
Formal Speci�cation and
Veri�cation for

Automated Production Systems

Zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

(Dr. rer. nat.)

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von
Alexander Sebastian Weigl
geboren in Bad Neuenahr-Ahrweiler

Tag der mündlichen Prüfung: 27. April 2021

Referent: Prof. Dr. rer. nat. Bernhard Beckert,
Karlsruhe Institute of Technology

Korreferent: Prof. Dr.-Ing. Stefan Kowalewski,
Rheinisch-Westfälische Technische Hochschule Aachen

Acknowledgment
A Ph.D. thesis is the end of a long journey that is accompanied by several people
and institutions. This section acknowledges their support, although, I know it
may not be su�cient in comparison to their e�orts.

First, I need to thank my supervisor Prof. Dr. Bernhard Beckert, for the
opportunity to follow my research in his group—without his support nobody
could read this doctoral thesis.

Also, I want to thank my colleagues over all the time in my research group
for their discussions and support (in alphabetical order): Dr. Lionel Blatter, Dr.
Thorsten Bormer, Dr. Daniel Grahl, Dr. Sarah Grebing, Dr. Simon Greiner, Dr.
Mihai Herda, Dr. Markus Iser, Michael Kirsten, Jonas Klamroth, Dr. Tianhai
Liu, Jonas Schi� and Annika Vielsack. A special thanks to my supervising
post-docs: Dr. Mattias Ulbrich and Dr. Vladimir Klebanov for their help and
teaching. Further, thanks go to our administrators Simone Meinhart and Ralf
Koelmel.

Thanks to Prof. Dr. Stefan Kowalewski (RWTH) for participating as the
second reviewer on my way to the doctoral degree. Moreover, I need to thank
Dr. Dimitri Bohlender (RWTH) for the fruitful discussion on PLC topics.

Also, I supervised students in the �eld of automated production systems.
Some of their work can be found in a refurbished and updated form in this thesis.
But regardless of this circumstance, I thank my students who worked with me in
this �eld, namely, Anja Blechinger, Matthias Goren�o, Daniel Lentzsch, Augusto
Modanese, Andreas Wieland, and Moritz Baumann.

During my doctoral research, I was funded and supported by several research
projects: First, IMPROVE APS project was part of the DFG Priority Program
1593 (Design for Future – Managed Software Evolution), which gave a fruitful
environment for the discussion on software evolution. Especially, I thank my
immediate research partners; in person: Suhyun Cha, Dr. Sebastian Ulewicz and
Prof. Dr. Birgit Vogel-Heuser. The results of IMPROVE APS provide the main
part of this thesis. Second, the DeduSec project and DFG Priority Program 1496
(Reliable Secure System) was my introduction to the academic world, and also to
secure information �ow and security analysis. Third, KASTEL, the Competence
Center for Applied Security Technology in Karlsruhe was a steady company on
my journey and the environment on my work on veri�ed security of production
systems. In this context, I want to thank Fraunhofer IOSB for the industrial case
study.

Last, but not least, a special thanks to my parents for their steady and long
and steady support through all the years of my under-, graduate, and doctoral
studies.

Summary

Motivation
Complex industrial control software often drives safety- and mission-critical
systems, like automated production plants or control units embedded into de-
vices in automotive systems. Such controllers have in common that they are
reactive systems, i. e., that they periodically read sensor stimuli and cyclically
execute the same program to produce actuator signals.

The correctness of software for automated production is rarely veri�ed using
formal techniques. Although, due to the Industrial Revolution 4.0 (IR4.0), the
impact and importance of software have become an important role in industrial
automation.

What is used instead in industrial practice today is testing and simulation,
where individual test cases are used to validate an automated production system.
Three reasons why formal methods are not popular are: (a) It is di�cult to
adequately formulate the desired temporal properties. (b) There is a lack of
speci�cation languages for reactive systems that are both su�ciently expressive
and comprehensible for practitioners. (c) Due to the lack of an environment
model the obtained results are imprecise. Nonetheless, formal methods for
automated production systems are well studied academically—mainly on the
veri�cation of safety properties via model checking.

Contribution
In this doctoral thesis we present the concept of (1) generalized test tables (gtt),
a new speci�cation language for functional properties, and their extension
(2) relational test tables (rtts) for relational properties. The concept includes the
syntactical notion, designed for the intuition of engineers, and the semantics,

iii

ASSUME ASSERT �
mode learn I Q W
1 Active — — 0 true —
2 Learn true q 0 false 1
3 Learn true p 0 false 1
4 Active — [p, q] [p, q] false —
5 Active — >q q false 5
6 Active — <p p false 5

Figure 1: A gtt for the MinMaxWarning function block Appendix B.1.

which are based on game theory. We use rtts for a novel con�dential property
on reactive systems, the provably forgetting of information. Moreover, for
regression veri�cation, an important relational property, we are able to achieve
performance improvements by (3) creating a decomposing rule which splits
large proofs into small sub-task. We implemented the veri�cation procedures
and evaluated them against realistic case studies, e. g., the Pick-and-Place-Unit
from the Technical University of Munich.

Generalized Test Tables. We present the concepts and logical foundations
of gtts, a speci�cation language for reactive systems. gtts extend the con-
cept of (concrete) test tables, which are already frequently used in the quality
management of PLC systems. The main idea is to allow more general table
entries, thus enabling a table to capture not just a single test case but a family of
similar behavioral cases. Nonetheless, of the added syntactical notions, we try to
preserve the intuitiveness and comprehensibility of the concrete test tables. In
particular for system design engineers who are experts in test case speci�cation
but are not familiar with the formal temporal speci�cation.

Figure 1 shows a typical gtt which is the speci�cation for a diagnosis
module. During a training mode, this module learns an expected range of a
sensor variable. And later in operation mode, the module normalizes the given
sensor value and also signals an error if the given value is out of the learned
range. Typically, a gtt has two sides: one for the input variables and one for the
output variables. Each cell contains constraints on a designated column variable.
The rows form the steps of the de�ned (test) protocol. They are consecutively
applied from top to bottom, where a row or a group of rows can be skipped
or repeated depending on the given constraints in the duration column (�). If
multiple successor rows are possible, the protocol branches nondeterministically.

In this work, we formally de�ne the syntax and semantics of gtts. The

CTRL ASSUME ASSERT �
a b I b»SFCReset O

1 I I = a»SFCReset = ≥ 1
2 .0 I = TRUE = 1

—∞

Figure 2: This rtt speci�es that resetting with SFCReset results into the
same behavior, as running the system from its initial state. The program runs a
and b are from the same program.

semantics of gtts de�nes the conformity of a system to a gtt, which is based
on a two-party game over in�nite words between the environment and the
challenger. This game can be encoded into a model which can be e�ciently
validated by state-of-the-art model-checkers. We demonstrate the applicability
of the language with realistic examples from the automation industry and show
the feasibility of the veri�cation. Aside from the veri�cation with a model
checker, we show how gtts can be used for runtime veri�cation by generating
monitoring software modules.

Relational Test Tables. Relational test tables (rtts) are an extension of gtts
to allow the speci�cation of relational properties [Wei+20]. A functional property
only speci�es the behavior of one program run, e. g., an invariant that needs to
hold in every reachable state, whereas a relational property talks about multiple
program runs. Relational properties enable us to use existing software as a
functional speci�cation. Thus, the remaining relational speci�cation only needs
to de�ne the relation between the used program versions. A typical application
scenario is regression veri�cation—used to ensure that no unintended change
of the behaviors was introduced during the software evolution.

rtts (Figure 2) extend the syntax of gtts to cope with the multiple program
runs. First, program variables are quali�ed with the identi�er of the corre-
sponding program. Secondly, we introduce a user-de�ned projection function
in the column header, which maps the current states of the k program runs to
an n-tuple on which appropriate predicates can be applied (e. g., = for n = 2,
Figure 2). Third, control commands (�, p, .r) allows the manipulation of the
program execution. They allow us to break up the synchronous (or lock-step)
execution of the program runs.

The semantics of rtts is de�ned by reduction to gtts. The control com-
mands are handled by program transformation of the original software before
we supply the product program to the gtt veri�cation engine. We show the ap-
plicability and feasibility of the speci�cation and veri�cation of rtts on typical
examples from software engineering.

Modularization. A further contribution is a sound and complete modulariza-
tion approach for regression veri�cation [WUL20]. With regression veri�cation,
we prove the absence of unintended changes between software revisions. For
long-deployed automated production systems, regression veri�cation helps to
carry earned trust in operation to the next software version. The idea behind
regression veri�cation is that structural and semantic di�erences between the
software revisions are limited, for example only a few procedures are changed.
The modularization approach allows us to decompose the proof obligation into
smaller sub-goals on smaller program pieces.

The main goal of modularization is to increase the veri�cation performance,
which is mainly carried by using a simpler and faster regression veri�cation
algorithm. Employing the simpler algorithms becomes possible because the
modularization decomposes large programs into smaller program parts. A
behavioral di�erence of these program parts tends to be small (or even non-
existent). For example, checking equivalence by comparing the abstract syntax
trees is fast, and su�cient for an unchanged procedure like used common library
functions. The performance evaluation of the modularization shows that the
decomposing enables the regression veri�cation of large evolution scenarios.

The main di�erence to common modularization or abstraction techniques
for functional veri�cation is that the modularization needs to be done coherently
applied in two programs. For the coherence, our approach needs markings of
the module boundary in the program code, whereby these boundaries can be
user-de�ned, or automatically inferred from the software structure. For each
pair of corresponding modules from both programs, the user needs to specify a
regression contract, which has three parts: (1) a condition, when the contract is
applicable, (2) the assumed relation of the input variables and (3) the guaranteed
relation of the output variables between both modules.

Closing The presented contribution follows the idea of lowering the obstacle
of verifying the dependability of reactive systems in general, and automated pro-
duction systems in particular for the engineer either by introducing a new spec-
i�cation language (gtts), by exploiting existing programs for the speci�cation
(rtts, regression veri�cation), or by improving the veri�cation performance.

Zusammenfassung

Motivation
Komplexe industrielle Steuerungssoftware bestimmt die Abläufe von sicherheits-
und unternehmenskritischen Systemen wie sie in automatisierten Produktions-
anlagen oder in eingebetteten Steuergeräten, wie z. B. in Automobilen, zu �nden
sind. Solche Steuerungen sind Reaktive Systeme, d.h. sie werden periodisch
ausgeführt. Dabei reagieren sie auf die Sensorwerte der überwachten Umgebung,
führen das hinterlegte Programm aus und bestimmen die nächsten Aktionen
der Aktuatoren. Die Korrektheit von Software für automatisierte Produktions-
anlagen wird selten mit Formalen Methoden überprüft, obwohl aufgrund der
Industrie 4.0, die Auswirkungen und Bedeutung von Software eine zunehmende
wichtigere Rolle in der industriellen Automatisierung spielt.

Stattdessen setzt die industrielle Praxis auf das Testen und die Simulation,
bei der nur einzelne Testfälle zur Validierung eines Produktionssystem überprüft
werden. Formale Methoden sind u. a. aus folgenden drei Gründen nicht ver-
breitet: (a) Die Formalisierung von (den richtigen) temporalen Anforderungen
ist schwierig. (b) Es mangelt an geeigneten Spezi�kationssprachen für Reak-
tive Systeme, die hinreichend ausdrucksstark und für Praktiker verständlich
sind. (c) Ohne ein Umgebungsmodell sind die erzielten formalen Ergebnisse
ungenau. Unabhängig davon sind Formale Methoden für automatisierte Pro-
duktionssysteme akademisch gut untersucht—hauptsächlich zur Überprüfung
der Safety-Eigenschaften mit Model-Checker.

Wissenschaftlicher Beitrag
In dieser Doktorarbeit stellen wir das Konzept der (1) Generalisierten Testta-

bellen (gtt) vor. Sie sind eine neue Spezi�kationssprache für funktionale Eigen-

vii

schaften von Reaktiven System. Mit ihrer Erweiterung, den (2) Relationalen
Testtabellen (rtt), können auch relationale Eigenschaften spezi�ziert werden.
Beide Konzepte bestehen aus der intuitiven (informellen) Beschreibung und
sowie der formalen De�nition von Syntax und Semantik. Mithilfe von rtts,
haben wir eine neuartige Vertraulichkeitseigentschaft für Reaktive Systeme
formalisiert, das beweisbare Vergessen von Information. Für die Regressionsver-
i�kation, eine wichtige relationale Eigenschaft, die die Abwesenheit von neuen
Fehlern in der Softwareevolution spezi�ziert, konnten wir eine erheblich Leis-
tungsverbesserung erzielen. Diese basiert auf einer (3) neuen Zerlegungsregel,
die komplexe Regressionsbeweisziele in kleinere und einfachere Unterbeweise
zerlegt. Neben den theoretischen Grundlagen meiner Ansätze entstanden auch
Implementierungen, die anhand von realistischen Fallstudien bewertet werden;
z. B. die Pick-and-Place-Unit der Technischen Universität München.

Generalisierte Testtabellen. Wir präsentieren das Konzept und die logis-
chen Grundlagen von gtts, eine Spezi�kationssprache für Reaktive Systeme.
gtts erweitern das Konzept der (konkreten) Testtabellen, die bereits in der
Qualitätssicherung von Software für Speicherprogrammierbare Steuerung (SPS)
verwendet werden. Die grundsätzliche Idee besteht in der Verallgemeinerung
der Tabelleneinträge. Dadurch beschreibt nun eine Tabelle nicht nur einen
einzelnen Testfall, sondern eine Familie von ähnlichen Testfällen. Trotz der
neuen Syntax versuchen wir die Selbsterklärbarkeit und Verständlichkeit der
konkreten Testtabellen zu bewahren. Besonders im Hinblick auf Ingenieure, die
Übung mit der Spezi�kation von Testfällen haben, aber eben nicht mit formaler
temporaler Spezi�kation vertraut sind.

Abbildung 1 zeigt eine typische gtt für die Spezi�kation eines Diagnose-
moduls. Während des Trainingsmodus lernt dieses Modul einen erwarteten
Wertebereich einer Sensorvariablen. Später im Betriebsmodus normalisiert
das Modul die gegebenen Sensorwerte und signalisiert einen Fehler, wenn der
gegebene Sensorwert zu lange außerhalb des erlernten Wertebereiches liegt.
Typischerweise besteht eine gtt aus zwei Seiten: die linke Seite mit den Spalten
für die Eingangsvariablen und die rechte Seite für die Ausgabevariablen. Jede
Zelle enthält Einschränkungen, die sich auf die Variable der aktuellen Spalten
bezieht. Die Zeilen bilden die Schritte des spezi�zierten Test-Protokolls. Sie wer-
den nacheinander von oben nach unten angewendet, wobei eine Zeile oder eine
Zeilengruppe übersprungen oder wiederholt werden kann, abhängig von den
angegebenen Wiederholungsbedingung (�). Wenn mehrere Nachfolgerzeilen
möglich sind, verzweigt sich das Test-Protokoll nicht-deterministisch.

In dieser Arbeit de�nieren wir die formale Syntax und Semantik von gtts.
Die Semantik de�niert dabei die Konformität eines Systems bezüglich einer

gtt und basiert auf einem Zwei-Parteien-Spiel über unendliche Worte zwis-
chen dem System und seinen Herausforderern. Dieses Spiel kann über Model-
Checking e�zient statisch überprüft werden. Wir demonstrieren die Umsetz-
barkeit und Anwendbarkeit von gtts anhand realistischer Beispiele aus der
Automatisierungsindustrie. Neben der statischen Überprüfung zeigen wir, wie
gtts auch zur Laufzeitüberprüfung eingesetzt werden können.

Relationale Testtabellen. Relationale Testtabellen (rtts) sind eine Erweiter-
ung von gtts. Sie ermöglichen die Spezi�kation von relationalen Eigenschaften.
Während eine funktionale Eigenschaft nur das erlaubte Verhalten eines Pro-
grammlaufes beschreibt, beschreibt eine relationale Eigenschaft das erlaubte
Verhalten von und zwischen mehreren Programmläufen. Mit rtts können
wir daher vorhandene Software zur Spezi�kation einsetzen. In dem wir, z. B.
in der Regressionsveri�kation, das Verhalten der neuen Softwarerevision in
Beziehung setzen zur vorherigen Revision. Damit stellen wir sicher, dass keine
unbeabsichtigten Änderungen oder Verhalten in der neuen Revision eingeführt
wurden.

rtts (vgl. Abbildung 2) erweitern die Syntax von gtts, um e�zient über
mehrere Programmläufe zu sprechen. Zunächst müssen die Programmvari-
ablen immer vollständig quali�ziert werden, im Beispiel b»SFCReset, d.h.
neben dem Namen der Variable SFCRecet wird der zugehörige Programmlauf
b mit angegeben. Mittels benutzerde�nierten Funktionen können die Zustände
der k Programmläufe auf n-Tupel abgebildet werden, die wir mit geeigneten
n-stelligen Prädikate überprüfen können, z. B. die Gleichheit = (n = 2) in
Abbildung 2 auf die Abbildung aller der Eingaben I oder Ausgaben O in den
Läufen a und b). Steuerbefehle (�, p, .r) erlauben uns die Ausführungen der
Programmläufe zu manipulieren. Dadurch können wir simultane Ausführungen
aller Programmabläufe aufbrechen, um eben auch relationale Eigenschaften zu
spezi�zieren, in dem die Programmläufe auch zeitlich auseinander driften.

Die Semantik von rtts ist durch Reduktion auf gtts de�niert. Dabei werden
die Steuerbefehle durch Programmtransformation der ursprünglichen Software
abgehandelt. Anschließend wird das k-fache Produktprogramm (der trans-
formierten Programmen) zusammen mit der, bei der Reduktion entstandenen,
gtt an die Veri�kationspipeline übergeben. Auch hier demonstrieren wir die
Anwendbarkeit und Durchführbarkeit der Spezi�kation und Veri�kation anhand
typischer Beispiele aus der Softwareentwicklung.

Modularisierung. Ein weiterer Beitrag ist die Modularisierung für Regres-
sionsveri�kation. Über die Regressionsveri�kation kann die Abwesenheit von
unbeabsichtigter Änderungen zwischen Softwareversionen bewiesen werden.

Für automatisierte Produktionssysteme, die über Jahrzehnte eingesetzt werden,
hilft diese Veri�kation bereits verdientes Vertrauen in den Anlagenbetrieb auf
die nächste Version zu übertragen. Häu�g sind die strukturellen und semantis-
chen Unterschiede zwischen den Software-Revisionen eher klein, bspw. werden
nur einige lokale Fehler behoben. Der Modularisierungsansatz ermöglicht es
uns, die Beweisverp�ichtung in kleinere Teilziele zu zerlegen. Dabei nutzen wir
die interne Struktur der Software aus.

Das Hauptziel der Modularisierung ist die Verbesserung der Veri�kations-
dauer. Dies wird hauptsächlich durch die Verwendung einfacher und schneller
Algorithmen zur Regressionsveri�kation erreicht. Der Einsatz dieser Algo-
rithmen wird erst durch die Modularisierung ermöglicht, da dadurch kleinere
Programmfragmente und einfachere Beweisziele entstehen. Der strukturelle und
semantische Unterschied in diesen Fragmenten ist i. d. R. gering bis nicht vorhan-
den. Beispielweise kann die Überprüfung der semantischen Äquivalenz zwischen
zwei Programmfragmenten schnell über den Vergleich der Syntaxbäume erfol-
gen. Dies ist ausreichend für unveränderte (und häu�g verwendete) Prozeduren
aus vorde�nierten Bibliotheken. Die Evaluation zeigt, dass die Modularisierung
die Regressionsveri�kation von massiger industrieller Software ermöglicht.

Der Hauptunterschied zu gängigen Modularisierungs- oder Abstraktion-
stechniken für die funktionale Überprüfung besteht darin, dass die Modula-
risierung kohärent in zwei Programmen erfolgen muss. Für die Kohärenz
benötigt mein Ansatz Markierungen an der Modulgrenzen im Quelltext (wobei
diese Grenzen benutzerde�niert automatisch aus der Softwarestruktur abgeleitet
werden können). Außerdem ist für jedes Modulpaar aus beiden Programmen ein
benutzerde�nierter Regressionsvertrag nötig. Der Vertrag ist dreiteilig: (1) eine
Bedingung zur Anwendbarkeit des Vertrages, (2) die angenommene Beziehung
der Eingabe und (3) die garantierte Beziehung der Ausgabe jeweils zwischen
den beiden Modulen.

Fazit. Alle Beiträge meiner Dissertation verfolgen die Idee, die Hürden für
die Anwendung der formalen Veri�kation für Reaktive Systemen im Allge-
meinen und automatisierten Produktionssystemen im Speziellen zu verringern.
Dies erfolgt durch Einführung einer neuen Spezi�kationssprache (gtts), durch
Ausnutzung bestehender Programme für die Spezi�kation (rtts, Regressionsver-
i�kation) und durch Verbesserung der Veri�kationsperformanz.

Contents

Summary iii

Zusammenfassung vii

Contents xi

1 Introduction 1
1.1 Contributions . 5
1.2 Outline . 7
1.3 Previously Published and New Material 8

2 Preliminaries 11
2.1 Reactive Systems . 11
2.2 IEC 61131-3: Software for Automated Production Systems 12
2.3 Model-Checking . 15
2.4 Regression Veri�cation . 19

3 Related Work 21
3.1 Functional Veri�cation of PLC Software 21
3.2 Speci�cations for Reactive Systems 23
3.3 Relational Veri�cation . 32

I Generalized Test Tables 37

4 Towards Generalized Test Tables 39
4.1 Concrete Test Tables . 39
4.2 Generalization of the Syntax . 41

xi

4.3 Examples . 47
4.4 Semantics: Conformance . 52

5 Formalization of Generalized Test Tables 57
5.1 Reactive Systems . 57
5.2 Syntactical Representation of Tables 59
5.3 Semantics . 65
5.4 Properties . 70

6 Decision Procedures 79
6.1 Model-Checking for Conformance 79
6.2 Horn-based Veri�cation via C-program Veri�er 86
6.3 Implementation of the Veri�cation Pipeline 94

7 Evaluation 103
7.1 Built-Ins of IEC 61131-3 . 103
7.2 Industrial Examples . 108
7.3 Plant-Speci�c Function Blocks 112
7.4 Veri�cation . 118

8 Runtime Veri�cation with Generalized Test Tables 123
8.1 Introduction . 123
8.2 Monitor Generation . 125
8.3 Application Scenarios . 132
8.4 Discussion . 135
8.5 Related Work . 136
8.6 Closing . 138

9 Conclusion and Outlook 139
9.1 Weaknesses and Strengths . 140
9.2 Meshed Generalized Test Tables 143
9.3 Generalising the Game . 148

II Relational Veri�cation 153

10 Relational Test Tables 155
10.1 Syntax . 157
10.2 Decision Procedure . 163
10.3 Conformance of rtts . 167
10.4 Application Scenarios . 167
10.5 Conclusion . 174

11 Provably Forgetting of Information 177
11.1 Con�dentiality in Automated Production Systems 177
11.2 Related Work . 180
11.3 Forgetting of Information . 181
11.4 Experiment . 185
11.5 Discussion . 190
11.6 Conclusion . 192

12 Modular Regression Veri�cation 193
12.1 Formal Equivalence Relations . 194
12.2 Modularization . 195
12.3 The Algorithm . 203
12.4 Evaluation . 210
12.5 Conclusion . 213

13 Conclusion 217
13.1 Summary of the Thesis . 217
13.2 Future Work . 218
13.3 Follow-up Projects . 220

A Glossary 223

B Source Code 227
B.1 Function Block MinMaxWarning 227
B.2 Function Block LinRe . 229

List of Figures 233

Listings 237

List of Tables 239

Bibliography 241

Companion material for this thesis is permanently available under [Wei21].

Chapter 1

Introduction

The software development of automated production system (aPS) is undergoing
a radical transformation. This transformation arises the need for new methods
for quality assurance of the required control software. In this thesis, we mainly
present new languages for the formal speci�cation of functional properties and
the speci�cation of the relationship to other programs, with the goal, to provide
an accessible and powerful speci�cation and veri�cation for engineers. The
need is expressed by the following quotation:

Software plays an ever-increasing

role in industrial automation.

Eelco van der Wal
Managing Director PLCopen

PLCOpen Newsletter of November 2017

Industrial Revolution Increases Complexity. The Fourth Industrial Rev-
olution (or Industry 4.0) is the current trend in manufacturing systems. This
notion encapsulates miscellaneous goals and measurements to enable more
productive and more automated manufacturing. The common ground of this
revolution is the increased information processing and integration.

For example, a main idea of this revolution is the support for individual
products which can be customized by each customer and order. This requires
that information �ows between the webshop of the producer, via the enterprise
resource planning system (ERP) to the control software of the production system.
An information �ow also exists in the opposite direction, as customers like to

1

2 CHAPTER 1. INTRODUCTION

be noti�ed of their order state. In this new scenario, the plant needs to adapt
itself to produce the di�erent product combinations. No changeover times or
manual interventions should be required. The idea of a �exible and adaptive
factory is driven even further, to such a degree, that it is not only possible to
automatically produce di�erent combinations of a product, but also to switch
the production to completely di�erent products. In this case, the hardware of
the production systems will be generic, and only the control software de�nes
the manufactured production.

The industrial revolution o�ers new possibilities for the producer to be
more responsive to and more capable on the market. Under this impression,
we can attest, that aPS and their engineering, especially their control software,
become increasingly complex, following current trends such as, e. g., increasing
customer �avor variety [Vog+15], and increasing system functionalities realized
by software [Thr10].

Criticality of Software. The control software is the central player in a pro-
duction system, and therefore it is an important part of the safety of the entire
system. A production system is safe, when (under any circumstance) it does not
endanger the human operators or itself. Safety is the most important require-
ment for a production system, but not the only one. These systems are a central
investment for a company, and the irreplaceable option to ful�ll the orders e�-
ciently. A standstill or non-correct working manufacturing is a mission-critical
risk, which needs to be highly avoided. Considering both aspects, the safety
requirement and their criticality, a rigorous validation of the production system
is required before operation.

Formal Methods. In academia, the application of formal methods to ensure
the reliability of aPS is well-researched (Section 3.1). Formal methods can appear
in di�erent shapes, e. g., formal veri�cation and speci�cation, symbolical or
model-based testing, model-based design. They have in common that they have
a rigorous mathematical background, which allows unambiguous reasoning and
validation of the systems. Formal veri�cation o�ers techniques to prove the
reliability of systems in all possible scenarios and circumstances. To achieve
this, the formal veri�cation requires a formal description of the system, formal
requirements, and rigorous (formal) procedure to reason about the adherence.
Note that source code is already a su�cient formal description of the control
software if it comes along with a proper interpretation.

Formal Methods in Industry Standards. Moreover, formal methods have
been implemented in the standards for functional safety. The IEC 61508 for

3

“functional safety of electrical/electronic/programmable electronic safety-related
systems” mentions semi-formal and formal methods in “Part 3: Software re-
quirements”. For example, explicitly stated are Petri-Net, Sequence Diagram
(UML) as semi-formal techniques, and symbolical execution [IEC61508, Table
B.7, Table B.8]. Additionally, “Part 7: Overview of techniques and measures”
de�nes formal methods similar to our perspective. Moreover, the standard ISO
13849:2015 de�nes “safety of machinery” and is part of Machinery Directive
(Directive 2006/42/EC) of the European Parliament and of the Council. Surpris-
ingly, the institute of the German Social Accident Insurance stated following
over this standard in connection to formal methods.

Der Einsatz rechnerunterstützter Spezi�kationswerkzeuge und formaler

Methoden zur Spezi�kationserstellung ist möglich, wenngleich unüblich.

The use of computer-assisted speci�cation tools and formal methods for

the speci�cation creation is possible, although uncommon.
1

Institut für Arbeitsschutz der Deutschen Gesetzlichen
Unfallversicherung [Hau+17]

Industrial Practice. In today’s industrial practice, formal methods have not
arrived. The software quality is assured with manually or automatically executed
tests, with coding guidelines [Böm+20; RV17; PLC18; PLC16] (Good Automated
Manufacturing Practice (GAMP)), and mainly on the development process level
of the software project [IEC61508]. It seems that the situation was much worse
around 2012: Kormann et al. [KTV12] attest “an unrepresented consideration
of testing. Currently, testing is reduced to spare manual developer checks by
randomly manipulating parameters of the control software.”

The main weakness of traditional testing is that one test case covers only
a single, particular run of the control software; many scenarios remain unin-
vestigated during testing. Full test coverage can rarely be achieved. Systematic
testing is a solid utility for detecting typical and expected faults, but unpre-
dictable and rare malfunctions (which also can have severe consequences) are
less likely to be discovered. For documentation of the test cases, test tables are
widely used by the industry [Rös+14]. Each table consists of a sequence of sensor
inputs with their expected software responses (table columns), and its rows
denote the successive test steps with the speci�ed inputs and outputs for/of the
control software. Test tables are commonly written using spreadsheet software
and executed within test automation tools like the CODESYS Test Manager.

4 CHAPTER 1. INTRODUCTION

In contrast to testing, formal veri�cation achieves full coverage and provides
mathematical proof of correctness. Also, a bene�t of formal veri�cation is that it
can be applied early in the software development process, thus, potential faults
can be early discovered and removed. As analyzed by Pakonen et al. [Pak+16],
one reason for lack of formal methods in aPS domain is that adequate formal
speci�cations are not easily obtained and require a deep understanding of the
underlying formal concepts. This makes the application of formal methods often
unduly labor-intensive. Also, Ovatman et al. [Ova+16, 10.1 Open Challenges]
state that “Specifying Properties to be checked” is an open challenge. In partic-
ular, they attest that “temporal logic [..] requires expertise in formal methods
and mathematical modeling area” and they also have foreseen our test tables
(“conversion from a tabular format to extract speci�cations in LTL or CTL”).

Summary and Look Ahead. Although the industry standards allow and pro-
mote the use of (semi-)formal methods, they have not reached the daily practice
of the aPS software development yet. With our contributions (Section 1.1), we
want to bring formal methods into the software development of automated
productions. First, by the introduction of a new speci�cation language, which
is derived from a currently used language for describing test cases. Second,
by the extension of our speci�cation language (and veri�cation) for relational
properties of control software. Traditionally, functional correctness, e. g., the
adherence to safety requirements, is a property of a single program run. In
contrast, the relational properties are able to express relations between multiple
program runs. These program runs can be de�ned by the execution of di�erent
programs or the same program. Thus, using relational properties, we are able
to use (existing) software for the speci�cation, and minimize the size formal
speci�cation—leaving the application engineer in their accustomed environment.
Two prominent applications of relational veri�cation are the regression veri�ca-

tion (proving conditional program equivalence), and non-interference (proving
the absence of information �ow). For the regression veri�cation, we propose a
novel modularization approach, which enables the comparison of large control
software. Also, we use our relational speci�cation to formalize a novel security
property to identify systems which eventually forget secret information. With
relational veri�cation, we refer to the veri�cation of relational properties.

Scope of this Thesis. We limit the scope of this thesis to the domain of auto-
mated production systems, their prevailing programming language, and their
computer systems – programmable logic controllers (PLC). This is mainly moti-
vated by the accessibility to case studies and software. But our considerations
and contributions are directly applicable to a wider range of systems, known

1.1. CONTRIBUTIONS 5

as reactive systems. We characterize them by two facts: They are periodically
executed and operate in a feedback loop with a physical environment. We fully
introduce them in Section 2.1 (informally) and Section 5.1 (formally). From our
theoretical perspective, we do not distinguish the reactive system and the PLC
and use these terms synonymously.

1.1 Contributions
In this doctoral thesis we present the following contributions:

Generalized Test Tables To lower the threshold of applying formal veri�ca-
tion, we propose generalized test tables (gtts), a novel formal speci�cation
language which is derived from the existing concrete test tables.
By using the industrial used concrete test tables, we hope to transfer their
comprehensibility and intuitiveness into a formal speci�cation, which
gives an increased validation coverage. The degree of generalization can
be individually decided by the engineer by using (or not using) the feature
of gtts. This allows for gradual progress from speci�cation-by-example
(starting with a concrete test table) to a fully systematic speci�cation.
gtts support static and dynamic veri�cation.

Relational Test Tables Using relational properties, we can specify require-
ments by using (existing) software, and so decrease the size formal spec-
i�cation. Also, relational properties cover a wide range of important
requirements, like secure information �ow. The veri�cation of relational
properties are hardly accessible to engineers.
We introduce relational test tables (rtts) – an extension of gtts for
the speci�cation of relational properties. Relational test tables support
the speci�cation of relational properties between k ≥ 2 program runs
(also known as k-hypersafety properties). This is the �rst (dedicated)
speci�cation language for relational properties of reactive systems.

Forgetting Information During the manufacturing process, con�dential in-
formation is generated and aggregated that constitute business secrets;
therefore they are part of the attacker’s focus and require rigid protection.
Hence, it is a valuable target to prove the absence of business secrets.
For this, we present a novel notion of information forgetting in reactive
systems. This is a relational property describing that a reactive system
forgets the speci�ed information within a certain amount of execution cy-
cles. This property limits the amount of historical information an attacker

6 CHAPTER 1. INTRODUCTION

can learn by observing a manufacturing system. Information forgetting is
a relational property formalized upon rtt.

Modular Regression Veri�cation Regression veri�cation, a relational prop-
erty, helps to prevent the introduction of unintended, faulty behavior
during the software evolution, and to transfer the earned trust of opera-
tionally well-tried systems to the next revision [Cha+19].
We present a novel approach for modular regression veri�cation proofs
for reactive systems based on the idea of relational regression veri�cation
contracts. The approach allows the decomposition of a larger regression
veri�cation proof into smaller proofs on its sub-components. We embed
the decomposition rule in a new algorithm for regression veri�cation,
which orchestrates several light- and heavyweight techniques.

Each contribution is evaluated to show its practicability and feasibility. For
this an additional contribution has arisen besides this thesis: our veri�cation
library verifaps.

Veri�cation Library We contribute verifaps, an open source library for the
veri�cation of aPS software after IEC 61131-3 standard (Section 2.2).2 The
library provides the basic functionality for parsing and transformation of
the programming languages, syntactical analyses, accessibility to logical
models, symbolical execution engines, and support for the communica-
tion with veri�cation backends. Also, all our presented approaches are
implemented with this library, and are available in the same repository.

The contributions of this thesis follow the idea of lowering the obstacle
of verifying the dependability of reactive systems in general, and automated
production systems in particular for the engineer by introducing a new speci�-
cation language (gtts), exploiting existing programs for the speci�cation, or
improving the veri�cation performance.

The presented work was mainly done within the improve aps project (as
part of DFG Priority Program 1593 –“Design for Future”), in cooperation with
Suhyun Cha, Dr. Sebastian Ulewicz and Prof. Birgit Vogel-Heuser of the Techni-
cal University Munich (TUM). Whereas this thesis concentrates on the formal
foundations, the veri�cation tooling, and their feasibility of the presented ap-
proaches, the companion doctoral thesis of Suhyun Cha focus on the automation
engineering perspectives, including the application concept (under considera-
tion of mechanical requirements), use cases, and empirical evaluations of gtts
and regression veri�cation.

2https://github.com/VerifAPS/verifaps-lib

https://github.com/VerifAPS/verifaps-lib

1.2. OUTLINE 7

1.2 Outline
This thesis is split into two parts. The �rst part (Part I) is dedicated to the
functional veri�cation with gtts and the second part (Part II) to the relational
veri�cation of reactive systems.

Before we dive into our contributions, the Chapter 2 presents preliminary
work, which is required to understand content chapters. In particular, we give an
informal de�nition of reactive systems (Section 2.1), the programming languages
of aPS de�ned by IEC 61131-3 (Section 2.2), an overview on Model-Checking
for Linear Temporal Logic and IC3 in Section 2.3, and our previous work on
regression veri�cation (Section 2.4).

The Chapter 3 gives the combined general related work on the functional
veri�cation of aPS, and the relational veri�cation. Additionally, related works
are also given in Sections 8.5 and 11.2 if they are too speci�c.

Part I. In the �rst part we introduce the gtts. We start with an informal engi-
neering perspective in Chapter 4 in which we try to give a phenomenological
view upon gtts, covering the syntax and semantics and giving examples. This
chapter targets engineers which want to understand and use gtts. The follow-
ing chapters are more formal. Chapter 5 presents the mathematical foundations
of gtts, including the formal de�nition of reactive programs and systems, the
syntax and mathematical structure of gtts (Section 5.2) and also their formal
game-based semantics. We distinguish between the weak, strict, and cooperative
conformance (Section 5.3). At the end (Section 5.4), we state and prove properties
of gtts. The formal foundation is exploited in Chapter 6 to build two decision
procedures using model-checker (Section 6.1) and Horn-based C-program veri-
�er (Section 6.2). Both procedures decide whether a given program is valid in
respect to a gtt. Our approach is evaluated in Chapter 7 by the speci�cation
and veri�cation of examples from the IEC 61131-3 standard, industrial practice,
and a demonstrator plant of the TUM. These chapters focus on the static veri�-
cation of gtts. In Chapter 8, we investigate the dynamic veri�cation of gtts by
generating runtime monitors. The generated monitors close the gap between
the static veri�cation and the operation, e. g., checking of observance of the
veri�cation assumption. We close our considerations on gtts in Chapter 9 with
the discussion of strengths and weakness of gtts (Section 9.1), more powerful
“meshed gtts” (Section 9.2), and a generalization of the underlying two-party
game semantics (Section 9.3) to allow other speci�cation notions than gtts.

Part II. Chapter 10 presents the rtts as an extension of gtts. Therefore, we
focus on the di�erence to gtts. Moreover, this chapter also includes the decision

8 CHAPTER 1. INTRODUCTION

procedure for rtts (by reduction to gtts), and four realistic application scenarios.
The rtts are also used to de�ne the property of forgetting information in
Chapter 11, which motivates, explains, and formalizes this property for reactive
systems. Also, a large part (Section 11.4) is dedicated to the application of this
property on a demonstrator provided by the Fraunhofer IOSB and developed
by a third contractor. The decomposition rule for the regression veri�cation is
presented in Chapter 12, along with a new algorithm for regression veri�cation
and the evaluation.

1.3 Previously Published and New Material
Parts of this thesis were published in similar or di�erent shapes. We dedicate
this section to clarify the origin of the chapters.

Part I. gtts were covered in [Cha+18b; Wei+17; Bec+17; Bec+19]. These
publications are included and extended in the Chapters 4 to 6. In particular,
Weigl et al. [Wei+17] gives an informal view on gtts and provides the linear
interpolation example in Section 7.2.1. In the companion paper [Bec+17], we
presented the syntactical and semantical formal foundation (evaluation of ex-
pression, mathematical structure two-party game, etc.) and also the “min-max”
example in Section 7.2.2. With [Cha+18b], most of these parts became depre-
cated by the introduction of gtt new features: row groups, strong repetition
and state variables. Also, Section 7.3 origins from [Cha+18b]. In this thesis,
we have revisited, extended and updated the texts and the mathematical de�ni-
tions. Especially, the following (larger) points are new and unpublished in the
Chapters 4 to 6.

• Two separate informal explanations of the gtt semantics (Chapter 4).

• A new (additional) conformance de�nition: the cooperative conformance
(Chapter 5).

• A new decision procedure exploiting C-program veri�er. This idea was
originally investigated in a bachelor thesis [Wie20]. For this doctoral
thesis, the presentation is completely rewritten, the evaluation is extended
to our examples, and we also use SeaHorn [Gur+15].

• The evaluation was completed repeated (Chapter 7). Also, new cases are
added from the standard IEC 61131-3, and an additional table for “min-max”
example (Section 7.2.2).

1.3. PREVIOUSLY PUBLISHED AND NEW MATERIAL 9

Note that Beckert et al. [Bec+19] is a revisited presentation of the material in
[Bec+17] and [Bec+15].

The Chapter 8 bases on the recently accepted paper [Wei+21]. We updated
this chapter to be aligned to the prevalent notions in this thesis and added a
new section on the implementation (Section 8.2.4).

The last chapter in this part, Chapter 9, is completely unpublished bases on
personal notes.

Part II. The presented work regarding the area of relational veri�cation con-
sists of three chapters which origins from three publications.

Weigl et al. [Wei+20] is the source of Chapter 10. The texts are revisited
and adapted to �t into this thesis. These adaptations include the use of the
common notions of this thesis, and the removal of gtt explanations in favor of
Part I. Also, the idea of projection function in the table column (Section 4.2.2.2)
is backported to gtts.

Chapter 11 is not peer-reviewed published. A technical report [Wei19] exists
with a stronger focus on the veri�cation process and the software. This chapter
is rewritten to bring more attention to the novel property of the forgetting of
information. Note that this work was already publicly presented at the annual
meeting of the FoMSESS 2019.3

Chapter 12 was previously published in [WUL20]. The idea is further re-
search of our master thesis [Wei15] and was later topic the master thesis of
Daniel Lentzsch [Len18]. In contrast to [WUL20] and besides notion adaptions,
this chapter receives a larger explanation for the “conformance by symbolic exe-
cution” (including the algorithm) in Section 12.3.2, more detail on the soundness,
and we elaborate the use rtts and multiple contracts.

Also, there are papers related to topics of this thesis but not covered. In
[Cha+19], the authors explain how and when trust in an aPS is preserved from
the old revision to the new revision of the system. And Cha et al. [Cha+18a]
proposes a simple speci�cation inference of gtts from Sequential Function
Charts. The idea is to use the generated gtts as regression test cases for the
new revision.

3FoMSESS is a special interest group under the umbrella of the German Informatics Society
and dedicated to Formal Methods for the Software Engineering, Safety and Security.

Chapter 2

Preliminaries

2.1 Reactive Systems
We already mentioned the term “reactive systems”. Now, we want to intro-
duce it in more detail. For our section, we use [Hal98]. Reactive systems are
characterized by the two facts:

• They are designated to run forever.

• They need to react to their environment.

The �rst fact distinguishes reactive systems from simple batch programs. A
batch program starts with an input and terminates with an output. In contrast,
a reactive system starts and continuously interacts with its environment. Both
facts are also suitable for interactive systems. In comparison to reactive systems,
interactive systems can synchronize with their environment [Hal98], i. e., block-
ing any further progress in it. For example, communicating systems are typically
interactive. As long as a communication party does not emit the next message,
the other parties (environment) pauses and wait for it. A reactive system cannot
block or pause its environment, because its environment consists of physical
processes, which run unblockable and in parallel with the system.

We can distinguish between two operation modes for reactive systems: event-
driven and sampling. In event-driven mode, the system waits for certain events
to occur, which triggers the program execution. In sampling mode, the system
periodically (1) reads the input values, (2) executes the program, (3) writes output
values, and (4) waits for the next cycle. This procedure is also known as the
“scan cycle” in the terminology of aPS. For our thesis, we focus on the sampling
mode.

11

12 CHAPTER 2. PRELIMINARIES

Usually, software for reactive systems is limited in the used (or allowed)
programmatic constructs because they have to ensure real-time guarantees
with deterministic runtimes. The scan cycle has to be �nished before the next
cycle starts. Halbwachs [Hal98] already pointed out that reactive systems are
“[..] intended to be deterministic” and “[..] are submitted to critical reliability
requirements”. The formal de�nition follows in Section 5.1. Note that in this
thesis we only consider deterministic reactive systems and software.

2.2 IEC 61131-3: Software for Automated
Production Systems

In this section, we clarify the notions of the IEC 61131-3 standard [IEC61131-3],
which de�nes the software and programming languages of aPS.

The techniques in this thesis are applicable to all kinds of reactive software
systems. However, we put a special focus on Programmable Logic Controllers
(PLC). PLCs are computing units that are used to drive and control automated
production systems. Thus, they are reactive real-time systems, and are usually
in operation for a long time. Due to the massive amount of I/O, and the real-time
and safety requirements, PLCs are specialized computing components that are
programmed di�erently from standard PC hardware. In a PLC, the program
code (logic) is repeatedly executed once every few milliseconds. The constant
time between two runs is called the cycle time. There are also di�erent execution
modes for PLCs (event-driven, continuous, . . .) that we do not consider in this
thesis.

Program Organization Units. A family of �ve programming languages for
PLCs is de�ned in the standard IEC 61131-3 [IEC61131-3]. These programming
languages are the body of Programming Organization Units (POUs). POUs are
the concept of structuring a PLC software into multiple reusable components.
A POU can occur in di�erent shapes as a program, a function block, a function,
an interface, and a class. Interfaces and classes are introduced in the latest
version of IEC 61131-3 to allow object-oriented programming. In this thesis,
we concentrate on the �rst three POU kinds. Functions are callable stateless
procedures, which take input arguments and compute a return value. Functions
can be called as a single statement or inside an expression. In contrast, a function
block can have state variables and multiple output variables. A function block
needs to be instantiated (similar to classes in object-oriented languages) inside
any other stateful POU (function block, program). The number of instances is
not limited. A function block o�ers only one function which can be invoked on

2.2. IEC 61131-3: SOFTWARE FOR AUTOMATED PRODUCTION SYSTEMS 13

the state of the instance. As it has multiple output variables, an instance of a
function block cannot be invoked inside an expression. Programs are similar to
function blocks, as they are also stateful. But in contrast, programs cannot be
instantiated inside the PLC software, instead, they are instantiated from the PLC
system during the bootstrapping of the application. Programs are the entry point
for the PLC to invoke the logic. The execution (frequency and priority) is de�ned
in a con�guration description. You can consider programs as singleton function
blocks. Also, we consider the input and output variables of the programs as the
incoming sensor and outgoing actuator signals.1 Additionally, to the state of the
de�ned programs, we can de�ne global variables, which can be accessed from
every POU. In this thesis, the PLC software in the examples and experiments
has one program and no global variables. We use the notion “PLC program” to
refer to the complete software and not the program POU.

All considered POUs (program, function block, function) are de�ned by two
parts: the signature and the implementation body. The signature de�nes the
variable with their names, datatype, and category (input, output, local, etc.).
The datatypes are either built-in (various integers, �oat double, strings, time,
datetime, etc.) or user-de�ned (structures, arrays, etc.). The implementation
body is written in one of the �ve languages: Structured Text, Sequential Function
Chart, Function Block Diagram, Ladder Diagram, and Instruction List. We give
a brief overview:

Structured Text Structured Text (ST) is a textual imperative programming
language, similar Pascal. It has the typical statement constructs: loops (for,
while, repeat), selection (if, case), limited jumps (exit, return, continue),
and assignments.

Sequential Function Chart Sequential Function Chart (SFC) are a graphical
programming language, which is derived from Grafcet (EN 60848) and
Petri-Net. In the core, an SFC is an automaton with steps (states) and
transitions between the steps. A transition has a guard, and can connect
multiple predecessors with multiple successors, to allow a fork and join
similar to Petri-Net. With each step, we associate a list of actions, which
are triggered when the step is active. The special feature is that these
actions can be triggered depending on a given quali�er. For example, the
timed quali�er D T#1s triggers an action after the step was active for one
second.

Function Block Diagram Function Block Diagram (FBD) are graphical lan-
guage. An FBD is a list of networks. A network is a graph consisting of

1Normally, this is given in a con�guration description, which describes a mapping between
the state space and the I/O bus.

14 CHAPTER 2. PRELIMINARIES

computation nodes (operators, functions, function block instances) and
variable dependency (transitions). A network is executed by invoking the
computation nodes in topological order de�ned by the variable depen-
dency. This representation allows capturing the information �ow from
the input and state variables to the output variables easily. A seldom-used
feature is the goto-node, which allows jumping between graphs inside an
FBD.

Ladder Diagram Ladder Diagram (LD) is the third graphical language, which
emulates an electrical circuit. An LD consists out of multiple networks.
Each network consists out of circuit diagrams (coils, contacts, and con-
necting lines), which are limited by the left and right vertical power lines.
The evaluation of an LD is a simulation of the current �ow from left to
right, where connection lines and coils always pass the �ow and contacts
only let it pass if their associated variable is true. Additionally, coils store
the incoming �ow into a variable.

Instruction List Instruction List (IL) is a textual assembler-like language. An
IL body consists of a sequence of commands, which are evaluated against
an accumulation register. Conditional and unconditional jumps exist.
This language is marked as deprecated and will be vanished in the future
version of the standard.

In this thesis, we concentrate on Structured Text. You �nd examples for
Structured Text throughout this thesis (Listings 4.4, 4.6, 7.1 and 7.3 and Appen-
dices B.1 and B.2). In previous work [Wei15] we gave a deeper introduction and
formal semantics to Structured Text. A formal de�nition for SFCs is given by
Bauer et al. [Bau+04b], and a former Instruction List semantics is in [Wan+13].
A reduction of SFCs to ST is given by bachelor thesis [Gor19], which we super-
vised. In Section 6.3.1, we introduce ST0 a simpli�ed version of ST and explain
how we handle the languages in our veri�cation pipeline. Note that there are
vendor-speci�cs extensions to the IEC 61131-3 languages, e. g., goto-statement
in ST, pointer with pointer arithmetic, conditional assignments. We do not
consider these extensions in this thesis.

Restrictions. While the languages are Turing-complete, PLC programs hardly
ever contain general while-loops. If they contain loops, they have a known
�xed upper bound on the number of iterations since PLC code has to meet strict
real-time conditions. For the same reason, recursion is avoided. Additionally,
the state space of PLC programs needs to be bounded at compile time because
the complete memory is allocated during the bootstrapping of the PLC program

2.3. MODEL-CHECKING 15

which makes them more predictable. This forbids dynamic memory allocation
and also recursive datatypes (a record cannot have a variable of its datatype).
Both limitations make the correctness theoretical decidable.

2.3 Model-Checking
Model-Checking is the discipline of evaluating that a given property P holds in
a given modelM, often written asM |= P .

Let AP be a �nite set of automatic propositions. The atomic propositions
represent the value of program variables. We use Kripke structure as the model
of our systems (cf. [GGS21]):

De�nition 2.1 (Kripke structure). A Kripke structure K = (S, I, R, L) is a

4-tuple, where 1. S is a �nite set of states, 2. I ⊆ S is the set of the initial states,

3. R ⊆ S × S is a total transition relation between states, and 4. L : S → 2AP is

the labeling function.

A Kripke structure is a graph in which the states S are connected via R. The
label function L determines the variable assignment in each state. We say a
proposition p is true in state s ∈ S if and only if p ∈ L(s).

For the veri�cation of linear temporal logic (LTL) properties, we are in-
terested in the linear in�nite paths starting at an initial states. A path p =
s0, s1, s2, . . . over a Kripke structure K is an in�nite sequence of states (si ∈
S ∧ (si, si+1) ∈ R ∧ s0 ∈ I). Normally, we interest for the value assignments
along a path: a trace t = L(s0), L(s1), L(s2), . . . is in�nite sequence of the
corresponding labels for a given path p. Hence, a trace t is a word in 2APω . With
L(K) ⊆ 2AWω we denote the set of all possible traces over a Kripke structure
K . The model-checking problem for LTL is stated as follows:

De�nition 2.2 (Model-Checking of LTL). An LTL property P ∈ FmlAPLTL holds

in a Kripke structure K if and only if the property holds on all traces overK :

K |= P i� ∀t ∈ L(K). t |= P .

The set of all LTL FmlAPLTL is de�ned in De�nition 2.3.
From Büchi [Büc90], we know that model-checking of LTL is decidable by

reduction to the emptiness problem of Büchi automata, but this su�ers under
state explosion as explicit automata for the system and the LTL formula are
constructed. In modern tools, more advanced techniques are used, either by the
reduction from LTL to Computation Tree Logic (CTL) [CGH97], which can also
be checked symbolically [Bur+92]. Or by translation to an invariant [Bra+11;
HBS12] and using IC3 (and derivatives).

16 CHAPTER 2. PRELIMINARIES

Linear Temporal Logic (LTL). LTL model-checking depends on the evalua-
tion of the LTL property P on each trace. The set FmlAPLTL denotes the set of
LTL property over the propositions AP . We de�ne similar to [BK08, De�nition
5.1.]:

De�nition 2.3 (LTL formulas). The set FmlAPLTL of LTL formulas is de�ned as

• true ∈ FmlAPLTL and a ∈ FmlAPLTL (for each a ∈ AP) are LTL formulas.

• Let φ1, φ2 ∈ FmlAPLTL, then

φ1 ∧ φ2 ∈ FmlAPLTL
Xφ1 ∈ FmlAPLTL

φ1 U φ2 ∈ FmlAPLTL
¬φ1 ∈ FmlAPLTL

This is a minimal de�nition for LTL, consisting of two temporal operators until
(U) and next (X), negation, and the conjunction. By DeMorgan’s law, we also
have false and the disjunction. Additionally, we de�ne the two operations
�nally and globally:

Fφ ≡ true U φ Gφ ≡ ¬F¬φ

The semantics de�ne when given a trace t at a starting position n ∈ N satisfy
an LTL formula φ, denote as t, n |= φ.

De�nition 2.4 (LTL semantics). Let t = s1, . . . be a trace over 2AP and φ ∈
FmlAPLTL, then satisfaction of t, n |= φ is de�ned as

t, n |= true
t, n |= a i� a ∈ sn
t, n |= φ1 ∧ φ2 i� t, n |= φ1 and t, n |= φ2

t, n |= ¬φ1 i� t, n 6|= φ1

t, n |= Xφ1 i� t, n+ 1 6|= φ1

t, n |= φ1 U φ2 i� ∃j ≥ n. (∀n ≤ i < j. t, i |= φ1) and t, j |= φ2

Note that the default starting is zero, hence t |= φ ≡ t, 0 |= φ. From the
semantics, we see the next-operator (Xφ) is satis�ed if φ is satis�ed in the
successor state (n+ 1). The until-operator (U) requires an upcoming point in

2.3. MODEL-CHECKING 17

time (j) in which φ2 is satis�ed, and before j, each point (i) satis�es φ1. For
globally- and �nally-operator following semantics are derived:

t, n |= Fφ1 i� ∃j ≥ n. t, j |= φ1

t, n |= Gφ1 i� ∀j ≥ n. t, j |= φ1 ,

which are rather simpler than the until-operator. Finally-operator states that
a φ1 must be satis�ed eventually in the future, and globally-operator requires
φ1 is satis�ed in all upcoming states (j ≥ n). For our formalization, we use the
combination of both GFφ, which can be interpreted as φ is “in�nitely often”
satis�ed.

IC3. Incremental Construction of Inductive Clauses for Indubitable Correct-
ness (IC3) is a relatively new technique for checking invariants in a Kripke
structure. An invariant is a state formula which needs to be valid in all reachable
states of a system. Coming from LTL, an invariant is describable Gφ, where
φ is formula free of any temporal operator. Bradley and Manna [BM07] �rstly
formulated this technique, which later targeted in various publications, e. g.,
[SB11; Bra12; Bra11].

We reuse our Kripke notions: Let I ⊆ S be the initial states, and R ⊆ S × S
the transition relation between states. Also, let P ⊆ S be our property, given as
the set of states which ful�lls the given invariant φ

P := {s | s ∈ S ∧ s |= φ} .

Note that normally these sets are described by CNF formulas. For our explana-
tion, we use the unusually (but simpler) notion with explicit sets.

The idea IC3 is to �nd a new inductive invariant Inv ⊆ S with following
properties:

• the inductive invariant is stronger than our property:

∀s ∈ S. s ∈ Inv → s ∈ P

• the inductive invariant is indeed inductive:

∀s, s′ ∈ S.s ∈ Inv ∧ (s, s′) ∈ R→ ∧s′ ∈ Inv , and

• it is valid for the initial state:

∀s ∈ I.s ∈ Inv

18 CHAPTER 2. PRELIMINARIES

If such an inductive invariant Inv is found, we have shown that our property φ
holds in all reachable states.

Bradley [Bra12] gives a detailed explanation. The algorithms are in [Bra11].
Here, we give a brief explanation of the procedure, and try to abstract the
sophisticated SAT encodings. For more details refer to the publications.

In the core, IC3 is a forward search (similar to bounded model checker) and
a backward propagation of occurring counter-examples. Counter-examples can
be spurious because IC3 uses internally an over-approximation of the reachable
states. This approximation is strengthened by the spurious counter-examples. In
the remaining section, we use s ∈ S and s′ ∈ S as universal quanti�ed variables
in each formula.

IC3 starts with two simple checks to ensure that the property is valid in the
initial states, and the states reached after one step, formally, s ∈ I → s ∈ P
and s ∈ I ∧ (s, s′) ∈ R→ s′ ∈ P . Afterward, it starts with the forward search.
Let Fk ⊆ S be a set of states, s.t. all states reachable within k transitions are
(at least) included in Fk. Hence, F0 are the initial states (F0 = I). F1 is set to
all states which adhere to the property. Note that the initial de�nition of F1
(“F1 = P ”) is the over-approximation. The forward search extends F1 to F2 by
applying one transition step:

F2 := F1 ∪ {s′ | s ∈ F1 ∧ (s, s′) ∈ R}

Now, we need to check if we have reached states in F2, which violates our
property. If F2 \ P = ∅, then P is the searched inductive invariant, and we
terminate. Otherwise, we need to check each violating state s ∈ F2 ∧ s 6∈
P , whether it is spurious or indeed reachable (and therefore a valid counter-
example). Reachability needs to be checked by applying R reversely, for F2:

∃s, s′, s′′ ∈ S. s′′ ∈ F2 ∧ s′′ 6∈ P ∧ (s′, s′′) ∈ R ∧ (s, s′) ∈ R ∧ s ∈ I

If no such s exists, we can subtract s′ from F1 as s′ is not reachable in one
step from F0 and part of the over-approximation. Note that we know that
s′′ is reachable via s′. In general, for arbitrary k, the counter-example s′′ is
back-propagated until F0. If it is spurious, then there exists k′ < k for which
the transition cannot be applied reversely. Then, all Fk′′ (k′ ≤ k′′ ≤ k) are
strengthened by subtracting the corresponding falsely assumed reachable state.
If F1 became strong enough (no counter-examples are reached in F2 anymore),
there are two options: On Fk = Fk+1, IC3 terminates and the inductive invariant
is the state-formula which describes the set Fk. Or Fk 6= Fk+1, then we proceed
with the forward search by expanding Fk+1 to Fk+2.

It may be surprising, that Fk becomes the inductive invariant. But this is
just a consequence of the k-induction: A formula, which describes all reachable

2.4. REGRESSION VERIFICATION 19

states, is inductive on the transition relation. If Fk = Fk+1, we reached an
over-approximation of the reachable states Fk, s.t. no new states can be reached
with one additional transition application (k + 1), and by construction every
state s ∈ Fk adheres the property P . IC3 always terminates for �nite state
spaces, as there exists a maximal amount steps in which all states are reachable.

In implementations, the sets Fi are encoded using a set of clauses s.t. their
models are the set of included states. A huge performance impact has the gener-
alization of the counter-examples. In our explanation, we only back-propagate
one state at a time. Due to a symbolical encoding, it is also possible to propagate
a set of violating states. These violating states are found by generalization in the
last (violating) transition. One simple generalization is to start with a concrete
counter-example, given as a model from the underlying SAT-solver, and drop
literals from this model as long as all states (described by reduced model) violate
the property.

2.4 Regression Veri�cation
Beckert et al. [Bec+15] applies regression veri�cation to PLC software and is
the base for our work of rtts and modular regression veri�cation.

Motivation. Throughout their lifetime, systems have to adapt to new situa-
tions (bug �xes, hardware replacements, new function requirements, etc.) and
many system changes will also incorporate changes in the software. Each soft-
ware modi�cation potentially introduces incorrect behavior as a side e�ect. To
avoid the e�ect, regression tests are widely used in the industry as they yield
good results and can easily be extended to the new functionality of the software.
However, software testing cannot guarantee correct behavior since there will
always be scenarios that are not covered by the test suite. Functional veri�ca-
tion can help to overcome this problem: A formal speci�cation describes the
expected behavior of the software and a veri�cation system analyzes whether
the speci�cation holds in all possible scenarios. But, the speci�cation must be
user-provided and is, in most cases, not trivial to �nd, especially when devel-
opers are less experienced with formal speci�cation. For the veri�cation in an
evolutionary environment, two speci�cations are required: one for the existing
software revision, and one for the new revision.

De�nitions. In regression veri�cation, instead of using two speci�cations
for two revisions, both revisions are compared directly to each other: The old
software revision serves as a functional speci�cation for the new one. However,

20 CHAPTER 2. PRELIMINARIES

the old revision can only partially specify the new revision since only those sce-
narios (input sequences) where the behavior should not change can be checked
for equivalence. The input sequences, for which the behavior has been inten-
tionally changed, need to be veri�ed separately using functional veri�cation or
testing, as identi�ed in [Ule+16b]. This functional veri�cation of the behavioral
di�erence between the old and new system is, therefore, called delta veri�cation.

Regression veri�cation does not necessarily imply the software behaves
correctly for all inputs, it rather says that the software has the same behavior as
the previous revision, including all potentially undiscovered errors. Regression
veri�cation transfers “trust” (of correct functioning) of the old software to the
new software. Therefore, the con�dence and trust must be experienced or earned
by the older software during its operation, validation, or veri�cation. This topic
is detailed elaborated in [Cha+19].

Beckert et al. [Bec+15] identi�es three di�erent kinds of equivalences be-
tween PLC software. We present the simplest and most complex formalization
here.

First, the perfect equivalence states that under equal input both systems
produce equal output. This is a typical use case when the software changes are
only refactoring steps. Note that perfect equivalence is similar to bisimulation.
Bisimulation [San09] states that both system K,K ′ (given as a Kripke structure)
simulates each other: K ∼ K ′. This implies, that the languages of both struc-
tures are equal L(K) = L(K ′). Hence, there exists no Büchi automaton which
can distinguish between both structures K and K ′. Whereas the bisimulation
considers the complete state, the perfect equivalence only claims the equivalence
for input and output variables, thus, does not enforce the equivalence for state
variables. Also, for deterministic systems, the bisimulation coincides with the
trace equivalent [San09]. And later formulation is similar to perfect equivalent
modulo the state variables.

Second, the conditional equivalence extends the perfect equivalence in two
ways: (a) the equivalence of input and output are replaced by user-de�ned
relations, and (b) a predicate �ltering out traces for which the relation is not
enforced. Conditional equivalence only permits a relation over old and new
states in the same cycles—relating states of di�erent time points is not possible.
Also, there exists only one relation overall time and all traces of the old and new
software. For the evolution scenario of the Pick-and-Place Unit (Section 7.3) in
[Bec+15], conditional equivalence was su�cient. Nonetheless, we develop rtts
which allow far more complex relational (and regression) properties.

Chapter 3

Related Work

We use this chapter to present the related work to our thesis. In contrast to the
preliminaries, the related work follows goals similar to our thesis’ contribution.
We identi�ed three di�erent research �elds: Section 3.1 reports previous attempts
on formal veri�cation for PLC software. In Section 3.2, we report on previous
attempts for new speci�cation languages for PLC and reactive systems. Finally,
we discover the world of relational veri�cation in Section 3.3. Also, related work
which is very individual to a speci�c topic is given in Sections 8.5 and 11.2.

3.1 Functional Veri�cation of PLC Software
In a broader sense, we follow with gtt the goal of functional veri�cation. The
contribution is mainly a new formal speci�cation language, but we see the
necessity to give a current overview about the state of functional veri�cation of
PLC software.

This research domain is already the subject of three surveys [Lam+99; YF03;
Ova+16]. We focus on the most recent survey [Ova+16] from 2016, and extend
it later with more recent publications. Ovatman et al. [Ova+16] presents a
meta-study and gives interesting insights: the used veri�cation techniques, the
programming languages of the case studies, the temporal logic, and the kind
of properties. For the veri�cation techniques, they identi�ed three categories:
Timed Automaton (uppaal and kronos), symbolical (SMV-family) and explicit-
state model-checker (e. g., Spin). Timed Automaton is especially useful to model
real-time behavior and timer function blocks (Section 6.3.1) in IEC 61131-3,
e. g., [Bau+04a]. But the most prominent techniques are the symbolical model
checking ([Ova+16, Table 1]), and also the trend in the application of model-

21

22 CHAPTER 3. RELATED WORK

Table 3.1: “Number of studies related to di�erent programming languages in
5-year periods From: An overview of model checking practices on veri�cation
of PLC software” [Ova+16, Table 13]

PLC prog. Textual LD SFC FBD Petri net Other
–1999 1 3 1 0 1 5
2000–2004 4 3 10 0 3 3
2005–2009 4 3 0 3 2 8
2010– 0 2 0 5 2 3

checking.1 Across the di�erent case studies, invariants are the most prominent
speci�cation kind (used in 90% of the referenced case studies), followed by
safety (81%) and liveness (43%). Moreover, in most of the case studies, CTL or
TCTL (Timed CTL for Timed Automata) was used (80%), the remaining studies
used LTL. The Table 3.1 shows the usage of the programming language (used
in the case studies) over the years. In comparison, the input for our decision
procedures is textual (i. e., Structured Text), which can be generated from a
Sequential Function Chart, Function Block Diagram or Instruction List.

It seems, that [Ova+16] misses some approaches. For example, Wan et al.
[Wan+09] presents a formalization of timers in the interactive theorem prover
Coq. Their specialty is the analysis of timings for instructions within a scan
cycle. For this, they use a control �ow graph with additional annotated time
delays to present Ladder Diagrams. Also, Coq, was exploited by [BB11] for the
veri�cation of PLC systems.

In the recent development, we identify two platforms for PLC veri�ca-
tion: PLCverif [DFB15] developed at CERN and Arcade.PLC [BBK12] in RWTH
Aachen. Both veri�cation platforms have a similar structure: the PLC program is
parsed into a (logical) intermediate format, which is the base for optimization and
reasoning and can also be exported into di�erent formats for model-checking.

PLCverif is presented in [DMV16b] with the extension for the programming
languages of Instruction List, Function Block Diagram, and Ladder Diagram,
better scalability, and equivalence checking. The programming languages are
handling by the reduction to the STr, a dialect of Structured Text, where the
implicit register of Instruction List is made explicit with program variables. Their
case study contains 120,000 STr instructions generated from 9500 Instruction List
instructions. Due to the reduction method of the intermediate representation
(automata-based), the �nal size is 29 locations (from original 123,346), and

1In [Ova+16]: “It can be seen that in industry current trend in the application of model
checking PLC programs is using model-based development tools on symbolic model checkers
like NuSMV.”

3.2. SPECIFICATIONS FOR REACTIVE SYSTEMS 23

366 bits (from 3105 bits). The requirements of the case study were compiled
from interviews, and expressed either as CTL properties or in their behavior
speci�cation-based approach PLCverif. More details on the used speci�cation
approach PLCspecif are below (and in Figure 3.2). The veri�cation took 53
minutes for all 25 requirements.

Bohlender and Kowalewski [BK20] (and with their earlier publications
[BHK18; BK18]) exploits state-of-the-art solvers for constraints horn clauses

(CHC). CHC are a restricted �rst-order logic where only Horn clauses are
allowed (clauses with at most one positive predicate). Horn clauses can be
e�ciently generated from programs (via weakest-precondition [Bjø+15]), and
solved e�ciently with SMT-based solvers. Such solvers allow using theories for
linear integers, real arithmetic, or arrays.

In [BHK18], the authors provide an SMT-based bounded model-checker
with the specialty of dynamic large-block encoding. Bounded model-checking
is a bug �nding technique, where pre�xes up to a length k are investigated for
safety properties. The dynamic large-block encoding describes the symbolic
execution technique, which encodes a complete scan cycle as a single state
transition.2 The dynamic aspect states, that only feasible paths of the current
cycle are encoded into the formula. Therefore, the symbolic execution starts
with a speci�ed context of variable assignments. The approach of [BHK18]
outruns its competitors on the veri�cation of invariants.

Bohlender and Kowalewski [BK20] propose compositional reasoning for
PLC software along with mode abstraction. The �rst one allows replacing a call
of function block instance with an over-approximate summary of the called
body. Candidates for the summary are computed via the mode abstraction,
which is a static analysis that computes an abstract transition relation, similar
to predicate abstraction, where the state spaces are partitioned by the predicates
evaluation (on the states) and the new abstract transition relation is derived
from the equivalence classes. Mode abstraction is similar, but a mode variable is
given, on which the predicates should are inferred.

3.2 Speci�cations for Reactive Systems
This thesis is not the �rst initiative to build a proper speci�cation language
for PLC programs, or reactive systems. We start the speci�c PLC approaches,
followed by more generic approaches to reactive systems or temporal logics.
We compare the related work with gtts. Note that we anticipate the content of

2In contrast, in [DMV16b] a single instruction is a transition. The end of scan cycles is
indicated with a special variable.

24 CHAPTER 3. RELATED WORK

the upcoming chapters. Hence, not all comparisons might be understandable
without further reading of Part I.

PLC Speci�cations. Darvas et al. [DBM15] presents a speci�cation approach
PLCspecif speci�c to PLC. An example of their approach is presented in Figure 3.2
showing the di�erent parts: the signature (input and output variables and
de�nitions), de�ned events (transition guards), a state machine, output functions,
and invariants on the internal state and signature. Note that the speci�cation
is operational by de�ning an executable Mealy automaton.3 The conformance
is de�ned via equivalence of the output variables between the speci�cation
and the veri�cation subject—similar to perfect equivalence (Section 3.3). This
speci�cation format is similar to the used automaton-based speci�cation used
in [Tec06], and the format of the de�ned output functions are similar to the
Parnas tables [PMI94]. The output is determined by evaluating the conditions
on the column headers and searching for the matching table row.

In contrast, gtts allow de�ning the observational behavior without writing
a concrete state and transitions. Due to their nondeterminism by row-selection
and global variables, gtts describe a family of allowed behaviors, e. g., “the
output can be 1 or 2”, where this approach only allows checking against a
concrete value.

In [DMV16a], this speci�cation is further discussed, and includes a compari-
son between programs. Therefore, we discuss this in the last section with the
speci�cation of the relational veri�cation. In [DVM16], they show to synthesize
programs using their speci�cation approach. Due to the used encoding as a
Mealy automaton, the program synthesis is straightforward.

Ljungkrantz et al. [Lju+10] introduce a new dialect of LTL: ST-LTL. All
(future) temporal operators (X,G,F, and U), and typical logical combinators
of LTL are present. The changes are:

• The usage of Structured Text syntax for the operators. This also allows
to express the ST-LTL formulas as Ladder Diagrams or Function Block
Diagrams.

• Access the previous value of a variable via the variable su�x _previous.

• Detection of rising and falling edges on variables (su�x: _risingEdge and
_fallingEdge).

• Access to input and output value of “inout” variables (variable su�x _in,
and _out).

3A Mealy automaton is categorized that the output depends on the current state and the
inputs.

3.2. SPECIFICATIONS FOR REACTIVE SYSTEMS 25

Figure 3.2: Example speci�cation from [DBM15, Figure 3] describing a Mealy
automaton.

Let us consider an example of ST-LTL from [Lju+10]:

1 Spec6 := ALWAYS(Run_risingEdge ONLY_IF
2 NOT EStop & NOT Error & Reset_risingEdge);

First, we notice that the LTL operator have full names, and negation is expressed
as NOT, like in Structured Text. “ONLY_IF” is the logical implication. This speci�-
cation is an invariant, stating that for every state: When Run has a rising edge
(NOT Run_previous AND Run), EStop and Error are false, and Reset has a rising
edge, too.

The extensions of [Lju+10] tries to make LTL more appealing to engineers

26 CHAPTER 3. RELATED WORK

by using Structured Text notions and adding abbreviation for previous value
and edge detection, but LTL’s problem remains. LTL formulas become incom-
prehensible with an increasing amount of nested temporal operators.

In gtts, we also have an easy access to previous variable values (Sec-
tion 4.2.1). The edge detection can be modeled by using the projection function
(Section 4.2.2.2).

Later, Ljungkrantz et al. [Lju+12] “proposes a systematic work procedure
that can be used as a �rst step of developing formal speci�cations of safety PLC
programs in industry” reusing the speci�cation in [Lju+10]. The procedure is
only applicable to safety requirements in PLC programs.

Xiong et al. [Xio+20] propose a user-friendly veri�cation approach which
bases upon speci�cation-mining of LTL properties and invariants. The idea is
that a tool analyses a PLC program and generates (useful) properties, which are
then reviewed by the engineers. Internally, this approach uses the speci�cation
miner Taxado [LPB15]. The speci�cation miner requires three inputs: a set of
�nite traces (which are generated from test cases), templates of LTL property,
and a threshold (a con�dence value and a support value). In [Xio+20] following
patterns were supplied

F(p) G(!p) G(x→ Xy)
G(x→ G¬y) G(x→ XFy) Fy → (¬y U x)

This idea founds on the assumption, that the engineers can understand generated
speci�cations. Xiong et al. [Xio+20] state the properties for two examples:
a toggle �ip-�op (one input and one output variable) with four two-states
invariants (G(x→ Xy)), and six invariants for a two digit-sorter (two inputs
and two outputs).

Bitsch [Bit01] follows a similar target of decreasing the obstacles of existing
temporal logics. Instead of generating LTL properties, they provide a catalog
and categorization of patterns. The catalog provides speci�cation patterns
in di�erent speci�cation languages LTL, CTL, and µ-calculus along with an
explanation in natural language.

Kormann et al. [KTV12] proposes a fragment of UML sequence diagrams for
the speci�cation of test cases for PLC programs. This fragment is a well-de�ned
executable subset, enriched by new constructs, e. g., state invariants (that are
checked during the tests), timing information on executions, special messages.
A sequence diagram is compiled into a testable executable program, which calls
and supervises the speci�ed module. Such a sequence diagram is a bit more
powerful than a concrete test table. A sequence diagram describes multiple
concrete test protocols. The variation arises due to the �exibility of the given
timing constraints. Many of the sequence diagram features are not exploited or
forbidden, e. g., multiple lifelines or asynchronous messages, by [KTV12].

3.2. SPECIFICATIONS FOR REACTIVE SYSTEMS 27

Reactive Systems. We focus on a much broader spectrum: speci�cation
languages of reactive systems.

Software Cost Reduction (SCR) [Hei+05; Hei+98] is a formal requirements
method, that was applied to mission-critical systems by NASA [HJ07]. SCR uses
synchronous state machines to describe the behavior of a system. State machine
speci�cations use a “user-friendly” table-based notation for the transition re-
lation and the output relation. SCR provides various tools for the simulation
and validation of speci�cations, the generation of system invariants and source
code, and the formal veri�cation of application properties. There are similarities
to the approach of [DBM15].

CocoSpec [Cha+16] is a speci�cation language for reactive programs that
are written in the Lustre programming language. Similar to gtts, CocoSpec
is based on an assume-guarantee paradigm using constraints on input values
(assumptions) and output values (assertions) in every time step. The constraints
are Boolean expressions following the semantics of Lustre. Using a state
variables, assumptions and assertions become time-dependent in CocoSpec. In
gtts, in contrast, assumptions and assertions are always time-dependent, i. e.,
they depend on the table-rows.

The example in Listing 3.3 shows a Lustre program with CocoSpec from
[Cha+16]. The �rst module (node) is used to delay the input values. If x1, x2,
x3, . . . are the incoming values for x, previous emits the values delay by one
time step 0, x1, x2, x3, The module stopwatch is a simple stop watch which
increments the count when running is true. The variable running can be
toggled, and the count can be reset. This module is coupled with the contract.
A CocoSpec contract is similar to a module, in this example, it has inputs (e. g.,
tgl and rst), and outputs (c). Internal helper variables are allowed (on). The
contract has global assumptions (assume) and guarantees (guarantee), that
must always hold, or they are always given. Additionally, the contract has
modes. Every mode is a tuple of two lists: additional assumptions (require)
and guarantees (ensure).

CocoSpec semantics is de�ned by reduction to LTL. A module satis�es a
contract if GA → GG′ is valid, where A stands for the global assumptions
and G′ = G ∪ {Ri → Ei} refer to the combined guarantees (global guarantees
G and the ith requires clauses implies the ith ensures clauses). A contract is
well-de�ned if and only for every state there is at least one active mode [Cha+16,
Eq. 1].

Timing diagrams were analyzed for the speci�cation around the millennium.
Fisler [Fis99] formalizes timing diagrams and investigate the theoretical proper-
ties. A timing diagram is a three tuple 〈P,N,O〉 where P is a ordered sequence
of time points, function N maps (variable) names to waveforms at speci�c time
points p ∈ P , and O a ternary relation capturing temporal order of events, syn-

28 CHAPTER 3. RELATED WORK

1 node previous (x : int) returns (y : int)
2 let
3 y = 0 -> pre x;
4 tel
5
6 node stopwatch (toggle, reset : bool) returns (time : int);
7 (*@contract import stopwatchSpec(toggle, reset)
8 returns (time); *)
9 var running : bool;

10 let
11 running = (false -> pre running) <> toggle;
12 count = if reset then 0
13 else if running then previous(count) + 1
14 else previous(count);
15 tel
16
17 contract stopwatchSpec (tgl, rst : bool) returns (c : int);
18 let
19 var on: bool = tgl -> (pre on and not tgl)
20 or (not pre on and tgl);
21 assume not (rst and tgl); guarantee c >= 0;
22 mode resetting (require rst; ensure c = 0;);
23 mode running (require not rst; require on;
24 ensure c = (1 -> pre c + 1););
25 mode stopped (require not rst; require not on;
26 ensure c = (0 -> pre c););
27 tel

Listing 3.3: Example speci�cation of a stop watch in CocoSpec.

chronization and time bounds. Allowed waveforms are: H (high level), L (low
level), F (falling edge), R (rising edge). Considering the example in Figure 3.4,
P contains the time points p1, . . . , p6, N contains for each variable a, b, c the
waveform for each p1, . . . , p6, e. g., N(a, p1) = R and N(b, p5) = L, O contains
the relation of the events, e. g., “= n” states that a rising edge on a is followed by
a falling edge within n time units (((a, p1), (a, p2), [n, n]) ∈ O) , and the double
bar denotes rising edges on a and c at the same time (((a, p5), (c, p5), [0, 0]) ∈ O).
Note that the time points P are generated by the tool and are not part of the
user input. Intuitively, a trace satis�es a timing diagram, if we can assign each
time point p ∈ P to a position of the trace, s.t. the constraints (waveforms and
time constraints) are met.

3.2. SPECIFICATIONS FOR REACTIVE SYSTEMS 29

Figure 3.4: An example of a timing diagram from [Fis99, Figure 1.].

Fisler [Fis99] states that timing diagrams are incomparable to LTL, some LTL
formulas are not expressible. On the other hand, timing diagrams can express
some non-regular words. Timing-diagrams are decidable by the reduction to
deterministic counter machines (in particular 1-2DCM).

To some extent, timing diagrams are similar to gtts. In both speci�cation
notions, we describe the expected value at certain time points. In gtts, the
speci�cation is dense: the time points are successive and compact, whereas in
timing diagrams the time points are sparse: Between the speci�ed time points
arbitrary time can pass depending on the time bounds on the relations. Moreover,
in gtt we decide between assumptions and assertions.

Vyatkin and Hanisch [VH01] investigate timing diagrams for the use in
control engineering for the veri�cation of distributed controllers (after standard
IEC 61499, extension of IEC 61131). Their notion of timing diagrams distin-
guishes between input variables and output variables. The speci�cation of input
variables is translated into �nite-state models, and the speci�cation of output
variables is translated into extended CTL formula. The �nite-state models de-
scribe the valid input sequence, for which the CTL formula needs to be adhered
to by the system. Their notions of timing diagrams are similar to the one of
[Fis99]: A timing diagram is the asynchronous product of speci�ed waveforms
for the signals, which is restricted by timing bounds between these events. A
timing diagram speci�es a �nite behavior. They propose di�erent semantics,
e. g., “there exists speci�ed behavior in the original system”, or “all speci�ed
scenarios exists in the system model”. The “conditional existence” semantics
is similar to the gtt semantics, as it states if a behavior of the system matches
the input side, the behavior needs to match the complete timing diagram. Our
semantics for gtt is quite more complex, mainly induced by the variable length
of the described words of a gtt. Thus, the gtt notion needs to be robust on
pre�xes of the system behavior.

Schlör et al. [SJW98] uses (RT)STD, an interpretation of timing diagrams,
for the speci�cation in an industrial context. Their semantics are de�ned in
[FJ97]. In contrast to [Fis99], they see the waveform as a sequence of expression,

30 CHAPTER 3. RELATED WORK

allowing to specify allowed values symbolical, instead of a �xed set of waveforms.
In additional, they have weak and strong time constraints between time points.
Strong time constraints are needed to be ful�lled by the system, and weak
constraints are assumptions on the environment. A timing diagram has two
modes: initial denotes the start of the timing diagram in the �rst state, and
invariant timing diagram should be satis�ed again and again. The semantics are
de�ned by the construction via timed Büchi automaton and timed propositional
logic.

In timing diagrams, the time points of interest for which the speci�cation
de�nes the expected values (waveforms) of the variables, are �nite and �xed.
The �exibility in timing diagrams is in the timing constraints between these
time points. In the example (Figure 3.4), the variable n is instantiated depending
on a given word and can be used in multiple time bounds. If the time between
rising and falling of a takes n units, rising and falling on c takes at least n
units up to n + 5 units later. Such constellations are not expressible in gtts,
because our time constraints are rigid intervals. On the other hand, gtts are
more �exible on the speci�cation of the signals. Timing diagrams only allow a
�xed range of speci�ed waveforms, limiting them to Boolean variables, or state
formulas [SJW98]. gtts allow arbitrary constraints, which also can depend
on the previous value of variables, which can be asserted at (�nite or in�nite)
arbitrary many points in time.

To summarize, gtt describe �nite or in�nite behaviors with the �exibility
on the data constraints, whereas timing diagrams describe �nite behaviors and
are �exible on the timings between events.

Temporal Logic for Speci�cation. We present three “general-purpose” tem-
poral logics (FTL, ITL, and GTL) which aims provide a better speci�cation
experience than LTL or CTL.

The ForSpec Temporal Logic (FTL) is an extension of LTL developed at
Intel [Arm+02]. In addition to LTL operators (next, until, always, eventually), it
supports the corresponding past operators (yesterday, since, historically, once).
Moreover, FTL adds some features that are of interest w.r.t. gtts. For example,
FTL supports the speci�cation of time windows, in which certain events need
to occur (bounded LTL operators). FTL allows the description of regular events,
which are sets of �nite state sequences described by regular expressions.

The description of regular events follows the syntax of regular expression
from the automata theory, e. g., α∗ is the zero-or-more repetition of α; and
α, β the concatenation of α and β. Instead of alphabet symbols, FTL uses state
formulas. For example (send, (¬ack)∗, send) describes a sequence, in which
there is ack between two send, in which the formula send represents the set

3.2. SPECIFICATIONS FOR REACTIVE SYSTEMS 31

of all states in which send is true. Such regular events can be combined with
temporal operators.

Similar to the regular events is Interval Temporal Logic (ITL) of [Mos85],
designed for the hardware speci�cation. The notion in ITL speaks of intervals,
which are (�nite or in�nite) sub-words of traces. ITL has two temporal operators
f ; g (chop) and f ∗. The chop-operator f ; g is satis�ed on an interval, if the
interval can be split into two intervals, such that the �rst interval satis�es f ,
and the second satis�es g. f ∗ is satis�ed on an interval if the interval can be
split into a �nite number of subintervals, and each subinterval satis�es f . The
special predicate skip is ful�lled on unit intervals.

It should be obvious that ITL mimics the operator on regular expressions
in formal languages: We have the sequential composition (chop-operator), the
union (disjunction), and the repetition (f ∗). Therefore, ITL is ω-regular [Mos85].

gtts are similar to ITL if we consider the mathematical structure (De�ni-
tion 5.7). Either the assumption or the assertion can be directly rewritten in ITL
using the chop-operator and repetition to match the time constraint. But encod-
ing both sides of the gtts into ITL requires more e�ort. Let us consider a simple
gtt with 〈(φ1, ψ1), (φ2, ψ2)〉, with two rows. A table row is an implication: if
the assumption φiis ful�lled, then the (corresponding) assertion ψi needs to be
adhered. Moreover, if the assumption is violated, the test is aborted. Our little
example can easily encoding into ITL:

φ1 → (ψ1 ∧ skip ; skip ∧ (φ2 → ψ2) ; true∗

If the φ1 is ful�lled, ψ1 needs to adhere in a unit interval, and further the second
row is satis�ed in the next interval. Behind this coding, we assume the local
interpretation of ITL, where the interpretation of variables depends only on the
�rst state in an interval. Normally, the interpretation considers the complete
interval. In our encoding scheme, we need to take care of multiple successor
rows and row (group) repetitions. If we consider these, we see the ITL capturing
a gtt can be become exponential in the size of the table rows. To reproduce
this, consider a table where all rows except the �rst row are skippable. Encoding
the �rst row requires that we encode all rows (except the �rst one) on the right
side of the implication; encoding the second row requires all rows (except the
�rst and second rows), and so on. The size of the encoding is de�ned in the
recursion formula T (n) = ∑n−1

i T (i) + 1 in the amount of implications for n
table rows, which is bounded exponential.

In contrast to ITL, gtts o�ers a simpler speci�cation w.r.t. to the assumption
and assertion pairs, and provide a more structured view of variable constraints
and repetitions.

Dillon et al. [Dil+94] proposes graphical language for interval logic (GIL).
A speci�cation consists out of multiple drawn intervals and searches. The

32 CHAPTER 3. RELATED WORK

Figure 3.5: A speci�cation for an elevator: at$i is true if the elevator is at the
ith �oor.

alignment of the graphical elements determines the time dependency and their
meaning. Figure 3.5 presents a speci�cation for an elevator which speci�es:
If the elevator is on the �rst �oor and goes up, it arrives the second without
visiting any other �oors. The �rst graphical notion is the interval over the
complete time. Under this interval, a formula is given, which starts with an
implication (assuming the elevator is on the �rst �oor at$1). The position of
this formula marks it as an invariant over the drawn interval. Vertical formulas
are conjunctively connected. The braces help to determine which formulas or
constructs belong together. The arrows are search operators. The �rst arrow
in the conclusion searches for the time point in which “¬at$1∆goingup holds.
The point-operator α∆ω is similar to a reverse until-operator. It is ful�lled if
there exists a time point in which α holds and ω holds for each following time
point (until the end of the interval). The next-arrow (with the double arrow)
indicates a strong-search indicating that a failing search is an error. This arrow
speci�es the second �oor is eventually reached. The interval below this arrow
applies an invariant during the search, that the elevator is not on the �rst or
third �oor. In the example, we have expressed that whenever the elevator is on
the �rst �oor, then there exists a time point in which the elevator is not on the
�rst �oor anymore and it is going upwards, thus it must �nally reach the second
�oor without reaching the �rst or third �oor.

3.3 Relational Veri�cation
Speci�cation. Darvas et al. [DMV16a] carries a little bit further the idea of the
equivalence between speci�cation and implementation in PLCspecif [DBM15]
and also consider equivalence checks between two implementations or two
speci�cations. Moreover, they introduce two new notions of equivalence besides

3.3. RELATIONAL VERIFICATION 33

their strict equivalence (similar to the perfect equivalence of [Bec+15]). The
equivalence notions allow a time delay between the two compared artifacts
(speci�cation or implementation). The �rst notion requires a constant delay, the
second one has a (constant) time window in which the variables are compared
for equivalence. Darvas et al. [DMV16a] considers in-perfect timers in the PLC
program which can vary by one millisecond. Hence, the same programs are not
required to equivalent in their de�nition. This nondeterminism is motivated by
industrial practice in which the cycles times are not always adhered to. This time
modeling permits the detection of critical timings, that may resolve into di�erent
behavior on real-world hardware. These equivalence notions are expressed as
CTL formulas to be model-checked including helper models for capturing the
previous values.

Comparing to rtt, we can cover their speci�cation of strict and (constant and
variable) delayed equivalence completely. The delayed equivalence can be ex-
pressed with the past-references (for the variable delay we need to disjunctively
enumerate the possible equivalence in the speci�c time window). Moreover, rtt
permits to express arbitrary large delays by using pause-command—only the
events, when such a delay starts and stops, need to be expressible in the table.
Currently, we have not considered non-perfect timers, because our use cases are
mainly driven by software evolution. During the software evolution, we want to
�nd unintended behavioral changes introduced by the engineer and not by the
PLC system. Of course, these models can be applied for rtt-based veri�cation,
but require an adaption of the underlying models for the timer function blocks.

Clarkson et al. [Cla+14] propose an extension of LTL and CTL∗ for the
speci�cation of hyperproperties on a Kripke structure. Both temporal logics
are extended by existential and universal quanti�cation over traces. We use
the notion “program run” synonymously in our thesis. All propositions are
explicitly denoted to a particular trace. In comparison, due to the existential
quanti�cation, HyperLTL and HyperCTL∗ allow the speci�cation of a superset of
our notions of relational properties. For example, they can express the re�nement
relationship: for every trace of the old system, exists a trace in the new system.
Note that hyperproperties are de�ned on a single Kripke structure, but due to
the construction of product structure, this limitation can be lifted.

In a recent publication, Goudsmid et al. [GGS21] introduce the notion of
multi-properties and MultiLTL. The main di�erence, regarding to HyperLTL, is
that a multi-property is evaluated against a multi-model. Such a multi-model is
a tuple of (di�erent) Kripke structures. MultiLTL extends LTL with universal
and existential quanti�ers ∀i,∃i over the traces of the Kripke structures, where
i denotes the corresponding Kripke structure. Let us consider an example given
in [GGS21]. Let C be the model of the client and S to be the model of the server,
then we specify that every request from the client is �nally received by the

34 CHAPTER 3. RELATED WORK

server with:

〈C, S〉 |= ∀Cπ1.∀Sπ2. G(r_sentπ1 → Fr_receivedπ2) .

Note that 〈C, S〉 is a multi-model, and the right side is a multi-property. This
property can also be speci�ed with gtts, due to the use of universal quanti�ers.
The model-checking problem with MultiLTL is reducible to HyperLTL in poly-
nomial time. From the engineering perspective, they inherit the problems from
LTL and CTL∗ for the practical use (cf. [Pak+16]).

Barthe et al. [Bar+19] uses �rst-order logic (FOL) to express hyperproperties
on traces. The FOL universe consists of the integer and traces. Also, the signature
includes symbols and predicates denoting speci�c time-points, last iterations of
loops, and program variables. Note that FOL is more powerful than LTL, but
only covers star-free fragment of the ω-regular languages.

There are several extensions for speci�cations approaches in the deductive
veri�cation domain. Yi et al. [Yi+15] propose change contracts as an extension to
the Java Modeling Language (JML) which allows the description of the behavioral
as well as structural changes between two methods. In principle, such a contract
expresses a relation between input parameters and output parameters of the old
and new version, such like “whenever in > 0 holds, out′ == out+ 1 for in, in′
the old and new input parameter, and out, out′ the old and new return value.
Syntactical, a change contract adds new clauses to the method speci�cations.
Consider the template of [Yi+15]:

1 /*@ changed_behavior
2 @ when_required φ; when_ensured ψ; when_signaled (T1x) θ;
3 @ requires φ′; ensures ψ′; signals (T2x) θ′;
4 @*/

for predicates φ, φ′, θ, θ′, ψ, ψ′ and types T1, T2. The new when-clauses are the
requires (pre-condition), ensures (post-condition), and signals (post-condition in
exceptional case) of the previous version. Additionally, we can use prev-operator
to access to values of the previous version. A change contract is evaluated against
the parallel execution of the old and new versions of a method. It is ful�lled
when the old version ful�lls the when-clauses, and the new version ful�lls the
default JML-clauses. The relation between the execution of the old and new
version needs to be established by using prev-operator. A special feature of
these change contracts is the handling of object equality, which is de�ned by
the isomorphism of the underlying graph structure. Also in the JML domain,

3.3. RELATIONAL VERIFICATION 35

Scheben and Schmitt [SS14] presents a JML extension for the speci�cation of
secure information �ow.

Blatter et al. [Bla+17] presents an extension for ASCL, a speci�cation lan-
guage for C programs. ASCL is similar to JML and describes the pre- and
post-condition of methods. This ASCL extension introduces a speci�cation
clause for relational properties, including \call operator, which is used to refer
to the result of function invocations (program runs in our notion). In contrast to
change contracts, this notion is quite �exible, and can express various relations
to other program runs, e. g., monotonicity, equivalence, or secure information
�ow.

Both JML and Frama-C extensions are not directly applicable for reactive
systems; they target for a relational speci�cation of the pre- and post-state of
methods, rather than on in�nite traces over time.

Modular Regression Veri�cation. Modularization for regression veri�ca-
tion is covered in [GS13] which serves as a second basis to our work in Chapter 12.
Godlin and Strichman [GS13], who also coined the term “regression veri�cation”
exploit both regression veri�cation and decomposition to prove the equivalence
between similar programs. They can handle programs with recursive function
calls and unbounded loops, both paradigms are not common in software for
reactive systems. Nevertheless, their work does not cover our topic completely:
They only consider functions that do not have an internal state and require
them to be perfectly equivalent. Therefore, they do not need any regression
speci�cation, but they also require a mapping that determines function pairs of
the old and new programs, which are factored out simultaneously. Moreover,
the decomposition in [GS13] works bottom-up if possible. Our approach work
from top to bottom.

The work on di�erential assertion checking [Lah+13] modularizes relational
proofs similarly to the one presented in this paper. They employ mutual function

summaries to abstract two related function blocks, such a summary consists of
relative pre- and post-condition over the input and outputs of both functions.
A similar extended approach is presented in [EMH18] for faster reasoning
of k-safety hyperproperties. Eilers et al. [EMH18] allow hyperproperties in
procedure speci�cations which can later be applied in the reasoning on the k
product program. The hyperproperties are tuples, written as P̂ ⇒ Q̂ where P̂
is a relational pre-condition and Q̂ the relational post-condition. Each relational
condition talks about the input- and output variables of the k program runs. For
example, f : x1 = x2 ⇒ y1 = y2 expresses that the procedure f is deterministic—
equal input x results into equal output y = f(x). For the speci�cation, the
authors just use �rst-order logic. Such a contract can be applied during the

36 CHAPTER 3. RELATED WORK

reasoning if all program runs reach the execution of a procedure. Essentially,
both approaches ([Lah+13] and [EMH18]) are the same concept as our regression
veri�cation contracts (Section 12.1). They do not target reactive systems but
individual single function invocations, and use the intermediate veri�cation
language Boogie ([Lah+13]) or the theorem prover Vyper ([EMH18]) to encode
their conditions rather than a model checking veri�cation backend.

Goudsmid et al. [GGS21] provides sound and complete compositional proof
rules for MultiLTL properties (in multi-models). A multi-model is a list of
Kripke structures, which are universal or existential quanti�ed in the given
MultiLTL property (see above). These proof rules allow using an abstraction
rather than the original Kripke structure. Universal quanti�ed structures are
replaced with overapproximations and existentially quanti�ed structures with
underapproximative models. In contrast to our modularization, our problem
and abstraction di�er. First, we do not abstract a single model at once, instead,
we abstract the used subroutine in two models in parallel. Both models are
always overapproximations. Second, we have contracts which determine the
used abstraction for the subroutine, and subroutines are veri�ed against the
used contracts separately. According to [GGS21], any approximation of a model
would be �ne as long as the required property could be proofed under the
approximation.

The goal of Guthmann et al. [GST16] is similar to ours: Modularizing the
equivalence proof. For matched procedures, two partial sets are computed.
One set contains input values where the procedures behave equivalently and
one set where the output di�ers. Both sets are approximated. The approxima-
tion is strengthened over the execution time of the algorithm. They extended
their approach work with a demand-based re�nement of the approximated sets
in [TGK17]. This approach is not applicable to reactive systems, as the notion
of internal states is missing. Also, only perfect equivalence is currently covered.

Part I

Generalized Test Tables

37

Chapter 4

Towards
Generalized Test Tables

Complex industrial control software often drives safety-critical systems, like au-
tomated production plants or control units embedded into devices in automotive
systems. Such controllers have in common that they are reactive systems, i. e.,
that they periodically read sensor stimuli, cyclically execute a de�ned program,
and emit the computed signals to the actuators.

Usually, in practice, the correctness of implementations of reactive systems is
not veri�ed using formal techniques. What is used instead in industrial practice
today is testing, where individual test cases are used to check the reactive system
under test [RV17]. Test cases are commonly written in the form of (concrete)
test tables, in which each row contains the input stimuli for one cycle and the
expected response of the reactive system. Thus, the whole table captures the
intended behavior of the system (the sequence of actuator signals) for one
particular sequence of input signals.

In this chapter, we start the journey of the generalization of concrete test
tables towards our notion of Generalized Test Tables (gtts). We keep this chapter
rather informal and on a phenomenological level. The formalization follows in
Chapter 5.

4.1 Concrete Test Tables
Concrete test tables (ctts) are an industry-wide used description format to
describe test protocols in the automation industry. The described test protocol
consists of a sequence of input values (provided by the environment) and the

39

40 CHAPTER 4. TOWARDS GENERALIZED TEST TABLES

INPUT OUTPUT
A B X Z duration
1 1 1 0 5 1
2 0 3 6 5 7
3 1 4 2 5 2

Figure 4.1: Example for a ctt with two input variables, two output variables
covering 10 cycles of the system.

sequence of expected output values (computed by the reactive software under
test). Despite their frequent use, the ctts are not formalized or standardized.
On the one hand, this gives us more freedom in our formalization of gtts. On
the other hand, we have no anchor point to adjust our notion of gtts against.
Thus, we have to consider carefully our gtt formalization against the intuition
of an application engineer (or at least an intuition that is reasonably justi�able).
Because the ctts are an instantiation of the gtts, we automatically gain a
formalization of ctts.

The test protocol, described by a ctt, has two dimensions: data and time.
The data dimension is expressed by the columns, as every column is dedicated
to an input and output variable of the reactive system under test. The columns
for the input variables contain the given input stimuli to the system, and the
columns for the output variables contain the expected output values.

The rows in the table represent the time dimension as they form the consec-
utive steps of the test protocol. Each table row symbolizes possible steps in the
test protocol. Instead of repeating a row several times, the number of repetitions
can be annotated in the special table column duration (�). In a concrete table,
the cells contain concrete values. Hence, a ctt describes only one speci�c test
case. All variables in the example are of type integer; in general, other types,
such as Boolean or enum variables, are possible.

Example 4.1. Figure 4.1 shows an example for a ctt. The table has two input

variables (A, B), two output variables (X , Z), and describes a test case of 10 cycles
(as the durations of the three rows add up to 10). In this example, all variables are

of type integer; whereas in general, other types, such as Boolean variables, are also

possible.

We consider periodically executed reactive systems, where each execution
cycle is one step in the test protocol. A cycle consumes a �xed period of time,
the cycle time. In each cycle, the concrete input values contained in the table
row corresponding to that step are the stimuli for the system, and the system
is expected to react with the output values contained in the same row. If the

4.2. GENERALIZATION OF THE SYNTAX 41

observed system response di�ers from the expectation for at least one row of the
test table, then the system violates the test protocol. The value of row duration
determines how long the system has to remain in the step, i.e., how often the row
is to be repeated. The row duration is given as a number of cycles (it can also be
given as a real-time value, which is transformed into cycles by division with the
system’s speci�c cycle time). A table row with a duration of n is equivalent to
repeating that same row n times with a duration of 1.

There is no restriction on the data types of variables and their values that can
be used in the tables. The only requirement for ctts is that they are compatible
with the used operators. In the following, we use the simple data types of the
IEC 61131-3, e. g., Boolean, integer, and enumerations.

4.2 Generalization of the Syntax
gtts follow the same principles as ctts but go beyond them by introducing
three means to abstract of concrete values: (1) abstraction using constraint
expressions, (2) using references to other cells in constraint expressions, and
(3) using generalization in the duration column.

As a consequence, a gtt describes a (possibly in�nite) set of concrete behav-
iors. A gtt usually does not fully specify a system and covers only its behavior
for a certain scenario or situation. The characteristics of concrete test tables
that we deem essential and that are preserved in gtts are:

1. Every signal/actuator cycle corresponds to one row in the test table.

2. An implicit sequential traversing of the table rows.

3. Every row formalizes a local implication of the form: If the signal values
adhere to the input constraint, then the actuator signals adhere to the
output constraint.

Example 4.2. Figure 4.2 shows an example of a gtt, incorporating the general-

ization concepts described above. Note that the concrete table depicted in Figure 4.1

is one of the possible instances of the generalized test table given in Figure 4.2,

achieved by instantiating the global variable p with the value 3.

In the remaining of this section, we explain in detail the generalization of
the parts of gtts: table cells, the table columns, and row repetitions.

4.2.1 Cell Expressions
The table cells are in the focus of gtts. Whereas a ctt describes only one test
protocol with concrete values, a gtt is able to describe a family of ctts by

42 CHAPTER 4. TOWARDS GENERALIZED TEST TABLES

replacing the concrete values inside the table cells with Boolean expressions. The
Boolean expressions are built up with the usual logical (∧,∨ etc.), arithmetical
(+, ∗, etc.), and comparison (<,≥ etc.) operators over the input, state, and output
variables. The concrete expression syntax can be aligned to the programming
language of the test subjects. In our case, we allow the expression fragment of
the Structured Text programming language. We also align the evaluation of the
operator to the used programming language.

References to Other Cells. A reactive system may possess an internal state,
i. e., its behavior may depend not only on the current but also on previously
observed input values. gtts have two expressive means to formulate such
dependencies: global variables and past references.

Global variables can be used in constraints. We use lower-case identi�ers
to denote global variables. They have an arbitrary value that does not change
throughout the application of the test protocol. For example, if v is a global
variable, A = v occurs in one cell, and X = v + 1 in another cell, then both
constraints require that X = A + 1. While the value of a global variable v
does not change in a single application, there may still vary between di�erent
applications of the same test tables. Note that using X = v in a cell for X is
equivalent to “don’t care” if this is the only occurrence of v.

Past references are relative references to previous values of variables. A
past reference “X[−n]” refers to the value of variable X which the variable
had n ∈ N cycles before the current one. A past reference refers to the system
iteration n cycles ago, not to the nth row above the current row (this may di�er
because rows may be repeated). Absolute references to particular cells can be
expressed using global variables.

Abbreviations. In alignment with the typical spreadsheet application, gtts
support several abbreviations for better readability and ease of use (Table 4.3).
These abbreviations are expanded with the designated program variable or
projection of the corresponding column into Boolean expressions. First, a literal
or variable n denotes the equality of the designated column variable with the

INPUT OUTPUT �
A B X Z
1 1 1 0 — 1
2 — p =2 ∗ p ≥ Z[−1] [0, 7] —

3 — = p + 1 [0, p] 2 ∗ Z > X 2
≥ 1

Figure 4.2: Example for a generalized test table with a global variable p.

4.2. GENERALIZATION OF THE SYNTAX 43

Table 4.3: Constraint abbreviations from [Bec+17]. X is the name of the variable
that the cell corresponds to; n,m are arbitrary expressions of type integer; α, β
are abbreviations or formulas.

Abbrev. Constraint
n X = n
— X = X (don’t care)
< n X < n (same for >,≤,≥, 6=)
[m,n] X ≥ m ∧X ≤ n
P P (X)
α, β α ∧ β

value of n. In the following, let X be the designated column variable. Then
the literal “2” is expanded to X = 2, “ť” becomes X = true, and “Y ” becomes
X = Y . Note that this syntax is ambiguous. The cell content “true” could be
interpreted as a Boolean expression, or as the given abbreviation. We decide
on the interpretation as an abbreviation for two reasons. First, if we want to
specify that a variable is free from any constraints, we should use “—” (“don’t
care”). Second, if the cell content “false” would be interpreted as the Boolean
expression, it would represent an unsatis�able constraint. We expect the need
for such constraints to be unlikely. By specifying a comparison operator the
equality can be overwritten, thus > 5 becomes X > 5. We allow the default
comparison operators for numbers, i. e., for <,>,≤,≥, 6=. With the interval
literal [n,m], we can set a lower and upper to the column variable directly, e. g.,
“[n− 1, n+ 2]” constrains X to be n− 1 ≤ X ≤ n+ 1. It is also possible to use
user-de�ned predicates. These predicates are functions (returning a Boolean
value) that are de�ned in a programming language1, allowing to express complex
constraints. These predicates have one argument which takes the value of the
program variable in the column header. Later we extend this designation to a
projection function that returns multiple values . Then the predicate arity needs
to match the number of returned values. For example, let P (·) be a predicate,
then it is expanded to P (X). Abbreviations can be conjunctively combined
using a comma “,”. Thus, the cell content [n,m], 6=Z/2 is expanded into the
constraint n ≤ X ∧X ≤ m ∧X 6= Z/2.

4.2.2 Table Columns
Deriving from the ctts, the gtts column headers carry the designated input
or output variable of the system under test. Therefore, every constraint in the

1We use Structured Text for the implementation.

44 CHAPTER 4. TOWARDS GENERALIZED TEST TABLES

table cells under the column has an implicit subject to refer to. We exploit this
subject in the table cell abbreviation in Section 4.2.1.

In the following, we lift the restriction on the column variables by allowing
internal state variables, and projection functions.

4.2.2.1 State Variables

By allowing the access of (internal) state variable in gtts, we enable the speci�-
cation of the internal behavior of the system, e. g., the speci�cation of invariants
or changes of global system state.

A column with a state variable can either be categorized as an input or output,
resulting in di�erent interpretations in the semantics. If we categorize a column
with a state variable as an output column, the state column behaves just as if it
were an output of the system: a violation of the corresponding constraint leads
to non-conformance of the system. The constraint is an assertion. If the column
is categorized as an input, its constraints are a prerequisite or assumption for the
application of the input to the system. The value of a state variable is determined
by the system and cannot be chosen by an environment in contrast to a normal
input variable. But a constraint violation on the input state column does not
lead to non-conformance of the system. For this reason, we use assume and
assert as synonyms for the column categories input and output.

Additionally, a state variable has an assigned value before the cycle is exe-
cuted and can be modi�ed in the execution cycle. Therefore, in a gtt, we can
refer to the value of state variables at both time points. We follow the convention:
The categorization of a table column a�ects the evaluation of the corresponding
constraint. By default, if we evaluate a state variable we refer to the last value.
In an input (assume) column the state variable refers to the previous cycle (be-
cause the input constraints are evaluated before the system is executed). In an
output column, the state variable refers to the value after the execution of the
system. To make a clear distinction and to allow column-independent access, we
introduce Xpre and Xpost to refer to the value of a state variable X before and
after the execution of the system. Technically, an input column for state variable
X (Xpre) always has an implicit constraint = Xpost[−1], as this variable is not
modi�able by the environment.

The value of state values before the execution of the �rst cycle is deter-
mined by the standardized default values or given in the variable declaration
(cf. IEC 61131-3).

4.2. GENERALIZATION OF THE SYNTAX 45

4.2.2.2 Projection Functions

We further generalize the variables in the column headers and the predicates in
the table cells to increase the readability of large speci�cations.

Currently, a column is dedicated to a program variable, e. g., X , noted in the
column header. This dedication describes a function that projects the current
program state of the system under test to the value of the variable X . We lift the
dedication and allow a user-de�ned function. This function maps the current
and observed program states to a value. For example, to specify the CTU function
block in Section 7.1 we introduce the REdge := In ∧ ¬In[−1] function which
returns true if there is a rising edge on the input signal In.

The constraints in the column’s cells restrict the return value of the function.
Furthermore, we allow a projection to an n-tuple in conjunction with n-arity
predicates in the cells. Then, the values of the n-tuple are the parameters of
the predicate. The typical comparison predicates, like equality “=” or less-than-
equals “≤” are built-in. Others can be de�ned by user-given function in the
programming language. The other built-in abbreviations, e. g., “≥ Y + 1”, are
predicates with a single argument.

The projection functions in the column headers and the n-arity predicate in
the abbreviations do not extend the expressiveness of gtts, but allow us to write
more comprehensible test tables: Instead of writing complex expressions in the
table, we can concentrate on the most important: the consecutive execution
�ow of the test. Assume we want to express the relation X/2 = Y + 1, then
we have three options: First, we can write the constraint as is in each cell on
every column, without the use of any abbreviation. Second, we use either the
column for X or Y with a rewritten version of the constraint: =(Y + 1) ∗ 2, or
=X/2− 1, respectively. Third, we use the function f : (σ) 7→ (X/2, Y + 1) in
the column header and the equality predicate (“=”) in the cells of this column.

4.2.3 Repetitions
In gtts, we can specify an allowed range of repetition for a group of rows. If
the row group only contains one row, we use a designated column, the duration
column, to hold the repetition constraint. Otherwise, we denote the repetition
with bars on the right side of the table.

4.2.3.1 Generalization of Repetitions

Like the table cells, we also generalize the repetition constraints. But we only
allow intervals [n,m] or [n,—] (where n,m are natural numbers), and the special
symbol —∞. An interval speci�es the lower (n) and upper (m or no upper bound)

46 CHAPTER 4. TOWARDS GENERALIZED TEST TABLES

bounds of row applications. If the upper bound is “—”, the number of row
applications is arbitrary but �nite. A single “—” denotes an arbitrary �nite row
repetition; in longer notation: [0,—]. Strong repetition (indicated by using “—∞”)
denotes that a row is repeated in�nitely often (Section 4.2.3.2).

If a duration constraint includes the value 0, then that row is optional and
can be skipped. For systems with a constant cycle time, duration constraint can
also be speci�ed as time intervals, e. g., in milliseconds, instead of a number of
repetitions: time intervals are converted to repetitions by dividing them by the
cycle time.

Note that the selection of the possible rows is nondeterministic, e. g., in
Figure 4.2 Row 2 and 3 can both directly succeed from Row 1. Additionally, the
user can enforce progress in the selection of rows, when using the corresponding
�ag on the duration constraint: “[m,n]p”. If the progress �ag is given in a table
row, this table row is only repeated if all its successor rows are not applicable.
Thus, the progress �ag speci�es mutually exclusive selection between rows in
favor of the successor rows (cf. Section 10.4.1).

4.2.3.2 Strong Repetition

Strong repetition is needed to specify that the desired pattern is never violated.
Strict safety requirements are typical use cases of strong repetition. Later in
Section 5.4.3, we see the don’t-care duration “—” is not suited for specifying such
properties since last table rows with “—” are satis�ed if the software conforms
to the row for a �nite number of times—this also includes zero repetitions, and
therefore the row is skippable and the system does not need to adhere to the
last row.

4.2.3.3 Repetition of Multiple Rows

Multiple consecutive rows can be grouped to be repeated as a block. Every group
of rows has its own duration constraint. With the row groups, one can express
repetitive patterns, that span over more than one row, and also express optional
sub-behavior. Row groups can be nested, i. e., a group may contain other groups
and rows (but they cannot partially overlap). We mark row groups graphically
by a line on the right side. With row groups, we can express speci�cations
composed of repetitive or optional sections that span over multiple rows. The
sections can represent di�erent states of the software, e. g., initialization, error
recovery, or automatic and manual operation. For an example see Section 4.3.3.

The repetition of a row groups leads to a jump to previous rows in the table—
a property not present in ctts and potential obstacle for comprehensibility. On
the other hand, row grouping allows more compact speci�cation of a system,

4.3. EXAMPLES 47

as complex and similar behaviors can be combined in a single gtt. Grouping
of rows is also present in spreadsheet applications. Grouping of rows is a
compromise between comprehensibility and expressiveness: ctts only allows
a consecutive execution, whereas more complex speci�cation, i. e., automaton,
allows jumping to arbitrary state (rows). In Section 9.2, we introduce meshed
gtts, an extension that allows nondeterministic jumps to arbitrary rows of
di�erent tables.

4.2.3.4 The Progress Flag

The progress �ag is a supplementary annotation to a duration interval, denoted
by a subscript ·p. If a row is annotated with the progress �ag, then the test must
progress to a subsequent row if possible. For example, “p” is, like “—” (don’t
care), a repetition of arbitrary length, but unlike “—”, the �ag requires that the
execution continues with a successor row if possible. Only if that is not possible,
the current row is repeated. Using the progress �ag ensures that the test does
not get stuck unnecessarily.

Moreover, the progress �ag helps to specify the deterministic software re-
quirements concisely and leads to more comprehensible test tables. A typical
pattern in the speci�cation is waiting for a trigger event to occur, and then to
proceed as speci�ed. In a gtt, this is expressed by two successive rows: the �rst
row allows all input and output values for an arbitrary duration. Its successor
row speci�es the trigger event by input constraints. When the second following
row is satis�ed, the �rst row needs to be vacated in favor of the second (cf.
Section 4.3.3). Without the progress �ag, any system would conform to this
table because the system cannot violate the �rst row.

The �ag does not add expressive power: An equivalent speci�cation with-
out “p” can be obtained by including the negation of the input constraints of
the following rows to the current row and using “—” as duration. But this leads
to tables that are unnecessarily di�cult to read, as the assumption or assertion
table cells of a row are conjunctively (and not disjunctively) joined.

4.3 Examples
We want to illustrate the features of gtts on four examples. We select the
RS �ip-�op and the pulse timer function block of the IEC 61131-3, a typical
factory scenario with a conveyor belt, and a non-PLC example by specifying a
heating system. In the presented gtts, especially Figures 4.7 and 4.8, we replace
constraints, which do not change for at least three rows consecutively, with a
line to increase the readability.

48 CHAPTER 4. TOWARDS GENERALIZED TEST TABLES

1 FUNCTION_BLOCK RS
2
3 VAR_INPUT S, R : BOOL; END_VAR
4 VAR_OUTPUT Q : BOOL; END_VAR
5
6 Q := (Q OR S) AND NOT R;
7
8 END_FUNCTION_BLOCK

Listing 4.4: Function Block RS

4.3.1 RS �ip-�op

RS �ip-�op is a function block for storing one Boolean variable. Listing 4.4
shows the Structured Text source code of this �ip-�op. It has two Boolean inputs
S and R and an output Q. This �ip-�op is reset-dominant: If R is true, the output
Q becomes false, regardless of the value of S. Otherwise, Q becomes true if S is
true. If neither S nor R are true, Q maintains its original state.

Figure 4.5 show a gtt for the RS function block. Starting in Row 1: We can
apply (arbitrary often) an arbitrary value for reset and false for set input, then
the value of output needs to stay false. This includes, that the initial state of the
�ip-�op is false (R and S are false). In Row 2, we switch the state Q to true by
switching on S and letting R false. Done once Q is true and stays true as long as
the reset is o� (Row 3). In Row 4, we reset the �ip-�op, thus Q becomes false
regardless of the value of S. These steps are repeated in�nitely often.

INPUT OUTPUT �
R S Q
1 — FALSE FALSE —
2 FALSE TRUE TRUE 1
3 FALSE — TRUE —
4 TRUE — FALSE ≥ 1

—∞

Figure 4.5: A gtt for Function Block RS

4.3. EXAMPLES 49

1 FUNCTION BLOCK TP
2 VAR_INPUT IN : BOOL; PT : UINT; END_VAR
3 VAR_OUTPUT Q : BOOL; ET : UINT; END_VAR
4
5 VAR oldIn : BOOL ; END_VAR
6
7 IF Q THEN
8 IF ET >= PT THEN
9 Q := FALSE;

10 ELSE
11 ET := ET + 1;
12 END_IF
13 ELSEIF NOT oldIn AND IN THEN
14 Q := TRUE; ET := 0;
15 END_IF
16
17 oldIn = IN;
18 END_FUNCTION_BLOCK

Listing 4.6: Function block PT

4.3.2 Pulse Timer

Function Block TP is de�ned in [IEC61131-3, Figure 15(a)] as one of three timer
function blocks. These timer blocks provide an abstracted and simpli�ed way
to deal with real-time. They are only de�ned by one graphical example in the
standard and their implementation is left to the vendor of the PLC system.

We implement our own version of the pulse timer in Listing 4.6. In contrast
to the standard, which uses the TIME data type, we use only integer variables
to have a self-contained example without a dependency on a clock. The TP

provides two input variables IN and PT and two output variables Q and ET. The
idea is that the function block generates a pulse (Q is true) for the given time
in PT when a rising edge in IN occurs. The output ET gives elapsed time of the
pulse. We use a state variable to recognize a rising edge in IN. This functionality
is typically implemented by using the R_TRIG function block.

Figure 4.7 shows an example gtt specifying the pulse timer function block.
As long as the timer receives the input IN=FALSE, it keeps waiting and signals
constant values (Row 1). When the pulse timer is started, which happens when

50 CHAPTER 4. TOWARDS GENERALIZED TEST TABLES

ASSUME ASSERT �
IN PT ET Q

1 FALSE — 0 FALSE ≥ 1

—∞
2 TRUE ≥ 1 ≥ET[−1], <PT TRUE 1
3 =PT[−1] ≥ET[−1], <PT TRUE ≥ 0
4 =PT — 1
5 =PT FALSE ≥ 1

Figure 4.7: A gtt for the TP function block. The vertical lines in columns IN
and PT denote a repetition of “TRUE” resp. “=PT[−1]”.

IN is set to TRUE (Row 2), the software must output Q=TRUE (signaling that the
timer is running) for a time period which is de�ned by the pulse time provided
as input in PT. In this gtt, we require that the input IN remains TRUE and PT

remains constant as long as the timer runs. The latter is expressed using =PT[-1]

in Rows 3–5, which requires PT to have the same value as in the previous cycle.
A change of pulse time is forbidden during an active pulse.

Rows 2 and 3 correspond to the state in which the timer is running and the
elapsed time ET has not reached the pulse time. The entries “1” resp. “≥ 0” in
the duration column specify that the timer must be in this state for at least one
cycle. While the timer runs, the elapsed time output ET must monotonically
increase (“>= ET[-1]”).

When the elapsed time reaches the pulse time, the output Q, signaling that
the timer is running, must switch from TRUE to FALSE (Row 5). Interestingly, the
gtt leaves the exact switching behavior unspeci�ed, allowing the PLC software
to signal TRUE or FALSE in the �rst cycle where the pulse time is reached (Q is
“don’t care” in Row 4).

The gtt contains a strong repetition “—∞”, which means that repeatedly
starting the timer is possible.

4.3.3 Behavior of a Conveyor Belt
Figure 4.8 shows an error-handling functionality of a conveyor belt with com-
plicated nested row groups. Row 1 de�nes a standstill until a workpiece arrives
(WP=TRUE). Note that the progress �ag in the duration constraint. If a workpiece
arrives, the system needs to wait for at least one cycle to start the conveyor
belt (Row 2). With Row 3, the speci�cation branches: Either no error occurs
(ERR=FALSE), then the conveyor should move forward for 5 to 6 seconds (Row 3).
The row group covering only Row 3 makes this row optional (see the duration
de�ned as [0, 1]). Or (Row 4) an error is detected (ERR=TRUE), then the error
recovery (Row 4 to 6) should start. The error recovery is a back (Rwd) and forth

4.3. EXAMPLES 51

ASSUME ASSERT �
WP ERR MOVE

1 — — Stop —p
2 TRUE FALSE Stop > 1
3 FALSE FALSE Fwd [5s, 6s]
4 — TRUE Fwd 1s
5 — Rwd 1s
6 TRUE Stop 500ms
7 TRUE FALSE Stop 1

ω

[0, 1]

[0, 1][0, 3]

Figure 4.8: Example of a nested gtt for a conveyor belt.

ASSUME ASSERT �
Tc [°C] Tb [°C] P B

1 (Tc − Tb) > d [10, 60 + d] TRUE FALSE 30s
2 > Tb, < Tc[−1] > Tb[−1], < 60 + d TRUE FALSE —
3 ≤ Tb ≤ 60 − d TRUE —
4 ≤ Tb ≤ 60 + d TRUE —
5 — > 60 − d, ≤ 60 + d FALSE [1min, —]p

[0, 1]

[0, 1]
—∞

Figure 4.9: An example gtt for a solar thermal system.

(Fwd) movement of the conveyor belt up to three times. The error recovery is
exited when the workpiece reappears at the beginning and the error is reset as
speci�ed in Row 7.

4.3.4 Heating System

Figure 4.9 shows a gtt for a simple heating system, consisting of a solar thermal
collector, which uses the energy of the sunlight to heat water, and an auxiliary
gas burner, which is activated when the solar energy is not su�cient. The gtt
speci�es how the system should control its water pump (P) and the gas burner
(B) in response to the water temperature in the boiler (Tb) and in the collector
(Tc). The example has a global variable d which is used to make the speci�cation
parametric in the temperature span. For example, the constraint “[60−d, 60+d]”
restricts the boiler temperature Tb to the depicted range and is an abbreviation
for 60−d ≤ Tb∧Tb ≤ 60+d for any arbitrary d. A “don’t-care” (—) constraint
signals that the value may be chosen arbitrarily. References to values of past
cycles are done with square brackets, e.g., “< Tc[−1]” speci�es that the collector
temperature is strictly decreasing compared to the last cycle.

52 CHAPTER 4. TOWARDS GENERALIZED TEST TABLES

4.4 Semantics: Conformance
The semantics of gtts should be coherent with the engineer’s intuition of the
semantics on ctts. We use this intuition as the base for the semantics of gtts.
For the formal semantics refer to Chapter 5.

ctts describe a series of allowed and expected steps that form a test protocol.
The test protocol is applied row-wise from top to bottom row. A row is applied
with two actions: Firstly, the concrete input values are given to the system,
and the system is invoked. Secondly, the computed system response is checked
against the expected concrete output values. The protocol is applied until the
end of the table is reached, or the system emits an unexpected output value.

We consider this protocol as a two-party game between the challenger and
the system. The challenger stimulates the system with allowed input values
to �nd misbehavior of the system, whereas the reactive system behaves as
determined by its internal program, which is written to (hopefully) be correct.
We see that a ctt forms a game in which the challenger plays against the hard-

coded pre-determined system. The loser of the game is the party, who �rst
violates the protocol described by the ctts. The other one wins. If the end of the
ctt is reached, the systems wins. Winning for the system means that it ful�lls
to the speci�cation. A win of the challenger expresses a �aw in the system.

The semantics of test tables describe the notion of conformance. We say that
a system conforms to a ctt if and only if the system wins the game. Conformance
with a given test table implies that the test protocol is negative in the notion of
the test theory, in particular that no bug is discovered by the given test table.

The intuition of the semantics can be discovered in two ways. First, we
follow the trail where a gtt describes a family of ctts, and use the semantics
for them. Second, we apply the two-party game described above to gtts directly,
and see where it �ts or might be adapted. In the core, both de�nitions represent
the same conformance. We assume that the system under test or veri�cation is
deterministic, and thus produces the same output values for the same (history
of) input values.

Reduction to a Set of ctts. We start with an explanation with a reduction
to ctts. A gtt describes a family of test protocols of the above kind. These
test protocols can be obtained in two steps: First, we instantiate every global
(universally quanti�ed) variable of a gtt. Second, we can retrieve ctts from an
instantiated gtt by unfolding the repetitions and cell constraints. It is important
to remember that there are two levels of construction. The �rst construction
level yields a set of instantiated gtts, whereas the seconds level yields ctts.

The intuition of the gtt semantics is best discovered by small examples. Let
us consider the gtts given in Figure 4.10. We focus on the second construction

4.4. SEMANTICS: CONFORMANCE 53

level, thus gtts are already instantiated and free of global variables. Every gtt
in Figure 4.10 expands into two ctts. The �rst gtt (Figure 4.10(a)) is expanded
into a table with a single row, and one table with two rows—all rows claim A to
be 0 and Z to be 1. The two ctts of Figure 4.10(b) consist both of a single row
with a constraint of Z = 0, but di�erent constraints on variable A (one table
requires A = 1 and the other A = 2). Analogously, the two ctts expanded of
the third gtt in Figure 4.10(c) have either Z = 1 or Z = 2, and A = 0.

Given the two ctts of Figure 4.10(c), we notice that both test tables require
that the input variable A always to be 1, but the output Z could be di�erent.
A deterministic system is not able to ful�ll both ctts: Given the same input
value, the response of the systems determined to be either Z = 1 or Z = 2.
We see on the “output side”, we only need to adhere to one of the ctt. With
Figure 4.10(b), we investigate the “input side” of gtts. We also have two ctts,
one table allows A to be 1, the other allows A to be 2. And for both input values,
the output Z should 0. To maximize the coverage, check the system response
for both input values. Therefore, the “output side” needs to be adhered to for
every allowed input value. Thus, the “input side” is universally quanti�ed. Our
observation is not surprising. A similar pattern, that the inputs are universally
quanti�ed whereas the output is existentially quanti�ed, can be observed in the
program synthesis by considering Church’s problem [BL90]. We investigate the
�rst gtt (Figure 4.10(a)) with this observation. For ctts, we already noticed
that the system conforms if the end of the test table (or protocol) is reached.
We expand this table into two ctts with a di�erent number of rows, and the
�rst row of both tables are equal—given 0 as the input, we expect the output to
be 1. In the second step, we are at the end of the smaller table, and the larger
table still requires the same constraints. From the intuition, we would claim

ASSUME ASSERT �
A Z

1 0 1 [1,2]
(a)

ASSUME ASSERT �
A Z

1 [1,2] 0 1
(b)

ASSUME ASSERT �
A Z

1 0 [1,2] 1
(c)

Figure 4.10: Three gtts where each gtt describes exactly two ctts and has a
di�erent interpretation in the conformance.

54 CHAPTER 4. TOWARDS GENERALIZED TEST TABLES

that the system should always adhere to the constraints of the longest ctt. But
this decision results in a contradiction if we consider it more formally. Given
an observation of the system as a sequence of concrete input values and the
corresponding computed output values, we need to decide if this observation
conforms to one of the ctts. If the observation is longer than the ctts, we need
to cut o� the overhanging su�x to compare with these test tables. Now, the
following situation can occur: The pre�x of the observation conforms to a ctt,
but the complete observation might not conform. In this case, we decide in favor
of the system. Otherwise, a contradiction can occur, i. e., a given observation
conforms to a gtt, but at least one of its su�xes does not conform. In practice,
this corresponds to the following situation: We notice that the software violates
the n-th step of the test protocol, but after performing the next step, we consider
the system as conform.

To conclude these semantics observations, a system conforms to a gtt if
and only if the system is stimulated with every input sequence of the ctts and
responses with an output sequence of the corresponding ctt (with to the same
input sequence) for every instantiation of the given gtt.

Reduction to a Symbolic Game. Let us restart with the game behind the
test protocol of ctts. The main di�erence between gtts and the ctts are
the constraints in the cells. We need to adapt this rigid game of ctts with
concrete values for the use of symbolical inputs and outputs (or assumptions
and assertions).

The challenger starts by choosing an input value of the allowed value range
described by the cell constraints of the input columns. The selected input value
is given to the system, and the response of the system is checked against the
constraints of the output columns. In the ctt, there is only one input and output
value in the allowed ranges. From the testing perspective, the best coverage is
obtained when we check the output value for every allowed input value. We see
the same observation as in the section before. By the introduced nondeterminism
(described by the repetition constraints), multiple steps may be active at the
same time. In contrast to the ctts, where the current step in the test protocol is
always clear, it is more complicated to determine the current steps in the test
protocol of gtts. In connection to our previous semantics consideration, we
see that playing the game on a gtt means that the game is played on multiple
ctts at once, in which the test protocol is (a) concretized by the emitted input
and output values, and (b) split by nondeterministic choices of the challenger
and the row selection into di�erent test tables. Not every test table created
“on-the-�y” has to be won by the system. Whereas every allowed input of the
challenger has to be answered correctly by the system, the system can decide

4.4. SEMANTICS: CONFORMANCE 55

which active table rows it wants to adhere to.
The winning condition for ctts needs to be re�ned: For gtts, a party loses

after emitting a value which violates the constraints of all current rows. From
ctts, we inherit that the system wins when the end of the gtt is reached.
Considering the global variables, we summarize: a system conforms a gtt i�
system wins (or never loses) the two-party game on the gtt against an arbitrary
challenger.

This two-party game is the base for our formal semantics de�nition in
Section 5.3.3.

Chapter 5

Formalization of
Generalized Test Tables

In this chapter, we capture our informal considerations into a formal structure.
The formalization should sharpen our understanding, and help us to separate
between a frontend and a backend. The frontend is the interface for the engineers,
consisting out of nicely printed and formatted tables representing gtts. The
backend is the mathematical de�nition, which captures the essence of gtts.
The mathematical structure allows us to build decision procedures to check
the conformance of gtts (Chapter 6). The separation of front- and backend
enables us to introduce new features for the engineers. And by reduction of
these features to the existing mathematical de�nition, we can avoid fundamental
changes in our considerations, decision procedures, or tools.

Our roadmap for this chapter is as follows: We start with the de�nition of a
reactive system (Section 5.1), then we de�ne the elements of the frontend and
backend of gtts (Section 5.2) and �nally we close this chapter with the estab-
lished formal de�nition of the conformances (Section 5.3) and their implications
(Section 5.4).

5.1 Reactive Systems
Informally, our notion of a reactive system is introduced in Section 2.1. Formally,
we distinguish between a reactive program P , the reactive system S, and the
behavior of the reactive system B(S). A reactive program is the software (or
the programmable logic in PLC) of the reactive system. Such a program consists
of a list of instructions, which are periodically executed by the system, and a set

57

58 CHAPTER 5. FORMALIZATION OF GENERALIZED TEST TABLES

of declarations of input, output, and state variables (InVar , OutVar , StateVar).
In the following we use Σ = InVar ∪OutVar ∪ StateVar to denote the set of
de�ned variables of a program (and the system).

The internal state of a reactive program is an assignment of values to the
state variables. The input variables are determined by the environment, and the
state and output are computed by the program. Especially, the initial values of
state variables are determined by their declarations (using default values in case
no initial value is given, e. g., see IEC 61131-3). In the following we use I,S , and
O to denote all possible assignments to input, output, or state variables. We can
establish the semantics of a reactive program, which covers the execution of a
single cycle.

De�nition 5.1 (Semantics of reactive programs). The semantics ρ(P) of a reac-
tive program P is a state transition function ρ(P) : S × I → S ×O.

The semantics ρ(P) depends on the instructions in the reactive program and
their semantics. For an example, Weigl [Wei15] gives an operational semantics
for Structured Text. During the single cycle, the program reacts to the observed
input variables InVar and its last state S , and then writes to the state variables
and the output variables (in StateVar and OutVar).

To be able to consider the e�ects of a reactive program over time, the above
de�nition needs to be extended to in�nite sequences (ω-words) of inputs and
outputs. We de�ne i ∈ Iω as an in�nite sequence over assignments of input
variables InVar . The single assignments can be accessed using subscript indices,
i. e.,, i = i1, i2, The reactive program as a stateful system needs an initial
state s0 from which it is launched. As mentioned above, s0 is often determined by
initial values of the data types for the variables. Note that the de�ned semantics
de�ned below is the semantics of the reactive system. It is the responsibility of
the system to periodically execute the underlying program.

De�nition 5.2 (Trace Semantics of Reactive Systems). The behavior B(S) of a
reactive system S executing the reactive program P with initial state s0 ∈ S is the

function B(S) : Iω → Oω de�ned by

B(S)((i1, i2, . . .)) = (o1, o2, . . .)

where (sn, on) = ρ(P)
(
(sn−1, in)

)
for all n ∈ N≥1.

Also, B(S) ⊆ Iω ×Oω denotes all possible behaviors of a reactive system S

B(S) := {(i, B(S)(i)) | i ∈ Iω}
This de�nition says that starting from the initial state s0, the reactive program

is executed repeatedly, applying in each cycle ρ(P) to its current state sn−1 and
the input tuple in ∈ I to produce the output tuple on ∈ O and the new state sn.

5.2. SYNTACTICAL REPRESENTATION OF TABLES 59

Trace semantics use the internal state in the de�nition, but when taking an
outside look at the semantics, it de�nes input/output behavior and does not make
statements about the internal state space. In practice, we often do not distinguish
between state and output variables as they behave nearly identically in our
considerations. For example, consider the Structured Text code in Section 4.3.2,
where we freely read and write to the output variables as if they were state
variables. But such a separation between state and output variables can always
be established and helps in our explanation.

5.2 Syntactical Representation of Tables
In this section, we describe the way from the user’s perspective on gtts to
a uni�ed mathematical notion. We de�ne the frontend of gtts by declaring
the syntax of cells and time constraints, and the backend by using inductive
de�nitions.

Deriving from the reactive system under test, a gtt is de�ned over a set of
program variables, which are categorized as input, output or state variable. We
denote this signature with Σ. Over this signature we can de�ne the grammar
within the table cells. We distinguish between the more restrictive cell content
in the duration column, and the cell content of program variables.

De�nition 5.3 (Syntax of time constraints). The content of a cell in the duration

column is derived by the following production rule:

〈time〉 ::= ‘[’ 〈pint〉 , (〈pint〉|‘-’) ‘]’ [‘_p’]
| strongrep | 〈pint〉

The non-terminal 〈pint〉 denotes a positive integer literal.

A short remark on our grammar notation: We use an adapted version of
the Backus-Naur-Form. Terminals, the printable characters of the grammar,
are marked with single quotes or monospace font, e. g., ’[’ represents the
square left bracket and strongrep the keyword “strongrep”. Non-terminals
are denoted by angle brackets, e. g., 〈time〉, and mark the application of this
grammar. We use several meta-characters to make the grammar more readable:
We use parenthesis to mark the precedence within the production rules, and
square brackets mark the optional parts of a production rule, e. g., to express that
the non-terminal “_p” can be added optionally to an interval we write “[’_p’]”.
In the next grammar, we use “(X)∗” to mark an arbitrary �nite repetition of the
parenthesized term X .

We can distinguish the two main cases for the cell content of the duration
column: The content is either an interval over integers or “strongrep”. The

60 CHAPTER 5. FORMALIZATION OF GENERALIZED TEST TABLES

intervals can either be restricted with a lower and upper bound [n,m] (with
n,m ∈ N, and n ≤ m), or have only a lower bound (≥ n, [n,−]). Singleton
intervals [n, n] are just speci�ed with a single number n. Additionally, intervals
with a non-singleton range (i. e., with a degree of freedom in their allowed
iteration number) can be su�xed with “_p” to enable the progress-�ag.

The cell content of the program variable columns is far more complex. On
the top level, the cell content is a list of clauses. A clause is either an abbreviation,
e. g., a literal or a single-sided expression, or a Boolean expression.

De�nition 5.4 (Syntax of cell content). The syntax of a cell content is given by

the following production rules with start rule 〈cell〉:

〈cell〉 ::= 〈clause〉 (‘,’ 〈clause〉)∗

〈clause〉 ::= 〈dontcare〉 | 〈id〉 | 〈constant〉
| 〈singlesided〉 | 〈interval〉 | 〈expr〉

〈dontcare〉 ::= ‘-’

〈constant〉 ::= 〈int〉 | TRUE | FALSE

〈singlesided〉 ::= (‘<’ | ‘>’ | ‘<=’ | ‘>=’) 〈expr〉
〈interval〉 ::= ‘[’ 〈 expr〉 ‘,’ 〈expr〉 ‘]’ ‘;’

〈expr〉 ::= ‘-’ 〈expr〉 | NOT 〈expr〉 | ‘(’ 〈expr〉 ‘)’
| 〈expr〉 〈bop〉 〈expr〉 | 〈constant 〉
| 〈id〉 [‘(’ 〈expr〉 (‘,’ 〈expr〉)∗ ‘)’]
| pre(〈id〉) | post(〈id〉)

〈var〉 ::= 〈id〉 [‘[’ ‘-’ 〈int〉 ‘]’]

where 〈bop〉 represents a binary operator: and, or, “+”, “-”, “*”, “/”, and mod.

The abbreviations are given in Table 4.3, and the expressions follow the rules
of common programming languages like Structured Text, allowing unary and
binary expressions over variables and function applications. The grammar for
the predicate and variable abbreviation collide and are represented by a non-
terminal 〈id〉 (in 〈clause〉). Both abbreviations are distinguished semantically by
the variable signature after parsing.

In contrast to programming languages, x[−n] denotes the access to values of
previous cycles, and does not denote array access. The pre- and post-execution
value of a state variable, e. g.,Xpre andXpost, is denoted by pre(X) and post(X).
Moreover, the access to sub-�elds of structures is not covered. But this grammar
is su�cient to cover the constraints in this thesis. Moreover, the grammar
may be adapted to cover features of the language of the reactive program to be

5.2. SYNTACTICAL REPRESENTATION OF TABLES 61

veri�ed or to meet the intuition of the engineer. For example, we often use the
Unicode symbols for the mathematical operators to have more compact tables,
so we write ≤ instead of “<=”.

The grammar is ambiguous. Especially, variables and constants can either
be derived via two productions from the non-terminal 〈clause〉, directly via
〈constant〉 or 〈variable〉, or indirectly via 〈expr〉. For the interpretation, we give
the �rst production variant preference and interpret variables and constants
as an abbreviation, e. g., the cell content “TRUE” or “5” is interpreted as an
abbreviation and not as an expression. This takes e�ect on translating cell
expressions down into the backend. In the backend, the cell constraints of each
column category are expressed into constraint expression.

De�nition 5.5 (Constraint expressionsE). LetΣ = InVar∪StateVar∪OutVar
be a signature of program variables and GVar the signature of global variables,

then the set E of cell expressions is de�ned inductively:

• v ∈ E and v[−n] ∈ E for every program variable v ∈ Σ and n ∈ N

• next(v) ∈ E for every state variable v ∈ StateVar

• g ∈ E for every global variable g ∈ Γ .

• e ◦ f ∈ E for every expression e, f ∈ E and ◦ ∈ {+,−,≤,∧,∨, . . .}.

The de�nition of constraint expressions is similar to the grammar above, but
adds more restrictions to the expressions: All abbreviations are gone. The pre-
and post-execution access has to be resolved and translated to the next-function,
accordingly. Function applications have to be evaluated into a closed form.

We de�ne a mathematical structure of time expression in the duration col-
umn:

De�nition 5.6 (Time expressions T). A time expression τ ∈ T is either ω for

strong repetition, a lower-limited or lower-upper-limited interval:

T ={ω} (5.1)
∪ {[m,−] | m ∈ N} (5.2)
∪ {[m,n] | m,n ∈ N} (5.3)

The mathematical structure meets the grammar in De�nition 5.3 almost
exactly: only the “strongrep”-Keyword and the single numbers n need a trans-
lation into ω and [n, n], respectively. The progress �ag vanishes during the
translation and is handled di�erently.

62 CHAPTER 5. FORMALIZATION OF GENERALIZED TEST TABLES

Progress Flag. The progress �ag prevents the challenger from selecting input
values that adhere to the assumption constraints from a row and its successor
rows at the same time. This restriction only applies when a row could be left,
thus the time constraint needs to allow this. Thus, a progress �ag has no e�ect on
strong repetition and �xed repetitions ([n, n], for any n ∈ N). The mathematical
language of time expression (De�nition 5.6) does not contain the progress �ag
anymore. The progress �ag is consumed during the translation (Section 5.2) of
the gtt given in the graphical table-form into the mathematical notion given in
De�nition 5.7. This also de�nes its semantics in detail. But before we resolve
the progress �ag, we have to de�ne the successor rows of a table row on the
mathematical structure of gtts.

gtt Structure. Due to the row groups, a gtt is a recursive structure of nested
and repeated tables.

De�nition 5.7 (Structure of gtts). LetE be a set of expressions over the signature

Σ ∪GVar and T be the set of time expressions, then the set of all gtts TΣ∪GVar
is de�ned as

• The empty table ε ∈ T is a gtt.

• (φ, ψ) ∈ T is a gtts, where φ, ψ ∈ E

• Let T, T ′ ∈ T be two gtts, then the sequential composition of both tables

with the repetition τ ∈ T

〈T, T ′〉τ ∈ T

is also a gtt,

The base of the de�nition is the table with a single row or the empty table
ε. A row consists of a tuple (φ, ψ) ∈ E2. φ is the conjunction of all constraints
in the assumption (input) columns of a row, and ψ is for the assertion (output)
columns, respectively. The empty table ε is the neutral element for sequential
composition, and τ = [1, 1] is the neutral element of repetition. Thus, we can
repeat tables without concatenating another table, or concatenate a table without
adding a repetition. Allowing us to add the time constraint to a single table
row by the concatenation with ε. If we concatenate multiple tables together, we
omit the unnecessary angle bracket and empty tables, hence 〈T, 〈T ′, T ′′〉〉 can
conveniently written as 〈T, T ′, T ′′〉

5.2. SYNTACTICAL REPRESENTATION OF TABLES 63

Row Successor. Due to the intervals in the duration constraints and row
groups, it is not automatically clear which are the successor rows of each row
(as intermediate rows may have zero duration). Intuitively, the de�nition should
be clear. A row is a successor of the row above it. Also, the beginning of a row
group is a successor of the end of this row group. And if a table row is skippable,
its successors are also the successors of its predecessor.

Formally, this is not easy to cover due to the inductive de�nition. For the
de�nition, we de�ne two functions first(T) and last(T) on tables, where
first(T) returns the �rst table row in the table T , and last for the last row,
respectively. We de�ne the set succ(r) ⊆ R as the set of the possible successor
for the row r in gtt where R is the set of all table rows.

De�nition 5.8 (Successor row succ). Given a gtt T ∈ T. Let R be the set of all

tables rows in T , r = last(T1) (the last row of T1), and s = first(T2) (�rst row
of table T2). We de�ne the successor relation by case distinction over the structure

of T .
The row s ∈ R is a successor r ∈ succ(s) of a row r ∈ R if and only if

• s is a direct successor of r, occurring as 〈. . . , T1, T2, . . .〉τ in T , or

• s and r are only separated by skippable test tables Tm, . . . , Tn, occurring as
〈T1, Tm, . . . , Tn, T2〉 in T where 0 ∈ τi for all i ∈ [m,n]

• r is the end 〈T2, . . . , T1〉τ and s is the start of a row group and the block can

be repeated more than one time (∃n.n ≥ 2 ∧ n ∈ τ),

• a row t is successor of t ∈ succ(r) and s ∈ succ(t), also t is skippable (the
time constraint τt on t allows 0), when r ∈ succ(s).

The �rst item captures pairs of rows that are directly successive in the table.
This also spans across row groups, where the upper row is in a di�erent group
as the row below. If we count the rows from top to bottom (regardless of the
row groups), then k+ 1-th row is the successor of k-th row. We use the function
first and last to avoid dealing with arbitrary nested de�nitions. The second
item deals with the situation of skippable row groups between a table row and
its successor. The third item describes the situation of the jump from the end
of a row to the start of the group. This is only possible if the row group can be
executed at least twice. The last item is the recursion in the de�nition describing
that the predecessors of a row inherit its successor if the row is skippable. Note
that the last rule is not included in the second rule—the order of the tables (or

64 CHAPTER 5. FORMALIZATION OF GENERALIZED TEST TABLES

row) is determined (row s is above row r). In the last rule, we do not care about
the table orders, e. g., row r could be the second row of a group, row t is the �rst
row of the same group and skippable, and s is the last row. Then, using the last
rule, we can establish that we are able to jump from s to r directly.

With succ(0) we denote the rows which are initially reachable. The 0 stands
for an imaginary unskippable zeroth row which is added in front of the user-
declared rows.

Translation. Given a gtt in its table form, we can translate it to its mathe-
matical notion (De�nition 5.7) with the following steps: First, every cell content
is expanded to its longer form as a constraint expression. Second, the constraint
expressions of the assumption columns are joined into one conjunction, analo-
gously for assertion columns. In the third step, we handle the access of state
variables. Let X ∈ StateVar be a state variable, then pre(X) is translated into
the access of X , and post(X) is translated into next(X). Every access to a state
variable Y where an explicit pre- or post-operator is missing is treated like
pre(Y) if this access is in an assumption column; or as post(Y) in an assertion
column, respectively.

Graphically spoken, we have rewritten a gtt T into a new gtt T ′ with only
two columns containing constraint expressions. This can directly be rewritten
into the mathematical structure if we just drop the progress �ag. We assume,
that succ is the successor relation succ for T ′, and as T and T ′ are equal in the
number of rows and their nesting, succ is also valid for T . We get rid of the
progress �ag with the following rule: Let [n,m]p be a time expression of the
row r. W. l. o. g. let n = 0, meaning the progress �ag is instantly considered on
entering the table row r, then we replace the old assumption constraint φr of
row r in T ′ with the new assumption constraint φ′ de�ned as

φ′r := φr ∧
∧

s∈succ(r)
¬φs (5.4)

If n > 1, we need to split the row r into two rows, one containing the �xed
time constraint [n, n] and the other row with time constraint [0,m− n]. Both
rows contain the same assumption φ and assertion constraint ψ. If n = m or
the time constraint is ω, the progress �ag has no e�ect, due to the lack of the
nondeterministic choice of rows.

5.3. SEMANTICS 65

Example 5.9. The following term shows the structure for the gtt in 4.8:

〈 〈¬WP ∨ ERR, true〉[0,∞],

〈WP ∧ ¬ERR,MOV E = Stop〉[1,∞]

〈〈¬WP ∧ ¬ERR,MOV E = Fwd〉[50,60]〉[0,1]

〈〈 〈ERR,MOV E = Fwd〉[10,10]

〈ERR,MOV E = Rwd〉[10,10]

〈WP ∧ ERR,MOV E = Stop〉[5,5]〉[0,3],

〈WP ∧ ¬ERR,MOV E = Stop〉[1,1]〉[0,1]〉ω

Note that the progress �ag is translated into the assumptions.

5.3 Semantics

The semantics of gtts de�ne whether a reactive system, given as a set of
in�nite traces de�ned by the trace semantic (De�nition 5.2), conforms to a gtt.
In Chapter 4 we give an informal description of our conformance notion. To
express a formal de�nition of the conformance, we de�ne the evaluation of our
constraint expressions (De�nition 5.5).

5.3.1 Evaluation of Constraints

Constraint expressions are evaluated against a �nite trace of the input, state, and
output variables, often given as a pre�x of an in�nite trace from a behavior of the
system under test. Such a trace is a �nite sequence over input values I and state
values S ∪ O. For the de�nition below, we consider the values for the output
variables as part of the returned state. Note that the constraint expressions do
not contain any global variable. The global variables are instantiated beforehand,
thus, they do also not appear in evaluation.

De�nition 5.10. Let v ∈ (I × S)∗ be a partial trace of length n ≥ 2. Let v↓n be
the pre�x of v with length n, whereas vn = (i, s) is the last element of the trace.

Then, the valuation function valv(e), which assigns a value to every expression

66 CHAPTER 5. FORMALIZATION OF GENERALIZED TEST TABLES

e ∈ E, is inductively de�ned by:

valv(e ◦ f) = valv(e) ◦ valv(f) for ◦ ∈ {+,−,≤,∧,∨, . . .}
valv(X) = i(X) if X ∈ InVar
valv(X) = valv↓n−1(X) if X ∈ StateVar

valv(next(X)) = s(X) if X ∈ StateVar
valv(X) = s(X) if X ∈ OutVar

valv(X[−k]) = valv↓(n−k)(X) if k < n

valv(X[−k]) = undef if k ≥ n

The evaluation of constraints is forwarded to the typical interpretation of
the binary or unary operations. The detailed operation semantics is selected in
alignment with the operator semantics from Structured Text. More special are
the past references. Given a reference X[−k] we cut o� the last k symbols of
the given trace, and evaluate X on this pre�x. Values of the input variables are
obtained from the assignment of the input variables i, and for state variables s,
respectively. State variables can be referenced in the pre- or post-execution (Xpre
and Xpost) of the system. To capture this, let valv(X) refer to the previous value
of the state variable X , and valv(next(X)) to the current value of X . An output
variable always refers to its current value. Access to past referenceX[−k] which
lies outside the observed trace v (|v| <= k) is unde�ned, and can be interpreted
depending on the intended purpose, e. g., veri�cation or synthesis.

5.3.2 Unrolled Instances of Generalized Test Tables
The rows of gtts have a duration and may be repeated more than once. In a �rst
step towards de�ning the semantics of gtts, we eliminate the indeterminism
w.r.t. the repetition of rows and de�ne the set of unrolled instances of a gtt by
making the repetitions explicit.

De�nition 5.11 (Unrolled Instances SP(T)). Let T ∈ T be a gtt without global

variables. The set

SP(T) ⊆ (E× E)ω ∪ (E× E)∗

denoting unrolled instances of T consists of �nite and in�nite words which are

obtained by unfolding the time constraints:

SP(T) :=


{ε} if T = ε

(φ, ψ) if T = (φ, ψ)
(SP(T ′) · SP(T ′′))τ if T = 〈T ′, T ′′〉τ

(5.5)

5.3. SEMANTICS 67

The instances in SP(T) are obtained from T by treating a given table struc-
ture as a regular expression over in�nite words. In particular SP(T) can be
constructed recursively by applying the concatenation and Kleene-closure of
formal languages. Note that ε denotes the empty word, whereas ε represents
the empty gtt.

The set SP(T) de�nes an in�nite language with �nite and in�nite words.
Each word represents possible plays (traces of concrete input and state values)
between the challenger and the system in a symbolic abstract fashion. A word
in SP (T) is a sequence of assumption and assertion pairs (φ, ψ), describing
valid moves in the play before and after the execution of the system. Later, we
try to match an observed trace over input and state values to such a symbolic
play. One symbolic play is similar to a single (possible in�nite) gtt without any
time constraints.

In general, the set of unrolled instances for a gtt is in�nite. This does not
pose a problem as the notion of unrolled instances is only used as a theoretical
concept for de�ning the semantics of gtts.

Global variables are not considered in unrolled instances, as their semantics
is de�ned via universal quanti�cation: A system has to conform to the test table
for all its instances (see De�nition 5.12).

5.3.3 Two-Party Game for De�ning Test Conformance
The intuition behind the following de�nitions is the following: A reactive system
S conforms to a gtt T if every trace t ∈ B(S) conforms to T , where a trace
conforms to T if one of the following conditions holds: (a) the input/state pairs
of t satisfy all rows of at least one instance in SP(T), or (b) t fails to satisfy
the input constraints of all instance in SP(T). In the former case, the trace is
covered by the speci�cation described by T , in the latter case, the input sequence
triggers an application scenario that is not covered by the speci�cation.

Formally, we de�ne the semantics of a gtt T utilizing a game played between
a challenger (that chooses the inputs) and the reactive system S under test (that
chooses the values of the state and output variables). The challenger can be
identi�ed with the environment of the system. The game is played operating on
a set ŜP of unrolled instances of T from which in every round inconsistent and
con�icting symbolic plays are removed.

The player removing the last consistent instance from ŜP loses the game.
In addition, the system can win by successfully reaching the end of one of the
non-eliminated table instances.

Figure 5.1 shows the game’s rules in algorithmic form. During a game,
ŜP holds the set of unrolled instances of T which have not been eliminated,
v holds the observed partial trace up to and including the current move, and

68 CHAPTER 5. FORMALIZATION OF GENERALIZED TEST TABLES

Input: A gtt T
1 ŜP← SP(T);
2 v ← ε;
3 k ← 1;
4 while true do
5 Challenger chooses i ∈ I ;
6 System computes o ∈ O;
7 v ← v · (i, o);
8 ŜP← {D ∈ ŜP | v |= φk for the k-th row tk = (φk, ψk) in D};
9 if ŜP = ∅ then

/* Chosen input not covered by T */
10 return System wins;
11 end
12 ŜP← {D ∈ ŜP | v |= ψk for the k-th row tk = (φk, ψk) in D};
13 if ŜP = ∅ then

/* Chosen output violates T */
14 return Challenger wins;
15 end
16 if ∃D ∈ ŜP. |D| = k then

/* Unrolled instance D has finished */
17 return System wins;
18 end
19 k ← k + 1;
20 end

Figure 5.1: Game between challenger and system w.r.t. a gtt T

k counts the iterations. Initially the set ŜP = SP(G) contains all unrolled
instances of the gtt T . In each round, the challenger chooses input values,
and the system under test computes its output from its internal state and the
input values. The functions which choose the input/output values depending
on the observed partial trace are called strategies. Since reactive programs are
deterministic, there is only one strategy for the program, which is encoded
in its implementation. The challenger is not con�ned in its choices; there are
many possible strategies for the challenger. Whenever ŜP becomes empty,
i. e., no unrolled instance of T satis�es the partial trace, the respective player
loses the game: If this is caused by the input constraint φk being violated, the
challenger loses and the system wins. If ŜP becomes empty because the output

5.3. SEMANTICS 69
I O �
1 — 1 —
2 — 2 [1,1]

Figure 5.2: gtt illustrating the di�erence between strict and weak conformance

constraintψk is violated, the system loses and the challenger wins. If ŜP contains
a consistent unrolled instance that has been fully traversed (its length is the
current iteration counter), then the partial trace v is a witness for the system
conforming to the gtt. The system wins.

A single game has three possible outcomes: Either (a) the challenger wins, or
(b) the system wins, or (c) neither party wins (draw). In the case of a draw, the
game is in�nite, while a game where one player wins ends after a �nite number
of iterations. Note games on a gtt T without strong repetition are always �nite,
because all unrolled instances SP(T) are �nite.

A strategy for one party is called a winning strategy if it wins every possible
play regardless of the other party’s strategy. The de�nition of conformance to a
gtt can now be de�ned based on who wins the games:

De�nition 5.12 (Weak and Strict Conformance). The reactive system S strictly
conforms to the gtt T i� its strategy is a winning strategy for the game shown

in Figure 5.1 for all instantiations σ of global variables of the gtt T . The reactive
system S weakly conforms to T i� its strategy never loses.

The di�erence between weak and strict conformance is whether the analysis
of a system (w.r.t. a test table) successfully �nishes after �nitely many steps
or the system is under consideration for in�nitely many steps. For example,
consider the gtt shown in Figure 5.2. Intuitively, it requires that, independently
of the input, the output must eventually be 2 after an arbitrary number of cycles
with output 1. The reactive system that always returns 1 (and never 2) does not
have this property. Correspondingly, it does not strictly conform to the table
(it does not have a winning strategy). But it weakly conforms (it never loses
either). This corresponds to the fact that by inspecting �nite partial traces, one
cannot decide whether this system violates the test table.

Any analysis that only considers partial traces (like run time monitoring or
testing) can, in general, only test weak conformance. A static analysis, however,
is able to analyze a reactive system w.r.t. strict conformance. The de�nition
of conformance (De�nition 5.12) can be lifted to the case of nondeterministic
reactive systems by requiring that all possible strategies of S must be winning
strategies.

This semantics de�nition seems unnecessarily complicated, but an attempt
to de�ne it on the program traces is bound to fail as the implication of a violated

70 CHAPTER 5. FORMALIZATION OF GENERALIZED TEST TABLES

constraint is di�erent depending on whether it occurs on the input or on the
output values: A gtt with constraint false on the input side is trivially satis�ed,
while false on the output side makes it unsatis�able. Yet, both describe the
same set of concrete traces: the empty set.

There is a third conformance de�nition which also requires a certain liveness
and progress of the system:

De�nition 5.13 (Cooperative Conformance). The reactive system S coopera-
tively conforms to gtt T i� its strategy always reaches the end of every instantia-

tion of T .

This conformance de�nition states the system wins only by reaching the
end of the table and forbids winning by breaking the constraints of the chal-
lenger. Consider that the assumptions can refer to previous values of output
and state variables. These back-references give the system the chance to make
the constraints of the challenger falsi�able. In cooperative conformance, the
strategy of the system must be cooperative and any limitation for the challenger
is prohibited. Besides a cooperative system, veri�cation of this conformance
requires also a cooperative challenger (cf. Equation (6.8)), which tries to move
the plays forward to the next table rows. No system can cooperatively con-
form to a gtt containing strong repetition. In detail, if every symbolic play
in SP is in�nite, cooperative conformance is not applicable. The cooperative
conformance is mainly a tool for the validation of the gtt-speci�cation on the
veri�cation subject. As this conformance fails when no suitable option for the
challenger exists, we can check whether a system strictly conforms because of
invalid turns of the challenger, or because the end of the table is reached.

5.4 Properties
The game semantics yields interesting and surprising properties for the confor-
mance of systems and their practical application.

5.4.1 Strict Conformance and Strong Repetition
There are two remarkable properties for strict conformance in connection with
strong repetition.

No Strict Conformance. Strong repetition in a row prevents a system from
reaching the end of the table. Therefore, a system can only strictly conform to
such gtt if there is an inevitable violation of the challenger. Generalized to an
arbitrary play of the game, we can state:

5.4. PROPERTIES 71

Proposition 5.14. Let ŜPk be a set of remaining symbolic plays in round k. If
all remaining plays are in�nite, i. e., ∀w ∈ ŜPk. |w| = ω, then the system cannot

win by reaching the end of the table.

Proof. If the end of the table is reached, then it is reached in a �nite number
of rounds k ≥ k′, but all remaining plays have length ω (which is larger than
every k′ ∈ N).

Moreover, to prevent the system from winning, we need to require the
existence of a challenger that can survive the game in�nitely long, i. e., there
exists a never-losing strategy. Therefore, all input constraints always need to be
satis�able.

Proposition 5.15. If there exists an in�nite valid challenger stimulus i, i. e.,
∃(φ, ψ) ∈ ŜPk. ∀k ∈ N. ik |= φk, and the condition of Proposition 5.14 holds, then
there is no strict conform system.

Proof. Consider the proof for Proposition 5.14. The only possible winning-exit
for the system is blocked by the assumption of an in�nite valid stimulus.

Strong Repetition does not Extend the Expressiveness. Interestingly, for
every gtt T∞, that contains strong repetitions, we can construct a gtt T∗, that
does not contain strong repetitions, with equal (strict and weak) conformance
for every system. T∗ is obtained by replacing every strong repetition with a
“don’t-care”, and adding a sentinel row that prevents the row from ever being
left. Formally, the transformation of T∞ to T∗ is de�ned as:

De�nition 5.16 (Construction of T∗). T∗ for a given gtt T∞ is constructed by

the following recursive function trans(T∞):

trans(T) := (5.6)

ε if T = ε

(φ, ψ) if T = 〈(φ, ψ)〉
〈trans(T1), . . . , trans(Tn)〉τ ′ if T = 〈T1, . . . , Tn〉τ ∧ τ 6= —∞

〈〈trans(T1), . . . , trans(Tn)〉[0,—], (Φ(T), false)〉[1,1]

if T = 〈T1, . . . , Tn〉ω
(5.7)

Φ(T) is de�ned by the disjunction∨(φ,ψ,τ)∈succ(0) φ of all immediately reachable

rows succ(0) in T from the start.

72 CHAPTER 5. FORMALIZATION OF GENERALIZED TEST TABLES

The trick of the construction lies in Φ(T) and false. The latter constraint
prevents the system from winning the test table, and Φ(T) prevents a cheating

challenger.
Our goal is to prove the equality in the weak and strict conformance.

Proposition 5.17 (Equal Conformance). A reactive system weakly, strictly or

cooperatively conforms to T∞ i� it is weakly conform to T∗.

The conformance of a test table is based on the outcome of all possible plays,
i. e., a system strictly conforms if and only if it is a winning strategy and weakly

conforms if and only if its strategy never loses.
The next lemma reduces the equal conformance to the equal game outcome

on all plays.

Lemma 5.18. Two gtts T, T ′ have equal conformance if the game outcome for

all possible plays is equal.

In the remaining of the proof for Proposition 5.17, we need to show that for
an arbitrary play, without assumptions on the table or the system, the outcome
(winner and loser) is equal on T∗ and T∞. The outcome is determined by the
Figure 5.1. We show that by de�ning a coupling between both runs of the
algorithm for T∗ and T∞. More formally, the algorithm is based on a set ŜP that
holds the remaining possible unwound plays of the gtt. ŜP is determined by
SP(T) in the beginning. The outcome is decided round-wise. We established
a coupling relation between the set ŜP from the run over a play in T∞ and T∗:
ŜP

k

∞ and ŜP
k

∗ for round 0 < k.
To de�ne the coupling relation, we need the following property on the

structure of ŜP
k

∞ and ŜP
k

∗ .

Lemma 5.19 (Separation of ŜP
k
). In every round k ≥ 0, Sk∞ and Sk∗ can be

separated:

ŜP
k

∞ =Lfin ∪
⋃
l

αl · βωl (5.8)

ŜP
k

∗ =Lfin ∪
⋃
l

αl · β∗l · (Φl, false) (5.9)

for the languages αl and βl.

Lfin contains the �nite plays de�ned by a test table, e. g., if a strong repetition
is avoidable. It is also possible to select a separation, s. t. αl is the path into a
strong repetition, and βl is the strong repetition. There is only a �nite amount
of strong repetitions in a gtt, thus the set union is �nite. Moreover, in the

5.4. PROPERTIES 73

separation ŜP
k
, β represents the block (or row) that is strongly repeated, which

is implicitly described in Lemma 5.21. This connects the βl with the construction
T∗. Lemma 5.19 is similar to the separation theorem of ω-regular languages.

Further, we de�ne the languages VC , VS ⊆ ŜP
k

that represent the words in
ŜP

k
that are violated by the turn of the challenger or the system, respectively.

De�nition 5.20. Let SP be a language over (φ, ψ), and p ∈ (I,S)∗ a play, and
k > 0:

VC(SP, p, k) = {w ∈ ŜP
k | (φ, ψ) = w[k − 1] ∧ p 6|= φ} (5.10)

VS(SP, p, k) = {w ∈ ŜP
k | (φ, ψ) = w[k − 1] ∧ p 6|= φ ∧ ψ} (5.11)

We can prove our Lemma 5.19.

(Proof by induction over k). For k = 0, the separation (Lemma 5.19) follows
immediately from the de�nition of SP. In particular, ŜP

0
is always regular

language.
For k > 0, in every round ŜP

k
is �ltered by the current play p with |p| = k,

formally ŜP
k

= (Lfin ∪ ŜP
k−1

) \ VS(SP, p, k). From the induction hypotheses,
we know that ŜP

k−1
can be separated, and by de�nition of the game, the words

in ŜP
k−1

have at least the length k, otherwise the game has terminated. Assume
w. l. o. g. that every αl in the separation of ŜP

k−1
contains only words with

length k, otherwise we would unwind β many times as needed. Therefore if
we remove the violated words VS(S, p, k) of the system (or the challenger), we
adhere the separation:

ŜP
k

∞ =(Lfin \ VS(S, p, k)) ∪
⋃
l

(αl \ VS(S, p, k)) · βωl (5.12)

ŜP
k

∗ =(Lfin \ VS(S, p, k)) ∪
⋃
l

(αl \ VS(S, p, k)) · β∗l (Φl, false) (5.13)

We established a relation between both sets, which follows from the De�ni-
tion 5.16.

Lemma 5.21 (Coupling of ŜP
k

∞ and ŜP
k

∗). There exists a separation of ŜP
k

∞ and

ŜP
k

∗ , s. t. both L
fin

are equal and

∀l . αl · βωl ∈ ŜP
k

∞ ⇔ αl · β∗l (Φ, false) ∈ ŜP
k

∗,

74 CHAPTER 5. FORMALIZATION OF GENERALIZED TEST TABLES

We show the coupling between both sets is maintained after each round,
additionally, we prove a bit more: The coupling is maintained after the turn of
the challenger and the system.

(Proof by induction over k). The lemma is immediately valid for k = 0.
Let ŜP

k−1
∞ and ŜP

k−1
∗ be coupled, we need to show that the coupling is

ensured after the round k for ŜP
k

∞ and ŜP
k

∗ . We also assume an arbitrary play
p ∈ (I,S) s. t. p = p′ · (a, b) ∧ |p| = k and there is no winner of the play in all
previous rounds k′ < |p|, otherwise the game would have terminated (both sets
are empty and the coupling relation would immediately hold).

The coupling is stable under set di�erence: Stable means that the coupled
αlβ

ω
l and αlβ∗l (Φl, false) will stay coupled in all rounds. In detail: By induction

hypotheses the languages of the �nite words in SP(T∞) and SP(T∗) are coupled,
i. e., Lfin,k−1

∞ = Lfin,k−1
∗ . Applying the set di�erence keeps equivalence:

Lfin,k−1
∞ \ Vk,ξ = Lfin,k∞ = Lfin,k∗ = Lfin,k−1

∗ \ Vk,ξ.

The same holds for any coupled αlβωl and αlβ∗(Φl, false) of the separation.
W. l. o. g. we can pump up the pre�x αl with expanding iterations from βl s.t. all
words w ∈ (αl · βl) are at least equal to k.

Leaving one open case, αl(Φ, false) (we choose ε ∈ β∗). Obviously, this
word is removed by subtracting with VS(SP, p, k) (ψ at position k is false),
but this is not valid for the challenger �lter VC(SP, p, k). Here the following
situation might be possible, that αlβωl ⊆ VC(ŜP

k−1
∞ , p, k), but αl(Φl, false) 6⊆

Vc(Sk−1
∗ , p, k). Note that βl represents the corresponding block for which Φl

is built for. By de�nition, Φl is the disjunction of all φ of the �rst symbols in
βl. Therefore, the play p violates Φl i� it violates all �rst φ in β. Therefore, the
situation can not appear.

Proposition 5.17. From coupling in Lemma 5.21 it follows that ŜP
k

∞ = ∅ ⇔
ŜP

k

∗ = ∅.

Example 5.22. For better comprehensibility, we show the equivalence of the

conformance on the special case with

T∞ = 〈φ, ψ〉ω T∗ = 〈〈(φ, ψ)〉—, (5.14)
(symIn, false)〉. (5.15)

The row (φ, false) prevents the strict conformance of the system—the system

cannot ful�ll false, the same holds for the strong repetition in T∞. Therefore, we
only need to consider weak conformance. Let p ∈ (I,O)∗ an arbitrary play. The

5.4. PROPERTIES 75

ASSUME ASSERT �
In Out

1 — =p 1

Figure 5.3: A gtt with a global variable p, without any compliant system.

ASSUME ASSERT �
In Out

1 =p =p 1

Figure 5.4: A gtt with a global variable p specifying the identity function for
the �rst cycle.

system wins in T∞ if p 6|= φ. At the same time it would win in T∗, as p is not allowed
in both rows. Otherwise, the system loses in T∞ (p |= φ and p 6|= ψ) if and only if

it also violates T∗ as none of both rows are adhered, i. e., p 6|= ψ ∨ p 6|= false.

5.4.2 The Issue with Universally Quanti�ed Output
Let’s investigate the gtt given in Figure 5.3. This gtt contains one row where
the only constraint is an assertion to the system: the output is equal to a global
variable. This simple gtt has a surprising property:

Proposition 5.23. There exists no system weakly or strictly conforms to the gtt

in Figure 5.3.

Proof. For the proof, we assume the opposite. Let S be system conforming the
gtt T in Figure 5.3. Note that S is a deterministic system by our assumption at
the beginning of Chapter 5. We unfold the semantics for this special case.

Then, S conforms to every instantiated gtt T [p/x] where p is replaced by
the value x ∈ N. W. l. g. we pick the cases p = 1 and p = 2: As S conforms
T [p/1], the output of S in the �rst cycle is 1 for any given input In. Analogously,
for p = 2, where the output is 2.

This is a contradiction to the assumption of a deterministic system, which
describes the output is determined by observed input values. In our cases, the
behavior B(S)(i) = 1 and also B(S)(i) = 2 for all i ∈ N.

This property is a common pitfall when using gtts, and it is valid for all
conformance de�nitions. The expected speci�cation is that the global variable
p is bound to the output of the system. Instead, the universal quanti�cation is
instantiated into di�erent separated games, and each of them has to be won by
the system.

76 CHAPTER 5. FORMALIZATION OF GENERALIZED TEST TABLES

Interestingly, the similar looking gtt in Figure 5.4 does not have this is-
sue. The di�erence is that the global variable is restricted by the challenger
beforehand. The challenger di�ers from the system in two relevant points. The
strategy of challenger allows picking arbitrary values, where the strategy of
the system is completely determined by the input. Also, the challenger loses by
playing an invalid turn in almost all plays, thus, the game is highly asymmetric
in favor of the challenger. To disprove the conformance, the challenger only
needs to �nd one violation of the system to win, whereas the system needs to
win (or not to lose) in all plays. As a simple rule, a global variable should always
be mentioned in an assumption before it is used in an assertion.

Existential quanti�cation. The introduction of existential quanti�cation
in gtts seems to be a solution candidate for these issues. Reconsider the gtt
T in Figure 5.3, but now with existentially quantify p. Therefore, a system S
conforms to T if and only if there exists an instantiation x ∈ N for p, such that
S conforms to T [p/x]. But our problem is still not solved. Naively, we set the
instantiation of p to be B(S)(i), but the variable i is free and represents the input
of the challenger. As the input is nondeterministic selected by the challenger,
we need to �nd an instantiation that is valid for all inputs i. Unfolding the
constraints in the considered gtt, we can express the situation as follows:

∃x.∀i.x = B(S)(i)

The formula clari�es the problem: We need to select an instantiation of the
output independently of the input of the environment. Note that this issue
can be solved for a limited number of cases by using universal and existential
quanti�cation together. For our considered case, we introduce a new global
variable q for constraining the input In of the challenger. Then expressed as a
formula, the situation would be

∀q.∃x.∀i.q = i ∧ x = B(S)(i) .

By introducing an additional universal quanti�cation, we can switch the alter-
nation of the quanti�ers. This approach requires limitations on the gtts, e. g.,
no global variables given in repeated rows because then the challenger input
of the second row iteration can depend on the output of the system from the
previous iteration. For a bounded time constraint, this can be �xed by unrolling.

Assignment. The next possible solution requires a new feature in gtts: as-
signments. Assignments introduce an explicit state to the gtts by introducing
variables. These variables are assigned locally after the turn of the challenger

5.4. PROPERTIES 77

ASSUME ASSERT �
In Out p

1 — — := Out 1
2 p — 1

(a) A valid gtt with an assignment

ASSUME ASSERT �
In Out p

1 — — := Out [0,1]
2 — — := Out + 1 [0,1]
3 p — 1

(b) Demonstrating nondeterministic assign-
ments

Figure 5.5: Two gtts with a gtt-local variable p, which can be assigned.

or the system. Therefore, assignments are always assigned under the right
quanti�cation: after the universal quanti�cation of the challenger input, and
the existential quanti�cation of the system. Thus, they do not su�er under the
order of instantiation.

Also, the presentation in the table would be rather simple. We allow columns
for each local gtt variable under both column categories. Figure 5.5(a) shows
a small example, where p becomes a local variable, which binds the value of
the �rst output in Row 1. The value is later used in Row 2 for constraining the
input.

But assignments bring also drawbacks to the semantics and understandability.
Both arise from the nondeterminism in the selection of the current row. Consider
the example in Figure 5.5(a). Let the duration constraint on Row 1 be “don’t-care”
(“—”), then the �rst row is skippable. Thus, Row 2 may become active with an
unassigned variable p. Such a gtt is not a well-de�ned speci�cation. This issue
is �xable adapting the semantics. The understandability su�ers under the same
circumstance. It may become hard to �gure out how the variables are bound
in certain rows, especially, if repeatable (and skippable) rows and row groups
occur together.

Another issue shows that assignments cannot be handled by the current game
representation. Consider the table in Figure 5.5(b). This gtt has initial rows
which assign a di�erent value to p. In each round of the game, the challenger
chooses the input value. The input constraints of both rows are satis�ed with
any value for In and Out. Thus, both rows survive the �rst and second �lter pass.
Now, we have to assign the speci�cation-local variable p accordingly to two
di�erent assignments. The game needs to nondeterministically split on both
possible assignments, leading to separated plays in the next round: one with
p = Out and one with p = Out+ 1. Moreover, we need to decide whether the
conformance requires that all or at least one separated play needs to be won by
the system. Besides this de�nitional question, this also requires large changes
in our decision procedure (Chapter 6).

78 CHAPTER 5. FORMALIZATION OF GENERALIZED TEST TABLES

5.4.3 Arbitrary Repetition in Last Row.
Our choice of semantics leads to an unintuitive case. Let us consider the meaning
of the time constraint [1, 2] on the last row of a gtt (cf. Figure 4.10(a)). In our
informal semantics (Section 4.4), we notice that the repetition has no e�ect: If
the system adheres to the row once, it is conforming. Only the lower bound on
repetition matters in the last rows. As a consequence, if the repetition in the last
row allows zero repetition (row is skippable) the last row is completely ignored.
For this reason, strong repetition is introduced to forbid early termination of
the play by the choice of the system. For engineers, this circumstance seems
strange, and a possible solution is either to replace all arbitrary repetition by
their lower iteration limit, or by strong repetition.

Chapter 6

Decision Procedures

This chapter is dedicated to two decision procedures for the veri�cation of our
conformance de�nition for gtts (De�nition 5.12). The �rst decision procedure
exploits model-checkers for invariants and LTL-properties to prove the weak,
strict, or cooperative conformance. The second decision procedure translates
our veri�cation subject and the given gtt into a C-program and uses modern
Horn-based solvers for the veri�cation.

Outline. This chapter is split into two sections. First, we present the deci-
sion procedure with the model-checker (Section 6.1). For this procedure, we
introduce the notion of normalized tables and the automata construction, which
corresponds to the de�ned game. These de�nitions are also exploited for the
veri�cation via the translation into a C-program (Section 6.2). Finally, we visit
some open questions, especially transformation of the veri�cation subject, to
build the veri�cation pipelines (Section 6.3)

6.1 Model-Checking for Conformance
Based on the state-of-the-art model checker nuXmv [Cav+14], we present an au-
tomatic decision procedure for conformance checking (Figure 6.1). The decision
procedure translates the given reactive program, given as StructuredText,
and the gtt into a combination of two automata, such that the conformance
can be checked either as an invariant or LTL property on them. The program
automaton describes the transition relation between two cycles and is obtained
from the PLC source code using symbolic execution and a transformation into
the single static assignment form [RWZ88]. The gtt is translated into an au-
tomaton in which automaton states keep track of the current table rows—these

79

80 CHAPTER 6. DECISION PROCEDURES

Model
Checker
nuXmv

Automata
Construction

Speci�cation
(GTT)

Symbolic
Execution

System
under test

(ST0)

Veri�cation
Result

3 / 7 / �

Figure 6.1: A schematic view of the procedure deciding whether system under
test conforms to the given gtt. PLC software is preprocessed into a simpli�ed
version of StructuredText: Structured Text 0. The result of the conformance
check is either (a) that the software indeed conforms to the gtt, (b) a counterex-
ample, or (c) a time out due to limitations on resources.

also correspond to the set of remaining symbolic plays ŜP. The program con-
forms to the gtt if this automaton either reaches the end state or if no automaton
state is active anymore (ŜP is empty by the choice of the challenger). It violates
the speci�cation if the output values violate the output variable constraints in
all currently active automaton states.

The focus of this section is on the construction of the automaton, and its
acceptance condition which corresponds to the conformance of gtts.

6.1.1 Transforming Generalized Test Tables into
Automata

Normalized table. In order to ease the presentation of this construction, we
assume a normalized form of test tables which allow only a restricted form of
time constraints:

De�nition 6.1 (Normalized gtt). A gtt T ∈ T normalized if every time con-

straint in T is any of [1, 1], [0, 1], [0,∞] or ω.

The construction of such a normalized table T0 for T is canonical: Every row
with a �nite duration interval τ = [a, b] is unrolled into b rows with the �rst a
repetitions having duration [1, 1] and the remainder having duration [0, 1]. If
τ = [a,∞], then the row is repeated a times with duration [1, 1] and one row
with duration [0,∞]. Strong repeated rows are simply transferred. This scheme
is also applicable to row groups, where the complete row group is duplicated.
Note that a single row in a gtt (in row group nesting) can be expanded in

6.1. MODEL-CHECKING FOR CONFORMANCE 81

I O duration
1 [0,∞]
2 [1, 1]
3 [0, 1]
4 [1, 1]

1 2 3 4 5

Figure 6.2: A normalized table and the successor relation on its rows.

exponential many duplicates, i. e., a row with τ0 = [a, b] nested in n row groups
with time constraint τi = [ai, bi] (1 ≤ i ≤ n) is exploded into bΠ1≤i≤nbi rows.

Figure 6.2 illustrates the row successor relation (right) for a normalized gtt
(left). The syntactical restriction of normalized tables does not pose a limitation
on the expressiveness of gtts. We make the following summarizing observation:

Proposition 6.2. For every gtt T there is a semantically equivalent normalized

gtt T0.

Alphabet. We construct a Büchi automaton, which accepts ω-words in (I ×
S)ω produced by a reactive system (Section 2.1). The alphabet of the automaton
is de�ned over the values of input I and state variables S of the reactive system.
In the following, we use Boolean formulas to describe subsets of the alphabet.

States. The idea behind the normalization is that every table row of the nor-
malized table is also a state in the automata. A normalized gtt T0 with m rows
results in an automaton with 2m+2 states. Thus, the constructed automaton
simulates the power automaton from the automaton shown in Figures 6.2 and 6.3.
The states are characterized by vectors (s1, . . . , sm+1, fail) of Boolean variables,
one for each row in T0 (s1 to sm), one indicating termination sm+1, and one
indicating failure (fail). Intuitively, sk is true in a state if and only if the table is
in a situation where the test table may have been executed by the trace up to
the k-th row. The initial state (s0

1, . . . , s
0
m+1, fail0) is de�ned by

s0
k = true i� k ∈ succ(0) and fail0 = false . (6.1)

The relation � is de�ned in De�nition 5.8.

State Transition. Given a state (s1, . . . , sm+1, fail), then its successor state
(s′1, . . . , s′m+1, fail ′) is deterministically computed according to these equiva-

82 CHAPTER 6. DECISION PROCEDURES

lences:
m∧
k=1

(
s′k ↔

m∨
i=1

(si ∧ k ∈ succ(i) ∧ φi ∧ ψi)
)

(6.2)

s′m+1 ↔
(
sm+1 ∨

n∨
i=1

(si ∧m+1 ∈ succ(i) ∧ φi ∧ ψi)
)

(6.3)

fail ′ ↔
(

fail ∨
(m∨
i=1

(si ∧ φi ∧ ¬ψi) ∧
m+1∧
i=1
¬s′i

))
(6.4)

The equivalences in (6.2) encode that the k-th row is active in the next step
(variable s′k) if there is an active row i preceding k such that its input constraint
φi and output constraint ψi are satis�ed. The same applies to the virtual row
m+ 1 at the end of the table in (6.3). Here, additionally, once true, the variable
sm+1 never falls back to false again. The fail �ag indicating a speci�cation
violation is de�ned in (6.4). It is triggered whenever there is one active row
i such that its input constraint φi is satis�ed while the output constraint ψi
is violated and there is no other active row in the next state. Note that the
equivalences above ensure the state transition system is always deterministic.

Acceptance Condition. The acceptance condition remains to be described.
By de�nition, a Büchi automaton accepts an in�nite word if at least one state
from the set of �nal states is traversed in�nitely often by the given word. We
construct three di�erent sets of accepting states: condition AWC for weak
conformance,AC for strict conformance, andACoop for cooperative conformance.
The following formulas are identi�ed with the set of states that satisfy them:

AWC := ¬fail (6.5)

AC :=
(m∧
i=1
¬si ∧ ¬fail

)
∨ sm+1 (6.6)

ACoop := sm+1 (6.7)

For weak conformance, the automaton accepts any trace that never set the
�ag fail to true. For strict conformance, the automaton accepts a trace if it
reaches a state in which sm+1 (the �ag for �nishing a table) is true or there is
no active table row anymore without a previous violation of the system. The
cooperative conformance simply requires that the end of a table is reached, indi-
cated sm+1. Due to the construction of the automaton, the acceptance condition
of AWC can be ensured with an invariant, whereas the acceptance condition
AC and ACoop are reachability conditions. Strict and cooperative conformances
require a fair challenger which in�nitely often tries to make progress. For exam-
ple, if a row can be repeated in�nitely (like Row 1 in Figure 6.2), the challenger

6.1. MODEL-CHECKING FOR CONFORMANCE 83

could choose inputs only adhering to the input constraint from the �rst row and
preventing the system from making the required progress and �nally reaching
the end of the table (and so a state where sm+1 is true). Therefore, we require
that the challenger enforces progress in the test protocol from time to time. Such
a fair challenger is described by following the LTL formula:

fairC := 2
si → ∨

r∈succ(i)
23φr

 , (6.8)

Thus, fairC requires, when the ith table row is active (si is true), that the chal-
lenger needs to pick an input adhering to one of its successor assumptions from
time to time. For strict conformance, a fair challenger seems unnecessary, but
the play can also become stuck: the end of the table is not reachable (like cooper-
ative conformance), and the challenger only emits valid inputs. In this situation,
the game is not winnable for the system, thus it cannot strictly conform.

Example 6.3. Figure 6.3 sketches the construction principles for the gtt in Fig-

ure 4.9 by visualizing the state vector as an automaton. Note that �nal encoded

automaton is the power automaton of the depicted automaton, where the state

vector consists of eight independent Boolean variables representing the current

table rows in the normalized gtts.

In particular, an automaton state s(k)
i in Figure 6.3 represents the kth iteration

of the ith row of the table and expresses that the ith row is currently a possible step

of the test protocol. The state fail is activated when a violation of a row assertion

(of the system under test) occurs, state sm+1 represents the end of the table. If this

state is reached, the system conforms to the gtt.

There are two kinds of transitions: An α edge from a state s(k)
i to the state fail is

triggered if the assumption of the ith row is satis�ed, but the assertion of the same

row is violated (6.4). A β edge is taken when both the assumption and the assertion

hold, leading to the next possible steps in the test protocol, de�ned by the successor

relation succ; (6.2) and (6.3). Note that due to the strong-repeated row group in

Figure 4.9, the end-of-the-table and thus the �nal state sm+1 is not reachable. We

model this situation by labeling the edge to sm+1 with the contradictory guard

false.

The automata. Based on the above constructions, we de�ne three Büchi
automata. They share the states, initial states (6.1), and the transition function
(6.2)–(6.4), but have di�erent acceptance conditions. The automaton AWC for
weak conformance uses the accepted condition AWC as a set of accepting states,
the one for strict conformance uses AC , and for cooperative conformance ACoop.

84 CHAPTER 6. DECISION PROCEDURES

s(1)
1 s(1)

2 s(1)
3 s(1)

4 s(1)
5 s(2)

5start
β β β β β

β
β

β

β β
β

sm+1

fail

false

true

α α α α α

Figure 6.3: Sketch of the automaton generated for the gtt of Figure 4.9

Proposition 6.4. Let T be a normalized gtt (De�nition 6.1). A reactive system

S weakly conforms to T i� all traces of B(S) are accepted by AWC (T), i. e.,
B(S) ⊆ L(AWC (T)). A reactive system S strictly conforms to T i� all traces

of B(S) are accepted by AC(T), i. e., B(S) ⊆ L(AC(T)). A reactive system S
cooperatively conforms to T i� all traces of B(s) are accepted by ACoop(T), i. e.,
B(S) ⊆ L(ACoop(T)).

The following proofs bases on the algorithmic presentation of the game as
presented in Figure 5.1. We argument, that the speci�c early exits of the game
are coupled with the state of a parallel running automaton. An early exit denotes
an either invalid move by the challenger or the system (Lines 14 and 10), or the
end of the table is reached (Line 10) For convenience reason, we assume, that we
are in an arbitrary round k ≤ 0, thus, all played turns in rounds k′ < k were not
settled. In the core, this is a short form of an induction proof over the rounds k.

Weak Conformance. Consider the direction from left to right: Let the reactive
system S weakly conform the gtt T , then for any round the game with k′ ∈ N
and current play v ∈ (I × S)k′ , we know that game has not terminated in
favor of the challenger. Also, as the system is weakly conform, the Line 14 in
Figure 5.1 is not reachable, i. e., at least assertion constraint ψ is always adhered.
Therefore, there exists a word (ψr0 , . . . , ψrk

) over the assertion of the rows ri in
T such that each assertion constraint ψri

hold in round i ≤ k with respect to
the successor relation ri+1 ∈ succ(ri). Thus, the forbidden state fail could not
have been reached in the automaton.

Consider the case, where the current play v is longer than the number of
rounds k |v| > k, then the play was decided in an earlier round. By assumption
of weak conformance, either no row state si (1 ≤ i ≤ m) is active anymore, or
sm+1 is active (end of speci�cation reached). In both cases, the current play is
accepted (and fail is not reachable anymore).

6.1. MODEL-CHECKING FOR CONFORMANCE 85

The same argumentation is valid in opposite direction. If we reached the
forbidden state, we can construct a set of word pairs over the assumptions
(φr0 , . . . , φrk

) and the assertion (ψr0 , . . . , ψrk
), s.t. the assumption hold in every

turn, and the last assertion ψrk
is violated by the system. Each entry represents

a counter-example for the remaining symbolic plays in ŜP in round k.

Strict Conformance. The argumentation follows the scheme of the weak confor-
mance, but instead of unreachability of lines, we know, that either the Line 17
or Line 10 in Figure 5.1 have been reached. Each of the reached lines is a reason
why the system wins, and therefore, also why AC holds.

Case Line 10: There are no active row states (¬sr, for all table rows r) which
denotes an invalid turn of the challenger. Case Line 17: The end of the table
has been reached, thus sm+1 is active. This is mutual exclusive with fail by
de�nition (6.4) if the system has violated a constraint.

The opposite direction can be reasoned with similar arguments in contrapo-
sition, then the system loses due to the violation of the last possible assertion
constraints ψi. Thus, fail is active and AC could not have been reached.

Cooperative Conformance. The proof follows immediately from the connection
of sm+1 to the Line 17 in Figure 5.1.

Extension for Past References and Global Variables. The automata con-
struction described above does not cover gtts with back-references of the
form v[−k]. To handle back reference, the state space needs to be enriched by ad-
ditional variables. For any input or output variable v for which a back-reference
v[−k] occurs in a table, the state variables v1, . . . , vk are added. Moreover, the
following equivalencies are added to the state transition:

v′1 = v ∧
k∧
i=2

(v′i = vi−1) (6.9)

The expression v[−c] then refers to the variable vc for any constant c ∈ {1, ..., k}.
Note that the initial value for each vi is unde�ned (cf. De�nition 5.10). The same
construction is applied for each global variable g. As global variables have the
same value in all states, we add the simple equality g′ = g to the state transition.
Also, their initial state is unde�ned. Therefore, the automaton must accept the
observed trace for any instantiation of the global variables and also for any
unset back reference.

We know that model-checking of LTL formulas by using Büchi automaton
is decidable ([Büc90]). Therefore, we state the following:

Theorem 6.5. The weak, strict, or cooperative conformance of a reactive Boolean

program to a gtt is decidable.

86 CHAPTER 6. DECISION PROCEDURES

The Boolean programs are programs that are expressible as an arbitrarily
large circuit. This restriction is necessary as they can be expressed as automata.
For the PLC domain, this is a rather minor limitation, which enforces an up-
per bound on the state space and executed statements in all execution cycles.
Both constraints are already satis�ed by real-world PLC programs. Their lan-
guage speci�cation IEC 61131-3 forbids dynamically allocated memory and loops
should always have an upper bound due to the real-time requirements.

To create a decision procedure, we translate the gtt (as described above), and
the program to an automaton (as described below). Both automata are combined
into a product automaton, in which the input, state, and output variables from
the program automaton are the input for the gtt-automaton. And the input
of the product automaton is nondeterministically chosen values for the input
variables of the veri�cation subject.

For strict and cooperative conformance, we use the LTL property fairC →
3AC (ACoop, respectively), which enforces that the required condition is �nally
met under a fair challenger. As the acceptance condition for weak confor-
mance AWC is expressible as an invariant. We use faster veri�cation techniques
IC3 [Bra11].

6.2 Horn-based Veri�cation via C-program
Veri�er

The next decision procedure is based on a translation to a C-program and the use
of state-of-the-art Horn-based decision procedure for C-programs, like [HR18;
Gur+15]. But of course, any other C-veri�cation which can handle assump-
tions and assertions, like cbmc [KT14] or the CPAChecker [BK11], should also
be usable. We especially investigate Horn-based solvers because they provide
fully automatic reasoning without the necessity of auxiliary speci�cations. An
additional advantage is their support for unbounded integers which bring bet-
ter performance for complex arithmetic. Multiplication and division explode
when encoded into a propositional formula, however, this is required for SAT-
based methods as our model-checker pipeline. Besides the Horn solver backend,
the C-program veri�er also provides additional program analyses which fur-
ther increase the pipeline performance. Also, they are capable of dealing with
unbounded loops. Therefore, we spare the symbolic execution and directly
translate the PLC program into a C-program.

Of course, there is a drawback of this pipeline: it is only capable of proving
the weak conformance. The other conformances are not expressible as an
invariant.

6.2. HORN-BASED VERIFICATION VIA C-PROGRAM VERIFIER 87

Figure 6.4: Screenshot of stvs, a graphical frontend for the veri�caton with
gtts, showing the ST source code on the left, and the counter example as line
diagram and a concrete test table on the right side.

Monitored
Program

(C-program)

Monitored
construction

Automata
Construction

Speci�cation
GTT

Translation
System

under test
(ST0)

C-veri�er
eldarica
SeaHorn

Veri�cation
Result

3 / 7 / �

Figure 6.5: Horn-based veri�cation pipeline for gtts

88 CHAPTER 6. DECISION PROCEDURES

Figure 6.5 shows the pipeline for this decision procedure. The decision
procedure takes the system under test and a gtt, and combines them into a
monitored program. The monitored program simulates a parallel synchronous
execution of the given system and the Büchi-automata similarly to the product
automaton from the previous decision procedure. We call the program, which
encodes the Büchi automata and decides the correctness, tester. In the last
step, we use eldarica (a horn-solver which supports C programs) or SeaHorn
(C-program veri�er) to verify that the monitored program never signals fail.
The veri�er returns safe (X) if the program adheres to the given speci�cation
via assumption and assertion statements in the C-program. Otherwise, unsafe
(7) denotes that there exists a program execution leading to a fail state. Again,
timeouts (�) are possible. Safe denotes that the system under test weakly
conforms to the given gtt. Internally eldarica and SeaHorn translates the
given C program into a set of constraint horn clauses (CHC), and solves the set
of clauses by �nding a satisfying interpretation of the declared variables and
functions. Additionally, SeaHorn as dedicated C-program veri�er provides a
rich feature, e. g., the inference of loop invariants via abstraction interpretation,
for the program analysis.

Language of C-programs. The constructed monitored C-program requires
three additional statements, which are well-known to the veri�cation commu-
nity, but does not exist in the C-language.

• The statement assume expr; expresses an assumption during the program
execution. If the assumption is violated in the current execution path, the
program execution is discarded and not further investigated.

• The opposite is assert expr;. If a program execution reaches this state-
ment, we require that the given expression holds, otherwise, we consider
the program as incorrect, and the veri�cation of this program fails.

• The statement havoc var; overrides the given variable with a nondeter-
ministically chosen value. A havoc’d variable has any possible value
allowed by its data-type, identical to a declared but not initialized local
variable in C.

For this section, we introduce the notion of a reactive fragment which is a
lightweight structure for a reactive program:

De�nition 6.6. A reactive fragment (InVar , StateVar , Init, T rans) is a four

tuple, where InVar is the set of input variables, StateVar the set of state variables,

Init, and Trans are C-procedure bodies.

6.2. HORN-BASED VERIFICATION VIA C-PROGRAM VERIFIER 89

First, a reactive program is de�ned for a set of program variables, the input
and state variables. These variables also de�ne the program state. This program
state needs to be initialized at the start of the reactive system. The initialization is
described by the provided Init procedure, and procedure Trans is the reactive
program (Section 5.1) describing the state transition of a single cycle of the
reactive system.

We can construct such a reactive fragment for a given PLC program. For this,
we need to establish a version of the system under test, where all subroutines are
embedded (Section 6.3). We need to care about semantical di�erences between
C-language and IEC 61131-3 on expression and statements evaluation. For
example, whereas the C semantics describe which behavior is expected for
integer arithmetic, the IEC 61131-3 left these semantics implicitly unde�ned.
For �oating-point arithmetic, both standards follow IEEE 754. The IEC 61131-
3 does not specify the behavior if an error occurs, e. g., a division by zero,
whereas the C standard explicitly leaves such cases unspeci�ed and open to the
compiler implementation. Additionally, the veri�cation tool can have a di�erent
semantical interpretation of the C-program. In our case, this occurs with an
SMT-based solver which uses the built-in mathematical theories. For example,
the C-program veri�er often uses unbounded integer arithmetic in contrast to
the bit arithmetic used by the language standards.

The remainder of this section is split up into three parts: Encoding of the
automaton (Section 6.2.1) into a reactive fragment, construction of a monitored
program given two reactive fragments (Section 6.2.2), and correctness of this
pipeline (Section 6.2.3)

6.2.1 Construction of the Tester
The tester denotes a reactive fragment, which simulates the Büchi automaton
AWC and thus simulates the game (Figure 5.1). The tester takes the input values,
chosen by the challenger, the state (including the output values), computed by
the system, and asserts that the condition for the weak conformance AWC holds.

The tester is a reactive fragment TWC = (InVar t, StateVar t, Initt, T ranst).
Given a normalized gtt T0, its Büchi automaton AWC(T), and the signature Σ
of the program under test, then we construct the reactive fragment as follows:
The input variables InVar t of the tester are the program variablesΣ (input, state
and output variables) of the veri�cation subject. The state variables StateVar t
corresponds to the state vector of the Büchi automaton. In particular StateVar t
contains Boolean variables for each table row s1, . . . , sm+1, and the variable fail
marking the failing of the system. For each program variable v, which has a
past reference with a maximum lookbehind of kv ≥ 1, StateVar contains kv
variables vi (1 ≤ i ≤ kv) with the same datatype as v. And each global variable

90 CHAPTER 6. DECISION PROCEDURES

g, becomes a variable in StateVar t.

InVar t :=Σ
StateVar t :={si : boolean, . . . , sm+1 : boolean, fail : boolean, }

∪{vji : tv | 1 ≤ i ≤ kv and every past-referenced v with type tv}
∪{g1, . . . , gk}

(6.10)

The initializer Initt takes care of the correct initialization of the tester. It
corresponds to the initial state of the Büchi automaton:

Initt :=
si = false; // for 1 ≤ i ≤ m+ 1
si = true; // for i ∈ succ(i)
fail = false;
havoc vi; // for every past-ref. variable v

havoc gi; // for 1 ≤ i ≤ k

assume P1(g1) and . . . and Pl(gl);
(6.11)

Initt contains the initialization of the initial and non-initial table row variables
si, and the error variable fail . Also, we anonymize (havoc) the global variables
and the variables vi which store the history information of a program vari-
able. Additionally, the value ranges for the global variable can be speci�ed by
assumptions, given in the predicates Pi.

The transition statements TransT are simulating the transition of the au-
tomaton given in Equations (6.2) to (6.4). In contrast to the logical de�nition,
the assignments are evaluated sequentially and not in parallel as assumed in
the equations. Thus, we need to introduce temporary variables to store the
active automaton states to avoid clashes. After the automaton states have been
evaluated in Transt, we overwrite si with the value of the temporary variable
s′i. Also, the invariant for AWC is evaluated and is asserted, and �nally, we
maintain the history of the program variables where needed by simply shifting
the values, like in (6.9). The complete transition Transt looks as follows:

6.2. HORN-BASED VERIFICATION VIA C-PROGRAM VERIFIER 91

Transt :=

boolean s′k :=
m∨
i=1

(si ∧ k ∈ succ(i) ∧ φi ∧ ψi);

// for each 1 ≤ k ≤ m

boolean s′m+1 := sm+1 ∨
n∨
i=1

(si ∧m+1 ∈ succ(i) ∧ φi ∧ ψi);

boolean fail := fail ∨
(
m∨
i=1

(si ∧ φi ∧ ¬ψi) ∧
m+1∧
i=1
¬s′i

)
;

assert !fail;
vj

i := vj
i−1; // for each past-ref variable v and 1 ≤ i ≤ kv

v1 := v; // for each past-ref variable v

si = s′i; // for each 1 ≤ i ≤ m+ 1

6.2.2 Monitored Program
In this section, we describe how the veri�cation subject given as a reactive
fragment is combined with the tester (also a reactive program). The result is a
reactive fragment, which is rendered as a sequential C-like program suitable as
an input for a common C-program veri�er.

De�nition 6.7 (Construction of the Monitored Program). Given the veri�cation

subject S = (InVars, StateVars), Inits, T ranss), and the generated reactive

fragment for the tester TWC = (InVar t, StateVar t), Initt, T ranst), then the

monitored program is de�ned as

PS×TW C
= (InVars, StateVars]StateVar t, (Inits ; Initt), (Transs ; Transt))

Note that the variable domains of both fragments (from the veri�cation
subject and the tester) are compatible by the construction of the tester because
the variable domain of the subject is already reserved. The program variables
of the veri�cation subject S are the input variables of the tester TWC . The
procedures for the initialization and transition are simply sequentially executed
after one another.

The monitored program PS×TW C
behaves like the veri�cation subject S, as

long as the veri�cation subject weakly conforms to the gtt from which the
tester TWC was generated. The tester does not interfere with the state variables
of the subject. Thus, the only di�erence in behavior occurs when the assertion
fails, and this is only the case for non-conformant programs.

92 CHAPTER 6. DECISION PROCEDURES

We prefer the notion of monitored program over the notion product program.
The concepts look similar, both concepts are a parallel execution of several
programs, but product programs guarantees, that these parallel executions do
not interfere which each other. Thus, a run of the product program can be
projected to a run of every single original program. In contrast, a monitored
program requires the interference of the tester: The tester needs to abort the
execution if the veri�cation subject is not correct. If the veri�cation subject is
run without the tester, the run would have continued.

Encoding into a C program Finally, we generate from the (monitored) reac-
tive fragment PS×TW C

a C program that simulates this fragment. The C-program
is straight-forwarded and valid for every reactive fragment. In this section, we
show the construction specialized on the monitored reactive fragment PS×TW C

.
In contrast to a C-program, a reactive fragment is periodically executed.

For this reason, we have separated the initialization procedure Init and the
periodically executed procedure Trans in the reactive fragment. The C-program
template is given in Listing 6.6. First, the reactive fragment is wrapped inside the
main-procedure (the entry point of a C-program), starting with the declaration of
every variable vi in InVar and StateVar with the appropriate type ti. Afterward,
the initialization procedure is executed—in our case Inits and Initt. The periodic
code Transs and Transt are in�nitely often executed in a loop, simulating the
periodical execution cycle. But before the execution of the transition code,
every information of the input variables in InVars needs to be removed with a
havoc-statement to simulate fresh sensor information of the environment.

The generated C-program can be analyzed using veri�cation tools that
support C-programs. We use eldarica [HR18] and SeaHorn [Gur+15] for the
analysis. Both tools translate the given C-program into a set of Horn clauses.

6.2.3 Correctness
We dedicate this section to the correctness of our Horn-based or C-veri�er based
veri�cation pipeline. Correctness is narrowed by the following statements:

Proposition 6.8. Given a reactive program S and a gtt T , the Horn-based

pipeline (Figure 6.5) successfully terminates (proving that the assertion always

holds) if and only if the reactive program weakly conforms the gtt T .

We prove the correctness by showing that the monitored program, especially
the tester, is coupled to the state of the Büchi automaton AWC(T) running
in parallel to the monitored program. As a consequence, we state that the
tester simulates the Büchi automaton, and if a word is not accepted by the

6.2. HORN-BASED VERIFICATION VIA C-PROGRAM VERIFIER 93

1 void main() {
2 ti vi; // declare every input and state variable
3
4 Inits; Initt;
5
6 while(true) {
7 havoc vi; // for every variable vi ∈ InVars
8 Transs;
9 Transt;

10 }
11 }

Listing 6.6: Sketch of the monitored program.

automaton, the assertion in our monitored program is always adhered to. We
make our considerations under the assumption that the arithmetic semantics of
the operations are equal in the IEC 61131-3 program, the C-program, and the
C-veri�er.

Proof. The proof is done by induction over the number of rounds k. By construc-
tion, the state of the tester is coupled with the Büchi automaton, e. g., the every
variable si of the tester corresponds to the con�guration variable si (analogue
for global variables gi, history of variables vji and fail). However, this coupling
is established only at certain positions (lines) in the tester program.

For k = 0, we established the coupling between the initial states of the
Büchi automaton, and the set of possible states of the tester program after both
initialization procedures Initt and Inits were executed. The Büchi automaton
has multiple initial states due to the degree of freedom in global variables
and the history of program variables. Also, the tester program has multiple
reachable states after Initt due to the nondeterminism caused by the havoc-
statement. In detail, the coupling means that for each start state there exists
a corresponding state in the tester program after Initt, and vice versa. By the
construction, the mapping should be obvious due to the same variable names.
As the havoc-statements create exactly the combination of global variables (and
history of program variables) as the Büchi automaton start states, the coupling
is established.

The induction step k = k′ + 1: We established the coupling behind the
execution of Transt. As the computation of si (1 ≤ i ≤ m+1), fail , and history

94 CHAPTER 6. DECISION PROCEDURES

of program variables are identical to the equations Equations (6.2) to (6.4) of
the Büchi automaton these variable are equal. And the assertion of the tester is
violated if and only if the acceptance condition AWC is also violated.

6.3 Implementation of the Veri�cation Pipeline
The presented decision procedures are implemented into a veri�cation tool for
the IEC 61131-3 languages, called geteta. geteta provides a backend for the
veri�cation of gtts, covering the transformation of the reactive program, the
automaton or C-program construction, and the preparation of counter-examples.
However, it does not provide a graphical interface. A user frontend for the
veri�cation is provided by stvs Figure 6.4 with support for the visualization
of counter-examples and the generation of concrete test tables. Note that stvs
only covers a subset of the language features.1. geteta is part of verifaps
software project which provides a library and several tools for the veri�cation
of IEC 61131-3 software.

In this section, we want to dive into the details of the backend, and especially
cover the remaining missing points: required transformations of the veri�cation
subject, and the input language of the gtts.

6.3.1 Preparation of the Veri�cation Subject
Our target, in this section, is to translate the given veri�cation subject into a
logical model: the SMV (Symbolic Model Veri�er) format. SMV is the input
format (textual representation) of the nuXmv model-checker. The software
of the reactive system is given as a text �le containing the Structured Text,
Sequential Function Chart, or any other IEC 61131-3 language. Often an aPS
project is exported as a PLCOpenXML �le. The verifaps-project provides a
toolfor the extraction from XML into a suitable text �le. In short, we translate
everything into Structured Text, and then simplify the source code into a reduced
form (called ST0). The ST0 version is translated into a single static assignment
(SSA) form by a symbolic execution step, which can easily be encoded into
SMV representation. In the SSA form, the PLC program is represented as a set
of equations, which describes the new value of each state after a single cycle,
depending on the input and old state values. The SSA form correspond to ρ(P)
given De�nition 5.1.

The simpli�cation into ST0 has two limitations: both the execution and the
memory have to be bounded. Bounded execution means, that there exists a

1Both tools are available online at https://verifaps.github.io/geteta and https://verifaps.
github.io/stvs

https://verifaps.github.io/geteta
https://verifaps.github.io/stvs
https://verifaps.github.io/stvs

6.3. IMPLEMENTATION OF THE VERIFICATION PIPELINE 95

maximal number of iterations for each loop and all possible execution cycles.
Analog for the memory, there needs to exist an upper bound for its size. Both
limitations are usually met by reactive software. In practice, bounded execution
is already required to meet the real-time behavior of the systems. The memory
limitation is met by the IEC 61131-3 standard, as it forbids the dynamical alloca-
tion of memory. Therefore, every memory is statically allocated at the start of a
PLC program (before the �rst program invocation).

Symbolic Model Veri�er Format. The software is represented by an SMV-
module, where the behavior of the software is described by initial and next
predicate over the de�ned variables. A variable de�nition consists of the name
and the data-type.2 The initial predicate describes the set of initial system
states by determining the possible variable values. The next predicate de�nes
a relation between the current and the successor states. Both predicates can
model nondeterministic behavior either by allowing multiple initial or multiple
successor states (for one concrete state). For example, the encoding of a gtt
automaton (Figure 6.3) into SMV allows multiple initial states to match the
possibilities of the values of global variable d, whereas the initial state of a
IEC 61131-3 software is fully determined either by user-de�ned initialization or
the default value of the standard.

Intermediate Representation ST0. We build an intermediate representa-
tion (IR), called ST0, which contains a rudimentary subset of Structured Text
(assignment and if-statement) and the goto-statement. ST0 originated from our
previous work in [Wei15; Bec+15].

De�nition 6.9 (ST0). A ST0 program is generated by the following grammar

rules:

〈ST0〉 ::= 〈type〉 〈funcs〉∗ 〈prg〉
〈type〉 ::= TYPE (〈name〉 : ’(’ 〈name〉 (’,’ 〈name〉)∗ ’)’)∗ END_TYPE

〈funcs〉 ::= FUNCTION 〈name〉 : 〈type〉 〈scope〉 〈stmt〉 END_FUNCTION
〈prg〉 ::= PROGRAM 〈name〉 〈scope〉 〈stmt〉 END_PROGRAM
〈scope〉 ::= (VAR | VAR_INPUT | VAR_OUTPUT)

〈name〉 : 〈type〉 END_VAR [〈scope〉]
2In more detail: Besides the state variables, nuXmv supports the de�nition of input and

frozen variables. The �rst variables are nondeterministically re-assigned in each system transi-
tion. A frozen variable has a constant value after the initial state.

96 CHAPTER 6. DECISION PROCEDURES

〈stmt〉 ::= 〈stmt〉 〈stmt〉
| v := 〈expr〉 ;
| 〈name〉 : 〈stmt〉
| GOTO 〈name〉 ;
| IF 〈expr〉 THEN 〈stmt〉

(ELSEIF 〈expr〉 THEN 〈stmt〉)∗
[ELSE 〈stmt〉] END_IF

| ε

Variables in a ST0 program can have any built-in type of IEC 61131-3 and
user-de�ned enumeration types, de�ned in 〈type〉. But due to the restriction to
the nuXmv model-checker, we only support bit-based data types when using
this model-checker. In particular, these are boolean, bit words (BYTE, WORD,
DWORD), the signed and unsigned integer types (SINT, INT, DINT, LINT, USINT,
UINT, UDINT, ULINT) and enumerations. Other user-de�ned types, like records
or arrays, are handled by the simpli�cation pipeline. Note that the Horn-based
pipeline may handle �oats directly depending on the chosen C-program veri�er.

A ST0 program consists of exactly one program de�nition, multiple func-
tion declarations, and enumeration type declarations. Thus, every call of a
function block instance needs to be embedded into the (main) program body.
The statements inside the program and functions are either an assignment, an
if-statement, or a goto-statement. Statements can also be annotated with a label
marking it as a target possible jump target of a goto-statement. Expressions
are not restricted. The goto-statements are an extension in comparison to the
IEC 61131-3 standard, but required to handle vendor-speci�c implementations
of Structured Text, e. g., CodeSys allows goto-statement in Structured Text,
and helps to e�ciently translate Instruction List and Function Block Diagrams
into Structured Text. (Both, Instruction List and Function Block Diagrams can
contain goto-statements according to IEC 61131-3.)

Translation Steps. ST0 is established by step-wise simpli�cation steps on
the given Structured Text program. The transformation pipeline is given in
Figure 6.7. It starts with the translation of Sequential Function Charts, Function
Block Diagrams, and Instruction List of the veri�cation subject into a behavioral
equivalent Structured Text source code. Additionally, a preamble is added to the
source code containing stubs for the functions and data-types of the standard
library. These stubs are either a complete implementation, e. g., MIN(a,b) or
SEL(cond, then, else), or an adaptation of the original implementation for
the veri�cation (cf. pulse timer in Listing 4.6). For example, the timer function
blocks are accurate for static veri�cation by counting cycles rather than on
real-time clocks.

6.3. IMPLEMENTATION OF THE VERIFICATION PIPELINE 97

joinST

TranslateSFC/FBD/IL

Standard-Library

Unwind loops Unfold data
structures

Embedding
Function
Blocks

Timer to
Counter ST0

Figure 6.7: Preprocessing for ST0

The translation for Instruction List and Function Block Diagram code into
Structured Text is straight forwarded as the semantics of expression or function
block calls are the same—only the representation di�ers. For example, the
Instruction List commands operates on an implicit register (the accumulator)
on which designated operations and operator are applied, like LD 1; ADD 2

which loads 1 into the register and adds 2. For Sequential Function Chart
code, the generation of equivalent Structured Text code is more complicated. A
translation for a subset can be found in [Wei15]. Also, the following program
transformations are de�ned by [Wei15], but we want to waste some paragraphs
to revisit them brie�y.

Unwinding of Loops. We distinguish between for-loops, which have an
apriori known number k ≥ 0 of loop iterations, and while-loops, where no such
k exists. The unwinding of for-loops is trivial, the body of the for-loop is copied
k-times, where the loop variable in the body is replaced by the current iteration.
For while-loops, we have to guess the number of iteration k, but then we apply
the same pattern with two extensions. Every copy of the loop body is wrapped
in an if-statement asserting that the loop condition holds. Therefore, if the loop
terminated after k′ < k iterations, then the remaining k − k′ bodies are not
executed. Also, after the k-th if-statement, we add an additional if-statement
with the loop-condition and body which set a (freshly introduced) error �ag to
true. Via this error �ag, we can later assert that the chosen k was large enough.
For these transformations, we silently assumed, that the loop condition is free
of side e�ects.

Unfold Composite Data-Types. Structures and arrays are composite
data types. In structures, the sub-elements are addressed by name and in arrays
by one or multiple indices. In both cases, the number of sub-elements is known
at compile-time and cannot be de- or increased at runtime.

The idea for removing the composite data type is the same as for structure
and arrays: Unfolding the data type into multiple primitive variables. For this,

98 CHAPTER 6. DECISION PROCEDURES

we need to consider how to rewrite the access and writing of sub-elements in
expression, and the handling in assignments.

Let v be a variable of a structure type in a speci�c variable scope. First, we
unfold the structure by introducing a new variable v$e for each sub-element
e in the structure. Second, access to sub-elements v.e are rewritten as access
to the introduced variable v$e. The same is valid for write access. Third, every
assignment of v:=w needs to unfolded into multiple assignments for each sub-
element e, i. e., v$e := w$e. We use the dollar sign “$” as the separator, because
after IEC 61131-3 this sign is not allowed in identi�ers and thus we automatically
avoid clashes with other variables in the same scope.

For arrays, the index is computed at runtime. First, we unfold an array
variable a into multiple variables a$i, where i is the index value. Note that
we only consider the case where the array has only one dimension. Access
and assignments of sub-elements need to be unfolded into a case distinction
on the provided index. Optimizations may be possible if the array indices
are computable at compile-time, e. g., if indices are literals populated by the
loop-unwinding.

These transformations need to be applied recursively to cover the case of
nested structure types or arrays. According to IEC 61131-3, data-type de�nitions
need to be free of cycles.

Timer to Counter. IEC 61131-3 de�nes timer function blocks, e. g., TOF, TON
and TP, that depend on the real-time clock of a PLC system. These timer function
blocks help the developer to trigger actions depending on clock-time. These
timer blocks are the back-bone of the time-dependent features of Sequential
Function Chart. For example, function block TON provides a Boolean output Q
which becomes true, after the input IN was true for a given duration T.

We simulate real-time by counting the execution cycles. Behind this trans-
formation lies the assumption that every cycle consumes the same amount of
time, and the execution (of a cycle) is done instantly (consuming no time, cf.
[Hal98]). In practice, this assumption is not always valid due to the inaccuracy
of the used clocks or the load of the system. On the other hand, the inaccuracy
would a�ect the time constraint given in the speci�cation (gtts) equally. Thus,
we prove that the software conforms to a gtt when both are evaluated under
the same perfect clock.

Our approach requires a special implementation for each function block,
depending directly on the real-time clock. Also, this transformation a�ects the
variables with the built-in type TIME. These variables are converted into integer
values representing the number of cycles under an overall considered cycle time.

For example, Fernández Adiego et al. [Fer+14] shows an abstraction of

6.3. IMPLEMENTATION OF THE VERIFICATION PIPELINE 99

timer function blocks with a completely nondeterministic behavior. This over-
approximation is only valid if the required properties do not depend on the
exact adherence to the timings, e. g., invariants. In [Fer+14], the authors require
an additional monitor, which observes whether the timer triggers, to be able
to use CTL. Also in [Fer+14], they give a fully correct implementation, which
requires a global time variable. In contrast, our approach is a simpli�ed version
correct for our use cases. It is an open research question if there is a veri�cation
method for gtts which allows such an over-approximation of the timers for the
veri�cation of gtts.

Embedding Function Blocks. The peculiarity of function blocks is that they
can be instantiated, and each instance maintains its own state. Under the embed-
ding of function blocks, we understand that the state and the implementation
body of each instance are embedded into the parent function block (or program).
Therefore, there are two transformation steps for each instance: First, we intro-
duce the variables of the instance in the caller scope, where the variable names
are pre�xed with the instance name. Second, each call site of the particular in-
stance is replaced by the body of the function block, also, with pre�xed variables.
This process is applied recursively, and terminates �nally due to the memory
limit enforced by the ban of recursive instantiation. We use the dollar sign “$”
(for the separation between the instance and the variable of the function blocks)
again to avoid variable name collisions. This transformation is given in more
detail in [Wei15].

Applying these transformations exhaustively, we �nally reach the ST0 form
of a program.

6.3.2 A Textual Input Language for gtts
De�ning a table-shaped input mechanism is quite cumbersome and error-prone.
We decided on a concise textual representation for gtts, that can be understood
and written by humans as well as easily generated by other tools. We only
introduce the textual notions required for gtts in this section. The notions for
the relational test tables (Part II) are presented in the second part of this thesis.

Figure 6.8 shows the grammar for a single gtt. A �le can contain multiple
gtts. A table declaration is initiated with the keyword table, followed by a
table name (for identi�cation) and the table body. The table body can contain
di�erent elements.

The 〈signature〉 de�nes the variables within a table. Program variables are
declared with the var keyword (Rule 〈signature〉 in Figure 6.8) followed by the
name and the data-type of the variable. This variable should also be de�ned in
the veri�cation subject. A program variable is an input, state, or output variable.

100 CHAPTER 6. DECISION PROCEDURES

〈table〉 ::= table 〈name〉 ‘{’ 〈body〉 ‘}’

〈body〉 ::= 〈signature〉∗ [〈option〉] 〈group〉 〈functions〉∗

〈signature〉 ::= var 〈modi�er〉∗ 〈name〉 [as 〈name〉] ‘:’ 〈datatype〉
| gvar 〈name〉 : 〈datatype〉 [with 〈clause〉]
| column 〈modi�er〉∗ 〈name〉 as 〈expr〉
| inherit_from 〈name〉

〈modi�er〉 ::= next|assume|assert|output|input|state

〈option〉 ::= options ‘{’ (〈name〉 ‘:’ 〈literal〉)∗ ‘}’

〈group〉 ::= group [〈name〉] [〈time〉] ‘{’ (〈group〉 | 〈cell〉)∗ ‘}’

〈row〉 ::= row [〈name〉] [〈time〉] ‘{’ (〈name〉 ’:’ 〈cell〉 [‘;’])∗ ‘}’

〈function〉 ::= a function de�nition after IEC 61131-3

Figure 6.8: Grammar of the input language for gtts. 〈cell〉 and 〈expr〉 are
de�ned in De�nition 5.4 and 〈time〉 in De�nition 5.3

A state variable can also be evaluated in the current or next state (the state after
computation). Every program variable can be categorized as an assumption
(assume) or an assertion (assert). For example, the output modi�er is a shortcut
for the modi�ers state assert next. The data-type can be any name of a
built-in IEC 61131 or just “ENUM” (to refer to any enumeration). For some test
table tools, e. g., ttmonitor (Chapter 8), the name of the enumeration type is
required. We can provide it by appending it to the datatype, i. e., ENUM_<name>.

The variable names have to be valid in the simpli�ed version of the veri�ca-
tion subject, where all function blocks are embedded, and array and structures
are unfolded. Therefore, to access a �eld f in a structure variable s, we need to
write s$f. Note that we can assign a fresh name to a declared variable by using
the as keyword. This is used to have shorter names for program variables, to
get an abstraction from the concrete names in the body cells of the table, or to
access the same state variable in the current and next state.

Additionally to the program variables, we can declare a column as a table
expression. A column behaves like a program variable that is assigned to the
de�ned expression. Global variables are introduced with gvar beside the name
and data-type, their value range can be limited with a given constraint. Finally,
for signatures, we can import the de�ned variables of another table by using
the inheritance clause (inherit_from) along with the table name.

With 〈option〉, we can provide set the con�guration parameters of the veri�-

6.3. IMPLEMENTATION OF THE VERIFICATION PIPELINE 101

1 table T {
2 var input IN : BOOL
3 var input PT : INT
4 var output IN : BOOL
5 var output ET : INT
6
7 group G1 omega {
8 row r1 [1,-] { IN: FALSE, PT: -; ET: 0; Q: FALSE}
9 row r2 [1,-] { IN: TRUE, PT: >=1; ET: >=ET[-1],<PT ; Q: TRUE}

10 row r3 [0,-] { PT: =PT[-1]; ET: >=ET[-1],<PT ; Q: TRUE}
11 row r4 [1,1] { PT: -; ET: PT; Q: -}
12 row r5 [1,-] { PT: -; ET: PT; Q: FALSE}
13 }
14 }

Listing 6.9: Textual representation of Figure 4.7

cation engine, e. g., with mode we can switch between bounded model-checking
or IC3 for checking the weak conformance.

The main part of a test table is given in the root-group. There are two
clauses: 〈row〉 represent a row and 〈group〉 a row group. Both have similar
headers which allow specifying an identi�er (〈name〉) for the entity and a time
constraint (〈time〉). The row and group identi�ers have to be unique. If the
identi�er is omitted, the row (group) receives a generated value. Omitted time
constraints are treated as singleton ‘[1,1]‘. The body of a group clause consists
of either groups or rows clauses, and the body of a row clause is a list of name
and expression pairs, where the name refers to a de�ned column (a program
variable, an alias, or de�ned column). If we omit an entry for a column in a row,
we use the previously seen expression for this column from the rows above.
Thus, we only specify the changes in the cell expressions between successive
rows.

At the end of a table, user-de�ned functions used in the speci�cation can be
declared using the Structured Text according to the IEC 61131-3 grammar. Note
that the function scope of gtt and the veri�cation do not overlap. Thus, we are
not able to use any function of the veri�cation in gtt directly. Instead, every
function needs to be de�ned explicitly in the table.

Listing 6.9 shows the gtt in Figure 4.7 in its textual representation.

Chapter 7

Evaluation

In this chapter, we evaluate gtts. The evaluation includes two parts: On the
one hand, we investigate and elaborate the speci�cation on typical and prac-
tical examples. Our goal is to �nd their strengths and weaknesses regarding
expressiveness and comprehensibility. The other hand is the feasibility of the
veri�cation. To show this, we use the implementation of our decision procedures.

Outline. The sections of this chapter are dedicated to three di�erent evalu-
ation categories: First, we explore function blocks, like counters and timers,
which are de�ned by IEC 61131-3 (Section 7.1). Second, we dive into two similar
reusable function blocks derived from industrial use cases (Section 7.2). Third,
we look into function blocks for driving speci�c in a demonstrator plant (Sec-
tion 7.3). The veri�cation is discussed in a common section at the end of this
chapter (Section 7.4).

Partially, the gtts and the source code were already presented previously.
Namely, Section 7.2 is derived from [Wei+17], and [Bec+17]. Moreover, Sec-
tion 7.3 is a short version of [Cha+18b]. Section 7.1 is previously unpublished.

7.1 Built-Ins of IEC61131-3
In this section, we present gtts for common function blocks de�ned in the
IEC 61131-3 standard. These are rather small function blocks but used through-
out PLC programs, which rely on their correctness. Previously in Section 4.3.2,
we show the pulse timer. Now, we present two new function blocks: CTU and
DEBOUNCE.

103

104 CHAPTER 7. EVALUATION

7.1.1 Counting-Up
The �rst function block is CTU as shown in Listing 7.1. CTU provides a counter
that is incremented by one if there is a rising edge on the input CU. A rising edge
is a change from FALSE to TRUE between two invocations of a function block
instance. The Function Block R_TRIG helps to recognize rising edges. Note that
we diverge from the version presented in IEC 61131-3 by making the instance of
R_TRIG and the call of the instance edge explicit. The standard allows the R_EDGE

(and F_EDGE) modi�er on Boolean input variables to add such a rising (or falling)
edge detection. The input R allows to reset the internal counter to zero, and
the input PV is the upper counting limit. If this limit is reached, the output Q
becomes TRUE. The aggregated sum is provided in the output CV.

A valid gtt for the CTU is given in Figure 7.2. In addition to the variable
signature of CTU, there are two new variables in the gtt. Firstly, the upper
counting limit is speci�ed by a global variable max. As a result, CTU must be
valid for all possible limits. Secondly, we introduce a column REdge which
holds a projection function de�ned as REdge := NOT CU[-1] AND CU. REdge is
true if and only if a rising edge has occurred. Note that we could also use the
state variable edge$Q (which is created from the embedding of the instance edge).

Moreover, in this case, it is possible to encode the entire behavior of CV into
a single expression =CV+SEL(NOT CU[-1] AND CU, 1,0), covering both the cases
(no increment and increment). The function SEL provides a case distinction,
where the function returns the second argument if the �rst argument is TRUE,
or otherwise the third argument. Instead, we unfolded the case distinction by
using multiple rows.

The �rst row expresses the initial state of the counter, the aggregated values
are zero, and the over�ow signal already depends on the provided upper limit.
The second row models the increment on a rising edge, where CU is either PV

(when the upper bound is hit) or incremented (previous value CU[-1] added
by one). The third row is the case of a non-rising edge resulting in the same
aggregated value. The fourth row allows resetting the counter. Note that the
constraints on Q are identical on all rows, as we avoid the repetition and omit the
duplicates. Moreover, rows 2 to 4 can be repeated arbitrarily often (or skipped).
This table describes a family of scenarios which all have in common, that PV is
changed during execution.

For ω-regular languages the in�nite repetition εω of the empty word ε is
unde�ned. By our automaton construction, this case is well-de�ned for gtts.
In this particular case, we obtain an automaton with four states, where the
states s2, s3, and s4 (for the corresponding table rows) are fully connected. Thus,
leaving s2 (w.l.g.) requires that we enter one of the three states. We summarize:
A strong repetition on a row group over skippable table rows results in the

7.1. BUILT-INS OF IEC 61131-3 105

1 FUNCTION_BLOCK R_TRIG
2 VAR_INPUT CLK: BOOL; END_VAR
3 VAR_OUTPUT Q: BOOL; END_VAR
4 VAR M: BOOL; END_VAR
5 Q:= CLK AND NOT M;
6 M:= CLK;
7 END_FUNCTION_BLOCK
8
9 FUNCTION_BLOCK CTU

10 VAR_INPUT
11 CU, R : BOOL; PV : INT;
12 END_VAR
13
14 VAR_OUTPUT
15 Q : BOOL; CV : INT;
16 END_VAR
17
18 VAR edge : R_TRIG; END_VAR
19
20 edge(IN := CU, Q => CU);
21
22 IF R THEN
23 CV:= 0;
24 ELSIF CU AND (CV < PVmax) THEN
25 CV:= CV+1;
26 END_IF;
27 Q:= (CV >= PV);
28 END_FUNCTION_BLOCK

Listing 7.1: Function Block counting-up on rising edges.

ASSUME ASSERT �
CU REdge R PV CV Q

1 FALSE — FALSE max 0 =CV>=max 1
2 — TRUE FALSE =SEL(Q, PV, CV[-1]+1) [0, 1]
3 FALSE FALSE =CV[-1] [0, 1]
4 — TRUE 0 [0, 1]

—∞

Figure 7.2: gtts for CTU

106 CHAPTER 7. EVALUATION

1 FUNCTION_BLOCK DEBOUNCE
2 VAR_INPUT
3 IN: BOOL;
4 DB_TIME: TIME:= t#10ms;
5 END_VAR
6
7 VAR_OUTPUT
8 OUT: BOOL;
9 ET_OFF: TIME;

10 END_VAR
11
12 VAR
13 DB_ON: TON;
14 DB_OFF: TON;
15 DB_FF: RS;
16 END_VAR
17
18 DB_ON(IN:= IN, PT:= DB_TIME);
19 DB_OFF(IN:= NOT IN, PT:= DB_TIME);
20 DB_FF(S:= DB_ON.Q, R:= DB_OFF.Q);
21
22 OUT := DB_FF.Q1;
23 ET_OFF := DB_OFF.ET;
24 END_FUNCTION_BLOCK

Listing 7.3: Function Block DEBOUNCE

situation where at least one of the table rows needs to be selected—written as a
formal language, we would write r1 · (r2 ∪ r3 ∪ r4)ω for the table rows second,
third and fourth table row.

7.1.2 Debouncing of Signals
Listing 7.3 shows the Function Block DEBOUNCE for debouncing a signal. Often

a mechanical component does not provide a clean signal. For example, in a
perfect world pressing and holding a button results in one rising edge of the
input signal. In practice, multiple (falling and rising) edges can occur for a short
time period after the button is pressed due to physical limitations. A solution to

7.1. BUILT-INS OF IEC 61131-3 107

ASSUME ASSERT �
IN DB_TIME OUT ET_OFF
1 — T FALSE — T − 1
2 FALSE — 1
3 TRUE T T − 1
4 TRUE TRUE ≥ 1
5 FALSE TRUE T − 1
6 FALSE FALSE 1

Figure 7.4: gtt for Function Block DEBOUNCE, where meta-variable T represents
an arbitrary waiting time, and is instantiated to retrieve a valid gtt.

this bouncing is to ignore the signal changes that only persist for a short time
span. In the implementation of DEBOUNCE this time is given in the input variable
DB_TIME. The input variable IN takes the input signal which should be debounced.
And the debounced signal is written to OUT. To manage the timings, we use two
TON timers. The output Q of these timers becomes true, after the input variable
IN was true for at least PT milliseconds. Additionally, we use an instance of RS to
hold the current state of the signal. The Function Block RS implements a simple
reset-dominant �ip-�op (4.3.1). If R is true, the state of the RS �ip-�op becomes
false. It becomes true if S is true and otherwise the state is unchanged. Note for
the veri�cation, the variables of datatype TIME are degraded to integers denoting
the number of cycles.

The gtt is given in Figure 7.4 and describes a non-repeating test sequence.
We notice, the variable T as an input variable and as a time constraint. Note
that T is neither a global variable nor a program variable. An issue of gtts
is their missing support of non-rigid time constraints. Every time constraint
must specify a range with concrete numbers. Specifying a function block whose
timing behavior is parametric is only possible using a variable on the meta-level,
i. e., T . But the veri�cation is only possible for an instantiation of T .

In the �rst row, we �ood arbitrary input signals for up to T − 1 cycles, and
require a negative output. The time constraint ≤ T − 1 is required, otherwise
the �rst row would include the input IN=true for T cycles and output variable
OUT needs to be true. Row 2 is a reset of the function block because we need to
ensure a certain state (IN was not true in the last cycle) for the Row 3. In Row 3
and 4 we test for a correctly timed switch of the output from false to true after
supplying true for IN for T cycles. Analogously, Row 5 and 6, and the switch of

108 CHAPTER 7. EVALUATION

the output from true to false.

7.2 Industrial Examples
We increase the code complexity by diving into two pieces of industrial-inspired
code. The �rst function block LinRe is for linear re-scaling of incoming sensor
values. The second function block MinMax provides a calibratable clamp function,
which enforces the incoming value to be between the learned minimum and
maximum value. If this range is violated for too long, a warning rises.

7.2.1 Linear Re-Scaling
Function of the Software. The core of this function block is a linear inter-
polation that maps actual sensor values to a de�ned range of physical values
in software. This is commonly needed functionality in software for automated
systems. A typical scenario for this function block is the translation of the
measured discretized voltage, e. g., in a range of [0, 4095], into a normalized
scale, e. g., the brightness of a workpiece. The normalization is established by
measuring de�ned references, in our example a light and dark workpiece, during
the calibration phase. The Function Block LinRe (given in Appendix B.2) can
operate in two di�erent modes: Before the actual operation, the calibration
function (mode “Teach”) expects two independent reference points to learn the
linear relationship between sensor (input value) and physical values (output
value). After calibration, the mapping function (mode “Op”) performs linear in-
terpolation where it translates a sensor reading into the physical value according
to the learned data.

A schematic view of the function block is shown in Figure 7.5. In addition
to the mode selector (Mode) and the sensor value input (X), the block has two
additional inputs needed during calibration: (TPy) is used as the physical refer-
ence value during teaching and (TPSet) indicates that teaching is in progress
if set to true. The block’s single output is the physical value (Y). In normal
operation, after two reference points (x1, y1) and (x2, y2) have been learned,
the input value X results in an output value Y = L(x1, y1, x2, y2, X) which the
linear regression between the two points de�ned as

L(x1, y1, x2, y2, X) := y1 + y2 − y1

x2 − x1
(X − x1) . (7.1)

If the two reference points make interpolation impossible (e.g., if x1 = x2),
the function block enters an error state. If no reference point is presented for
more than a certain amount of cycles (while in teaching mode), the block also
switches into the error state. Before �nishing calibration or if the function block

7.2. INDUSTRIAL EXAMPLES 109

Op

s1 s2 s3 s4

Err
TPSet
Mode
TPy

X

>
t
/

o
s

>
t/

o
s

Teaching

Y

Figure 7.5: Schematic view of the investigated function block with a state
machine describing its operation.

ASSUME ASSERT
TPy TPSet Mode X Y
1 60 0 Op 0 0 10
2 60 0 Teach 1.2 0 10
3 60 1 Teach 1.2 0 1
4 2108 0 Teach 4.0 0 10
5 2108 1 Teach 4.0 0 1
6 0 0 Teach 0 0 1
7 0 0 Op 28 .438 1
8 0 0 Op 316 3.65 1
9 0 0 Op 3132 4.20 1

Figure 7.6: Concrete test table of analog sensor function block

is in the error state, the output Y is always 0. Figure 7.5 includes a state chart for
the block which contains the normal operation state, the error state, and the
teaching state which is subdivided into four substates s1 to s4.

A Concrete Test Table. One concrete test case for this block is shown in
Figure 7.6. It covers the calibration and normal operation. The block is set into
teaching mode and two reference points (60, 1.2) and (2108, 4.0) are used for
block calibration from Row 2 to 5. Afterward, the normal operation of the block
is tested in steps 7–9 which send inputs (X) of 28, 316, and 3132. The expected
physical values (Y) are 0.438, 3.650, 4.200 according to linear interpolation. The
software fails this test case if it does not produce the expected output in one or
more steps.

Test table. This test case can be generalized to a gtt with increased test
coverage. The resulting generalized table does not only cover the few concrete
test values mentioned in the concrete table but includes a wide range of possible
input sequences. The generalization (Figure 7.7) of the concrete test begins

110 CHAPTER 7. EVALUATION

ASSUME ASSERT �
TPy TPSet Mode X Y
1 — — Op — 0 *
2 — 0 Teach — [1, t/o]
3 y1 1 x1 1
4 — 0 — [1, t/o]
5 y2 1 x2, 6= x1 1
6 — — — 1
7 — — Op — L —∞

Figure 7.7: Generalized test table of function block for linear re-scaling, where
L is the linear regression, see (7.1).

in Row 1 where before calibration, Y is always 0. In Row 2, the mode is set
to “Teach” (entering s1 in Figure 7.5), and in Row 3, the �rst teaching point
(x1, y1) is provided to the block (s2). In Row 5, the second point (x2, y2) is sent
to the system (s3). Row 2, 4 and 6 are waiting for phases between the teaching
points. The waiting time is not �xed but limited by the maximum waiting time
given as timeout (t/o). After calibration, the block is set back to normal mode
in Row 7 where an arbitrary sensor value X is sent to the function block. The
expected output is the linear interpolation value according to (7.1). This last
step is repeated inde�nitely often.

This generalized test table represents in�nitely many individual �nite test
cases for all possible reference points and queries. However, it is still not a
complete behavioral speci�cation for the block. The sequence of steps is �xed
and does not cover all cases. Figure 7.7 only represents the normal operation. All
situations where the block switches to an error state are not covered (e.g., if three
reference points are given or if more than t/o waiting cycles have occurred).

In contrast to the concrete test table, the gtt allows us to directly capture the
dependencies between the variables, e. g., we see that Y is de�ned by a formula.
Given only the concrete test table, it is hard to produce new valid test tables.

7.2.2 Clamping Function Block
Function of the Software. We consider a system whose purpose is to watch
over the input values and to raise a warning if they repeatedly exceed the
previously learned range of allowed values. Such diagnosis functionality is
common in safety-critical applications. More precisely, the system under test
is the Function Block MinMaxWarning (Appendix B.1) with input variables mode,
learn, I and the output variables Q, and W. MinMaxWarning learns the typical
range of input values and warns the caller when encountering subsequent

7.2. INDUSTRIAL EXAMPLES 111

ASSUME ASSERT �
mode learn I Q W
1 Active — — 0 TRUE —
2 Learn TRUE q 0 FALSE 1
3 Learn TRUE p 0 FALSE 1
4 Active — [p, q] [p, q] FALSE *
5 Active — >q q FALSE 5
6 Active — <p p FALSE 5

(a)
ASSUME ASSERT �

mode learn I Q W
1 Learn TRUE q 0 TRUE 1
2 Learn TRUE p 0 TRUE 1
3 Active — >q q FALSE 10
4 Active — >q q TRUE ≥ 1
5 Active — [p, q] [p, q] TRUE 5
6 Active — [p, q] [p, q] FALSE ≥ 1

(b)
ASSUME ASSERT �

mode learn I Q W
1 Learn TRUE q 0 FALSE 1
2 Learn TRUE p 0 FALSE 1
3 Active — = p − 1 p FALSE 10
4 Learn TRUE = p − 1 0 FALSE 1
5 Active — = p − 1 = p − 1 FALSE ≥ 1

(c)

Figure 7.8: Three gtts for the speci�cation of the MinMaxWarning’s behavior

outliers.
MinMaxWarning operates in two modes, Active and Learn, as selected by

the caller via mode. During the learning phase, the function block learns the
minimum and maximum values of the input values (I). When switched into the
active phase, the function block checks that the input value (I) stays within the
previously learned interval. The output value Q is equal to I if I is within the
learned interval; otherwise, the nearest value from the interval is returned. If
the input value keeps being out of range for a speci�ed number of cycles, then
the function block raises an alarm via the variable W. The alarm is reset after a
certain cooldown time if the input value falls back into the learned interval. An
unlearned function block always signals a warning.

112 CHAPTER 7. EVALUATION

Test Tables. The required functionality is partially described by the three
gtts shown in Figure 7.8. These tables have two global integer variables p, q.
The global variable p represents the minimum input value, and q the maximum
supplied value respectively, we specify the constraint p ≤ q in the model
checker. The waiting time before an alarm is raised is �xed to ten cycles, and
the cool-down time to �ve cycles.

The �rst gtt (Figure 7.8(a)) speci�es a behavior without warning. In the
beginning, it is checked that the unlearned system returns the default constants
(Q=0 and W=TRUE; Row 1). This phase can be interrupted by switching into the
learning mode (Rows 2 and 3). During learning, the system learns the minimum p
and the maximum q input values. Subsequently, the system response is only
allowed to be within this range. In Row 4, we test the non-warning case, in
which only inputs between p and q are supplied. Rows 5 and 6 test for input
values outside the range, and ensure that no warning rises too early.

The second gtt (Figure 7.8(b)) targets the case where warnings need to be
risen. We use the same initialization, but require a warning due to a too high
input (Rows 3 and 4). Rows 5 and 6 specify a cool-down phase with a duration
of �ve cycles.

The third gtt (Figure 7.8(c)) speci�es the behavior in the corner case that the
system is switched into learning mode just one cycle before a warning would
occur. After re-teaching, no alarm should be triggered, as the value should now
be included in the learned interval.

7.3 Plant-Speci�c Function Blocks
We evaluate our gtts on the speci�cation and veri�cation of plant-speci�c func-
tion blocks. The veri�cation subject is the Pick-and-Place Unit (PPU) [Vog+14].
In contrast to the previous examples which are universally usable in di�erent
contexts, the function blocks of the PPU control a speci�c hardware module of
a concrete factory.

These function blocks are programmed speci�cally for an implicit environ-
ment model tailored to the PPU and a speci�c set of situations. The environment
model is implicit, as in our case, the software reads sensors and maintains
its state locally. This program state estimates the state of the environment
partially without making the expected and assumed environmental model ex-
plicitly. Therefore, the program state is the minimally needed abstraction of the
environment required for the veri�cation and created by the software engineer.

For printing, we omit and rename variables in the presented gtts. A detailed
version of each gtt can be found on the companion material [Wei21] or the

7.3. PLANT-SPECIFIC FUNCTION BLOCKS 113

Figure 7.9: The Pick-and-Place Unit in a medium-sized con�guration consisting
a stack, crane, stamp, and the conveyor belt with di�erent ramps and pushers.
Figure provided by Institute of Automation and Information Systems from
Technical University of Munich (TUM)

companion web page1 of the original publication [Cha+18b].

Veri�cation Subject: (x)PPU. The Pick-and-Place Unit (PPU) is a lab-size
manufacturing plant demonstrator [Vog+14] to benchmark evolution scenar-
ios for aPS. The extended PPU (xPPU) [VBS18] brings new extensions of the
hardware, software, and evolution scenarios. In the following, we do not distin-
guish between xPPU and PPU. The PPU provides various con�guration levels
with di�erent hardware and software versions. Figure 7.9 shows the plant in a
medium-sized con�guration level.

The PPU realizes the basic functionalities representative in intralogistics
systems as identi�ed by [Spi+17]. The hardware of the original PPU consists of
four hardware modules: a stack (providing workpieces), a stamp (manipulation of
workpieces), a conveyor belt (sorting of workpieces), and a crane (transportation
of workpieces between the hardware modules).

In the PPU, workpieces are processed di�erently depending on their material
(black plastic, white plastic, and metal). The operator places the workpieces into
the Stack, which provides single workpieces for the processing to the Crane.
The Crane delivers the workpieces either (a) directly to the Conveyor belt for
sorting or (b) �rst to the Stamp and then, after processing, to the Conveyor Belt.

1Companion Website: https://formal.iti.kit.edu/at2018

https://formal.iti.kit.edu/at2018

114 CHAPTER 7. EVALUATION

INPUT OUTPUT �
Em

er
ge

nc
yS

to
p

Su
ck

ed

St
ac

kS
lid

er

Cr
an

eL
ow

er

Va
cu

um
On

Va
cu

um
O�

. . . St
am

pP
us

he
r

1 TRUE — — — — — . . . — ≥ 0
2 FALSE — — Sucked =¬Sucked . . . — ≤ 250 ms
3 FALSE FALSE FALSE Sucked =¬Sucked . . . FALSE —∞

Figure 7.10: A gtt for specifying the emergency-stop behavior (Case 1). For
readability, we use a single input variable EmergencyStop combining the three
active-low signals for the emergency buttons (in the original version, there are
three input variables, one for each button). Also, 11 output variables are not
shown that control further emergency actions.

Transportation by the Crane requires a sequence of actions: turning to the
target, stopping, lowering the arm, gripping the workpiece with pneumatic
pressure, rising the arm, turning, stopping, lowering the arm, releasing the
pneumatic pressure, and rising the arm again. Turning and stopping, and
lowering and rising are implemented by two actuators: a motor and a cylinder.

The Stamp starts processing once a workpiece has been placed into the tray
at the end of a slider. The slider cylinder is retracted to move a workpiece to
the stamp, and after the workpiece has been stamped, the slider is extended to
move the workpiece back to its arrival position. The stamping process is just the
movement of a slider cylinder that is pressed the stamp against the workpiece.

The Conveyor Belt provides sorting capabilities. It starts when a workpiece
is placed by the Crane at the start of the Conveyor Belt. The Conveyor Belt
moves the workpieces towards its end, and during the workpiece transportation
it is either pushed o� on a side ramp by a pusher, or delivered to ramp at the
end of the belt.

The three PPU scenarios presented in the following sections are variations
of this basic con�guration. They di�er in their mechanic, electric, electronic,
and/or software con�guration.

7.3.1 Case 1: Emergency Stop
In this case, we dive into the handling of emergency stops. Emergency stops are
either triggered by the operator or detected by safety measurements, e. g., light
barriers or temperature sensors, or software diagnosis modules.

7.3. PLANT-SPECIFIC FUNCTION BLOCKS 115

In contrast to the expected (normal) behavior of the software, which follows
a well-known and well-de�ned processing sequence, these unexpected or ab-
normal situations can emerge at any point in time. For this reason, a complete
validation or tests of these emergency situations are hard to establish.

In our case, the emergency stop of the PPU brings the system to a safe
halt to avoid damage to the plant and the workpieces. Figure 7.10 speci�es
the emergency stop behavior. Note that this particular gtt only describes
the emergency routine; to fully specify the PLC behavior, other gtts for non-
emergency situations would be needed.

The PPU has three buttons to trigger the emergency stop, which we sum-
marize under a projection function. Note that the emergency stop is expressed
negatively: TRUE signals that no emergency stop is triggered. The column’s
projection function is de�ned as:

EmergencyStop := SorterEmergencyStop ∧
StampEmergencyStop ∧ MagazinEmergencyStop.

As soon as one of the emergency stop (Row 1) is triggered, the emergency-stop
process is initiated and the following end position should be reached (Row 3):
The pneumatic cylinders in the stack are retracted, the rotation of the Crane is
stopped, the Conveyor Belt of the sorting module is stopped, and the pushers on
the Conveyor are all retracted. The end position of the pneumatic pressure on the
Crane’s gripper is more delicate, as turning o� the vacuum without considering
the current state of the gripper may allow a workpiece to fall to the ground.
Therefore, if a workpiece is currently being gripped, then the gripper must
continue to hold onto that piece until the emergency procedure has terminated
(or the workpiece is removed manually). To reach the end position, the system
is allowed to consume (up to) 250 ms. For the veri�cation, we translate the time
value into the number of cycles by dividing it by the cycle time.

The end position is maintained in�nitely long. The release and restart of the
system are not covered by this gtt.

7.3.2 Case 2: Partial Functional Behavior of the Crane
This application case is based on the �fth scenario in the PPU ([Vog+15]), where
the behavior of the crane is optimized to achieve a higher overall throughput
of workpieces. In the previous version (Scenario 3), the plant processes only a
single workpiece at a time, i. e., a new piece is taken from the stack only after
completely processing the previous piece and storing it in the ramp. In the new
version (Scenario 5), the processing at the Stamp is used for the transportation
of workpieces from the Stack to the Conveyor Belt. This is only possible if the

116 CHAPTER 7. EVALUATION

ASSUME ASSERT �

Cr
an

eU
p

M
et
al
lic

W
PR

ea
dy

G
o_
U
p.
X

O
nS

ta
ck

O
nC

on
ve
yo

r

O
nS

ta
m
p

Tu
rn
CC

W

Lo
w
er

Va
cu
um

O
n

1 — — — — — — — — — — —p

2 TRUE FALSE TRUE TRUE — — 1

—∞

3 — — — — FALSE FALSE ≥ 0
4 TRUE 1
5 — TRUE TRUE ≥ 0
6 TRUE 1
7 FALSE FALSE ≥ 0
8 TRUE 1
9 — FALSE TRUE ≥ 0
10 — TRUE ≥ 0
11 TRUE FALSE TRUE 1
12 1
13 FALSE 1
14 FALSE FALSE ≥ 0
15 TRUE 1
16 — FALSE TRUE ≥ 0
17 TRUE TRUE 1
18 TRUE FALSE 1
19 — — — — —p

Figure 7.11: A gtt for the crane-as-bu�er maneuver to bypass the Stamp and
improve overall workpiece throughput.

next workpiece o�ered by the Stack does not require an imprint. After this extra
transportation has been completed (from the Stack to the Conveyor Belt), the
Crane returns to the Stamp and the plant in Scenario 5 behaves exactly as in
Scenario 3.

Figure 7.11 shows the gtt specifying the functional behavior during the
optimization phase. Row 1 is a waiting row, which waits for the constellation of
input values de�ned in Row 2. Note that the progress �ag on Row 1 disallows
waiting when Row 2 becomes possible. This is a typical pattern for partially
modeling behavior in time. The variable Go_Up.X is a state variable indicating
whether we are in a certain step in the SFC of the Crane. Variables S.X are
automatically generated for each step S in an SFC which are true when step S is
currently active. In the gtt, we are using this state variable to spare modeling
the environment. Otherwise, we need to model the state of the Crane, the Stamp,
and the Stack. In particular, we have to encode the following situation in the
gtts: “The Crane has delivered a workpiece to the Stamp. The workpiece is
dropped. Also, a new workpiece, which does require a stamping, is available
at the Stack.” This situation requires the history to be modeled, we have to
remember that a workpiece has been delivered to the Stamp. Moreover, our
estimation has to be in sync with the decision of the software. By using the
state variable Go_Up.X we avoid all of this by using the abstract environment
model built into the Crane function block.

7.3. PLANT-SPECIFIC FUNCTION BLOCKS 117

ASSUME ASSERT �
SFCReset Lightness StartVar Push1 Push2
1 FALSE — FALSE — — ≥ 1
2 TRUE — — 1
3 — FALSE FALSE 1
4 FALSE — FALSE FALSE —∞

Figure 7.12: A gtt specifying the PLC software’s behavior for sorting black
work pieces.

ASSUME ASSERT �
Metallic Lightness PusherIn1 PusherOut1 StartVar Push1 Push2
1 — — — — FALSE — — ≥ 1
2 TRUE — — 1
3 — FALSE FALSE 1
4 FALSE TRUE ≥ 1
5 — — 340 ms
6 TRUE FALSE TRUE 1
7 — — TRUE 200 ms
8 TRUE FALSE FALSE ≥ 1

Figure 7.13: A gtt specifying the PLC software’s behavior for sorting white
non-metal work pieces.

The Rows 2-18 specify the optimization maneuver which consists of the
following steps: (1) the crane turns to the Stack (from the Stamp), (2) picks up
the new workpiece (lower, vacuum-on, raise), (3) turns to the Conveyor Belt,
(4) release the piece (lower, vacuum-o�, raise), and (5) turns back to the Stamp.
After �nishing the maneuver, the gtt goes back to waiting for the conditions
of Row 1 to become true (Row 19). Note that Rows 1–19 are grouped together
and can be repeated so that the behavior speci�ed by the gtt can contain the
bypass-maneuver in�nitely often. Alternatively, the gtt can remain in Row 19
(forever) waiting for a repetition of the maneuver.

7.3.3 Case 3: Sorting the Workpieces
This application case is based on Scenario 11 of the PPU [Vog+15]. The scenario
is concerned with sorting workpieces on three di�erent ramps according to their
type: white non-metal (plastic) pieces are put into Ramp 1, metal pieces into
Ramp 2, and black pieces into Ramp 3. There are two sensors at the beginning
of the Conveyor Belt: a light sensor for distinguishing black and non-black
workpieces, and an inductive sensor that detects metallic workpieces. The
sensors are placed at the start of the Conveyor Belt. If a workpiece is detected,

118 CHAPTER 7. EVALUATION

it is moved to the end of the belt (Ramp 3) past two pushers. Sorting is done at
the Conveyor Belt by pushing o� the moving workpiece of the belt at the right
time.

We present two gtts for the sorting on the Conveyor Belt. Figures 7.12
and 7.13 speci�es the correct behavior for handling black and white non-metal
pieces, respectively.

Black workpieces are sorted into Ramp 3 making the speci�cation easy. If
a black piece is recognized (Lightness), the pushers should not be extended.
In Figure 7.12, the gtt waits in Row 1 that the Conveyor Belt starts. StartVar
is an input variable indicating when a workpiece arrived, and SFCReset is an
(implicit) input variable for SFCs which triggers a reset when set to TRUE. With
Row 2 the handling of workpieces starts. After that, the two pushers must be
retracted (Row 3). If the input variable Lightness is FALSE, the pushers stay
retracted. Thus, the black workpiece moves into Ramp 3.

The gtt in Figure 7.13, specifying the case of sorting a white non-metal
piece is more complex as it must consider the sensor input variable Metallic
(in addition to Lightness). Moreover, it must specify the activation of the �rst
pusher, which needs to be extended at the right moment. Rows 1-3 are similar
to the gtt for sorting black pieces: After starting the process (Rows 1 and 2),
the pushers are retracted (Row 2). When a white non-metal piece is detected
(Metallic=FALSE) and Lightness=TRUE in Row 4), the behavior starts to diverge
from the one for black pieces. After waiting for 340ms (Row 5) and checking
that the �rst pusher is indeed retracted (PusherIn1=TRUE and PusherOut1=FALSE,
Row 6), the PLC software must set the output variable Push1 to TRUE for 200ms to
activate the pusher and move the workpiece into Ramp 1. Finally, the software
must retract the pusher again (Row 8).

7.4 Veri�cation
In Table 7.14 we present the results including the runtime statistics for the
veri�cation of the weak conformance. Our veri�cation geteta tool handles the
construction of the input �les for model-checking (SMV) or C-program veri�er
(C source code) (Chapter 6). The given run-times are the used time on the CPU
(CPU time) of the veri�cation backend of both pipelines. Successful veri�cations
were repeated �ve times. We show the median of the CPU times. In some cases
the veri�cation was unsuccessful. We distinguish the following reasons for
failure:

• The veri�er detected an error (“unsafe”).

• The time-out of 10 minutes was reached (“t/o”).

7.4. VERIFICATION 119

• The memory was exhausted (“oom”).

• The veri�er complained about the given input �le (“err”).

We used the Version 2.0.0 of the model-checker nuXmv [Cav+14], eldarica
in Version 2.0.5 and SeaHorn in Version 10.0.0-rc0-d9ef838f. The experiments
were run on a (max.) 4.6 GHz system with Intel Core i7-8565U and 16 GB RAM.
We used the IC3 veri�cation technique in nuXmv. No special options were given
to eldarica, especially, no extra memory limitations were set. But eldarica
requires an additional pre-compiler to run on the input �le, as eldarica is
not able to handle pre-compiler directives. SeaHorn was called with enabled
analysis of crab (“sea pf –crab”). crab is an abstraction interpretation
machine for �nding helpful auxiliary speci�cations. In Table 7.15 we also present
results for the veri�cation of strict conformance. For strict conformance, we use
nuXmv with its IC3 for LTL veri�cation (“check_ltlspec_ic3”).2

We were forced to make limitations on the global variables to make veri-
�cation feasible in certain cases: In particular, for the veri�cation of CTU (Fig-
ure 7.2) we restricted max to the range [0, 100] for the veri�cation with nuXmv
(eldarica and SeaHorn were not restricted). The global variables p, q in the
gtts for Function Block MinMaxWarning (Figures 7.8(a) to 7.8(c)) were restricted
to the same range for all three veri�ers. LinRe (Figure 7.7) is only practical veri-
�able with small ranges of the given reference points (x1, y2) and (x2, y2). We
restricted each of the four variables to [0, 3]. No restriction on global variables
for the PPU experiments and TP function block.

We instantiate the meta-variable T in the gtt in Figure 4.7 with 10.

Discussion. As can be seen in the table, all required proofs were successful in
reasonable time with the model-checking pipeline and nuXmv. This is the oldest
veri�cation pipeline and therefore most stable one. SeaHorn has promising
run-times in some cases, especially for unbounded global variables in CTU. In
contrast to SeaHorn, which is mainly a veri�er for C-programs, eldarica
focuses on solving Horn clauses. We recognize this by a slower performance,
that may arise from the missing pre-analyses of the given program.

The proof time and the proof complexity is mainly in�uenced by three factors:
First, the number of required row iterations. Second, the value range of the global
variables. Third, the arithmetic complexity inside the program and the table.
These factors can be ascribed to a costly forward search for a counter-example in
the IC3 algorithm (cf. IC3 in Section 2.3). The number of row iteration increases
the required search depth as IC3. Often a row assertion can only be spuriously

2Side note: The default LTL backend in nuXmv abnormally terminates (segfault); it is
reported and will be hopefully �xed soon.

120 CHAPTER 7. EVALUATION

Table 7.14: Statistics for the veri�cation of weak conformance. CPU times are
the median of �ve samples if the veri�cation was successful. Otherwise, “unsafe”
denotes that the veri�er detected an error, “t/o” the time-out of 10 minutes was
reached, “oom” out-of-memory or “err” the veri�er was not able to parse the
given input �le.

Speci�cation Implementation Model-checking C-program veri�er
nuXmv eldarica SeaHorn

cpu time model size cpu time cpu time
[secs] [bit] [secs] [secs]

Figure 7.2 Listing 7.1 34.29 77 80.25 0.33
Figure 4.7 Listing 4.6 0.08 74 11.78 0.90
Figure 7.4 Listing 7.3 1.39 137 t/o 75.92
Figure 7.7 Appendix B.2 171.28 554 t/o unsafe
Figure 7.8(a) Appendix B.1 3.96 178 t/o unsafe
Figure 7.8(b) Appendix B.1 32.10 182 t/o unsafe
Figure 7.8(c) Appendix B.1 1.39 178 297.40 unsafe
Figure 7.10 PPU Sc 13 1.05 784 err 16.37
Figure 7.11 PPU Sc. 5, Crane 0.50 114 t/o 53.92
Figure 7.12 PPU Sc. 11, Pusher 0.64 127 t/o 7.81
Figure 7.13 PPU Sc. 11, Pusher 30.74 186 oom unsafe

violated, then IC3 needs to search deeper in the state space (exploring further row
iterations) until the next table row is reached. Only the violation of the invariant
helps to narrow the approximated set of reachable states and strengthened
the required inductive invariant. Similar things, happen if the ranges of the
global variables are wide. Consider the example with Function Block CTU: To
�nd a violation we need to count until the maximal value could be reached
and every increment requires a new application of the state transition. The
third factor makes these applications costly as arithmetical operation (especially,
multiplication and division) explodes in their bit-wise symbolical representation.
Hence the actual semantics of the arithmetics is not present anymore. Therefore,
IC3 has to guess and build clauses which captures the origin arithmetics.

Unsatis�ed with the results of the gtts for the Function Block MinMax-
Warning, we tested these cases with ic3ia [Dan+16], an IC3 implementation
with support for the theory of linear integer arithmetic. We did not use this
theory and stick with bit-operations. ic3ia performs better without any bounds
for the global variables p, q. In detail, we achieved the runtimes in Table 7.15.

Although, we could only prove the conformance with a strong restriction
on the global variables, the proofs still cover a wide variety of possible input
sequences.

7.4. VERIFICATION 121

Table 7.15: Alternative veri�cations for Function Block MinMaxWarning. Table
gives runtimes for the veri�cation of strict conformance with nuXmv and weak
conformance with ic3ia. Runtimes are cpu time given as median of �ve samples.
Note that weak conformance veri�cation with ic3ia have no bound on the global
variables.

Speci�cation Implementation Strict Conformance Weak Conformance
nuXmv ic3ia

cpu time [secs] cpu time [secs]
Figure 7.8(a) Appendix B.1 1.12 4.00
Figure 7.8(b) Appendix B.1 2.64 5.88
Figure 7.8(c) Appendix B.1 2.46 0.37

A short disclaimer: Statical veri�cation does not fully replace software test-
ing. Software tests have some advantages, in contrast to veri�cation. The tests
consider the complete build-process. Thus, the correct translation of the pro-
gram to the target system by the compiler is also part of the test. Moreover,
software tests can be applied to real hardware under the actual environment
and conditions. Whereas in the veri�cation, we assume idealized semantics of
reactive system (e. g., timer reduction Section 6.3.1), or create assumption in
gtts which are violated during operation. In the next chapter, we present the
monitor generation for gtt. Monitors permit a dynamical veri�cation of the
system at runtime. This allows checking that the made assumption is indeed
correct, and provides a holistic toolbox for the veri�cation with gtts.

Chapter 8

Runtime Verification with
Generalized Test Tables

8.1 Introduction
Motivation. Safety-critical systems are usually validated using testing or
static veri�cation to ensure it conforms to its speci�cation. Testing can usually
only cover few possible scenarios, and for many systems static veri�cation is
infeasible. One reason the lack of relevant information available for static veri�-
cation, e. g., the missing of suitable models of the environment and context of
the system. Another potential problem is that the actual static veri�cation may
require too many resources (in terms of time, memory, or e�ort needed to come
up with suitably strong environment models) to be feasible in practice (see the
time-outs and out-of-memory in Table 7.14). Moreover, the static veri�cation
relies on several assumptions, like an ideal language semantics, perfect accurate
timers, instantaneous cycle computation, which might not adhered by the de-
ployment context of the software. The last point, static veri�cation primarily
deals with functional properties, because non-functional often tangible without
concrete context information.

Runtime veri�cation (or, synonymously, monitoring) [Bar+18], on the other
hand, does not su�er from these problems, as the veri�cation subject is inspect-
ing during operation in its expected context. Monitors are software systems,
produced from (formal) speci�cations, that run in parallel to the production
code and raise an alarm if the system runs (or potentially runs) into a bad state
thus provide a sensible alternative to ensure the dependability and reliability of
software systems during operation.

Of course, they have drawbacks: The additional execution of the monitoring

123

124CHAPTER 8. RUNTIME VERIFICATION WITH GENERALIZED TEST TABLES

requires CPU and memory resources either on the supervised or a separate
system, The former solution may have an impact on the supervised system
and can endanger its real-time property. Later one requires a fast communi-
cation channel between both systems. Runtime monitors are not capable to
cover completely cover the range of temporal logics, especially they are not
able to investigate liveness property unboundedly. This limitation is also valid
for us, thus, we build runtime monitors which are checking the weak confor-
mance. Like any software, the monitoring software can be buggy itself. To
avoid bugs in the monitor components, the generation of runtime monitors
from temporal speci�cations is a well-studied problem (e.g., for Metric Temporal
Logic [HOW14], Bounded Linear Temporal Logic [FK09], HyperLTL [Fin+19]).

In this chapter, we present the approach behind the monitor generator tool
TTMonitor which generates e�cient runtime monitors code in C++ from gtt
speci�cations. It implements new features (which we describe in this paper) that
make it particularly suitable for monitoring analysis for work�ows where each
process step is speci�ed as an individual test table. Trigger-based mechanisms
spawn monitors dynamically to allow this speci�cation technique to work. The
tool is also part of our collection formal analysis toolbox for PLC veri�cation
code.

gtts are stateful contract speci�cations that have assumptions (precondi-
tions) and assertions (postconditions) in every I/O cycle. This distinction in the
conditions allows us to distinguish a monitor terminating because of a failed
assumption (uncovered case) from a monitor halting because of a failed assertion
(speci�cation violation). The contract design of gtts allows us to distinguish
four di�erent modes of a monitor:

• running—system and monitor in operation, no violation;

• bailed out—the speci�cation does not cover this concrete run;

• failure—the monitored run violates the speci�cation;

• �nished—the monitor has �nished, the system continues, but cannot fail
this speci�cation any longer.

Contributions and Outline. In this chapter, we present an approach by
which gtt speci�cations can be veri�ed dynamically using runtime monitors
w.r.t. to their weak conformance. It extends an earlier approach [Cha+17] that
was limited to fewer language constructs. In particular, the presented extensions
include row groups, strong repetitions, global variables, and nondeterminism
(Section 8.2.1). We introduce the concept of Dynamic Monitors, by which moni-
tors can be restarted, and can have multiple instances running at the same time

8.2. MONITOR GENERATION 125

(Section 8.2.3). We present an approach for the hierarchical combination of
monitors. This approach allows adding and removing runtime monitors during
operation. The hierarchical combination allows a �exible aggregation of monitor
results using a variety of functions (Section 8.2.2). We provide TTMonitor, a
monitor-generation tool that creates monitors from gtt speci�cations. The C++
code of the monitor produced by TTMonitor is highly portable as it does not
depend on libraries. The tool sources are publicly available as part of verifaps
http://verifaps.github.io/. Section 8.3 we give application examples for the use
of the newly introduce speci�cation features for the runtime monitoring. We
conclude with a discussion of further potential optimizations in Section 8.4.

Distinction to Earlier Work. This work extends and generalizes ideas of
generating runtime monitors from gtts presented by Cha et al. [Cha+17], where
the approach was tailored to the speci�c needs of the domain of automated
production systems and did not support row groups, omega repetition, global
variables, and nondeterminism. Additionally, in this thesis, we already presented
the notion and the construction of program in Section 6.2 for static veri�cation.
But runtime monitor requires di�erent constructions. The main di�erence: For
the static veri�cation we used three special statements (assert, assume, havoc) to
model the tester program. In runtime monitors, we can not use these statements,
in particular, we cannot fall back to the nondeterminism provided by the havoc-
statement to manage arbitrary states of global variables. For the generation of
runtime monitors, we need to �nd a di�erent trick.

8.2 Monitor Generation
We now explain how a runtime veri�cation monitor is created from a gtt.

Monitor. A monitor is a software module that runs alongside the monitored
reactive system and is executed at the end of each I/O cycle—after the output of
the reactive system has been computed. It checks whether the trace (consisting
of input, output, and internal state values) observed thus far (i.e., the current
system state together with previously observed system states) satis�es the given
speci�cation. In the case of a monitor derived from a gtt T , the monitor can
report one of four cases:

(1) The trace adheres to the speci�cation, i.e., there is at least one sequence of
rows in T such that all assumptions and assertions are satis�ed (running).

(2) There is no sequence of rows in T such that all trace assumptions are satis�ed
(bailed out), i.e., the speci�cation does not cover the observed trace.

http://verifaps.github.io/

126CHAPTER 8. RUNTIME VERIFICATION WITH GENERALIZED TEST TABLES

(3) There is a sequence of rows in T such that all assumptions of the trace are
satis�ed, but no sequence satis�es all assertions (failure).

(4) The trace adheres to the speci�cation for a sequence of rows in T such that
the end of T has been reached (�nished).

The state �nished is a special case of running, but it is particularly interesting
since the monitor can idle as it can no longer change its state (in particular it
can no longer fail the speci�cation).

De�nition 8.1 (Monitor). Let P : (I × S) → (S × O) be a reactive program

with input space I , output space O, and state space S (De�nition 5.1). A monitor

M with internal state space SM is a reactive programM : (I ×O×S)×SM →
SM × {ok, ie, oe, fin} that takes as input the current input, output, and state

values of S and returns as output a verdict. The verdict may be ok (for running),
ie (for extraneous), oe (for failure), or fin (for �nished).

From an Automaton to a Monitor. We use the automaton de�nition from
Section 6.1.1 to build a monitor M(T) from a gtt T that realizes such an
automaton. Since the automaton can be nondeterministic, M(T) needs to
consider all possible runs, and, hence, has to maintain in its state space SM a set

of current automaton states S ⊆ {serror , sassum, sfinal , . . . s(i)
k . . .}. Note that we

slightly diverge with our notation as a new state is introduced: serror marks the
failed states (known as fail) and sfinal is the sentinel state (sm+1). Additionally,
the state sassum captures the violation of assumptions, which is not necessary
for the static veri�cation, thus the state is omitted in Figure 6.3. Its transition
function is de�ned as

s′assum ↔
(
sassum ∨

(m∨
i=1

(si ∧ ¬φi)
)

w.r.t. to the transition de�nitions in Equations (6.2) to (6.4).
The automaton construction is suitable for gtts which do not use global

variables. We derive the verdict mT (S) of the monitorM(T) from the current
automaton states S as follows:

mT (S) :=


fin : sfinal ∈ S
ie : S = {sassum} ∨ S = ∅
oe : serror ∈ S ∧ Srow ∩ S 6= ∅
ok : S ∩ Srow 6= ∅

, (8.1)

where Srow = {sfinal , . . . s(i)
k . . .} is the set of automaton states representing a

table row or the end of the table. If the conditionAWC for the weak-conformance

8.2. MONITOR GENERATION 127

is violated by a system trace, then the verdict function (8.1) returns oe for that
trace. In case that the invariant is satis�ed for a (�nite) trace, the verdict function
can make a more �ne-grained statement and return one of the three other
verdicts, distinguishing between situations in which the speci�cation does not
cover the trace (ie), the end of a speci�cation has been reached (fin), or the trace
runs according to the speci�cation (ok). The monitor construction is designed
to maintain conformance (Section 5.3).

Proposition 8.2 (Relation to Conformance). Let S be a reactive system, T a gtt,

andM(T) the generated monitor. S weakly conforms to T if and only ifM(T)
does never produce the verdict oe in any I/O cycle step for any possible behavior of

S.

This property is achieved by reusing the automaton construction and the
weak-conformance condition AWC .

Challenges. One challenge of the monitor is to determine the instantiation
of the global variables from the observable system state. In contrast to static
conformance veri�cation, where a system needs to adhere to all global variables’
instantiations, the monitor supervises and assesses only the current trace, where
the instantiations (along with the input and output values) of the global variables
are determined by the environment and by the system.

In the remainder of this section, we explain how we tackle the following
challenges: handling global variables, especially in combination with a nonde-
terministic row choice (Section 8.2.1); combining multiple gtts into a single
monitor (Section 8.2.2); restarting after bailing out (Section 8.2.3); and moni-
toring concurrent events and their e�ects (Section 8.2.3). These topics have
solutions for static veri�cation which cannot be transferred to the case of run-
time veri�cation.

8.2.1 Global Variables and Nondeterminism
Global variables within a gtt are universally quanti�ed, which works �ne for
static veri�cation with model checkers. But for runtime monitoring, the monitor
needs to determine the instantiation of global variables by observing the current
input-output trace. Hence, we need to decide when and to which value a global
variable should be bound.

In gtts, a global variable can occur at any position within the constraints,
e.g., the �rst occurrence of a global variable g could be g2−4In2 = 0 (where “In”
is a program variable of the reactive system). Such constraints could have zero,
one, or multiple solutions, hence the value of g may be ambiguous. We tackle

128CHAPTER 8. RUNTIME VERIFICATION WITH GENERALIZED TEST TABLES

this problem by a syntactical restriction: the �rst appearance of a global variable
g needs to be in a binding equation, where g stands alone on one side of the
equation. In our example with the global variable g, the user needs to rewrite
the equation, and make the solution bound to g explicit, e.g., “g = +2In”. In the
discussion (Section 8.4), we present two approaches to eliminate this syntactical
restriction.

Since time constraints allow rows (and blocks) to be skipped, it cannot be
guaranteed that the syntactically �rst occurrence of a global variable is evaluated.
However, it can be statically ensured that the �rst evaluation of a global variable
during a run is within a binding equation. Alternatively, this check can also be
performed at runtime by the monitor.

Another challenge for global variables is potential ambiguities induced by
nondeterministic tables as multiple rows (automaton states) with di�erent as-
signments for the same global variable could be active at the same time and thus
force a binding to di�erent values. To resolve this challenge, we use a token-
based evaluation of the automaton, where each token represents a possible run
of the automaton. Each token carries an assignment of the global variables
together with its current automaton state. A token is always in a single state,
and therefore the value bound to a global variable is unambiguous. If there are
multiple possible successor automaton states for a token, the token is duplicated
and each copy obtains a di�erent successor state. Because the automaton can
be in multiple states, there might be multiple tokens. Furthermore, it is also
possible that there are two tokens at the same automaton state with di�erent
assignments of the global variables. Two tokens at the same state with identical
assignments can be reduced to a single token as both behave identically.

8.2.2 Combined Monitors
Since gtts are designed to describe a set of similar system behaviors, it is
oftentimes not possible to describe the complete system behavior in one table.
Hence, the speci�ed behavior of a gtt is only a partial view of the complete
system and a more comprehensive speci�cation can be gained by using several
gtts to specify a system. To support such multi-table speci�cations, we need
to support monitoring of several gtts at the same time. In the following, we
show how the generated monitors of gtts can be stitched together into one
combined monitor.

A combined monitorMT1,...,Tn is a reactive system which monitors a set
{T1, . . . , Tn} of gtts by using the monitorsM(Ti) for 1 ≤ i ≤ n. The com-
bination essentially runs the monitors in parallel, and the combined monitor
state is the tuple of the states of the individual monitors: S1,...,n = (S1, . . . ,Sn).
The most relevant part of the combined monitor is the aggregation function

8.2. MONITOR GENERATION 129

mT1,...,Tn(S1,...,n) which combines the verdicts mTi
(Si) of the sub-monitors

M(Ti) (for 1 ≤ i ≤ n) into a single verdict.

mT1,...,Tn(S1,...,n) = agg(mT1(S1), . . . ,mTn(Sn))

There are two canonical aggregation functions: agg∧ and agg∨.
For the aggregation, we �lter out the bailed out results from the sub-monitor

verdicts (filterie(·)), and then the functions agg∧ and agg∨ can be de�ned as the
minimum and the maximum functions with respect to the order oe < ok < fin
on the results. Formally,

agg∧(a1, . . . , an) = min {(} filterie(a1, ..., an))
agg∨(a1, . . . , an) = max {(} filterie(a1, ..., an))

with the special case that max {(} ∅) = min {(} ∅) = ie. The aggregation
functions agg∧ and agg∨ correspond to the conjunction and disjunction in a
three-valued logic with the given order.

The agg∧ function corresponds to the conjunction of the monitors returning
ok if no sub-monitor returns oe and at least one monitor is ok. Similarly, agg∨
represents the disjunction returning ok if at least one sub-monitor signals ok.
The value ie expresses that a monitor has diverged, and this value is ignored in
both aggregations.

In general, aggregation functions can be user-de�ned functions which are
�ne-tuned for the given tables and the automation system based on gained ex-
perience. For example, we allow complex aggregation functions which compute
histograms of the given monitor results and aggregate their results based on
a given threshold for each category (e.g., a combined monitor indicating ok
implies that at least a given percentage of the sub-monitors are �ne (ok) and
the number of errors (oe) is below a threshold).

Note that combined monitors themselves can be subject to a combination,
which allows the construction of sophisticated combinations. For example,
imagine one gtt emerg which describes the emergency behavior of a system, and
two mutually exclusive gtts man and auto covering the manual and automatic
operation modes. We can compose a comprehensive speci�cation by logically
combining the corresponding monitors for the gtts, expressing that “emerg and
man or auto” should always be satis�ed. The corresponding combined monitor
is

M∧(Memerg,M∨(Mman,Mauto)) .

Performance Considerations. The monitor combination could have been
implemented as a single product automaton construction combing all constraints

130CHAPTER 8. RUNTIME VERIFICATION WITH GENERALIZED TEST TABLES

of a set of gtts. We decided against this product automaton construction, as
the implementation e�ort would be higher and there are no clear performance
bene�ts. States and tokens of and in the product automaton can be saved if the
gtts share initial rows, but this e�ect is negligible for long-running systems.

On the other hand, if global variables occur in the gtts, the approach with
several individual monitors (and, hence, a separate token for each gtt) is more
�exible as each monitor can consider a separate global variable binding. There
is an additional drawback: the tokens of the product automaton would need
to carry the values of all global variables of the combined gtts. These large
tokens are duplicated on nondeterministic choices. Moreover, the approach of
combining individual monitors allows the user to include handwritten monitors
and supports dynamic monitors (Section 8.2.3).

8.2.3 Triggered Restarts and Dynamic Monitors
Triggered Restarts. If a monitorM runs into a situation where its monitored
table does not cover the current run, i.e., the assumptions of all currently possible
rows are violated,M does not need to be continued since it cannot recover from
that state. Let us call such a monitor diverging. Consider a situation where a gtt
describes the normal behavior of a system. If an (abnormal) emergency situation
has been triggered for the system, the monitor diverges when the abnormal
situation occurs since this behavior is not covered by the table. After recovery,
it can no longer be used to monitor the system.

This problem was already identi�ed in [Cha+17], and a solution which allows
a simple and precise monitoring of event-triggered processes has been proposed
there. An additional speci�cation can be provided which triggers a restart of a
monitor for a gtt. A restart trigger is a condition φ on the current state in the
constraint language of the table cells. A monitorM restarts if it has diverged,
i.e., once it results in a verdict of ie, and the observed system trace meets φ. The
restart resets the monitor to its initial state.

DynamicMonitors. We generalize the idea of restarting further by allowing—
beside a restarting condition—a starting condition ψ for a gtt T . Whenever ψ
is met by the current system trace, a new instance of the monitorMT is created
and started. Note that, unlike the restart condition φ, the trigger ψ is not bound
to another diverged monitor being stuck in the ie state.

Dynamic monitors can be used to compose event-triggered speci�cations,
where the expected system reaction to the event is described. For example,
they can be used to specify the �ow of workpieces and tracking the correct
processing of each workpiece in the software of production systems. Whenever
a workpiece appears at the beginning of the conveyor belt, this event triggers

8.2. MONITOR GENERATION 131

the spawning of a new monitor which monitors that particular workpiece. With
dynamic monitors, it is not necessary to globally formalize the entire work
process chain, but rather one can focus locally on each process step for a single
workpiece.

A starting condition ψ is evaluated before the execution of the sub-monitors.
Therefore, the newly created monitor instances start in the same I/O cycle in
which ψ has been satis�ed. At the end of a cycle, dynamic monitors which
have diverged are discarded to avoid growing memory consumption. As a best
practice to keep the memory consumption low, every dynamic monitor should
eventually terminate, e.g., the end of the speci�cation is reachable.

The concept of dynamic monitors seems to subsume the concept of restarting
monitors. But there is a subtle di�erence: with restarting, there always exists
only one monitor instance which can be restarted after it has diverged, whereas
a dynamic monitor can have multiple active instances at the same time.

8.2.4 Implementation
We have implemented our approach in TTMonitor on top of the existing
verifaps framework. The generated monitors are in the C++ programming
language, mainly due to the availability of a sophisticated standard library and
its a�nity for embedded systems.

Listing 8.1 shows the interface. The class is parameterized in io_t, which is
instantiated with a structure containing the (at the least the used) input, output,
and state variables of the supervised system. A monitor instance the basic
functionality: providing the current state “state()” and calculation of the next
state (“next(io_t)”). The reset method sets the monitor into its initial state. For
non-resettable monitors, reset is only called once during the construction.

Listing 8.2 is the implementation skeleton of a generated monitor. We de�ne
structures for holding bindings for each global variable, along with a Boolean
�ag signaling that the global variable is bound. Also, we de�ne enumeration
containing the values for the di�erent automaton states. The test table monitor
is itself a derived class from our interface. Each instance holds a resizable vector
of the current tokens. A token is composite of an automaton state (state), and
a global variable binding (globalVars).

Each monitor implements a reset method, that (re-)initializes the monitor
to its starting state. The next method is called every cycle and cares about
restarting (triggered by the reset predicate in resetCondition), moving the
automaton token forward as well as setting the new monitor state. The output
of the monitor is kept _state.

The handling of dynamic monitors falls into the responsibility of the com-
bined monitor implementation. Combined monitors (see Section 8.2.2) also,

132CHAPTER 8. RUNTIME VERIFICATION WITH GENERALIZED TEST TABLES

1 template <typename io_t>
2 class IMonitor {
3 private:
4 MonitorState _state;
5
6 public:
7 virtual ~IMonitor() {}
8 virtual void reset() = 0;
9 virtual void next(

10 const io_t &input) = 0;
11
12 MonitorState state()
13 { return _state; }
14 void state(MonitorState s)
15 { _state = s; }
16 };

Listing 8.1: The C++ interface of gtt-monitors

follow this class interface, but work di�erently for the reset and next methods.
On reset, the combined monitor removes every dynamic monitor, and also
reset every sub monitor. On next, it �rst evaluates the starting conditions of
the dynamic monitors and instantiates them if necessary. Afterward, the next
method on the registered sub-monitors is called. In the end, the combined moni-
tor removes the dynamic monitors, which are bailed out or �nished. Finally, the
state of the combined monitor is calculated by the selected aggregation function.

8.3 Application Scenarios
In this section, we demonstrate the speci�cation of reactive systems with gtts
and show how the TTMonitor tool can generate monitors from the gtts using
the presented approach. The chosen examples demonstrate the bene�ts of the
approach in di�erent application contexts for reactive systems. Due to space
restriction, the table input �les and monitors generated from them can be found
in the companion material [Wei21] or on the companion website of the origin
publication.1

1https://formal.iti.kit.edu/nfm2021/

https://formal.iti.kit.edu/nfm2021/

8.3. APPLICATION SCENARIOS 133

1 struct gv_t { /* global variables */ };
2 const struct gv_t gv_t_default;
3 enum state_t { /* automaton states */};
4
5 template <typename io_t>
6 class TMonitor : public IMonitor<io_t> {
7 struct Token {
8 state_t state; gv_t globalVars; };
9 vector<Token> tokens;

10
11 public:
12 TMonitor() { reset(); }
13 void reset() override {
14 this->state(MonitorState::FINE);
15 tokens.clear();
16 // .. add starting tokens
17 }
18
19 void next(const io_t &input) override {
20 if(state() == ASSUMPTION_FAILED
21 && this->resetConditon(input)) reset();
22 // forward each token
23 // calculate monitor state
24 }};

Listing 8.2: The implementation skeleton of gtt-monitors

8.3.1 Cruise Control System
A CCS is a driver assistance system found in cars that accurately maintains
the speed set by the driver by controlling the throttle-accelerator pedal linkage
without driver intervention. If the driver uses the accelerator or the brake
pedals, the system releases its control over the velocity. CCSs have already
been formally studied [AT11; HKL09; Pre+18]. We follow the speci�cation
and Esterel implementation in [YB18]. There are nine input parameters to the
system: On, O�, Resume, Set, Speed, QuickDeccel, QuickAccel, Accel, and Decel.
The CCS returns three output values: the current operation mode (on, o�, stand-
by, disabled), the current target speed, and the value of the throttle. The gtt in
Figure 8.3 describes those scenarios in which the CCS is switched on and should

134CHAPTER 8. RUNTIME VERIFICATION WITH GENERALIZED TEST TABLES

ASSUME ASSERT �
On Off Resume Set QuickDecel QuickAccel Accel Brake Speed CruiseSpeed CruiseState

bool bool bool bool bool bool bool bool float float enum
1 FALSE FALSE FALSE — — — — — — 0 Off ≥ 0
2 TRUE FALSE — > SpeedMin = Speed On 1
3 — FALSE FALSE FALSE FALSE ≥ 0

Restart: CruiseState = Off

Figure 8.3: gtt for the cruise control system which is restarted when the
CraseState is set to off

maintain the current speed until either the brake or the accelerator pedal are
pressed. This monitor becomes obsolete (i.e., it diverges) if the CCS is switched
o�, and restarts once the system is switched on.

8.3.2 Conveyor Belt Process
In this scenario, we demonstrate the features of dynamic monitors by specifying
the material �ow inside an automated manufacturing plant. The example is
based on the Pick-and-Place-Unit (PPU) developed at the TU Munich [Vog+14].
The PPU was developed to demonstrate methods to manage the evolution of
long-running hard- and software. More than 20 scenarios have been designed,
and they demonstrate a variety of evolution scenarios typical for an automated
production system. We use one scenario (scenario number 13) in which the PPU
picks up workpieces from a deposit with a crane. If a workpiece is metallic, it
is transported to the stamp to be engraved. Then the engraved workpiece is
picked up again and is moved to the conveyor belt, where the workpieces are
�nally sorted on di�erent ramps. Non-metallic workpieces are not engraved,
and are directly moved to the conveyor belt. For optimization, the crane moves

ASSUME ASSERT �
CranePos CraneWP WP@Magazin StampState WP@Conveyor Crane Vaccum Stamp Conv.Belt Pusher1 Pusher2

enum bool enum enum bool enum bool bool bool bool bool
1 magazine FALSE metal_ready — — stop — — — — — 1
2 — pickup TRUE [1, T1]
3 TRUE empty free stop 1
4 — — move_cw [1, T2]
5 stamp stop 10
6 release 5
7 — FALSE 1
8 FALSE occupied TRUE 1
9 — — — FALSE FALSE — —
10 stamp FALSE ready pickup TRUE [1, T3]
11 TRUE free move_ccw TRUE —
12 conveyor stop TRUE —
13 release 5
14 — FALSE — FALSE TRUE FALSE 1
15 — T4
16 TRUE 5

Figure 8.4: A gtt for describing the material �ow in the PPU plant,
which is instantiated when a new work piece appears at the magazine
(WP@Magazin 6= EMPTY).

8.4. DISCUSSION 135

non-metallic pieces to the conveyor belt while a metallic piece is being stamped.
Due to the parallel processing (stamping, transporting, and sorting) within

the plant, a global speci�cation of the input and output variables is hard to
achieve. Instead, we can describe the plant by following the workpieces individ-
ually.

Note that the assumptions in Figure 8.4 encode the expected physical behav-
ior of the environment. If they are violated, e.g., if a workpiece is not detected
in time, the monitor raises the signal (bail-out), and this should be interpreted
as a �ag for an error in the environment. One possibility to deal with this is to
deliver more explanations why a monitor diverges, as discussed in Section 8.4.

8.4 Discussion
Counting Repetitions. The automaton for constructing the monitors is gen-
erated from a normalized (unrolled) test table. Therefore, a row with a duration
[m,n] ends up in an automaton with n · d states, where d denotes the unrolling
of overlying row groups. The introduced token-based simulation allows the use
of integer variables for counting the repetition of rows and row groups. Using
integer variables for counting have a limited impact on the performance; their
use would decrease the code size and improve the branch prediction. Moreover,
we could get rid of the restriction of nonrigid duration constraint, and allow the
use of state or input variables in the duration column. Also, their use enables
the usage of clock time instead of I/O cycles number and makes the generated
monitors applicable for interactive systems.

Symbolical Representation of Global Variables. In Section 8.2.1 we have
restricted the �rst occurrence of global variables to a form which describes an
unambiguous value to bind. This restriction could be lifted, with a negative
impact on the performance by using a symbolic representation, e.g. a BDD or
a CNF formula. Instead of a concrete value, a token would hold a symbolic
representation for each global variable. The constraints of a global variable
in the monitored table cells are added to the token’s symbolic representation
and limits the value range of the global variable. The symbolic representation
must be satis�able (describing at least one possible value of the global variable)
during monitoring. Moreover, every monitored constraint needs to be checked
symbolically.

A simpler solution might be the use of multiple tokens. Instead of forcing the
user to decide on one solution, we create a token for each adhering binding of
the global variable for the equation. Back to our example of quadratic equation,
we know there are at most two possible solutions, so we would create zero to

136CHAPTER 8. RUNTIME VERIFICATION WITH GENERALIZED TEST TABLES

two tokens with di�erent assignments. Note that this solution is only possible
if the number of solutions is limited and rather small.

Assumptions areAssertions on the Environment. In some circumstances,
an assumption violation is an indicator for a serious error, and not just a warning
that the speci�cation may not be suitable in the current situation. We make this
observation in Section 8.3.2, where a disappearing work piece on a conveyor
belt is rather unexpected and indicates either a broken sensor or a standstill. In
this case a better explanation (with a more detailed cause) would help to distin-
guish between a failing assumption which is just a too restrictive or unsuitable
speci�cation, and absolute expected guarantees of the environment.

8.5 Related Work
Runtime monitoring has been applied to a wide variety of di�erent systems
ranging from programming languages such as Java [MN04a; CR05; Zee+07;
CL02]. Likewise, the speci�cation language used to describe the monitored
properties are manifold. While some approaches use standard temporal logics
such as LTL [Pnu77], MTL [Koy90], or STL [MN04b] (or variations thereof),
others rely on speci�cation languages such as JML [CL02]. Additionally, some
approaches use their own speci�cation formalism, e.g., [MN04a; PNW11]. In
the following we only consider into monitoring of embedded systems.

Pike et al. [PNW11] presents an approach for “Runtime Veri�cation for Ultra-
Critical Systems” for distributed hard real-time systems. The authors designed a
stream-oriented programming for the design and the encoding of the monitors,
called Copilot. Such a Copilot monitor program is an event-based description
containing a sequence of triggers, which itself consists of name, Boolean guard,
arguments, and implementation body. If the guard of a condition is met, its
implementation is executed. Copilot programs are compiled into C-programs.
The authors successfully demonstrated their approach on a real-time air speed
measuring system with �ve measuring units and four computation nodes. The
result of each distributed monitor aggregates its result with the results of the
other monitors in a fault-tolerant fashion.

D’Angelo et al. [DAn+05] also uses a stream-oriented speci�cation language,
called Lola, for their monitoring solution of embedded systems. A Lola speci�ca-
tion is a set of equations and triggers over streams. A trigger is just a marker for
a Boolean expression over streams, which adherence should result in a warning.
For example, the following speci�cation of [DAn+05, Example 5] states that “the

8.5. RELATED WORK 137

number of a’s must always be less than the number of b’s.”.

s = s[−1, 0] + ite((a ∧ ¬b), 1, 0) +ite((b ∧ ¬a),−1, 0)trigger(s ≤ 0)

The generation of monitors may be di�cult due to the dependency between the
equations. Solving such a set of equations requires �nding a �xpoint in which
every equation is reduced to a constant. They demonstrate their monitors on
the PCI bus protocol and a memory controller.

Bloem et al. [Blo+15] propose the construction of shields which are moni-
toring instances which are allowed to override the output of a reactive system
under observation if the systems violate some formal constraints. To achieve
this, they introduce a new notion of k-stabilization which captures the idea
that a system can alter the output of a system for k steps to avoid the violation
of given properties. For the speci�cation of properties, Bloem et al. [Blo+15]
uses safety automataA = (Q,Σ, δ, s0, F) and their accepted language. A safety
automaton accepts a word w ∈ Σω over alphabet Σ if every state s visited
while processing w is an accepting state s ∈ F . Their main contribution is the
synthesis of reactive systems (shields), which take over control of the output
variables for k-cycles if the supervised system fails. To obtain such a shield, a
synthesis problem is established via a two-party game. The winning region of
the system (states in which there is a winning strategy) determines the possible
valid strategy to react to the environment input.

Baader et al. [BBL09] presents a runtime veri�cation approach which uses a
combination of LTL and description logic, calledALC-LTL, for the speci�cation
of the monitor. In ALC-LTL, the basic propositions are ALC-axioms in the
description logic. The description logic allows the union, intersection, and
negation as well as the universal and existential quanti�cation. The monitor
construction of anALC-LTL φ is reduced to the construction of two Generalized

Büchi Automaton (GBA) for φ and ¬φ. The �nal monitor is a Moore automaton
which output expresses whether the speci�cation is adhered to or violated ¬φ,
as well as it is currently unknown. The output is determined by the deterministic
GBAs, in particular, by the presence of active runs in the automata. Using the
Description Logic allows dealing with incomplete knowledge. The authors only
give a rough idea, that their approach could be used in combination with medical
ontologies, like SNOMED CT, to monitor the medical status of patients and alarm
doctors if needed.

Grimm et al. [Gri+12] also use Description Logic, but now, for constructing
monitors for industrial use cases. For this, they build a lightweight reasoning
engine for the EL+-fragment on a PLC system. This fragment only allows
the implication, intersection, and existential quanti�cation besides the typical
use of concepts and relations. The approach allows modelling static aspects of

138CHAPTER 8. RUNTIME VERIFICATION WITH GENERALIZED TEST TABLES

the systems, and to add (or remove) dynamical information over time to the
knowledge. For example, Fan v ∃shows . V ibrations is added if a sensor
recognizes vibration at the fan. If we can reason that a faulty state can occur
from the current knowledge base, we raise an alarm. In contrast to [BBL09], no
(relative) timing domain is considered.

8.6 Closing
We presented an approach for generating runtime monitors from gtts, which
can deal with nondeterminism and global variables. Moreover, we introduced the
concept of dynamic monitors which are created/launched at runtime whenever
a speci�ed trigger event occurs. They make possible a local speci�cation of
parallel and multi-step processes. We show the applicability of the monitoring
approach on concrete examples from the domains of automated production
systems and embedded controllers. The approach has been implemented in
TTMonitor, an open-source tool which generates monitor code in C++ from
gtt speci�cations.

gtts have two distinct kinds of constraints: assumptions and assertions.
Depending on the type of constraints which fails, a failing trace is reported
to either diverge (i. e., the speci�cation does not cover it) or to reveal a �aw
in the implementation. This principle can be re�ned further in future work
by the introduction of several constraint categories in addition to assume and
assert. This will allow the monitor to elaborate on the nature of failures even
further and give more detailed feedback to the engineer. For instance, for each
hardware component, a category could be introduced for the assumptions on
its physical response behavior. If a failure is reported in this category, this will
directly indicate that the hardware component has failed. Analogously, also for
the assertions on software components.

Runtime monitors from gtts are a valuable addition to the static veri�ca-
tion. The static veri�cation helps to detect early design �aws, and the runtime
monitors help to ensure that the expected assumption of the veri�ed gtts are
met during operation.

Chapter 9

Conclusion and Outlook

We have introduced the theoretical foundations and the decision procedures,
and presented the evaluation of gtts. In contrast to software testing, gtts allow
a formal speci�cation and support the static or runtime veri�cation of usage
scenarios. Moreover, gtts are applicable early in the development process;
the only requirement for their application is the existence of the software.
The shape and notions of gtts are de�ned by several publications [Cha+18b;
Wei+17; Bec+17]. This thesis is the �rst presentation of gtts in a closed and
combined form with all previously published features. The runtime veri�cation
was recently accepted. The veri�cation backed up by C-veri�ers were not
presented previously.

This thesis focuses on the theoretical notions and the veri�cation of gtts.
We explicitly left out other gtts-related publications. In particular, [Cha+17;
Cha+18a], and the applicability study in [Cha+18b] will be part of a di�erent
doctoral thesis [Cha21].

Overview. We use this chapter for the closing remarks of the functional veri�-
cation with gtts. We start with the discussion of the weaknesses and strengths
of our approach (Section 9.1). Then, we beyond the current theoretical aspects
of gtts, and try to imagine what could be possible steps to overcome some
of the presented limitations of gtts. Firstly, we generalize the row groups to
arbitrary jumps to between rows of the same or di�erent test tables (Section 9.2).
We call this new kind meshed gtt. Secondly, we replace gtts completely with
an arbitrary speci�cation notion (Section 9.3), similar to a (UML) state diagrams,
or an SFC: What is the required interface for the game?

In the common conclusion, we state how the idea of gtts in�uences upcom-
ing projects (Section 13.3). This chapter is mainly dedicated to ideas that go

139

140 CHAPTER 9. CONCLUSION AND OUTLOOK

beyond the features of gtts.

9.1 Weaknesses and Strengths
Weaknesses in Theoretical Aspects. In the main chapter, we omit some
smaller results that are unsurprising for an informed reader. For example, gtts
are not an ω-regular language description. ω-regularity means that a given
notion can describe (or accept) every language, which can be described by a
regular expression of ω. Note that ω-regularity coincides with accepted lan-
guages of nondeterministic Büchi automaton. In contrast to regular expressions,
it is obvious that the union (L+L′) of two languages L,L′ is not expressible in
a gtt. Whereas the repetition and sequential composition exists directly (cf.
De�nition 5.7). Note for a comparison of languages and gtts, we would use
only the assertions of the gtt, and leave the assumptions empty.

Also, gtts are not closed under intersection, union, or negation. Closed
under an operation ⊗ means, that given two gtts T1, T2, we can �nd a third
gtt T3 with T3 = T1 ⊗ T2 s.t. T3 combines the conformance T1 and T2. For
example, a system conforms to the gtts T1 and T2 if and only if it conforms T3
(where “T3 = T1 ∧© T2”). Or for negation: a system does not conform a gtt T if
and only it conforms “¬T ”. These operations are possible for gtts if we work
with the Büchi-automata generated from gtts, but �nding a gtt is not always
possible. The bene�ts of being closed under di�erent operations are clear. For
example, if gtts would be closed under intersection, we can avoid verifying a
system against multiple gtts individually. Instead, we could construct a single
(all-including) gtt, which may give us a performance advantage.

A simple construction principle by merging tables row-wise is blocked by
the structure of the duration constraints, mainly by di�erent nesting of row-
blocks and di�erent repetitions constraints. For intersection, we can establish
such construction for tables with equal-structured duration constraints. This
construction exploits the available universal quanti�cation by introducing a
new global variable t of type Boolean. Under the restriction of the time con-
straints, the tables T1, and T2 are merged row-wise. A merged cell receives the
content SEL(t, c1, c2), where SEL is the case distinction (if-then-else), whether
the constraint c1 from the �rst table or c2 from the second table is consid-
ered. As a system needs to conform every instantiation, it needs to conform
T1 = T3[t/false] and T2 = T3[t/true].1 This construction is not possible for
union or negation (under the same assumption). For both cases, an existential
quanti�cation is needed. For example, if a system conforms to T [σ] for all in-

1T [t/s] denotes the substitution or instantiation of a global variable t with the term s.

9.1. WEAKNESSES AND STRENGTHS 141

stantiations σ, then it only needs one instantiation µ for !T [µ] to conform with.
Existential quanti�cation is discussed in Section 5.4.2.

Missing Support of Modular Veri�cation. Whereas concrete test tables
are used to describe a single �nite test scenario, we can use gtts to describe a
family of (�nite and in�nite) test scenarios. But these scenarios might only be
a subset of the full system behavior. Therefore, to fully describe a system we
need to use multiple gtts. From this, two issues arise: First, is a set of gtts a
complete speci�cation of a system, or there any input sequences that lead to
unspeci�ed situations? Second, there a contradictory situation between two (or
more) gtts? This is the reachability of a situation in which any response of
the system is invalid. This also corresponds to the question of realizability in
program synthesis.

A consequence of the partial behavior description is a lack of supporting
modular veri�cation. Modular veri�cation means we use the gtts as a contract
for a (reactive) subsystem in our reactive system, and during the veri�cation,
we would rather apply the contract of this subsystem rather than its actual
implementation. Application of a contract means, that the actual implementation
is abstracted by complemented nondeterminism, but contract-conform, behavior.
Also, we need to prove that the actual implementation of the subsystems adheres
to the applied contract. If the contracts are lightweight in contrast to the actual
implementation, we receive two smaller veri�cation goals.

But a modular veri�cation is hard to achieve because of the required amount
of gtts for a full description, the raised issues, and the required tool support to
maintain these gtts. From the current perspective, we do not suggest gtts for
this case.

gtts’ Niche. gtts are weak from a theoretical perspective (not closed under
Boolean operations, and not ω-regular). Their strengths are comprehensibility
and understandability. Both arise when the gtts-speci�c features are triggered,
which are (1) the use of the abbreviations, (2) a dense speci�cation, and (3)
sequential behavior. To the �rst point: The use of abbreviations allows to
create a smaller and more concise speci�cation, where the asserted or assumed
conditions for each variable can easily be surveyed. Writing complete Boolean
formulas into the table cells negates this advantage. To the second point: consider
an LTL speci�cation Fin, where we state that �nally, the variable In becomes
true. Such a speci�cation �ts well into LTL, but is tedious in a gtt (cf. Figure 9.1).
Moreover, the cells of a gtt should be rather occupied with constraints than
left empty. A sparse gtt which mainly contains only don’t-cares “—” requires a

142 CHAPTER 9. CONCLUSION AND OUTLOOK

ASSUME ASSERT �
In
1 — ≥ 0
2 =TRUE 1

Figure 9.1: A gtt equivalent to FIn under strict or cooperative conformance.

lot of space for little information.2 To the third point: gtts makes it simple to
state and understand sequential behavior. Row-groups are a valuable addition,
and sometimes required to achieve concise results, but a deep nesting is also an
obstacle for the readability. Thus, row groups should be used sparingly.

Practical Limitation. gtts are not scaling well with the number of columns.
Thus, speci�cations with many variables are hard to read (and to print in a
publication). This is one reason for user-de�ned projection functions on columns.
Note that we often needed to strip the presented gtts in the size and the name
of the variables to make them printable on a book page. The table rows are
scaling far better, but not limitless. But for consolation, if a gtt is too large to be
readable, a comparable formula in a temporal logic would also require its space
and e�ort to be understood. But for large gtts, we have the chance to increase
the readability with better tool support. For example, spreadsheet applications
allow to hide rows and columns or to �xate parts of the screen. Additionally,
we can present the table in di�erent graphical representations, e. g., state charts,
or add additional annotations and comments.

To summarize, gtts are excellent for the speci�cation of sequential behavior
with frequently changing constraints for a reasonable number of variables. gtts
are not a good replacement for invariants or (simple) LTL formulas.

Open Research Question. One of our claims is that gtts are a comprehensi-
ble and understandable speci�cation methodology. Currently, the main support
is given by deductive and didactic argumentation: Engineers can start with
their concrete test tables, and add new generalizations as they need and under-
stand them. If they reach a point in which they are mentally overloaded by the
complexity, they can easily go back to an earlier simpler version. This allows
an adaptive and incremental veri�cation process, that starts with one concrete
scenario which is incrementally extended and generalized.

The previous claim needs support by empirical data. An experiment was
performed by the project partner from Munich. In this experiment, students

2We use dense and sparse in reference to matrices.

9.2. MESHED GENERALIZED TEST TABLES 143

were split into several groups, and had to ful�ll speci�cation tasks on paper. The
goal was to compare comprehensibility and understandability of gtts against
Petri-Nets. Note that due to the experiment design (paper task) and participant
group (students), there exists a bias which prevents a direct transfer of the results
on the daily use of aPS engineers. The publication of this experiment is currently
under revision [Cha+], and will be part of the companion thesis [Cha21].

For us, the questions on the theoretical foundation of gtts are su�ciently
answered. Hence, we mainly identify the following open research questions,
which require empirical evaluation on real-world scenarios, to guide further
necessity in the foundation and presentation of gtts.

• Are gtts understandable in comparison to other speci�cation techniques?

• Which (set of) gtt features are required for industrial-used and are pre-
ferred by engineers?

• How should a tool for the speci�cation and veri�cation of gtts should be
designed?

9.2 Meshed Generalized Test Tables
In this section we add a new feature to gtts: we allow arbitrary jumps between
table rows, like goto-statements in programming languages. In the current
version of gtts, jumps are given implicit either by de�ning a row group, or by
the order of the table rows. Now, the user can specify arbitrary jumps between
rows in a single or multiple gtt. We call the new concept meshed gtts. The
jumps are speci�ed by a drawn edge which is protected with a guard (Figure 9.2).

Structure and Semantics. In the de�nition of meshed gtts, every jump
is explicitly speci�ed. Of course, not every jump, like jumps between consecutive
rows, is later drawn in a graphical presentation. Formally, a meshed gtts is
similar to a graph of rows:

De�nition 9.1 (Meshed gtt). A meshed gtt TM = (R, r0, E) is a tuple where

• R is a set of pre- and post-condition pairs (φ, ψ),

• r0 ⊆ R are the initial rows, and

• E = R×G×R are the jumps between the rows.

where G := {pass, fail, miss} denotes the set of valid guards, and ψi, φi are
Boolean formulas.

144 CHAPTER 9. CONCLUSION AND OUTLOOK

The guards on the jumps are limited to pass, fail and miss. These guards
correspond to the transitions in the automaton, where a transition is taken
when the row is successful adhered (pass with “φ ∧ ψ”), or the assumption is
violated (miss with “¬φ”), or analogue for the violation of assertions (fail with
“φ ∧ ¬ψ”). Of course, one can consider Boolean expression as guards, but for
our purposes this formalization is su�cient.

It may not so clear, that this formalization of meshed gtts also subsumes
our formalization of gtts in De�nition 5.7. One reason is the dismiss of the
duration constraints.

Proposition 9.2. For every gtt T ∈ T exists a meshed gtt TM such that an

arbitrary system S conforms T i� S conforms TM.

For the proof, we use the normalization of gtts in De�nition 6.1.

Proof. Let T0 be the normalized gtt for the given table T ∈ T. Thus all duration
constraints are either [1, 1], [0,−], [0, 1] or ω in T0. To show our property we
need to translate these time expressions into jumps. For the translation we can
exploit the construction of the automaton.

Then, TM := (R, r0, E) can be constructed in the following way: R is the
set of all rows in the normalized table T0, r0 are the �rst reachable rows (given
by the successor function succ(0) in De�nition 5.8), and E is derived from succ:

E := {(r, pass, s) | s ∈ succ(r) ∧ r, s ∈ R} .

Note that for the construction we only require the guard pass, the guards
fail and miss are an extension and allow the speci�cation in cases of a con-
straint violation, for example, useful for the speci�cation of fault handling in
production systems.

9.2.1 Graphical Representation
A meshed gtt is very close to the automaton (Section 6.1.1). The only missing
parts are the explicit sentinel and error state, and the closure of directly reachable
rows (given by the successor function succ). But for the graphical representation,
we do not want to slip into the graphical representation of the automaton with
states and Boolean expression. Instead, we want to keep the nature of tables,
but only with some extra edges.

9.2. MESHED GENERALIZED TEST TABLES 145

Belt
Ready Weight

Grind

Trash

Crane

Figure 9.2: Grinding and sorting processing unit

Example. We want to illustrate a possible graphical appearance by an exam-
ple. We consider a processing unit of workpieces, which ensures the speci�c
weight of the workpieces. Too light workpieces are sorted in the trash bin,
too heavy workpieces can be rescued by grinding them until they meet the
weight requirement. Good workpieces are given to the next processing unit.
Figure 9.2 shows the linear hardware setup on a conveyor belt. Workpieces are
entering on the left side of the conveyor belt recognized by the sensor Ready.
Besides this sensor, we have a weighting scale Weight measuring the weight of
the workpieces. Transport between the detector and weighting scale is needed
to obtain the weight. Further to the right side, we have the grinder (for reducing
the weight), a crane (for picking up good workpieces), and the trash bin (which
receives the bad workpieces).

Implicit Notions and Normalization. Figure 9.3 shows the speci�cation of
our example. For readability, we omit the guard on pass-edges and make it the
default. Also, implicit jumps between consecutive rows are omitted. We draw
edges for miss or fail di�erently, in the example we used a dashed line for
miss-jumps. We allow the use of duration constraints on rows in the graphical
presentation. Later, these rows are expanded during the normalization. We
need to make clear how the incoming and outgoing jumps on the aggregated

rows with duration constraints are applied on the expanded rows. We de�ne:
an incoming jump addresses a row only in its �rst iteration (regardless of the
guard). Outgoing jumps are more di�erentiated. The pass-jumps respect the
duration constraint, s.t. such a jump is only taken if the duration constraint of
the (outgoing) row is met. The handling is done during normalization, only those
expanded rows receive the outgoing jump if their associated iteration meets the
constraint. Whereas, fail and miss jumps are always taken regardless of the
duration constraints and the current row iteration. If a strong repetition appears
in the duration constraint, all outgoing pass-jumps to di�erent rows are invalid
(other miss- and fail-jumps remain valid). Also, we add an implicit jump from
the last rows of each table to the sentinel state if there is no explicit pass jump

146 CHAPTER 9. CONCLUSION AND OUTLOOK

given on the last rows. Thus, if a play reaches the bottom of at least one table,
and there is no de�ned edge for the continuation, the system wins.

In our example in Figure 9.3, we use four di�erent gtts to express the di�er-
ent modes of the software: ready for a new workpiece, grinding to lose weight,
deliver to trash, or picking up good workpieces. These tables are connected by
multiple jumps. For example, if a new workpiece has arrived, it is transported
to the weighing scale. Then three possible situations could appear: the weight
is too light or too heavy or in range. Thus, we nondeterministically branch
into the other three tables. These tables check if they are responsible for the
current situation and then proceed with their remaining rows. Otherwise, the
assumption is violated and the �rst row (and the table) is discarded. At the
end of the grinding behavior, we use miss-jumps to jump to other tables if the
workpiece is not too heavy anymore, and a pass-jump to repeat the grinding
otherwise. Note that this table constellation runs forever, as every table has an
outgoing pass jump in the last row.

To focus on newly introduced jumps, we used constants for the timing
constraints, and avoid row groups. Of course, later can be easily added to the
graphical representation as row groups are expanded during the normalization.

9.2.2 Semantics and Decision Procedure
The semantics of gtts are still valid for the meshed gtt. We only need to reduce
a meshed gtt into the set of unrolled instances SP(TM). This set corresponds
to all possible �nite paths that reach the sentinel row, and all in�nite paths
over rows r ∈ R with respect to the jumps de�ned in E. Global variables are
quanti�ed across all tables in a meshed gtt.

For reusing our decision procedure, we need to translate our meshed gtts
into an automaton, similar to Section 6.1.1. In comparison, the construction for
meshed gtts is simpler: Every r ∈ R is a state sr in the automaton. And each
jump (r, g, t) ∈ E becomes a transition between the corresponding states sr
and st where transition condition c depends on the guard g and the assume- (φ)
and assert-condition (ψ) from the outgoing row r:

c =


ψ ∧ φ if g = pass
ψ ∧ ¬φ if g = fail
¬ψ if g = miss

Additionally, the implicit error and sentinel state with their implicit edges are
added. This automaton needs to be encoded into formulas similar to Equa-
tions (6.2) to (6.4). Meshed gtts are already supported by our veri�cation tool
geteta.

9.2. MESHED GENERALIZED TEST TABLES 147

A
SS

U
M
E

A
SS

ER
T

�
#

R
ea
dy

W
ei
gh

t
Be

lt
1

FA
LS

E
—

St
op

—
2

T
RU

E
—

St
op

1
3

—
<=
0

To
Ri
gh
t

—
4

—
>0

St
op

T
w

a
it

M
ov

e
to

w
ei

gh
tin

g
sc

al
e

A
SS

U
M
E

A
SS

ER
T

�
#

W
ei
gh

t
Be

lt
G
ri
nd

1
>M
AX

To
Ri
gh
t

On
Up

1
2

—
To
Ri
gh
t

On
Up

T
m

o
v

e

3
To
St
op

On
Do
wn

T
g

r
in

d

4
To
Le
ft

On
Up

T
m

o
v

e

5
>M
AX

To
Le
ft

On
Up

1
G

rin
di

ng

A
SS

U
M
E

A
SS

ER
T

�
#

W
ei
gh

t
Be

lt
1

<M
IN

To
Ri
gh
t

T
tr

a
s
h

D
el

iv
er

to
tr

as
h

A
SS

U
M
E

A
SS

ER
T

�
#

W
ei
gh

t
Be

lt
C
ra
ne

1
>=
MI
N,

<=
MA
X

To
Ri
gh
t

—
T

c
r

a
n

e

2
—

St
op

—
1

3
—

St
op

Pi
ck
Up

T
p

ic
k

u
p

Pi
ck

up
go

od
w

or
kp

ie
ce

mi
ss

mi
ss

Fi
gu

re
9.
3:

Ex
am

pl
e

fo
ra

m
es

he
d
gt

t

148 CHAPTER 9. CONCLUSION AND OUTLOOK

9.3 Generalising the Game

Meshed gtts are similar to the SFCs. The idea behind SFCs is to combine se-
quential program behavior by using edges with guards. The combination of
sequential program behaviors is either exclusive (one of the successive behav-
iors is taken) or parallel (all successive behaviors are taken). In contrast, the
sequential parts in meshed gtts are the test tables and by the nondeterministic
branching, we also obtain a parallel execution. This leads to the idea, why not
using a completely di�erent – maybe well-established – graphical model for the
speci�cation representation instead of our tables?

In this section, we generalize the game behind gtts to obtain a speci�cation
language-neutral semantics. These semantics should then adaptable to other
speci�cation notions, e. g., SFCs, test tables, or state machines. We model that
the speci�cation notion has a state, e. g., for storing the current positions in a
test table or the active steps in an SFCs. In the following, we use s ∈ S as a
notion for this opaque speci�cation state. Our generalized game relies on two
functions, contracts and update, which need to be de�ned accordingly to the
speci�cation notion.

Formalizing the Generalized Game. LetΣ = InVar ∪StateVar ∪OutVar
be the variable signature of the program to be veri�ed, and FmlΣ be the set of
Boolean formulas over Σ. The function contracts maps the current state s ∈ S
of the speci�cation to a sequence of formula pairs over Σ:

contracts : S → Seq(FmlΣ × FmlΣ) .

Seq(X) expresses the set of all �nite sequences over the elements in X . Also,
let eog ∈ FmlΣ × FmlΣ a constant as a signal that the end of the speci�cation
has been reached – similar to the end of the test table.

The function update computes the next speci�cation state by using the old
state s ∈ S , the result of the evaluation r ∈ Seq(R) of the given contracts and
the chosen input values i ∈ I and computed output and state values o ∈ O.

update : S × Seq(R)× I ×O → S ,

whereR = {pass, fail,miss, eog} is the result of the evaluation of a given pre-
and post-condition pair. The function eval de�nes the evaluation of such a pair
(ψ, φ) ∈ FmlΣ ×FmlΣ on the observed sequences of input values i and output

9.3. GENERALISING THE GAME 149

i := ε;
o := ε;
while true do

i := C(); o := S(i);
i := i · i;
o := o · o;
c := contracts(O);
/* assumption: |c| > 0 */
r := map(eval, contracts);
if eog ∈ r then

return System wins;
else if only miss in r then

return System wins;
else if fail ∈ r and no pass in r then

return Challenger wins;
/* Game goes on, as there is at least one pass in R */
s := update(s, r, i, o);

end

Figure 9.4: Generalized game. C represents the nondeterministic challenger,
and S the system, respectively.

o:

eval(ψ, φ) :=


eog : (ψ, φ) = eog
pass : i, o |= ψ ∧ φ
fail : i, o |= ψ ∧ ¬φ
miss : i, o |= ¬ψ

The positions in r ∈ Seq(R) correspond to the contracts returned by the
function contracts, thus, the nth entry in r is the evaluation of the nth contract.

The current input and output as arguments of the update function allow a
more �ne-grained decision of the successor state in the chosen speci�cation
notion.

Figure 9.4 shows the new game using the new vocabulary. Note that we
use the ordinary map function to evaluate the sequence of contracts. The case
distinctions correspond to the cases in Figure 5.1 adapted to the sequence of
contract evaluations r. The game ends in favor of the system if the end of the
speci�cation is reached (denoted by eog), or all assumptions are missed. The

150 CHAPTER 9. CONCLUSION AND OUTLOOK

game continues only if at least one contract is passed—otherwise, the challenger
wins.

It should be obvious, that the generalized game can easily be instantiated
for gtts using the generated automaton: The automaton states determine the
active contracts where contracts(s) returns a sequence of (ψ, φ) of the rows
which corresponding automaton states are active in state s. If the sentinel state
is active in s, eog is returned in the sequence. The function update selects the
successor state of each automaton state which corresponding contract passed.
For failed contracts the error state is selected.

The generalized game has one �aw: What happens if the underlying speci-
�cation says, that no contract is suitable for the current situation?. For gtts,
the system wins because this situation can only be reached if all input assump-
tions were missed in the previous round. We need further requirements on the
speci�cation notion.

Requirements for a Speci�cation Notion. We can categorize the require-
ments into two categories: Requirements for the well-de�nedness of the game,
and requirements to create a decision procedure.

The game de�nition requires that the speci�cation notion is periodical ex-
ecutable, similar to the reactive system, and in each turn, a non-empty �nite
sequence of contracts is computed. The formulas in FmlΣ can be evaluated
given the history and current state of the system. Also, the speci�cation notion
must be causal (not depending on the future) and deterministic. Theoretical, the
speci�cation can be written in any programming language, and the contracts
can be in any logic. Non-termination in update or contracts, or in veri�cation
subject causes the game to be stuck, thus the system never loses, thus, weakly
conforms the speci�cation.

We need further restrictions for receiving an automatic veri�cation pro-
cedure. We need to able to encode the speci�cation notions into a (Boolean)
transition system. Hence, the state space and input space of the veri�cation
subject and the speci�cation notion need to be �nite. Also, this enforces a bound
on available contracts. Additionally, the interpretation of formulas FmlΣ (in
which the contracts are stated) needs to be decidable. But this restriction is not
restrictive with respect to the �nite variables.

Sequential Function Charts as a Speci�cation Notion. For the last point
of this section, we brie�y elaborate on the idea of Sequential Function Charts
(SFCs) as a possible speci�cation notion. SFCs are a graphical programming
language in the aPS domain, thus it should be easily understandable for engineers.
A possible instantiation of the generalized game with SFC could be de�ned as

9.3. GENERALISING THE GAME 151

follows: We associate an assume- and assert-pair (φ, ψ) with each step in the
SFC. If a step is active, the function contract considers its associated contract
as part of the returned sequence. For the update of the speci�cation state, we
would use the normal operational semantics of SFCs. In the variable signature,
we introduce a new variable for each step X : X.r ∈ R which contains the
outcome of the contract for the step named X . This speci�cation notion allows
the use of any element of the IEC 61131-3, especially variables, assignments, and
timed actions. Of course, this is only one possible interpretation of SFCs as a
speci�cation notion in this framework. Others may exploit a stronger use of the
timed actions or local variables.

Part II

Relational Veri�cation

153

Chapter 10

Relational Test Tables

Motivation. Relational speci�cations allow the formalization interesting and
practical-relevant properties by specifying a relation between two or more
program runs (cf. k-safety hyperproperty in [CS08]). Two important applications
of proving relational program properties are regression veri�cation (which is also
subject of our considerations in Chapter 12), and assurance of secure information

�ow (non-interference, cf Chapter 11).
Regression veri�cation is a generalization of the equivalence proof between

two programs, where two program revisions, often the old and new version, are
shown to be related under a certain input relation [Bec+15]. With regression
veri�cation, we can recognize the introduction of unwanted behavior during
the software evolution. For example, to describe the equivalence of two versions
of a reactive program P and P ′, we may state that program runs of the two
versions are state-wise equivalent in their output values if their input values are
equivalent, formally expressible as

∀i ∈ Iω. B(P)(i) = B(P ′)(i) ,

where the program runs are given a set of tracesB(P) andB(P ′) of the programs
P and P ′ following in our notation in Section 5.1.

This notation is limited to the special case where equal input provides equal
output—a rare case in software evolution. Releasing a new software reversion
often brings changes: a bug was �xed, new optimization, or handling of the
new hardware. In Section 7.3.2, we evaluated an evolution of the Pick-and-Place
where a new behavior for optimization was introduced. With gtts, we can
express the new functional behavior, but we are not able to express or verify
that o�sides the new behavior the system behavior has not changed. We want
to remedy this shortcoming on the relational speci�cation of reactive systems
with introduced Relational Test Tables (rtts).

155

156 CHAPTER 10. RELATIONAL TEST TABLES

Formal veri�cation for proving functional properties of reactive and PLC
systems is well-studied but is rarely used in practice. One of the main obstacles is
the lack of appropriated speci�cation languages [Pak+16]. Relational veri�cation
is a promising �eld to reduce the amount of formal speci�cation by using existing
software. Instead of specifying how the system should behave, we use a similar
system, e. g., the previous version, and specify the condition under which both
should behave equal (or similar).

Non-interference is a di�erent interesting relational property, which en-
forces that speci�ed secret information does not in�uence the public-observable
output [Den76]. Proving the absence of a secure information �ow ensures that
the software does not leak any secrets to an attacker. In a wider area, (non-
secure) information �ow can be used to detect dependent variables and software
modules on a semantical level. Both properties (equivalence and information
�ow) are speci�ed as a relation between two program runs.

Contribution and Overview. In this chapter, we propose an extension of
gtts: the relational test tables (rtts). rtts allow the speci�cation of relational
(and functional) properties of reactive systems in a practical and comprehensive
formalism. They can be used for relations on any number n ≥ 1 of program
runs. They also are backward-compatible to gtts (n = 1).

We make three extensions to the syntax of gtts (Section 10.1). First, we
introduce a reference to the variables in di�erent program runs. Second, we lift
the projection function in the column headers to multiple program runs. Third,
we include the control columns, which allow intervening the regular program
�ow. The control columns require an augmentation of the original programs.

Besides the speci�cation, we also present a decision procedure and the se-
mantics of rtts in Sections 10.2 and 10.3. For the veri�cation of rtts, we follow
the approach of building product programs [BCK11], which reduces the problem
of veri�cation of a relational property to the veri�cation of the functional prop-
erty. The product program executes all original programs synchronously (also
known as lock-step). The control columns allow us to break up this synchronous
execution—allowing us to handle stuttering or repeated behavior. In our case,
we reduce the veri�cation of rtts to the veri�cation of gtts.

Moreover, we show the applicability of rtts with di�erent examples from
the domain of automated production systems. In Section 10.4, we specify and
verify three change scenarios, and an information �ow scenario. All examples
have been successfully veri�ed using a model checker.

10.1. SYNTAX 157

10.1 Syntax
Barthe et al. [BCK11] describes the construction of product programs. This
principle allows reducing the relational veri�cation of k-safety properties to
functional veri�cation, for example with gtts. But, this principle alone does not
give us a comprehensible and expressive speci�cation language. For example, a
relational speci�cation thrives on relations between the variables (e.g. x < y,
y 6= x + 1). In gtts, we only have a column for program variables, but not a
column for expressing the relation between program variables properly. Also,
the speci�cation can only express a relation between (perfectly) synchronized
programs (lock-step), because each reactive system makes a step at the same
time.

Our introduced features focus on the syntactical side of gtts to overcome
these limitations (Section 10.1). Later in (Section 10.2), we use Barthe et al.
[BCK11] to de�ne the semantics of rtts with the reduction to gtts by building
a product program from the augmented programs. In Section 10.1.3 we show
the extension in action.

rtts inherit all the syntactical elements of gtts (Chapter 5). Especially, an
rtt contains columns designated to input, state, and output variables of each
underlying program run, but only one common duration column.1 To tackle
the previously stated limitation, we add the following syntactical concepts:
(a) (Explicit) references to variables in speci�c program runs, including new
abbreviations. (b) We introduce a new column type: the control column. This
column type allows the break-up of the synchronous speci�cation. (c) Lifting
projecting functions in the column header to multiple program runs.

To make our notation of programs and their runs more clearly, programs are
a syntactical construct given in form of source code, its semantics is transition
within an execution cycle (De�nition 5.1), which is lifted in De�nition 5.2 to an
in�nite sequence of output values for a given in�nite sequence of input values.
This output sequence is generated successively by a program run. We rather use
the newly introduced notation program run (than reusing the trace semantics)
to make clear that we can manipulate the control �ow of the program runs.

10.1.1 Relational References
An rtt speci�es a relation between a list of program runs. Each program run is
identi�ed by its index position in the list, and additionally, by a user-de�ned
name. For example, in the case of regression veri�cation we often use old and
new to identify the old and new software revision (see the example in Figure 10.2).

1The duration column is part of the speci�cation, whereas the variables are part of their
program runs.

158 CHAPTER 10. RELATIONAL TEST TABLES

Table 10.1: Constraints abbreviations for relational references.
Notation Value if used in column for p»X
q»Y Y in program run q
»Y Y in the other program run
q» X in program run q
» X in the other program run
Y Y in program run p

Program runs can origin from the same program (see Section 10.4.4), but all
runs are executed independently of each other. The number of program runs,
their names, and the corresponding program are denoted separately, and are
not part of an rtt.

By using the name or index number of the program runs, we can identify
variables explicitly. A variable X in a program run p is denoted by p»X , where
p is either the name for the index of the program run. As variable names may be
ambiguous, we use the fully-quali�ed variable names, like p»X , in the column
headers. The expression grammar (Section 4.2.1) of gtts are still valid, but
extended s.t. p»X is valid variable identi�er. For example, p»X[−n] still refer
to a previous value of X in the program run p of n cycles ago.

As the case of two program runs is very prominent, we introduce the abbre-
viation “»X” (the program run identi�er is omitted) to refer to X in the “other”
program run if there are only two program runs. The notation “»”, where the
variable name is also omitted, references the same variable name in the other
program run, i.e., » equals q»X if it is used in the table column for variable p»X
and p, q are the only two program runs. Additionally, we keep the old notion: a
simple name X refers to the variable X from the same program run. Table 10.1
shows an overview of the abbreviations for relational references in comparison
to Table 4.3.

10.1.2 Control Column
We introduce a new column type: the control column. The control columns
allow to manipulate the control �ow in the program runs in such a fashion, that
underlying program runs are not executed synchronously.

In an rtt, every program run has an omittable corresponding control col-
umn. The cells of a control column contain either control commands: play (�),
pause (p), backward (.). The play-command enforces that the corresponding
program run is normally executed—meaning that the underlying program is
executed on the previous state and new output values are computed. For conve-

10.1. SYNTAX 159

nience reasons, the play-command is the default if the value (or the complete
column) is omitted. It can only supersede by a pause-command. This default
also makes every gtt a valid rtt. The pause-command e�ects the opposite
of the play-command. If pause is given, the corresponding program is not
executed, and the state and output values of the previous cycle remain the same.
The input values may change because they are controlled by the challenger
(environment). Pause enforces stuttering of the underlying program.

The backward-command allows a resetting of the underlying program state
to a previously seen state associated with a table row. If backward (.r) with
row number r occurs, then the state of the corresponding program run is set to
the state that was present when r-th table row was entered. The reset occurs
before the program is executed and only a�ects the state and output variables;
not the input variables. As the current and future input values may diverge from
the previously observed inputs, the future program states may also diverge, and
the previously observed behavior may not be repeated. For example, backward
to 0 (.0) resets the program to its initial state, but afterwards di�erent input
can be chosen. Thus, the state and output variables di�er from the original
execution start.

We have identi�ed these control commands as useful for our speci�cation
needs of evolution and security scenarios. But the set of control commands are
not �xed and can be extended. For example, a fast-forward command, which
lets the program executes n times in a cycle, could be helpful in cases where a
program run takes multiple cycles for the computation, which is done in one
cycle in the other in other program runs.

With control commands, we break up the synchronous development of
the underlying program runs, in which not every program run calculates a
new state in every turn. This allows relating program runs, which are not
perfectly synchronized to each other, by compensating the deviation using
control commands. As we see later, we convert the speci�cation in the control
columns into a speci�cation of input variables of the augmented programs
in Section 10.2.1. Thus, the underlying game remains synchronous; in each
game round, the challenger and all programs need to emit an input or output,
respectively.

10.1.2.1 Projection Functions in Column Headers.

In Section 4.2.2.2 we already introduce projection functions in the columns. Orig-
inally, these projection functions were introduced along with rtts in [Wei+20]
and later with this thesis back-ported to gtts. This allows us to keep this section
rather short.

160 CHAPTER 10. RELATIONAL TEST TABLES

A column is dedicated to a program variable, e. g., p»X , or a projection
function. The dedication are noted in the column header. In gtts, both dedica-
tions describe a function that projects the program state to a value X . New in
rtts is that we have multiple program runs. To address this, we already give
fully-quali�ed variable in column headers. For projection function, we need to
catch up. A projection function in rtts is a function f that maps the history
(up-to and including the current situation) of n program runs to an m-tuple:

f : (σ1, . . . , σn) 7→ (v1, . . . , vm) , (10.1)

where σi ∈ (I×S)∗ (1 ≤ i ≤ n). Note thatS contains also the output values like
in De�nition 5.10. The program variables are still a special case of a projection
functions—they de�ne the following projection function:

p»X := f(σ1, . . . , σn) = σp(X) .

The variable σp denotes the last state in the given history of the pth program
run.

In gtts, we allow the use of predicates in cells, which are then applied to the
return value of the projection function (Section 4.2.2.2). The typical comparison
predicates, like equality “=” or less-than-equals≤ are built-in. Further predicates
are de�nable by the user. The only requirement is that the arity of the predicate
matches the size of the returned tuple. Together we obtain a nice feature: the
relational column—a column that expresses the relation between variables. For
an example, refer to Press column in the Figure 10.2.

Formally, let f be a projection between n program runs to an m-tuple of the
column, where a predicate P with aritym is given in the cell without arguments.
Then, this abbreviation is expanded to:

let (v1, . . . , vm) = fc(σ1, . . . , σn) in
P (v1, . . . , vm) .

Scalar values are silently lifted.

10.1.3 Example
We illustrate our extensions with an example in Figure 10.2. The given rtt
expresses a change during the evolution of a stamping system for imprinting
workpieces.

Stamping in the new software version of the system should have the same
behavior as in the old version. But the new version is capable of error handling
during the imprinting routine. If a workpiece is inserted into the stamp (input

10.1. SYNTAX 161

CONTROL ASSUME ASSERT �
old new WP old»WP new»Release Press new»State

1 I I = FALSE — ≥ », Free —
2 I I = TRUE — ≤ »,Stamping 1
3 I I = FALSE — ≤ » —
4 I = — — > Error —
5 I = — TRUE > — 1

[0,1]

—∞

Figure 10.2: Example for an rtt

variable WP is true), the stamp is pressed against the workpiece (expressed by
stamp pressure in the output Press), and the stamp signals when it is ready
(State). The new revision is extended by a diagnostic sensor, which recognizes
a failed imprint. If such an error is indicated, the stamp needs to be inspected
and cleaned by an operator, who afterward releases the system from the error
state.

Figure 10.2 shows an rtt capturing this behavior which is based on two
program runs of the old and one of the new software revision. The column
header “WP” represents a function which maps the WP variable of both program
runs to a 2-tuple: (σold(WP), σnew(WP)); analogue for column header “Press”.
The normal behavior in the new system version is (only) described in relation to
the old version (Rows 1–3), where the WP variables in both runs need to equal,
and the new stamping pressure (new»Press) needs to be lower than the old
pressure (old»Press) when the stamp should not imprint, and vice versa when
the stamp should imprint. In addition, the table describes the error handling
behavior without referring to the old version (Rows 4 and 5).

In Row 1, the table states that both systems should signal a free stamp
(variable State) until a workpiece is inserted. When a workpiece is present
(Row 2), the stamping process starts (Š) for an unspeci�ed amount of time
(Row 3). Now, we enforce that the new stamp pressure is at least as high as in
the old version. Thus, the new system imprints, when the old system would
imprint, but possible with a higher pressure. Up until (and including) Row 3 we
expect that both programs behave relative to each other in every step. When an
error occurs during imprinting (Row 4), the equality between the old»State and
new»State in the previous row would fail, as the old revision is not aware of
errors and keeps pressing. We are proceeding with Row 4, where such equality
is not required anymore. The old revision is paused (p is given in the control
column) until released by the operator indicated by new»Release = TRUE
(Row 5). The row group consisting of Rows 4 and 5 makes the error handling
optional for cases without an imprinting error. During the error handling, we
force, that the new stamp pressure is lower than the old stamp pressure during

162 CHAPTER 10. RELATIONAL TEST TABLES

〈table〉 ::= relational table 〈name〉 ‘(’ 〈runs〉 ‘)’ ‘{’ 〈body〉 ‘}’

〈runs〉 ::= 〈name〉 (‘,’ 〈name〉)∗

〈signature〉 ::= var 〈modi�er〉∗ ‘{’ 〈name〉 (‘,’ 〈name〉)∗ ‘}’ 〈name〉 ’:’
〈datatype〉

| var 〈modi�er〉∗ 〈fqvar〉 [as 〈name〉] ’:’ 〈datatype〉
| gvar ...
| column . . .
| inherit_from . . .

〈fqvar〉 ::= [〈name〉] ‘::’ [〈name〉]
〈row〉 ::= row [〈name〉] [〈time〉] ’{’ 〈control〉∗ ((〈fqvar〉|〈name〉) ‘:’ 〈cell〉

[‘;’])∗ ‘}’

〈control〉 ::= (play | pause | back ‘(’ 〈name〉 ‘)’) ‘:’ runs [‘;’]

Figure 10.3: Additions and changes to the grammar Figure 6.8 for specifying
rtts

imprinting.
The complete speci�cation is repeated in�nitely often. Not all variables from

the interface of both reactive systems have an own column. Some omitted vari-
ables are speci�ed by indirectly, i. e., old»State via the column of new»State.

10.1.4 Extending the Input Language
In Section 6.3.2, we de�ne our input language for the textual presentation of
gtts as the input format of our veri�cation pipeline. The new rtt features need
also to be captured grammatically. In Figure 10.3, we give the new grammar as
the di�erence to the grammar for gtts in Figure 6.8. Meaning that the rede�ned
non-terminals, i. e., 〈table〉, 〈signature〉 and 〈row〉, replaces their previously
de�nitions. The Listing 10.4 shows the textual representation of the rtt in
Figure 10.2.

The rtt-features inside the body are enabled with the keyword relational.
Then, after the table name, we specify the amount and names of the program
runs (〈runs〉). The next di�erence is the de�nition of the signature. The �rst
change addresses the declaration of program variables which are referenced
(and declared) with a program run and variable name (〈fqvar〉). Second, we
have a new construct for combinatorial de�nition which allows us to de�ne a
program variable for multiple program runs at once. The other constructs of the

10.2. DECISION PROCEDURE 163

signature, for global variables, columns, and inheritance, remain unchanged.
The scheme for the addressing of variables also takes place in 〈row〉. Addi-

tionally, a new non-terminal 〈control〉 captures the speci�cation of the control
column. A control command is given on a row by the corresponding keyword
(play, pause, or back) and a list of programs. The back keyword also takes the
name of a row to which the program run should be reset to. When multiple
backward-commands are given for the same program run, we consider this a
mistake and the speci�cation is not well-de�ned. If a program run is not explic-
itly paused, the underlying program of this run is executed for the particular
row.

10.2 Decision Procedure
We de�ne the semantics of rtt, i. e., what it means for a system to conform to
an rtt, by reduction to the notion of conformance de�ned for gtt Sections 4.4
and 5.3. For this, we build the product program [BCK11] from augmented
programs. The augmentation simulates the intended e�ects of the control
commands.

We start with the construction of the decision procedure in section and
afterward in Section 10.3 we discuss the semantics as related to the two-party
game.

10.2.1 Program Augmentation and Product Program

In this section, we describe how we translate a given program P with input and
outputs variables to a new program P ′, which encapsulate the behavior of P and
also supports our control commands. Finally, we combine several augmented
reactive programs into a single reactive product program, and resolve references
to program runs to their variables in the product program.

In the remaining section, we assume InVar j and StateVar are the sets of
the input and state (incl. output) variables of the reactive program Pj to be
augmented. Also, for the augmentation, we need to know the table rows which
occur in a backward-command for the particular program Pj . We denote this
set of chapter marks as marksj .

We introduce additional input variables stutter, setr, and resetr for every
r ∈ marksj into augmented program P ′j . Also, we introduce for every table
row r ∈ marksj a fresh copy of all states StateVar . In the following, we assume
that these names do not clash with program variables in Pj . The new input

164 CHAPTER 10. RELATIONAL TEST TABLES

1 relational table rttexample(old, new) {
2 var {old, new} WP : BOOL
3 var {old, new} Press : INT
4 var new::Release : BOOL
5 var new::State : ENUM
6
7 column WP as old::WP, new::WP
8 column Press as old::Press, new::Press
9

10 group omega {
11 row A [0,-] { WP: =; old::WP: false; new::Release: -;
12 Press: >=; new::State: ::,Free }
13 row B [1,1] { WP: =; old::WP: true; new::Release: -;
14 Press: <=; new::State: ::,Stamping }
15 row C [0,-] { WP: =; old::WP: false; new::Release: -;
16 Press: <=; new::State: :: }
17 group [0,1] {
18 row D [0,-] { pause: old;
19 WP: =; old::WP: -; new::Release: -;
20 Press: >; new::State: Error }
21 row E [1,1] { pause: old;
22 WP: =; old::WP: -; new::Release: true;
23 Press: >; new::State: - }
24 }
25 }
26 }

Listing 10.4: The textual representation of the rtt in Figure 10.2.

10.2. DECISION PROCEDURE 165

InVar ′ and OutVar ′ are de�ned as

InVar ′j :=InVar j ∪ {stutter} ∪ {setr | r ∈ marksj} (10.2)
∪ {resetr | r ∈ marksj}

StateVar ′ :=StateVar j ∪
⋃

r∈marksj

StateVar rj , (10.3)

where StateVar rj = {vr | v ∈ StateVar} is a set of fresh state variables for each
chapter mark r.

Figure 10.5 shows the schema of an augmented program. In the core of
every augmented program, P ′j is the invocation of the original program Pj .
Around this invocation, we add augmentations, which are controlled by the
newly introduce input variables.

If the input variable setr is true, then the current state of the program
variables StateVar is stored into the designated copies vr (v ∈ StateVar ∧ r ∈
marksj). The input variable resetr triggers the reverse operation, and restore a
previous stored state form the vr variables. With the input variable stutter we
can avoid the execution of Pj , and the original program state StateVar remains
untouched.

If there are variables in StateVar with complex or composed data structured,
like arrays or records, we need to copy their complete state recursively. For
programming languages with references or pointers, special care is needed to
maintain them. In general, to apply the code augmentation, we need to be able
to express a valid code fragment, which makes complete copies of the program
state.

Translation of the Control Commands. We translate the control com-
mands to input constraints of the augmented programs. The play-command
enforces stutter = false, otherwise on pause-command stutter needs to be
true.

The input variables setr and resetr correspond to backward-command.
For every table row, which has a backward-command on the kth program
run to the table row r, we translate this command into the input constraint
k»resetr = TRUE. On every other table row s, we add k»resets = FALSE to
the input constraints.

On the other hand, if a table row r is in the set of chapter marksmarksj (it is
a targeted by a backward-command), then we add the input constraint k»setr =
TRUE in this table row for its �rst iteration. This may require an unfolding of
the table row, in which the table row is split into two rows with equal input and
output constraints. The �rst copy of the row receives the duration constraint
“[1, 1]”, and in the second row, the original duration constraint decreased by 1

166 CHAPTER 10. RELATIONAL TEST TABLES

Input: InVar ′j in (10.2)
Data: StateVar ′j in (10.3)
if setr then // added for each r ∈ marksj

vr := v /* for all vr ∈ StateVar rj */ ;
end
if resetr then // added for each r ∈ marksj

v := vr /* for all vr ∈ StateVar rj */ ;
end
if ¬stutter then

invoke Pj ;
else

skip;
end

Figure 10.5: Scheme of an augmented program P ′j where Pj is the original
program. setr, resetr and stutter are new input variables, and vr new state
variables.

accordingly. If the original table was skippable (duration constraint was ≥ 0),
then both cloned rows are part of an optional row group. We also need to
k»setr = false on all other tables rows s with s 6= r.

Construction of the Product Program. The next step is to weave the aug-
mented programs P ′1, . . . , P ′n into a product program P⊗ (cf. [BCK11]):

P⊗(i1, . . . , in) := P1(i1); . . . ;Pn(in)) . (10.4)

The product program is a sequential composition of the augmented program P ′j
(1 ≤ j ≤ n). Note that the construction requires a renaming of input and state
variables to avoid name clashes, which ensures the e�ects of the program runs
are isolated from each other. Therefore,

Proposition 10.1. Let P⊗ be a product program of P1, . . . , Pn, then

B(P⊗) = B(P ′1)× . . .× B(P ′n)

The possible programs runs of the product program P⊗ corresponds to
the Cartesian products of the program runs P ′j . This proposition makes the
di�erence to our notion of a monitored program in De�nition 6.7, in which the
tester can abort the run of the product program globally.

10.3. CONFORMANCE OF RTTS 167

In the last step, we need to rewrite our relational variable reference p»X to
refer to the corresponding variable in the product program, accordingly to a
required variable renaming.

10.3 Conformance of rtts
We de�ne the rtt conformance for sequence of reactive systems (cf. De�ni-
tion 5.12): x

De�nition 10.2 (Relational Conformance). A sequence of reactive systems Pj
(1 ≤ j ≤ n) strictly conforms to a rtt T if and only if the product program

P ′ strictly conforms to the gtt T ′, i. e.,, it is a winning strategy in the two-party.

Analogously, the sequence weakly conforms to T if and only ifP⊗ weakly conforms

to T ′ (its strategy never loses for T ′), and it cooperatively conforms to T , if and
only P⊗ cooperatively conforms to gtt T ′ (its strategy always reaches the end of

every instantiation of T).

The gtt T ′ is derived from the rtt T and matches the transformation
done during program augmentation. In particular, the control commands are
translated into input constraints, and the variable references are rewritten to
point to the correct variable in the product program.

Recapitulate the game; in the relational settings, we have two parties: the
challenger and the combination of systems (program runs). And it is not an
n + 1-party game, where one party is the challenger and the other n parties
are the program runs. Thus, when the combination of the systems loses, we do
not di�erentiate which system is faulty in general. For particular scenarios, we
would state a defect attribution. Consider the veri�cation of evolution scenarios,
if the system combination does not conform, we attribute the defect to the
new revision, as we consider the old revision as given. For information �ow
veri�cation (in which we use two program runs of the same program), it is clear
which program is faulty, but unclear which program run.

10.4 Application Scenarios
In this section, we show the applicability of rtts using scenarios of the Pick-
and-Place Unit (PPU) community demonstrator (Section 7.3). The PPU is an
automated production system built up by industrial hardware for researching
the co-evolution of production systems. Thus, there are multiple evolution
scenarios of this plant. For our following application scenarios, we selected
representative scenarios, and sub-components of the demonstrator, e. g., the
logic for controlling single hardware units.

168 CHAPTER 10. RELATIONAL TEST TABLES

Table 10.6: Runtime of the veri�cation for our application scenarios given as a
median of �ve samples

Size
Scenario Wall time Model Programs

[secs] [bit] [LoC]
Regression and Delta Veri�cation (Section 10.4.1) 5.86 321 406
Restart after an emergency stop (Section 10.4.2) 0.79 519 570
Exchange of Subsystem (Section 10.4.3) 1.79 767 835
Information Flow (w/ violation) (Section 10.4.4) 25.75 373 1758

(w/o violation) 114.62 373 1758

Statistics. All run times (wall clock) given below are a median of �ve samples
where conformance to the rtt has been veri�ed on an Intel Core i7-8565U, 16 GB
RAM, with the model checker nuXmv 1.1.1 [Cav+14] with IC3 [BM07] for invari-
ant checking. The stated lines of code do not include empty lines or comments.
All veri�cation artifacts are available in the companion material [Wei21] or on
the companion website of the original publication.2 The Table 10.6 summarizes
the runtime statistics of the veri�cation. Discussion of the veri�cation is given
in the sub-sections of each scenario.

Implementation. We have implemented the rtts in our verifaps veri�ca-
tion framework for Programmable Logic Controller software. Figure 10.7 shows
the pipeline, which takes for every program run the correspondence source code
P1 to Pn and the �le with the textual representation (Section 10.1.4) of the rtt.
The augmentation, as described in Section 10.2.1, is applied separately to the
given program runs and requires additional information from the given test table.
Also, the symbolical execution is applied on each program run separately; the
product program is later constructed inside the model checker. For the symboli-
cal execution, we remove complex program structures, for example, we unwind
bounded loop, embed procedure calls, or unfold arrays and record data types as
described in Section 6.3.1. The result is a logical model in SMV (Symbolic Model
Veri�er) for each program. The rtts are encoded in a domain-speci�c language,
and also translated into an SMV model by using the same techniques as for
gtts, i. e., the automata construction in Section 6.1. Theoretically, the given
veri�cation task is decidable: the model checker either veri�es the compliance
or returns a counterexample. Technically, due to the restriction of space and
time, the veri�cation is terminated without a result.

2https://formal.iti.kit.edu/formalise2020

https://formal.iti.kit.edu/formalise2020

10.4. APPLICATION SCENARIOS 169

Programs Augmentation Symb. Ex.
(ST0) (ST) (SMV).

P1

P2

...
...

...

Pn

RTT GTT SMV

nuXmv
Veri�cation

Result
3 / 7 / �

Program
Runs

Figure 10.7: Veri�cation pipeline for rtts and ST0 code

We have implemented this pipeline only for the model checker pipeline,
but the principles can easily be adapted to the C-veri�er pipeline. The main
di�erence is that the monitored program consists of the product program, which
also is the sequential combination of the programs P1, . . . , Pn, and the tester
program.

10.4.1 Regression and Delta Veri�cation

Scenario. The origin of this scenario is in Section 7.3.2, where we prove a
weaker form. We only verify the newly introduce behavior functionally. In this
scenario, we demonstrate a combination of regression veri�cation and delta
veri�cation [Ule+16a] for two software revisions. While regression veri�cation
proves the equivalence for the common part of the system behaviors, delta
veri�cation ensures functional correctness for the di�erences. This scenario
is based on the evolution step from the third to the �fth software revision of
the PPU, which introduces an optimization for workpiece throughput: The
new software revision makes use of the waiting time while a piece is stamped
to deliver a new workpiece from the magazine to the conveyor belt. The old
revision waits for the stamp to �nishing the imprint.

170 CHAPTER 10. RELATIONAL TEST TABLES

CONTROL ASSUME ASSERT �
old new Level WPReady Position Carry _state Turn Lower Vacuum

1 » » » » — » » » —p

2 Up MetalReady TRUE Crane_Go_Up 1
3 — — — — Right ≥ 0
4 Magazine 1
5 FALSE Stop TRUE On ≥ 0
6 TRUE TRUE 1
7 Down — FALSE ≥ 0
8 Up 1
9 — Left ≥ 0
10 Conveyor 1
11 Stop TRUE ≥ 0
12 1
13 Off 1
14 Down FALSE ≥ 0
15 Up 1
16 — Left ≥ 0
17 Stamp 1
18 Stop 1
19 —p
20 » » » » » » » » 1
21 » » » » — » » » —p

—∞

Figure 10.8: Combination of regression and delta veri�cation. For presentation
reason, we omitted program run reference in the column header. All columns
belonging to the new program run, therefore “»” refers to the same variable in
the other programs and states the equivalence.

Table. The rtt in Figure 10.8 contains rows for the following input and
output variables: (a) Level indicating the position of the crane (Up, Down, Unknown),
(b) WPReady signaling whether a (non-)metal work piece is ready at the magazine,
(c) Position of the crane (Magazine, Stamp, etc.), (d) Carry signaling whether
a work piece has been picked up, (e) the current _state of the internal state
machine, (f) Turn determining the move direction of the crane (Stop, Left, Right),
(g) the desired position of the suction cup (Lower), and (h) whether the suction
cup should hold a work piece. The table speci�es that the old (third) revision
and the new (�fth) revision behave equally (Row 0, Row 19, Row 20), except for
the phase in which the optimization occurs. During the optimization phase, the
program run of the old revision pauses (Row 1 to 17) while the new program
run moves the Crane to the Magazine, picks up the workpiece, delivers it to
the Conveyor Belt, and moves the Crane back to the Stamp. This sequence is
described as a functional speci�cation. In Row 18, we pause the new program
run and let the old program run until both runs are synchronized again on the
same internal state _state. This is required because the waiting duration for
imprinting is hard-coded and cannot be changed.

Veri�cation. We proved system conformance to the rtt for the function
block for controlling Crane hardware. The old Crane software has 327 lines of
code (LoC), the new version has 406 lines. Both function blocks have 15 input

10.4. APPLICATION SCENARIOS 171

and 6 output variables. Veri�cation of weak conformance took 5.86 seconds in
nuXmv. The state size of the model is 321 bits (software and table). For the
veri�cation, we decreased the waiting durations of the timers.

10.4.2 Restart After an Emergency Stop
Scenario. A crucial point of PLC software is their handling of emergency
stops and also the recovery from it. The state may be only partially reset and
obsolete variable values have persisted. in the reset of the variables. Because
emergency stops are a rare event, such mistakes are hard to locate with testing,
especially, as emergency stop needs to be handled in any program state.

In this scenario, we verify that a reset of function block Crane (implemented
in SFC) does not lead to new behavior. To achieve this, we compare two program
runs of this function block. The �rst function block is reset by the given input
variable, the second run is restored to the initial state by a backward-command.

SFCs have vendor-speci�c support for resetting the current active steps
(automata states). This reset is triggered by setting the variable SFCReset of an
SFC instance to true. The reset does not a�ect the state variables. Hence, the
engineers need to take care of the state manually.

Table. Figure 10.9 shows the rtt of this scenario, which is based on two runs
a, b of the same program (function block). The column header I represents
a function that projects the states σa, σb of the program runs a and b to their
input variables (excluding SFCReset). Hence, the equality in Row 1 and Row 2
represents the equality of the 15 input variables. Analog, for the column O for
all nine output variables.

This rtt states, that the outputs of both runs are always equivalent if their
inputs (except SFCReset) are equivalent. If the program run b is reset by the
�ag SFCReset, we reset the complete state in a to its initial value. By assuring
the equalities on the in- and outputs we prove that no new behavior occurs by
the manually reset.

Note that this scenario is similar to proving the absence of an information
�ow. In this case, we forbid a �ow SFCReset into the observable outputs of
the system.

Veri�cation. We took the function block for controlling the Crane, which is
originally programmed in SFC, from Scenario 13 of the PPU. The Structure Text
for this function block has 570 LoC, and 16 input and 9 output variables. The
veri�cation of the 519 bit-sized model took 0.79 seconds in nuXmv.

172 CHAPTER 10. RELATIONAL TEST TABLES

10.4.3 Exchange of Subsystems
Scenario. The �rst scenario is regression veri�cation between two programs.
In this scenario, we verify an equivalence between three programs.

The developer exchanged the subroutine for the handling of the emergency
stop. In the original version of the PPU, the program stops the movement
of critical actuators by setting constant to the output variable, but jammed
workpieces are hard to be removed by the operator when the actuator standstill.
The new emergency stop handling allows a manual override of certain output
variables to allow the operator to free the jammed workpieces. We prove that
the old program version of the programs behaves like the new version in normal
operation, and during an emergency stop the new program behaves in some
output variables like the separated emergency subsystem. Additionally, every
time the system enters the emergency behavior, the emergency subsystem needs
to be reset, and hence the emergency stop should always react as it would be
the �rst time it is triggered.

Table. The Figure 10.10 shows the speci�cation for this scenario. The rtt is
stated over three program runs, where n is the new program, o the old program,
and e the separated emergency subsystem (that was integrated into n). The
old and new programs receive equal inputs values and should return equal
output values in normal operation (EStop = FALSE)3. During an emergency
operation (EStop = TRUE), the new system should behave like a fresh isolated
separated emergency system. This also requires that the emergency subsystem
is correctly reset and accessed inside the new program.

The function In(o, n) denotes a function which projects the three states
of the three program runs to the input variables from the old system and the
input variables of the new system. The result is a pair of two lists, and each list
containing the input values in the lexicographical order of each program run.

3The PPU has multiple buttons to trigger an emergency stop. For the presentation, we
decided to combine those into a single variable.

CTRL ASSUME ASSERT �
a b I b»SFCReset O

1 I I = a»SFCReset = ≥ 1
2 .0 I = TRUE = 1

—∞

Figure 10.9: This rtt speci�es that resetting with SFCReset results into the
same behavior, as running the system from its initial state. The program runs a
and b are from the same program.

10.4. APPLICATION SCENARIOS 173

CONTROL ASSUME ASSERT �
o n e n»EStop In(o, n) In(n, e) Out(o, n) Out(n, e)

1 o», FALSE = — = — ≥ 1
2 .0 o», TRUE = = — = 1
3 o», TRUE = = — = ≥ 0

—∞

Figure 10.10: Regression veri�cation between three programs: The new pro-
gram (n) should behave like the old program (o), except during an emergency
(EStop = TRUE), then it should be like separated emergency system (e).

Analogue, In(n, e) for the input variables of the new and emergency program,
and Out(o, n), Out(n, e) for the output variables. Thus, equality in the column
In(o, n), states that all input variables of the program run o and n should be
equal.

Veri�cation. We veri�ed this on the Scenario 5 using the complete control
software of the PPU. This includes the control for the Crane and also of the
Magazine, and the Stamp. The original version of the PPU has 775 LoC and the
implanted emergency system has 50 LoC. The veri�cation takes 1.79 seconds in
nuXmv. The model size is 767 bits.

10.4.4 Information Flow
Scenario and Table. In this scenario, we verify that there is no information
�ow from the con�guration parameter for the suction pressure (Pressure) to
the crane movement (Turn). Again, we use projections in the column header:
InL(a, b) and InH(a, b) to hide the large amount of variables. The function
InL(a, b) maps the 23 variables of both runs a and b together, which does are
allowed to in�uence the Turn variable. In contrast, InH(a, b) maps the variables
together, which contain the information which should non-interfere with the
output, i. e., the secret information. In our case it is just the suction pressure:

InH(a, b) := f(σa, σb) = (σa(Pressure), σb(Pressure))

More precisely, the table in Figure 10.11 describes that the non-interference is
only required after the initialization of the system (Row 2, Init). In all rows, we
enforce that all input variables besides Pressure are equal in both runs. Row 3
expresses the non-interference property: For any two runs with arbitrary values
for Pressure, the output Turn is the same. Therefore, Turn is only determined
by the other input variables.

Unfortunately, a monitor function block stops the crane if the suction pres-
sure is outside the expected range, i.e., if Pressure 6∈ [1, 9999]. Therefore, the

174 CHAPTER 10. RELATIONAL TEST TABLES

ASSUME ASSERT �
InL(a, b) InH(a, b) a»Turn a»Init

1 = 6= — FALSE ≥ 0
2 = 6= — TRUE 1
3 = 6= b»Turn — —∞

Figure 10.11: Information �ow property: the input variable Pressure (given
InH(a, b)) should not have an in�uence on the output variable Turn. The control
columns are omitted, as no intervention is required.

software does not conform to the rtt in Figure 10.11. This unintended outcome
can be �xed by limit the Pressure values on both program runs to be in the
range [1, 9999].

Veri�cation. We used the complete �fth revision of the PPU, including the
function blocks for all components. The product program has 1758 lines of
code with 266 variables. For the interfering version, the model checker needs
25.75 seconds to �nd a counter-example. Proving conformance w.r.t. the �xed
(non-interfering) speci�cation takes 114.62 seconds. The size of the state space
is 373 bits.

10.5 Conclusion
In this section, we present rtts, an extension of the gtt for a powerful and
comprehensible speci�cation of relational and k-safety properties for reactive
systems. Besides pure relational constraints, rtt allows the use of functional
constraints, for example, to enforce certain behaviors. rtts come with the
introduction of the main feature: the control column.

Through the control column, we enable that the engineer can specify the
relation between programs, that are now equal in a step-by-step fashion. Adding
new commands to the control column requires only a new code-transformation.
A code-transformation is often easier to implement and to understand (espe-
cially for an engineer or software developer), than a change in the automaton
construction or the underlying properties in the veri�er. Also, the idea of code
augmentation is not exclusive for rtts and should apply to other speci�cation
languages. By using product programs for the veri�cation, we can build upon
the semantics of the gtt without any changes to it.

We show the applicability and feasibility by verifying three change and
an information �ow scenario on isolated software components and the com-

10.5. CONCLUSION 175

plete control software of the PPU, an existing demonstrator for co-evolution in
production systems.

Discussion. rtts, as an extension of gtts, have the same weaknesses and
strengths as gtts (Section 9.1). Additionally, they are often more complex due
to the orchestration of the di�erent programs. For simple relational speci�-
cation, this overhead is not justi�ed, and we often fall back to can simpler or
customize languages. For example in Chapter 12, we consider an invariant for
the speci�cation of the regression veri�cation which consists of three parts:
a relation of input variables, a relation of output variables, and a condition
under which these relations holds in all states (Section 12.1). Of course, such a
speci�cation is also expressible in an rtt with a single row, but then we are not
exploiting the strength of rtts. Like gtts, the rtts are well-suited when the
speci�cation changes over the execution time of the system. In particular, the
niche for rtts are the speci�cations where the relation between the program
runs is not constant (in contrast to Section 12.1), and also we break the synchro-
nized execution of the underlying partially. We conclude with rtts we specify
complex sequences of relations between programs.

Moreover, the specialized speci�cation languages for the relational veri�ca-
tion are rare, and often exists only for particular cases, like [SS14] for information
�ow in Java, or end up as an extension to a speci�cation by adding the possibility
to talk about other programs (\call for ASCL in [Bla+17]). Prior to this work,
there did not exist a relational speci�cation language for reactive systems.

The features of rtts are not �xed. For example, one obvious improvement
is to get rid of the rigidity of the control commands to enable speci�cations
like “The system should be reset (.0) if the previous output was zero”. In such
cases, the control commands depend on the program variable values. And
as the control commands are just input variables, this is expressible in the
derived gtts, but not in the original rtt itself. During the veri�cation of
the application scenarios, we felt the need for better tool support, especially, a
counter-example visualization which makes a failed proof-attempt of a relational
property more understandable. For gtt, geteta provides such counter-example
preparation. For rtt, we need to deal with the di�erent programs and program
runs. Moreover, the visualization should support playing with the stuttering to
�nd the correct alignment of the program runs.

Chapter 11

Provably Forge�ing of
Information

After we introduce rtts, we use them to specify a novel property: forgetting of
information in a reactive system. During the manufacturing process, con�den-
tial information is generated and aggregated that constitute business secrets;
therefore they are the focus of attackers and require rigid protection. On the
other hand, if we can prove, those business secrets are absented in a system, the
e�ort for the protection for this system could be invested in di�erent information,
aspects, or systems.

11.1 Con�dentiality in Automated Production
Systems

In the era of the industrial revolution (IR4.0), information security becomes an
increasingly important aspect of industrial manufacturing systems. As these
systems should be more con�gurable and adaptable, the amount of software
within these systems increases. Moreover, the manufacturing system and the
enterprise resource planning system (ERP) need to share more information, e.g.
the manufacturing system needs to announce �nished workpieces, and the ERP
con�gures the manufacturing system according to the customer’s wishes of the
next job. The information becomes a valuable target, either for violating the
con�dentiality or integrity of the manufacturing process.

Business Secrets. The con�guration and processing information of the man-
ufacturing system can contain very sensitive and crucial information about the

177

178 CHAPTER 11. PROVABLY FORGETTING OF INFORMATION

manufacturing process or the economic situation. For companies, the leakage
of these secrets is a crucial threat to their business model, reputation, revenue,
and therefore their existence. Also, the gathering of information is often a
preparation for an attack on the integrity of software. For example, this is pre-
sumed indentation behind malware “Havex” campaign in 2014, which purposeful
collected information of manufacturing systems [KR18, p. 115f.].

At least in Germany, these business secrets are protected by law if and only if
the companies protect their secrets by using state-of-the-art methods themselves
(cf. [Mül18] and § 2 Nr. 1 lit. b GeschGehG). Therefore, a company is interested
to know in which components their data is stored to apply adequate protection
measurements purposefully. The proposed approach helps to prove that speci�ed
information given by input values of the reactive system is eventually forgotten
after a speci�ed period.

AttackerModel. PLC can be a pro�table target for an attacker. A PLC gathers
and aggregates the sensor values, controls the actuator, and holds the con�gura-
tion settings.

In this section, we want to protect the con�dentiality of such information
against an attacker. We assume the attacker is able to observe the current state
of the running software, for example, by capturing maintenance access. We
want to show that the knowledge gain for the attacker is limited. In detail, the
attacker does not learn anything about the speci�ed secrets before its successful
intrusion.

This scenario is similar to forbidding an information �ow from the incoming
secret-classi�ed information into the internal state of a system. But this property
is too restrictive for manufacturing systems: The system needs to react to events
and these events are just recognized by sensor values to handle the current
situation. With our approach, we allow only a �ow between of the secret
information into the internal state, if the secrets are supplied in the last k cycles.

Introductory Example: Ba�le Gate. We want to motivate our approach
on a simple example given in Listing 11.1. Imagine a ba�e gate used at metro
stations or airports. In its default state, a ba�e gate is blocked to prevent people
from passing it. It becomes unblocked after a successful authorization for a
de�ned period. After this span, the ba�e gate blocks passage again. In our
example, we consider the number of passed people (and therefore the number
of successful authorization) as the secret of our system. This secret should not
be revealed to an attacker, who can observe the state of the ba�e gate.

The Listing 11.1 shows the controller software of the gate given as Struc-
tured Text code. The software has one input signal (authorized), which signals

11.1. CONFIDENTIALITY IN AUTOMATED PRODUCTION SYSTEMS 179

1 FUNCTION_BLOCK BaffleGate
2
3 VAR_OUTPUT blocked : BOOL; END_VAR
4 VAR_INPUT authorized : BOOL; END_VAR
5 VAR CONSTANT T : UINT := 10 END_VAR
6 VAR wait : UINT; END_VAR
7
8 wait := max(wait - 1, 0);
9 IF authorized THEN

10 blocked := False;
11 wait := T;
12 END_IF
13
14 IF wait = 0 THEN
15 blocked := True;
16 END_IF
17 END_FUNCTION_BLOCK

Listing 11.1: Simple program to control a ba�e gate. The ba�e get is unblocked
for T cycles after an user has authorized.

a successful authorization, and one output signal (block), which determines
whether a passage is possible. The body of the function block is executed
periodically.

With a classical secure information �ow notion, we would forbid an infor-
mation �ow from the incoming (secret) authorized signal to the internal state
of this program. This is far too restrictive as this input signal releases the gate,
which a�ects the internal state and also output signal blocked. The system does
not store the secret. We need to come up with a more relaxed notion of secure
information �ow. We notice, that after a certain amount of time (in our example
T = 10 cycles), the system forgets about the previous authorized signal. Lead-
ing to the idea, that after the system has observed secret information, the system
needs time to forget this information. One major motivation behind this idea is
the observation, that the current sensor and actuator values are important for
the software to understand the current situation in the manufacturing system
and therefore to react properly. But the older information becomes, the more
unimportant it is for the software and thus it should not have an in�uence
anymore.

180 CHAPTER 11. PROVABLY FORGETTING OF INFORMATION

Contribution. In this section, we present a novel notion of forgetting infor-
mation for the software reactive systems, which we formally specify using rtts
(Chapter 10). By using rtts, we obtain an automatic veri�cation pipeline for our
property, which is based on state-of-the-art model checking. Informal, forgetting
information means, that the software of the reactive system forgets a piece of
speci�ed information after n execution cycles. Therefore, the knowledge gain
of an attacker by observing the state of the software is limited. We focus our
approach on the software part of a reactive system. Therefore, we exclude the
environment, e.g. the sensors and actuators of a manufacturing system, and
other software components of the manufacturing system, like SCADA or ERP
systems.

We demonstrate the application of the veri�cation pipeline on the demon-
strator system, which is a manufacturing system, originally developed by a
third-party contractor for the demonstration of replay-attacks.

11.2 Related Work
Information �ow on programming languages is a well studied area [Mur15;
SM03]. In the core of secure information analysis, is non-interference of the
secret to the public observable output. Dimitrova et al. [Dim+12] apply infor-
mation �ow properties on reactive systems. They invented an extension to
linear temporal logic (LTL) to SecLTL, which include a new operatorHH,Oφ for
specifying that the output O does not depend on the initial values of the secret
variables H before the condition φ is satis�ed.

Our quanti�cation consideration (Section 11.3.4) are di�erent from estab-
lished quanti�ed information �ow [Smi09]. The later one tries to quantify the
information leakage in bits, in contrast, we quantify the number of cycles needed
to forget information and the number of di�erent variables.

In the �eld of reactive systems, this paper seems to be the �rst work on
ensuring that information is erased in and from the system. Simeonovski et
al. [Sim+15] propose a framework for managing the “Right to Be Forgotten”
introduced by the European Court of Justice in search engines. Erasing of secrets
is an important topic in cryptography, as the cryptographic keys are highly
sensible and valuable information. The presented work of [Cre+99] assumes
that the attacker can access the hardware of the system. As a protection, the
authors introduce a cryptographic primitive, called “erasable memory”, which
makes it possible to implement the essential cryptographic action of forgetting a
secret. Diesburg et al. [Die+16] present “TrueErasure” a building block for secure
deletion of sensitive information. The building block must be triggered by the
software. In contrast, we verify that the information is erased from the system

11.3. FORGETTING OF INFORMATION 181

state, de�ned by the software. Our state is a logical model, and in practice, the
information might be still present in the memory or caches.

Outline. Section 11.3 consists of the explanation and formalization of the in-
formation forgetting property. We also show how this property can be veri�ed.
In Section 11.4 we explain our experiment, with an introduction of the soft-
ware components, architecture, and information �ow (Section 11.4.1). Also, we
present the steps that were taken to obtain a veri�able program (Section 11.4.2),
e. g., the removal of �oating-point variables. Finally, in Section 11.5, we discuss
our approach and its application on manufacturing systems.

11.3 Forgetting of Information
In this section, we build our approach for proving that a given software for
a reactive system forgets a piece of speci�ed information. As our approach
expresses a kind of non-interference between variables, we are re-using existing
secure information �ow notions.

Notions of Non-Interference. An information �ow exists if the information
of a program variable h in�uences a di�erent variable l. We also say, that
variable h interferes with variable l. For considerations of con�dentiality, the
variable h (for high) contains the secret information and l (for low) the observable
information by the attacker.

In our ba�e gate example, the variable authorized would be high and the
complete internal state is low (also including the secret authorized variable).
Therefore, an attacker can learn directly the secret information. As motivated
before, a classical non-interference notion that forbids a �ow from high to low
variables is too restrictive in our case.

For the presentation in this chapter, we assume that the complete state of the
PLC is observable by an attacker, and also the secret is given in the form of input
(sensor) values. After the formalization, it should be easy to lift these constraints
and allow a more �exible notion, e. g., with a declassi�cation of particular state
variables or an arbitrary low-equivalence predicate [MR07].

11.3.1 Formalization Idea
We need to �nd a relaxed information �ow property, that allows that a secret
can be stored for a short time inside the state, and is eventually be forgotten
later.

182 CHAPTER 11. PROVABLY FORGETTING OF INFORMATION

Let us make a thought experiment with two instances of our ba�e gate.
First, we run both systems for an arbitrary amount of time and di�erent input
signals, resulting in a di�erent number of authorized and passed peoples. In
this phase, the secret information is injected into both systems. Second, we
synchronize the sensor inputs of both systems for a short amount of time, i. e.,
k cycles. Third, we stop both systems and compare their internal states. If the
states are indistinguishable, then the number of positive authorizations is not
derivable anymore.

In contrast to information �ow, we introduce an annealing phase. During the
annealing phase, the secret information needs to be superseded in the system. A
system, which passes this experiment supersedes the speci�ed secret information
in at most k cycles. Thus, it can only leak secret information observed in the
last k cycles. Finally, the knowledge gain of an attacker, observing a single
state of the PLC, is limited to the secret information of the past k cycles. For
manufacturing systems, the cycle times are rather small (≤ 10ms) and therefore
the time window of the derivable information is rather short. The formalization
is given in form of an rtt in Fig. 11.2.

11.3.2 Formalized Property
We formalize our thought experiment. Firstly, the experiment talks about two
program runs of the same software, which makes our property 2-safety hyper-

property [CS10]. Secondly, our property is temporal, as time passes between the
injection of the secret and comparing the states.

Proof Obligation for Information Forgetting. Figure 11.2 shows the rtt
that captures our thought experiments. We de�ne projections functions, denoted
as V ⊗, which maps a set of variables V into two tuples representing the values
of the variables in V in the �rst and second program run. Formal expressed as

V ⊗ := f(s, s′) = (πV (s) , πV ′(s′)) (11.1)

where πV (s) := (s(v1), . . . , s(vn)) (with n = |V |) denotes the projections of
the program state s ∈ S to a tuple of the values of variables in V . We use V ⊗ to
project the low or high variables of the states into a pair of comparable values.

To capture our previous assumption, that the secret information can be
observed via sensor values and the attacker can observe the complete state, we
de�ne StateVar to be set of variable names containing the local state variables,
analog InVarL for the low input, and InVarH for the high input variables. Thus,
the projection StateVar⊗ maps the two program states to a tuple, where the
�rst element matches the local state of the �rst program run, and the second

11.3. FORGETTING OF INFORMATION 183

ASSUME ASSERT �
StateVar⊗ InVar⊗

L InVar⊗
H StateVar⊗

1 = = — — 1
2 — = — — —
3 — = = — k
4 — = = = ω

Figure 11.2: Template of rtt for information forgetting with an annealing
phase of length k

element for the second program run. The same is valid for InVar⊗L for the low
input and InVar⊗H for the high output variables.

The rtt in Fig. 11.2 is de�ned for two program runs of the same program,
e. g., the program of the ba�e gate in Listing 11.1. Row 1 expresses that the local
states and low inputs of both program runs need to be equal. The predicate “=”
expresses equality and enforces that the �rst and second element of the tuple are
equal. Our secret inputs InVarH can di�er between both runs. The predicate
“—” (don’t-care) does not enforce any constraint. After the �rst execution, we
allow that both internal states can di�er, caused by the di�erent values for secret
inputs. The low inputs IL remain equivalent. Row 2 is similar to Row 1, in
contrast, we do not assume that the states are equal. We can apply the Row 2
arbitrary often, allowing us to reach all (reachable) pairs of states. Row 2 can also
be skipped. The choice of whether we stay in Row 2 or go forward with Row 3
happens nondeterministically. Row 3 represents the annealing phase—enforcing
that the secrets InVarH are equivalent between both program runs. After k
cycle, the states of both program runs need to be equivalent (Row 4)—indicating
that the secret previously injected is forgotten. Row 4 is applied in�nitely often.

Lift the Assumption. Our assumptions can easily be lifted. First, we assumed
that the secret is injected via the input variables, but the secret could also be in the
initial con�guration of the system. Then we have to exclude these state variables
from the equality of the states in the column StateVar⊗. Second, the assumption
that the complete state variable is available for the attacker is expressed as the
equality on the state variables in Row 4. The equality relation represents the
capabilities of the attackers, i. e., when two states are distinguishable for them.
We can use di�erent relations to express the di�erent capabilities of the attacker,
e. g., we can model that only the last two bits of a variable are accessible for the
attacker.

Our formalization also allows us to encode a when-declassi�cation [MR07],
allowing an information leakage after certain events has occurred. To achieve

184 CHAPTER 11. PROVABLY FORGETTING OF INFORMATION

0start 1 21 . . . 2k

k

4

fail

Figure 11.3: Automaton checking the rtt in Figure 11.2. The states correspond
to the table row. A solid line represent that the assertion and assumption of the
row are adhered. The dashed lines are triggered if only the assertion is violated.

this, we need to encode the negation of the events in the assumption side of the
table to exclude these runs (or plays) from our veri�cation.

11.3.3 Veri�cation
In general, the veri�cation of rtts is described in Chapter 10. Here, we describe
brie�y how the veri�cation works for our given rtt in Figure 11.2.

The veri�cation need the program, and the rtt instantiated with the variable
sets for the states variables (StateVar), low and high input variables (InVarL,
InVarH). Both programs and the rtt are translated into the model-checker
format SMV (Figure 10.7). For this, we simplify the given program, for example,
we unwind the bounded loops and unfold composite data structures (records),
and via symbolic execution, we gain the single-static assignment form which
we encode into SMV (Section 6.3.1).

The translation of the rtt into SMV is done via the construction of a nonde-
terministic automaton. The states of the automaton (Figure 11.3) encodes the
table row of the rtt (in comparison to Figure 6.3). If an automaton state is active,
the corresponding row is active. The outgoing edges are triggered, when the
constraints of this row hold: If assumption and assertion constraints hold, the
test proceeds with the successor rows, nondeterministically. If an assumption
is violated, the run is discarded. And if only the assertion is violated, the error
state fail is activated.

The universal quanti�cation over the traces of the two program runs is
handle by construction self-composition [BDR04] in the model-checker.

A system provably forgets the speci�ed information (conforming to the

11.4. EXPERIMENT 185

rtt) if and only if for every input sequence, there exists an in�nite run in
the automaton, that does not end in the error state fail . This property can be
encoded as an invariant and veri�ed e�ciently (Section 11.4).

11.3.4 Quanti�cation of Security
Our presented formalism is a quanti�cation of security, because we quantify
how fast (in the number of cycles) information is forgotten and how much (in the
number of variables) information is forgotten. Both numbers are on an ordinal
scale—hence we use them to compare the security of systems. A system which
forgets more information faster is more secure.

The computed numbers can be considered from the view of risk assessment.
A risk is formed by two factors: the entry probability and the costs in the event of
damage or loss. Our approach does not prevent that an attacker can successfully
capture information of a PLC system. But if a successful attack occurs, the
attacker sees a limited and known amount of information. Therefore, if a system
forgets more information faster, it has a lower risk, because of the reduced costs,
whereby the entry probability keeps the same. On the other hand, we do not
have an interval scale, as it is invalid to state, that a system is two times more
secure than another system if it forgets the same information two times faster.
For the cost assessment, it is crucial which information is kept in the system.

11.4 Experiment
In this section, we show the application of our property on a real-world exam-
ple, which was developed by an industrial third-party contractor in charge of
the Fraunhofer IOSB, and designed to demonstrate replay attacks in industrial
communication networks [Pfr+16].

Program to be Veri�ed. Our subject for this experiment is a demonstrator of
an aPS that main controls a color wheel (Figure 11.4). The demonstrator consists
of a PLC, an HMI interface, several network components, and a motor rotating
a color wheel. The PLC software controls the rotation of the color wheel, either
immediately by inputs from the HMI, or automatically by an operator-con�gured
sequences.

We select the number of wheel turns as the business secret. Thus, our goal is
to verify that the number of turns is not stored within the state of the software.

The PLC supports two modes: automatic and manual operation. The mode
is selected by an integrated HMI. In the automatic mode, the PLC executes a
user-de�ned a sequence of steps. A step consists of a target position (angle),

186 CHAPTER 11. PROVABLY FORGETTING OF INFORMATION

Figure 11.4: Hardware components of the system to be veri�ed. Image provided
by Fraunhofer IOSB

velocity, acceleration, deceleration, and waiting time. The PLC drives the wheel
to the target position with the de�ned parameters. If the position is reached,
it waits for the de�ned waiting time and then proceeds with the next step.
Depending on the con�guration, the system leaves the automatic mode after the
sequence is completely executed or restarts with the �rst step. The automatic
mode can be paused or aborted. In the manual mode, the users can interact with
the system more directly via the HMI. The user can stop and spin the wheel in
both directions with a user-de�ned, or prede�ned velocity. Also, the manual
mode allows setting the reference position of the wheel.

Overview. In the remainder of this section, we give an overview of the struc-
ture of the software (Section 11.4.1). We identify the veri�ed fragment and
needed preparation steps (program transformations, Section 11.4.2). We close
this section with the veri�cation results.

11.4.1 Software Architecture
The software is implemented in Structured Text and consists out of 16 user-
de�ned data types, two function blocks, two functions (initialization and com-
munication with HMI) and the main program1.

The Fig. 11.5 visualizes the internal architecture and the program �ow.
The main program is executed cycle-wise every nms. The components com-

1Additionally, there are seven auxiliary functions, mostly for converting to and from external
sensor values.

11.4. EXPERIMENT 187

PROGRAM Main

Initialization;

Get values from HMI;

STOP MANUAL

AUTOACTIVE
AUTO

SequenceAutomaton(); FUNCTION BLOCK SequenceAutomaton

INIT IDLE

WAIT MOVEDONE

MainAxis(); FUNCTION BLOCK MainAxis
States: INIT, ENABLE, DISABLE, REF, HALT,
IDLE, JOGCWSLOW, JOGCWFAST, DRIVER-

AMP, JOGCCWSLOW, JOGCCWFAST, VE-
LOCITY, MOVEACTIVE, RESET, ERROR

Hardware: MOTOR

Update HMI; Human Machine Interface

Figure 11.5: Architecture of the software consisting out of four structural
elements: main program, sequence automaton, main axis control and HMI.

municate via variables in the global state. For example, the function block
Sequence Automaton sets the mode of MainAxis directly and MainAxis sets the
values for the HMI. Initialization(). This function ensures a correct initial-
ization of the global state. Mainly it ensures that the String variables holding
the error messages are properly set and all arrays are �lled. The initialization
function is executed once, i. e., in the �rst cycle. In the second step, the current
values from the HMI are transferred to the global state. Third, the main program
determines the operation mode, either stop, manual or automatic. 2 The
fourth step invokes the function block Sequence-Automaton, which only handles
the automatic mode. This automaton decides whether the motor needs to move,
the target position is reached, or the waiting time is elapsed and the next step
should be executed. These decisions are based on the sequence of user-de�ned

2The automatic mode is split into a mode for pre-selection of the auto settings (auto) and
executing the automatic mode (active auto).

188 CHAPTER 11. PROVABLY FORGETTING OF INFORMATION

entries within the global state. A distinct internal variable describes the current
state of the sequence execution (cf. Fig. 11.5). The call to MainAxis triggers the
most important part of the software: the motor control. There are 15 modes
de�ned in this function block. The mode variable is set internally or externally
by the main program or the sequence automaton. A mode determines the calls of
the driver function blocks with speci�ed parameters.3 For example: if the mode
is halt, the driver parameters are set to stop the motor, and at the end of this
function block the driver is called. Erroneous and success calls are handled by
MainAxis by jumping to the idle or error mode. The program code of MainAxis
before the veri�cation preparation is given in [Wei19, Appendix B].

The program sizes are: Initialization has 54 LoC, Program Main 97 LoC
(reading from HMI 40 LoC, operation mode 45 LoC), Function Block MainAxis

has 362 LoC, Function Block SequenceAutomaton has 65 LoC, and writing to HMI
has 81 LoC.

11.4.2 Preparations for Veri�cation
For the veri�cation, we concentrate on the function block MainAxis. But before
the veri�cation, we need to apply program transformations to bring this function
block into a supported shape for the symbolic execution and the model checker.
In the remaining chapter, we do not distinguish between state and output
variables of the function block, and consider the output variables as part of the
state.

The starting point is the original implementation of the function block
MainAxis, the global state, and the auxiliary functions. We start by simplify-
ing the function block into ST0 (De�nition 6.9). Secondly, we need to apply
simpli�cations customized for the given software. In detail these are:

• We remove assignments to dScratch and VSObj_McFaultDescription. The
�rst location is a global variable that is never read but is written. The
second one holds a String value of the current error cause in the HMI, and
unsupported by the model checker.

• The model checker cannot handle �oating values. Therefore, we transform
variables of type real to int. Additionally, we need to remove the conver-
sion functions REAL_TO_INT and INT_TO_REAL with the identity function.
We apply the same for the used (and not needed anymore) rounding of
values (“(x/1000)*1000”).

3The driver function blocks are an extension of PLCOpen Motor Control and not de�ned in
this project.

11.4. EXPERIMENT 189

• In the last transformation, we slice the program to remove all variables,
that are neither read nor written, and remark the remaining variables as
input and output according to their reading and write access.

The resulting program for the veri�cation code is 421 LoC.

11.4.3 Result
The complete transformation pipeline is implemented in our veri�cation library
for verifaps. After the translations and simpli�cations, the state space in
the model checker is 566 bits large (270 bits input, 296 bits state). For the
speci�cation, we have |StateVar | = 32 |InVarL| = 51, and |InVarH | = 1. The
complete variables sets InVarL, InVarH and StateVar are given in the appendix
of [Wei19]. We instantiated our property (Fig. 11.2) with k = 2 for the annealing
phase. For the veri�cation, we used nuXmv 1.1.1 [Cav+14] on an Intel® Core™
i5-6500 (3.20GHz) with 16 GB RAM. For e�ciency, we start both systems in
arbitrary equal states, instead of the initial states. This is an over-approximation
and reduces the diameter of the search space.

The system does not adhere to our property (Fig. 11.2). nuXmv �nds a
counterexample in 1.85 sec (median, n = 3). So there exists a run that does not
lead to an erasure of the secret information.

Fixing the Leak. Inspecting the counterexample reveals how the di�erent
supplied velocities, given via ActStep.rVelocity variable, are result into dif-
ferent values in the state variable Move-Axis1.-Velo-city after k = 2 cy-
cles of equal input. Further, we can prove that all the other variables do
not infer with secret anymore, by using the same formalization but exclude
MoveAxis1.-Velo-city from a set of state variables StateVar . Hence, this vari-
able is the only leakage.

We propose, a �x for the leak, in which we overwrite the variable at the end
of the cycle, after the execution of MoveAxis1. This step changes the behavior of
the program and afterward a correct behavior has to be validated. The �x is easy:
We added two assignments at the end of the code (cf. [Wei19, Appendix B]),
which overrides the input parameters of an underlying driver function block:

1 MoveAxis1.Velocity := 0; MoveAxis1.Execute := FALSE;

The �rst assignment overrides the velocity, s. t. the variable does not leak this
information. The second assignment disables the command execution of the

190 CHAPTER 11. PROVABLY FORGETTING OF INFORMATION

Table 11.6: Runtime of the model-checker for proving or �nding a counter-
examples of the information forgetting for various annealing phases k and
scenarios (A) original leaky version, (B) original leaky version proving all other
variables do not leak, and (C) �xed (non-leaky) version.

k = 2 3 5 7 10
(A) 3.39 sec 2.95 sec 2 min 52 sec 9 min 24 sec 2 h 50 min
(B) 57.40 sec 45.82 sec 3 min 32 sec 10 min 29 sec 2 h 36 min
(C) 40.93 sec 29.74 sec 3 min 5 sec 10 min 46 sec 1 h 33 min

instance MoveAxis1 of the Function Block MC_Move-Relative [TC211] in the next
cycle. The driver function blocks are called at the end of the Function Block
MoveAxis for sending commands to the motor controller of the color wheel.
Setting Execute prevents that the controller that the velocity of 0 is sent to the
controller in the next cycle. If a new velocity needs to be set, the MoveAxis1

re-enables the execution and also sets the velocity.

Model Checking Runtime. The Table 11.6 gives an overview about the run-
time: for �nding the counterexample in the original leaky program (A), proving
that only MainAxis1.-Velocity leaks (B), and proving the �xed version (C).
Sample size is n = 2. The standard derivations were rather small (less than
20 seconds), so we omit them. We include the run times for a set of di�erent
annealing-phase lengths k to show the performance impact by selecting di�erent
lengths. The di�erent lengths are redundant as our notion is monotone: If a
system forgets the information in k cycles, then it also forgets the same infor-
mation in k′ > k cycles. The parameter k highly in�uences the depth search
space, as it determines the number of unwinding the system de�nitions before
a counterexample can be found to strengthen the to be constructed inductive
invariants in IC3.

11.5 Discussion
Our approach has limitations and pitfalls that are given from the design decision.
In this section, we discuss and illustrate these limitations w.r.t. our experiment.

Limitation of verifying software. Our approach is focused on the software
of the reactive system. Especially in the experiment, our focus is more narrowed,
as we consider only the single Function Block MoveAxis as it is the most complex
and critical software part inside this software project, and deals �nally with

11.5. DISCUSSION 191

the sensors and actuators. Hence, every control-command to control the motor
passes this piece of code.

It was out of our scope whether other parts of the cyber-physical system
adheres to the property. This includes the other PLC software parts (human-
machine-interface (HMI), Function Blocks of the motor driver, etc.), the underly-
ing operation system or the hardware, and even the physical environment. All
of these parts are not (completely) accessible from the PLC software, but might
be observable by an attacker.

For example in the demonstrator, the attacker would gain access to the
complete user-de�ned program sequence, containing the information of the
current the segment, its position, velocity, etc. From these program sequence,
an attacker might guess an estimation of the previous amount of turns, but also
an estimation of the future amount of turns.

Moreover, information may be stored inside the physical plant itself (in
the actuators) and are fed back to the PLC via sensors. Without a suitable
environment model, information �ow in the physical plants is not traceable.

Nonetheless, it is possible to take the internal PLC and the cyber-physical
aspects into consideration for veri�cation, if precise models for them would be
available.

Veri�cation on the PLC level. In our experiment, we prove the privacy on
the second lowest level (PLC level) of the automation pyramid. Below is �eld or
electronic level, containing the sensors and actuators, and on the upper levels
are the SCADA system, the manufacturing enterprise system (MES), and the
enterprise resource planning system. The upper levels are gathering information
from the lower levels, and thus they store the business information which we
tried to forget on the PLC level.

Nonetheless, veri�cation of forgetting information PLC is needed and bene-
�cial. Due to their real-time requirements, the protection of PLC against attacks
is hard to achieve without threatening the functionality and safety aspects. The
upper levels are built with standard, more powerful, PC components that can
be protected with standard equipment and mitigation strategy. On the lower
side, the bene�ts of our approach require that the sensors and actuators are not
in�ltrated.

Single Observable State. We limit the leakage in our attacker model to one
PLC software state. In practice attacks expand over several days to months, while
an attacker may see every state of the system. Our approach keeps still useful:
the attackers can not guess information, which is lying past their in�ltration. But
in practice, the attackers would assume that the in�ltration was not discovered,

192 CHAPTER 11. PROVABLY FORGETTING OF INFORMATION

and so attacked industrial system runs in the same way (program, con�guration,
workpieces, etc.) as before its in�ltration. Given them a possibility to guess the
(forgotten) historical forgotten information, but with uncertainty.

Program Transformation. For the veri�cation we apply some program
transformation, i. e., demoting �oating-point variable to integer variables, re-
moving string-, and unused variables. These transformations can be critical to
the property as they alter the control and information �ow. For example, code
lines could become unreachable using integers instead of �oating-point arith-
metic. In contrast, symbolic execution and other simpli�cation, like structure
unfolding, are uncritical as they are not changing the semantic of the program,
special the set of reachable states remain the same. In general, these program
transformations need a justi�cation individually for every veri�cation attempt.
For example, in our experiment the �oating-point arithmetic just occurred for
translation between the values of the HMI and the inputs for the motor driver.

11.6 Conclusion
In this chapter, we present a notion and formalization to describe the forgetting
of information in a reactive system. This notion is a relaxed variant of an infor-
mation �ow property in which we give a system a period (annealing phase) to
forget the �owed secret information. The instantiation of the notion requires the
length of the annealing phase, and the speci�cation of high and low information
in the system. A software that dependently forgets the speci�ed information, e.g.
business secrets, is not protected against successful intrusion, but in case of an
intrusion, the number of leaked secrets are reduced. As our approach focuses on
the software of the system, thus in practice further investigations are needed to
cover the deployment context of the software, especially, cyber-physical aspects
of the physical environment. With an experiment, we show the feasibility of our
notion on a real demonstrator system, implemented by an industrial contractor.

Additionally, with this property, we demonstrate the power of rtts: the
focus on the sequential shape, and the overtime changing relation between
variables.

Chapter 12

Modular Regression
Verification

Reactive software driving technical systems is often in operation for long periods
of time, sometimes for many years or even decades. Guarantees regarding its
correctness must be ensured over the entire system lifetime, and the software
must go along and maintain quality through all hardware and software evolution
steps. Testing might help to identify software �aws and to increase con�dence
in the correctness of the system. But can only cover a small amount of the
possible scenarios.

A solution to this problem is regression veri�cation: Instead of using two
separate speci�cations for two revisions, the two revisions are compared directly
to each other, where the old revision serves as a functional speci�cation for
the new one. In Section 10.4, we have already investigated how to specify (and
verify) complex evolution scenarios with rtts, in which the new revision should
behave similarly to the old revision (and other systems). In this chapter, we go
a step back and use simpler speci�cation model, called regression veri�cation
contracts, which are one-rows rtts (Section 12.1).

The idea for regression veri�cation of aPS software goes back to [Bec+15],
which shows that the resulting proof obligations (for regression veri�cation)
can be discharged in some cases, but that the size of the system may make the
veri�cation approach su�er from the potential problem of state space explosion.
Even for our rather simple case study of the Pick-and-Place (PPU, Section 7.3),
which has less complexity than real-world scenarios, proving equivalence with
the approach described above took up to a day of computing time.

As a response to this challenge, this chapter presents a technique to mod-
ularize regression veri�cation by decomposing the veri�cation condition into

193

194 CHAPTER 12. MODULAR REGRESSION VERIFICATION

smaller subgoals which can be regression-veri�ed individually. The novelty in
comparison to existing model checking modularization approaches is not that
individual programs are decomposed into manageable fragments, but that the
programs are split into pairwise blocks combined to be veri�ed relationally.

The modular veri�cation approach is embedded into a new regression veri�-
cation algorithm which combines di�erent lightweight (syntactical) and more
heavyweight regression veri�cation analyzes.

Modularizing the veri�cation has multiple gains: Firstly, it reduces the state
space of proof obligations, allowing them to be more feasible for model checking.
Moreover, it introduces a locality principle: Parts of a program not touched at
all by a refactoring can be factored out and equivalence be proven by simpler,
syntactical techniques. For modules that occur more often, the veri�cation e�ort
can also be reduced since they only need to be analyzed once.

Contribution and Overview. In this chapter, we present a sound modular-
ization technique in Section 12.2 for the regression veri�cation of reactive system
software; it requires that relational speci�cations of subroutines are given (by
the user). In Section 12.3, we present a new algorithm for regression veri�cation
which orchestrates a collection of diverse heavy- and lightweight veri�cation
techniques making the new modular analysis more powerful in practice. We
implemented the algorithm for PLC software, and demonstrate the feasibility
of our approach on the PPU. The evaluation and the results are discussed in
Section 12.4.

12.1 Formal Equivalence Relations
We brie�y repeat the regression veri�cation notions from [Bec+15], as these
notions form the base of our modularization approach.

When we consider regression veri�cation formally, we need to set two
program behaviors into relation. The �rst notion that comes to mind is perfect
equivalence, which requires that the behaviors of two PLCs programs P and Q
are identical, i.e., that they produce the same output when presented with the
same input trace. Formally, we can reuse our de�nition of the trace semantics
(De�nition 5.10), and receives two functions B(P) and B(Q), are equal:

for all i, i′ ∈ I∗ : i = i′ =⇒ B(P)(i) = B(Q)(i′) . (12.1)

However, they may very well di�er on the chain of memory states reached
in their traces, i.e., P and Q need not be identical. Perfect equivalence is a
very strict notion for evolution scenarios, as it does not allow any behavioral

12.2. MODULARIZATION 195

di�erence between the old and new revision. Still, it is useful to prove that a
software refactoring maintains the system behavior.

In many evolution cases, behavioral di�erences must be taken into consider-
ation to capture intended changes, like bug �xes or performance optimizations.
The di�erences can be handled with the more �exible notions of conditional and
relational equivalence. They extend perfect equivalence in two ways: Firstly,
conditional equivalence allows us to �lter scenarios that should not be included
in the equivalence analysis using a predicate τ on the input values. Secondly,
in relational equivalence one can replace the equalities in (12.1) by di�erent
relations that express the equivalence between input (≈in) and output (≈out)
values:

for all i, i′ ∈ I∗ : τ(i, i′) ∧ i ≈in i′ =⇒ B(P)(i) ≈out B(Q)(i′) . (12.2)

The triple C = (τ,≈in,≈out) that parameterizes (12.2) is called a semantical

regression veri�cation contract for P and Q. Perfect equivalence EQ is a special
case of a regression veri�cation contract with EQ = (true,=,=). This general-
izes the ideas of design-by-contract [Mey92] for single program properties to
multi-program analyses. The condition (12.2), which we denote as RV(C,P,Q),
de�nes when the contract C is satis�ed by the programs P and Q. Note that
this triple can also be presented as an rtt with one strong-repeated row, where
τ and ≈in are on the assumption side, and ≈out is on the assertion side.

12.2 Modularization
Modularization is a technique to split up the program code into individual
separate modules with de�ned interfaces. The e�ects of a module are limited
to a speci�c scope, allowing a separate analysis. Wherever one module calls
another module, the e�ects of the call can be abstracted rather than to include
the full module implementation. Thus, the complexity introduced by the control
�ow and internal state of the submodule is invisible in the caller module.

We present a decomposition rule which allows us to exploit the modu-
larization of reactive software to break down the regression proof obligation
RV(C,P,Q) into simpler proof obligations.

12.2.1 Motivational Example
Consider the plant in Figure 12.1 representing an assembly line with a conveyor
beltB and two processing stations s1 and s2 (e.g., a drill and a stamp). A detector
d at the beginning of the conveyor belt recognizes the arrival of a workpiece W .
Once a workpiece has arrived, the automatic process starts, and W is moved

196 CHAPTER 12. MODULAR REGRESSION VERIFICATION

B

W

d

s1 s2

Figure 12.1: Schematic of the plant consisting of a conveyor belt B with two
processing stations s1 and s2.

Timer

Processing
Station s1

Processing
Station s2

f
g

f ′

g′

Timer

Processing
Station s1

error?

Processing
Station s2

Figure 12.2: Sketch of the program �ow of the motivating example: the original
revision on the left and the adapted revision on the right.

from left to right, passing both processing stations, and eventually falling into
the basket at the end of the belt.

In the original software revision, every workpiece is unconditionally pro-
cessed by both processing stations. While a piece is being processed, the con-
veyor belt halts for a de�ned amount of time. Let us assume that experience has
shown that the process at s1 may occasionally fail. The software has hereupon
been adapted, and, after the revision, the plant can recognize workpieces for
which s1 has failed. If a faulty workpiece leaves s1, the second processing station
should be skipped and the piece should be sent to the output basket directly.

Software Structure. Figure 12.2 shows a sketch of the program �ow of the
main program for both revisions. The di�erence is that a branching statement has
been introduced after s1. The modules “Timer” and the code for the processing
stations remain unchanged.

12.2. MODULARIZATION 197

Regression Veri�cation and Modularization. Obviously, both software
revisions behave di�erently when a faulty workpiece occurs. To apply regression
veri�cation, a regression veri�cation contract is required that speci�es when
both revisions should behave equally. In this example, the two revisions behave
equally if no faulty workpiece occurs. The contract for this example would
therefore encode in the �lter predicate that no faulty workpiece is ever detected.

The non-modular approach for regression veri�cation in [Bec+15] does not
exploit the fact that the subroutines for controlling the hardware components
remain unchanged. The full code of both programs is encoded for the translation
against the regression contract with a model checker. The evaluation [Bec+15]
(revisited in Section 12.4) shows that some evolution scenarios cannot be solved
in a reasonable amount of time.

With the approach that we introduce here, we are able to replace the imple-
mentation of the modules in the encoding by their contracts, and can hence lower
the veri�cation e�ort by this abstraction which can thus become an enabler for
the regression veri�cation for larger programs.

This abstraction does not come for free. For a successful abstraction, suf-
�ciently strong contracts that imply the necessary properties must be found.
Finding them automatically may be as di�cult as the whole program analysis
itself. In the presented approach the user has to come up with suitable contracts.

12.2.2 Formalisation
The goal of this section is to look at composed programs and to introduce
an inference rule that allows one to modularize regression veri�cation proofs
for such programs. Let therefore the two programs P,Q be implemented as
a composition of two subprograms, say P = f ; g and Q = f ′; g′. We have
introduced programs as functions and the semicolon operator is the forward
composition of functions (i.e. (f ; g)(x) = g(f(x))).

For the modular analysis, it must be possible to identify the similar subpro-
grams in P and Q that then become the corresponding parts between the two
revisions. In the example from Section 12.2.1, for instance, the two programs
can be split into two subprograms along the dotted line.

If one pair of corresponding subprograms can be veri�ed in isolation (in this
example g and g′) for a contract Cg, this result can be used for the veri�cation
of the relation of the remainder programs where g and g′ can be abstracted
by (uninterpreted) placeholder function symbols x and x′ which stand in for
the programs g and g′. As a precondition in this proof obligation, we may
assume the regression veri�cation contract Cg for x, x′ without knowing the
exact functionality of g and g′.

198 CHAPTER 12. MODULAR REGRESSION VERIFICATION

The inference rule for the veri�cation of RV(C, f ; g, f ′; g′) for a regression
veri�cation contract C has two premises which encode (1) that Cg is a valid
regression veri�cation contract for g and g′ and (2) that the two programs satisfy
contract C under the modular assumption that g and g′ satisfy Cg.

RV(Cg, g, g′) ∀x, x′. RV (Cg, x, x′)→ RV(C, f ;x, f ′;x′)
RV(C, f ; g, f ′; g′) (12.3)

12.2.3 Modularization for Conditional and Relational
Equivalence

In this section, we present how the modularization rule (12.3), formulated over
functions, can be concretely used for the regression veri�cation of reactive
programs. We start with the de�nition of a very general concept of a reactive
programming language with frame structures, then introduce the decomposition
rule, and close this section with remarks on properties of the rule.

Programs. We consider simple loop-free programs, containing assignment-
and if-statements. Additionally, we introduce a frame-construct for marking
program parts which should be modularized. Programs are constructed by the
grammar

〈Prg〉 → 〈name〉 := 〈expr〉 | 〈Prg〉 ; 〈Prg〉
| if (〈expr〉) { 〈Prg〉 } | frame(〈name〉) { 〈Prg〉 } (12.4)

in which the 〈name〉 denotes identi�ers and 〈expr〉 side-e�ect-free expressions.
The set for programs produced by Prg is rather abstract and limited. How-

ever, it is expressive enough to encode reactive programs without (unbounded)
loops. Programs in the low-level language (12.4) can, e. g., be constructed from
more complex program languages like Structured Text or C by unwinding
(bounded) loops and arrays, unfolding record data types and inlining procedure
calls. In particular, we consider programs that are similar to ST0 (De�nition 6.9).

Frames and the Scope of Variables. Frames structure the otherwise unstruc-
tured programs into modules. During the translation from input programs into
the low-level language (12.4), structuring elements from the source language,
like function-blocks or method invocations, are translated into frames. Frames
can also be manually added by a user—to enable the handling of complex code
refactorings which took place across the boundaries of the structural elements
in the source code, e. g., when a computation from inside a method is pulled out
to the method caller.

12.2. MODULARIZATION 199

For a sound abstraction and modularization, the scopes of variables must
be restricted, and the frame constructs mark these scopes. With every frame
identi�er N we associate three disjoint sets of variables: input (inN), state
(stateN) and output (outN) variables. Every variable v occurring inside a frame
named N must belong to one of them. The variables in these categories are
constrained as follows: Input variables are only read within the frame but may be
written from outside the frame. For state variables read and write access inside
the frame is allowed, but any access outside the frame is forbidden. Output
variables are write-only within the frame, and read-only outside the frame.
Global variables do not �t into this scheme but can be encoded into it by an
automatic program transformation. The program transformation introduces
a new input and output variable for each global variable, which occurs in the
frame. The global variable is assigned to the input variable at the beginning of
the frame. The e�ect of the frame on a global variable is captured in the output
variable, which is assigned to the global variable after the frame. Therefore,
such variable categorization can always be established.

In a modularization step, frames will be replaced by an abstraction using
their contracts. The variables play an important role then: They manifest the
interface at which the frame is abstracted for modular treatment. The input
variables must adhere to a precondition on the entry of the frame, the state
variables can be removed from the program when the frame is abstracted, and
the output variables assume values which adhere to a postcondition for the
frame.

It is important to note that frame identi�ers can occur on several frames
within the same program. This models the case that multiple operations are
invoked on the same module within a program. This happens, e.g., if the
same function-block is invoked twice in an IEC-61131 context, or if a (stateful)
procedure is called multiple times from the original program.

To make the abstraction of frames sound, we forbid a partial replacement. A
replacement is partial when not all frames with the same identi�er vanish after
the abstraction. The simple case is to replace all sub-frames with the identi�er at
once. But there cases requiring more care: Consider the situation in Listing 12.3.
If we abstract Frame B, we also remove only one of two C frames, hence a single
C frame keeps in Frame A. This abstraction is unsound because the remaining
C frame operates on a completely di�erent state space. Note that the regression
contract contracts do not describe anything behavior on the state variables.
In our example, the variable o is always even after the second C frame in the
original, but after the abstraction the then-case of the if-statement becomes
reachable. Moreover, it is still allowed to abstract Frame A completely.

Frames that modify the same variables must have the same identi�er, and all
frames with the same identi�er must have the same code and the same variable

200 CHAPTER 12. MODULAR REGRESSION VERIFICATION

1 frame(B) {
2 frame(C) { s := s + 1; o := s;}
3 }
4 frame(C) { s := s + 1; o := s;}
5 if(o 2 != 0) <unreachable>;

Listing 12.3: A frame constellation in which it is forbidden to abstract Frame B
as this makes <unreachable> reachable.

signature. This is not a restriction: If di�erent functionalities access the same
variables (e.g., di�erent methods of an object in an object-oriented setting),
programs can be refactored such that all frames contain the same integrated
code that implements all functionalities. An additional parameter together with
a case a distinction is used to decide the concrete functionality in each frame.

Speci�cation and Veri�cation. For both modular functional and modular
regression veri�cation, one needs contracts for the abstraction. In Section 12.1
we have already encountered the concept of regression veri�cation contracts
on the semantic level. We will re�ne this notion now to program entities. Let
two loop-free programs P and Q be given. A regression veri�cation contract is a
triple (φ, α, ω) of three formulas: the functional precondition φ, the relational
precondition α and the relational postcondition ω. The semantics of these
regression veri�cation contracts are semantical contracts (Section 12.1). The
formula φ evaluates to the �lter predicate τ , and the interpretation of α and ω
are the input and output equivalence relations.

The programs P and Q operate on disjoint sets of variables such that their
statements programs cannot interfere with each other’s state spaces, and are only
connected in formulas within contracts. We can therefore use the sequential com-
position P ;Q to obtain the e�ects of their independent executions. The proof
obligation which needs to be veri�ed reads, written as a Hoare triple [Hoa69],

{φ ∧ α} P ;Q {ω} . (12.5)

In Section 12.3 we will describe e�cient techniques to encode such proof obli-
gations for decision procedures.

Modularization Rule. Let in the scenario introduced above, f and g be frame
identi�ers such that a frame for f occurs in P and a frame for g occurs in Q. For

12.2. MODULARIZATION 201

modular treatment, we need to look at the programs that abstract from the code
of inner frames within their enclosing programs (as a parallel to the replacement
of x for g in (12.2)):

De�nition 12.1 (Factor program). Let P be a program according to (12.4) and f
be an identi�er. The frames for f in P all have a unique occurrence number i. The

factor program
P�f is then derived from P by replacing each frame i for identi�er

f with the following sequence of statements:

1. ini := in for every input variable in

2. countf := countf + 1

3. out := outi for every output variable out

The freshly introduced variable countf for the factored frame f is used to
bookkeeping about the number of invocations of f during a run of the program,
and is needed to make the upcoming modularization rule sound.

In non-regression program veri�cation, modularized subprograms are often
replaced by an obligation to show the precondition of the block and an assump-
tion of the postcondition afterward. Since in regression veri�cation, we deal
with two programs at a time, all we can do in the local context is to remember

the values of all invocations for a global, program-spanning argument to take
them into account. The following inference rule does precisely that. Instead of
proving (12.5), one can show the two formulas that together imply it: (a) f and
g together satisfy a regression veri�cation contract (φfg, αfg, ωfg), and (b) the
factored programs satisfy the original regression contract. The intermediate
variables ini and outi introduced by the factor program allow us to specialize a
formula and set it into the context of one concrete call-site of the frame identi�er.
For a formula γ over the variables of P and Q, the instantiated formula

[
γ
]
i,j

denotes the formula in which all occurring variables from P have been replaced
by the counterpart of the i-th invocation and all variables inQwith the variables
of the j-th invocation. For perfect equivalence ε = (inf = ing → outf = outg),
the instantiated formula

[
ε
]

1,2
would read inf1 = ing2 → outf1 = outg2.

De�nition 12.2 (Modular regression veri�cation). For two programs P and Q
(with disjoint variables) and frame identi�ers f and g, let πf and πg denote the
programs which are inside the corresponding frames f and g and let n (m) be the

number of occurrences of f (g) in P (Q). For a regression veri�cation contract

(φfg, αfg, ωfg) for πf and πg the inference rule

{φfg ∧ αfg} πf ; πg {ωfg} {φ ∧ α ∧ κ ∧ Γ} P�f ;Q�g {ω ∧ κ}
{φ ∧ α} P ;Q {ω}

202 CHAPTER 12. MODULAR REGRESSION VERIFICATION

with Γ = ∧n
i=1

∧m
j=1

[
φfg ∧ κ ∧ αfg → ωfg

]
i,j

and κ = (countf = countg) is
called the modularity rule.

The assumption Γ of the second premise couples the variables modelling the
invocations of f and g. Whenever the input values for invocation occurrences
i and j satisfy the precondition

[
φfg ∧ αfg

]
i,j

of the regression veri�cation

contract, the relational postcondition
[
ωfg

]
i,j

is known to hold on the output
values.

This rule is quite similar to the di�erential assertion checking approach
using mutual function summaries by Lahiri et al. [Lah+13], but is applied here
to frames with potentially more than one invocation and in the context of
reactive systems in which the programs are called repeatedly. To allow for that,
additional checks (encoded using the counting variables countf and countg in
κ) have to be included that ensure that the number of invocations of the two
abstracted frames are the same in both programs.

Soundness and Completeness. This modularization rule is sound. We miss
a formal proof but want do give an argumentation on the critical part of this
rule.

An induction proof on the number of coupled invocations (captured in
the program variables countf and countg introduced for this reason) can be
conducted. In particular, the equality of both counter variables ensures that
the coupling invariant holds on P ;Q. This coupling invariant exists due to the
proof of the regression contract {φfg ∧ αfg} πf ; πg {ωfg} of the subframes f
and g, and couples the internal states of both subframes together. Moreover, this
coupling invariant is (a) relational (as it talks about program states of f and g),
(b) inductive over the calls of f and g, and is relative ([BM07]) to φfg and αfg.
The coupling invariant is also valid on P ;Q (in which f and g are embedded)
if the following three conditions hold: (1) f and g are called synchronized (κ),
(2) they are only called with similar inputs αfg, and (3) only in the context of
φfg. By this invariant, we are allowed to assume ωfg holds for each invocation
pair of f and g.

The approach is not complete since we require that both systems invoke their
frames equally often. There are systems which ful�ll a regression contract but do
not have this property. Then this approach can currently not be applied. Also, the
completeness can be destroyed by the abstraction of the output variables of the
subframe. The given output relationωfg can be too weak, and yield new behavior
in the parent frame which is not triggered by the original implementation. Hence,
ω cannot be shown. For example, consider that the subframe only returns a
constant value. The abstracted version instead would return an arbitrary value

12.3. THE ALGORITHM 203

function Reve(f, f ′):
Input: Two frames f, f ′
Data: A regression veri�cation contract (φ, α, ω) for f and f ′.
Output: true i� f and f ′ together satisfy the contract
if check cache for (f, f ′, φ, α, ω) then

// earlier results are cached
return cached result;

end
if (φ, α, ω) = (true,=,=) then

// only applicable for perfect equivalence
return if true EqualSource(f, f ′);
return if true EqualSE(f, f ′);

end
return if true EqualSmt(f, f ′, φ, α, ω);
return if true EqualAbstraction(f, f ′, φ, α, ω);
return EqualityMC (f, f ′, φ, α, ω);

Figure 12.4: Algorithm to check the equivalence of two frames

(but equal value), that allows the parent-frame to execute original unreachable
code areas.

The rule is compositional, in the sense that it can be applied recursively on
the resulting proof obligations.

12.3 The Algorithm
In this section, we construct a new regression veri�cation algorithm for reac-
tive software that combines a number of di�erent modular and non-modular
veri�cation techniques. The algorithm takes two programs and a regression
veri�cation contract as input and checks if the programs satisfy the relational
speci�cation. We assume both programs have a top-level frame with the identi-
�er main that contains all program statements. The algorithm works recursively,
comparing �rst the outermost frames, trying to establish equality from going
top to bottom in the program structures, recursively verifying the equality of
enclosed subframes.

The algorithm orchestrates di�erent checkers and runs them in sequence
returning on the �rst positive result. In the orchestration, we call the more syn-
tactical, faster, but imprecise checkers �rst before falling back to more powerful,
and more precise, but slower checkers. All checkers are sound: If they report that

204 CHAPTER 12. MODULAR REGRESSION VERIFICATION

frames conform to their contract, then this is the case. They are not necessarily
complete, and some checkers are only applicable on a restricted set of cases,
for example, perfect equivalence. The full algorithm, shown in Figure 12.4, is
complete as the last checker EqualityMC uses heavyweight model checking
without abstractions and is complete.

The following sections brie�y introduce the involved checkers.

12.3.1 Conformance by Syntactical Congruence
In case, that a contract speci�es perfect equivalenceEQ, the checker EqualSource
checks equivalence via a comparison of the syntax trees of the two source
code artifacts. During parsing the source code into a syntax tree, the code is
normalized, in particular, comments and whitespaces are removed, keywords
are capitalized, . . .). Identical normalized source code implies equal software
behavior. In the soundness argumentation, we claim that a successful veri�cation
of RV(C,P,Q) implies an inductive coupling invariant over the state variables.
Of course, this is true for EqualSource checker, but it may not be obvious to see
this invariant. Given a regression obligation RV(EQ,P,Q), if the EqualSource

successfully terminates (syntax trees are equal), then the (inductive coupling)
invariant is the equivalence between the states of the programs of P and Q.
Note that this equality check also implies the equality initial values of the state
variables, which is required to established the coupling invariant before the �rst
execution of both frames.

Despite its severe restrictions, this method is a fast and useful checker,
especially for frames resulting from often reused standard library procedures.
These libraries functions, e. g., timer function blocks, counters (cf. Sections 4.3.1,
4.3.2 and 7.1) are usually not touched by the application engineer.

12.3.2 Conformance by Symbolic Execution
Checking equality by comparing the source code is very restricted, and fails, e. g.,
if two independent lines are swapped, or an irrelevant new variable is introduced.
Frames A and B in Figure 12.5 shows this situation. The next checker in the
orchestration is EqualSE, and is able to handle such cases. It is still a syntactical
checker; hence, it is also only able to handle perfect equivalence. This checker
is based on symbolic execution to compute the symbolic results of a frame.

The result of the symbolic execution of a frame f is a function F : Var →
Expr which maps every state and output variable to an expression which is the
aggregation of all assignments to the variable in f . The term F (v) computes to
the value of v at the end of the frame and may depend on the input and state
variables of f .

12.3. THE ALGORITHM 205

1 FRAME(A) {
2 out1 := s;
3 out2 := in;
4 s := in;
5 }

1 FRAME(B) {
2 out2 := in;
3 out1 := s;
4 s := in;
5 }

1 FRAME(C) {
2 out := s;
3 s := in;
4 }

1 FRAME(D) {
2 out := t;
3 t := in;
4 }

Figure 12.5: Four di�erent frames (cf. Equation (12.4)) with input variable in,
output variables out1 and out2, and state variables s and t. The Frames A and
B are equal and can be checked with EqualSE but not with EqualSource. Also,
Frames C and D are equal, but requires EqualSE to infer coupling invariant
s = t.

One possibility to show perfect equivalence between two frames f and f ′ is
to establish syntactical equality between the symbolic execution results for all
output variables. The equality must also be checked for those state variables
which occur in the aggregated expressions of output variables to guarantee
that the following cycles will produce equal output. In detail, we establish the
equality of the state variable as the coupling invariant between the execution of
both frames. Note that the initial value is not part of the symbolic execution
F (v) of a variable v. Therefore, we need to additionally check the equality of the
initial value for each pair of state and output variables to bootstrap the coupling
invariant.

Inference of Coupling Invariant. Thus far, we described the case where
all input, output, and state variables have the same name in both frames. As
an example, consider the situation of Frame C and D in Figure 12.5. To make
this analysis more �exible, we allow arbitrary one-to-one mappings of variables
between frames where the correspondence of input and output variables is given
by a conjunction of equalities between variables in α and ω in the regression
veri�cation contract. For state variables, the mapping needs to be inferred. This
mapping is also the coupling invariant of both frames, which implies the equality
of the match output variables given in ω. In our example with Frame C and
D, the inferred mapping matches the state variable s (in Frame C) to the state
variable t in (Frame D). Such state mapping is similar to the syntactic uni�cation

206 CHAPTER 12. MODULAR REGRESSION VERIFICATION

Input: α and ω of the regression contract, and the symbolic execution
F, F ′ of the frames f, f ′

Data: M is a set of variable pairs v/v′ which can be assumed as
matched, and Q is a set of variable pairs, which need to be
uni�ed.

Output: returns ⊥ (a matching could be established) or > (a matching
of the state and output variables is established in M)

Function match(t, t’)

if t = t′ ∨ t/t′ ∈M then
// Already matched terms

else if t, t′ are state variables and each not matched inM then
// Match (state) variables, but add them also to the

queue.
Q := Q ∪ {t/t′} ;M := M ∪ {t/t′};

else if t = f(t1 . . . , tn) and t′ = f(t′1, . . . , t′n) then
// t, t′ are the same function application, go into

recursion.
match(ti, t′i) for each 1 ≤ i ≤ n abort if ⊥ occurs;

else
abort with ⊥;

end
M := {v/v′ | for all pairs (v, v′) de�ned by α and ω};
Q := {o/o′ | for all pairs (o, o′) de�ned by ω};
while Q 6= ∅ do

choose o/o′ ∈ Q ;Q := Q \ {o/o′};
match(F (o), F ′(o));

end
return >;

Figure 12.6: The algorithm to infer a mapping of the state variables for a given
regression contract of two frames f, f ′.

of terms in the �rst-order logic. An uni�cation is a substitution, s.t. which maps
all terms (in a given set) to the same term. In our example, we could simply
replace all occurrences of t with s in Frame D, and receive the same program.

For �rst-order, we are the most general uni�cation is computed the Robinson
Algorithm [Rob65] for a given set of terms. Here, the situation is a little bit
di�erent: First, we need to consider a pre-existing mapping of the input variables
given in α, and only need to “unify” matched outputs de�ned by ω.

12.3. THE ALGORITHM 207

Figure 12.6 shows the algorithm to infer such mapping on the state variables.
The algorithm can be split into two parts: the match function and the queue-
based iteration. The algorithm maintains two sets: Q containing variable pairs
o/o′ which need to be checked whether they match, and M the set of variables
pair, that can be considered as matched.

The main-loop iterates over the remaining unchecked pairs, these are ini-
tialized with the pairs output variables of f and f ′ de�ned by ω. But, as the
algorithm is executed, new pairs s/s′ of state variables are added by the match-
function. If all pairs are matched, the algorithm terminates successfully, and
the matching M is a valid coupling invariant for the output and state variables.
(Also, we need to check the initial value for each of the pairs separately.)

The match-function recursively compares two given expressions t, t′. If
both expression are already equal or matched, no further actions are required.
Otherwise, both terms are unequal. If t, t′ are variables and t and t′ are not
already matched di�erently (inM), we mark them as matched by adding the pair
t/t′ toM and also we need to ensure this (by adding the pair also to the queueQ)
If the t and t′ are function applications of the same function, we can recursively
match the arguments. The match-function fails if either the expression t and
t′ are not comparable (e. g., di�erent function applications t = +(1, 1) and
t′ = g(1, 1) or di�erent literals t = 1 and t′ = 2) or t (or t′) is already matched
with a di�erent variable. If this function fails, the complete algorithm terminates
with ⊥. Our inference algorithm can only infer one-to-one-mapping between
state variables.

Note that we give the algorithm in a simpli�ed form (only consider pre�x
function applications). The implementation need also to consider other expres-
sions, like in�x or ternary operators. Furthermore, the mapping can be lifted
from equalities over variables to equalities over expressions. But this requires
more considerations in the match-functions, and may also be combined with the
following SMT-based checker to ensure the soundness of the inferred mapping.

We can summarize: The checker EqualSE is able to show the equality of
o = 2∗ i +s and o′ = 2∗ i ′+ t ′, where s, t′ are state and i, i′ are input variable. A
matching needs to include the equality s = t′, and i = i′. Moreover, the equality
of i = i′ (input variables) must be justi�ed by the given regression contract
(α |= i = i′). Due to its syntactical nature, this checker is incomplete, e.g., the
equality between o = 1 + 1 vs. o′ = 2, cannot be handled.

12.3.3 Conformance by Reduction to SMT
If these last syntactical checkers fail or are not applicable, the �rst semantical
checker is triggered. This checker is backed up by a reduction to a Satis�ability
Modulo Theories (SMT) problem using the previously computed symbolic exe-

208 CHAPTER 12. MODULAR REGRESSION VERIFICATION

cution results F (v) and F ′(v′) of the given frames. This checker is not limited
to perfect equivalence, but can be used for arbitrary regression veri�cation
contracts.

The checker EqualSMT veri�es an inductive relational invariant χ over the
state variables of the two frames. In the simplest form we show that any state
variables s and s′ in f and f ′ evolve identically (i.e. s = s′). The formula to be
checked for satis�ability is then

(∧
v∈V

v+ = F (v)
)
∧
 ∧
v∈V ′

v+ = F ′(v)
∧φ∧α∧χ∧¬(ω+ ∧χ+

)
(12.6)

where the sets of variables V and V ′ contain all output and state variables of
f and f ′. Variable v+ holds the result of the symbolic execution for v (via the
function F or F ′). It di�ers from v to distinguish variables before the execution
from after it. A predicateχ+ results fromχ by replacing vwith v+. If this formula
is not satis�able, χ is an inductive invariant for the frames and, additionally,
they conform to the regression veri�cation contract (φ, α, ω).

As an example, consider the following contract (true, i = i′, o = o′) for
o = 2 ∗ i + s and o′ = t ′ + 2 ∗ i ′. The instantiated SMT formula (12.6) for this
example is

(o+ = 2 ∗ i + s ∧ s = s+)︸ ︷︷ ︸
v+=F (v)

∧ (o′+ = t ′ + 2 ∗ i ′ ∧ t′ = t′+)︸ ︷︷ ︸
v′+=F ′(v)

∧ i = i′︸ ︷︷ ︸
α

∧ s = t′︸ ︷︷ ︸
φ

∧ o = o′︸ ︷︷ ︸
ω

∧¬(o+ = o′+︸ ︷︷ ︸
ω+

∧ s = t′︸ ︷︷ ︸
χ+

) ,

where o and o′ are the output variables, s and t′ state variables, and i and i′ input
variables, respectively. The relational invariant χ has been chosen as s = t′ in
the example. It is a parameter of the checker, and in general non-trivial to infer.
In our implementation, we use the equality of equally named state variables for
χ, but our algorithm in Figure 12.6 can also be used to infer a candidate for χ.
In a further SMT veri�cation condition (not shown here), it has to be shown
that the initial memory states (cf. Section 2.2) of f and f ′ initially satisfy the
coupling invariant χ.

12.3.4 Conformance by Modular Abstraction
The checker EqualAbstraction is the checker that exploits the modularization
rule introduced in De�nition 12.2. Therefore, given two frames f, f ′, this checker
starts with abstracting the top-level frames inside f and f ′, and uses Figure 12.4
for checking contract conformance of inner subframe pairs.

12.3. THE ALGORITHM 209

We assume that the subframes in f and f ′ are collected in pairs and that
each frame pair is speci�ed with a regression veri�cation contract. Let g be a
subframe in f , and g′ in f ′, respectively.

After the body of all subframes have been abstracted, we obtain the two
factor programs f/g and f ′/g′ of both original frames together with a regression
veri�cation contract that has additional assumptions and post-conditions.

The regression veri�cation algorithm is called recursively for Reve(g, g′) of
each subframe pair and for Reve(f/g, f ′/g′).

The modularization rule may be applicable to several subframes. In our
implementation, we eagerly apply it to all speci�ed subframe combinations. The
recursive procedure is applied recursively and exhaustively, but will eventually
terminate since the frames are always �nitely nested in a program.

If the modular abstraction step fails, it produces a counterexample (a �nite
trace, see Section 12.3.5) which may describe a genuine �aw in the system, or
it may be spurious if a regression veri�cation contract does not hold on the
sub-frame pair or is not strong enough to serve as a suitable abstraction in the
proof.

12.3.5 Conformance by Model Checking
The �nal checker is the most precise and most powerful one and encodes the
veri�cation condition into a model checking problem. This checker makes use of
the non-modular regression veri�cation approach by Beckert et al. [Bec+15] and
veri�es a regression veri�cation contract speci�cation between two complete
frames f, f ′ without using abstraction. More precisely, the veri�cation target is a
problem in which an invariant (derived from the regression veri�cation contract)
for the system consisting of the two compared frames must be veri�ed. Experi-
ence has shown that invariant-inferring techniques like the IC3 [BM07] approach
(in particular the implementation within the model checker nuXmv [Cav+14])
work quite well for this type of regression veri�cation problems.

Since the state space is �nite, this checker is theoretically complete, i. e.,
returns within �nite time for any input. However, experience shows that it
can take hours or even days until the model checker comes back with a result.
The modularization technique and the combination with simpler techniques in
Reve have been devised to reduce the use of such heavy-weight veri�cation,
and hence reduce the time needed for regression veri�cation challenges.

The model checker returns either that the invariant has been proved (imply-
ing correctness of the contract), then inductive invariant could be inferred by
IC3 (Section 2.3). Or the checker produces a counterexample, which is a concrete
trace, i. e., �nite sequence of assignments of input, state, and output variables
for both frames exemplifying the violation of the contract. We currently do not

210 CHAPTER 12. MODULAR REGRESSION VERIFICATION

provide tool support, but these values can be used as inputs for a simulation of
the reactive system like it is present in many modern IDEs for reactive software.

12.4 Evaluation
In this section, we show the applicability of our new regression veri�cation
algorithm on selected scenarios of the Pick-and-Place Unit (PPU) community
demonstrator (cf. Section 7.3,[Bec+15]. The PPU is a down-scaled model of a
manufacturing plant employing industry-level hardware components that has
been designed for researching the management of the evolution (hardware and
software) of automated manufacturing systems. Therefore, there are multiple
evolution scenarios, with software and/or hardware changes, of this plant. We
selected representative evolution scenarios to cover di�erent situations.

12.4.1 Selected Evolution Scenarios
We brie�y explain the three selected evolution scenarios. The software revisions
correspond to the di�erent scenarios of the PPU in [Vog+14, Fig. 48].

Revision 1 vs. Revision 2 A new sensor is introduced for detecting metallic
workpieces as a preparation for the next evolution. The software mainly changes
the Crane module, but changes on the top-level module are needed to route the
sensors to this submodule. An in�uence on the system behavior is not expected:
Both revisions are perfectly equivalent.

Revision 3 vs. Revision 5 Revision 5 introduces an optimization which al-
lows using the waiting time during stamping to transport workpieces which do
not need to be stamped to the conveyor belt. The optimization is only triggered
if workpieces of di�erent types are present (metallic and non-metallic). If only
metallic workpieces are present, the two revisions behave perfectly equivalently.
The workpiece type can be determined by the program using the input vari-
able CapacitiveSensor . We obtain a regression contract (CapacitiveSensor =
true,=,=) which intuitively formalizes that the old and new revisions behave
equivalently (equal inputs give equal outputs) under the condition that the
sensor variable CapacitiveSensor is true in every cycle.

Revision 12 vs. Revision 13 In the old revision, the position of the crane
is measured with three switches (with Boolean sensor values OnConveyor, On-
Magazin and OnStamp). These are replaced by a single angular sensor. We need

12.4. EVALUATION 211

to de�ne a relation R between the three boolean sensor values and the angle
position

(16160 < AnalogPosition ∧ AnalogPosition < 16260) = OnConveyor ∧
(24290 < AnalogPosition ∧ AnalogPosition < 24390) = OnMagazin ∧

(8160 < AnalogPosition ∧ AnalogPosition < 8260) = OnStamp

which serves the relational precondition in the regression veri�cation contract
(true, R,=).

12.4.2 Results
Table 12.7 summarizes the performance of the veri�cation. The runtimes are
shown for each checker on a frame. The �rst column describes the compared
revisions and modules, where Main or Crane denotes the regression veri�cation
between the corresponding frames of both revisions. Main/* denotes the frame
with all subframes factored out. For convenience, Table 12.7 only shows the
�rst and second level of nested frames. In particular, the frequently used timer
module is hidden.

“Non-Modular Total” is the comparison reference value of applying the non-
modular approach as in [Bec+15] with our pipeline. In comparison, “Modular
Total” gives the overall runtime of the modular pipeline. Both total columns state
the runtime measured from the command line. Hence, they include the work
needed to prepare the programs (parsing, symbolic execution, etc.). In contrast,
the checker runtimes are given in milliseconds and are measured internally.
A checker is skipped (marked with a dash (–) in the table) if either it was not
capable of proving the regression contract, or a checker invoked earlier was able
to solve this case. Note that for the comparison of Rev 12. vs. Rev 13 (“12 vs.13
−SE”), we have disabled EqualSE to evaluate the modularization rule, because
we want to demonstrate the capabilities of the decomposition rule. EqualSE can
solve this comparison directly in half a second (cf. “12 vs.13 +SE” in Table 12.7).
The lines of code do not include empty lines or comments and cover both code
modules. Also, the number of variables (#Vars) is the sum of input, state, and
output variables of both frames.

The runtimes (wall clock) are the median of three samples, computed on an
Intel Core i7-8565U, 16 GB RAM, using the model checker nuXmv 1.1.1 [Cav+14]
with IC3 for invariant checking, and z3 4.8.8 for solving the SMT instances. The
time-out was set to 1 hour. Our algorithm implementation is single-threaded. All
veri�cation artifacts and a link to the source code are available in the companion
material [Wei21] or online1.

1http://formal.iti.kit.edu/isola20

http://formal.iti.kit.edu/isola20

212 CHAPTER 12. MODULAR REGRESSION VERIFICATION

Table 12.7: Results of the regression veri�cation algorithm.
Runtime Code Size

Rev./Module Non-Mod. Modular Checkers [ms]
Total [s] Total [s] Src SE SMT Modul. Classic LoC #Vars

1 vs. 2 11.34 2.27 744 136
Main 0 98 108 933 – 744 136
– Main/* 0 17 – – – 174 203
Crane 0 52 56 756 – 415 51
– Crane/* 1 80 51 – 601 403 207
Magazine 0 21 – – – 234 38

3 vs. 5 823.36 9.49 1,605 256
Main – – 296 6,765 – 1,605 256
– Main/* – – 74 – 3,540 294 364
Crane – – 106 2,989 – 810 74
– Crane/* – – 85 – 2,890 768 376
Stamp 0 – – – – 402 56
Magazine 0 – – – – 240 44

12 vs. 13 −SE t/o 36.85 4,808 520
Main – – 593 27,324 – 4,808 520
– Main/* – – 63 – 7,904 453 1,250
Conveyor 0 – – – – 468 50
Crane – – 177 16,074 – 1,326 77
– Crane/* 0 – 153 – 15,904 1,284 631
Pusher 3 – – – – 2,144 154
Stamp 0 – 82 4,801 – 403 57
Stamp/* 0 – – – 4,680 375 639
Magazine 0 – 61 – 2,892 241 45

12 vs. 13 +SE t/o 9.56 4,808 520
Main 0 397 – - – 4,808 520

12.4.3 Discussion

The evaluation shows a huge speed-up against the previous non-modular ap-
proach from [Bec+15]. It shows the potential of modularization to enable the
handling of large reactive systems. For a fair comparison, we repeated the
experiments of [Bec+15], but we use the default bit-width for integers on PLC
languages, and also we did not reduce the blocking time of the used timers.
Rev. 12 against Rev. 13 ran into a time-out, [Bec+15] gives a clue that the veri�-
cation can take more than 22 hours. Most of the performance should result from
abstracting these timers, which are used to wait a particular amount of time.
During this time span, the system stutters partially, resulting in long phases of
forwarding searches in IC3.

12.5. CONCLUSION 213

12.5 Conclusion
In this chapter, we have motivated and presented a new veri�cation rule for the
modular decomposition of regression veri�cation proof obligations for reactive
system software. Moreover, we have integrated the rule into a novel regression
veri�cation algorithm which orchestrates �ve di�erent regression veri�cation
approaches into one proof technique. Thanks to the modularization, simpler
equality checkers allow one to show properties more easily on subproblems.

The evaluation indicates a tremendous performance improvement: Modu-
larization can allow regression veri�cation proofs to run orders of magnitudes
faster.

ComplexContractswith rtts. In contrast to rtt, we used a simpli�ed spec-
i�cation for our regression contracts. It is possible to extend our modularization
approach to stateful speci�cations like rtt.

Let us consider the situation, that an rtt describes the relation between two
sub-frames. The rtt couples the input and outputs of both frames together,
similar to our regression contract, but now depending on its current state. The
veri�cation that the sub-frames conform to the rtt is already covered by the
veri�cation pipeline for rtts. But to use the rtt as an abstraction in the factor
programs, we need adaptions. First, we need to encode automaton (representing
the rtt) in the veri�cation target such that it asserts the relation on the inputs
constraints, and assumes the relation on the output constraints. Moreover, the
automaton is not part of one of both program runs (old and new revision).
Moreover, the automaton is more like an observer over both runs. Second, the
di�cult part is, that a transition on the automaton needs to be invoked every
time the sub-frame pair is called, and this can happens multiple times in each
execution cycle. Therefore, the rtt is not synchronized with the execution cycle
of both program runs.

Using rtts seems feasible on the technical level, but on the conceptual level
they have disadvantages: First, they need a state. The state is something we
want to get rid of. Also, it is not excluded that the veri�cation target of the
factor programs is larger in the model size than the original programs. Second,
an rtt is (often) not a complete speci�cation covering every possible input
sequence. Therefore, we need multiple rtts for a sub-frame pair, but this arises
di�erent conceptual problems: the under- and over-speci�cation of sub-frames.
Under-speci�cation states that there might still exist inputs sequences that are
missed by all given rtts. Hence, we would need to add more rtts. But if we
have too many rtts, it could easily happen that these are contradictory to each
other s.t. there exists no system conforming all rtts for every input sequence.

214 CHAPTER 12. MODULAR REGRESSION VERIFICATION

Multiple Contracts. We considered that only a single contract for each frame
pair is available. This is su�cient for our experiments on the PPU. In this sec-
tion, we sketch the extension of our approach for multiple contracts on frame
pairs. We distinguish between two usage scenarios: Firstly, all occurrences of a
sub-frame are abstracted with the same contract or, secondly, the contract is in-
dividually selected for each occurrence. In the �rst case, our decomposition rule
in De�nition 12.2) remains applicable for the selected contract c without further
changes to the rule. We only have to insert the correct formulas (φfgc , αfgc , ωfgc)
of the selected contract c. In the second case, we need to reconsider Γ , and
the regression veri�cation on sub-frames. In particular for the factor programs,
each occurrence of f in P and g in Q is replaced with the same nondetermin-
istic behavior, only the relational contracts, which bind the input and output
values together, are di�erent. This a�ects Γ which encapsulates the possible
and applicable contracts. Γ becomes aware of the k contracts:

Γ =
k∧
c=1

n∧
i=1

m∧
j=1

[
φfgc ∧ κ ∧ αfgc → ωfgc

]
i,j

Now, we enable the di�erent contracts on the “right side” of our decomposition
rule, but we need proof that the contracts are adhered to by the sub-frames
(“left side” of the rule). We cannot prove each contract individually, because the
contracts can be used in arbitrary order in the factor programs. Hence, we need
to construct a combined contract which expresses this arbitrary usage:{

k∨
c=1

φfgc ∧ αfgc
}
πf ; πg

{
k∧
c=1

(
prev

(
φfgc ∧ αfgc

)
→ ωfgc

)}

The premise states that at least one function precondition φfgc and input relation
αfgc of the same contract c have to hold. After the execution of πf ; πg, the
conclusion enforces the output relation ωfgc holds when the corresponding
precondition and input relation of the same contract c hold in the previous
state before execution of both sub-frames (denoted with prev).2 Due to the new
regression goal, we prove πf ; πg for every possible combination of contracts.
This might be an over-approximation of the actual use case of the frames, in
which for example, two contracts are always applied alternately. The example is
expressible with rtts. Note that it is su�cient to consider the subset of required
or used contracts in the application of the decomposition. Therefore, not all
available contracts of the sub-frames might be necessary for the veri�cation, and
can be left out in the construction of the regression goal. But it might be more

2φ and α are formulas over the input variables which are normally read-only, hence prev is
not required, but for clarity explicit state this circumstance.

12.5. CONCLUSION 215

e�cient to follow a veri�cation strategy that tries prove all available regression
contracts for frequently used frames once, than to multiple prove regression
goals with individual subsets with the required contracts.

FutureWork. We rather see the need for (user-speci�ed) regression contracts
for the sub-frame as a drawback of our decomposition technique. Therefore,
before investigating the use of rtts for these contracts, we tend to reduce
the speci�cation e�ort. In most cases, these regression contracts seem to be
automatically inferable, e. g., by using heuristics, symbolic execution, or Horn
solvers.

In our implementation, we have not used any sophisticated strategy to
decide whether a frame should rather be kept inlined or be abstracted. The
implementation tries to abstract all allowed frames at once, which seems to be
a good strategy considering our experiments. But a more restrictive selection
could bring a further advantage. To develop such a strategy further experiences
are needed, especially in cases in which abstraction decreases the veri�cation
performance.

Chapter 13

Conclusion

13.1 Summary of the Thesis
Speci�cation Languages. In this thesis, we presented generalized and re-
lational test tables, two novel table-based speci�cation languages. Moreover,
we provided decision procedures for these speci�cation languages along with
experiments and evaluation.

The table-based speci�cations have advantages: They are currently used as
concrete test tables in the testing of automated production systems. Engineers
can start with concrete tables which they can successively generalized with the
features of gtts. If there exists software with similar behavior, the software can
be used for speci�cation by switching to rtts. The upgrade from a gtt to rtt is
straight forwarded through their shared syntax and semantics. In general, gtts
and rtts o�er a structured view of constraints on variable and their change
over time, that is hardly found in established speci�cation languages.

The test tables inherit the weakness of concrete test tables, that they are
designed to cover only a family of typical behaviors of a program. It is hard to
achieve a full system speci�cation with test tables. Therefore, gtts and rtts
are not useful for compositional veri�cation. For a detailed discussion, refer to
Sections 9.1 and 10.5.

Forgetting of Information. Additionally, we used rtts to formalize a new
security property: the forgetting of information. This speci�es whether a secret
is �nally forgotten after a speci�ed period. This is the �rst notion of this kind for
reactive systems. Such a veri�ed system does not prevent successful intrusions
(which also may happen on a completely di�erent level, e. g., maintenance
access), but limits the knowledge gain of the attacker. The biggest weakness of

217

218 CHAPTER 13. CONCLUSION

our approach is the limitation to the PLC software as they might be leaks through
the hardware, operation system, or the physical environment. Nonetheless,
our property provides a useful assessment of the con�dentiality of a reactive
program, as it provides a quanti�able and comparable scale of con�dentiality.

Modular Regression Veri�cation. We presented a novel contract decom-
position rule and a new recursive algorithm for regression veri�cation. The
decomposition rule allows to split up large regression veri�cation goals into
smaller sub-goals, by using contracts of software modules instead of imple-
mentation of the module. The smaller sub-goals can become quite simple, so
simple that simple and fast equality checkers become useful. These fast checks
range from simple source code comparison to the uni�cation of programs, and
SMT-based coupling invariant veri�cation. The new algorithm is tremendously
fast, sound, and complete by orchestrating all simple checkers, the decomposi-
tion rule, and the fallback of the complete model-checker The disadvantage of
this approach is the requirement of the relational speci�cation for each pair of
software modules, which should be abstracted.

All our contributions are implemented and publicly available under the
verifaps at https://github.com/verifaps/verifaps-lib.

With our contributions, we follow the idea of reducing the obstacle for engi-
neers to apply formal veri�cation during the development. Either by introducing
a new speci�cation language (gtts), by exploiting existing programs for the
speci�cation (rtts, regression veri�cation) or by improving the veri�cation
performance. Despite the thesis’ focus on automated production systems, the
presented contribution can also be applied to reactive systems of other domains.
With a di�erent interpretation, the test tables are applicable to event-based
reactive systems.

13.2 Future Work
The story of the test table is not �nished with this thesis, besides follow-up
projects they are limitations on these speci�cation languages which need to be
overcome.

Rigidness of TimeConstraints. In contrast to timing diagrams (Section 3.2),
the time constraints on gtts and rtts are rigid. This means, that only concrete
intervals are permitted, which cannot depend on program or global variables.
The reason is that we need to unwind the table rows for the static veri�cation
because we can be in a row at di�erent iterations at once. Additionally, using
program variables lead to new issues in the semantics, e. g., what should happen

https://github.com/verifaps/verifaps-lib

13.2. FUTURE WORK 219

if a program variable (in a time constraint of an active row) changes its value?
Should the current value considered, or the value at the entry table row? For
dynamical veri�cation, we can lift this limitation by using a token that captures
the current table row and row iteration. The drawback is we do not know the
upper limit of these tokens, hence, we may require an arbitrary amount of
memory.

A possible extension can be copied from timing diagrams, (cf. [Fis99]) which
permits a new signature of variables exclusively for modeling time constraints
between events. For gtt, we could also introduce new variables which are only
usable in time constraints and also bounded. The new variables would give us
the possibility of stating requirements like “the amount of row iterations of the
�rst and second row are equal”.

From gtts to Contract Automata. In the future project (see below), we are
planning to go ahead with the shape of generated automata from gtts. These
automata have the characteristic, that on their edges are contracts. Currently, in
the form of pre- and post-condition of the row. We want to use these automata
kind, and develop it into a useful speci�cation on its own. This means, our
speci�cation is an automaton, which has di�erent contracts on its edges which
determines the next possible states. A contract is an n-tuple with an assertion
on each party (e. g., challenger and system) and a time constraint. If a contract is
ful�lled from all parties and also the time constraint is ful�lled, the automaton
selects the incoming state as active. Otherwise, the error state for the violating
party is selected. Of course, nondeterminism and global variables will be present.

These contract automata allow a more general and complete speci�cation of
software modules. This is the key for compositional veri�cation. Additionally,
we hope for a better feeling of control over the speci�cation and more expres-
siveness. On the other hand, a large automaton is harder to read and understand.
These issues need to be tackled with a graphical notation and solid tool support.

Note that contract automata are an extension of our meshed gtts (Sec-
tion 9.2), and the generalized game (Section 9.3).

Better Tool Support. Our library verifaps as a backend aims at veri�cation
experts and not the engineers as the end-users. Nonetheless, it o�ers quite
suitable support. For example, gtts can be translated for debugging into spread-
sheet �les. A spreadsheet �le allows the user to insert a sequence of input
and output values, and the inserted formulas of the constraints in the gtt give
feedback on whether and when constraints are violated. Such a spreadsheet can
also be generated where the output values are computed—a given program is
encoded into spreadsheet formulas. verifaps also visualizes counter-example

220 CHAPTER 13. CONCLUSION

of failed proofs attempts of gtts. A counter-example is visualized by printing
the simpli�ed program (Section 6.3.1) for each cycle with inlined values for each
assignment and branch condition. Also, for each cycle, the values of the input
and state variables are printed at the beginning and the value of the output
variables at the end. Additionally, for each cycle, the state of the automaton is
mapped to the table, showing which rows were active, and which assumptions
or assertions failed (down to the violated columns).

But for the engineer, verifaps do not other any easily accessible interface.
A prototype stvs (Figure 6.4) was creating in a students project and support the
state of gtts presented in [Bec+17], but is not adapted to newer gtts-features.
On the other hand, to be accessible for the engineers, we have to bring our
approaches into their daily tools for development and testing. This is one goal
of a submitted DFG transfer project.

13.3 Follow-up Projects
Furthermore, there are concrete plans for two follow-up projects for the further
development and research on the presented approaches.

Transfer Project. A DFG transfer project was submitted in which we bring
our approaches to the engineering practice. The characteristics of a transfer
project are the participation of industry partners. In our case, the industrial
partner is an engineering company of automated production systems. In this
project, we want to make functional, regression, and relational veri�cation
feasible in the daily engineering practice by lowering the obstacles and lower
the complexity.

We use regression veri�cation as a tool for the software assessment in variant
management. Often, the industry does not use explicit variant management,
in which a single product tailored to the individual needs of a customer, is
generated or assembled from a larger software project containing the various
inter-compatible components. Instead, the variants are maintained individually
and independent of each other—often by copying the latest previous software
version and adapting it. In case of an issue, all variants have to be patched
individually. Moreover, it is often not clear, which variants are a�ected by an
issue and thus require a �x.

Regression veri�cation should help in the construction of the 150%-models
of variants. A 150%-model of software is a common way to describe variants
with their common and speci�c software pieces. In this scenario, regression
veri�cation can be applied as an equivalence checker between software variants
to �nd identify the common behavior. Also, regression veri�cation helps in the

13.3. FOLLOW-UP PROJECTS 221

management of patches. Issues are always found in speci�c variants, and often
they are patched on this single variant. To avoid, a diverge in the variants, the
issue and the patch must be evaluated on the other variants. With regression
veri�cation, we can recognize whether other variants su�er under the same
issue and whether the suggested patch solves the issues on these variants, too.

As patches are a local change in the code basis, it is not very handy to
investigate and validate a complete PLC software (again). Therefore, we in-
vestigate lightweight syntactical di�erence analyses to recognize which parts
of the veri�cation subjects need to be revalidated with regression veri�cation.
This technique of shrinking the software to a minimal amount of code is called
program slicing. In contrast to traditional program slicing techniques for single
programs, we need to build a program slicing that considers two programs at
once.

Besides regression veri�cation, we also plan to apply gtts on industrial
examples including the adaption to their programming dialects and domain. We
consider the use gtts for expressing the functional behavior of the local patches
or patched area. Currently, we plan with limited use of rtt-speci�cation of the
engineer. We plan to provide an ensemble of testers for di�erent equivalence
and similarities of variable groups or single variables. These ensembles might
be de�ned as rtts, but will stay hidden from the engineer.

Software-de�ned Car. In a di�erent proposal, we bring the idea of gtt-like
functional speci�cation in the automotive industry. For this, we extend �exibility
and expressiveness of gtts, especially, to cover full-system speci�cations. To
achieve this, we follow the idea of the contract automata (the automata generated
from gtts), and extend the gtts as a frontend, or introduce new frontends for
the speci�cation, e. g., state machines. In the core, such an automaton determines
the currently available contracts (pre- and post-conditions) for each time point.
Additionally, the frontend should permit the speci�cation of variants.

We plan to use the contract automata for the static veri�cation, as well as, the
dynamic veri�cation via generated monitors. In contrast to the partial behavior
description by the gtts, contract automata allow modular and compositional
veri�cation.

Final Remark.
We believe that formal methods have shown and will show a substantial di�er-
ence in the development of software and reactive systems. Especially, formal
veri�cation can guarantee strong safety and – currently not well-established
– security requirements. Also, formal veri�cation requires to be accompanied

222 CHAPTER 13. CONCLUSION

by a rigorous development process and runtime checks to bring the previously
proofed guarantees into the operation, and carry them over the decades.

Although, their advantages, they are currently not present in the practice of
the development. With this thesis, we provide a new kind of table-based formal
speci�cation languages that can capture functional and relational properties.
We think these languages are easier to learn and to adapt in the development
practice, mainly because their predecessors are already used.

AppendixA

Glossary

In this appendix, we gather the used notions across this thesis to allow an easy
lookup.

Name of Tools and Proper Names.

aPS stands for automated production system, used synonymously for auto-
mated manufacturing system or plant

CodeSys is an IDE for the development of IEC 61131-3 software.

eldarica is a solver for Horn-clauses which also provides a frontend for
C-programs, see [HR18] and used Section 6.2.

FBD Function Block Diagram—a graphical programming language of IEC 61131-
3 (Section 2.2).

geteta is the implementation of the veri�cation pipeline for gtts (Chapter 6
and Section 6.3).

IC3 is technique for checking invariants (Section 2.3).

IL Instruction List is a textual assembler-like programming language of the
IEC 61131-3 standard (Section 2.2).

LD Ladder Diagram is a graphical programming language of IEC 61131-3 (Sec-
tion 2.2).

nuXmv is a symbolical model checker, see [Cav+14].

SeaHorn is a modern C-program veri�er, see [Gur+15] used in Section 6.2.

223

224 APPENDIX A. GLOSSARY

SFC Sequential Function Chart is a graphical automata-like programming lan-
guage of IEC 61131-3 (Section 2.2)

ST Structured Text is a textual Pascal-like programming language of IEC 61131-
3 (Section 2.2).

ST0 is a reduced Structured Text dialect and our intermediate representation
(De�nition 6.9).

stvs is a graphical interface for the geteta and the veri�cation of gtts (see
Figure 6.4).

verifaps is our veri�cation library for aPS (Sections 1.1 and 6.3).

Basic Notations.

Kripke structure is a graph-like mathematical description for systems, de�ned
in Section 2.3.

N denotes the set of natural numbers.

Seq(X) denotes the set of all �nite sequences other the set X (Seq(X) =⋃
i≤0 X

i).

Notations for Reactive Programs.

reactive program Source code (Syntax) which is repeatedly executed (De�ni-
tion 5.1) by a reactive system.

reactive system A system, which periodically triggers the reactive program
(De�nition 5.2 and Section 2.1).

InVar ,OutVar , StateVar are the sets of input, output or state variables of a
reactive system or program. Σ = InVar ∪ OutVar ∪ StateVar denotes
the complete variable signature.

I,O,S are the sets of the input values, output values or state values of a
reactive system or program. These sets are the cartesian product of the
value domains of each input, output or state variable.

Notations for Generalized Test Table.

φ, ψ are often used as placeholder for a symbolic cell constraints E. φ is the
assumption or pre-condition, and ψ is the assertion or post-conditon.

225

τ is used as a time constraints T.

SP(T) denotes the set of symbolical plays for a gtt T (Section 5.3.2).

ŜP denotes the current state of the game regarding to the remaining possible
plays (Figure 5.1). Simetimes ŜP

k
used with k ∈ N to denote a particular

round k in a play.

pre, post are indices to be used on state variables in cell content (De�nition 5.4)
to denote whether the state variable is evaluated in the state before or
after the execution of the system.

next is a function in cell constraints (De�nition 5.5) which denotes that the
state variable is evaluated in the latest state (cf. De�nition 5.10).

E denotes the set of all cell constraints (De�nition 5.5).

T denotes the set of all gtts (De�nition 5.7).

T denotes the set of all time expressions (De�nition 5.6)

M(T) the monitor of gtt T (De�nition 8.1)

succ(r) denotes the successor rows of r. We use succ(0) to denote the initial
reachable rows. (De�nition 5.8)

Regression Veri�cation

(φ, α, ω) is a semantical regression (veri�cation) contract (Section 12.2.2).

RV (C,P,Q) is a regression proof obligation or goal for a given regression
contract C and two reactive programs P,Q (Section 12.2.2).

Appendix B

Source Code

B.1 Function Block MinMaxWarning

1 TYPE
2 OperationMode : (Learn , Active);
3 END_TYPE
4
5 PROGRAM MinMax
6
7 VAR CONSTANT
8 WAIT_BEFORE_WARNING : INT := 10; // Amount of cycles outside

before given a warning.
9 WAIT_AFTER_WARNING : INT := 5; // Amount of cycles inside,

before withdraw warning.
10 END_VAR
11
12 VAR_INPUT
13 mode : OperationMode; // learning or active mode
14 learn : BOOL; // True iff current signal should be learnt
15 I : INT; // input signal
16 END_VAR
17
18 VAR_OUTPUT
19 W : BOOL;
20 Q : INT;
21 END_VAR
22

227

228 APPENDIX B. SOURCE CODE

23 VAR
24 lower : INT := 32766; // minimal teached value
25 upper : INT := -32767; // maximal teach value
26 cntQuench : INT := 5; // remaining cycles for withdraw

warning
27 cntHeat : INT := 10; // remaining cycles to signal

warning
28 END_VAR
29
30
31 IF mode = OperationMode#Learn THEN // go into learning
32 IF learn THEN
33 lower := MIN(lower, I);
34 upper := MAX(upper, I);
35 END_IF
36 Q := 0;
37 W := FALSE;
38 ELSE
39 IF upper < lower THEN
40 Q := 0;
41 W := TRUE;
42 ELSE
43 Q := MIN(upper, MAX(lower, I));
44 IF I <> Q THEN
45 cntHeat := cntHeat - 1;
46 cntQuench := WAIT_AFTER_WARNING;
47 IF cntHeat = 0 THEN
48 W := TRUE;
49 END_IF
50 ELSE
51 cntQuench := cntQuench - 1;
52 cntHeat := WAIT_BEFORE_WARNING;
53 IF cntQuench = 0 THEN
54 W := FALSE;
55 END_IF
56 END_IF
57 END_IF
58 END_IF
59
60 END_PROGRAM

Listing B.1: Function Block MinMaxWarning for clamping a value into a learnt
range

B.2. FUNCTION BLOCK LINRE 229

B.2 Function Block LinRe

1 TYPE
2 OpMode : (Op , Teach);
3 TeachStatus : (Ok, NoTeachPoints, Teaching, InvalidTeachPoints,

InvalidInputValue);
4 END_TYPE
5
6 PROGRAM LinRe
7
8 VAR CONSTANT
9 SENSORINPUT_MIN : INT := 0;

10 SENSORINPUT_MAX : INT := 4095;
11 TEACHTIMEOUT : TIME := TIME#20s0ms;
12 ICONST : INT := 1000;
13 END_VAR
14
15 VAR_INPUT
16 TPSet : BOOL; SensorInput, TPy : INT; OperationMode : OpMode;
17 END_VAR
18
19 VAR_OUTPUT SensorOutput : INT; END_VAR
20
21 VAR
22 initial : BOOL;
23 lastmode : OpMode;
24 Status : TeachStatus;
25 teachstep : INT;
26 x_temp, y_temp, t, m, x1, y1, x2, y2 : INT;
27 timeout : TON;
28 END_VAR
29
30 IF NOT initial THEN
31 x1 := 0;
32 y1 := 0;
33 x2 := 0;
34 y2 := 0;
35 Status := TeachStatus#NoTeachPoints;
36 initial := TRUE;
37 ELSE
38 IF OperationMode = OpMode#Op THEN

230 APPENDIX B. SOURCE CODE

39 IF Status = TeachStatus#Ok AND SensorInput >= SENSORINPUT_MIN
AND SensorInput <= SENSORINPUT_MAX THEN

40 SensorOutput := m * SensorInput / ICONST + t;
41 ELSE
42 SensorOutput := 0;
43 END_IF;
44 ELSIF OperationMode = OpMode#Teach THEN
45 IF lastmode <> OperationMode THEN
46 teachstep := 0;
47 timeout(IN := FALSE);
48 END_IF;
49
50 CASE teachstep OF
51 0:
52 Status := TeachStatus#Teaching;
53 timeout(IN := TRUE, PT:=TEACHTIMEOUT);
54 IF timeout.Q THEN OperationMode := OpMode#Op; END_IF;
55
56 IF TPSet AND SensorInput >= SENSORINPUT_MIN AND

SensorInput <= SENSORINPUT_MAX THEN
57 y1 := TPy;
58 x1 := SensorInput;
59 teachstep := 1;
60 timeout(IN := FALSE);
61 END_IF;
62 1:
63 IF TPSet = FALSE THEN
64 teachstep := 2;
65 END_IF
66 2:
67 timeout(IN := TRUE, PT:=TEACHTIMEOUT);
68
69 IF timeout.Q THEN OperationMode := OpMode#Op; END_IF;
70
71 IF TPSet AND SensorInput >= SENSORINPUT_MIN
72 AND SensorInput <= SENSORINPUT_MAX THEN
73 y2 := TPy; x2 := SensorInput;
74 teachstep := 3; timeout(IN := FALSE);
75 END_IF;
76 3:
77 IF x1 > x2 THEN
78 x_temp := x1; y_temp := y1; x1 := x2; y1 := y2;
79 x2 := x_temp; y2 := y_temp;

B.2. FUNCTION BLOCK LINRE 231

80 END_IF;
81
82 IF x2 - x1 <> 0 THEN
83 m := (y2 - y1) * ICONST / (x2 - x1);
84 t := y1 - m * x1 / ICONST;
85 Status := TeachStatus#Ok;
86 ELSE
87 Status := TeachStatus#InvalidTeachPoints;
88 OperationMode := OpMode#Op;
89 END_IF
90 END_CASE
91 END_IF
92 END_IF
93 lastmode := OperationMode;
94 END_PROGRAM

Listing B.2: Function Block LinRe for the linear interpolation of sensor values

List of Figures

1 A gtt for the MinMaxWarning function block Appendix B.1. iv
2 rtt for the equal behavior after reset v

3.2 Example speci�cation from [DBM15, Figure 3] describing a Mealy
automaton. 25

3.4 An example of a timing diagram from [Fis99, Figure 1.]. 29
3.5 A speci�cation for an elevator: at$i is true if the elevator is at the

ith �oor. 32

4.1 Example for a ctt with two input variables, two output variables
covering 10 cycles of the system. 40

4.2 Example for a generalized test table with a global variable p. 42
4.5 A gtt for Function Block RS . 48
4.7 A gtt for the TP function block. 50
4.8 Example of a nested gtt for a conveyor belt. 51
4.9 An example gtt for a solar thermal system. 51
4.10 Three gtts where each gtt describes exactly two ctts and has a

di�erent interpretation in the conformance. 53

5.1 Game between challenger and system w.r.t. a gtt T 68
5.2 gtt illustrating the di�erence between strict and weak conformance 69
5.3 A gtt with a global variable p, without any compliant system. . . . 75
5.4 A gtt with a global variable p specifying the identity function for

the �rst cycle. 75
5.5 Two gtts with a gtt-local variable p, which can be assigned. 77

6.1 Model-Checking Pipeline . 80
6.2 A normalized table and the successor relation on its rows. 81

233

234 LIST OF FIGURES

6.3 Sketch of the automaton generated for the gtt of Figure 4.9 84
6.4 Screenshot of stvs . 87
6.5 Horn-based veri�cation pipeline for gtts 87
6.7 Preprocessing for ST0 . 97
6.8 Grammar of the input language for gtts. 〈cell〉 and 〈expr〉 are

de�ned in De�nition 5.4 and 〈time〉 in De�nition 5.3 100

7.2 gtts for CTU . 105
7.4 gtt for Function Block DEBOUNCE, where meta-variable T represents

an arbitrary waiting time, and is instantiated to retrieve a valid gtt. 107
7.5 Schematic view of the investigated function block with a state ma-

chine describing its operation. 109
7.6 Concrete test table of analog sensor function block 109
7.7 Generalized test table of function block for linear re-scaling, where

L is the linear regression, see (7.1). 110
7.8 Three gtts for the speci�cation of the MinMaxWarning’s behavior . . 111
7.9 The Pick-and-Place Unit in a medium-sized con�guration consisting

a stack, crane, stamp, and the conveyor belt with di�erent ramps and
pushers. Figure provided by Institute of Automation and Information
Systems from Technical University of Munich (TUM) 113

7.10 gtt for the emergency stop behavior of the PPU 114
7.11 A gtt for the crane-as-bu�er maneuver to bypass the Stamp and

improve overall workpiece throughput. 116
7.12 A gtt specifying the PLC software’s behavior for sorting black work

pieces. 117
7.13 A gtt specifying the PLC software’s behavior for sorting white

non-metal work pieces. 117

8.3 gtt for the cruise control system which is restarted when the
CraseState is set to off . 134

8.4 gtt describing a material �ow . 134

9.1 A gtt equivalent to FIn under strict or cooperative conformance. . 142
9.2 Grinding and sorting processing unit 145
9.3 Example for a meshed gtt . 147
9.4 Generalized game. C represents the nondeterministic challenger,

and S the system, respectively. 149

10.2 Example for an rtt . 161
10.3 Additions and changes to the grammar Figure 6.8 for specifying rtts 162
10.5 Scheme of an augmented program 166
10.7 Veri�cation pipeline for rtts and ST0 code 169

LIST OF FIGURES 235

10.8 Combination of regression and delta veri�cation. 170
10.9 rtt for equal behavior after reset 172
10.10 rtt for the regression veri�cation between three programs 173
10.11 rtt for a information �ow property 174

11.2 Template of rtt for information forgetting with an annealing phase
of length k . 183

11.3 Automaton checking the rtt in Figure 11.2 184
11.4 Hardware components of the system to be veri�ed. 186
11.5 Architecture of the software consisting out of four structural ele-

ments: main program, sequence automaton, main axis control and
HMI. 187

12.1 Schematic of the plant consisting of a conveyor belt B with two
processing stations s1 and s2. 196

12.2 Sketch of the program �ow of the motivating example: the original
revision on the left and the adapted revision on the right. 196

12.4 Algorithm to check the equivalence of two frames 203
12.5 Four di�erent frames EqualSE . 205
12.6 The algorithm to infer a mapping of the state variables for a given

regression contract of two frames f, f ′. 206

Listings

3.3 Example speci�cation of a stop watch in CocoSpec. 28
4.4 Function Block RS . 48
4.6 Function block PT . 49
6.6 Sketch of the monitored program. 93
6.9 Textual representation of Figure 4.7 101
7.1 Function Block counting-up on rising edges. 105
7.3 Function Block DEBOUNCE . 106
8.1 The C++ interface of gtt-monitors 132
8.2 The implementation skeleton of gtt-monitors 133
10.4 The textual representation of the rtt in Figure 10.2. 164
11.1 Simple program to control a ba�e gate. The ba�e get is un-

blocked for T cycles after an user has authorized. 179
12.3 A frame constellation in which it is forbidden to abstract Frame

B as this makes <unreachable> reachable. 200
B.1 Function Block MinMaxWarning for clamping a value into a

learnt range . 227
B.2 Function Block LinRe for the linear interpolation of sensor values 229

237

List of Tables

3.1 “Number of studies related to di�erent programming languages in
5-year periods From: An overview of model checking practices on
veri�cation of PLC software” [Ova+16, Table 13] 22

4.3 Constraint abbreviations from [Bec+17]. X is the name of the vari-
able that the cell corresponds to; n,m are arbitrary expressions of
type integer; α, β are abbreviations or formulas. 43

7.14 Statistics for the veri�cation of weak conformance. CPU times
are the median of �ve samples if the veri�cation was successful.
Otherwise, “unsafe” denotes that the veri�er detected an error, “t/o”
the time-out of 10 minutes was reached, “oom” out-of-memory or
“err” the veri�er was not able to parse the given input �le. 120

7.15 Alternative veri�cations for Function Block MinMaxWarning. Table
gives runtimes for the veri�cation of strict conformance with nuXmv
and weak conformance with ic3ia. Runtimes are cpu time given as
median of �ve samples. Note that weak conformance veri�cation
with ic3ia have no bound on the global variables. 121

10.1 Constraints abbreviations for relational references. 158
10.6 Runtime of the relational veri�cation for our application scenarios . 168

11.6 Runtime of the model-checker to prove the forgetting of information 190

12.7 Results of the regression veri�cation algorithm. 212

239

Bibliography

[AT11] Jagannath Aghav and Ashwin Tumma. “ESTEREL IMPLEMEN-
TATION AND VALIDATION OF CRUISE CONTROLLER”. In:
Computer Science, Engineering And Applications (CCSEA). 2011,
pp. 128–141. doi: 10.5121/csit.2011.1214.

[Arm+02] Roy Armoni et al. “The ForSpec Temporal Logic: A New Tempo-
ral Property-Speci�cation Language”. In: Tools and Algorithms

for the Construction and Analysis of Systems, 8th International

Conference, TACAS 2002, Held as Part of the Joint European Con-

ference on Theory and Practice of Software, ETAPS 2002, Grenoble,

France, April 8-12, 2002, Proceedings. Ed. by Joost-Pieter Katoen
and Perdita Stevens. Vol. 2280. Lecture Notes in Computer Sci-
ence. Springer, 2002, pp. 296–211. doi: 10.1007/3-540-46002-0_2
1.

[BBL09] Franz Baader, Andreas Bauer, and Marcel Lippmann. “Runtime
Veri�cation Using a Temporal Description Logic”. In: Frontiers
of Combining Systems, 7th International Symposium, FroCoS 2009,

Trento, Italy, September 16-18, 2009. Proceedings. Ed. by Silvio
Ghilardi and Roberto Sebastiani. Vol. 5749. Lecture Notes in
Computer Science. Springer, 2009, pp. 149–164. doi: 10.1007/978
-3-642-04222-5_9.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model check-

ing. MIT Press, 2008.

241

https://doi.org/10.5121/csit.2011.1214
https://doi.org/10.1007/3-540-46002-0_21
https://doi.org/10.1007/3-540-46002-0_21
https://doi.org/10.1007/978-3-642-04222-5_9
https://doi.org/10.1007/978-3-642-04222-5_9

242 BIBLIOGRAPHY

[BDR04] G. Barthe, P. R. D’Argenio, and T. Rezk. “Secure information
�ow by self-composition”. In: Proceedings. 17th IEEE Computer

Security Foundations Workshop, 2004. 2004, pp. 100–114. doi:
10.1109/CSFW.2004.1310735.

[BCK11] Gilles Barthe, Juan Manuel Crespo, and César Kunz. “Relational
Veri�cation Using Product Programs”. In: FM 2011: Formal Meth-

ods - 17th International Symposium on Formal Methods, Limerick,

Ireland, June 20-24, 2011. Proceedings. Ed. by Michael J. Butler and
Wolfram Schulte. Vol. 6664. Lecture Notes in Computer Science.
Springer, 2011, pp. 200–214. doi: 10.1007/978-3-642-21437-0_17.

[Bar+19] Gilles Barthe, Renate Eilers, Pamina Georgiou, Bernhard Gleiss,
Laura Kovács, and Matteo Ma�ei. “Verifying Relational Proper-
ties using Trace Logic”. In: CoRR abs/1906.09899 (2019). arXiv:
1906.09899. url: http://arxiv.org/abs/1906.09899.

[Bar+18] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger.
“Introduction to Runtime Veri�cation”. In: Lectures on Runtime

Veri�cation - Introductory and Advanced Topics. Ed. by Ezio Bar-
tocci and Yliès Falcone. Vol. 10457. LNCS. Springer, 2018, pp. 1–
33. doi: 10.1007/978-3-319-75632-5_1.

[Bau+04a] Nanette Bauer, Sebastian Engell, Ralf Huuck, Sven Lohmann, Ben
Lukoschus, Manuel Remelhe, and Olaf Stursberg. “Veri�cation of
PLC Programs Given as Sequential Function Charts”. English. In:
Integration of Software Speci�cation Techniques for Applications

in Engineering. LNCS 3147. Springer, 2004. doi: 10.1007/978-3-5
40-27863-4_28.

[Bau+04b] Nanette Bauer, Ralf Huuck, Ben Lukoschus, and Sebastian Engell.
“A Unifying Semantics for Sequential Function Charts”. English.
In: Integration of Software Speci�cation Techniques for Applica-

tions in Engineering. LNCS 3147. Springer, 2004, pp. 400–418.
doi: 10.1007/978-3-540-27863-4_22.

[Bec+17] Bernhard Beckert, Suhyun Cha, Mattias Ulbrich, Birgit Vogel-
Heuser, and Alexander Weigl. “Generalised Test Tables: A Prac-
tical Speci�cation Language for Reactive Systems”. In: Integrated
Formal Methods - 13th International Conference, IFM 2017, Turin,

Italy, September 20-22, 2017, Proceedings. Ed. by Nadia Polikar-

https://doi.org/10.1109/CSFW.2004.1310735
https://doi.org/10.1007/978-3-642-21437-0_17
https://arxiv.org/abs/1906.09899
http://arxiv.org/abs/1906.09899
https://doi.org/10.1007/978-3-319-75632-5_1
https://doi.org/10.1007/978-3-540-27863-4_28
https://doi.org/10.1007/978-3-540-27863-4_28
https://doi.org/10.1007/978-3-540-27863-4_22

BIBLIOGRAPHY 243

pova and Steve Schneider. Vol. 10510. Lecture Notes in Computer
Science. Springer, 2017, pp. 129–144. doi: 10.1007/978-3-319-668
45-1_9.

[Bec+19] Bernhard Beckert, Jakob Mund, Mattias Ulbrich, and Alexan-
der Weigl. “Formal Veri�cation of Evolutionary Changes”. In:
Managed Software Evolution. Ed. by Ralf H. Reussner, Michael
Goedicke, Wilhelm Hasselbring, Birgit Vogel-Heuser, Jan Keim,
and Lukas Märtin. Springer, 2019, pp. 309–332. doi: 10.1007/978-
3-030-13499-0_11.

[Bec+15] Bernhard Beckert, Mattias Ulbrich, Birgit Vogel-Heuser, and
Alexander Weigl. “Regression Veri�cation for Programmable
Logic Controller Software”. In: Formal Methods and Software En-

gineering - 17th International Conference on Formal Engineering

Methods, ICFEM 2015, Paris, France, November 3-5, 2015, Proceed-

ings. Ed. by Michael J. Butler, Sylvain Conchon, and Fatiha Zaïdi.
Vol. 9407. Lecture Notes in Computer Science. Springer, 2015,
pp. 234–251. doi: 10.1007/978-3-319-25423-4_15.

[BK11] Dirk Beyer and M. Erkan Keremoglu. “CPAchecker: A Tool for
Con�gurable Software Veri�cation”. In: Computer Aided Veri�-

cation - 23rd International Conference, CAV 2011, Snowbird, UT,

USA, July 14-20, 2011. Proceedings. Ed. by Ganesh Gopalakrishnan
and Shaz Qadeer. Vol. 6806. Lecture Notes in Computer Science.
Springer, 2011, pp. 184–190. doi: 10.1007/978-3-642-22110-1_16.

[BBK12] Sebastian Biallas, Jörg Brauer, and Stefan Kowalewski. “Arcade.
PLC: A Veri�cation Platform for Programmable Logic Controllers”.
In: Proceedings of the 27th IEEE/ACM International Conference

on Automated Software Engineering. ASE 2012. Essen, Germany:
ACM, 2012, pp. 338–341. doi: 10.1145/2351676.2351741.

[Bit01] Friedemann Bitsch. “Safety Patterns - The Key to Formal Speci-
�cation of Safety Requirements”. In: Computer Safety, Reliability

and Security, 20th International Conference, SAFECOMP 2001, Bu-

dapest, Hungary, September 26-28, 2001, Proceedings. Ed. by Udo
Voges. Vol. 2187. Lecture Notes in Computer Science. Springer,
2001, pp. 176–189. doi: 10.1007/3-540-45416-0_18.

https://doi.org/10.1007/978-3-319-66845-1_9
https://doi.org/10.1007/978-3-319-66845-1_9
https://doi.org/10.1007/978-3-030-13499-0_11
https://doi.org/10.1007/978-3-030-13499-0_11
https://doi.org/10.1007/978-3-319-25423-4_15
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1145/2351676.2351741
https://doi.org/10.1007/3-540-45416-0_18

244 BIBLIOGRAPHY

[Bjø+15] Nikolaj Bjørner, Arie Gur�nkel, Kenneth L. McMillan, and An-
drey Rybalchenko. “Horn Clause Solvers for Program Veri�ca-
tion”. In: Fields of Logic and Computation II - Essays Dedicated

to Yuri Gurevich on the Occasion of His 75th Birthday. Ed. by
Lev D. Beklemishev, Andreas Blass, Nachum Dershowitz, Bernd
Finkbeiner, and Wolfram Schulte. Vol. 9300. Lecture Notes in
Computer Science. Springer, 2015, pp. 24–51. doi: 10.1007/978-3
-319-23534-9_2.

[Bla+17] Lionel Blatter, Nikolai Kosmatov, Pascale Le Gall, and Virgile
Prevosto. “RPP: Automatic Proof of Relational Properties by Self-
composition”. In: Tools and Algorithms for the Construction and

Analysis of Systems - 23rd International Conference, TACAS 2017,

Held as Part of the European Joint Conferences on Theory and

Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,

2017, Proceedings, Part I. Ed. by Axel Legay and Tiziana Margaria.
Vol. 10205. Lecture Notes in Computer Science. 2017, pp. 391–
397. doi: 10.1007/978-3-662-54577-5_22.

[BB11] Jan Olaf Blech and Sidi Ould Biha. “Veri�cation of PLC Properties
Based on Formal Semantics in Coq”. In: Software Engineering
and Formal Methods - 9th International Conference, SEFM 2011,

Montevideo, Uruguay, November 14-18, 2011. Proceedings. Ed. by
Gilles Barthe, Alberto Pardo, and Gerardo Schneider. Vol. 7041.
Lecture Notes in Computer Science. Springer, 2011, pp. 58–73.
doi: 10.1007/978-3-642-24690-6_6.

[Blo+15] Roderick Bloem, Bettina Könighofer, Robert Könighofer, and
Chao Wang. “Shield Synthesis:: Runtime Enforcement for Reac-
tive Systems”. en. In: Tools and Algorithms for the Construction

and Analysis of Systems (TACAS). Ed. by Christel Baier and Ce-
sare Tinelli. Vol. 9035. LNCS. Springer, 2015, pp. 533–548. doi:
10.1007/978-3-662-46681-0_51.

[BHK18] Dimitri Bohlender, Daniel Hamm, and Stefan Kowalewski. “Cycle-
bounded model checking of PLC software via dynamic large-
block encoding”. In: Proceedings of the 33rd Annual ACM Sym-

posium on Applied Computing, SAC 2018, Pau, France, April 09-

13, 2018. Ed. by Hisham M. Haddad, Roger L. Wainwright, and
Richard Chbeir. ACM, 2018, pp. 1891–1898. doi: 10.1145/316713
2.3167334.

https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-662-54577-5_22
https://doi.org/10.1007/978-3-642-24690-6_6
https://doi.org/10.1007/978-3-662-46681-0_51
https://doi.org/10.1145/3167132.3167334
https://doi.org/10.1145/3167132.3167334

BIBLIOGRAPHY 245

[BK18] Dimitri Bohlender and Stefan Kowalewski. “Design and Veri-
�cation of Restart-Robust Industrial Control Software”. In: In-
tegrated Formal Methods - 14th International Conference, IFM

2018, Maynooth, Ireland, September 5-7, 2018, Proceedings. Ed. by
Carlo A. Furia and Kirsten Winter. Vol. 11023. Lecture Notes in
Computer Science. Springer, 2018, pp. 47–68. doi: 10.1007/978-3
-319-98938-9_4.

[BK20] Dimitri Bohlender and Stefan Kowalewski. “Leveraging Horn
clause solving for compositional veri�cation of PLC software”.
In: Discret. Event Dyn. Syst. 30.1 (2020), pp. 1–24. doi: 10.1007/s1
0626-019-00296-8.

[Böm+20] Thomas Bömer, Karl-Heinz Büllesbach, Michael Hauke, Stefan
Otto, and Christian Werner. IFA Report 1/2020, Praxisgerechte

Umsetzung der Anforderungen für sicherheitsbezogene Embedded-

Software nach DIN EN ISO 13849-1. Tech. rep. Sankt Augustin:
Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallver-
sicherung (IFA), 2020.

[BM07] A. R. Bradley and Z. Manna. “Checking Safety by Inductive Gen-
eralization of Counterexamples to Induction”. In: Formal Methods

in Computer Aided Design, 2007. FMCAD ’07. 2007, pp. 173–180.
doi: 10.1109/FAMCAD.2007.15.

[Bra11] Aaron R. Bradley. “SAT-Based Model Checking without Un-
rolling”. English. In: Veri�cation, Model Checking, and Abstract

Interpretation. Ed. by Ranjit Jhala and David Schmidt. Vol. 6538.
LNCS. Springer, 2011, pp. 70–87. doi: 10.1007/978-3-642-18275-
4_7.

[Bra12] Aaron R. Bradley. “Understanding IC3”. In: Theory and Appli-

cations of Satis�ability Testing - SAT 2012 - 15th International

Conference, Trento, Italy, June 17-20, 2012. Proceedings. Ed. by
Alessandro Cimatti and Roberto Sebastiani. Vol. 7317. Lecture
Notes in Computer Science. Springer, 2012, pp. 1–14. doi: 10.10
07/978-3-642-31612-8_1.

[Bra+11] Aaron R. Bradley, Fabio Somenzi, Zyad Hassan, and Yan Zhang.
“An incremental approach to model checking progress proper-
ties”. In: International Conference on Formal Methods in Computer-

https://doi.org/10.1007/978-3-319-98938-9_4
https://doi.org/10.1007/978-3-319-98938-9_4
https://doi.org/10.1007/s10626-019-00296-8
https://doi.org/10.1007/s10626-019-00296-8
https://doi.org/10.1109/FAMCAD.2007.15
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-31612-8_1
https://doi.org/10.1007/978-3-642-31612-8_1

246 BIBLIOGRAPHY

Aided Design, FMCAD ’11, Austin, TX, USA, October 30 - November

02, 2011. Ed. by Per Bjesse and Anna Slobodová. FMCAD Inc.,
2011, pp. 144–153. url: http://dl.acm.org/citation.cfm?id=21576
77.

[BL90] J. Richard Buchi and Lawrence H. Landweber. “Solving Sequen-
tial Conditions by Finite-State Strategies”. In: The CollectedWorks

of J. Richard Büchi. Ed. by Saunders Mac Lane and Dirk Siefkes.
New York, NY: Springer New York, 1990, pp. 525–541. doi: 10.10
07/978-1-4613-8928-6_29.

[Büc90] J. Richard Büchi. “On a Decision Method in Restricted Second
Order Arithmetic”. In: The Collected Works of J. Richard Büchi. Ed.
by Saunders Mac Lane and Dirk Siefkes. New York, NY: Springer
New York, 1990, pp. 425–435. doi: 10.1007/978-1-4613-8928-6_2
3.

[Bur+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.
“Symbolic model checking: 1020 States and beyond”. In: Informa-

tion and Computation 98.2 (1992), pp. 142–170. url: http://www
.sciencedirect.com/science/article/pii/089054019290017A.

[Cav+14] Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto
Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover,
Marco Roveri, and Stefano Tonetta. “The nuXmv Symbolic Model
Checker”. In: CAV 2014. Vol. 8559. LNCS. Springer, 2014, pp. 334–
342.

[Cha21] Suhyun Cha. “Application concept and evaluation of a formal
speci�cation approach usable by engineers for retro�tting pro-
duction automation by software changes”. submitted. PhD thesis.
Technical University of Munich, 2021.

[Cha+19] Suhyun Cha, Mattias Ulbrich, Alexander Weigl, Bernhard Beck-
ert, Kathrin Land, and Birgit Vogel-Heuser. “On the Preserva-
tion of the Trust by Regression Veri�cation of PLC software for
Cyber-Physical Systems of Systems”. In: 17th IEEE International

Conference on Industrial Informatics, INDIN 2019, Helsinki, Fin-

land, July 22-25, 2019. IEEE, 2019, pp. 413–418. doi: 10.1109/IND
IN41052.2019.8972210.

http://dl.acm.org/citation.cfm?id=2157677
http://dl.acm.org/citation.cfm?id=2157677
https://doi.org/10.1007/978-1-4613-8928-6_29
https://doi.org/10.1007/978-1-4613-8928-6_29
https://doi.org/10.1007/978-1-4613-8928-6_23
https://doi.org/10.1007/978-1-4613-8928-6_23
http://www.sciencedirect.com/science/article/pii/089054019290017A
http://www.sciencedirect.com/science/article/pii/089054019290017A
https://doi.org/10.1109/INDIN41052.2019.8972210
https://doi.org/10.1109/INDIN41052.2019.8972210

BIBLIOGRAPHY 247

[Cha+17] Suhyun Cha, Sebastian Ulewicz, Birgit Vogel-Heuser, Alexander
Weigl, Mattias Ulbrich, and Bernhard Beckert. “Generation of
monitoring functions in production automation using test spec-
i�cations”. In: 15th IEEE International Conference on Industrial

Informatics, INDIN 2017, Emden, Germany, July 24-26, 2017. IEEE,
2017, pp. 339–344. doi: 10.1109/INDIN.2017.8104795.

[Cha+] Suhyun Cha, Birgit Vogel-Heuser, Alexander Weigl, Mattias Ul-
brich, and Bernhard Beckert. “Table-based formal speci�cation
approaches for control engineers – empirical studies of usabil-
ity”. In: IET Cyber-Physical Systems: Theory & Applications ().
submitted.

[Cha+18a] Suhyun Cha, Alexander Weigl, Mattias Ulbrich, Bernhard Beck-
ert, and Birgit Vogel-Heuser. “Achieving delta description of the
control software for an automated production system evolution”.
In: 14th IEEE International Conference on Automation Science and

Engineering, CASE 2018, Munich, Germany, August 20-24, 2018.
IEEE, 2018, pp. 1170–1176. doi: 10.1109/COASE.2018.8560588.

[Cha+18b] Suhyun Cha, Alexander Weigl, Mattias Ulbrich, Bernhard Beck-
ert, and Birgit Vogel-Heuser. “Applicability of generalized test
tables: a case study using the manufacturing system demonstra-
tor xPPU”. In: Automatisierungstechnik 66.10 (2018), pp. 834–848.
doi: 10.1515/auto-2018-0028.

[Cha+16] Adrien Champion, Arie Gur�nkel, Temesghen Kahsai, and Ce-
sare Tinelli. “CoCoSpec: A Mode-Aware Contract Language for
Reactive Systems”. In: Software Engineering and Formal Methods

- 14th International Conference, SEFM 2016, Held as Part of STAF

2016, Vienna, Austria, July 4-8, 2016, Proceedings. Ed. by Rocco
De Nicola and eva Kühn. Vol. 9763. Lecture Notes in Computer
Science. Springer, 2016, pp. 347–366. doi: 10.1007/978-3-319-415
91-8_24.

[CR05] Feng Chen and Grigore Roşu. “Java-MOP: A Monitoring Oriented
Programming Environment for Java”. In: Tools and Algorithms for

the Construction and Analysis of Systems (TACAS). Ed. by Nicolas
Halbwachs and Lenore D. Zuck. Vol. 3440. LNCS. Springer, 2005,
pp. 546–550. doi: 10.1007/978-3-540-31980-1_36.

https://doi.org/10.1109/INDIN.2017.8104795
https://doi.org/10.1109/COASE.2018.8560588
https://doi.org/10.1515/auto-2018-0028
https://doi.org/10.1007/978-3-319-41591-8_24
https://doi.org/10.1007/978-3-319-41591-8_24
https://doi.org/10.1007/978-3-540-31980-1_36

248 BIBLIOGRAPHY

[CL02] Yoonsik Cheon and Gary T Leavens. “A Runtime Assertion
Checker for the Java Modeling Language (JML)”. en. In: Software
Engineering Research and Practice (SERP). 2002.

[CGH97] Edmund M. Clarke, Orna Grumberg, and Kiyoharu Hamaguchi.
“Another Look at LTL Model Checking”. In: Formal Methods Syst.

Des. 10.1 (1997), pp. 47–71. doi: 10.1023/A:1008615614281.

[Cla+14] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristo-
pher K. Micinski, Markus N. Rabe, and César Sánchez. “Temporal
Logics for Hyperproperties”. In: Principles of Security and Trust

- Third International Conference, POST 2014, Held as Part of the

European Joint Conferences on Theory and Practice of Software,

ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings. 2014,
pp. 265–284. doi: 10.1007/978-3-642-54792-8_15.

[CS08] Michael R. Clarkson and Fred B. Schneider. “Hyperproperties”.
In: Proceedings of the 21st IEEE Computer Security Foundations

Symposium, CSF 2008, Pittsburgh, Pennsylvania, 23-25 June 2008.
2008, pp. 51–65. doi: 10.1109/CSF.2008.7.

[CS10] Michael R. Clarkson and Fred B. Schneider. “Hyperproperties”.
In: Journal of Computer Security 18.6 (2010), pp. 1157–1210. doi:
10.3233/JCS-2009-0393.

[Cre+99] Giovanni Di Crescenzo, Niels Ferguson, Russell Impagliazzo, and
Markus Jakobsson. “How to Forget a Secret”. In: STACS 99, 16th
Annual Symposium on Theoretical Aspects of Computer Science,

Trier, Germany, March 4-6, 1999, Proceedings. Ed. by Christoph
Meinel and Sophie Tison. Vol. 1563. Lecture Notes in Computer
Science. Springer, 1999, pp. 500–509. doi: 10.1007/3-540-49116-
3_47.

[DAn+05] Ben D’Angelo, Sriram Sankaranarayanan, César Sánchez, Will
Robinson, Bernd Finkbeiner, Henny B. Sipma, Sandeep Mehrotra,
and Zohar Manna. “LOLA: Runtime Monitoring of Synchronous
Systems”. In: Temporal Representation and Reasoning (TIME).
IEEE, 2005, pp. 166–174. doi: 10.1109/TIME.2005.26.

[Dan+16] Jakub Daniel, Alessandro Cimatti, Alberto Griggio, Stefano To-
netta, and Sergio Mover. “In�nite-State Liveness-to-Safety via

https://doi.org/10.1023/A:1008615614281
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1007/3-540-49116-3_47
https://doi.org/10.1007/3-540-49116-3_47
https://doi.org/10.1109/TIME.2005.26

BIBLIOGRAPHY 249

Implicit Abstraction and Well-Founded Relations”. In: Computer

Aided Veri�cation - 28th International Conference, CAV 2016,

Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I. Ed.
by Swarat Chaudhuri and Azadeh Farzan. Vol. 9779. Lecture
Notes in Computer Science. Springer, 2016, pp. 271–291. doi:
10.1007/978-3-319-41528-4_15.

[DBM15] Dániel Darvas, Enrique Blanco Viñuela, and István Majzik. “A
formal speci�cation method for PLC-based applications”. In:
Proceedings of the 15th International Conference on Accelerator

and Large Experimental Physics Control Systems. 2015, pp. 907–
910.

[DFB15] Dániel Darvas, Borja Fernández Adiego, and Enrique Blanco
Viñuela. “PLCverif: A tool to verify PLC programs based on
model checking techniques”. In: Proceedings of the 15th Interna-

tional Conference on Accelerator and Large Experimental Physics

Control Systems. Melbourne, Australia, 2015, pp. 911–914.

[DMV16a] Dániel Darvas, István Majzik, and Enrique Blanco Viñuela. “Con-
formance checking for programmable logic controller programs
and speci�cations”. In: 11th IEEE Symposium on Industrial Em-

bedded Systems, SIES 2016, Krakow, Poland, May 23-25, 2016. IEEE,
2016, pp. 29–36. doi: 10.1109/SIES.2016.7509409.

[DMV16b] Dániel Darvas, István Majzik, and Enrique Blanco Viñuela. “For-
mal Veri�cation of Safety PLC Based Control Software”. In: In-
tegrated Formal Methods - 12th International Conference, IFM

2016, Reykjavik, Iceland, June 1-5, 2016, Proceedings. Ed. by Erika
Ábrahám and Marieke Huisman. Vol. 9681. Lecture Notes in
Computer Science. Springer, 2016, pp. 508–522. doi: 10.1007/978
-3-319-33693-0_32.

[DVM16] Dániel Darvas, Enrique Blanco Viñuela, and István Majzik. “PLC
code generation based on a formal speci�cation language”. In:
14th IEEE International Conference on Industrial Informatics, IN-

DIN 2016, Poitiers, France, July 19-21, 2016. IEEE, 2016, pp. 389–
396. doi: 10.1109/INDIN.2016.7819191.

https://doi.org/10.1007/978-3-319-41528-4_15
https://doi.org/10.1109/SIES.2016.7509409
https://doi.org/10.1007/978-3-319-33693-0_32
https://doi.org/10.1007/978-3-319-33693-0_32
https://doi.org/10.1109/INDIN.2016.7819191

250 BIBLIOGRAPHY

[Den76] Dorothy E. Denning. “A Lattice Model of Secure Information
Flow”. In: Commun. ACM 19.5 (1976), pp. 236–243. doi: 10.1145
/360051.360056.

[Die+16] Sarah Diesburg, Christopher Meyers, Mark Stanovich, An-I Andy
Wang, and Geo� Kuenning. “TrueErase: Leveraging an Auxiliary
Data Path for Per-File Secure Deletion”. In: ACM Trans. Storage

12.4 (2016). doi: 10.1145/2854882.

[Dil+94] Laura K. Dillon, George Kutty, Louise E. Moser, P. M. Melliar-
Smith, and Y. S. Ramakrishna. “A Graphical Interval Logic for
Specifying Concurrent Systems”. In: ACM Trans. Softw. Eng.

Methodol. 3.2 (1994), pp. 131–165. doi: 10.1145/192218.192226.

[Dim+12] Rayna Dimitrova, Bernd Finkbeiner, Máté Kovács, Markus N.
Rabe, and Helmut Seidl. “Model Checking Information Flow
in Reactive Systems”. In: Veri�cation, Model Checking, and Ab-

stract Interpretation - 13th International Conference, VMCAI 2012,

Philadelphia, PA, USA, January 22-24, 2012. Proceedings. Ed. by
Viktor Kuncak and Andrey Rybalchenko. Vol. 7148. Lecture
Notes in Computer Science. Springer, 2012, pp. 169–185. doi:
10.1007/978-3-642-27940-9_12.

[EMH18] Marco Eilers, Peter Müller, and Samuel Hitz. “Modular Product
Programs”. In: Programming Languages and Systems - 27th Euro-

pean Symposium on Programming, ESOP 2018, Held as Part of the

European Joint Conferences on Theory and Practice of Software,

ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings.
Ed. by Amal Ahmed. Vol. 10801. Lecture Notes in Computer
Science. Springer, 2018, pp. 502–529. doi: 10.1007/978-3-319-898
84-1_18.

[Fer+14] Borja Fernández Adiego, Dániel Darvas, Enrique Blanco Viñuela,
Jean-Charles Tournier, Víctor M. González Suárez, and Jan Olaf
Blech. “Modelling and Formal Veri�cation of Timing Aspects
in Large PLC Programs”. In: Proceedings of the 19th IFAC World

Congress. Cape Town, South Africa, 2014, pp. 3333–3339.

[FJ97] Konrad Feyerabend and Bernhard Josko. “A visual formalism
for real time requirement speci�cations”. In: Transformation-

Based Reactive Systems Development. Ed. by Miquel Bertran and

https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/2854882
https://doi.org/10.1145/192218.192226
https://doi.org/10.1007/978-3-642-27940-9_12
https://doi.org/10.1007/978-3-319-89884-1_18
https://doi.org/10.1007/978-3-319-89884-1_18

BIBLIOGRAPHY 251

Teodor Rus. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997,
pp. 156–168.

[Fin+19] Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Lean-
der Tentrup. “Monitoring hyperproperties”. In: Formal Methods

in System Design 54.3 (2019), pp. 336–363. doi: 10.1007/s10703-0
19-00334-z.

[FK09] Bernd Finkbeiner and Lars Kuhtz. “Monitor Circuits for LTL
with Bounded and Unbounded Future”. In: Runtime Veri�cation

(RV) 2009. Ed. by Saddek Bensalem and Doron A. Peled. Vol. 5779.
LNCS. Springer, 2009, pp. 60–75. doi: 10.1007/978-3-642-04694-
0_5.

[Fis99] Kathi Fisler. “Timing Diagrams: Formalization and Algorithmic
Veri�cation”. In: J. Log. Lang. Inf. 8.3 (1999), pp. 323–361. doi:
10.1023/A:1008345113376.

[GS13] Benny Godlin and Ofer Strichman. “Regression veri�cation: prov-
ing the equivalence of similar programs”. In: Softw. Test. Veri�-
cation Reliab. 23.3 (2013), pp. 241–258. doi: 10.1002/stvr.1472.

[Gor19] Mattias Goren�o. “Semantic-Preserving Transformations of Se-
quential Function Charts into E�cient Structured Text”. B.Sc
Thesis. 2019.

[GGS21] Ohad Goudsmid, Orna Grumberg, and Sarai Sheinvald. “Compo-
sitional Model Checking for Multi-properties”. In: Veri�cation,
Model Checking, and Abstract Interpretation - 22nd International

Conference, VMCAI 2021, Copenhagen, Denmark, January 17-

19, 2021, Proceedings. Ed. by Fritz Henglein, Sharon Shoham,
and Yakir Vizel. Vol. 12597. Lecture Notes in Computer Science.
Springer, 2021, pp. 55–80. doi: 10.1007/978-3-030-67067-2_4.

[Gri+12] Stephan Grimm, Michael Watzke, Thomas Hubauer, and Falco
Cescolini. “Embedded EL+ Reasoning on Programmable Logic
Controllers”. In: The Semantic Web - ISWC 2012 - 11th Interna-

tional Semantic Web Conference, Boston, MA, USA, November

11-15, 2012, Proceedings, Part II. Ed. by Philippe Cudré-Mauroux
et al. Vol. 7650. Lecture Notes in Computer Science. Springer,
2012, pp. 66–81. doi: 10.1007/978-3-642-35173-0_5.

https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/978-3-642-04694-0_5
https://doi.org/10.1007/978-3-642-04694-0_5
https://doi.org/10.1023/A:1008345113376
https://doi.org/10.1002/stvr.1472
https://doi.org/10.1007/978-3-030-67067-2_4
https://doi.org/10.1007/978-3-642-35173-0_5

252 BIBLIOGRAPHY

[Gur+15] Arie Gur�nkel, Temesghen Kahsai, Anvesh Komuravelli, and
Jorge A. Navas. “The SeaHorn Veri�cation Framework”. In: Com-

puter Aided Veri�cation - 27th International Conference, CAV 2015,

San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I. Ed.
by Daniel Kroening and Corina S. Pasareanu. Vol. 9206. Lecture
Notes in Computer Science. Springer, 2015, pp. 343–361. doi:
10.1007/978-3-319-21690-4_20.

[GST16] Ofer Guthmann, Ofer Strichman, and Anna Trostanetski. “Min-
imal unsatis�able core extraction for SMT”. In: FMCAD 2016.
2016, pp. 57–64. doi: 10.1109/FMCAD.2016.7886661.

[Hal98] Nicolas Halbwachs. “Synchronous Programming of Reactive
Systems”. In: Computer Aided Veri�cation, 10th International

Conference, CAV ’98, Vancouver, BC, Canada, June 28 - July 2,

1998, Proceedings. Ed. by Alan J. Hu and Moshe Y. Vardi. Vol. 1427.
Lecture Notes in Computer Science. Springer, 1998, pp. 1–16.
doi: 10.1007/BFb0028726.

[HBS12] Zyad Hassan, Aaron R. Bradley, and Fabio Somenzi. “Incremen-
tal, Inductive CTL Model Checking”. In: Computer Aided Veri�ca-

tion - 24th International Conference, CAV 2012, Berkeley, CA, USA,

July 7-13, 2012 Proceedings. Ed. by P. Madhusudan and Sanjit A.
Seshia. Vol. 7358. Lecture Notes in Computer Science. Springer,
2012, pp. 532–547. doi: 10.1007/978-3-642-31424-7_38.

[Hau+17] Michael Hauke et al. IFA Report 2/2017, Funktionale Sicherheit von

Maschinensteuerungen –Anwendung der DIN EN ISO 13849–. Tech.
rep. Sankt Augustin: Institut für Arbeitsschutz der Deutschen
Gesetzlichen Unfallversicherung (IFA), 2017.

[HKL09] C. Heitmeyer, J. Kirby, and B. Labaw. “Tools for formal speci�ca-
tion, veri�cation, and validation of requirements”. In: Conference
on Computer Assurance (COMPASS). IEEE, 2009, pp. 35–47. doi:
10.1109/CMPASS.1997.613206.

[Hei+05] C. L. Heitmeyer, M. Archer, R. Bharadwaj, and R. Je�ords. “Tools
for constructing requirements speci�cations: The SCR toolset
at the age of ten”. In: International Journal of Computer Systems

Science and Engineering 20.1 (2005), pp. 19–35.

https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1109/FMCAD.2016.7886661
https://doi.org/10.1007/BFb0028726
https://doi.org/10.1007/978-3-642-31424-7_38
https://doi.org/10.1109/CMPASS.1997.613206

BIBLIOGRAPHY 253

[Hei+98] Constance L. Heitmeyer, James Kirby, Bruce G. Labaw, and
Ramesh Bharadwaj. “SCR*: A Toolset for Specifying and An-
alyzing Software Requirements”. In: Computer Aided Veri�cation,

10th International Conference, CAV ’98, Vancouver, BC, Canada,

June 28 - July 2, 1998, Proceedings. Ed. by Alan J. Hu and Moshe Y.
Vardi. Vol. 1427. Lecture Notes in Computer Science. Springer,
1998, pp. 526–531. doi: 10.1007/BFb0028775.

[HJ07] L. Heitmeyer and R. D. Je�ords. “Applying a Formal Require-
ments Method to Three NASA Systems: Lessons Learned”. In:
2007 IEEE Aerospace Conference. 2007, pp. 1–10. doi: 10.1109/AE
RO.2007.352764.

[HOW14] Hsi-Ming Ho, Joël Ouaknine, and James Worrell. “Online Mon-
itoring of Metric Temporal Logic”. en. In: Runtime Veri�cation

(RV). Ed. by Borzoo Bonakdarpour and Scott A. Smolka. Vol. 8734.
LNCS. Springer, 2014, pp. 178–192.

[Hoa69] C. A. R. Hoare. “An Axiomatic Basis for Computer Program-
ming”. In: Commun. ACM 12.10 (1969), pp. 576–580. doi: 10.114
5/363235.363259.

[HR18] Hossein Hojjat and Philipp Rümmer. “The ELDARICA Horn
Solver”. In: 2018 Formal Methods in Computer Aided Design, FM-

CAD 2018, Austin, TX, USA, October 30 - November 2, 2018. Ed. by
Nikolaj Bjørner and Arie Gur�nkel. IEEE, 2018, pp. 1–7. doi:
10.23919/FMCAD.2018.8603013.

[IEC61131-3] International Standard. IEC 61131-3: Programmable controllers –

Part 3: Programming languages. 2014.

[KTV12] B. Kormann, D. Tikhonov, and B. Vogel-Heuser. “Automated
PLC Software Testing using adapted UML Sequence Diagrams”.
In: 14th IFAC Symposium of Information Control Problems in Man-

ufacturing (2012), pp. 1615–1621.

[Koy90] Ron Koymans. “Specifying Real-Time Properties with Metric
Temporal Logic”. en. In: Real-Time Systems 2.4 (1990), pp. 255–
299. doi: 10.1007/BF01995674.

https://doi.org/10.1007/BFb0028775
https://doi.org/10.1109/AERO.2007.352764
https://doi.org/10.1109/AERO.2007.352764
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1007/BF01995674

254 BIBLIOGRAPHY

[KT14] Daniel Kroening and Michael Tautschnig. “CBMC – C Bounded
Model Checker”. In: Tools and Algorithms for the Construction

and Analysis of Systems (TACAS). Vol. 8413. LNCS. Springer, 2014,
pp. 389–391.

[KR18] C. Kurz and F. Rieger. Cyberwar – Die Gefahr aus dem Netz:

Wer uns bedroht und wie wir uns wehren können. C. Bertelsmann
Verlag, 2018.

[Lah+13] Shuvendu K. Lahiri, Kenneth L. McMillan, Rahul Sharma, and
Chris Hawblitzel. “Di�erential assertion checking”. In: ESEC/FSE
2013. ACM, 2013, pp. 345–355. doi: 10.1145/2491411.2491452.

[Lam+99] S. Lampérière-Cou�n, O. Rossi, J.-M. Roussel, and J.-J. Lesage.
“Formal Validation of PLC programs: a survey”. In: ECC. 1999.

[LPB15] Caroline Lemieux, Dennis Park, and Ivan Beschastnikh. “General
LTL Speci�cation Mining (T)”. In: 30th IEEE/ACM International

Conference on Automated Software Engineering, ASE 2015, Lin-

coln, NE, USA, November 9-13, 2015. Ed. by Myra B. Cohen, Lars
Grunske, and Michael Whalen. IEEE Computer Society, 2015,
pp. 81–92. doi: 10.1109/ASE.2015.71.

[Len18] Daniel Lentzsch. “Modular Regression Veri�cation for Program-
mable Logic Controller Software”. M.Sc Thesis. 2018.

[Lju+10] O. Ljungkrantz, K. Åkesson, M. Fabian, and C. Yuan. “A formal
speci�cation language for PLC-based control logic”. In: 2010
8th IEEE International Conference on Industrial Informatics. 2010,
pp. 1067–1072. doi: 10.1109/INDIN.2010.5549591.

[Lju+12] Oscar Ljungkrantz, Knut Akesson, Chengyin Yuan, and Mar-
tin Fabian. “Towards Industrial Formal Speci�cation of Pro-
grammable Safety Systems”. In: IEEE Transactions on Control

Systems Technology 20.6 (2012), pp. 1567–1574. doi: 10.1109/tcst
.2011.2169262.

[MN04a] Oded Maler and Dejan Nickovic. “LARVA — Safer Monitoring of
Real-Time Java Programs (Tool Paper)”. In: Software Engineering
and Formal Methods (SEFM). Ed. by Yassine Lakhnech and Sergio
Yovine. 2004, pp. 152–166. doi: 10.1007/978-3-540-30206-3_12.

https://doi.org/10.1145/2491411.2491452
https://doi.org/10.1109/ASE.2015.71
https://doi.org/10.1109/INDIN.2010.5549591
https://doi.org/10.1109/tcst.2011.2169262
https://doi.org/10.1109/tcst.2011.2169262
https://doi.org/10.1007/978-3-540-30206-3_12

BIBLIOGRAPHY 255

[MN04b] Oded Maler and Dejan Nickovic. “Monitoring Temporal Proper-
ties of Continuous Signals”. en. In: Formal Techniques, Modelling

andAnalysis of Timed and Fault-Tolerant Systems (FTRTFT). Ed. by
Yassine Lakhnech and Sergio Yovine. Vol. 3253. LNCS. Springer,
2004, pp. 152–166. doi: 10.1007/978-3-540-30206-3_12.

[MR07] Heiko Mantel and Alexander Reinhard. “Controlling the What
and Where of Declassi�cation in Language-Based Security”. In:
Programming Languages and Systems, 16th European Symposium

on Programming, ESOP 2007, Held as Part of the Joint European

Conferences on Theory and Practics of Software, ETAPS 2007, Braga,

Portugal, March 24 - April 1, 2007, Proceedings. Ed. by Rocco De
Nicola. Vol. 4421. Lecture Notes in Computer Science. Springer,
2007, pp. 141–156. doi: 10.1007/978-3-540-71316-6_11.

[Mey92] Bertrand Meyer. “Applying “Design by Contract””. In: IEEE Com-

puter 25.10 (1992), pp. 40–51. doi: 10.1109/2.161279.

[Mos85] B. Moszkowski. “A Temporal Logic for Multilevel Reasoning
about Hardware”. In: Computer 18.2 (1985), pp. 10–19. doi: 10.1
109/MC.1985.1662795.

[Mül18] Dirk Müllmann. “Auswirkungen der Industrie 4.0 auf den Schutz
von Betriebs- und Geschäftsgeheimnissen”. In: Wettbewerb in

Recht und Praxis (WRP) 2018 64.10 (2018), pp. 1177–1184.

[Mur15] Toby C. Murray. “Short Paper: On High-Assurance Information-
Flow-Secure Programming Languages”. In: Proceedings of the
10th ACM Workshop on Programming Languages and Analysis

for Security, PLAS@ECOOP 2015, Prague, Czech Republic, July

4-10, 2015. Ed. by Michael Clarkson and Limin Jia. ACM, 2015,
pp. 43–48. doi: 10.1145/2786558.2786561.

[Ova+16] Tolga Ovatman, Atakan Aral, Davut Polat, and Ali Osman Ünver.
“An overview of model checking practices on veri�cation of PLC
software”. In: Softw. Syst. Model. 15.4 (2016), pp. 937–960. doi:
10.1007/s10270-014-0448-7.

[Pak+16] Antti Pakonen, Cheng Pang, Igor Buzhinsky, and Valeriy Vy-
atkin. “User-friendly formal speci�cation languages – conclu-
sions drawn from industrial experience on model checking”. In:

https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-71316-6_11
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/MC.1985.1662795
https://doi.org/10.1109/MC.1985.1662795
https://doi.org/10.1145/2786558.2786561
https://doi.org/10.1007/s10270-014-0448-7

256 BIBLIOGRAPHY

IEEE International Conference on Emerging Technologies and Fac-

tory Automation (ETFA 2016). Vol. 2016-Novem. Berlin, Germany,
2016. doi: 10.1109/ETFA.2016.7733717.

[PMI94] D. Lorge Parnas, J. Madey, and M. Iglewski. “Precise documen-
tation of well-structured programs”. In: IEEE Transactions on

Software Engineering 20.12 (1994), pp. 948–976. doi: 10.1109/32.3
68133.

[Pfr+16] Ste�en Pfrang, Jörg Kippe, David Meier, and Christian Haas. “De-
sign and Architecture of an Industrial IT Security Lab”. In: Lec-
ture Notes of the Institute for Computer Sciences, Social Informatics

and Telecommunications Engineering. Springer International Pub-
lishing, 2016, pp. 114–123. doi: 10.1007/978-3-319-49580-4_11.

[PNW11] Lee Pike, Sebastian Niller, and Nis Wegmann. “Runtime Veri�ca-
tion for Ultra-Critical Systems”. In: Runtime Veri�cation (RV). Ed.
by Sarfraz Khurshid and Koushik Sen. Vol. 7186. LNCS. Springer,
2011, pp. 310–324. doi: 10.1007/978-3-642-29860-8_23.

[PLC16] PLCopen Promotional Committee Training. Coding Guidelines.
Tech. rep. Version 1.0. PCLOpen, 2016.

[PLC18] PLCopen Promotional Committee Training. PLCopen Software

Construction Guidelines: Structuring with SFC: do’s and don’ts.
Tech. rep. Version 0.99 (release for comments). PCLOpen, 2018.

[Pnu77] Amir Pnueli. “The Temporal Logic of Programs”. In: Foundations
of Computer Science (FOCS). 1977, pp. 46–57. doi: 10.1109/SFCS
.1977.32.

[Pre+18] Sorina-Nicoleta Predut, Florentin Ipate, Marian Gheorghe, and
Felician Campean. “Formal Modelling of Cruise Control System
Using Event-B and Rodin Platform”. In: High Performance Com-

puting and Communications (HPCC). IEEE, 2018, pp. 1541–1546.
doi: 10.1109/HPCC/SmartCity/DSS.2018.00253.

[Rob65] John Alan Robinson. “A Machine-Oriented Logic Based on the
Resolution Principle”. In: J. ACM 12.1 (1965), pp. 23–41. doi:
10.1145/321250.321253.

https://doi.org/10.1109/ETFA.2016.7733717
https://doi.org/10.1109/32.368133
https://doi.org/10.1109/32.368133
https://doi.org/10.1007/978-3-319-49580-4_11
https://doi.org/10.1007/978-3-642-29860-8_23
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00253
https://doi.org/10.1145/321250.321253

BIBLIOGRAPHY 257

[Rös+14] S. Rösch, D. Tikhonov, D. Schütz, and B. Vogel-Heuser. “Model-
Based Testing of PLC Software: Test of Plants’ Reliability by Us-
ing Fault Injection on Component Level”. In: IFACWorld Congress

(2014), pp. 3509–3515.

[RV17] Susanne Rösch and Birgit Vogel-Heuser. “A Light-Weight Fault
Injection Approach to Test Automated Production System PLC
Software in Industrial Practice”. English. In: Control Engineering
Practice 58.Complete (2017), pp. 12–23. doi: 10.1016/j.conengpra
c.2016.09.012.

[RWZ88] Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. “Global
Value Numbers and Redundant Computations”. In: Conference
Record of the Fifteenth Annual ACM Symposium on Principles of

Programming Languages, San Diego, California, USA, January

10-13, 1988. Ed. by Jeanne Ferrante and P. Mager. ACM Press,
1988, pp. 12–27. doi: 10.1145/73560.73562.

[SM03] Andrei Sabelfeld and Andrew C. Myers. “Language-based infor-
mation-�ow security”. In: IEEE J. Sel. Areas Commun. 21.1 (2003),
pp. 5–19. doi: 10.1109/JSAC.2002.806121.

[San09] Davide Sangiorgi. “On the origins of bisimulation and coinduc-
tion”. In: ACM Trans. Program. Lang. Syst. 31.4 (2009), 15:1–15:41.
doi: 10.1145/1516507.1516510.

[SS14] Christoph Scheben and Peter H. Schmitt. “E�cient Self-compo-
sition for Weakest Precondition Calculi”. In: FM 2014: Formal

Methods - 19th International Symposium, Singapore, May 12-16,

2014. Proceedings. Ed. by Cli� B. Jones, Pekka Pihlajasaari, and
Jun Sun. Vol. 8442. Lecture Notes in Computer Science. Springer,
2014, pp. 579–594. doi: 10.1007/978-3-319-06410-9_39.

[SJW98] Rainer Schlör, Bernhard Josko, and Dieter Werth. “Using a visual
formalism for design veri�cation in industrial environments”. In:
Services and Visualization Towards User-Friendly Design. Ed. by
Tiziana Margaria, Bernhard Ste�en, Roland Rückert, and Joachim
Posegga. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998,
pp. 208–221.

https://doi.org/10.1016/j.conengprac.2016.09.012
https://doi.org/10.1016/j.conengprac.2016.09.012
https://doi.org/10.1145/73560.73562
https://doi.org/10.1109/JSAC.2002.806121
https://doi.org/10.1145/1516507.1516510
https://doi.org/10.1007/978-3-319-06410-9_39

258 BIBLIOGRAPHY

[Sim+15] Milivoj Simeonovski, Fabian Bendun, Muhammad Rizwan As-
ghar, Michael Backes, Ninja Marnau, and Peter Druschel. “Obliv-
ion: Mitigating Privacy Leaks by Controlling the Discoverabil-
ity of Online Information”. In: Applied Cryptography and Net-

work Security - 13th International Conference, ACNS 2015, New

York, NY, USA, June 2-5, 2015, Revised Selected Papers. Ed. by
Tal Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and
Michalis Polychronakis. Vol. 9092. Lecture Notes in Computer
Science. Springer, 2015, pp. 431–453. doi: 10.1007/978-3-319-281
66-7_21.

[Smi09] Geo�rey Smith. “On the Foundations of Quantitative Informa-
tion Flow”. In: Foundations of Software Science and Computational

Structures, 12th International Conference, FOSSACS 2009, Held as

Part of the Joint European Conferences on Theory and Practice of

Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings.
Ed. by Luca de Alfaro. Vol. 5504. Lecture Notes in Computer
Science. Springer, 2009, pp. 288–302. doi: 10.1007/978-3-642-005
96-1_21.

[SB11] Fabio Somenzi and Aaron R Bradley. “IC3: Where Monolithic
and Incremental Meet”. In: FMCAD. 2011, pp. 3–8.

[Spi+17] Markus Spindler, Thomas Aicher, Birgit Vogel-Heuser, and Jo-
hannes Fottner. “Erstellung von Steuerungssoftware für automa-
tisierte Material�usssysteme per Drag & Drop”. In: Logistics
Journal : Proceedings 2017.10 (2017). doi: 10.2195/lj_Proc_spindl
er_de_201710_01.

[IEC61508] International Standard. EN 61508-3:2010: Functional safety of elec-

trical/ electronic/programmable electronic safety-related systems.
2010.

[TC211] TC2 Task Force Motion Control. Technical Speci�cation: Part 1
-Function blocks for motion control. eng. Tech. rep. Version 2.0.
2011. 141 pp.

[Tec06] Technical Committee 5 – Safety Software. Technical Speci�cation
– Part 1: Concepts and Function Blocks. Tech. rep. Version 1.0.
PLCOpen, 2006. url: http://www.plcopen.org/pages/tc5_safety
/downloads/plcopen_tc5_safety_v1_0.pdf.

https://doi.org/10.1007/978-3-319-28166-7_21
https://doi.org/10.1007/978-3-319-28166-7_21
https://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.1007/978-3-642-00596-1_21
https://doi.org/10.2195/lj_Proc_spindler_de_201710_01
https://doi.org/10.2195/lj_Proc_spindler_de_201710_01
http://www.plcopen.org/pages/tc5_safety/downloads/plcopen_tc5_safety_v1_0.pdf
http://www.plcopen.org/pages/tc5_safety/downloads/plcopen_tc5_safety_v1_0.pdf

BIBLIOGRAPHY 259

[Thr10] Kleanthis Thramboulidis. “The 3+1 SysML View-Model in Model
Integrated Mechatronics”. In: Journal of Software Engineering
and Applications 03.02 (2010), pp. 109–118. doi: 10.4236/jsea.201
0.32014.

[TGK17] Anna Trostanetski, Orna Grumberg, and Daniel Kroening. “Mod-
ular Demand-Driven Analysis of Semantic Di�erence for Pro-
gram Versions”. In: SAS 2017. Ed. by Francesco Ranzato. Vol. 10422.
LNCS. Springer, 2017, pp. 405–427. doi: 10.1007/978-3-319-6670
6-5_20.

[Ule+16a] Sebastian Ulewicz, Mattias Ulbrich, Alexander Weigl, Michael
Kirsten, Franziska Wiebe, Bernhard Beckert, and Birgit Vogel-
Heuser. “A Veri�cation-Supported Evolution Approach to Assist
Software Application Engineers in Industrial Factory Automa-
tion”. In: IEEE International Symposium on Assembly and Manu-

facturing (ISAM 2016). IEEE, 2016, pp. 19–25. doi: 10.1109/ISAM
.2016.7750714.

[Ule+16b] Sebastian Ulewicz, Mattias Ulbrich, Alexander Weigl, Michael
Kirsten, Franziska Wiebe, Bernhard Beckert, and Birgit Vogel-
Heuser. “A Veri�cation-Supported Evolution Approach to Assist
Software Application Engineers in Industrial Factory Automa-
tion”. In: IEEE International Symposium on Assembly and Manu-

facturing (ISAM). Fort Worth, USA, 2016, pp. 19–25.

[VBS18] Birgit Vogel-Heuser, Safa Bougou�a, and Michael Sollfrank. Re-
searching Evolution in Industrial Plant Automation: Scenarios and

Documentation of the extended Pick and Place Unit. Tech. rep.
Institute of Automation and Information Systems, Technische
Universität München, 2018.

[Vog+15] Birgit Vogel-Heuser, Alexander Fay, Ina Schaefer, and Matthias
Tichy. “Evolution of software in automated production systems:
Challenges and research directions”. In: Journal of Systems and

Software 110 (2015), pp. 54–84. doi: 10.1016/j.jss.2015.08.026.

[Vog+14] Birgit Vogel-Heuser, Christoph Legat, Jens Folmer, and Stefan
Feldmann. Researching Evolution in Industrial Plant Automation:

Scenarios and Documentation of the Pick and Place Unit. Tech. rep.
Institute of Automation and Information Systems, Technische

https://doi.org/10.4236/jsea.2010.32014
https://doi.org/10.4236/jsea.2010.32014
https://doi.org/10.1007/978-3-319-66706-5_20
https://doi.org/10.1007/978-3-319-66706-5_20
https://doi.org/10.1109/ISAM.2016.7750714
https://doi.org/10.1109/ISAM.2016.7750714
https://doi.org/10.1016/j.jss.2015.08.026

260 BIBLIOGRAPHY

Universität München, 2014. url: https://mediatum.ub.tum.de/n
ode?id=1208973.

[Vog+16] Birgit Vogel-Heuser, Susanne Rösch, Juliane Fischer, Thomas
Simon, Sebastian Ulewicz, and Jens Folmer. “Fault Handling
in PLC-Based Industry 4.0 Automated Production Systems as
a Basis for Restart and Self-Con�guration and Its Evaluation”.
In: Journal of Software Engineering and Applications 9.1 (2016),
pp. 1–43. doi: 10.4236/jsea.2016.91001.

[VH01] V. Vyatkin and H. M. Hanisch. “Application of visual speci�ca-
tions for veri�cation of distributed controllers”. In: 2001 IEEE
International Conference on Systems, Man and Cybernetics. e-

Systems and e-Man for Cybernetics in Cyberspace. Vol. 1. 2001,
646–651 vol.1. doi: 10.1109/ICSMC.2001.969925.

[Wan+09] Hai Wan, Gang Chen, Xiaoyu Song, and Ming Gu. “Formalization
and Veri�cation of PLC Timers in Coq”. In: Proceedings of the 33rd
Annual IEEE International Computer Software and Applications

Conference, COMPSAC 2009, Seattle, Washington, USA, July 20-

24, 2009. Volume 1. Ed. by Sheikh Iqbal Ahamed, Elisa Bertino,
Carl K. Chang, Vladimir Getov, Lin Liu, Hua Ming, and Rajesh
Subramanyan. IEEE Computer Society, 2009, pp. 315–323. doi:
10.1109/COMPSAC.2009.49.

[Wan+13] Rui Wang, Yong Guan, Liming Luo, Xiaojuan Li, and Jie Zhang.
“Component-Based Formal Modeling of PLC Systems”. In: J. Appl.
Math. 2013 (2013), 721624:1–721624:9. doi: 10.1155/2013/721624.

[Wei19] Alexander Weigl. Provably Forgetting of Information in Manufac-

turing Systems: Veri�cation of the KASTEL Industry Demonstrator.
KIT, Fakultät der Informatik, 2019. doi: 10.5445/IR/1000117803.

[Wei21] Alexander Weigl. Companion Material for the PhD thesis "Formal

Speci�cation and Veri�cation for Automated Production Systems".
2021. doi: 10.5445/IR/1000139656.

[Wei+20] Alexander Weigl, Mattias Ulbrich, Suhyun Cha, Bernhard Beck-
ert, and Birgit Vogel-Heuser. “Relational Test Tables: A Prac-
tical Speci�cation Language for Evolution and Security”. In:
FormaliSE@ICSE 2020: 8th International Conference on Formal

https://mediatum.ub.tum.de/node?id=1208973
https://mediatum.ub.tum.de/node?id=1208973
https://doi.org/10.4236/jsea.2016.91001
https://doi.org/10.1109/ICSMC.2001.969925
https://doi.org/10.1109/COMPSAC.2009.49
https://doi.org/10.1155/2013/721624
https://doi.org/10.5445/IR/1000117803
https://doi.org/10.5445/IR/1000139656

BIBLIOGRAPHY 261

Methods in Software Engineering, Seoul, Republic of Korea, July

13, 2020. ACM, 2020, pp. 77–86. doi: 10.1145/3372020.3391566.

[WUL20] Alexander Weigl, Mattias Ulbrich, and Daniel Lentzsch. “Modu-
lar Regression Veri�cation for Reactive Systems”. In: Leveraging
Applications of Formal Methods, Veri�cation and Validation: Engi-

neering Principles - 9th International Symposium on Leveraging

Applications of Formal Methods, ISoLA 2020, Rhodes, Greece, Octo-

ber 20-30, 2020, Proceedings, Part II. Ed. by Tiziana Margaria and
Bernhard Ste�en. Vol. 12477. Lecture Notes in Computer Science.
Springer, 2020, pp. 25–43. doi: 10.1007/978-3-030-61470-6_3.

[Wei+21] Alexander Weigl, Mattias Ulbrich, Shmuel Tyszberowicz, and
Jonas Klamroth. “Runtime Veri�cation of Generalized Test Ta-
bles”. In: NASA Formal Methods - 13th International Symposium,

NFM 2021, Proceedings. Ed. by Aaron Dutle, Mariano Moscato,
and Laura Titolo. Lecture Notes in Computer Science. accepted.
Springer, 2021.

[Wei+17] Alexander Weigl, Franziska Wiebe, Mattias Ulbrich, Sebastian
Ulewicz, Suhyun Cha, Michael Kirsten, Bernhard Beckert, and
Birgit Vogel-Heuser. “Generalized test tables: A powerful and
intuitive speci�cation language for reactive systems”. In: 15th
IEEE International Conference on Industrial Informatics, INDIN

2017, Emden, Germany, July 24-26, 2017. IEEE, 2017, pp. 875–882.
doi: 10.1109/INDIN.2017.8104887.

[Wei15] Alexander Sebastian Weigl. “Regression Veri�cation for Pro-
grammable Logic Controller Software”. Master’s thesis. Karl-
sruhe Institute of Technology, 2015.

[Wie20] Andreas Wieland. “Horn-basierte Veri�kation mit Generalisiert-
en Testtabellen”. B.Sc Thesis. 2020.

[Xio+20] Jiawen Xiong, Gang Zhu, Yanhong Huang, and Jianqi Shi. “A
User-Friendly Veri�cation Approach for IEC 61131-3 PLC Pro-
grams”. In: Electronics 9.4 (2020), p. 572. doi: 10.3390/electronics
9040572.

https://doi.org/10.1145/3372020.3391566
https://doi.org/10.1007/978-3-030-61470-6_3
https://doi.org/10.1109/INDIN.2017.8104887
https://doi.org/10.3390/electronics9040572
https://doi.org/10.3390/electronics9040572

262 BIBLIOGRAPHY

[YB18] Mark Yep and Sylvain Bechet. Esterel Cruise Controller. Website,
https://github.com/ooksei/esterel-cruise-controller/. access:
2019-10-16. 2018.

[Yi+15] Jooyong Yi, Dawei Qi, Shin Hwei Tan, and Abhik Roychoud-
hury. “Software Change Contracts”. In: ACM Trans. Softw. Eng.

Methodol. 24.3 (2015), 18:1–18:43. doi: 10.1145/2729973.

[YF03] M Bani Younis and Georg Frey. “Formalization of existing PLC
programs: A survey”. In: CESA. 2003.

[Zee+07] Karen Zee, Viktor Kuncak, Michael Taylor, and Martin C. Rinard.
“Runtime Checking for Program Veri�cation”. In: Runtime Veri�-

cation (RV). Ed. by Oleg Sokolsky and Serdar Tasiran. Vol. 4839.
LNCS. Springer, 2007, pp. 202–213. doi: 10.1007/978-3-540-7739
5-5_17.

https://github.com/ooksei/esterel-cruise-controller/
https://doi.org/10.1145/2729973
https://doi.org/10.1007/978-3-540-77395-5_17
https://doi.org/10.1007/978-3-540-77395-5_17

	Summary
	Zusammenfassung
	Contents
	Introduction
	Contributions
	Outline
	Previously Published and New Material

	Preliminaries
	Reactive Systems
	IEC 61131-3: Software for Automated Production Systems
	Model-Checking
	Regression Verification

	Related Work
	Functional Verification of PLC Software
	Specifications for Reactive Systems
	Relational Verification

	Generalized Test Tables
	Towards Generalized Test Tables
	Concrete Test Tables
	Generalization of the Syntax
	Examples
	Semantics: Conformance

	Formalization of Generalized Test Tables
	Reactive Systems
	Syntactical Representation of Tables
	Semantics
	Properties

	Decision Procedures
	Model-Checking for Conformance
	Horn-based Verification via C-program Verifier
	Implementation of the Verification Pipeline

	Evaluation
	Built-Ins of IEC61131-3
	Industrial Examples
	Plant-Specific Function Blocks
	Verification

	Runtime Verification with Generalized Test Tables
	Introduction
	Monitor Generation
	Application Scenarios
	Discussion
	Related Work
	Closing

	Conclusion and Outlook
	Weaknesses and Strengths
	Meshed Generalized Test Tables
	Generalising the Game

	Relational Verification
	Relational Test Tables
	Syntax
	Decision Procedure
	Conformance of rtts
	Application Scenarios
	Conclusion

	Provably Forgetting of Information
	Confidentiality in Automated Production Systems
	Related Work
	Forgetting of Information
	Experiment
	Discussion
	Conclusion

	Modular Regression Verification
	Formal Equivalence Relations
	Modularization
	The Algorithm
	Evaluation
	Conclusion

	Conclusion
	Summary of the Thesis
	Future Work
	Follow-up Projects

	Glossary
	Source Code
	Function Block MinMaxWarning
	Function Block LinRe

	List of Figures
	Listings
	List of Tables
	Bibliography

