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Abstract
We look for least energy solutions to the cooperative systems of coupled Schrédinger equa-
tions

—Au; + hiu; = 3;Gu) inRN, N >3,
ui € H'(RV), ie{l,....K)
fRN |Mi|2dx < ,012

with G > 0, where p; > 0 is prescribed and (A;, u;) € R x H L(RN) is to be determined,
i € {1,..., K}. Our approach is based on the minimization of the energy functional over
a linear combination of the Nehari and PohoZaev constraints intersected with the product
of the closed balls in L2(R™) of radii p;, which allows to provide general growth assump-
tions about G and to know in advance the sign of the corresponding Lagrange multipliers.
We assume that G has at least L2-critical growth at 0 and admits Sobolev critical growth.
The more assumptions we make about G, N, and K, the more can be said about the mini-
mizers of the corresponding energy functional. In particular, if K = 2, N € {3,4}, and G
satisfies further assumptions, then u = (u1, u») is normalized, i.e., fRN |u; |2 dx = ,oi2 for
ie{l,2}.
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Introduction

We consider the following system of autonomous nonlinear Schrédinger equations of gradient
type

—Auy +  uy = 01G(u)
in RV (1.1)
—Aug + Agug = g G(u)

withu = (uy, ..., ug): RY — RX which arises in different areas of mathematical physics.
In particular, the system (1.1) describes the propagation of solitons, which are special nontriv-
ial solitary wave solutions @ ; (x, t) = u; (x)e i to a system of time-dependent Schrodinger
equations of the form

0P ;

1W—A<I>j:gj(fb) forj=1,...,K, (1.2)
where, for instance, g; are responsible for the nonlinear polarization in a photonic crystal
[2,34] and A are the external electric potentials.

Another field of application is condensed matter physics, where (1.1) comes from the

system of coupled Gross—Pitaevski equations (1.2) with nonlinearities of the form

K
gj(®) = (Zﬂj,k@kﬁ) ®; forj=1,...,K.
k=1
The following L2-bounds for ® will be studied:
f |@;(t,)" dx = p? and / @0, x)|* dx < p2.
RV RN

Problems with prescribed masses o2 (the former constraint) appear in nonlinear optics, where
the mass represents the power supply, and in the theory of Bose—Einstein condensates, where
it represents the total number of atoms (see [1,17,19,27,30,32,41]). Prescribing the masses
make sense also because they are conserved quantities in the corresponding evolution equation
(1.2) together with the energy (see the functional J below), cf. [13,14]. As for the latter
constraint, we propose it as a model for some experimental situations, e.g. when the power
supply provided can oscillate without exceeding a given value.

Recall that a general class of autonomous systems of Schrodinger equations was studied
by Brezis and Lieb in [12] and using a constrained minimization method they showed the
existence of a least energy solution, i.e., a nontrivial solution with the minimal energy. Their
method using rescaling arguments does not apply with the L2-bounds.

Our aim is to provide a general class of nonlinearities and to find solutions to the nonlinear
Schrodinger problems

—Au; + Aju; = 3;G(u) inRN, N >3,
u; € H'(@RVY), foreveryi € {1,..., K} (1.3)
Ja lui? dx < p7

and
—Au; + Aju; = 8;Gu) inRN, N >3,
u; € H'(RV), foreveryi € {1,..., K}, (1.4)
e lui P dx = p}

@ Springer



Least energy solutions to a cooperative system of Schrodinger... Page 3 of 31 10

where p = (p1,..., pg) € (0,00)X is prescribed and (A, u) € RX x H'@®RV)X is the
unknown.
Let us introduce the sets

D:= {ueHl(]RN)K :/ Iuilzdxf,oizforeveryie{l,...,K}},
RN

S;Z{MGHI(RN)K :/ |ui|2dx:pi2f0reveryie{l,...,K}}
RN

and note that S C 9D.
We shall provide suitable assumptions under which the solutions to (1.3) (resp. (1.4)) are
critical points of the energy functional J: H'(RY)X — R defined as

J(u) = 1/ |Vu|2dx—/ Gu)dx
2 RN RN

restricted to the constraint D (resp. S) with Lagrange multipliers A; € R, i.e., they are critical
points of

K
1
H'®RYK 54 > J(u)+fZ)L,-/ lui|?dx € R
2o ey

for some A = (Aq, ..., Ax) € RX. Let us recall that, under mild assumptions on G, see

[12, Theorem 2.3], every critical point of the functional above belongs to Wli’cq RM)K forall
q < oo and satisfies the Pohozaev [10,22,31,33]

K
1
/RN |Vul? dx =2*/RN Gu) — E;Aimilzdx

and Nehari
K
Ve + Y jxif il dx = 0
X RN
i=1

identities. By a linear combination of the two equalities above it is easily checked that every
solution satisfies

N
M) ::/ [Vul>dx — —/ Hu)dx =0,
RN 2 RN

where H (1) = (g(u), u) —2G (u) ({-, -) is the scalar product in RX) and g := VG, see e.g.
[22]. Hence we introduce the constraint

M= {u e H'RY)K\ {0} : M) =o},

which contains all the nontrivial solutions to (1.3) or (1.4) and does not depend on A. Observe
that every nontrivial solution to (1.3) belongs to M N D and every (nontrivial) solution to
(1.4) belongs to M NS C M N D. By a ground state solution to (1.3) we mean a nontrivial
solution which minimizes J among all the nontrivial solutions. In particular, if (A, u) solves
(1.3)and J(#) = inf pnp J, then (X, u) is a ground state solution (cf. Theorems 1.1 and 1.2).
By a ground state solution to (1.4) we mean that (A, u) solves (1.4) and J(u) = inf pnp J
(cf. Theorems 1.2, 1.3, and Corollary 1.4). Note that this is more than just requiring J (1) =
inf Aqns J, which, on the other hand, appears as a more “natural” requirement.
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Working with the set D instead of the set S for a system of Schrodinger equations seems
to be new and has, among others, a specific advantage related to the sign of the Lagrange
multipliers A;. We begin by showing why this issue is important. First of all, from a physical
point of view there are situations, e.g. concerning the eigenvalues of equations describing
the behaviour of ideal gases, where the chemical potentials A; have to be positive, see e.g.
[27,32]. In addition, from a mathematical point of view the (strict) positivity of such Lagrange
multipliers often plays an important role in the strong convergence of minimizing sequences
in LZ(RY), see e.g. [6, Lemma 3.9]; finally, the nonnegativity is used in some of the proofs
below, e.g. the one of Lemma 2.11 (a). The aforementioned advantage is as follows: in [15],
Clarke proved that, in a minimization problem, Lagrange multipliers related to a constraint
given by inequalities have a sign, i.e., A; > 0; therefore it is enough to rule out the case
Ai; = 0 in order to prove that ; > 0 for every i € {1,..., K}; note that ruling out the
case A; = 0 is simpler than ruling out the case A; < 0, cf. the proof of Lemma 2.11 (b).
The nonnegativity/positivity of the Lagrange multipliers of (1.4) has often been obtained by
means of involved tools (or at the very minimum in a not-so-straightforward way), such as
stronger variants of Palais-Smale sequences in the spirit of [22] as in [6, Lemma 3.6, proof of
Theorem 1.1] or preliminary properties of the ground state energy map p +— inf pns J as
in [24, Lemma 2.1, proof of Lemma 4.5]. Our argument, based on [15], is simple, does not
seem to be exploited in the theory of normalized solutions, and is demonstrated in Proposition
A.1 in an abstract way for future applications, e.g. for different operators in the normalized
solutions setting like the fractional Laplacian [25,29].

A second, but not less important, advantage of considering the set D concerns the property
that the ground state energy in the Sobolev-critical case is below the ground state energy of
the limiting problem, cf. (1.9). More precisely, since in dimension N € {3, 4} the Aubin—
Talenti instantone is not L2-integrable, we need to truncate it by a cut-off function and then
project it into D; however, unless K = 1, we cannot ensure that such a projection lies on S,
hence the use of D is necessary for this argument. See the proof of Proposition 2.6 (ii) for
further details.

Recall that, when K = 1 and

1 4
Gu)=—lul’, 2<p<2" p#2xy:=2+—, (1.5)
)4 N
(1.4) is equivalent to the corresponding problem with fixed A > 0 (and without the L2-
bound) via a scaling-type argument. This approach fails in the case of nonhomogeneous
nonlinearities or when K > 2. In the LZ2-subcritical case, i.e., when G(u) ~ |ul? with
2 < p < 2y, one can obtain the existence of a global minimizer by minimizing directly on
8, cf. [28,39]. In the L2-critical (p = 2y) and the Lz-supercritical and Sobolev-subcritical
2y <p<2*¥:= %) cases this method does not work; in particular, if p > 2y in (1.5),
then infs J = —oo. The purpose of this work is to find general growth conditions on G in
the spirit of Berestycki, Lions [10] and Brezis, Lieb [12] as well as involving the Sobolev
critical terms, and to provide a direct approach to obtain ground state solutions to (1.3), (1.4),
and similar elliptic problems. The problem (1.4) for one equation was studied by Jeanjean
[22] and by Bartsch and Soave [7,8] with a general nonlinear term satisfying the following
condition of Ambrosetti-Rabinowitz type: there exist % <a <b < 2" —2such that

0<aGu) < Hu) <bG(u) foru € R\ {0}. (1.6)

In [22] the author used a mountain pass argument, while in [7,8] a mini-max approach in M
based on the o -homotopy stable family of compact subsets of M and the Ghoussoub minimax
principle [20] were adopted. The same topological principle has been recently applied to the
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system (1.4) with particular power-like nonlinearities, e.g. in [5-8], and by Jeanjean and Lu
[23] for K = 1 and a general nonlinearity without (1.6), but with L?-supercritical growth.

We stress that the lack of compactness of the embedding Hrlad RNy ¢ L2(RY) causes
troubles in the analysis of L2-supercritical problems and makes the argument quite involved,
see e.g. [7,8,22]. A possible strategy to recover the compactness of Palais-Smale sequences,
at least when K = 1, is to show that the ground state energy map is nonincreasing with
respect to p > 0 and decreasing in a subinterval of (0, 00), see e.g. [9,23].

In our approach we do not work in Hrlad, with Palais-Smale sequences, or with (1.6), nor
the monotonicity of the ground state energy map is required, so that we avoid the mini-max
approach in M involving a technical topological argument based on [20], which has been
recently intensively exploited by many authors e.g. in [5-8,23-25,29,35,36].

In particular, we work with a weaker version of (1.6), see the condition (A5) below, and
we admit L2-critical growth at 0. We make use of a minimizing sequence of J | p4np and we
are able to consider a wide class of nonlinearities G. In the first part of this work, we adapt
the techniques of [11] to the system (1.3) and the Sobolev-critical case, which ensure that
the minimum of J on M N D is attained. If G is even, we exploit the Schwarz rearrangement
u* = (uj,...,uy) of (Juil, ..., lug|) because, if u € M N D, then u* can be projected
onto the same set without increasing the energy. Next, we point out that dealing with systems
(1.3) and (1.4) one has to involve more tools in order to find a ground state u € M N 3D
and some additional restrictions imposed on G, N, or K will be required. In particular, if
we want to ensure that the Lagrange multipliers are positive and u € S, we use the elliptic
regularity results contained in [10,12], the Liouville type result [21], and Proposition A.1.
Finally, a multi-dimensional version of the strict monotonicity of the ground state energy
map is simply obtained in Proposition 2.14 as a consequence of our approach.

For 2 < p < 2% let Cy , > O be the optimal constant in the Gagliardo-Nirenberg
inequality

lulp < Cn VUl luly ™ foru e H'(RY), (1.7)

where §, = N(% — %) and §,p > 2 (resp. §,p = 2,8,p < 2)if and only if p > 2y
(resp. p = 2, p < 2x). Here and in what follows we denote by |u|¢ the L¥-norm of u,
1 <k <oo.

We assume there exists 6 € (0, c0)X or = 0 such that G is of the form

K
~ 1 -
G =G + 5 > 0jlujl
j=1

for some G: RK — RN Wesetg = VG, Hu) = (), u) —2Gw),h = VH,h := VH,
and consider the following assumptions:

(A0) g and T are COBtiHUOUS and there exists ¢ > 0 such that Iﬁ(u)| < &(lul + |u|2*—1).
. G(u)
(A1) 5 :=limsup
u—0 |”|2N - ~
G G
(A2) If 6 = 0, then lim () = 00; if 6 € (0, 00)X, then lim inf () -0
|u|—o00 |u|2N ] 00 |u|2N

(A3) lim 6w _

lul =00 [u]?*

(A4) 2xH(u) < (h(u), u).
(A5) %5 <H < (2*-2)G.
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G
Of course, hm T |(Z ) = o0 if (A2) holds and G, H satisfy (A1) —resp. (A4), (AS) —if so

do 5, H. Note that (AS5) implies 5, H > 0. Note also that J and M are of class C' if (A0)
and (AS) are satisfied. For every u € H' (RM)YX such that IJRN H(u)dx > 0 we define

N H(u)dx
R:=R, = 7&@] ®)
2 [on |Vu|?>dx
and note that u(R-) € M.

Observe that in view of (A2) and (AS), G(u) > a(u) > 0and H(u) > ﬁ(u) > 0 for
u # 0. Indeed, take any v € RX such that |v| = 1 and note that (A5) implies that

GCi* = G@v) > G ifr > 1,

GW*N = G(rv) = Gr? if0<r<1.
Since (A2) holds, we get é(tv) > 0 for sufficiently large + > 0, hence taking into account
the above inequalities we obtain that G (tv) > 0 for all # > 0 and we conclude. In particular,

M # @. Moreover, M is a C'-manifold, since M’ (u) # 0 for u € M, cf. [33]. As a matter
of fact, if M'(u) = 0, then u solves —Au = %h(u) and satisfies the PohoZaev identity

S IVul*dx = 2*% Jrn H (@) dx. If M(u) = 0, then we infer u = 0.
We introduce the following relation:

Let f1, fo: RK — R. Then f; < f» if and only if fi < f> and for every & > 0 there
exists u € RX, |u| < &, such that fi(u) < f>(u),

and for better outcomes we need the following stronger variant of (A4):
(A4, <)2xH(u) < (h(u), u)if 6 = 0.
Notice that (A4,=<) implies that 2y H () < (h(u), u).
From now on we assume the following condition
2y el < (1.8)
and the first main result concerning (1 .3) reads as follows.

Theorem 1.1 Suppose (A0)—(A5) and (1.8) hold and, if 6 € (0, o00)K,

K
. 1 1-N/2
Jnf J < NSNQZOZ. 2, (1.9)
i=1
(a) There exists u € M N D such that J(u) = inf pqqp J. In addition, u is a K -tuple of

radial, nonnegative and radially nonincreasing functions of class € provided that G is
of the form

Gu) = ZG (u; )+Zﬂ,ﬂ|u i, (1.10)

j=1 i=1

where L > 1,G;: R — [0, 00) iseven,r; j > lorr; j =0,8; > 0,2y < Zlel rij <
2%, and for every j there exists i1 # i> such thatr; j > landr;, ; > 1.

(b) If, moreover, (A4,<) holds, then there exists . = (A1, ....Ag) € [0, OO)K such that
(X, u) is a ground state solution to (1.3).
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As we shall see in Sect. 2, (1.9) is verified if N > Sorif N € {3, 4} and an additional
mild condition holds, see Proposition 2.6 (see also Lemma 2.7). We point out that part (b)
holds regardless of whether G is of the form (1.10) or not. If this is the case, then u has the
additional properties as in part (a).

Notice that (A1) allows G to have L2-critical growth G (1) ~ |u |2¥ at 0, but (A2) excludes
the same behaviour at infinity. Moreover, G consists of the Sobolev-subcritical partin view of
(A3). Finally, the pure L2-critical case for |u| small is ruled out by (A4,x),i.e.,G(u) = 5(u)
cannot be of the form (1.10) with G; (1) = ai|u|2N, o; > 0, and Z;K=1 ri,j = 2 for every
Jj.

Here and later on, when we say G is of the form (1.10), we also mean the additional
conditions on G;, B, and r; ; listed in Theorem 1.1 (a). Observe that G of the form (1.10)
satisfies (A4) if and only if G; satisfies the scalar variant of (A4) foralli € {1, ..., K}. If,
in addition, G; satisfies (A4,=<) for some i, then G satisfies (A4,<) as well.

More can be said if N € {3, 4}.

Theorem 1.2 Assume that (AO)—(A3), (A4,=), (AS), and (1.8) are satisfied, G is of the form
(1.10), N € {3, 4}, and (1.9) holds if 6 € (0, 00)X. Then there exist u € M N 3D of class
C2and A = (A1, ..., Ax) € [0,00)K such that (1, u) is a ground state solution to (1.3).
In addition, each u; is radial, nonnegative, and radially nonincreasing. Moreover, for every
iell,...,K}eitheru; = OOrfRN luj|® dx = /o[2 and, ifu; # 0, then A; > 0 and u; > 0.
In particular, ifu € S, then A € (0, 0o)K and (A, u) isa ground state solution to (1.4).

Note that the obtained ground state solution u belongs to 9D, i.e., at least one of the
L?-bounds must be the equality fRN lui|>dx = piz. In particular, ground states solutions can
be semitrivial.

If K =2, L =1, and the coefficient of the coupling term is large, then we find ground
state solutions to (1.4).

Theorem 1.3 Assume that (AQ)—(A3), (A4,<), (AS5), and (1.8) are satisfied, N € {3,4}, K =
2, L =1, and (1.9) holds if 6 € (0, 00). If G is of the form (1.10) and r1,1 + 12,1 > 2y, then
for every sufficiently large 1 > 0 there exists a ground state solution (x,u) € (0, 0)% x S
to (1.4). Moreover, each component of u is positive, radial, radially nonincreasing and of
class C2.

Observe that, if in Theorem 1.3 G;(¢t) = u;|t|?'/ p; for some u; > 0 and p; € 2y, 2%),
i € {1, 2}, then clearly n = 0 in (1.8) and this result was very recently obtained by Li and
Zou in [24, Theorem 1.3], again, unlike this paper, by means of the involved topological
argument due to Ghoussoub [20], cf. [5-8,23,25,29,35,36]. If n > O or 8 € (O, 00)K, the
result seems to be new and we obtain a ground state solution to (1.4) for sufficiently small
|p| in the former case, see (1.8), or under rather mild additional assumptions about G in
the latter, see Proposition 2.6. Furthermore, to our knowledge, this is the first result about
normalized solutions to a system of Schrodinger equations where the nonlinearity is rather
general, in particular not (entirely) of power-type, e.g.

Gi(ui) = %Iuil”" In(1 +lu;), pi€l2y,2" =11, w >0,i €{1,2}  (L.11)

]

as well as where the nonlinearity is the sum of power-type nonlinerites including the Sobolev
critical terms of the form
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N w
Giu) = 7ol + il

l

9‘ *
+2—;|ui|2 . pi €N, 2%), i v = 0, v > 0,0 € (1,2}, (1.12)

where n = W > 0. In view of Proposition 2.6 (ii), taking p = 2y or p = 2* we
easily check that (}i/. 11) and (1.12) satisfy (1.9) and we obtain a ground state solution to (1.4)
forany p; +v; > 0and 6; > 0,i = 1, 2. As for other possible examples of scalar functions
51, 62 we refer to (E1)—(E4) in [11]. See also example (2.5).

Moreover, if K = 1 and L = 0 (i.e., there is no coupling term), then we find ground state
solutions to the scalar problem (1.4) taking into account a general nonlinearity involving at
least L2-critical and at most Sobolev-critical growth.

Corollary 1.4 Assume that K = 1, (A0)—(A3), (A4,=<), (AS5), and (1.8) are satisfied, and (1.9)
holds if 0 € (0, 00). Assume as well that H < (2* — 2)G or that N € {3, 4} and G is even.
Then there exist u € M NS and ) € (0, 00) such that (A, u) is a ground state solution to
(1.4). If G is even, then u is radial, positive, radially decreasing, and of class €2.

Recently, Soave considered (1.12) with 8; = 0 in [35] and with §; > 0 but vi = 0 or
w1 = 0in [36], with, additionally, an upper bound on 1 > 0 if N > 5. In other recent
papers, Wei and Wu [43] considered (1.12) with 6; > 0, v; = 0, and no upper bound on w1,
while Alves, Ji, and Miyagaki [3] considered (1.12) with ; > 0, v = 0, and a lower bound
on . Corollary 1.4 generalizes the results from [3,36,43] both because no bound on
is needed (upper or lower) and because the Sobolev-subcritical term G can be L2-critical,
L2-supercritical, or even both, without the need of consisting of (sums of) power functions.
Of course, Corollary 1.4 also generalizes the results from [11,23], which do not deal with
the Sobolev-critical case.

F1nally, observe that conditions (A0)—(A5) and (A4,<) are pos1t1vely additive, 1 e., if G
and G’ satisfy the conditions with  and " in (A1) respectlvely anda, o’ > 0,thenaG+a'G’
+a'G’

o
satisfy the corresponding conditions with lim sup D
u

u—0

an+an.

2 The proof

Lemma2.1 Let fi, f> € C(RX) and assume there exists C > 0 such that | f1 )|+ f>w)| <
C(lul> + |u|2*)f0r everyu € RX. Then fi < f» ifand only if fi < f> and

/ Jiw) — foru)ydx <0

RN

for every u € H'(RM)X \ {0}.

Proof We argue similarly as in the case K = 1 provided in [11, Lemma 2.1]. O

We will always assume that (A0O) holds. Lemmas 2.2-2.5 are variants of the results con-
tained in [11,23] with some improvements and adapted to the system of equations.

Lemma 2.2 If(Al)—~(A3), (AS), and (1.8) hold, then inf{quI% ue MND}>0.
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Proof Recall that, if p € [2, 2*], then
||u||p = |ulp and |V|ul|, < |Vul, for every u € H'(RV)X

For every ¢ > 0 there exists ¢, > 0 such that for every u € M ND

N * *
Vul} = —/ Hu)dx < 2% (celul3: + (e + mlul3¥) = 2(celull3. + (e + m|lul[3)

2
<% (cch 2|Vl |} + (e + ) 2N|p|4/N\V|u|yz)

< 2*(c£CN S [ Vuly + (e + n)CN 2N|,0|4/N|Vu|%)

0 < 2% Ch e IVul3 + (2% (e + mCRY, 1oI*N = 1)|Vul3 (2.1)
Taking ¢ sufficiently small so that
2%+, oY <1
we conclude. ]
Foru € H'(RY)X \ {0} and s > 0 define sxu(x) := sV/2u(sx) and ¢(s) := J (su).

Lemma 2.3 Assume that (Al)—~(AS) hold and let u € H' (RN )X \ {0} such that

|Vul3

2.2)
2Jul3Y

n <
Then there exist a = a(u) > 0 and b = b(u) > a such that each s € |a, b] is a global
maximizer for ¢ and ¢ is increasing on (0, a) and decreasing on (b, 00). Moreover, sxu € M
ifand only if s € [a, b], M (sxu) > O if and only if s € (0, a), and M (sxu) < 0 if and only
if s > b. If (A4,=<) holds, then a = b.

Note that (1.8) implies (2.2) provided that u € D. Indeed, from (1.7)

4/N 4/N

2n|u|2N < 2nCN o [Vul3uly < |Vul3.

Proof Notice that from (A1)

2 G(sN/2
§0(S)=/ %qu|2—7(SN “) dx — 0
RN N

< 2CyY,, IVul3lpl

as s — 07 and from (A2) lim;_, o, ¢(s) = —o0. From (A1) and (A3) for every & > 0 there
exists ¢, > 0 such that

G) < (e +mul* + celul®,
therefore,

1 * *
o122 SIVUP = P dx) s [l dx > 0
RN 2 RN

for sufficiently small ¢ and s. It follows that there exists an interval [a, b] C (0, co) such that
¢l[a.b) = max ¢. Moreover

N H(sN/?y)
go/(s>=szN|w|2—5de

@ Springer



10  Page 10 0f 31 J. Mederski, J. Schino

and the function

H(sN?u)
SE(O,OO)P—)\/RNde

is nondecreasing (resp. increasing) due to (A4) (resp. (A4,=<) and Lemma 2.1) and tends to
oo as s — oo due to (A2) and (A5). There follows that ¢’(s) > 0if s € (0, a) and ¢'(s) < 0
if s > b and that a = b if (A4,<) holds. Finally, observe that

N H(sV/?u)

s’s:/ $2|Vul* —
@'(s) - [Vul 7N

dx = M(sxu).

Lemma 2.4 [f (Al)—~(AS) and (1.8) are verified, then J is coercive on M N D.
Proof First of all note that, if u € M, then due to (A5)
1 N
Ju)=JW) — M(@u) = f —H@u)—Gu)dx >0
2 RN 4
and so, a fortiori, J is nonnegative on M N D. Let (u™) C M N D such that |u™ || — oo,

i.e., lim, [Vu™|, = oo, and define

Sy = |Vu(")|2_] >0 and w™ = sxu™.

Note that s, — 0, |w;")|2 = |u§")|2 < pifori e{l,...,K},and |Vw(”)|% = 1, in particular

(w™) is bounded in H!(RM)K . Suppose by contradiction that

lim sup max / [w™ 2 dx > 0.
n yeRNV JB(y,1)

Then there exist (y™) ¢ RN and w € H'(RV)X such that, up to a subsequence, w4
y™)—w £ 0in H'(RY)X and w™ (- + y™) — w a.e. in RV, Thus, owing to (A2),

Tu™y 1 Gu™ 1
JJe 1 / GU™) =gy / G (u™ (sx)) dx
[Vu®|Z =2 Jgv [Vu®]3 2 RV

_N/2w(”))

I wve2 ~N/2, myy ] G (s
:E—Sn /I‘QNG(S,, U)n)ZE—R T'

w(n)|2N dx
N |Sn w(n)|2N

1 / G sy N Pw® (x + y™))
T2 Sy 5 NPy (x4 yyj

It follows that

lw™ (x + y™) 2V dx — —oo.

lim max / lw™P?dx =0
B(y,1)

n yERN
and so, from Lions” Lemma [28], w™ — 0 in L2¥ (RY)X . Since
s,fliw(") =u™ e M,

Lemma 2.3 yields

2
J@™y = J (s, sw™) = J(sxw™) = % —sN/ G(s"?w™ (s-)) dx
RN
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for every s > 0. Taking into account that
lim G(SN/Zw(") (s~)) dx =0,
n ]RN

we have that lim inf,, J (1) > s2/2 for every s > 0, i.e., lim, Ju™) = co. ]
Lemma 2.5 If (Al)—(AS) and (1.8) are verified, then ¢ := inf pynp J > 0.

Proof We prove that there exists & > 0 such that
|Vul3
[Vul <a = J(u) > aN (2.3)

From (1.7) and (1.8), for every ¢ > 0 there exists ¢, > 0 such that

* * 2
/RN Gy dx < coC e Vuld + (6 + mC2, o[V |Vul2

. \ 11
— 2
< (csc,%,z*|vM|§ 2eCyy ol + 3 N) [Vul3.

Choosing
1 1

£ = ZN— and o = — 71—
ANCY,, 1pIYN (4Nc:CY )T

we obtain, provided |Vu|r < «,

11
Guydx < (= —=— ) |Vul3
fRN @) x—<2 2N)| ulz
|Vul3

N Now take u € M N D and o > 0 such that (2.3) holds and define

and so J (u) >

s = and w 1= s*xu.
[Vulz
Clearly |wil» = |ui|a < p; fori € {1,..., K} and |Vw|, = «, whence in view of Lemma
2.3
1) = J(w) > Vw}  o? .
—_— = — > V.
W=TW=TN TN

From now on, ¢ > 0 will stand for the infimum of J over M N D.
Proposition 2.6 Assume that 6 € (0, 00)X and that (A1)~(A5), (1.8), and (at least) one of
the following conditions hold:

(i) N>5;
(i) there exist2y < p <2*and2y < q < 2* such that

G
timinf S 2 0 and timint $%
lu|—0  |u] lu|—>o00 |ul4

>0 24

and max{p, g}/2 —min{p, q} < —1if N = 3.
Then (1.9) holds.
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10 Page 12 0f 31 J. Mederski, J. Schino

Recall that, from (A2), the second condition in (2.4) always holds with ¢ = 2. Notice
that the restriction on the relation between p, g is always satisfied if p = g.

Proof. Define u(l) as the Aubin-Talenti instanton [4,40]
N-2
1 VN(N —=2)\ ?
uo(x) = —
14+ |x|

and, for ¢ > 0,

R A (L

82+|x|2

Recall that, for every & > 0, [Vuglz = |Vu(1)|2, luglor = |u(1)|2*, and u{ is a minimizer for

S::inf{/ |Vv|2dx:veDl’2(RN),/ |v|2*dx:1}.
RN RN

(i) Forevery e > Oand j € {1, ..., K} define 128,. = 9;27N)/4uf). Since ug, € L2(RN) for
every ¢ > 0 and |ufl, — Oase — 0%, we have i := (s, ..., u%) € D for sufficiently
small . Moreover, in view of Lemma B.1, u¢ is such that

2/N
&2 2 K
[Vie|5 [Vuly

. gl-N/2

= inf Z S.
2/2* 1.2(RN VK

K — * DL2(R 0 K

<Zj=1 0}_'“5'%*) ueDL2(RN)K\ (0} (Zj:l 9j|uj|% ) j=1

Recall that 5(14) > 0 for u # 0 and then, taking ¢ sufficiently small,

¢ < J(sexit?) < _/RN a(sg*ﬁs)dx—i-lzlaéif/R Vi |>dx — —ZO / 2 dx
§2
<I§138<3/R IVuIdx——ZQ/ 2 dx
_1 v |y _ygt-vpeSY?
N(Zj‘(:l@ﬂﬁﬂ%:)wz_l = J N

(ii) If N > 5, then the statement follows form (i), therefore we can assume N € {3, 4}.
Since u) ¢ L*(RV), 1let 0 < ¢ € C°(RY) radial such that ¢ = 1in By and ¢ = 0 in
RN \ By, where B, stands for the closed ball centred at O of radius r. For every ¢ > 0 define

p & &€
|u£|2(u1,...,u,() e D,

2-N
& _ 4 & & .__
uj = Qj dug and v° =
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where p := minje(i,... k) pj, and recall (cf., e.g., [38, p. 179], [36, Lemma A.1]) that

.....

IV(gup)lz = S¥2 + 0"

Gt = |SHOEY N =4
012 SY2 4 0@?) ifN=3
Ul Cse?|lne|+ O(?) if N =4
u =
27 Ve + 0(?) ifN =3,

where Cy > 0 depends only on N and ¢. Note that

f 19l Kigugzny dx = CeV MDY
R

for some constant C > 0 and sufficiently small ¢ > 0, where r € {p, g} and x4 stands for
the characteristic function of A. Indeed, let |x|?> < e/N(N —2) — e2. If ¢ is sufficiently
small, then x € B; and, consequently, qﬁ(x)uf)(x) = ug(x) > 1, whence

[pug]” Xigus =1 dXZ/ lugl” dx
/]RN 0F Mpup=1l [i1=(evmm=-2)"2)

_en-ove | s
{ivi=(vFt=2y7e-1)'"?}

and we conclude, since u(l) e L"(RN). Define s, > 0 such that s, % v¢ € M. In a similar way
to the proof of Lemma 2.2, for every § > 0 there exists Cs > 0 not depending on ¢ such that

K

1 2 *__ * 2

5 1VU 3 = 0+ By + Cos? 72 Y 0510515 = (7 + 8T, 1oV VU3
j=1

K

2%-2 £2*

+ Cos? 2 0,155
j=1

1/2*
(note that u +— (Zle 9j|uj|%i) is an equivalent norm in L% RNy, ie., taking §

sufficiently small and denoting m := (1/2* — (n + 5)c,2v72N lp|*¥N)/Cs > 0,

2 2 2%-2
-2 m|vvs|2 o po¥ |v(¢”(g))|2|“£|2

& — K P 2%
ST g3

In a similar way to point (i),

~ 1 |V Y
c<-— G(sgxv°)dx + — N/ T
RN K *
(Zhi51013)
There holds
_ 2K p1-N/2 K o 2K pl=N/2
Vo2 — 14 |V(¢u8)|2 Zj:l 9j d 0. 1v 2 14 |¢u8|2* Zj:l 9,’
Ve |3 = = and Y 0;[vfl5. = — :
lu |2 =1 lu |2
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thus, denoting k = 2 (resp. k = 4) if N = 3 (resp. N = 4),

K
|Vve|) 1-N )2 (W(dmgnz)N
>l ! |pug 2

AN/
(Z;{:I 0; |U§|%*> =

[
—_

N/2

9!7N/2 ( SN/2 4 O(SN_2)>

J S(N—Z)/Z + 0(8/‘)

Il
M =

1

~.
Il

0, V(s + 0N 2)N?

Il
M =

~.
Il

9}*N/ZSN/2+ 0N 72).

Il
M =

~.
Il

Now we estimate fRN a(sg*vg) dx as ¢ — 07. From (2.4) and the fact, due to (A2) and
(AS), that GLu) > 0if u # 0, we deduce there exists C > 0 such that G(u) > Clu|? if
lul < 1and G(u) > Clu|? if |u| > 1.

~ N(p/2-1) ep
AN G(SE*U )d-x > ng \/]RN |U | X{|S£V/2US\§1} d'x
N(g/2—-1) €19
+CS8 AN |U | X{|S;V/2U€‘>1}dx
1o e N(p/2=D)—p £\p
Z C |¢M0|2 /RN |¢M0| X{lJéV/ZUp‘Sl} d'x

N(gq/2—1)—
+C'lpug)y Y "/RN |Pugl? Xy /2 e o 1y A%

N/2—-1)p—N
> Cllpugly > fR o 128017 Xy 72 e <) Xigugz1) 4%

N/2-1)g—N
+C/|¢”8|; b /RN |¢“(£)|qX{|x§’/2Uq>1}X{¢>u821}dx

(N/2=1)p—N

> C' min {|¢u(g)|2 (N/2—1)q—N}

 lpugls

/RN |l ™™ P9 ¥ gz 1) dx

> C//|¢u8|;/\’/2—])maX{qu}—NgN—(N/Z—l)min{p,q}

ase — 07 because (N/2—1)r —N < 0,r € {p, q}, where C’, C"” > 0 are constants. There
follows that

K N/2
1-N/2S _ N/2-1 =N N—(N/2—1) mi
CEE 0, /T+O(8N 2)—C”|¢u8|(2 /2=1ymax{p.q}=N .N—(N/2—1)min{p,q}
j=1

If N = 3, then

g3—min{p,q}/2

|¢us|(N/2—1)max{p,q}—NgN—(N/z—l)min{p,q} _
012 (Cze)3/2—maxip.ql/4 1 O (g3-max{p.q}/2)

> CgGtmax{p.q}/2—min{p.q})/2
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and 0 < 3 + max{p, ¢}/2 —min{p, q})/2 <1 =N —2.If N =4, then
g4—min{p.q}

( /C4| Ine| 8)4—max{p,q} + 0(84—max{p,q})

Celr—4l [In E|maX{P,q}/2*2

|¢u8|gN/271) maX{Paq}*NSN—(N/Z—]) min{p,q}

%

and |[p —¢q| <2 =N -2, max{p,q} —4 < 0,and |p — g| > 0 or max{p,q} —4 < 0.
Either way, O(eV~2) — C”|¢u8|;N/271)max{p’q}fNeN_(N/z_])mi““”q} < 0 for sufficiently
small ¢ and

K =N/ SN/
N
=1
o

Since there exist nonlinearities that do not satisfy the assumptions of Proposition 2.6 (ii),
we provide other sufficient conditions for (1.9) to hold.

Lemma 2.7 Assume that (A])—(f\5) are satisfied and 6 € (0, o0)K.
@IfK =1,n=0, and lin%) G(u)/lul2 = 09, then there exists pg > 0 such that (1.9) is
u—

satisfied provided that p > po._
(b) If (1.8) holds and | llim G(u)/|u|2"’ = 00, then there exists 6y > 0 such that (1.9) is
u|—oo

satisfied provided that 6; < 6y for somei € {1, ..., K}.

Proof (a) We prove that c — 0 as p — oo (note that (1.8) is satisfied for every p > 0
because n = 0). Let p, — oo and take u € L®(RN) such that |u], = 1. Without loss
of generality we may assume that p, > 1 and define u, := p,u so that |u,|» = p,. From
Lemma 2.3 there exists s, > 0 such that v,, := s,I,v/zun (s,-) € M. Moreover, |v,|2 = |uy|2,

hence
1 1

0 <inf{J(v):veM, vy < pa} < J(vy) < 7/ |V, |? dx = f(sn,on)zf |Vu|? dx,
2 RN 2 RN

so it is enough to show that s, 0, — 0. Note that

N N _
Guo? [ 1vupax = [ ivuPar=3 [ Hean= T [ HG g ax
R R R R

and

N/2
N N H(s
|Vu|2dx = —S7N72p72 H(s,iv/zpnu) dx = —p;‘/N 7( n_Pnlt) |u|2N dx.
n n 2
RN 2 RN 2 RN | NJ2 N
Sp ' pput

There follows that

N/2
H(s u
lim/ (”7'0”2)””21\/ dx =0,
n RN N/2 N

S pau

whence s,l,v/zpn — 0. Fix ¢ > 0. From (A5) and the fact that lim,;_, G(t)/ltlz* = o0, there
follows that

H(s) > iG(s) > e s
=5 >

@ Springer



10  Page 16 of 31 J. Mederski, J. Schino

for sufficiently small |s|. Then, taking into account that u € L>(R"), for sufficiently large
n

1 N 1
/ |Vu| dx— — _N 2 / H(s p,%u)dx zs_l—sn_N_z— N/2
RN 2 pn

2*
2*
Pn |u |2*

N 4
=¢€ li(snpn)’vfz |u|%*

and s, 0, — 0 as n — oo, which completes the proof.
(b) Take any ug € D \ {0} and note that (2.2) holds. In view of Lemma 2.3 there exists
so > 0 such that soxug € M and

G(sN/?
(s uo)dx

2
s
c < J(so*xug) < max J(sxup) < max — |Vu()|2 dx — ~
>0 s>0 2 JgwN

RN N
Observe that the latter expression is finite due to Lemma 2.3 with & = 0. Hence we can take
6o > 0 so small that, if 8; < 6p, then Z/ 191 N/ZSN/Z/N > Oil_N/zSNﬂ/N is greater
than the right-hand side of the formula above. |

We give explicit examples of nonlinearities that do not satisfy the assumptions of Proposi-
tion 2.6. Let N = 3 and ¢ > 0 be sufficiently small. If §(x) = g1 () = min{|u|*~%, |u|*/3}u
and if & = 61 is not sufficiently small, then we can use Lemma 2.7 (a) provided that p = p;
is sufficiently large, but not part (b). If G is of the form (1.10) and

i (u) = min{lul*, [u|**¢}u 2.5)

and if K = 2 or p is not sufficiently large, then we can use Lemma 2.7 (b) provided that 6;
is sufficiently small for some i € {1..., K}, but not part (a).

In view of Lemma 2.4, any minimizing sequence u™) ¢ M N D such that J(u™) —
¢ > 0 is bounded. By the standard concentration-compactness argument [28], 1™ —j for
some & # 0 up to a subsequence and up to translations. It is not clear, however, if J (i1) = ¢
or i € M N D. Note that we can find R > 0 such that #(R-) € M and in order to ensure
that J (1) = c and u € D we need to know that R > 1. The latter crucial condition requires
the profile decomposition analysis of («) provided by the following lemma.

Lemma2.8 Let (u™) ¢ HYRM)X be bounded. Then there exist sequences (zl(i))j'io C
H'®RY)X and (y©m)2, ¢ RN such that y O™ = 0, lim, [y — yUD| = 0ifi # j,
and for every i > 0 and every F: RN — R of class C' such that

F(u) . Fu)
i = lim - =0
u—0 |u|2 |u|—o00 |u|2
there holds (up to a subsequence)
u™ (4 yEmy ~ G® s - oo (2.6)

1
nm/ IVu® (2 dx = Z/ |V12(j)|2dx+lim/ (Vvo@2dx  (2.7)
n RN j=0 RN n RN

o0
lim sup / Fu™ydx =) / F@i®)dx, (2.8)
n RN = RN
where v (x) := 1 (x) = Y _o @) (x — yUm).
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Proof We argue similarly as in the case K = 1 provided in [31, Theorem 1.4]. O

Lemma 2.9 If (Al)—(A5) and (1.8) hold and either 8 = 0 or 6 € (0, 00)X and (1.9) is
satisfied, then c is attained.

Proof Let (u™) c MND suchthatlim, J (™) = c. Then (u™) is bounded due to Lemma
2.4 and, in view of Lemma 2.8, we find (@), ¢ H'(RV)X and (s "))"OO c R¥ such
that (2.6)—(2.8) hold. Let I := {i > 0 : D £ 0}.

Suppose that 6 € (0, 00)X and (1.9) is satisfied.

Claim 1. I # . By contradiction suppose that &) = 0 for every i > 0. Then

K
N N ~ .
/ (VU2 dy = 7/ Hu™)dx = 7/ H(u<n))dx+29j/ WP d
HRN 2 HRN 2 HQN j::l H{N J

Observe that (A1), (A3), and (AS) imply that

Hw _ . Hw _
B

u=0 |u|? oo |u

and
K
2 (n) 2+
o(1) +/RN IVu™? dx = Zlej /RN "> dx. (2.9)
j:

o - K 1-Nj2\2/N :
For the sake of simplicity, let us denote S := (Z j=1 0 ; ) S, cf. “Appendix B”. Then

B . 2*/2
o(1)+/ IVu® P dx < 57212 (/ |vu<">|2dx> .
RN RN

Passing to a subsequence we set v := lim, fRN [Vu™ |2 dx > 0 from Lemma 2.2 and we

get V2 (N=2) > SN/(N=2) Thep
1 1 -
¢ =lim J (™) = lim J(u™y — M(u<">) =—v>_—_8§N2, (2.10)
N N
so we obtain a contradiction and I # .
Claim 2. For every i € I there holds u®™ (- + y@m)y — 7@ in DLZ(RN)K or
Jpn IVaD2dx < & [on H(i@D)dx. Suppose that there exists i € I such that v :=

lim,, [y Vv |2 dx > 0 (passing to a subsequence) and the reverse inequality holds, where
v = W (. 4 y@Emy _ 5@ By Vitali’s convergence theorem

/ (H(u<">)—H(u(”>))dx:// H(u(”) sty ds dx
RN
:/ /h(u(”)—sﬁ(i))ﬂ(i)dsdx
RN JO
1
_>// h@? —si)i® dx ds
RN

/ / H(u(’) sitDyds dx
HRN

= / H@D)dx
H{N
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as n — 0o. Again, passing to a subsequence,

. N .
/ Vo™ % dx +/ Vi) 12 dx = —(/ Hw™)dx +/ H(ﬁ(’))dx) +o(1)
RN RN 2 RN RN

and, since [y IViaD|2 dx > % I H (i) dx, we obtain
N
f Vo2 dx < 7/ Hw™)dx + o(1) 2.11)
RN 2 RN

and define R,, > 0 such that v™(R,-) € M. We want to prove that R, — 1. If

N
— | H@™)dx </ Vo™ dx
2 RN RN

holds for a.e. n, then from (2.11) and the fact that v > 0 we get R, — 1. If, passing to a
subsequence,

N
Vo dx < = | H@™)dx
RN 2 JrN

holds, then we infer R, > 1. Note that lim, [u™|3 — [v™ |3 = [#)|3 > 0, hence v € D
and v (R,-) € M N D for a.e. n. Hence the Brezis—Lieb Lemma yields

c < J(™(Ry)) = J(V(R,)) — %M(v(”)(Rn-)) dx
1
RY Jax

gH(v(”)) —~Gw"™)ydx
(2.12)

IA

/ Y H®) - 6™)dx < / N Hu™) = Gu®)dx + o(1)
RN 4 RN 4

1
= J ") = SM@™) +o() = J@™) +o(1) = ¢+ o(1),

which implies that R, — 1 as claimed. Therefore we have that

K
N .
f Vo™ 2 dx :o(1)+—/ H@™)dx = o(1) + ) 9_,/ " dx
RN 2 JrN o RN

(2.13)

and as in Claim I we get v*/(N=2 > §N/N=2) Since J (™) — J (™) = J@?) + o(1)
and J(@?) > fon YH@D) — G@")dx > 0, we have

K
. ; 1 1 *
— 1 ;@) my — g ® oy ; . (n))2
c—lllgnl(u )+ J) =J@ )+2v 2*11,?1 .EIQJ/]RNlUj [© dx
J:

> L1y iSN/Z, (2.14)
- N TN
a contradiction.

Conclusion. Let i € I and, for simplicity, let us denote ) =: &. If fRN IVi|>dx <
% fRN H (1) dx, then there exists R > 1 such that #(R-) € M, whence i(R-) € D. Hence
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Fatou’s Lemma yields

1

1
c < J(a(R)) =J(aR)) - 5M(ft(m) dx = o

N -
—Hu) — G(u)dx
RN 4
L N oo (n) L wy _ Loy m 2.15
<liminf | —Hwu™) - Gw"™)dx = liminf J(u™) — = Mu™) (2.15)
n ]RN4 n 2

= liminf J (™) = c,
n

which is a contradiction. Therefore 1 (- 4+ y@-®) — i in D2 (RN )X (which, together with
(2.7), implies that I is a singleton) and, consequently, in L (RMYX  Moreover, in virtue of
the Brezis—Lieb lemma, f]RN H (u(") Ydx — fRN H (i) dx because, from the interpolation
inequality,

/RN Hu™ —i)ydx < C(lu™ — ﬁ|§g + ™ — i)

< C(lu™ — a3 u® — a3 ™ — a3 - 0

2;:_2%" . Hence u € M N D, and, arguing as before but with R = 1,

forsome C > Oandt =
J@w) =c.

Now we consider the case & = 0 and in a similar way we prove Claim 1 and Claim 2 by
getting a contradiction in (2.9) and (2.13). Finally note that arguments of Conclusion apply

in the case 6 = 0 as well. ]

For f: RV — R measurable we denote by f* the Schwarz rearrangement of | f|. Like-
wise, if A ¢ RY is measurable, we denote by A* the Schwarz rearrangement of A [10,26].

Lemma 2.10 Assume that (Al)—(AS) and (1.8) are verified, G is of the form (1.10), and either
6 =00r6 e (0,00)X and (1.9) holds. Then c is attained by a K -tuple of radial, nonnegative
and radially nonincreasing functions.

Proof Letu € MND suchthat J(it) = c be given by Lemma 2.9. Forevery j € {1, ..., K}
let u j be the Schwarz rearrangement of it ;| and denote u := (u1, ..., ug). Leta = a(u) be
determined by Lemma 2.3. In view of the properties of the Schwarz rearrangement [10,26],
we obtain

M(1xu) = M(u) < M(it) =0,

therefore in view of Lemma 2.3 we have that ¢ < 1 and, consequently, M (axit) > 0. Let
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Then

c < J(axu) = J(axu) — éM(a*u)

= J(axit) — éM(a*z]) < J(axu) < J@) =c,
ie., J(axu) = c. m|

Lemma 2.11 (a) Assume that (Al)—(A3), (A4,<), (AS), and (1.8) hold and let u € M ND
such that J (u) = c and u; is radial for everyi € {1, ..., K}. Then u is of class C>.

(b) If, in addition, N € {3,4}, G is of the form (1.10), and u; is nonnegative for every
i €{l,...,K}, thenu € 3D. Moreover, for everyi € {1, ..., K}, either |u;j|» = p;j or
u; = 0.

< m = K,
Yi(v) = M@),n=1,veH=H'RY)X. Then there exist (A1, ..., Ag) € [0, 00)X and
o € R such that

Proof (a) In Proposition A.1 we set f = J, ¢;(v) = |v,-|% - piz, 1 <i <

N
— (I =20)Au; +Aju; = 90;G(u) — azaiH(u) (2.16)
foreveryi € {1,..., K} and u satisfies the Nehari identity
K N
(1—20)/ |Vu|2dx+Z/ Ailuilzdx—i-/ o—(h(u),u)—{gu),u)dx=0. (2.17)
RN = Jr¥ RN 2
If o = 1, then (A4,<), (A5), and (2.17) yield
N N
0> / —(h(u),u) — (g(u),u)dx = / —(h(u),u) — H(u) —2G(u)dx
RN 4 RN 4
N
> / —Hw) —2G(u)dx =0,
RN 2
a contradiction. Hence o # % and u satisfies also the Pohozaev identity
N N
(1 —20) |Vu| dx+ Z l,|u,| dx +2 U—H(u) Gu)dx =0.
RN
(2.18)
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Combining (2.17) and (2.18) we obtain
5 N 1
(1—-20) [Vul~dx + — 0N<f(h(u),u)—H(u)>—H(u)dx:O
RN 2 RN 2
and, using the fact that u € M,
1
(1 — 20)/ H(u)dx —I—/ 0N<f(h(u), u)y — H(u)) — Hu)dx =0,
RN RN 2
that is
a/ (h(u),u) —2NyH@)dx =0,
RN

which together with (A4,<) yields o = 0. In view of [12, Theorem 2.3], u € W24 (RV)K
for all ¢ < oo, hence u € Cllo’f (RM)X for all @ < 1. Then, arguing as in the proof of [10,
Lemma 1], we have that u is of class C2.

(b) First we show that u € 9D. Suppose by contradiction that |u;|> < p; for every i. Then

A1 =---=Ag = 0and from (2.17) and (2.18) (with o = 0 as in proof of (a)) there follows
/ (g(w), u) —2*G(u)dx = 0. (2.19)
RN
In view of (A5)
2°G(u(x)) = (g(u(x)), u(x)) (2.20)

for every x € R¥. Since G; satisfies (A5), we get 2°Gi(u; (x)) > gi(ui(x))u;(x) for all
i €{l,..., K} and note that

L K L K K
2N B [ [l = > 8 Y ray [ I,
j=1 =l 1 i=1

j=1 k=

since Zf: | Tk,j < 2*. Hence, from (2.20), the inequalities above are actually equalities.
On the other hand, for every j € {1,...,L}, Zlel rij < 2*, which yields Bj = 0or
]_[,-Kzl luj (x)|"ii = 0 for every x € R¥, so that the coupling term is zero and thus

2%Gi(ui (%)) = gi(ui (x))u;(x)

foreveryi € {1,..., K} and every x € RN,

Now fixi € {1, ..., K} such that u; # 0. Since u; € H'(RV) N C2, there exists an open
interval I C R such that 0 € I and 2*G;(s) = gi(s)s for s € 1. Then G;(s) = 6;|s|* /2*
for s € I and u; solves —Au; = 0;|u; |2*’2ul~. Hence, since u; > 0, u; is an Aubin-Talenti
instanton, up to scaling and translations, which is not L?-integrable because N € {3, 4}.
Therefore u € 9D.

Now we prove the second part and suppose that there exists v € {1,..., K — 1} such
that, up to changing the order, |u;|» < p; foreveryi € {1,..., v} and |u;|» = p; for every
i e{v+1,..., K} From Proposition A.l there exist 0 = A = -+ = A, < Ap41,..., A

and o € R such that

{—(1 —20)Au; = 30;G(u) —G%aiH(u) foreveryi € {1,...,v} 221)

—(1 —=20)Au; + riu; = 0;G(u) — U%BiH(u) foreveryi e {v+1,..., K}
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and as before we obtain o = 0. Since G; satisfies the scalar variant of (A5), (0, o0) > 5 >
Gi(s)/ 2V e Ris nondecreasing, hence G; is nondecreasing as well for all i. Then, the first
v equations in (2.21) with & = 0 yield —Au; > Ofori € {1, ..., v}. Sinceu € L¥2 (RN )K
as N € {3,4}, u is of class C2%, and u; > 0, [21, Lemma A.2] implies u; = 0 for every
i €{l,...,v}. Notice that we have proved that A; = 0 implies that u; = 0. O

Remark 2.12 We point out that in addition to the assumptions of Lemma 2.11, i.e., (Al)—
(A3), (A4,<), (AS5),and (1.8) hold, u € M ND, and J(u) = ¢, we can show that u € 0D for
any dimension N > 3 and without the assumption that G is of the form (1.10) provided that
H < (2* — 2)G holds. Indeed, observe that (2.19) contradicts H < (2* — 2)G and Lemma
2.1.

Proof of Theorem 1.1 Statement (a) follows from Lemmas 2.9 and 2.10. From Lemma 2.11
(a), u is of class C2, while from Proposition A.1 there exist (A1,..., g) € [0, 00)X and
o € R such that (2.16) holds and o = 0 as in the proof of Lemma 2.11 (a). m|

Proof of Theorem 1.2 Tt follows from Lemma 2.11 (b), Theorem 1.1 (b), and the maximum
principle [18, Lemma IX.V.1] (the implication u#; # 0 = A; > 0 1is proved as in the proof of
Lemma 2.11 (b)). ]

Proof of Corollary 1.4 From Theorem 1.1, there exists u € MNDN CZ(RN) and A > 0 such
that J(u) = ¢ and (A, u) is a solution to (1.3). Observe that, from Lemma 2.10, we can
assume that u is radial, nonnegative (in fact, positive owing to the maximum principle and
because G is nondecreasing on (0, 00)), and radially nonincreasing provided that G is even.
Next, since N € {3,4} and G is even or H < (2* — 2)G, arguing as in the proof of Lemma
2.11 (b) — see also Remark 2.12 — we obtain that u € D = S and (X, u) is a solution to
(1.4). Since u satisfies the Nehari and the PohoZaev inequalities, we get

A2 / lul>dx = / 2*G(u) — g(u)u dx
N -2 RN RN
and, again arguing as in the proof of Lemma 2.11 (b) or Remark 2.12, we obtain f]RN 2*G(u)—
g(w)udx > 0, whence A > 0. Finally, suppose that G is even, so u is (in particular) positive
and radially nonincreasing. Note that u(x) — 0 as |x| — oo and that there exists 79 > 0
such that g(#) < At forevery t € [0, fo] and g(¢t) > At forevery t > fo. If u is constant in the
annulus A := {11 < |x| < 1o} forsome 7o > 71 > 0,then0 = —Au = g(u) — Au in A, thus
—Au < 0in Q := {|x| > 71} because u is radially nonincreasing and u(x) <ty if x € Q.
At the same time, u attains the maximum over Q at every point of A, which is impossible
because u|g is not constant. This proves that u is radially decreasing. |

Lemma 2.13 Suppose that K = 2, L = 1, and the assumptions in Lemma 2.11 (b) hold. If
r1.1 + 121 > 2y and By is sufficiently large, then u € S.

Proof Since L = 1, wedenote B1,r1,1,72,1 by B8, r1, 2 respectively. Suppose by contradiction
that u; = 0 or up = 0, say u; = 0, which implies that |u;]> = p>. We want to find a suitable
w € S such that

J(axw) < ¢ = J(0, uy), (2.22)

where a = a(w) is defined in Lemma 2.3 (note that a(w) = b(w) because (A4,<) holds),
which is impossible. First we show that ¢ does not depend on . Consider the functional

1
J*:veHl(RN)r—)/ —|Vv|? = Ga(v)dx € R
RN 2
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and the sets
D, :=:veH1(RN) :/ |v|2dx5p§},
RN
1N 2 N
M,y = {veH RY)\ {0} : / [v] dxz—/ Hz(v)dx}.
RN 2 RN

Observe that J (0, v) = J,(v) for v € H'(RY). Moreover (0, v) € D if and only if v € D,
and (0, v) € M if and only if v € M. In particular,
c=JO0,up) = Je(up) > inf J, =inf{J(0,v): (0,v) e MND} >c,
M ND,
i.e., ¢ = inf o, np, Jw, and the claim follows because Jy, D, and M, do not depend on f3.

In view of Corollary 1.4, there exists v € M, N 9D, such that

Ju@) = inf Jy=c= inf ..

M,.ND, M,NdD;
Note that v does not depend on 8. Define w = (wy, wp) = (ﬁ—;ﬁ, 17). From Lemma 2.3,
a = ag is implicitly defined by
N/2 N/2 N/2
. Gl (ay Pwiay *w) —2G1(ay*w))
]RN| w| r= E RN aN+2
B
NJ2 N/2 N/2
Gh(ay Pwy)ay Pwy — 2Ga(ay wy)
+ aN+2
B

+ B +72— 2)a2/(f1+f2—2)/2—2w;1 w;z dx

o N .
> B(r; —i—r2—2)algv(r"‘_r2 2/2 ZE/RN wi'wy? dx,

hence there exist C > 0 not depending on f such that

0 < pay "R < ¢ (2.23)
whence
lim ap = 0. (2.24)
p—00

Since agxw € M, we have from (A5)

N 2
J(agxw) = /]RN ZH(a,g*w) — Gagxw)dx < N 2 /RN G(agxw) dx

X

2 / Gi(ay*wn) + Gata "wa)
_N—2 RN N

p
2[3112](714'72_2)/2

N > wi'wy dx,
therefore (2.22) holds true for sufficiently large 8 owing to (A1), (2.23), and (2.24). ]
Proof of Theorem 1.3 It follows from Lemma 2.13 and Theorem 1.2. ]
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Now we investigate the behaviour of the ground state energy with respect to p. For
p=(p1,...,px) € (0,00)X we denote

D(p) := {u e H'([RM)K :/ lu;|? dx < p? foreveryi € {1,...,1(}}
RN

S(p) = :u € HI(RN)K : / |u,~|2dx = ,oi2 forevery i € {1, ...,K}}
RN
c(p) :=inf{J(u) : u € MND(p)}.
Proposition 2.14 Assume that (AO)—(AS) and (1.8) are satisfied.

() If0 =0, then c is continuous and lim,_, o+ c(p) = 00, where p — 0" means p; — 0T
foreveryi € {1,...,K}.

(i) Let 6 € (0,00)X and p € (0, 00)X . If (1.9) holds for every p’ € Hj.;](pj —&,p))
and some ¢ > 0, then c is continuous at p. If (1.9) holds for every p’ € (0, &)X and

K
. 1 1-N/2
& > 0, then lim = —g§N/? E 0.
some & > en Jm c(p’) N ' ;

i=1
(iii) Ifevery ground state solution to (1.3) belongs to S(p) (e.g. if the assumptions of Theorem
1.3 are satisfied), then c is decreasing in the following sense: if p, p' € (0, 00)X are
such that p; > p; foreveryi € {1,..., K}and p; > p}forsomej e{l,..., K}, then
c(p) < c(p)).

Proof Fix p € (0, 00)X and let p™ — p. We begin by proving the upper semicontinuity of

catp.Letw € M ND(p)suchthat J(w) = c(p), denote wi(") = pl.(")wi/pi, and consider

w® = (win), s wg’)) € D(p™). Due to Lemma 2.3, for every n there exists s, > 0 such
that s,+w™ € M. Note that

N/2, (n) ()
N H (s W1/P1s -+ Wk [/ PK
o ( n //ON 5 Pk /Px)) dx = / [Vw™ > dx — / [Vw|* dx.
2 Jrv sy RN RN

(2.25)

If lim sup,, s, = oo, then from (A2) and (AS5) the left-hand side of (2.25) tends to oo up
to a subsequence, which is a contradiction. If liminf, s, = 0, then from (A1), (A3), (AS)
and (1.8) and arguing as in Lemma 2.2 we obtain that the limit superior of the left-hand
side of (2.25) is less than |Vw|%, which is again a contradiction. There follows that, up to a
subsequence, s, — s for some s > 0 and sxw € M. In view of Lemma 2.3,

lim sup c(p(”)) < lim J (spxwy) = J(s*w) = J(w) = c(p).
n n

Now we prove the lower semicontinuity of ¢ at p. Let o™ — pandu™ € MND(p™) C
MNDQ2p) such that J ™) = c(p™) < ¢(p/2). In view of Lemma 2.4, (1) is bounded,
hence we can consider the sequences @9y and (yU@m) given by Lemma 2.8; note that
i e D. We consider the case 6 € (0, 00)X because the other one (i.e., & = 0) is similar
and simpler.

Claim: There exists i > 0 such that lim,, u™ (- + y@&") — 79 £ 0in D"2RN)X. The
proof is similar to that of Lemma 2.9, thus we focus only on the differences. If ") = 0 for
every i > 0, then as in (2.10) we obtain the contradiction

SN2 SN/2
N T =& px —e) = lim supc(p™) = lim sup J (u™) > — - 220
n n
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Leti > Osuchthat i) # 0 and define v™ := ™ (- +y@M)y — GO Ifliminf, [Vv®™], > 0
and |Vﬁ(’)|% > % f]RN H(ﬁ(”)) dx, then we prove that R, — 1, where R, > 0 is such that
v (R,-) € M. In particular, if up to a subsequence R, > 1, then as in (2.12) we get

1 N N
0 <cp) <c(p™) < = / THO™) — ™) dx < / THE") = Go™)dx
R, Jrnv 4 RN 4

< c(p™) + o(1).

Next, as in (2.14) we obtain again the contradiction (2.26), which proves that v® — 0in
DLLRN)K (up to a subsequence) or |Vﬁ(l)|% < % fRN H@™) dx. In the latter case, we
define R > 1 such that i (R-) € M as in (2.15) we get the contradiction

c(p) = J (@ (R)) < limsupc(p™) < c(p),
n
where the last inequality is due to the upper semicontinuity. This proves the Claim, which
yields, together with the interpolation inequality, that #) € M N D and so
c(p) < J@D) =1lim J (u™) = limc(p™).
n n
Now we prove the behaviour of ¢(p’) as p” — 0. Let p™ — 0F and u™ € MND(p™)

such that J(u™) = c(p™). Denote s, = |Vu(”)|£l and w® = g,«u" and note that
sn_l*w(”) =u®™ e M, |Vw™|, =1 and

w3 =™ =1p"7 0

asn — oo. In particular (w®) is bounded in L% (R")X and so

_2 _N_
lw™y, < WP T2 W™ N2 — 0

as n — 00. Suppose that & = 0. Then, in view of (A1) and (A3), for every s > 0

G(sN/2p®
lim / w dx =0
n RN )

and, consequently,

G (sN/2ym) 52
— " dx

2
J@™) = J (s xw™) > J(sxw™) = % — /1;{1\/ m =3 + o(D),
whence lim,, J (u™) = oo
Now suppose that & € (0, 00)X. Since [u™ |3 = [p™|*> — 0, we get u™” — 0 in
L7(RM)K for 2 < ¢ < 2*. Arguing as above, for every s > 0
G (sN/2,m
lim % dx =0,
n RN S
hence
. G(sV/2u™) . G(sN%u ™) 4 Lo
llrIlIl RNde_h’{n A —I—*ZQ hgn j10d
Consequently,

G(sN/2,™
GG6u™)

2
T@™y > J(sxu™) = s—/ VU™ dx —/ .
2 JrN RN

N

@ Springer



10  Page 26 of 31 J. Mederski, J. Schino

2 PA
S N *
— i (n)2 _ 2 BT (n),2
=3 lgnfRN IVu'|“dx > E 19] hrIIn/RN loa ;| dx +o(1)
J:

for any s > 0. Then, in view of Lemma B.1

2 2+ K
lim J (™) > max S—lim/ V™2 dx — S—ZQ, 1im/ |u(.")|2* dx
n s>0 2 n JpN 2% = o gy
1 lim,, |Vu ™Y
- N ] AN/2-1
(Zj-(:l 6 lim, |u§n)|%*)
1.y 1 K
Loy 1 onvpg-nne
> 87 =8 >,

i=1

and taking into account (1.9) we obtain

K
1 _
. (n)y _ N/2 1-N/2
hnmJ(u”)——NS Zel. .

i=1

Now assume that every ground state solution to (1.3) belongs to S(p) and let p, p’ as
in the statement. Let u € M N S(p) and u' € M NS(p') C MND(p)\ S(p) such that
J(u) = c(p) and J(u') = c(p’). Clearly c(p) < c(p). If c(p) = c(p"), then c(p) = J ('),
with u’ € M ND(p) \ S(p), which is a contradiction. O
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Appendix A. Sign of Lagrange multipliers

The following result concerns the sign of a Lagrange multiplier when the corresponding
constraint is given by an inequality and the critical point of the restricted functional is a
minimizer. The result is related with Clarke’s [ 15, Theorem 1], however it is not clear whether
we can apply it directly in our situation.

Proposition A.1 Let H be a real Hilbert space and f,$;, ¥ € C'H), i € {1,...,m},
Jj €f{l,...,n}. Suppose that for every

xe(No ' On(v ' ©

i=1 j=1

@ Springer


http://creativecommons.org/licenses/by/4.0/

Least energy solutions to a cooperative system of Schrodinger... Page 27 of 31 10

the differential

Siz=m, =)=

is surjective. If X € 'H minimizes f over
{x e H:¢i(x) <O0foreveryi=1,...,mand ¥j(x) =0 forevery j=1,...,n},

then there exist (A)7_ € [0, 00)™ and (oj);?:] € R" such that

FE+Y Mgj@® + )o@ =0.

i=1 j=1
Proof Fix ¢ > 0 and define the functional F: H — [0, c0) as

Fly:= _ max _{f(x)—=f@)+e ¢i(x). 1Yl

<i<m,1<j<

and observe that F is locally Lipschitz and bounded from below by 0. Since F(x) = ¢, in
view of the Ekeland variational principle [16, Theorem 1.1] there exists z = z, € H such
that

Ix —zll < Ve,
F(x)++elx—z| > F(z) Vxe™H.

From [15, Propositions 6, 8] there follows that 0 € d F(z) + /€ 3] - —z]|(z), where 9 stands
for the generalized gradient [15, Definition 1]. Hence, there exists £ = &, € d F(z) such that
—& € /e 9| - —z||(z). In view of [15, Propositions 1, 9], ||€|| < /¢ and & lies in the convex
hull of f(z) — f(X) + ¢, ¢i(z), and | (2)], i.e., there exists T, A1, ..., Ay, 61,...,6, =0
depending on ¢, such thatt + Ay + -+ Ay + 61+ -+ 06, =1,

§e <rf/(z> + ) 2idi(2) + Z&,-awf,,w(z)),
i=1 j=1

and A; = 0 (resp. 6; = 0) if ¢;(z) < 0 (resp. ¥;(z) = 0).
Forevery j € {1, ..., n} such that ¥;(z) # 0 we have

Y j1(2) = {sign(¥; () ¥} (@)

If j € {1,...,n}is as before, we define oj := sign(y(2))6;, otherwise we define o := 0.
In particular, we have

> 650191() = {Zojw}(z>}~
j=1 j=1

Summing up, we obtain the following: for every ¢ > 0 there exist t > O, ()»,-)f-”zl €
[0, c0)™, (oj)’;zl € R" and 7z € B(x, 4/¢) such that
Ei=1f@+ XL Migj(@+ 2 0¥} (2) € B(0, Vo),
T+ Y i+ Yoy lojl = 1.
Letting ¢ — 07 we get

Tf )+ Y M@ + Y oY) =0 (A.1)

i=1 j=1
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for some 7 > 0, ()L, € [0, 00)™, (0‘,-)’;=1 € R” such that

m n
'E+Z)Li+2|0j| =1.
i=1 j=1
Suppose by contradiction that t = 0, whence

m n

D M@ + Y oY) =0. (A2)

i=1 j=1
If ¢i(x) < O for some i € {1,...,m}, then of course A; = 0, hence, up to considering a
(possibly empty) subset of {1, ..., m}in (A.2), we can assume that ¢1 (X) = - -+ = ¢, (X) =
0and Apyy1 = ... = Ay = 0 for some 0 < mo < m, where mo = 0 denotes that 1; = 0
for all i € {1,...,m}, whereas my = m denotes ¢1(x) = --- = ¢,,(x) = 0. Then the
differential

(@1 )y By G Y[ @), Y () 2 H — RMOHN
is surjective and so, for every i € {1,...,mo} (resp. j € {1, ..., n}), we can choose y € H
such that ¢/(¥)(y) # 0, ¢(X)(y) = 0 for every k € {1,...,mo} \ {i} and W}()E)(y) =0

forevery j € {1,..., n} (resp. W}()E)(y) # 0,y (X)(y) =0forevery k € {1,...,n}\ {;}
and ¢;()E)(y) = 0 for every i € {1,...,mp}). This and (A.2) imply A; = O for every

i ef{l,...,mp}and o; = O forevery j € {l,...,n}, a contradiction. We can thus divide
both sides of (A.1) by T and, up to relabelling A; and o; (i € {1,...,mo}, j € {1,...,n}),
conclude the proof. |

Appendix B. A Sobolev-type constant

Letd = (6, ...,0k) € (0, 00)K,
5= inf Jaw 1Vul* dx

DI2(RN)K\{0 K *
ueDI2(RV)K\(0) (ijl 0 fuun 12 dx)

and, clearly, in view of the Sobolev embeddings, S>0.

2/2%°

N-2 N-2

LemmaB.1 S is attained by (91_ Y ur, .., 9,; * ug), where uj are Aubin-Talenti instan-
tons. Moreover

2/N
N-2

K
§:= Zej‘T S.
j=I

Proof. We prove that § is attained. Let 7: DV2(RV)X — R be defined as

K
1, 1 o
I(M)Z/RNEWM —27?_19,|uj| dx.

Ifu=(up,...,ug) € DM2RN)X | then

I'(u) =0 & —Au;j =9j|uj|2*_2uj forevery j € {1,...,K}.
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Define the Nehari manifold for 7 as

K
N = {ue DR\ (0}« Va3 = 0;lu;l3
j=1

ad note that, if u € N/, then

1 1 &
_ 2 _ My 125
1) =+ |Vul = ;9/|”./|2*
@*—2)2"
2 K
Jrw I Vul*dx 2(2%—-2)/2* 2
K 5 2/2% = |VM|2 = 29/|M/|2* s
(05165 f 1 ) =
fRN |Vul? dx

hence 57w = Aifand only if 1 (u) = %Az*/ 2*=2) Moreover, if u €

(02105 fan 1 P* )
DLLRN)K \ {0}, then tu € N for some ¢ > 0 and the fraction in the definition of S does
not depend on the rescaling ¢ +> fu, therefore

_ Vul*d
S = lnjf\‘[ fRN | u| . 2/2%
NI Sty dx)

andinfpr I = %5‘2/(2*_2)* > 0.Letu™ e N 'besuchthat I (u™) — infr I. Uptoreplacing
u™ = (uﬁ"), R ”‘(1?)) with (|u§")|, R |u§?)|), we can also assume that u;") > ( for every
n, j. In virtue of Ekeland’s variational principle [44], we can assume [’ ™) — 0. Since
infar I > 0,u™ # 0in L2 (RV)X | thus, in view of Solimini’s theorem [37, Theorem 1],
see also [42, Lemma 5.3]), there exist (s,) C (0, 00), (y») C RN andu € DL2(RN)K \ {0},
such that s,/ 2u® (s, - +yn))—u in DV2@®RY)K and s,/ 2u®™ (s, - +yn)) — u ace. in RN up
to a subsequence. In palrvticzzular, I'(u) = 0 and so u € N. Observe that each component of u

is of the formu; = QjTu[])., where u[]) is an Aubin—Talenti instanton. Therefore
2/N
2 K
_ Jrw | Vul|*dx B .
S = P . N Zg}. §. O
<Zj=l 0 Jgn lujl dx) j=l
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