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Abstract
Knowing the robot’s pose is a crucial prerequisite formobile robot tasks such as collision avoidance or autonomous navigation.
Using powerful predictive models to estimate transformations for visual odometry via downward facing cameras is an
understudied area of research. This work proposes a novel approach based on deep learning for estimating ego motion with
a downward looking camera. The network can be trained completely unsupervised and is not restricted to a specific motion
model.We propose two neural network architectures based on the Early Fusion and Slow Fusion design principle: “EarlyBird”
and “SlowBird”. Both networks share a Spatial Transformer layer for image warping and are trained with a modified structural
similarity index (SSIM) loss function. Experiments carried out in simulation and for a real world differential drive robot show
similar and partially better results of our proposed deep learning based approaches compared to a state-of-the-art method
based on fast Fourier transformation.

Keywords Visual odometry · Spatial transformer layer · Unsupervised learning · Ego motion estimation · Downward facing
camera

1 Introduction

Many crucial robot tasks such as obstacle detection, mapping
or autonomous navigation require accurate pose estimates.
Apart from many other sensor types such as laser scanners,
GPS and inertial measurement units, optical camera systems
have been proven successful for egomotion estimation. They
are comparatively cheap and due to their high information
density not only restricted to localization tasks.

This paper deals with estimating a mobile robot’s ego
motion driving on a planar surface, as it is the case in many
industrial applications. The image stream of a downward
looking camera is used to compute the relative transforma-
tion between consecutive camera frames (visual odometry).
Knowing the initial pose at the beginning, the robot’s path
can be fully recovered by concatenating all relative transfor-
mations. For an overview over current state-of-the-art visual
odometry (VO) systems, we refer to the work of [1]. A more
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fundamental introduction to the subject can be found in [2].
Generally speaking, images of a planar scene, e.g. a ground
plane, are related by a homography transformation. Con-
straining the motion of the camera, e.g. forcing it downward
with constant height above the ground, eliminates degrees of
freedom (DoF) in the homography transformation and yields
an Euclidean transformation which is defined up to a scale
factor by 3 DoF.

Wepropose a novel, deep learning based, approach to infer
the transformation parameters

(
θ, tx , ty

)
directly as outputs

from a convolutional neural network. The two proposed net-
work architectures, in the following referred to as EarlyBird
and SlowBird, are inspired by the work of [3] and do not
require any ground truth labelling as they are trained in an
unsupervisedmanner. Unlike the proposed homography esti-
mator in [3], we exploit the fact that in our simpler Euclidean
case, there is no ambiguity between translational and [2]
rotational parameters. This allows us to estimate the parame-
ters of the Euclidean transformation matrix directly from the
regression network, no detour via point correspondences and
Direct Linear Transform algorithm [3, 4] is needed.

In order to improve our estimation accuracy and obtain
a smoother output, we adapt the Slow Fusion design prin-
ciple presented in [5]. Considering ego motion estimation
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with 6 DoF, [5] has shown the potential in learning temporal
information over multiple image frames instead of relying
solely on consecutive image pairs. However, their networks
are trained in a supervised manner. We present an unsuper-
vised version of their Slow Fusion architecture modified to
retrieve the relative transformation between every consecu-
tive image frame pair and will investigate if our approach
benefits of the spatio-temporal feature extraction as well.

The contribution of this work can be summarized as fol-
lowed: We present two neural networks architectures called
EarlyBird and SlowBird for the general planar incremen-
tal ego-motion estimation with a downward facing camera.
In contrast to other related work in the field, we do not
assume any kind of steering model. Our proposed method
can be applied to any vehicle type, e.g. ackermann-steering,
differential-drive or omnidirectional.We demonstrate that by
constraining the camera motion to face the ground, it is pos-
sible to train the networks in an unsupervised manner with
unlabeled synthetic and real world data. Both network archi-
tectures are evaluated on synthetic data and on a real-world
commercial robot system.

2 Related work

Estimating a mobile ground robot’s ego motion via a down-
ward facing camera is a rich area of research. Prior work
has demonstrated the value of exploiting constrained cam-
era motion introduced simplifications of the homography
estimation. The work in this field can be subdivided in
systems relying purely on relative transformations between
consecutive frames (odometry) and map-based localization
approaches. Methods for absolute localization are not prone
to drift but need a preceding map building. Closer examina-
tion of these methods is out of the scope of this work, and for
the interested reader, we refer to the extensive related work
section of [6].

Saurer et al. [7] propose different minimal solutions based
on point correspondences for the relative pose estimation
between two camera frames depending on the prior knowl-
edge about the 3D scene. Qifa andKanade [8] virtually rotate
the camera downward and estimate the ego motion of the
camera byminimizing the sumof squared differences of pixel
intensities with respect to motion parameters. Kitt et al. [9]
use homographies of a virtually downward facing camera
to recover the scale of the motion in their visual odometry
pipeline. Yu et al. [10] propose a rotated template matching
algorithm to compute the translation and rotation between
consecutive images.

Other works constrain the problem to car-like vehicles
[11–13]. By assuming the Ackermann steering model, the
general planar motion can be restricted to 2DoF. Gao et al.
[11] propose a keypoint-less method to recover the ego

motion of car-like steering models using an optimal image
registration technique based on global branch-and-bound
optimization. Peng et al. [12] use an event-based camera
system to overcome the downsides of a frame-based cam-
era such as latency, motion blur and low dynamic range.
In [13], template matching is applied for calculating the
image displacement between consecutive frames. While the
assumption of an Ackermann-like steering model greatly
simplifies the registration problem, it is at the expense of
generalization and not suitable for our presented use case.

In [14–16], the image registration problem is transformed
into the frequency domain. Ri and Fujimoto [14] use phase-
only correlation based on fast Fourier transforms (FFT) to
estimate the Euclidean transformation parameters between
image pairs. Goecke et al. [15] use the Fourier-Mellin trans-
form to solve for the rotation and translation parameters
simultaneously. In order to speed up the estimation pro-
cess, [16] tackles the ego motion estimation problem by only
solving for translational shift between image pairs. They
apply FFT to multiple regions on each frame and recover
the rotation from the shift between corresponding regions of
consecutive image frames.

Downward facing cameras also play an important role in
the field of micro aerial vehicles [17, 18]. In [17], an optical
flow based approach based on a sparse feature set is applied
for estimating the two dimensional pose of the micro aerial
vehicles. The height above the ground is measured with an
ultrasound sensor. Fu et al. [18] imply a direct approach
for estimating the homography between consecutive image
frames. An inertial measurement unit and a single beam laser
rangefinder are used to make the ego motion estimation of
the micro aerial vehicle more salient.

3 Problem formulation

Images taken from different viewpoints 0C and 1C of the
same plane are related by a (planar) homography H (Fig. 1,
left). The warping between corresponding points 0x and 1x
is defined as:

0x � H1x (1)

Knowing the rotation 1
0R and translation 1

0 t from camera
frame 1C to 0C , the homography matrix H can be expressed
as

H � 1
0R − 1

d
1
0 tn

T (2)

where d is the distance between 1C and the observed plane
described by the normal vector n [7]. For the special case

123



Unsupervised deep learning based ego motion estimation with a downward facing camera

Fig. 1 Two images of a planar scene taken at different viewpoints 0C and 1C are related by a homography matrix. The left scene describes the
general case, whereas the right scene illustrates the downward looking case. Introducing motion constraints simplifies the homography estimation

of a downward looking camera (Fig. 1, right) with constant
height d above the ground, Eq. 2 can be expressed as:

H � 1
0Rz −

⎡

⎣

tx
d
ty
d
0

⎤

⎦ ·
⎡

⎣
0
0
1

⎤

⎦

T

�
⎡

⎣
cos θ − sin θ t ′x
sin θ cos θ t ′y
0 0 1

⎤

⎦ (3)

Equation 3 shows that in this particular case, the image
warping from frame 1C to 0C is described by an Euclidean
transformation and there is no ambiguity between rotational
and translational parameters [8]. The rotation 0

1R and trans-
lation 0

1 t can be retrieved by estimating the warping matrix
H between those images and knowing the scale.

The complete robot’s path can be recovered by concate-
nating all relative transformations k−1

k T for k � 1 . . . n with
w
0 C being the initial camera pose at the start [2]:

w
n C � w

0 C · 01T · · · · · n−2
n−1T · n−1

n T (4)

4 Neural network architecture

The proposed networks EarlyBird and SlowBird are both
trained in the same way, only their respective regression net-
work’s input and architecture differ (see Fig. 3). In both cases,
consecutive image frames with spatial dimensions of 200×
200 pixels are fed into the regression network and the esti-
mated parameters

(
θ, tx , ty

)
are relative to the previous image

In−1. They describe the transformation from image In−1

taken at a previous point in time t � n − 1 to the current
image in time In .

In order to train the regression network without any pro-
vided ground truth, the error signal is computed by warping
an image In−1 taken at a previous point in time t � n − 1

Fig. 2 The unsupervised training of the networks is done via comparing
on how similar the warped image In−1

(
θ, tx , ty

)
and the target image

In are. In order to remove the black areas introduced by the warping
procedure, both images are centrally cropped Ĩn−1

(
θ, tx , ty

)
and Ĩn .

The white box indicates the central crop with αc � 0.6

accordingly to the network’s estimation for
(
θ, tx , ty

)
and by

analyzing how similar the warped image In−1
(
θ, tx , ty

)
and

the target image In are (see Fig. 2). The warping is done via
a layer called Spatial Transformer (STL) [19]. It consists of
a sampling grid generator and a bilinear sampler. Both enti-
ties are differentiable, so that the regression network can be
trained in an end-to-end manner.

Our loss function is based on the structural similarity index
(SSIM) [20]. The SSIM function takes the warped and the
target image as inputs and returns a value between∈ (−1, 1).
The return value is close to 1 if both images are similar. We
modify it by adding a constant of value one and inverting
the sign of the SSIM. As a result, our proposed loss function
returns a value between ∈ (0, 2). Since the robot is moving,
consecutive image frames In−1 and In generally do not con-
tain the same real world scene. Depending on the camera’s
focus length, the distance to the floor, the frame rate, and the
robot’s velocity successive frames overlap more or less and
black borders are introduced in the warped image. To com-
pensate these artefacts, the warped image In−1

(
θ, tx , ty

)
and

the target image In are centrally cropped by a factor αc ∈
(0, 1). The hyperparameter αc has to be chosen so that the
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cropped image patches Ĩn−1
(
θ, tx , ty

)
and Ĩn theoretically

show the same real world scenery.
The resulting loss function is defined as:

L � 1 − SSIM
(
Ĩn−1

(
θ, tx , ty

)
, Ĩn

)
(5)

In the work of [3], the l1 loss function is used; however,
in the course of our work, we experienced the SSIM loss
function to be easier to train and encourage to experiment
with both.

In the following, the two proposed regression network
architectures for EarlyBird and SlowBird will be further
described, as well as the subsequent warping procedure in
the STL.

4.1 EarlyBird

The EarlyBird network (see Fig. 3) takes as input two con-
secutive grey level images In−1 and In . They are stacked
channel wise (200, 200, 2) and forwarded into the net fol-
lowing the Early Fusion design principle of [21]. The net
layout is inspired by the VGGNet architecture of [3]. It has
five convolutional blocks, each one consisting of two 2D con-
volutional layer and a max pooling layer. The filter sizes of
the convolutional layers become greater going deeper into
the network: 8, 16, 32, 64, and 64. The quadratic kernel size
remains the same with (3, 3). The pooling kernel remains (2,
2) throughout the net. The second last fully connected layer
has 512 neurons. The final layer consists of three neurons,
one for each transformation parameter. Between those two
layers there is dropout.

4.2 SlowBird

The SlowBird network (see Fig. 3) has as input five con-
secutive grey level images In−4 . . . In and follows the Slow
Fusion design principle of [5, 21]. Instead of being stacked up
channel wise (EarlyBird) and fed as a whole into the net, they
are ordered in a 4-dimensional way (200, 200, 5, 1) and con-
voluted over the spatial dimensions (1st and 2nd dimension)
as well as the time (3rd dimension). In order to deal with
the four-dimensional shape of the input, 3D convolutional
layers [22] are used with the following kernel sizes: (3, 3,
3), (3, 3, 2), (3, 3, 1), and (3, 3, 1). Since the convolutional
operation is not only performed over the spatial dimension
of the feature map as it is the case with 2D convolutions,
the temporal information of the image frames is preserved
in its output signals. With every 3D convolutional operation,
the time dimension vanishes until it finally disappears in the
third 3D convolution. The following 3D convolutional oper-
ations can be seen as standard 2D convolutions. After every
second convolutional operation, max pooling is applied. This
downsampling step only affects the spatial dimension of the

feature map, the time dimension is not involved. Just as in
the EarlyBird network, high-level reasoning is done via two
fully connected layers. They have the same structure and
number of neurons as the fully connected neural network in
the EarlyBird approach.

4.3 Spatial transformer network

The STL introduced in [19] performs an inverse affine warp-
ing of the pixel coordinates of image In−1. It is differentiable
and allows backpropagation of the error gradient through
the STL into the regression network. First, the regression
network’s output

(
θ, tx , ty

)
is converted into an affine trans-

formation matrix A:

A �
[

θ11 θ12 θ13
θ21 θ22 θ21

]
�

[
cos θ − sin θ tx
sin θ cos θ ty

]
(6)

The following inverse warping of the STL can be subdi-
vided into two steps: 1. generation of the sampling grid and
2. bilinear sampling. The sampling grid generator applies an
inverse warping of the regular and normalized target grid G.
For every target pixel Gi � (

xti , y
t
i

)T of our target grid G �
{Gi } a source coordinate Si � (

xsi , y
s
i

)T is defined.

(
xsi
ysi

)
� A

⎛

⎝
xti
yti
1

⎞

⎠ �
[

θ11 θ12 θ13
θ21 θ22 θ23

]⎛

⎝
xti
yti
1

⎞

⎠ (7)

To perform thewarping of the input image, a differentiable
sampler takes the set of source coordinates S � {Si }, along
with the input image In−1 and produces the sampled output
image In−1

(
θ, tx , ty

)
. Since the source coordinates Si are in

general not aligned with the grid-like structure of the input
image In−1, the STL makes use of a differentiable bilinear
interpolation kernel. For every source pixel Si � (

xsi , y
s
i

)T ,
the interpolation is described via

Vi �
H∑

n

W∑

m

In−1 (n,m)max
(
0, 1 − ∣∣xsi − m

∣∣)max
(
0, 1 − ∣∣ysi − n

∣∣)

(8)

where Vi is the sampled pixel value belonging to the target
pixel Gi and In−1(n,m) stands for the pixel value of image
In−1 at position (n,m). Height and width normalised coor-
dinates are used, such that −1 ≤ xti , y

t
i , x

s
i , y

s
i ≤ 1, when

within the spatial bounds of the input or output image.

5 System setup

Images are recorded with a frame rate of 90 fps. The cam-
era is mounted in front of a differential drive mobile robot
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Fig. 3 Overview over proposed neural network architectures: EarlyBird
(top) andSlowBird (bottom). Except for the input and the regression part
both networks share the same structure. The training is done viawarping

the previous image in time accordingly to the estimated transformation
parameters In−1

(
θ, tx , ty

)
and comparing it against the current image

in time In

and facing downward with an approximately distance to the
ground of 0.11m. To eliminate shadowswhen driving around
and to realize higher shutter speeds, two LED spotlights are
illuminating the ground. For later use cases, it would be also
possible to mount the camera underneath the robot. In order
to accomplish an exact bird’s eye vision system, each camera
image is warped accordingly to a homography estimated in
advance with a calibration chessboard pattern laying on the
ground (see Fig. 4). This warping procedure allows us to set
the scale arbitrary. It is however to be considered to choose the
desired resolution accordingly to the original camera image
to minimize interpolation error. In our case, we set the reso-
lution to 8 px

mm .

The average inference times are 18.31 ms (∼ 54 fps) for
the SlowBird network and 19.51 ms (∼ 51 fps) for the Early-
Bird network and 14.75 ms (∼ 67 fps) for the FFT method
(GeForce GTX 1080 Ti, i7-8700 @3.20 GHz).

Fig. 4 In order to compensate for mounting inaccuracies of the camera
the raw image is warped by a precalibrated homography Hbird . The
warped image is cropped to 200×200 pixels and fed into the network

6 Training

The two networks EarlyBird and SlowBird are pretrained on
synthetic datasets and then fine-tuned for the surface texture
of the real world testing area.
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6.1 Synthetic dataset

The synthetic dataset is generated by laying hand designed
trajectories based on Bézier curves upon multiple high reso-
lution images acting as different ground surfaces. A virtual
robot is travelling along these trajectories and taking snap-
shots of the ground images. Its velocity is randomized in
order to cover a broader range of relative transformations
between consecutive image frames. Though ground truth is
available for our synthetic dataset, we do not use it for train-
ing. In total, the synthetic dataset consists of 50 trajectories
and 25 different ground images resulting in onemillion train-
ing samples.

6.2 Real world dataset

Transfer learning [23] is used to transfer the knowledge
gained with the synthetic dataset to the real world domain.
Our experience has shown that without pretraining on the
synthetic dataset finding the proper hyperparameters to min-
imize the loss on the real world dataset might become very
exhaustive in some cases. Although it is still possible with-
out, we recommend to begin training on the synthetically
pretrained models. The real world dataset consists of 730 k
training samples. Since no labelling is required, it can be
obtained in under 2.5 h of driving around with the robot in
our testing area (max. translational velocity of 0.1 m

s and

max. angular velocity of 10 deg
s ). The networks are trained

with data augmentation on a single consumer grade GPU
(GTX 1080 Ti) for about one day (including the synthetic
dataset). Data augmentation is done by randomly skipping
image frames and by feeding them backwards into the net.
This simulates different inter frames velocities and gener-
ates more reverse training samples. Adam [24] was used for
optimization. Our experiments showed that beneath setting
the learning rate to α � 0.0001, modifying the value of
the numerical stability constant ε̂ � 0.0001 (default value
ε̂ � 1 × 10−8) yielded to good results. To avoid overfitting,
the network is evaluated on a separate validation dataset after
every 3000 training iterations and the model with the best
performance (minimal loss value) is kept.

7 Results and discussion

We evaluated our proposed neural network architectures by
comparing them against a state-of-the-art image registra-
tion technique1 based on FFT [14]. Although it is already
well known that feature-based methods have difficulties with
the fast moving, texture less images of a downward facing

1 https://github.com/YoshiRi/ImRegPOCunder 2-clause BSDLicense.

camera, we added an ORB feature based approach to our
evaluation as a conservative baseline. Experiments are con-
ducted on synthetic and on real world data.

7.1 Synthetic data experiments

The synthetic test dataset consists of eight unseen trajectories
on nine different surfaces each. As proposed in [25], we used
the root mean square relative pose error (RMS-RPE) and root
mean square absolute trajectory error (RMS-ATE) as evalua-
tion metrics. As we are evaluating a visual odometry system
based on incrementalmotion estimation between consecutive
frames, we choose for the time parameter � � 1. The RMS-
RPE accounts for the drift per frame and can be divided in
translational (trans) and rotational (rot) components,whereas
the RMS-ATE relates to the global consistency of the pre-
dicted and the ground truth trajectory. For an in-depth
discussion of the used metrics, please refer to [25].

Evaluation on the whole synthetic data (Table 1) shows
that EarlyBird has the lowest translational (RMS-RPE trans)
as well as rotational relative pose error (RMS-RPE rot), fol-
lowed by FFT and SlowBird. In terms of ATE SlowBird
performed best, followed by EarlyBird and FFT.

In “Fig. 8 in Appendix”, the RPEwas put in relation to the
amount of overlap between image pairs by sorting and divid-
ing the error into three groups of same size and computing
the RMS-RPE separately for each tertile. The results show
that, independent of the chosen method, the amount of over-
lap between consecutive image frames has a strong impact on
the accuracy of the registration problem and is not distributed
equally over all three performance tertiles. This illustrates a
short-coming for the usage in incremental motion estimation
methods where consistent performance is desired.

An important requirement for a visual odometry system is
its functionality on a wide variety of different floor surfaces.
Therefore, we analyzed the statistical distribution of RMS-
RPE andRMS-ATE according to the different surface images
of our test dataset (seeTable 2). It can be seen that FFThas the
smallest standard deviation (STD) for the translational com-
ponent of FFT while still performing worse than EarlyBird
whichhas the lowest STDforRMSrot andATE.Anextensive
overview over all trajectories can be found in “Table 7 in the
Appendix”. Looking at theATE value for theORBmethod, it
becomes clear that its performance is not very consistent over
different surfaces. For feature rich, highly textured surfaces
it performs well, but fails when encountering highly illumi-
nated, featureless images (see “Fig. 7 in Appendix” for an
overview over the chosen test surface images).

In order to test the sensitivity of our models regarding
illumination changes or noise in between consecutive image
frames, we augmented each image in the test dataset by a
random pixel intensity value of β ∈ (−10, 10) or added
Gaussian distributed white noise (μ � 0) for each pixel with
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Table 1 RPE and ATE for given
models evaluated on the
synthetic test dataset for
different models

RMS-RPE RMS-ATE

trans [px] +%a rot [rad] +%a trans [px] +%a

SlowBird 4.89E−01 6.1 2.22E−03 76.1 1.12E+02 –

EarlyBird 4.61E−01 – 1.26E−03 – 1.13E+02 1.3

FFT 4.83E−01 4.8 1.91E−03 51.0 2.11E+02 88.1

ORB 2.56E+01 5443.7 9.81E−03 677.4 3.03E+02 170.4
aPercentage increase w.r.t. to best model

Table 2 Statistical error distribution for RMS-RPE and RMS-ATE divided according to different surface images

RMS-RPE trans [px] RMS-RPE rot [rad] RMS-ATE [px]

Mean RMSE STD Mean RMSE STD Mean RMSE STD

SlowBird 4.73E−01 4.73E−01 1.29E−02 2.09E−03 2.12E−03 3.92E−04 8.28E+01 8.67E+01 2.73E+01

EarlyBird 4.61E−01 4.61E−01 3.83E−03 1.26E−03 1.26E−03 1.13E−04 1.13E+02 1.13E+02 5.35E+00

FFT 4.83E−01 4.83E−01 6.74E−04 1.90E−03 1.91E−03 1.75E−04 2.10E+02 2.11E+02 1.75E+01

ORB 1.25E+01 2.56E+01 2.37E+01 7.25E−03 9.81E−03 7.01E−03 1.77E+02 3.03E+02 2.61E+02

Table 3 RMS-RPE and
RMS-ATE evaluated on test
dataset with augmented
illumination changes

RMS-RPE RMS-ATE [px]

trans [px] +%a rot [rad] +%a trans [px] +%a

SlowBird 9.28E−01 89.9 6.12E−03 175.3 2.32E+02 107.1

EarlyBird 4.90E−01 6.2 1.42E−03 12.8 1.33E+02 16.9

FFT 4.83E−01 0.0 1.90E−03 − 0.1 2.22E+02 5.4

ORB 2.56E+01 0.0 9.71E−03 − 1.0 2.99E+02 − 1.2
aPercentage increase w.r.t. to evaluation on non-augmented images

σ 2 � 4. From Table 3, it can be seen that FFT and EarlyBird
performed best when encountering changing illumination in
the video stream. On the dataset with added noise, SlowBird
had the lowest RPE and ATE, though having an increased
error of 54.6%, 207.4% and 111.8% with regard to the orig-
inal dataset (see Table 4).

7.2 Real world experiments

We recorded 19 test trajectories with a differential drive robot
going straight, taking turns, moving backward, driving arbi-
trary loops or circles (see “Table 8 in Appendix” for more
details about the chosen trajectories). The recording of the
test dataset has been completely independent from our train

and evaluation dataset drive. The ground truth trajectory is
recorded with a Valve Index VR kit. In a predefined testing
area, the controller is globally tracked and therefore not vul-
nerable to drift. This makes it to a well suited ground truth
sensor for odometry systems. For our realworld experiments,
we are comparing the translational and rotational ATE at the
end of each drive ATE(tend). See Fig. 5 for a visualization
over a subset of the test trajectories.

The results on the real world test data (see Table 5) show
that SlowBird outperforms FFT, EarlyBird and ORB when
considering the ATE(tend) over all test trajectories. The fact
thatRMSE is very sensitive to outliers suggests that SlowBird
is the most consistent method for this dataset. Looking at the
high error for theORBbased approach, the results once again

Table 4 RMS-RPE and
RMS-ATE evaluated on test
dataset with added Gaussian
distributed noise

RMS-RPE RMS-ATE [px]

trans [px] +%a rot [rad] +%a trans [px] +%a

SlowBird 7.56E−01 54.6 6.83E−03 207.4 2.37E+02 111.8

EarlyBird 1.03E+00 122.7 6.84E−03 442.4 2.95E+02 159.6

FFT 1.90E+00 293.0 1.14E−02 498.1 3.42E+02 62.6

ORB 8.69E+04 339,905.6 4.18E−02 326.5 2.20E+06 726,710.1
aPercentage increase w.r.t. to evaluation on non-augmented images
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Fig. 5 Visualization over a subset (12 out of 19 trajectories are shown)
of all test trajectories for the real world robot. As it is common with
all incremental motion estimation methods, rotational errors generally

grow unbounded in lateral position. That is why these methods have
such a high demand on rotational accuracy

confirm the general consent that feature-based methods are
not suitable for this use-case.

Comparing both network architectures, it can be said that
our proposed model based on the Early Fusion design prin-
ciple had the smallest RPE on the synthetic dataset, and our
model based on the Slow Fusion design principle performed
best considering the absolute trajectory error on synthetic as
well as real world data (see Tables 2, 5). Looking at the paths
in Fig. 5 and the results in Table 9, it can be observed that

FFT is able to predict the correct trajectory very well on a
subset of trajectories but does not perform as consistently as
SlowBird (higher RMSE) over all trajectories.

Although our proposed networks EarlyBird and SlowBird
had the best performance on the synthetic and real world
dataset and there is a positive correlation between loss func-
tion error and relative pose error (ρRPEtrans−SSIM � 0.33
and ρRPErot−SSIM � 0.42 evaluated on the synthetic test
dataset), it can be observed that very small orientation esti-
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Table 5 The translational and
rotational ATE over all test
trajectories

ATE-trans(tend) [mm] ATE-rot(tend) [rad]

Mean RMSE STD Mean RMSE STD

SlowBird 3.91E+02 4.66E+02 2.24E+02 1.42E+00 1.88E+00 1.17E+00

EarlyBird 5.80E+02 1.08E+03 9.14E+02 1.41E+00 1.92E+00 1.25E+00

FFT 4.04E+02 6.83E+02 5.50E+02 1.41E+00 1.97E+00 1.32E+00

ORB 3.21E+07 7.66E+07 6.97E+07 1.28E+00 1.84E+00 1.02E+00

Fig. 6 Estimated SlowBird trajectory for Path 1 (left) and corresponding loss values (right). The crosses illustrate loss outliers of the 3σ -intervall.
Drift does not necessarily correspond to outliers in the loss signal (e.g. outlier at x � 800 mm in left image)

Table 6 The correlation
between RPE and SSIM loss
value divided into three error
tertiles evaluated on our
synthetic dataset

Mean value Pearson correlation coefficient ρ

RPE—trans [px] RPE—rot [rad] RPE trans—SSIM RPE rot—SSIM

1st tertile 0.12 0.0003 0.1715 0.0032

2nd tertile 0.32 0.0010 0.1812 0.0755

3rd tertile 0.72 0.0029 0.1242 0.4786

All 0.39 0.0014 0.3270 0.4165

mation errors, as they appear in Fig. 6 when driving straight,
seem to pass unnoticed by the signal noise (Fig. 6, right) of
our proposed SSIM loss function. This may be explained by
the weak correlation between rotation error and SSIM value
for the first and second tertile. Therefore, for very small rota-
tional errors (mean RPE rot of 1st tertile is 0.0003 rad), it can
be assumed that the error cannot be minimized by minimiz-
ing the objective function (see Table 6). Since VO systems
are in general prone to drift, this illustrates a shortcoming of
our currently used loss function.

8 Conclusion

In thiswork a novel, deep learning based approach to estimate
the ego motion of a camera facing the ground is presented. In
contrast to many other work, it is independent of the chosen
drive type as long as the camera is moving parallel with con-
stant distance to the ground plane. Both proposed network
architectures achieved similar and partially better results than
the performance of a state-of-the-art FFT image registration
method evaluated on synthetic and real world scenarios for
a differential drive robot. Especially our proposed SlowBird
approach represents a promising alternative to existingmeth-
ods regarding its performance consistency on both datasets.

Though, in thiswork, the networkweightswere fine-tuned
for a wooden floor, results on synthetic data demonstrate
that both networks can generalize to different floor materi-
als, sudden illumination changes and image noise. With the
proposed unsupervised learning strategy, the model weights
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can be easily and cheaply adapted to alternative ground sur-
faces and even drive types, no expensive labels are required.
We are aware that the currently used SSIM loss function does
have its limitations when it comes to rotational accuracy for
small errors. Future work should concentrate on alternative
loss functions or additional sensors such as IMUs and com-
passes to compensate for that. Also for future work, it would
be interesting to investigate how an online learning approach
would be applicable since no ground truth data is required
for training.

Despite the aforementioned limitations, our experiments
have shown that a deep learning based image registration
method, trained completely unsupervised, is over a long
series of images accurate enough to become a viable alterna-
tive to existingmethods.We are aware that our solution is not
yet practically and economically feasible, but with current
progress in Edge AI, estimating ego motion unsupervised
with downward facing cameras might become an interesting
use case.
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Appendix

See Figs. 7 and 8, Tables 7, 8 and 9.

Fig. 7 Nine different surfaces were chosen for the synthetic test dataset
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Fig. 8 RPE trans and rot sorted in three groups of same size and ascend-
ing order. The amount of overlap between image pairs has a strong
influence of the prediction accuracy of the network. The feature based

approach is not displayed since its error values are higher by order of
magnitude 10 and would distort the scale of the graph

Table 7 RPE and ATE summarized for all trajectories and evaluated separately for each image simulating different surfaces

Surface 1 Surface 2 Surface 3 Surface 4 Surface 5 Surface 6 Surface 7 Surface 8 Surface 9

RMSE-RPE—trans [px]

SlowBird 4.78E−01 4.58E−01 4.69E−01 4.66E−01 4.66E−01 4.69E−01 4.95E−01 4.94E−01 4.65E−01

EarlyBird 4.65E−01 4.58E−01 4.56E−01 4.59E−01 4.58E−01 4.60E−01 4.66E−01 4.66E−01 4.59E−01

FFT 4.83E−01 4.83E−01 4.84E−01 4.83E−01 4.82E−01 4.84E−01 4.84E−01 4.84E−01 4.82E−01

ORB 9.40E−01 8.19E−01 4.15E+01 9.14E−01 8.74E−01 9.62E−01 6.44E+01 9.21E−01 9.57E−01

RMSE-RPE—rot [rad]

SlowBird 2.16E−03 1.49E−03 2.16E−03 1.80E−03 1.86E−03 2.38E−03 2.75E−03 2.42E−03 1.79E−03

EarlyBird 1.32E−03 1.15E−03 1.25E−03 1.21E−03 1.16E−03 1.39E−03 1.47E−03 1.20E−03 1.18E−03

FFT 1.72E−03 1.72E−03 1.97E−03 1.76E−03 1.83E−03 1.97E−03 2.23E−03 2.08E−03 1.81E−03

ORB 4.08E−03 3.43E−03 1.46E−02 3.85E−03 3.68E−03 4.10E−03 2.34E−02 4.00E−03 4.15E−03

RMSE-ATE [px]

SlowBird 9.80E+01 7.81E+01 1.02E+02 5.59E+01 5.44E+01 7.35E+01 1.41E+02 7.38E+01 6.79E+01

EarlyBird 1.11E+02 1.08E+02 1.08E+02 1.19E+02 1.24E+02 1.14E+02 1.13E+02 1.14E+02 1.10E+02

FFT 1.90E+02 1.93E+02 2.20E+02 1.98E+02 2.03E+02 2.07E+02 2.43E+02 2.29E+02 2.06E+02

ORB 5.43E+01 3.19E+01 6.51E+02 4.27E+01 3.67E+01 5.61E+01 6.22E+02 4.13E+01 5.30E+01
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Table 8 Overview over real
world test trajectories Descriptiona # Images Length (mm) Ratiob

Path 1 ST–FW 2063 2055 1.00

Path 2 ST–BW 2374 2454 0.97

Path 3 LT–FW 2437 2162 1.13

Path 4 RT–BW 1893 2152 0.88

Path 5 LP–FW 6881 7983 0.86

Path 6 LT–BW 2200 2309 0.95

Path 7 CC–FW 3626 2362 1.54

Path 8 ST–FW 2143 2129 1.01

Path 9 SC–BW 3880 3837 1.01

Path 10 LP–FW 9224 11,024 0.84

Path 11 ST–FW 1754 1617 1.08

Path 12 RT–FW 2311 2534 0.91

Path 13 LT–BW 2206 2560 0.86

Path 14 BF–FW 6275 5025 1.25

Path 15 LP–FW 8124 9230 0.88

Path 16 LP–BW 7597 8941 0.85

Path 17 LP–FW 11,026 11,930 0.92

Path 18 SQ–FW 7357 6135 1.20

Path 19 LT–FW 2407 2927 0.82
aST straight, LT left turn, RT right turn, CC circle, SC S-curve, LP arbitrary loop, SQ square, FW forward,
BW backward
bRatio, Ratio between number of images per path and length [1/mm]

Table 9 ATE(tend) evaluated on
all trajectories of real world
dataset

ATE trans(tend) [mm] ATE rot(tend) [rad]

SlowBird EarlyBird FFT ORB SlowBird EarlyBird FFT ORB

Path 1 3.42E+02 1.71E+01 1.57E+02 1.83E+05 2.23E−01 1.27E−01 5.01E−02 1.94E+00

Path 2 6.97E+02 2.53E+02 9.00E+01 4.27E+05 4.26E−01 6.66E−02 2.41E−02 3.11E+00

Path 3 2.20E+02 4.81E+01 2.23E+02 1.03E+04 3.13E+00 2.98E+00 2.90E+00 2.93E+00

Path 4 1.82E+02 1.36E+02 5.19E+02 1.03E+06 2.95E+00 2.81E+00 2.96E+00 3.42E−01

Path 5 3.04E+02 2.36E+02 1.61E+03 2.32E+08 9.15E−01 3.46E−01 2.44E+00 1.74E−01

Path 6 5.39E+02 2.17E+02 3.68E+01 3.13E+09 2.94E+00 2.63E+00 2.38E+00 2.86E+00

Path 7 6.50E+01 3.99E+02 3.19E+02 1.17E+08 8.48E−01 3.96E−01 4.72E−02 2.59E+00

Path 8 4.65E+02 1.13E+01 6.74E+01 8.58E+06 1.81E−01 2.41E−01 1.76E−01 1.51E+00

Path 9 9.96E+02 2.54E+02 1.63E+02 3.85E+07 5.20E−01 9.09E−02 1.62E−01 2.25E−01

Path 10 2.76E+02 3.69E+03 2.08E+03 2.08E+09 8.11E−01 3.13E+00 1.88E+00 2.62E+00

Path 11 3.14E+02 9.21E+01 1.02E+02 3.99E+03 1.77E−01 1.02E−01 1.42E−01 9.07E−01

Path 12 3.00E+02 3.85E+02 1.87E+02 1.78E+03 3.04E+00 2.64E+00 3.11E+00 2.71E+00

Path 13 1.88E+02 1.68E+02 2.57E+02 8.24E+06 1.27E+00 1.16E+00 1.33E+00 2.82E−01

Path 14 5.63E+02 1.14E+03 5.43E+01 4.31E+04 2.78E−01 3.34E−01 2.21E−02 3.11E+00

Path 15 4.81E+02 1.87E+03 9.27E+02 1.39E+07 2.34E+00 1.07E+00 1.41E+00 5.15E−01

Path 16 3.69E+02 1.83E+01 4.59E+02 6.70E+05 2.60E+00 3.01E+00 3.14E+00 8.85E−01

Path 17 7.23E+02 1.33E+03 4.72E+02 7.99E+07 2.29E+00 2.83E+00 3.01E+00 1.32E+00

Path 18 2.93E+02 1.15E+03 7.11E+01 3.92E+07 5.26E−01 1.58E+00 1.04E−01 2.40E+00

Path 19 4.98E+02 1.90E+02 2.86E+02 2.11E+08 2.95E+00 2.68E+00 2.94E+00 1.98E+00

Although ORB had competitive results regarding the rotational error at the end of each path, looking at the
translational error one can see that the tracking was lost (exception path 11 and 12)
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