric Cryptography . 25

Figure 2.7: Digital Signatures . 26

Figure 2.8: Architecture of the Trusted Execution Environment 28

Figure 3.1: Prcoessing system with two IPs on the PL 36

Figure 3.2: Example Hardware Trojan [156] . 37

Figure 4.1: Block diagram of the SCA-resistant AES. 43

Figure 5.1: Full PL layout of Xilinx Zynq UltraScale+XCZU9EG-2FFVB1156 MPSoC 58

Figure 5.2: Clock Region X2Y0 . 59

Figure 5.3: Part of the layout of Xilinx Zynq UltraScale+ XCZU9EG-2FFVB1156

MPSoC. Smallest PUs with dotted line. 60

Figure 5.4: Index of PUs for POR1 . 62

Figure 6.1: Floorplanned static design including SD non-protected design and all

the RRs . 70

Figure 6.2: Independent IP Generation (IIPG) Flow 72

Figure 7.1: Secure and non-secure world concept 80

Figure 7.2: FPGA layout with clock regions, respective frame addresses and

partition into Secure and Non-secure PL regions. 82

117

List of Figures

Figure 7.3: Steps of IP Enrollment . 83

Figure 7.4: Steps of Preparing the SFW . 84

Figure 7.5: Steps of Licensing IPs . 86

Figure 8.1: Block diagram of PS and PL showing memory and PL partitioning

into secure and non-secure region . 88

Figure 8.2: Floorplanned IPs on the X1Y0 and X2Y0 clock regions of the target

device. 93

Figure 8.3: Clock regions used for the floorplanning of PPSD, Licensed IPs and

the SFW components . 94

Figure 8.4: FPGA layout with clock regions and respective frame addresses. . . . 99

118

List of Tables

Table 4.1: Resource consumption overhead and memory requirement with TFR

(4 RMs) . 48

Table 4.2: Resource consumption overhead and memory requirement with NG

(1 RR) . 49

Table 4.3: Attack results for different configurations 51

Table 4.4: Comparison of TFR and NG countermeasure with related work 53

Table 5.1: Comparisons between proposed floorplanner and the one report

in [107] for Xilinx Virtex-5 XC5VLX110 64

Table 5.2: Comparisons between proposed floorplanner and the one report

in [107] for Xilinx Zynq UltraScale+ XCZU9EG-2FFVB1156 MPSoC,

Runtime 3600 Sec. 65

Table 5.3: Earlier found sub-optimal solutions by the proposed floorplanner for

Xilinx Zynq UltraScale+. 66

Table 7.1: Comparison among the existing IP licensing schemes, where ▩ repre-

sents full support, ▦ shows partial support and □ represents a lack of

support. 77

Table 8.1: Synthesis Report of the Designs for the PL. 91

Table 8.2: Resources assigned to each Reconfigurable Region. 92

Table 9.1: Decryption of bitstream encryption key (KB) using RSA. 109

Table 9.2: The execution time of the functionalities along with different RSA keys

and encrypted IPs (Enc{IPJ}KB) sizes. Bitstream encryption key (KB)

width is 256 bits. 110

119

Bibliography

[1] Abraham, D. G., G. M. Dolan, G. P. Double, and J. V. Stevens (1991): Transaction

Security System. IBM Syst. J. 30(2), pp. 206–229. doi: 10.1147/sj.302.0206. url:

https://doi.org/10.1147/sj.302.0206.

[2] Akram, R. N., K. Markantonakis, and K. Mayes (2014): An Introduction to the

Trusted Platform Module and Mobile Trusted Module. In: Secure Smart Embedded
Devices, Platforms and Applications. K. Markantonakis and K. Mayes eds. New

York, NY: Springer New York, pp. 71–93. doi: 10.1007/978-1-4614-7915-4_4.

url: https://doi.org/10.1007/978-1-4614-7915-4_4.

[3] Alves, T. (2004): TrustZone : Integrated Hardware and Software Security. In:

[4] Amano, H., ed. (2018): Principles and Structures of FPGAs. Springer. doi: 10.1007/

978-981-13-0824-6. url: https://doi.org/10.1007/978-981-13-0824-6.

[5] Android (n.d.): Android Key Store. Accessed: Mar. 25, 2020. url: https : / /

developer.android.com/training/articles/keystore.

[6] Arm security technology-building a secure system using trustzone technology (n.d.).

Accessed: April. 26, 2021. url: https://developer.arm.com/documentation/

genc009492/c/TrustZone-Hardware-Architecture/Overview.

[7] Bacchini, A. (n.d.): OpenCore Canny Edge Detectore. Online; accessed 16-03-2020.

url: https://opencores.org/projects/canny_edge_detector.

[8] Bacchini, A. (n.d.): OpenCores B-163 EC Arithmetic. Online; accessed 16-03-2020.

url: https://opencores.org/projects/b163arith.

[9] Bailey, D. G., C. T. Johnston, and Ni Ma (2008): Connected components analysis

of streamed images. In: 2008 International Conference on Field Programmable Logic
and Applications, pp. 679–682. doi: 10.1109/FPL.2008.4630038.

[10] Beckhoff, C., D. Koch, and J. Torresen (2012): Go Ahead: A Partial Reconfigu-

ration Framework. In: IEEE 20th International Symposium on Field-Programmable
Custom Computing Machines, pp. 37–44. doi: 10.1109/FCCM.2012.17.

[11] Benz, F., A. Seffrin, and S. A. Huss (2012): Bil: A tool-chain for bitstream reverse-

engineering. In: 22nd International Conference on Field Programmable Logic and
Applications (FPL), pp. 735–738. doi: 10.1109/FPL.2012.6339165.

121

https://doi.org/10.1147/sj.302.0206
https://doi.org/10.1147/sj.302.0206
https://doi.org/10.1007/978-1-4614-7915-4_4
https://doi.org/10.1007/978-1-4614-7915-4_4
https://doi.org/10.1007/978-981-13-0824-6
https://doi.org/10.1007/978-981-13-0824-6
https://doi.org/10.1007/978-981-13-0824-6
https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://developer.arm.com/documentation/genc009492/c/TrustZone-Hardware-Architecture/Overview
https://developer.arm.com/documentation/genc009492/c/TrustZone-Hardware-Architecture/Overview
https://opencores.org/projects/canny_edge_detector
https://opencores.org/projects/b163arith
https://doi.org/10.1109/FPL.2008.4630038
https://doi.org/10.1109/FCCM.2012.17
https://doi.org/10.1109/FPL.2012.6339165

Bibliography

[12] Boivie, R. (2011): SecureBlue + + : CPU Support for Secure Execution. In:

[13] Bolchini, C., A. Miele, and C. Sandionigi (2011): Automated Resource-Aware

Floorplanning of Reconfigurable Areas in Partially-Reconfigurable FPGA Sys-

tems. In: 2011 21st International Conference on Field Programmable Logic and
Applications, pp. 532–538. doi: 10.1109/FPL.2011.104.

[14] Bossuet, L., G. Gogniat, and W. Burleson (n.d.): Dynamically configurable

security for SRAM FPGA bitstreams. In: 18th International Parallel and Distributed
Processing Symposium, 2004. Proceedings. Pp. 146–. doi: 10.1109/IPDPS.2004.

1303128.

[15] Bow, I., N. Bete, F. Saqib, W. Che, C. Patel, R. Robucci, C. Chan, and J. Plusquellic

(2020): Side-Channel Power Resistance for Encryption Algorithms Using Imple-

mentation Diversity. Cryptography 4(2). doi: 10.3390/cryptography4020013.

url: https://www.mdpi.com/2410-387X/4/2/13.

[16] Brier, E., C. Clavier, and F. Olivier (2004): Correlation Power Analysis with a

Leakage Model. In: Cryptographic Hardware and Embedded Systems - CHES 2004.

M. Joye and J.-J. Quisquater eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

pp. 16–29.

[17] Caldwell, A. E., Hyun-Jin Choi, A. B. Kahng, S. Mantik, M. Potkonjak, Gang

Qu, and J. L. Wong (2004): Effective iterative techniques for fingerprinting design

IP. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
23(2), pp. 208–215. doi: 10.1109/TCAD.2003.822126.

[18] Canright, D. (2005): A Very Compact S-Box for AES. In: Cryptographic Hardware
and Embedded Systems – CHES 2005. J. R. Rao and B. Sunar eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 441–455.

[19] Chami, C. A. (n.d.): Pseudo random generator Tutorial. Accessed: Mar. 16, 2019. url:

https://fpgasite.wordpress.com/2016/08/09/pseudo-random-generator-

tutorial/.

[20] Chang, C. and L. Zhang (2014): A Blind Dynamic Fingerprinting Technique

for Sequential Circuit Intellectual Property Protection. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 33(1), pp. 76–89. doi:

10.1109/TCAD.2013.2282282.

[21] Chhabra, S., B. Rogers, Y. Solihin, and M. Prvulovic (2011): SecureME: a

hardware-software approach to full system security. In: Proceedings of the in-
ternational conference on Supercomputing, pp. 108–119.

[22] Choudhary, V. (2007): Comparison of Software Quality Under Perpetual Licens-

ing and Software as a Service. Journal of Management Information Systems 24(2),

pp. 141–165. doi: 10.2753/MIS0742-1222240206. eprint: https://doi.org/

10.2753/MIS0742-1222240206. url: https://doi.org/10.2753/MIS0742-

1222240206.

122

https://doi.org/10.1109/FPL.2011.104
https://doi.org/10.1109/IPDPS.2004.1303128
https://doi.org/10.1109/IPDPS.2004.1303128
https://doi.org/10.3390/cryptography4020013
https://www.mdpi.com/2410-387X/4/2/13
https://doi.org/10.1109/TCAD.2003.822126
https://fpgasite.wordpress.com/2016/08/09/pseudo-random-generator-tutorial/
https://fpgasite.wordpress.com/2016/08/09/pseudo-random-generator-tutorial/
https://doi.org/10.1109/TCAD.2013.2282282
https://doi.org/10.2753/MIS0742-1222240206
https://doi.org/10.2753/MIS0742-1222240206
https://doi.org/10.2753/MIS0742-1222240206
https://doi.org/10.2753/MIS0742-1222240206
https://doi.org/10.2753/MIS0742-1222240206

Bibliography

[23] Costan, V. and S. Devadas (2016): Intel SGX Explained. IACR Cryptology ePrint
Archive 2016(086), pp. 1–118.

[24] Diffie, W. and M. Hellman (1976): New directions in cryptography. IEEE
Transactions on Information Theory 22(6), pp. 644–654. doi: 10.1109/TIT.1976.

1055638.

[25] Drimer, S., T. Güneysu, M. Kuhn, and C. Paar (2008): Protecting multiple cores

in a single FPGA design. Draft.

[26] Druyer, R., L. Torres, P. Benoit, P. V. Bonzom, and P. Le-Quere (2015): A survey

on security features in modern FPGAs. In: 2015 10th International Symposium
on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), pp. 1–8. doi:

10.1109/ReCoSoC.2015.7238102.

[27] Economist, T. (n.d.): Universal service? Accessed: Mar. 24, 2020. url: https:

//www.economist.com/business/2006/04/20/universal-service.

[28] Evtyushkin, D., J. Elwell, M. Ozsoy, D. Ponomarev, N. A. Ghazaleh, and R. Riley

(2018): Flexible Hardware-Managed Isolated Execution: Architecture, Software

Support and Applications. IEEE Transactions on Dependable and Secure Computing
15(3), pp. 437–451.

[29] Fitzek, A., F. Achleitner, J. Winter, and D. Hein (2015): The ANDIX research

OS — ARM TrustZone meets industrial control systems security. 2015 IEEE 13th
International Conference on Industrial Informatics (INDIN), pp. 88–93.

[30] Five, H. (n.d.): Hex Five Announces General Availability of MultiZone™ Secu-
rity for Linux – The First Commercial Enclave for RISC-V processors. Accessed:

Jan. 13, 2020. url: https://riscv.org/2019/12/hex- five- announces-

general-availability-of-multizone-security-for-linux-the-first-

commercial-enclave-for-risc-v-processors/.

[31] Force, I. E. T. (n.d.): The Transport Layer Security (TLS) Protocol Version 1.3. retrieved

from https://tools.ietf.org/html/rfc8446.

[32] FREUNDSCHAFTER (n.d.): About AMD TrustZone, AMD Platform Security
Processor (PSP), AMD Secure Technology. Accessed: Jan. 13, 2020. url: https:

//freundschafter.com/research/about-amd-trustzone-amd-platform-

security-processor-psp-amd-secure-technology/.

[33] Gandolfi, K., C. Mourtel, and F. Olivier (2001): Electromagnetic Analysis:

Concrete Results. In: Cryptographic Hardware and Embedded Systems — CHES 2001.

Ç. K. Koç, D. Naccache, and C. Paar eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 251–261.

[34] Gandolfi, K., C. Mourtel, and F. Olivier (2001): Electromagnetic Analysis:

Concrete Results. In: Cryptographic Hardware and Embedded Systems — CHES 2001.

Ç. K. Koç, D. Naccache, and C. Paar eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 251–261.

123

https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/ReCoSoC.2015.7238102
https://www.economist.com/business/2006/04/20/universal-service
https://www.economist.com/business/2006/04/20/universal-service
https://riscv.org/2019/12/hex-five-announces-general-availability-of-multizone-security-for-linux-the-first-commercial-enclave-for-risc-v-processors/
https://riscv.org/2019/12/hex-five-announces-general-availability-of-multizone-security-for-linux-the-first-commercial-enclave-for-risc-v-processors/
https://riscv.org/2019/12/hex-five-announces-general-availability-of-multizone-security-for-linux-the-first-commercial-enclave-for-risc-v-processors/
https://freundschafter.com/research/about-amd-trustzone-amd-platform-security-processor-psp-amd-secure-technology/
https://freundschafter.com/research/about-amd-trustzone-amd-platform-security-processor-psp-amd-secure-technology/
https://freundschafter.com/research/about-amd-trustzone-amd-platform-security-processor-psp-amd-secure-technology/

Bibliography

[35] Gaspar, L., V. Fischer, T. Güneysu, and Z. C. Jouini (2012): Two IP protection

schemes for multi-FPGA systems. In: 2012 International Conference on Reconfig-
urable Computing and FPGAs, pp. 1–6. doi: 10.1109/ReConFig.2012.6416790.

[36] Globalplatform (n.d.). retrieved from https://globalplatform.org/.

[37] Globalplatform (2016): GlobalPlatform Device Technology TEE Internal Core API
Specification Version 1.1.1. retrieved from https://globalplatform.org/.

[38] Globalplatform (2018): Introduction to Trusted Execution Environments. retrieved

from https://globalplatform.org/.

[39] Gora, M. A., A. Maiti, and P. Schaumont (2010): A Flexible Design Flow for

Software IP Binding in FPGA. IEEE Transactions on Industrial Informatics 6(4),

pp. 719–728. doi: 10.1109/TII.2010.2068303.

[40] Gross, M., N. Jacob, A. Zankl, and G. Sigl (2019): Breaking TrustZone Memory

Isolation through Malicious Hardware on a Modern FPGA-SoC. In: Proceedings
of the 3rd ACM Workshop on Attacks and Solutions in Hardware Security Workshop.

ASHES’19. London, United Kingdom: Association for Computing Machinery,

pp. 3–12. doi: 10.1145/3338508.3359568. url: https://doi.org/10.1145/

3338508.3359568.

[41] Guajardo, J., S. S. Kumar, G.-J. Schrijen, and P. Tuyls (2007): FPGA Intrinsic

PUFs and Their Use for IP Protection. In: Cryptographic Hardware and Embedded
Systems - CHES 2007. P. Paillier and I. Verbauwhede eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 63–80.

[42] Güneysu, T., B. Moller, and C. Paar (2007): Dynamic Intellectual Property

Protection for Reconfigurable Devices. In: 2007 International Conference on Field-
Programmable Technology, pp. 169–176. doi: 10.1109/FPT.2007.4439246.

[43] Güneysu, T. and A. Moradi (2011): Generic Side-Channel Countermeasures

for Reconfigurable Devices. In: Cryptographic Hardware and Embedded Systems –
CHES 2011. B. Preneel and T. Takagi eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 33–48.

[44] Güneysu, T. and A. Moradi (2011): Generic Side-Channel Countermeasures

for Reconfigurable Devices. In: CHES. Vol. 6917. Lecture Notes in Computer

Science. Springer, pp. 33–48. doi: 10 . 1007 / 978 - 3 - 642 - 23951 - 9 _ 3. url:

https://www.iacr.org/archive/ches2011/69170033/69170033.pdf.

[45] GUROBI OPTIMIZATION Documentation (n.d.). Online; accessed 16-03-2020.

url: https://www.gurobi.com/documentation/9.0/refman/mipfocus.html.

[46] Gurobi Optimizer (n.d.). Version 9.0.0. url: https://www.gurobi.com/products/

gurobi-optimizer/.

[47] Halderman, J. A., S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A. Calan-

drino, A. J. Feldman, J. Appelbaum, and E. W. Felten (2009): Lest We Remember:

124

https://doi.org/10.1109/ReConFig.2012.6416790
https://doi.org/10.1109/TII.2010.2068303
https://doi.org/10.1145/3338508.3359568
https://doi.org/10.1145/3338508.3359568
https://doi.org/10.1145/3338508.3359568
https://doi.org/10.1109/FPT.2007.4439246
https://doi.org/10.1007/978-3-642-23951-9_3
https://www.iacr.org/archive/ches2011/69170033/69170033.pdf
https://www.gurobi.com/documentation/9.0/refman/mipfocus.html
https://www.gurobi.com/products/gurobi-optimizer/
https://www.gurobi.com/products/gurobi-optimizer/

Bibliography

Cold-Boot Attacks on Encryption Keys. Commun. ACM 52(5), pp. 91–98. doi: 10.

1145/1506409.1506429. url: https://doi.org/10.1145/1506409.1506429.

[48] Haroldsen, T., B. Nelson, and B. Hutchings (2015): RapidSmith 2: A Framework

for BEL-Level CAD Exploration on Xilinx FPGAs. In: Proceedings of the 2015
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays. FPGA

’15. Monterey, California, USA: Association for Computing Machinery, pp. 66–69.

doi: 10.1145/2684746.2689085. url: https://doi.org/10.1145/2684746.

2689085.

[49] Hettwer, B., J. Petersen, S. Gehrer, H. Neumann, and T. Güneysu (2019): Securing

Cryptographic Circuits by Exploiting Implementation Diversity and Partial

Reconfiguration on FPGAs. In: 2019 Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 260–263. doi: 10.23919/DATE.2019.8714801.

[50] Hofmann, O. S., S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel (2013): InkTag:

Secure Applications on an Untrusted Operating System. SIGPLAN Not. 48(4),

pp. 265–278. doi: 10.1145/2499368.2451146. url: https://doi.org/10.1145/

2499368.2451146.

[51] Huang, A. (2002): Hacking the Xbox: an introduction to reverse engineering.

[52] Huss, S. and O. Stein (2017): A Novel Design Flow for a Security-Driven

Synthesis of Side-Channel Hardened Cryptographic Modules. Journal of Low
Power Electronics and Applications 7(1), p. 4. doi: 10.3390/jlpea7010004. url:

http://dx.doi.org/10.3390/jlpea7010004.

[53] Iida, M. (2018): What Is an FPGA? In: Principles and Structures of FPGAs. Springer,

pp. 23–45.

[54] K., S. K., S. Sahoo, A. Mahapatra, A. K. Swain, and K. K. Mahapatra (2017):

A Flexible Pay-per-Device Licensing Scheme for FPGA IP Cores. In: 2017 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), pp. 677–682. doi: 10.1109/

ISVLSI.2017.123.

[55] Kavvadias, N. (n.d.): OpenCores Universal multi-function CORDIC. Online; ac-

cessed 16-03-2020. url: https://opencores.org/projects/kvcordic.

[56] Kean, T. (2001): Secure Configuration of a Field Programmable Gate Array.

In: The 9th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM’01), pp. 259–260.

[57] Kean, T. (2002): Cryptographic Rights Management of FPGA Intellectual Prop-

erty Cores. In: Proceedings of the 2002 ACM/SIGDA Tenth International Symposium
on Field-Programmable Gate Arrays. FPGA ’02. Monterey, California, USA: Asso-

ciation for Computing Machinery, pp. 113–118. doi: 10.1145/503048.503065.

url: https://doi.org/10.1145/503048.503065.

[58] Khan, N. (n.d.): Milp-Formulation. url: https://github.com/khankit/Milp-

Formulation.

125

https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1145/1506409.1506429
https://doi.org/10.1145/2684746.2689085
https://doi.org/10.1145/2684746.2689085
https://doi.org/10.1145/2684746.2689085
https://doi.org/10.23919/DATE.2019.8714801
https://doi.org/10.1145/2499368.2451146
https://doi.org/10.1145/2499368.2451146
https://doi.org/10.1145/2499368.2451146
https://doi.org/10.3390/jlpea7010004
http://dx.doi.org/10.3390/jlpea7010004
https://doi.org/10.1109/ISVLSI.2017.123
https://doi.org/10.1109/ISVLSI.2017.123
https://opencores.org/projects/kvcordic
https://doi.org/10.1145/503048.503065
https://doi.org/10.1145/503048.503065
https://github.com/khankit/Milp-Formulation
https://github.com/khankit/Milp-Formulation

Bibliography

[59] Kim, Y., R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai,

and O. Mutlu (2014): Flipping bits in memory without accessing them: An

experimental study of DRAM disturbance errors. In: 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA), pp. 361–372. doi: 10.

1109/ISCA.2014.6853210.

[60] Koch, D., C. Beckhoff, and J. Teich (2008): ReCoBus-Builder—A novel tool and

technique to build statically and dynamically reconfigurable systems for FPGAS.

In: 2008 International Conference on Field Programmable Logic and Applications. IEEE,

pp. 119–124.

[61] Kocher, P. C. (1996): Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems. In: Advances in Cryptology — CRYPTO ’96. N. Koblitz

ed. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 104–113.

[62] Kocher, P. C. (1996): Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems. In: Advances in Cryptology — CRYPTO ’96. N. Koblitz

ed. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 104–113.

[63] Kocher, P., J. Jaffe, and B. Jun (1999): Differential Power Analysis. In: Advances
in Cryptology — CRYPTO’ 99. M. Wiener ed. Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 388–397.

[64] Kocher, P., J. Jaffe, and B. Jun (1999): Differential Power Analysis. In: Advances
in Cryptology — CRYPTO’ 99. M. Wiener ed. Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 388–397.

[65] Krepa, M. (n.d.): OpenCores Discrete Cosine Transform core. Online; accessed 16-

03-2020. url: https://opencores.org/projects/mdct.

[66] Kumar, S. S., J. Guajardo, R. Maes, G. Schrijen, and P. Tuyls (2008): Extended ab-

stract: The butterfly PUF protecting IP on every FPGA. In: 2008 IEEE International
Workshop on Hardware-Oriented Security and Trust, pp. 67–70.

[67] Kwong, A., D. Genkin, D. Gruss, and Y. Yarom (2020): RAMBleed: Reading

Bits in Memory Without Accessing Them. In: 2020 IEEE Symposium on Security
and Privacy (SP). Los Alamitos, CA, USA: IEEE Computer Society, pp. 695–711.

doi: 10.1109/SP40000.2020.00020. url: https://doi.ieeecomputersociety.

org/10.1109/SP40000.2020.00020.

[68] La, T. M., K. Matas, N. Grunchevski, K. D. Pham, and D. Koch (2020): FPGADe-

fender: Malicious Self-oscillator Scanning for Xilinx UltraScale + FPGAs. ACM
Trans. Reconfigurable Technol. Syst. 13(3). doi: 10.1145/3402937. url: https:

//doi.org/10.1145/3402937.

[69] Lach, J., W. H. Mangione-Smith, and M. Potkonjak (2001): Fingerprinting

techniques for field-programmable gate array intellectual property protection.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
20(10), pp. 1253–1261. doi: 10.1109/43.952741.

126

https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/ISCA.2014.6853210
https://opencores.org/projects/mdct
https://doi.org/10.1109/SP40000.2020.00020
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00020
https://doi.ieeecomputersociety.org/10.1109/SP40000.2020.00020
https://doi.org/10.1145/3402937
https://doi.org/10.1145/3402937
https://doi.org/10.1145/3402937
https://doi.org/10.1109/43.952741

Bibliography

[70] Lal, V. (n.d.): LFSR-Random number generator. Accessed: Mar. 16, 2019. url:

https://opencores.org/projects/lfsr_randgen.

[71] Lavin, C., M. Padilla, P. Lundrigan, B. Nelson, and B. Hutchings (2010): Rapid

prototyping tools for FPGA designs: RapidSmith. In: 2010 International Conference
on Field-Programmable Technology, pp. 353–356. doi: 10.1109/FPT.2010.5681429.

[72] Lavin, C., M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B. Hutchings

(2011): RapidSmith: Do-It-Yourself CAD Tools for Xilinx FPGAs. In: 2011 21st
International Conference on Field Programmable Logic and Applications, pp. 349–355.

doi: 10.1109/FPL.2011.69.

[73] Lavin, C. and A. Kaviani (2018): RapidWright: Enabling Custom Crafted Im-

plementations for FPGAs. In: 2018 IEEE 26th Annual International Symposium
on Field-Programmable Custom Computing Machines (FCCM), pp. 133–140. doi:

10.1109/FCCM.2018.00030.

[74] Lee, R. B., P. C. Kwan, J. P. McGregor, J. Dwoskin, and Z. Wang (2005): Archi-

tecture for protecting critical secrets in microprocessors. In: 32nd International
Symposium on Computer Architecture (ISCA’05). IEEE, pp. 2–13.

[75] Linaro (n.d.): Architecture. Accessed Oct. 26, 2020. url: https : / / optee .

readthedocs.io/en/latest/architecture/index.html.

[76] Linaro (n.d.): OP-TEE. url: https://github.com/OP-TEE.

[77] Linaro (n.d.): Open Portable Trusted Execution Environment. Accessed Mar. 25,

2020. url: https://optee.readthedocs.io/en/latest/general/about.html.

[78] Linaro (n.d.): Projects. Accessed July. 15, 2020. url: https://www.linaro.org/

projects/.

[79] Linaro (n.d.): Trusted Applications. Accessed Mar. 06, 2020. url: https :

/ / optee . readthedocs . io / en / latest / architecture / trusted % 7B % 5C _

%7Dapplications.html.

[80] Liu, G. (n.d.): Gaussian Noise Generator (GNG) Verilog IP Core. Accessed: Mar. 16,

2019. url: https://github.com/liuguangxi/gng.

[81] Machiry, A., E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang, A. Bianchi,

Y. R. Choe, C. Krügel, and G. Vigna (2017): BOOMERANG: Exploiting the

Semantic Gap in TEEs. In: NDSS.

[82] Maes, R., D. Schellekens, and I. Verbauwhede (2012): A Pay-per-Use Licensing

Scheme for Hardware IP Cores in Recent SRAM-Based FPGAs. IEEE Transactions
on Information Forensics and Security 7(1), pp. 98–108. doi: 10.1109/TIFS.2011.

2169667.

[83] Mangard, S., E. Oswald, and T. Popp (2007): Power Analysis Attacks: Revealing
the Secrets of Smart Cards (Advances in Information Security). Berlin, Heidelberg:

Springer-Verlag.

127

https://opencores.org/projects/lfsr_randgen
https://doi.org/10.1109/FPT.2010.5681429
https://doi.org/10.1109/FPL.2011.69
https://doi.org/10.1109/FCCM.2018.00030
https://optee.readthedocs.io/en/latest/architecture/index.html
https://optee.readthedocs.io/en/latest/architecture/index.html
https://github.com/OP-TEE
https://optee.readthedocs.io/en/latest/general/about.html
https://www.linaro.org/projects/
https://www.linaro.org/projects/
https://optee.readthedocs.io/en/latest/architecture/trusted%7B%5C_%7Dapplications.html
https://optee.readthedocs.io/en/latest/architecture/trusted%7B%5C_%7Dapplications.html
https://optee.readthedocs.io/en/latest/architecture/trusted%7B%5C_%7Dapplications.html
https://github.com/liuguangxi/gng
https://doi.org/10.1109/TIFS.2011.2169667
https://doi.org/10.1109/TIFS.2011.2169667

Bibliography

[84] Mavrovouniotis, S. and M. Ganley (2014): Hardware Security Modules. In:

Secure Smart Embedded Devices, Platforms and Applications. K. Markantonakis and

K. Mayes eds. New York, NY: Springer New York, pp. 383–405. doi: 10.1007/978-

1-4614-7915-4_17. url: https://doi.org/10.1007/978-1-4614-7915-4_17.

[85] McGillion, B., T. Dettenborn, T. Nyman, and N. Asokan (2015): Open-TEE–An

Open Virtual Trusted Execution Environment. In: 2015 IEEE Trustcom/Big-
DataSE/ISPA. Vol. 1. IEEE, pp. 400–407.

[86] Mentens, N., B. Gierlichs, and I. Verbauwhede (2008): Power and Fault Analysis

Resistance in Hardware through Dynamic Reconfiguration. In: Cryptographic
Hardware and Embedded Systems – CHES 2008. E. Oswald and P. Rohatgi eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 346–362.

[87] Mentens, N. (2017): Hiding side-channel leakage through hardware randomiza-

tion: A comprehensive overview. In: 2017 International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS), pp. 269–272.

doi: 10.1109/SAMOS.2017.8344639.

[88] Moghaddam, E., N. Mukherjee, J. Rajski, J. Tyszer, and J. Zawada (2016): On Test

Points Enhancing Hardware Security. In: 2016 IEEE 25th Asian Test Symposium
(ATS), pp. 61–66. doi: 10.1109/ATS.2016.24.

[89] Montone, A., M. D. Santambrogio, and D. Sciuto (2010): Wirelength driven

floorplacement for FPGA-based partial reconfigurable systems. In: 2010 IEEE
International Symposium on Parallel Distributed Processing, Workshops and Phd Forum
(IPDPSW), pp. 1–8. doi: 10.1109/IPDPSW.2010.5470756.

[90] Moradi, A. and T. Schneider (2016): Improved Side-Channel Analysis Attacks

on Xilinx Bitstream Encryption of 5, 6, and 7 Series. IACR Cryptol. ePrint Arch.
2016, p. 249. url: http://eprint.iacr.org/2016/249.

[91] Mulnix, D. (n.d.): Intel® Trusted Execution Technology (Intel® TXT) Enabling Guide.
Accessed: Mar. 24, 2020. url: https://software.intel.com/en-us/articles/

intel-trusted-execution-technology-intel-txt-enabling-guide.

[92] Nane, R., V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao,

S. Brown, F. Ferrandi, J. Anderson, and K. Bertels (2016): A Survey and Evalu-

ation of FPGA High-Level Synthesis Tools. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 35(10), pp. 1591–1604.

[93] Nguyen, T. T., M. Thevenin, A. Mouraud, G. Corre, O. Pasquier, and S. Pillement

(2018): High-Level Reliability Evaluation of Reconfiguration-Based Fault Toler-

ance Techniques. In: 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), pp. 202–205. doi: 10.1109/IPDPSW.2018.

00038.

[94] Nomata, Y., M. Matsubayashi, K. Sawada, and A. Satoh (2016): Comparison of

side-channel attack on cryptographic cirucits between old and new technology

128

https://doi.org/10.1007/978-1-4614-7915-4_17
https://doi.org/10.1007/978-1-4614-7915-4_17
https://doi.org/10.1007/978-1-4614-7915-4_17
https://doi.org/10.1109/SAMOS.2017.8344639
https://doi.org/10.1109/ATS.2016.24
https://doi.org/10.1109/IPDPSW.2010.5470756
http://eprint.iacr.org/2016/249
https://software.intel.com/en-us/articles/intel-trusted-execution-technology-intel-txt-enabling-guide
https://software.intel.com/en-us/articles/intel-trusted-execution-technology-intel-txt-enabling-guide
https://doi.org/10.1109/IPDPSW.2018.00038
https://doi.org/10.1109/IPDPSW.2018.00038

Bibliography

FPGAs. In: 2016 IEEE 5th Global Conference on Consumer Electronics, pp. 1–4. doi:

10.1109/GCCE.2016.7800555.

[95] Note, J.-B. and É. Rannaud (2008): From the Bitstream to the Netlist. In:

Proceedings of the 16th International ACM/SIGDA Symposium on Field Programmable
Gate Arrays. FPGA ’08. Monterey, California, USA: Association for Computing

Machinery, p. 264. doi: 10.1145/1344671.1344729. url: https://doi.org/10.

1145/1344671.1344729.

[96] Note, J.-B. and É. Rannaud (2008): From the Bitstream to the Netlist. In:

Proceedings of the 16th International ACM/SIGDA Symposium on Field Programmable
Gate Arrays. FPGA ’08. Monterey, California, USA: Association for Computing

Machinery, p. 264. doi: 10.1145/1344671.1344729. url: https://doi.org/10.

1145/1344671.1344729.

[97] O’Flynn, C. and Z. Chen (2013): A Case Study of Side-Channel Analysis Using

Decoupling Capacitor Power Measurement with the OpenADC. In: Foundations
and Practice of Security. J. Garcia-Alfaro, F. Cuppens, N. Cuppens-Boulahia,

A. Miri, and N. Tawbi eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

pp. 341–356.

[98] Owusu, E., J. Guajardo, J. McCune, J. Newsome, A. Perrig, and A. Vasudevan

(2013): OASIS: On achieving a sanctuary for integrity and secrecy on untrusted

platforms. In: Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pp. 13–24.

[99] Paar, C. and J. Pelzl (2010): Understanding cryptography: a textbook for students
and practitioners. Berlin: Germany:Springer-Verlag.

[100] Pappala, S., M. Niamat, and W. Sun (2012): FPGA based key generation technique

for anti-counterfeiting methods using Physically Unclonable Functions and

artificial intelligence. In: IEEE, pp. 388–393. doi: 10.1109/FPL.2012.6339209.

[101] PartialReconfigurationUser Guide (UG702) (2013). Xilinx Inx.

[102] de la Piedra, A. (n.d.): OpenCores SHA-256 Core. Online; accessed 16-03-2020.

url: https://opencores.org/projects/sha256core.

[103] de la Piedra, A. (n.d.): OpenCores XTEA Core. Online; accessed 16-03-2020. url:

https://opencores.org/projects/xteacore.

[104] Pinto, S. and N. Santos (2019): Demystifying Arm TrustZone: A Comprehensive

Survey. ACM Comput. Surv. 51(6). doi: 10.1145/3291047. url: https://doi.

org/10.1145/3291047.

[105] Pocklassery, G., W. Che, F. Saqib, M. Areno, and J. Plusquellic (2018): Self-

authenticating secure boot for FPGAs. In: 2018 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), pp. 221–226. doi: 10.1109/HST.

2018.8383919.

129

https://doi.org/10.1109/GCCE.2016.7800555
https://doi.org/10.1145/1344671.1344729
https://doi.org/10.1145/1344671.1344729
https://doi.org/10.1145/1344671.1344729
https://doi.org/10.1145/1344671.1344729
https://doi.org/10.1145/1344671.1344729
https://doi.org/10.1145/1344671.1344729
https://doi.org/10.1109/FPL.2012.6339209
https://opencores.org/projects/sha256core
https://opencores.org/projects/xteacore
https://doi.org/10.1145/3291047
https://doi.org/10.1145/3291047
https://doi.org/10.1145/3291047
https://doi.org/10.1109/HST.2018.8383919
https://doi.org/10.1109/HST.2018.8383919

Bibliography

[106] Pseudo random number generator Tutorial (n.d.). Accessed: Mar. 16, 2019. url:

http://fpgasite.blogspot.com/2017/04/pseudo- random- generator-

tutorial.html.

[107] Rabozzi, M., J. Lillis, and M. D. Santambrogio (2014): Floorplanning for Partially-

Reconfigurable FPGA Systems via Mixed-Integer Linear Programming. In:

2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom
Computing Machines, pp. 186–193. doi: 10.1109/FCCM.2014.61.

[108] Rabozzi, M., G. C. Durelli, A. Miele, J. Lillis, and M. D. Santambrogio (2017):

Floorplanning Automation for Partial-Reconfigurable FPGAs via Feasible Place-

ments Generation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems
25(1), pp. 151–164. doi: 10.1109/TVLSI.2016.2562361.

[109] Reorda, M. S., L. Sterpone, and A. Ullah (2017): An Error-Detection and Self-

Repairing Method for Dynamically and Partially Reconfigurable Systems. IEEE
Transactions on Computers 66(6), pp. 1022–1033. doi: 10.1109/TC.2016.2607749.

[110] Rettkowski, J., S. Mahmood, A. Shallufa, M. Hübner, and D. Göhringer (2019):

Inspection of Partial Bitstreams for FPGAs Using Artificial Neural Networks. In:

2019 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 83–86.

[111] Rivain, M., E. Prouff, and J. Doget (2009): Higher-Order Masking and Shuffling

for Software Implementations of Block Ciphers. In: Cryptographic Hardware and
Embedded Systems - CHES 2009. C. Clavier and K. Gaj eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 171–188.

[112] Santos, N., H. Raj, S. Saroiu, and A. Wolman (2014): Using ARM TrustZone to

build a trusted language runtime for mobile applications. In: Proceedings of the
19th international conference on Architectural support for programming languages and
operating systems, pp. 67–80.

[113] Sasdrich, P., A. Moradi, O. Mischke, and T. Güneysu (2015): Achieving side-

channel protection with dynamic logic reconfiguration on modern FPGAs. In:

2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
pp. 130–136. doi: 10.1109/HST.2015.7140251.

[114] Sasdrich, P., A. Moradi, and T. Güneysu (2017): Hiding Higher-Order Side-

Channel Leakage. In: Topics in Cryptology – CT-RSA 2017. H. Handschuh ed.

Cham: Springer International Publishing, pp. 131–146.

[115] Schrittwieser, L. (n.d.): OpenCores LZRW1 Compressor Core. Online; accessed

16-03-2020. url: https://opencores.org/projects/lzrw1-compressor-core.

[116] Seyoum, B. B., A. Biondi, and G. C. Buttazzo (2019): FLORA: FLoorplan Op-

timizer for Reconfigurable Areas in FPGAs. ACM Trans. Embed. Comput. Syst.
18(5s), 73:1–73:20. doi: 10.1145/3358202. url: http://doi.acm.org/10.1145/

3358202.

130

http://fpgasite.blogspot.com/2017/04/pseudo-random-generator-tutorial.html
http://fpgasite.blogspot.com/2017/04/pseudo-random-generator-tutorial.html
https://doi.org/10.1109/FCCM.2014.61
https://doi.org/10.1109/TVLSI.2016.2562361
https://doi.org/10.1109/TC.2016.2607749
https://doi.org/10.1109/HST.2015.7140251
https://opencores.org/projects/lzrw1-compressor-core
https://doi.org/10.1145/3358202
http://doi.acm.org/10.1145/3358202
http://doi.acm.org/10.1145/3358202

Bibliography

[117] Shakya, B., M. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor (2017):

Benchmarking of Hardware Trojans and Maliciously Affected Circuits. Journal
of Hardware and Systems Security 1, pp. 85–102.

[118] Shepherd, C., G. Arfaoui, I. Gurulian, R. P. Lee, K. Markantonakis, R. N. Akram,

D. Sauveron, and E. Conchon (2016): Secure and Trusted Execution: Past, Present,

and Future - A Critical Review in the Context of the Internet of Things and

Cyber-Physical Systems. In: 2016 IEEE Trustcom/BigDataSE/ISPA, pp. 168–177.

doi: 10.1109/TrustCom.2016.0060.

[119] Simple sine wave generator in VHDL (n.d.). Accessed: Mar. 16, 2019. url: https:

//vhdlguru.blogspot.com/2010/03/simple-sine-wave-generator-in-

vhdl.html.

[120] Simpson, E. and P. Schaumont (2006): Offline Hardware/Software Authentication

for Reconfigurable Platforms. In: Cryptographic Hardware and Embedded Systems -
CHES 2006. L. Goubin and M. Matsui eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 311–323.

[121] Skorobogatov, S. and C. Woods (2012): In the blink of an eye: There goes your

AES key. IACR Cryptol. ePrint Arch. 2012, p. 296. url: http://eprint.iacr.org/

2012/296.

[122] Sohanghpurwala, A. A., P. Athanas, T. Frangieh, and A. Wood (2011): OpenPR:

An open-source partial-reconfiguration toolkit for Xilinx FPGAs. In: 2011 IEEE
International Symposium on Parallel and Distributed Processing Workshops and Phd
Forum. IEEE, pp. 228–235.

[123] Sun, H., K. Sun, Y. Wang, J. Jing, and H. Wang (2015): TrustICE:

Hardware-Assisted Isolated Computing Environments on Mobile Devices.

2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, pp. 367–378.

[124] Sun, P. and A. Cui (2019): A New Pay-Per-Use Scheme for the Protection of FPGA

IP. In: 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5.

doi: 10.1109/ISCAS.2019.8702721.

[125] Sundaramoorthy, N., N. Rao, and T. Hill (2010): AXI4 Interconnect Paves the

Way to Plug-and-Play IP. Xilinx White Paper WP379 v1. 0.

[126] Tajik, S., H. Lohrke, J.-P. Seifert, and C. Boit (2017): On the Power of Optical

Contactless Probing: Attacking Bitstream Encryption of FPGAs. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security. CCS

’17. Dallas, Texas, USA: Association for Computing Machinery, pp. 1661–1674.

doi: 10.1145/3133956.3134039. url: https://doi.org/10.1145/3133956.

3134039.

[127] Tatas, K., K. Siozios, and D. Soudris (2007): A Survey of Existing Fine-Grain

Reconfigurable Architectures and CAD tools. Vassiliadis S., Soudris D. (eds) Fine-

131

https://doi.org/10.1109/TrustCom.2016.0060
https://vhdlguru.blogspot.com/2010/03/simple-sine-wave-generator-in-vhdl.html
https://vhdlguru.blogspot.com/2010/03/simple-sine-wave-generator-in-vhdl.html
https://vhdlguru.blogspot.com/2010/03/simple-sine-wave-generator-in-vhdl.html
http://eprint.iacr.org/2012/296
http://eprint.iacr.org/2012/296
https://doi.org/10.1109/ISCAS.2019.8702721
https://doi.org/10.1145/3133956.3134039
https://doi.org/10.1145/3133956.3134039
https://doi.org/10.1145/3133956.3134039

Bibliography

and Coarse-Grain Reconfigurable Computing. Springer, Dordrecht. doi: https://doi.

org/10.1007/978-1-4020-6505-7_1.

[128] Townsend, T. and B. Nelson (2017): Vivado design interface: An export/import

capability for Vivado FPGA designs. In: 2017 27th International Conference on Field
Programmable Logic and Applications (FPL), pp. 1–7.

[129] Uzenkov, O. (n.d.): OpenCores Pipelined DCT/IDCT. Online; accessed 16-03-2020.

url: https://opencores.org/projects/dct_idct.

[130] verilog code for SINE PWM (n.d.). Accessed: Mar. 16, 2019. url: https : / /

community.intel.com/t5/Intel-Quartus-Prime-Software/verilog-code-

for-SINE-PWM/td-p/144210.

[131] Villar, J. C. (n.d.): Opencores 128/192 AES. Accessed: Mar. 16, 2019. url: https:

//opencores.org/projects/systemcaes.

[132] Vipin, K. and S. A. Fahmy (2012): Architecture-Aware Reconfiguration-Centric

Floorplanning for Partial Reconfiguration. In: Proceedings of the 8th Interna-
tional Conference on Reconfigurable Computing: Architectures, Tools and Applications.
ARC’12. Hong Kong, China: Springer-Verlag, pp. 13–25. doi: 10.1007/978-3-

642-28365-9_2. url: https://doi.org/10.1007/978-3-642-28365-9_2.

[133] Vliegen, J., N. Mentens, D. Koch, D. Schellekens, and I. Verbauwhede (2015):

Practical feasibility evaluation and improvement of a pay-per-use licensing

scheme for hardware IP cores in Xilinx FPGAs. Journal of Cryptographic Engineer-
ing 5(2), pp. 113–122. doi: 10.1007/s13389-014-0088-4.

[134] Wilkinson, K. (2018): Using Encryption and Authentication to Secure an Ultra-
Scale/UltraScale+ FPGA Bitstream. (v1.3). Xilinx.

[135] Wilson, K. S. (2013): Conflicts Among the Pillars of Information Assurance. IT
Professional 15(4), pp. 44–49. doi: 10.1109/MITP.2012.24.

[136] Xilinx (n.d.): SignOnce IP Licensing. Accessed: Jan. 13, 2020. url: https://www.

xilinx.com/content/xilinx/en/referenced-content/alliance/signonce.

html?null.

[137] Xilinx (n.d.): Xilinx Announces the World’s Largest FPGA Featuring 9 Million System
Logic Cells. Accessed: Oct. 02, 2020. url: https://www.xilinx.com/news/

press/2019/xilinx-announces-the-world-s-largest-fpga-featuring-9-

million-system-logic-cells.html.

[138] Xilinx (2011): AXI Reference Guide.
[139] Xilinx (2012): SECURITY MONITOR IP. Xilinx. url: https://www.xilinx.

com/support/documentation/product-briefs/security-monitor-ip-core-

product-brief.pdf.

[140] Xilinx (2017): Vivado Design Suite User Guide Programming and Debugging. Xilinx.

[141] Xilinx (2017): Zynq UltraScale+ DeviceTechnical Reference Manual. Xilinx.

132

https://doi.org/https://doi.org/10.1007/978-1-4020-6505-7_1
https://doi.org/https://doi.org/10.1007/978-1-4020-6505-7_1
https://opencores.org/projects/dct_idct
https://community.intel.com/t5/Intel-Quartus-Prime-Software/verilog-code-for-SINE-PWM/td-p/144210
https://community.intel.com/t5/Intel-Quartus-Prime-Software/verilog-code-for-SINE-PWM/td-p/144210
https://community.intel.com/t5/Intel-Quartus-Prime-Software/verilog-code-for-SINE-PWM/td-p/144210
https://opencores.org/projects/systemcaes
https://opencores.org/projects/systemcaes
https://doi.org/10.1007/978-3-642-28365-9_2
https://doi.org/10.1007/978-3-642-28365-9_2
https://doi.org/10.1007/978-3-642-28365-9_2
https://doi.org/10.1007/s13389-014-0088-4
https://doi.org/10.1109/MITP.2012.24
https://www.xilinx.com/content/xilinx/en/referenced-content/alliance/signonce.html?null
https://www.xilinx.com/content/xilinx/en/referenced-content/alliance/signonce.html?null
https://www.xilinx.com/content/xilinx/en/referenced-content/alliance/signonce.html?null
https://www.xilinx.com/news/press/2019/xilinx-announces-the-world-s-largest-fpga-featuring-9-million-system-logic-cells.html
https://www.xilinx.com/news/press/2019/xilinx-announces-the-world-s-largest-fpga-featuring-9-million-system-logic-cells.html
https://www.xilinx.com/news/press/2019/xilinx-announces-the-world-s-largest-fpga-featuring-9-million-system-logic-cells.html
https://www.xilinx.com/support/documentation/product-briefs/security-monitor-ip-core-product-brief.pdf
https://www.xilinx.com/support/documentation/product-briefs/security-monitor-ip-core-product-brief.pdf
https://www.xilinx.com/support/documentation/product-briefs/security-monitor-ip-core-product-brief.pdf

Bibliography

[142] Xilinx (2017): Zynq UltraScale+ MPSoC: Embedded Design Tutorial: A Hands-On
Guide to Effective Embedded System Design. Xilinx.

[143] Xilinx (2018): Developing Tamper-Resistant Designs with UltraScale and UltraScale+
FPGAs. Xilinx.

[144] Xilinx (2018): Partial Reconfiguration Controller v1.3, LogiCORE IP Product Guide.
Vivado Design Suite PG193. Xilinx.

[145] Xilinx (2018): UltraScale Architecture ConfigurationUser Guide. Xilinx.

[146] Xilinx (2018): Vivado Design Suite User Guide Hierarchical Design UG905.

[147] Xilinx (2018): Vivado Design Suite User Guide: Partial Reconfiguration. Xilinx.

[148] Xilinx (2018): Vivado Design Suite User Guide: Partial Reconfiguration. Xilinx.

[149] Xilinx (2018): Zynq UltraScale+ MPSoC Processing System v3.2. Xilinx.

[150] Xilinx (2018): Zynq-7000 SoC Technical Reference Manual. Xilinx.

[151] Xilinx (2019): Isolation Methods in Zynq UltraScale+ MPSoCs. (v2.0).

[152] Xilinx (2019): Zynq UltraScale+ MPSoC Software Developer Guide UG1137 (v11.0).
Xilinx.

[153] Yan Feng and D. P. Mehta (2006): Heterogeneous floorplanning for FPGAs.

In: 19th International Conference on VLSI Design held jointly with 5th International
Conference on Embedded Systems Design (VLSID’06). doi: 10.1109/VLSID.2006.96.

[154] Zhang, J., Y. Lin, Q. Wu, and W. Che (2012): Watermarking FPGA Bitfile for

Intellectual Property Protection. Radioengineering 21(2).

[155] Zhang, J., Y. Lin, Y. Lyu, and G. Qu (2015): A PUF-FSM Binding Scheme for FPGA

IP Protection and Pay-per-Device Licensing. IEEE Transactions on Information
Forensics and Security 10, pp. 1–1. doi: 10.1109/TIFS.2015.2400413.

[156] Zhang, J. and G. Qu (2019): Recent Attacks and Defenses on FPGA-Based

Systems. ACM Trans. Reconfigurable Technol. Syst. 12(3). doi: 10.1145/3340557.

url: https://doi.org/10.1145/3340557.

[157] Zhang, L. and C. Chang (2014): A Pragmatic Per-Device Licensing Scheme for

Hardware IP Cores on SRAM-Based FPGAs. IEEE Transactions on Information
Forensics and Security 9(11), pp. 1893–1905. doi: 10.1109/TIFS.2014.2355043.

[158] Zhang, L. and C. Chang (2015): Public key protocol for usage-based licensing

of FPGA IP cores. In: 2015 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 25–28. doi: 10.1109/ISCAS.2015.7168561.

[159] Zhang, N., K. Sun, W. Lou, and Y. T. Hou (2016): CaSE: Cache-Assisted Secure

Execution on ARM Processors. In: 2016 IEEE Symposium on Security and Privacy
(SP), pp. 72–90.

[160] Zhang, X. and M. Tehranipoor (2011): Case study: Detecting hardware Trojans

in third-party digital IP cores. In: 2011 IEEE International Symposium on Hardware-
Oriented Security and Trust, pp. 67–70. doi: 10.1109/HST.2011.5954998.

133

https://doi.org/10.1109/VLSID.2006.96
https://doi.org/10.1109/TIFS.2015.2400413
https://doi.org/10.1145/3340557
https://doi.org/10.1145/3340557
https://doi.org/10.1109/TIFS.2014.2355043
https://doi.org/10.1109/ISCAS.2015.7168561
https://doi.org/10.1109/HST.2011.5954998

Bibliography

[161] Zhao, M. and G. E. Suh (2018): FPGA-Based Remote Power Side-Channel Attacks.

In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 229–244. doi: 10.1109/

SP.2018.00049.

[162] Zhao, M. and G. E. Suh (2018): FPGA-based remote power side-channel attacks.

In: 2018 IEEE Symposium on Security and Privacy (SP). IEEE, pp. 229–244.

[163] Ziener, D. and J. Teich (2008): Power Signature Watermarking of IP Cores for

FPGAs. Journal of Signal Processing Systems 51(1), pp. 123–136. doi: 10.1007/

s11265-007-0136-8. url: https://doi.org/10.1007/s11265-007-0136-8.

[164] Ziener, D. (2018): Improving Reliability, Security, and Efficiency of Reconfig-

urable Hardware Systems. arXiv preprint arXiv:1809.11156.

134

https://doi.org/10.1109/SP.2018.00049
https://doi.org/10.1109/SP.2018.00049
https://doi.org/10.1007/s11265-007-0136-8
https://doi.org/10.1007/s11265-007-0136-8
https://doi.org/10.1007/s11265-007-0136-8

Supervised Student Research

[165] Dlala, K.-B. (2018): Functional Verification of Protected FPGA Designs. (unveröf-

fentlicht). Bachelorarbeit. Karlsruher Institut für Technologie.

[166] Frank, R. (2017): Analysis and Assessment of Side-Channel-Information of State-
of-the-Art FPGA Evaluation Boards. (unveröffentlicht). Masterarbeit. Karlsruher

Institut für Technologie.

[167] Khazi, R. (2021): Extending the ARM TrustZone to the Dynamic Partial Reconfig-
uration of the Programmable Logic. (unveröffentlicht). Masterarbeit. Technische

Universität Chemnitz.

[168] López, A.-G. (2019): Development of a Secure Framework with Remote Configuration
of IP via TLS for FPGA-S. (unveröffentlicht). Masterarbeit. Public University of

Navarre.

[169] Nitzsche, S. (2018): Security and Feasibility of Remotely Configuring Intellectual
Property. (unveröffentlicht). Masterarbeit. Karlsruher Institut für Technologie.

[170] Pachideh, B. (2019): Securing IP against Theft in SoC FPGA. (unveröffentlicht).

Masterarbeit. Karlsruher Institut für Technologie.

[171] Ramachandra, K. (2019): Investigation on Readback Attacks for Intellectual Property
theft. (unveröffentlicht). Masterarbeit. Hochschule Bremerhaven.

[172] Subbarao, S. (2019): Reconfiguration of SBox in an AES as a countermeasure against
Side Channel Attacks. (unveröffentlicht). Masterarbeit. SRH Hochschule Heidel-

berg.

[173] Xue, S. (2020): IP Generation Independent of the Static Design. (unveröffentlicht).

Masterarbeit. Karlsruher Institut für Technologie.

135

Own publications

[174] Khan, N., S. Nitzsche, and J. Becker (2019): A Secure Framework with Re-

mote Configuration of Intellectual Property. In: 2019 International Conference on
Information Systems Security and Privacy.

[175] Khan, N., S. Nitzsche, R. Frank, L. Bauer, J. Henkel, and J. Becker (2019):

Amplifying Side Channel Leakage by Hardware Modification of Xilinx Zynq-7

FPGA Evaluation Boards. In: SECURWARE 2019 : The Thirteenth International
Conference on Emerging Security Information, Systems and Technologies.

[176] Khan, N., A. Silitonga, B. Pachideh, S. Nitzsche, and J. Becker (2019): Secure

Local Configuration of Intellectual Property Without a Trusted Third Party.

In: Springer International Publishing, pp. 137–146. doi: 10.1007/978-3-030-

17227-5_11.

[177] Khan, N., J. Castro-Godínez, S. Xue, J. Henkel, and J. Becker (2021): Automatic

Floorplanning and Standalone Generation of Bitstream-Level IP Cores. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 29(1), pp. 38–50. doi:

10.1109/TVLSI.2020.3023548.

[178] Khan, N., B. Hettwer, and J. Becker (2021): Moving Target and Implementation

Diversity Based Countermeasures Against Side-Channel Attacks. In: Applied
Reconfigurable Computing. Architectures, Tools, and Applications. S. Derrien, F. Han-

nig, P. C. Diniz, and D. Chillet eds. Cham: Springer International Publishing,

pp. 188–202.

[179] Khan, N., S. Nitzsche, A. G. López, and J. Becker (2021): Utilizing and Extending

Trusted Execution Environment in Heterogeneous SoCs for a Pay-Per-Device

IP Licensing Scheme. IEEE Transactions on Information Forensics and Security 16,

pp. 2548–2563. doi: 10.1109/TIFS.2021.3058777.

[180] Silitonga, A., Z. Jiang, N. Khan, and J. Becker (2019): Reconfigurable Module of

Multi-mode AES Cryptographic Algorithms for AP SoCs. In: 2019 IEEE Nordic
Circuits and Systems Conference (NORCAS): NORCHIP and International Symposium
of System-on-Chip (SoC), pp. 1–7. doi: 10.1109/NORCHIP.2019.8906923.

137

https://doi.org/10.1007/978-3-030-17227-5_11
https://doi.org/10.1007/978-3-030-17227-5_11
https://doi.org/10.1109/TVLSI.2020.3023548
https://doi.org/10.1109/TIFS.2021.3058777
https://doi.org/10.1109/NORCHIP.2019.8906923

	Abstract
	Zusammenfassung
	Preface
	Contents
	1 Introduction
	1.1 Participants of the FPGA IP Market
	1.2 Types of IP Licensing Models
	1.3 Delivery Format
	1.4 FPGA IP Market Challenges
	1.5 Contributions and Outline

	2 Background
	2.1 Reconfigurable Devices
	2.1.1 Basic Components
	2.1.2 Topology
	2.1.3 Programming Technology
	2.1.4 Dynamic Partial Reconfiguration (DPR)

	2.2 Information Assurance
	2.2.1 Key Storage

	2.3 Cryptographic Algorithms
	2.3.1 Hashing Functions
	2.3.2 Symmetric Key Algorithms
	2.3.3 Asymmetric Key Algorithms

	2.4 Secure Boot
	2.5 Trusted Execution Environment (TEE)
	2.5.1 Applications
	2.5.2 Hardware Support
	2.5.3 ARM TrustZone

	3 Security Threats
	3.1 Theft Attacks
	3.1.1 SCAs on Cryptographic Implementations
	3.1.2 DDR Memory Attacks
	3.1.3 Probing
	3.1.4 Readback Attack

	3.2 IP Misuses
	3.2.1 Cloning
	3.2.2 Reverse Engineering

	3.3 Malicious IPs
	3.3.1 Tampering Configured Designs
	3.3.2 Hardware Trojans

	4 Countermeasures against SCAs
	4.1 Related Work
	4.2 Proposed Countermeasures
	4.2.1 Target Function Relocation (TFR)
	4.2.2 Noise Generation (NG)

	4.3 Implementation
	4.3.1 AES Serial
	4.3.2 Noise Module
	4.3.3 Partial Reconfiguration Controller (PRC)
	4.3.4 SBOX Noise Select and Trigger Logic (SNTL)
	4.3.5 Bare-Metal Application
	4.3.6 Configuration Times
	4.3.7 Scalability — Variants Generation and Deployment
	4.3.8 Scalability — Resource Overhead
	4.3.9 Throughput Overhead

	4.4 Evaluation

	5 Automatic Floorplanning of IPs
	5.1 State of the Art
	5.2 Problem Definition
	5.3 Device Representation
	5.3.1 FPGA Layout
	5.3.2 Grid Reduction and Granularity
	5.3.3 FPGA Partitioning

	5.4 MILP Modeling
	5.4.1 Constants definition
	5.4.2 Control Variables
	5.4.3 Problem Linearization
	5.4.4 Constraints
	5.4.5 Objective Functions

	5.5 Experimental Results and Evaluation

	6 Standalone Generation of IPs
	6.1 Requirements
	6.2 Third Party Tools
	6.3 Proposed Solution using FV Tools

	7 IP Licensing Schemes
	7.1 Existing Proposals in the FPGA IP Market
	7.1.1 Features or Limitations

	7.2 Assumptions
	7.2.1 Target Platform Features
	7.2.2 Trust on FV's Devices and TTP

	7.3 Threat Model
	7.4 Trusted Platform
	7.4.1 Establish Trust on the Processing System (PS)
	7.4.2 Extending TEE to the Programmable Logic (PL)

	7.5 Proposed IP Licensing Scheme
	7.5.1 IP Core Enrollment
	7.5.2 Preparing Security Framework (SFW)
	7.5.3 IP Licensing

	8 Implementation
	8.1 Memory Partitioning
	8.2 Restricting Configuration Interfaces
	8.2.1 Blocking PCAP
	8.2.2 Isolating PRC from rich OS

	8.3 Standalone Generation of IPs and SD's Design
	8.3.1 Design Partitioning
	8.3.2 Floorplanning
	8.3.3 Static Design Generation
	8.3.4 SD's Protected Design
	8.3.5 CV's Design

	8.4 Trusted and Rich Operating Systems
	8.5 Trusted Applications (TAs)
	8.5.1 Asymmetric Encryption/Decryption
	8.5.2 Authentication of Encrypted IPs
	8.5.3 Symmetric Encryption/Decryption
	8.5.4 PRC Configuration and Trigger
	8.5.5 Partitioning of the Programmable Logic (PL)

	8.6 Integration and Secure Boot
	8.7 Application Execution
	8.7.1 Encrypted Bitstream
	8.7.2 Plain-text Bitstream

	9 Security Analysis and Possible Security Enhancements
	9.1 Malicious System Developer
	9.1.1 SCAs on Decryptions
	9.1.2 SCAs on DDR Memory
	9.1.3 Readback Attack

	9.2 Breach of Trust by the TTP
	9.3 Malicious Core Vendor
	9.4 TrustZone
	9.5 Variants of the Scheme
	9.6 Performance Evaluation

	10 Conclusion
	10.1 Future Work
	10.1.1 Trust in Devices
	10.1.2 Application Development

	Abbreviations
	List of Figures
	List of Tables
	Bibliography
	Supervised Student Research
	Own publications

