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Nati, Thiago, Cauã, Allan, Gabi, Rita, e Indio, obrigada por brilharem do meu lado
nesse pálido ponto azul.

To the universe, to the stars, to life.
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A B S T R A C T

Interestingly but challenging, Earth systems are often complex and their problems
underdetermined. The lack of a complete understanding of relevant subsystems (com-
plexity issue) and the impossibility of observing everything, everywhere, all the time
(underdeterminism issue) lead to a considerable inferential and predictive uncertainty.
In fact, uncertainty is part of Earth system science problems, and its quantification is,
consequently, an essential aspect of geoscientific analysis and prediction. Addition-
ally, ignoring uncertainty by deterministic models or strong parametric assumptions
increases rigidity in the model (as a counterpoint to generality). As a consequence,
rigid models can result in overly constrained and overconfident solutions, and there-
fore, in a suboptimal use of available data. In this fashion, to deal with uncertainty
arising from the lack of knowledge or data, probabilistic inference and uncertainty
quantification play a central role when modeling or analyzing such complex and
underdetermined systems. Uncertainty and information can be objectively quantified
by information theory, which, when combined with nonparametric probabilistic mod-
eling, provides a proper framework for evaluating the information content of data
and models. In addition, it helps to overcome the issue of using rigid models that, to
a certain degree, ignore uncertainty and add information not present in data (or lose
available information).

This thesis is motivated and framed by exactly this quest: to propose and validate
a nonparametric, probabilistic framework for Earth science problems firmly rooted
in concepts from information theory. For that, predictive relations are expressed
by multivariate, empirical probability distributions directly derived from data, and
information theory is used to explicitly calculate and compare the information content
from various sources in a universal unit. Three typical Earth science problems are
revisited through the lens of information theory. The testbed problems comprise
descriptive and inferential levels, and deal with different data types (continuous or
categorical), domains (spatial or temporal observations), sample sizes, and spatial
dependence properties. First of all, a nonparametric approach for rainfall-runoff
event identification is proposed, tested on a real-world dataset, and compared to a
physically-based model (chapter 2). The findings of this study have contributed to
propose a distribution-free framework for geostatistics in chapter 3, whose properties
are tested on a synthetic dataset and compared to ordinary kriging. Finally, in
chapter 4, the proposed nonparametric geostatistical method is adapted to handle
categorical data and to simulate field properties. It is tested on a real-world dataset for
classifying the risk of soil contamination by lead, and its characteristics are compared
to indicator kriging.

Each testbed application addresses particular topics of long-standing geoscientific
interest while sharing the overarching problems of underdeterminism and complexity.
Several findings emerge from the three studies displayed in this thesis. The proposed
nonparametric framework rooted in information theory (i) avoids the introduction of
undesirable side information or erasing existing information; (ii) enables to directly
quantify uncertainty and information content of datasets, and to analyze patterns and
data-relations; (iii) describes the drivers of a system; (iv) allows the selection of the
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most informative model according to the dataset availability; (v) relaxes assumptions
and minimizes uncertainties; (vi) enables to deal with categorical or continuous data;
and (vii) addresses any kind of data-relations.

Due to the advances in computational power and sophisticated instrumentation
available these days, the combination of Earth science with allied areas is rapidly
increasing. As a special case, the integration of probability and information theory,
framed in a nonparametric context, on the one hand, entails the generality and flexibil-
ity needed to handle any kind of data-relations and limitations in data volume while,
on the other hand, provides a tool for interpretation in terms of information content
or its counterpart of uncertainty. This intrinsic interdisciplinarity also allows for more
versatility to the modeling in terms of purpose and degrees of freedom. This means
that given enough data to build data-driven models, their potential lies in the way
they learn and exploit data unconstrained by functional or parametric assumptions
and choices. Beyond that, the use of the proposed framework as presented in this
thesis explores only particular examples among many potential applications. Overall,
this thesis paves the way for enhancing our ability to make realistic predictions. It
contributes with a novel framework to avoid conceptualization and compression of
data-relations, helping to preserve the information content of the data while allowing
an honest account of the related uncertainties. In a broader context, it offers a change
of perspective in expressing and using geoscientific knowledge through the lens of
information theory.
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Z U S A M M E N FA S S U N G

Interessant, aber herausfordernd: Erdsysteme sind oft komplex und ihre Probleme
unterbestimmt. Lückenhaftes Verständnis relevanter Teilsysteme (Komplexitätsfrage)
und die Unmöglichkeit, alles, überall und zu jeder Zeit beobachten zu können (Un-
terbestimmtheitsfrage), führen zu einer erheblichen inferentiellen und prädiktiven
Unsicherheit. Tatsächlich ist diese Unsicherheit eines der Probleme der Erdsystemfor-
schung, und ihre Quantifizierung ist folglich ein wesentlicher Aspekt der geowissen-
schaftlichen Analyse und Prognose. Zusätzlich erhöht das Nichtberücksichtigen von
Unsicherheit durch deterministische Modelle oder starke parametrische Annahmen
die Starrheit des Modells (als Gegenpol zur Allgemeinheit). Infolgedessen können
starre Modelle zu sowohl übermäßig eingeschränkten als auch übermäßig zuver-
sichtlichen Lösungen und damit einer suboptimalen Nutzung der verfügbaren Daten
führen. Um vor diesem Hintergrund mit der Unsicherheit, die sich aus dem Man-
gel an Wissen oder Daten ergibt, umzugehen, spielen probabilistische Inferenz und
Unsicherheitsquantifizierung eine zentrale Rolle in der Modellierung oder Analyse
solcher komplexen und unterbestimmten Systeme. Unsicherheit und Information
können durch Maße aus der Informationstheorie objektiv quantifiziert werden, die in
Verbindung mit nichtparametrischer probabilistischer Modellierung einen geeigneten
Rahmen für die Bewertung des Informationsgehalts von Daten und Modellen bietet.
Außerdem hilft es, das Problem der Verwendung starrer Modelle zu überwinden, die
zu einem gewissen Grad Unsicherheiten ignorieren, nicht in den Daten vorhandene
Informationen hinzufügen, oder verfügbare Informationen verlieren.

Diese Doktorarbeit befasst sich mit der oben skizzierten Fragestellung: Einen nicht-
parametrischen und probabilistischen Rahmen für geowissenschaftliche Probleme
vorzuschlagen und zu validieren, der auf den Konzepten der Informationstheorie
aufbaut. Prädiktive Beziehungen werden durch multivariate und empirische Wahr-
scheinlichkeitsverteilungen ausgedrückt, die direkt aus Daten abgeleitet werden. Die
Informationstheorie wird verwendet, um den Informationsgehalt aus verschiedenen
Quellen in einer universellen Einheit explizit zu berechnen und zu vergleichen. Drei
typische geowissenschaftliche Probleme werden durch die Sichtweise der Informati-
onstheorie neu betrachtet. Die Testumgebungen umfassen deskriptive und inferentielle
Problemstellungen und befassen sich mit unterschiedlichen Datentypen (kontinuier-
lich oder kategorial), Domänen (räumliche oder zeitliche Daten), Stichprobengrößen
und räumlichen Abhängigkeitseigenschaften. Zunächst wird ein nichtparametrischer
Ansatz zur Identifikation von Niederschlags-Abfluss-Ereignissen entwickelt, an einem
realen Datensatz getestet und mit einem physikalisch basierten Modell verglichen
(Kapitel 2). Die Ergebnisse dieser Studie (Kapitel 3) bilden die Grundlage für die Ent-
wicklung eines verteilungsfreien Ansatzes für geostatistische Fragestellungen, dessen
Eigenschaften an einem synthetischen Datensatz getestet und mit Ordinary Kriging
verglichen werden. Schließlich wird in Kapitel 4 die vorgeschlagene Methode für
den Umgang mit kategorischen Daten und für die Simulation von Feldeigenschaften
angepasst. Sie wird an einem realen Datensatz zur Klassifizierung des Bodenkonta-
minationsrisikos durch Blei getestet und ihre Eigenschaften mit Indicator Kriging
verglichen.
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Jede Testanwendung befasst sich mit bestimmten Themen, die seit langem von
geowissenschaftlichem Interesse sind, und beinhaltet gleichzeitig die übergreifenden
Probleme der Unbestimmtheit und Komplexität. Aus den drei in dieser Arbeit vor-
gestellten Anwendungen ergeben sich mehrere Erkenntnisse. Der vorgeschlagene
nichtparametrische Rahmen aus Basis der Informationstheorie (i) vermeidet die
Einführung unerwünschter Nebeninformationen oder den Verlust vorhandener In-
formationen; (ii) ermöglicht die direkte Quantifizierung der Unsicherheit und des
Informationsgehalts von Datensätzen sowie die Analyse von Mustern und Daten-
beziehungen; (iii) beschreibt die Einflussfaktoren eines Systems; (iv) ermöglicht die
Auswahl des informativsten Modells je nach Verfügbarkeit des Datensatzes; (v) redu-
ziert die Notwendigkeit für Annahmen und minimiert Unsicherheiten; (vi) ermöglicht
den Umgang mit kategorischen oder kontinuierlichen Daten; und (vii) ist anwendbar
auf jede Art von Datenbeziehungen.

Aufgrund der Fortschritte in der Rechenleistung und der hochentwickelten In-
strumentierung, die heutzutage zur Verfügung stehen, nimmt die Verknüpfung der
Geowissenschaften mit verwandten Disziplinen deutlich zu. Die Integration von
Wahrscheinlichkeits- und Informationstheorie in einem nichtparametrischen Kontext
garantiert einerseits die nötige Allgemeinheit und Flexibilität, um jede Art von Daten-
beziehungen und Begrenzungen des Datenumfangs zu handhaben, und bietet ande-
rerseits ein Werkzeug für die Interpretation in Bezug auf den Informationsgehalt oder
auf sein Gegenstück, die Unsicherheit. Diese inhärente Interdisziplinarität ermöglicht
auch eine größere Flexibilität bei der Modellierung in Bezug auf die Zielgröße und
die Freiheitsgrade. Beim Vorhandensein genügender Daten liegt das Potential da-
tengetriebener Modellierungsansätze darin, dass sie ohne große Einschränkungen
durch funktionale oder parametrische Annahmen und Entscheidungen auskommen.
Die in dieser Arbeit vorgestellten Anwendungsbeispiele für den vorgeschlagenen
Rahmen sind nur einige von vielen möglichen Anwendungen. Insgesamt trägt diese
Doktorarbeit mit dem darin vorgeschlagenen Rahmen dazu bei, Konzeptualisierung
und Komprimierung von Datenbeziehungen bei der Modellbildung zu vermeiden,
wodurch der Informationsgehalt der Daten erhalten wird. Gleichzeitig ermöglicht
er eine realistischere Berücksichtigung der damit verbundenen Unsicherheiten. In
einem erweiterten Kontext bietet er einen Perspektivenwechsel bei der Darstellung
und Nutzung von geowissenschaftlichem Wissen aus Sicht der Informationstheorie.
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We have to live with a certain uncertainty.
— Karl Popper
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1
I N T R O D U C T I O N

1.1 motivation and overview

Modeling Earth systems is challenging, as their systems are often
complex and their problems underdetermined (Perdigão et al., Earth systems are

complex and their
problems
underdetermined.

2020; Reichstein et al., 2019). Complex on account of the multi-
tude of nonlinear and interrelated processes, acting across a wide
range of spatial and temporal scales; and underdetermined as we
usually lack exhaustive measurements of system properties, ini-
tial, and boundary conditions, such that identification of system Knowledge is limited.

properties or model parameters can be afflicted by limited data
(Ehret et al., 2018).

This unfortunate situation is mitigated, according to Ehret et al.
(2018), by the fact that no Earth system and related problem
setting is truly unique, and insights gained in other, similar sys- Insights gained in

similar systems can
mitigate issues of
complexity and
underdeterminism.

tems and problems can be used to inform the problem at hand.
This is typically done by applying model structures developed in
systems deemed similar to the one under analysis (e.g., conceptu-
alization of physical processes as discussed by Klemeš, 1983), and
sometimes also by applying parameters from models calibrated
in similar systems (a process known as regionalization; Blöschl
and Sivapalan, 1995; Merz et al., 2006a).

Taking these steps means that different sources of information
are combined, without however explicitly keeping track of the It is difficult to

backtrack the sources
of uncertainties
when knowledge is
transferred.

particular uncertainties associated with each of them (Ehret et
al., 2018). There are many forms of uncertainty in Earth system
models (Reichstein et al., 2019), e.g., uncertainties due to lim-
ited observations or due to only partial agreement of the chosen
model structure and the system at hand. Tracking sources of
information, or uncertainty, is often further hampered by the use Uncertainty is part

of Earth system
science problems.

of deterministic models (Ehret et al., 2018; Nearing and Gupta,
2017), which offer no direct way to account for uncertainty (Neu-
per and Ehret, 2019). Taken together, the absence of a complete
understanding of relevant subsystems (complexity issue) and the Modeling

uncertainties, and
hence probabilistic
inference, is essential
for geoscientific
problems.

impossibility of observing everything, everywhere, all the time
(underdeterminism issue) lead to considerable inferential and
predictive uncertainty. As a matter of fact, uncertainty is part
of Earth system science problems and, consequently, modeling
them with probabilistic and statistical methods will continue to
play a crucial role in the field (Perdigão et al., 2020; Reichstein
et al., 2019).

3
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Additionally, the use of deterministic models or strong para-
metric assumptions could result in a suboptimal use of the avail-
able data. That is because such rigidity in the model can lead
to overly constrained and overconfident solutions (Nearing andRigid models may

lead to
overconstrained and

overconfident
solutions.

Gupta, 2017). In this sense, data-driven methods have become
increasingly popular as a substitute for or a complement to es-
tablished modeling approaches (Bel et al., 2009; Reichstein et al.,
2019), as they present higher generality in contrast to unique
model settings and avoid the risk of adding information not
present in data or losing available information (Neuper and
Ehret, 2019).

In this context, this thesis is motivated and framed by the needThis thesis aims to
develop and validate

a nonparametric,
probabilistic

framework for Earth
system problems

using IT.

of a more generalized framework to deal with complex systems
and interactions of different sources of information, data, and
model uncertainties while moving away from strong parametric
assumptions. This means avoiding as much as possible conceptu-
alizations and compressions of data-relations to help to preserve
their full information content while permitting an honest ac-
counting of the related uncertainties. In that regard, this thesis isSpecifically, the

framework seeks to
increase model

generality, make
better use of data,

and change the way
of using geoscientific

knowledge.

framed by exactly this quest of suggesting and demonstrating a
nonparametric probabilistic framework based on concepts of in-
formation theory (IT), in which predictive relations are expressed
by empirical probability distributions directly derived from data,
and IT is used to explicitly calculate and compare the information
and uncertainty content from data and models.

Fundamentals of information theory

Information theory provides a compelling framework for infor-
mation and uncertainty quantification. Its fundamental quantityIT provides a

compelling
framework for

information and
uncertainty

quantification.

is called entropy. As I will discuss, it has many properties that
agree with the intuitive notion of what a measure of information
should be (Cover and Thomas, 2006, p. 13). Entropy H(X) is
described as a measure of the uncertainty of a random variable
X and is defined as the expected value of the negative logarithm
of the probabilities p(x) of all events contained in X:

H(X) = − ∑
x∈X

p(x) log2 p (x) = E [I (x)] . (1.1)

In this context, the logarithm is to base two so that the en-
tropy is expressed in bits. Information can be represented as bits.Entropy directly

measures the
uncertainty of a

distribution, and
conversely, its

information content.

One bit of information enables us to select between two equally
probable alternatives. In other words, each bit of information cor-
responds to an answer to one optimal yes-no question asked with
the intention of reconstructing the data. For example, the entropy
of a fair coin toss is 1 bit, i.e., the answer of the question ”is it
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tails?” is enough to identify the toss output. The entropy of a ran-
dom variable is also interpreted as a measure of the uncertainty
of the random variable, and it measures the amount of expected
information I(x) required to describe the random variable X.

Besides quantifying the uncertainty of a distribution, it is also
possible to compare (dis-)similarities between two distributions
p and q over the same variable using Kullback–Leibler divergence
(DKL). This measure helps one to determine the difference be-
tween two distributions, i.e., it quantifies the statistical “distance”
between two probability distributions p and q, such that:

DKL(p||q) = ∑
x∈X

p (x) log2
p(x)

q(x)
. (1.2)

Also referred to as relative entropy, DKL can be understood as a
measure of the information loss of assuming that the distribution
is q when the true distribution is p (Cover and Thomas, 2006,
p. 19). For example, when the distribution of the underlying data
is originated from a limited sample, we work with an approxi-
mation of the distribution instead of its true shape. In this case, Relative entropy

quantifies the
divergence (or
missing information)
from an approximate
distribution q to the
true distribution p.

it would be needed H(p) + DKL(p||q) bits (therefore, ask more
questions) on average to reconstruct the random variable. This
means that the information attached to a variable is estimated
based on imperfect premises at the cost of increasing uncertainty.
The entropy of the true distribution plus this increase of uncer-
tainty due to an imperfect distribution assumption is called cross
entropy, Hpq(p||q) = H(p) + DKL(p||q). Additionally, the DKL

measure is also used as a scoring rule for performance verification
of probabilistic predictions (Gneiting and Raftery, 2007; Weijs
et al., 2010).

For measuring the dependence between two different random
variables, or how significant an explanatory variable is with
respect to the target (or dependent) variable, measures such as Conditional entropy

quantifies how much
information a
variable tells us
about another.

conditional entropy and mutual information can be used. The
conditional entropy can be described as the entropy of a random
variable conditional on the (prior) knowledge of another random
variable. The conditional entropy H(X|Y) of a pair of discrete
random variables (X, Y) is defined as:

H(X|Y) = − ∑
y∈Y

p (y) ∑
x∈X

p(x|y) log2 p(x|y). (1.3)

Conditional entropy is a generic measure of statistical depen-
dence between variables (Sharma and Mehrotra, 2014), which
can be used to compare competing model hypotheses and select
the best among them. For example, suppose we want to predict
rainfall-runoff events (target X) and for that we have information
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from discharge and precipitation time series (predictors Y1 and
Y2, respectively). The relation between the target and predictor
can be expressed by their conditional distribution, H(X|Y1) and
H(X|Y2). Based on that relation, conditional entropy can be used
to measure the amount of information that each predictor brings
to the target or, conversely, their reduction in uncertainty by con-
sidering both predictors simultaneously, i.e., H(X|Y1, Y2). Note
that the interchange of the terms information gain and uncer-
tainty reduction is possible as they are two sides of the same coin.
In doing so, it is possible to take advantage of other variables to
help us understand the target and measure how much Y tells us
about X by means of conditional entropy.

As a matter of fact, the reduction in uncertainty due to another
random variable is called mutual information I(X; Y), which is
equal to H(X)− H(X|Y). Note that if X and Y are independent,
knowing Y does not contribute to the uncertainty reduction ofThe reduction in

uncertainty due to
another variable is

called mutual
information.

X and, therefore, the conditional entropy is exactly equal to the
entropy of the target, H(X|Y) = H(X). The opposite happens
when two variables share the same information about the target,
i.e., when they are completely redundant, resulting in H(X|Y) =

0. Thus, the mutual information of a random variable with itself is
the entropy of the random variable, I(X; X) = H(X). This is the
reason why entropy is sometimes referred to as self-information
(Cover and Thomas, 2006, p. 21).

Note that the uncertainty measured by Eqs. 1.1 to 1.3 is defined
as a function of the probability distribution of the variable, not
on its value, category, or unit. This is convenient, as it allows joint
treatment of many different sources and sorts of data in a single
framework and in the same universal unit of bits. IT is extendingIT is a general

framework, which
allows to objectively
measure uncertainty

and express it in a
universal unit, “bit”.

beyond its original field since its proposal by Claude E. Shan-
non in 1948 (Shannon, 1948) to address data compression and
transmission within the context of communication engineering.
IT provides an attractive framework for analytical or predictive
purposes, bringing an intuitive interpretation of information and
uncertainty while allowing a direct way of quantifying them. Due
to its universality of concepts, IT is being increasingly applied in
a variety of disciplines, including Earth science.

The use of information theory in Earth science

In the context of data-based modeling, concepts and measures
from IT are gaining ground in Earth science and being employedData-based modeling

and measures from
IT are being

increasingly applied
in Earth science.

to investigate data series patterns and relations, as well as to
quantify and compare the performance of models. Thanks to
the generality and the multitude of interpretations of entropy,
it has been used in a wide range of applications: for describing
and inferring relations among data (Liu et al., 2016; Sharma and
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Mehrotra, 2014), quantifying uncertainty and evaluating model
performance (Chapman, 1986; Liu et al., 2016), estimating infor-
mation flow (Darscheid, 2017; Weijs, 2011), analyzing similarity
and redundancy (Ehret et al., 2020), describing catchment flow
(Pechlivanidis et al., 2016), predicting precipitation (Neuper and
Ehret, 2019), and measuring the quantity and quality of infor-
mation in hydrological models (Loritz et al., 2018, 2019; Nearing IT is gradually

gaining ground also
in the spatial
context.

and Gupta, 2017). Particularly in the spatial context, information-
theoretic measures have been used to solve problems of spatial
aggregation and quantify information gain, loss, and redundancy
(Batty, 1974; Singh, 2013), to analyze spatio-temporal variability
(Brunsell, 2010; Mälicke et al., 2020; Mishra et al., 2009), and
to assess spatial dissimilarity (Naimi, 2015), complexity (Pham,
2010), uncertainty (Wellmann, 2013), and heterogeneity (Bianchi
and Pedretti, 2018).

Besides using an information perspective of Earth science prob-
lems and having an objective way to measure uncertainty and
information, these approaches have in common the advantage of
using a framework which offers a very general language, which at The scope of this

thesis is to address
typical Earth science
problems with
multivariate,
empirical
distributions and IT.

the same time allows explicitly calculating and comparing infor-
mation from various sources in a single currency, bit. Therefore,
the scope of this Ph.D. thesis is to express insights about relations
among data for analytical or predictive purposes by discrete, mul-
tivariate probability distributions derived from data. For analysis
of the strength and generality of data-relations, concepts and
measures from IT such as entropy, conditional entropy, mutual
information, and Kullback-Leibler divergence are applied.

In this thesis, I develop and validate a nonparametric proba-
bilistic framework to express and apply geoscientific knowledge
firmly rooted in concepts from information theory. The work is
divided in three testbed problems. Each one addresses individ-
ual topics of long-standing geoscientific interest while sharing
the overarching problems of underdeterminism and complexity
previously outlined. The three problems allow learning relations The three testbed

applications look
afresh at problems
ranging from
temporal to spatial
domain.

between data unconstrained by functional or strong parametric
assumptions. The idea is, hence, to use these topics as a testbed
for the envisaged framework and to evaluate its generality while
looking at typical Earth science problems under a new perspec-
tive, i.e., through the lens of IT. General properties defining the
data-relations include, apart from the data themselves, their at-
tributes (or meta data) such as the type of data (continuous or
categorical), the domain of observations (spatial or temporal), the
distinction of data into predictor and target, and the size of the
dataset; all of which are discussed throughout the three testbed
problems.

Earth science data are typically distributed in space and/or
time (Goovaerts, 1997, p. 3). I start the thesis with the analysis of
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time series in the context of rainfall-runoff events in chapter 2.
Here, I consider the effects of learning from limited data and
investigate the predictive power of models and variables underFirst application,

chapter 2 – Temporal
domain under an

information
perspective: a

nonparametric
framework for

rainfall-runoff event
identification.

the perspective of information theory. As a case study, the quality
of rainfall-runoff event identification given the relations learned
from data is explored. I continue the journey using the insights
from the previous work to build an information-theoretic frame-
work relying on geostatistical concepts to extract information
about spatial patterns (chapter 3). Beyond extracting the spatial
dependence characteristics of the data, I propose reproducing
them with the histogram via entropy reduction (HER) frame-
work for probabilistic interpolation of unsampled points. AnSecond application,

chapter 3 – An
information theoretic
view of spatial data:

a nonparametric
framework for

geostatistics.

investigation is conducted to explore the features of HER using
synthetically generated continuous data with varying sample
densities and data properties. Additionally, HER is contrasted to
ordinary kriging (OK) in a qualitative and quantitative manner.
Due to the importance of the analysis of uncertainties in spatial
contexts and the great potential of HER for exploring probability
maps, in chapter 4 HER is adapted for dealing with categoricalThird application,

chapter 4 –
Categorical

geostatistics and
simulation: a

nonparametric
framework for soil

contamination
analysis.

data, threshold-exceeding probabilities, and for reproducing the
spatial fluctuation of the dataset reality with sequential simula-
tion (HERs). Here, local and spatial uncertainty is addressed in
the context of risk of soil contamination by lead using real-world
data. Local uncertainty results of HER are thoroughly compared
to indicator kriging (IK) and a proof of concept of the simulation
framework HERs is presented. Finally, in chapter 5, I discuss and
synthesize the key findings from the use of information to build
solutions tailored to different problems at hand and identify the
key challenges and opportunities for future investigations.

1.2 chapter ii : temporal domain under an informa-
tion perspective

Given enough data to build data-driven models, their potential
lies in the way they learn and exploit relations between data un-Chapter 2 addresses

the following
questions:

constrained by functional or parametric assumptions and choices.
Here, the relations between target (variable to be predicted) and
predictors (variables used to prediction) of time series are ex-
plored. The proposed framework is a form of supervised learn-
ing in the sense that known/labeled targets are used for training
the model. Since it is built to be nonparametric, the framework
can handle any kind of relation between the predictor(s) and- How much

information can each
variable bring to the

model?

the target unconstrained by functional assumptions. Each choice
of a particular predictor is equivalent to formulating a model
hypothesis. Models with different degrees of complexity (number
of predictors) are tested to decide whether a data-relation should
be applied to a problem/system at hand and to determine the
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contribution of each extra dimension (i.e., each extra predictor) in
the model. This decision is based on the information gain (or its
uncertainty reduction counterpart) brought to the model by each
predictor variable; and measuring it is a key question addressed
here by entropy and conditional entropy.

Linked to the size of the dataset, a second question addressed
in chapter 2 is whether the dataset is sufficiently large to allow
a robust inference of the data-relations, or, in other words, how - How much

uncertainty about
the target is due to
the limited
representativeness of
the dataset?

much uncertainty about the target is due to the only partial rep-
resentativeness of the dataset. This effect is measured via cross
entropy and Kullback–Leibler divergence, and especially applies
when working with many predictors. The exponential growth of
the space of possible hypotheses as the number of dimensions
grows is also known as curse of dimensionality (Goodman et al.,
2008). The curse of dimensionality is closely related to the prob-
lem of overfitting since an overly complex model (with too many
dimensions) tends to require more data to learn patterns in data
instead of modeling their noise. Here, the information content of
the dataset together with its representativeness analysis is used to
quantify the minimal data requirement for a given model. Equally - What is the

minimum amount of
data required to
avoid overfitting?

important, representativeness analysis is used as a support tool to
decide, for a given amount of data, which number of predictors
is optimal in the sense of avoiding both overfitting (by choosing
too many predictors) and ignoring the available information (by
choosing too few predictors).

Another important aspect investigated are the characteristics of
recursive and non-recursive data-relations. In recursive relations,
the target variable also appears as a predictor with a temporal
shift. This is comparable to autoregressive models, where the - How to account for

time ordering?dependent variable (target) is used as an independent variable
(predictor). Recursive relations are advantageous whenever there
is large information in the order of data (as for time series) and
when extrapolation is required, however they might be less robust
than non-recursive relations due to potentially strong feedbacks.

Given the importance of events in hydrological problems, sev-
eral methods have been proposed to replace the cumbersome task
of manual event detection, such as Blume et al. (2007), Ehret and
Zehe (2011), Koskelo et al. (2012), Mei and Anagnostou (2015),
Merz and Blöschl (2009), Merz et al. (2006b), and Seibert et al.
(2016). Interestingly, while for a trained hydrologist it is usually
straightforward to identify events in a time series, it is hard to
identify them automatically based on a set of rigid criteria. This
happens due to their relative importance, which can vary over
time, and strongly depend on user requirements, hydroclimate,
and catchment properties. For the purpose of analyzing data-
relations and quantifying uncertainty of models and data, the
identification of events in a hydrograph offers challenges in the
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lines of temporal context and uncertainties. Event detection, there-
fore, is an interesting testbed problem for exploring the potential
of building models as empirical, discrete, multivariate probability
distributions.

As a case study, the framework is applied to identify rainfall-
runoff events in discharge time series from the Dornbirner Ach
catchment in Austria. It mainly exploits information of discharge
and precipitation series by learning relations between them and
the occurrence of events from user-supplied classifications. The
method measures the predictive power and robustness of the
available data and provides optimal (minimum conditional en-
tropy) probabilistic predictions of event occurrence for hydro-
logical analysis and operational practice. Applying the model
reduced the uncertainty in event classification by 77.8%. Finally,
the results are validated through a holdout method and then
compared to a physically-based approach, showing similar be-
havior for both the physically-based and data-driven models.
Beyond probabilistic predictions, the framework learns and ex-
ploits relations between data, unconstrained by functional or
strong parametric assumptions. One of the strengths of the data-
based approach is that it potentially accepts any data to serve as
predictors, and although the proposed framework is used to re-
produce a hydrologist’s way of identifying rainfall-runoff events,
this is just one of many potential applications.

1.3 chapter iii : an information view of geostatis-
tics

Spatial interpolation has a long history of application in EarthChapter 3 addresses
the following

questions:
science when dealing with sparse spatial data coverage of mea-
surement data. The traditional approach of modeling the un-
certainty with respect to geostatistical interpolation consists in
computing a kriging estimate and its attached error variance,- How to build a

geostatistical
framework free of
parameterizations

and assumptions to
honestly deal with
data uncertainty?

and explicitly assuming a Gaussian distribution for assessing the
confidence interval (Goovaerts, 1997, p. 261; Kitanidis, 1997, p. 68;
Bourennane et al., 2007). By doing so, the errors are considered to
be independent of the data values and depend only on the data
configuration, a condition called homoscedasticity. Unfortunately,
such restriction is rarely fulfilled for environmental attributes
and soil variables (Goovaerts, 1997, p. 261; Bourennane et al.,
2007; Kazianka and Pilz, 2010; Hristopulos and Baxevani, 2020),
and therefore, it raises the first questions of how to build a geo-- How much spatial

information is in the
dataset, and how can

it be used?

statistical framework free of strong parameterizations, normality,
and homoscedastic assumptions for an honest accounting of data
uncertainty, how much spatial information there is in the dataset,
and how it can be used.
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In the context of data-driven modeling, another key question
addressed here is to find a way of dealing with empirical (data-
driven) and probabilistic modeling to add generality to the mod-
eling process in order to handle different sources of information - How to add

generality to the
modeling process and
deal with
probabilistic
modeling?

while avoiding strong parameterizations and normality assump-
tions. The problem of combining multiple conditional probability
distributions into a single one is treated here using aggregation
methods (Allard et al., 2012). The principle is to aggregate distribu-
tions extracted from the difference between pairs of observations
into a global probability distribution. However, beyond the flexi- - Is it possible to

interpret the distinct
aggregation methods
in terms of the
physical
characteristics of the
field?

bility brought by the data-driven modeling, the variety of ways
available to aggregate probabilities distributions added another
facet to the problem. This raised the last question addressed in the
chapter, which is related to a possible physical interpretation of
the aggregation methods. Finally, three distinct aggregation meth-
ods are analyzed, aiming to estimate conditional distributions
(target point conditioned to the sampled values) by introducing
or inferring (dis-)continuity properties into or from the field.

As in the previous chapter, to address the issues of having
a flexible-general model, free of assumptions, which properly
handles uncertainty, I develop a method for geostatistical analy-
sis and prediction directly based on empirical distributions and
information theory. The purpose is to bypass the steps of var-
iogram fitting done in traditional kriging methods and, at the
same time, to avoid the risk of adding information not available
in the data. As an additional outcome, the method minimizes
predictive uncertainty expressed by relative entropy and esti-
mates conditional distributions since it accounts for both spatial
configuration and data values – in other words, it provides a
proper framework for uncertainty estimation. More specifically,
I propose a geostatistical, probabilistic, data-driven interpolator
which combines measures of information theory with probability
aggregation methods for (i) quantifying the available information
in the dataset, (ii) extracting the structure of the data spatial
dependence, (iii) minimizing the uncertainty of the predictions,
(iv) introducing or inferring (dis-)continuity properties of the
field, (v) relaxing normality assumptions, (vi) avoiding the addi-
tion of information not available in the data with functions, and
(vii) handling uncertainty appropriately by means of conditional
distributions. The proposed approach is called histogram via
entropy reduction (HER).

With HER, it is possible to describe spatial dependence patterns
and obtain conditional probabilistic predictions. I investigate and
demonstrate its efficacy in ascertaining the underlying field with
varying sample densities and data properties using a synthetically
generated datasets from known Gaussian processes. HER shows
a comparable performance to the popular benchmark model of
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OK, with the additional advantage of higher generality. This
framework provides spatial predictions with a minimum of as-
sumptions involved and optimizes the use of the available data in
terms of uncertainty. The novel method brings a new perspective
of spatial interpolation and uncertainty analysis to geostatistics
and statistical learning, under the lens of information theory.

1.4 chapter iv : categorical geostatistics and simu-
lation

The results presented in chapter 3 are promising both for overcom-Chapter 4 addresses
the following

questions:
ing parameterization with functions and uncertainty trade-offs
present in many traditional interpolators, and for assessing the
uncertainty about the unknown through conditional distributions.
The estimation results presented by HER are locally accurate and- Can HER be

adapted to handle
categorical data?

are appropriate for visualizing trends. However, the method suf-
fers from the smoothing effect and is therefore inappropriate for
simulating extreme values, similarly to OK, as discussed by Rossi
and Deutsch (2014, p. 167). Local uncertainty, on the other hand,- Can HER simulate

the spatial
fluctuation of data to
avoid the smoothing

effects?

allows us to assess the uncertainty at any specific unsampled
location but not the uncertainty when many locations must be
considered simultaneously (spatial uncertainty; Goovaerts, 2001).
Therefore, here I go one step further and explore the adaptability
of HER to handle categorical data and to simulate the spatial fluc-
tuation of the dataset reality. Additionally, in continuation to the- What is the ability

of HER for modeling
non-Gaussian data
and assessing local

uncertainty in a
real-world dataset?

previous chapter, the ability of HER in handling non-Gaussian
data from a real application (non-synthetic data) and assessing
their local uncertainty is also investigated.

Soil variables offer interesting properties for exploring and
testing HER since they rarely meet assumptions of normality
or present errors independent from the actual data values, and
frequently display skewed distributions (Bourennane et al., 2007).
For this reason, the established soil dataset of the Swiss Jura
region (Atteia et al., 1994; Webster et al., 1994) is selected for
addressing the previous issues of adaptability and model testing.
In this fashion, the nonparametric framework of HER is tailored
to assess local uncertainty for the delineation of contaminated
areas and to handle categorial data in the context of estimating
threshold-exceeding probabilities to map the risk of soil contami-
nation by lead. Beyond exploring the potential adaptability of the
method, the study investigates the method properties in contrast
to IK and an OK model available in literature. Additionally, HER
is extended through sequential simulation (HERs) for generating
equiprobable realizations of lead concentrations and assessing
spatial uncertainty (uncertainty jointly over several locations).

In the application, HER and IK exhibit comparable accuracy
and precision in the performance analysis, albeit their local un-
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certainties present different distribution shapes and magnitudes.
HER has shown to be a unique framework for dealing with uncer-
tainty estimation in a fine resolution without the need of (i) mod-
eling multiple variograms, (ii) correcting order-relation violations,
(iii) interpolating probabilities (or extrapolating tails) to obtain
conditional cumulative distribution functions, or (iv) presenting
stronger hypotheses of data distribution. In terms of information,
it avoids strong loss of information arising from data binariza-
tion and the risk of adding information not contained in data
caused by parameterization. The chapter presents a new facet of
the HER method for modeling uncertainty in a soil contamina-
tion and remediation application, which brings together concepts
of information theory and probability aggregation methods for
measuring the information content of the data and optimizing
its use. Finally, the intrinsic interdisciplinarity of the proposed
framework has once more proven to entail a higher flexibility
to the modeling in terms of purpose, degrees of freedom, and
incorporation of properties in the context of spatial statistics.
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abstract

In this study, we propose a data-driven approach for automatically identifying rainfall-
runoff events in discharge time series. The core of the concept is to construct and
apply discrete multivariate probability distributions to obtain probabilistic predictions
of each time step that is part of an event. The approach permits any data to serve
as predictors, and it is nonparametric in the sense that it can handle any kind of
relation between the predictor(s) and the target. Each choice of a particular predictor
dataset is equivalent to formulating a model hypothesis. Among competing models,
the best is found by comparing their predictive power in a training dataset with user-
classified events. For evaluation, we use measures from information theory such as
Shannon entropy and conditional entropy to select the best predictors and models and,
additionally, measure the risk of overfitting via cross entropy and Kullback–Leibler
divergence. As all these measures are expressed in “bit”, we can combine them to
identify models with the best tradeoff between predictive power and robustness given
the available data.

We applied the method to data from the Dornbirner Ach catchment in Austria,
distinguishing three different model types: models relying on discharge data, models
using both discharge and precipitation data, and recursive models, i.e., models using
their own predictions of a previous time step as an additional predictor. In the case
study, the additional use of precipitation reduced predictive uncertainty only by a
small amount, likely because the information provided by precipitation is already
contained in the discharge data. More generally, we found that the robustness of a
model quickly dropped with the increase in the number of predictors used (an effect
well known as the curse of dimensionality) such that, in the end, the best model
was a recursive one applying four predictors (three standard and one recursive):
discharge from two distinct time steps, the relative magnitude of discharge compared
with all discharge values in a surrounding 65 h time window and event predictions
from the previous time step. Applying the model reduced the uncertainty in event
classification by 77.8 %, decreasing conditional entropy from 0.516 to 0.114 bits. To
assess the quality of the proposed method, its results were binarized and validated
through a holdout method and then compared to a physically based approach. The
comparison showed similar behavior of both models (both with accuracy near 90 %),
and the cross-validation reinforced the quality of the proposed model. Given enough
data to build data-driven models, their potential lies in the way they learn and exploit
relations between data unconstrained by functional or parametric assumptions and
choices. And, beyond that, the use of these models to reproduce a hydrologist’s way
of identifying rainfall-runoff events is just one of many potential applications.
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2.1 introduction

Discharge time series are essential for various activities in hydrology and water
resources management. In the words of Chow et al. (1988), “[. . . ] the hydrograph is
an integral expression of the physiographic and climatic characteristics that govern
the relations between rainfall and runoff of a particular drainage basin.” Discharge
time series are a fundamental component of hydrological learning and prediction,
since they (i) are relatively easy to obtain, being available in high quality and from
widespread and long-existing observation networks; (ii) carry robust and integral
information about the catchment state; and (iii) are an important target quantity for
hydrological prediction and decision-making.

Beyond their value in providing long-term averages aiding water balance consid-
erations, the information they contain about limited periods of elevated discharge
can be exploited for baseflow separation; water power planning; sizing of reservoirs
and retention ponds; design of hydraulic structures such as bridges, dams or urban
storm drainage systems; risk assessment of floods; and soil erosion. These periods,
essentially characterized by rising (start), peak and recession (ending) points (Mei
and Anagnostou, 2015), will hereafter simply be referred to as “events”. They can
have many causes (rainfall, snowmelt, upstream reservoir operation, etc.) and equally
as many characteristic durations, magnitudes and shapes. Interestingly, while for a
trained hydrologist with a particular purpose in mind, it is usually straightforward to
identify such events in a time series, it is hard to identify them automatically based
on a set of rigid criteria. One reason for this is that the set of criteria for discerning
events from non-events typically comprises both global and local aspects, i.e., some
aspects relate to properties of the entire time series and some to properties in time
windows. And to make things worse, the relative importance of these criteria can
vary over time, and they strongly depend on user requirements, hydroclimate and
catchment properties.

So why not stick to manual event detection? Its obvious drawbacks are that it
is cumbersome, subject to handling errors and hard to reproduce, especially when
working with long-term data. As a consequence, many methods for objective and
automatized event detection have been suggested. The baseflow separation, and con-
sequently the event identification (since the separation allows the identification of the
start and end time of the events), has a long history of development. Theoretical and
empirical methods for determining baseflow are discussed since 1893, as presented
in Hoyt (1936). One of the oldest techniques according to Chow et al. (1988) dates
back to the early 1930s, with the normal depletion curve from Horton (1933). As
stated by Hall (1968), fairly complete discussions of baseflow equations, mathematical
derivations and applications were already present in the 1960s. In the last 2 decades,
more recent techniques embracing a multitude of approaches (graphical-, theoretical-,
mathematical-, empirical-, physical- and data-based) aim to automate the separation.

Ehret and Zehe (2011) and Seibert et al. (2016) applied a simple discharge threshold
approach with partly unsatisfactory results; Merz et al. (2006b) introduced an iterative
approach for event identification based on the comparison of direct runoff and a
threshold. Merz and Blöschl (2009) expanded the concept to analyze runoff coefficients
and applied it to a large set of catchments. Blume et al. (2007) developed the “constant
k” method for baseflow separation, employing a gradient-based search for the end of
event discharge. Koskelo et al. (2012) presented the physically based “sliding average
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with rain record” – SARR – method for baseflow separation in small watersheds based
on precipitation and quick-flow response. Mei and Anagnostou (2015) suggested a
physically based approach for combined event detection and baseflow separation,
which provides event start, peak and end times.

While all of these methods have the advantage of being objective and automatable,
they suffer from limited generality. The reason is that each of them contains some
kind of conceptualized, fixed relation between input and output. Even though this
relation can be customized to a particular application by adapting parameters, it
remains to a certain degree invariant. In particular, each method requires an invariant
set of input data, and sometimes it is constrained to a specific scale, which limits its
application to specific cases and to where these data are available.

With the rapidly increasing availability of observation data, computer storage and
processing power, data-based models have become increasingly popular as an addi-
tion or alternative to established modeling approaches in hydrology and hydraulics
(Solomatine and Ostfeld, 2008). According to Solomatine and Ostfeld (2008) and Solo-
matine et al. (2009), they have the advantage of not requiring detailed consideration of
physical processes (or any kind of a priori known relation between model input and
output); instead, they infer these relations from data, which however requires that
there are enough data to learn from. Of course, including a priori known relations
among data into models is an advantage as long as we can assure that they really
apply. However, when facing undetermined problems, i.e., for cases where system
configuration, initial and boundary conditions are not well known, applying these
relations may be over-constraining, which may lead to biased and/or overconfident
predictions. Predictions based on probabilistic models that learn relations among
data directly from the data, with few or no prior assumptions about the nature of
these relations, are less bias-prone (because there are no prior assumptions potentially
obstructing convergence towards observed mean behavior) and are less likely to
be overconfident compared to established models (because applying deterministic
models is still standard hydrological practice, and they are overconfident in all but
the very few cases of perfect models). This applies if there are at least sufficient data
to learn from, appropriate binning choices are made (see the related discussion in
Sect. 2.2.2) and the application remains within the domain of the data that was used
for learning.

In the context of data-based modeling in hydrology, concepts and measures from
information theory are becoming increasingly popular for describing and inferring re-
lations among data (Liu et al., 2016), quantifying uncertainty and evaluating model per-
formance (Chapman, 1986; Liu et al., 2016), estimating information flows (Darscheid,
2017; Weijs, 2011), analyzing spatio-temporal variability in precipitation data (Brunsell,
2010; Mishra et al., 2009), describing catchment flow (Pechlivanidis et al., 2016), and
measuring the quantity and quality of information in hydrological models (Nearing
and Gupta, 2017).

In this study, we describe and test a data-driven approach for event detection
formulated in terms of information theory, showing that its potential goes beyond
event classification, since it enables the identification of the drivers of the classification,
the choice of the most suitable model for an available dataset, the quantification of
minimal data requirements, the automatic reproduction classifications for database
generation and the handling of any kind of relation between the data. The method is
presented in Sect. 2.2. In Sect. 2.3, we describe two test applications with data from



20 information theory for event detection

the Dornbirner Ach catchment in Austria. We present the results in Sect. 2.4 and draw
conclusions in Sect. 2.5.

2.2 method description

The core of the information theory method (ITM) is straightforward and generally
applicable; its main steps are shown in Fig. 2.1 and will be explained in the following.

2.2.1 Model hypothesis step

The process starts by selecting the target (what we want to predict) and the predictor
data (that potentially contain information about the target). Choosing the predictors
constitutes the first and most important model hypothesis, and there are almost
no restrictions to this choice. They can be any kind of observational or other data,
transformed by the user or not; they can be part of the target dataset themselves,
e.g., time lagged or space shifted; and they can even be the output of another model.
The second choice and model hypothesis is the mapping between items in the target
and the predictor dataset, i.e., the relation hypothesis. It is important for the later
construction of conditional histograms that a 1:1 mapping exists between target and
predictor data, i.e., one particular value of the target is related to one particular value
of predictor (in contrast to 1:n or n:m relationships). Often, the mapping relation is
established by equality in time.

2.2.2 Model building step

The next step is the first part of model building. It consists of choosing the value range
and binning strategy for target and predictor data. These choices are important, as they
will frame the estimated multivariate probability mass functions (PMFs) constituting
the model and directly influence the statistics we compute from them for evaluation.
Generally, these choices are subjective and reflect user-specific requirements and
should be made while taking into consideration data precision and distribution, the
size of the available datasets, and required resolution of the output. According to Gong
et al. (2014), when constructing probability density functions (PDFs) from data via the
simple bin-counting method, “[...] too small a bin width may lead to a histogram that
is too rough an approximation of the underlying distribution, while an overly large
bin width may result in a histogram that is overly smooth compared to the true PDF.”
Gong et al. (2014) also discussed the selection of an optimal bin width by balancing
bias and variance of the estimated PDF. Pechlivanidis et al. (2016) investigated the
effect of bin resolution on the calculation of Shannon entropy and recommended that
bin width should not be less than the precision of the data. Also, while equidistant
bins have the advantage of being simple and computationally efficient (Ruddell and
Kumar, 2009), hybrid alternatives can overcome weaknesses of conventional binning
methods to achieve a better representation of the full range of data (Pechlivanidis
et al., 2016).

With the binning strategy fixed, the last part of the model building is to construct
a multivariate PMF from all predictors and related target data. The PMF dimension
equals the number of predictors plus one (the target), and the way probability
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Figure 2.1: Main steps of the ITM.
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mass is distributed within it is a direct representation of the nature and strength
of the relationship between the predictors and the target as contained in the data.
Application of this kind of model for a given set of predictor values is straightforward;
we simply extract the related conditional PMF (or PDF) of the target, which, under
the assumption of system stationarity, is a probabilistic prediction of the target value.

If the system is non-stationary, e.g., when system properties change with time,
the inconsistency between the learning and the prediction situation will result in
additional predictive uncertainty. The problems associated with predictions of non-
stationary systems apply to all modeling approaches. If a stable trend can be identified,
a possible countermeasure is to learn and predict detrended data and then reimpose
the trend in a post-processing step.

2.2.3 Model evaluation step

Information theory – Measures

In order to evaluate the usefulness of a model, we apply concepts from information
theory to select the best predictors (the drivers of the classification) and validate the
model. With this in mind, this section provides a brief description of the information
theory concepts and measures applied in this study. The section is based on Cover
and Thomas (2006), which we recommend for a more detailed introduction to the con-
cepts of information theory. Complementarily, for specific applications to investigate
hydrological data series, we refer the reader to Darscheid (2017).

Entropy can be seen as a measure of the uncertainty of a random variable; it is
a measure of the amount of information required on average to describe a random
variable (Cover and Thomas, 2006). Let X be a discrete random variable with alphabet
χ and probability mass function p(x), x ∈ χ. Then, the Shannon entropy H(X) of a
discrete random variable X is defined by

H(X) = − ∑
x∈X

p(x) log2 p(x). (2.1)

If the logarithm is taken to base two, an intuitive interpretation of entropy is the
following: given prior knowledge of a distribution, how many binary (yes or no)
questions need to be asked on average until a value randomly drawn from this
distribution is identified? We can describe the conditional entropy as the Shannon
entropy of a random variable conditional on the (prior) knowledge of another random
variable. The conditional entropy H(X|Y) of a pair of discrete random variables (X, Y)

is defined as

H(X|Y) = − ∑
y∈Y

p (y) ∑
x∈X

p(x|y) log2 p(x|y). (2.2)

The reduction in uncertainty due to another random variable is called mutual
information I(X, Y), which is equal to H(X)− H(X|Y). In the study, both measures,
Shannon entropy and conditional entropy, are used to quantify the uncertainty of the
models (univariate and multivariate probability distributions, respectively). The first is
calculated as a reference and measures the uncertainty of the target dataset. The latter
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is applied to the probability distributions of the target conditional on predictor(s),
and it corroborates to select the more informative predictors, i.e., the ones which lead
to the most significant reduction of uncertainty of the target.

DKL(p||q) = ∑
x∈X

p (x) log2
p(x)

q(x)
. (2.3)

The Kullback–Leibler divergence is also a measure of the inefficiency of assuming
that the distribution is q when the true distribution is p (Cover and Thomas, 2006). The
Shannon entropy H(p) of the true distribution p plus the Kullback–Leibler divergence
DKL(p||q) of p with respect to q is called cross entropy Hpq(X||Y). In the study, we use
these related measures to validate the models and to avoid overfitting by measuring
the additional uncertainty of a model if it is not based on the full dataset p but is only
based on a sample q thereof.

Note that the uncertainty measured by Eqs. 2.1 to 2.1 depends only on event
probabilities, not on their values. This is convenient, as it allows joint treatment of
many different sources and types of data in a single framework.

Information theory – Model evaluation

As a benchmark, we can start with the case where no predictor is available, but only
the unconditional probability distribution of the target is known. As seen in Eq. 2.1,
the associated predictive uncertainty can be measured by the Shannon entropy H(X)

of the distribution (where X indicates the target). If we introduce a predictor and
know its value in a particular situation a priori, predictive uncertainty is the entropy of
the conditional probability function of the target given the particular predictor value.
Conditional entropy H(X|Y), where Y indicates the predictor(s), is then simply the
probability-weighted sum of entropies of all conditional PMFs. Conditional entropy,
like mutual information, is a generic measure of statistical dependence between
variables (Sharma and Mehrotra, 2014), which we can use to compare competing
model hypotheses and select the best among them.

Obviously, advantages of setting up data-driven models in the described way are
that it involves very few assumptions and that it is straightforward when formulating
a large number of alternative model hypotheses. However, there is an important
aspect we need to consider: from the information inequality, we know that conditional
entropy is always less than or equal to the Shannon entropy of the target (Cover and
Thomas, 2006). In other words, information never hurts, and consequently adding
more predictors will always either improve or at the least not worsen results. In the
extreme, given enough predictors and applying a very refined binning scheme, a
model can potentially yield perfect predictions if applied to the learning dataset.
However, besides the higher computational effort, in this situation, the curse of
dimensionality (Bellman, 1957) occurs, which “covers various effects and difficulties
arising from the increasing number of dimensions in a mathematical space for which
only a limited number of data points are available” (Darscheid, 2017). This means
that with each predictor added to the model, the dimension of the conditional
target–predictor PMF will increase by 1, but its volume will increase exponentially.
For example, if the target PMF is covered by two bins and each predictor by 100,
then a single, double and triple predictor model will consist of 200, 20 000 and
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Figure 2.2: Investigating the effect of sample size through cross entropy and Kullback–Leibler
divergence.

2 000 000 bins, respectively. Clearly, we will need a much larger dataset to populate
the PMF mentioned last than the first. This also means that increasing the number
of predictors for a fixed number of available data increases the risk of creating an
overfitted or non-robust model in the sense that it will become more and more
sensitive to the absence or presence of each particular data point. Models overfitted
to a particular dataset are less likely to produce good results when applied to other
datasets than robust models, which capture the essentials of the data relation without
getting lost in detail.

We consider this effect with a resampling approach: from the available dataset,
we take samples of various sizes and construct the model from each sample (see
repetition statement regarding N in Fig. 2.1). Obviously, since the model was built
from just a sample, it will not reflect the target– predictor relation as well as a model
constructed from the entire dataset. It has been shown (Cover and Thomas, 2006;
Darscheid, 2017) that the total uncertainty of such an imperfect model is the sum of
two components: the conditional entropy H(X|Y) of the “perfect” model constructed
from all data and the Kullback–Leibler divergence DKL between the sample-based
and the perfect model. In this sense, DKL quantifies the additional uncertainty due to
the use of an imperfect model. For a given model (selection of target and predictors),
the first summand is independent of the sample size, as it is calculated from the
full dataset, but the second summand varies: the smaller the sample, the higher
DKL. Another important aspect of DKL is that for a fixed amount of data, it strongly
increases with the dimension of the related PMF, in other words, it is a measure of the
impact of the curse of dimensionality. In information terms, the sum of conditional
entropy and Kullback–Leibler divergence is referred to as cross entropy Hpq(X||Y). A
typical example of cross entropy as a function of sample size is, for a single model,
shown in Fig. 2.2.

The curve represents the mean of several repetitions, which were randomly taken
with replacement among these repetitions. Note that, comparable to the Monte Carlo
cross-validation, the analysis presented in Fig. 2.2 summarizes a large number of
training and testing splits performed repeatedly, and, in addition, were also performed
in different split proportions (subsets of various sizes). The difference here is that,
in contrast to a standard split where datasets for training and testing are mutually
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exclusive, we build the model in the training set and apply it in the full dataset, where
one part of the data has not been seen yet and another part has. In other words, we
use the training subsets for building the model (a supervised learning approach), and
the resulting model is then applied to and evaluated on the full dataset. If, on the one
hand, the use of the full dataset for the application includes data of the training set,
on the other hand, the procedure favors the comparison of the results always with
the same model. Thus, the stated procedure allows a robust and holistic analysis, in
the sense that it works with the mean of W repetition for each subset and compares
different sizes of training subset with a unique reference, the model built from the
full dataset.

Particularly, Fig. 2.2 shows that for small sample sizes, DKL is the main contributor
to total uncertainty, but when the sample approaches the size of the full dataset, it
disappears, and total uncertainty equals conditional entropy. From the shape of the
curve in Fig. 2.2 we can also infer whether the available data are sufficient to support
the model; when DKL approaches zero (cross entropy approaches its minimum), this
indicates that the model can be robustly estimated from the data, or, in other words,
the sample size is enough to represent the full dataset. In an objective manner, we can
also do a complementary analysis by calculating the ratio DKL/H(X|Y), which is a
measure of the relative contribution of DKL to total uncertainty. We can then compare
this ratio to a defined tolerance limit (e.g., 5%) to find the minimally required sample
size.

Another application for Fig. 2.2 is to use these kinds of plots to select the best
among competing models with different numbers of predictors. Typically, for small
sample sizes, simple models will outperform multi-predictor models, as the latter
will be hit harder by the curse of dimensionality; but with increasing data availability,
this effect will vanish, and models incorporating more sources of information will be
rewarded.

In order to reduce the effect of chance when taking random samples, we repeat the
described resampling and evaluation procedure many times for each sample size (see
repetition statement W in Fig. 2.1) and take the average of the resulting DKL’s and
Hpq’s. Based on these averaged results, we can identify the best model for a set of
available data.

The proposed cross entropy curve contains a joint visualization of model analysis
and model evaluation and, at the same time, provides the opportunity to compare
models with different numbers of predictors, being a support tool to decide, for
a given amount of data, which number of predictors is optimal in the sense of
avoiding both ignoring the available information (by choosing too few predictors)
and overfitting (by choosing too many predictors). And since it incorporates a sort of
cross-validation in its construction, one of the advantages of this approach is that it
avoids splitting the available data into a training and a testing set. Instead, it makes
use of all available data for learning and provides measures of model performance
across a range of sample sizes.

2.2.4 Model application step

Once a model has been selected, the ITM application is straightforward; from the
multivariate PMF that represents the model, we simply extract the conditional PMF
of the target for a given set of predictor values. The model returns a probabilistic
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representation of the target value. If the model was trained on all available data, and
is applied within the domain of these data, the predictions will be unbiased and will
be neither overconfident nor underconfident. If instead a model using deterministic
functions is trained and applied in the same manner, the resulting single-value
predictions may also be unbiased, but due to their single-value nature they will surely
be overconfident.

For application in a new time series, if its conditions are outside of the range of
the empirical PMF or if they are within the range but have never been observed in
the training dataset, the predictive distribution of the target (event yes or no) will
be empty and the model will not provide a prediction. Several methods exist to
guarantee a model answer, however they come with the cost of reduced precision.
The solutions range from (i) coarse graining, where the PMF can be rebuilt with fewer,
wider bins and an extension of the range until the model provides an answer to the
predictive setting, as have been proposed by Darbellay and Vajda (1999), Knuth (2013),
and Pechlivanidis et al. (2016), to (ii) gap filling, where the binning is maintained and
the empty bins are filled with non-zero values based on a reasonable assumption.
Gap-filling approaches comprise adding one counter to each zero-probability bin
of the sample histogram, adding a small probability to the sample PDF, smoothing
methods such as kernel density smoothing (Blower and Kelsall, 2002; Simonoff, 1996)
or Bayesian approaches based on the Dirichlet and multinomial distribution or a
maximum-entropy method recently suggested by Darscheid et al. (2018), the latter
being applied in the present study

2.3 design of a test application

In this section, we describe the hydroclimatic properties of the data and the two
performed applications. For demonstration purposes, the first test application was
developed according to the Sect. 2.2 in order to explain which additional predictors we
derived from the raw data and their related binning and to present our strategy for the
model setup, classification and evaluation. For benchmarking purposes, the second
application compares the proposed data-driven approach (ITM) with the physically
based approach proposed by Mei and Anagnostou (2015), the characteristic point
method (CPM), and applies the holdout method (splitting the dataset into training
and testing set) for the cross-validation analysis.

2.3.1 Data and site properties

We used quality-controlled hourly discharge and precipitation observations from a
9-year period (31 October 1996 – 1 November 2005, 78 912 time steps). Discharge data
are from the gauge Hoher Steg, which is located at the outlet of the 113 km2 Alpine
catchment of the Dornbirner Ach in northwestern Austria (GMT+1). Precipitation
data are from the station Ebnit located within the catchment.

For the available period, we manually identified hydrological events by visual
inspection of the discharge time series. To guide this process, we used a broad event
definition, which can be summarized as follows: “an event is a coherent period of
elevated discharge compared to the discharge immediately before and after and/or a
coherent period of high discharge compared to the data of the entire time series.” We
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Figure 2.3: Input data of discharge, precipitation, and user-based event classification. Overview
of the time series (a) and detailed view (b).

suggest that this is a typical definition if the goal is to identify events for hydrological
process studies such as analysis of rainfall-runoff coefficients, baseflow separation
or recession analysis. Based on this definition, we classified each time step of the
time series as either being part of an event (value 1) or not (value 0). Altogether, we
identified 177 individual events covering 9 092 time steps, which is 11.5% of the time
series. For the available 9-year period, the maximum precipitation is 28.5 mm h-1, and
the maximum and minimum discharge values are 237.0 and 0.037 m3 s-1, respectively.
A preliminary analysis revealed that all times with discharge exceeding 15.2 m3 s-1

were classified as an event, and all times with discharge below 0.287 m3 s-1 were
always classified as a non-event. Both the input data and the event classification are
shown in Fig. 2.3.

2.3.2 Application I – ITM

2.3.2.1 Predictor data and binning

Since we wanted to build and test a large range of models, we not only applied the
raw observations of discharge and precipitation but also derived new datasets. The
target and all predictor datasets with the related binning choices are listed in Table 2.1;
additionally, the predictors are explained in the text below.

For reasons of comparability, we applied uniform binning (fixed-width interval
partitions) to all data used in the study, except for discharge; here we grouped all
values exceeding 15.2 m3 s-1 (the threshold beyond which an event occurred for sure)
into one bin to increase computational efficiency. For each data type, we selected the
bin range to cover the range of observed data and chose the number of bins with the
objective of maintaining the overall shape of the distributions with the least number
of bins.

Discharge Q [m3s−1]

This is the discharge as measured at Hoher Steg. In order to predict an event at time
step t, we tested discharge at the same time step as a predictor, Q(t), and at time
steps before and after t, such as Q(t− 2), Q(t− 1), Q(t + 1), and Q(t + 2).



28 information theory for event detection

Table 2.1: Target and predictors – characterization and binning strategy.

Target (X) Symbol Unit Bins a Number

[start : end] of bins

User-based event t e (-) [0 : 1] 2

classification at time

Predictors (Y) Symbol Unit Bins a Number

[start : step : end] of bins

Discharge Q(t–2),Q(t–1), (m3 s-1) [0 : 0.5 : 16], 34

Q(t),Q(t+1) [16 : end]

Q(t+2)

Natural logarithm ln Q(t–2), ln Q(t–1), ln(m3 s-1) [-3.5 : 0.2 : 2.9], 34

of discharge ln Q(t),ln Q(t+1) [2.9 : end]

ln Q(t+2)

Relative Magnitude QRMC, QRML, (–) [0 : 0.1 : 1] 11

of discharge QRMR

Discharge slope Qslopebefore
, (m3 s-1 h-1) [-50 : 5 : 90] 29

Qslopeafter

Precipitation at time t P (mm h-1) [0 : 1 : 30] 31

Model-based event ep(t–1) (–) [0 : 0.1 : 1] 11

probability

a Bins identified by their central values [leftmost center value : step : rightmost center value].

Natural logarithm of discharge ln Q [ln Q(m3 s−1)]

We also used a log transformation of discharge to evaluate whether this non-linear
conversion preserved more information in Q when mapped into the binning scheme
than the raw values. Note that the same effect could also be achieved by a logarithmic
binning strategy, but as mentioned we decided to maintain the same binning scheme
for reasons of comparability. As for Q, we also applied the log transformation to
time-shifted data.

Relative magnitude of discharge QRM [−]

This is a local identifier of discharge magnitude at time t in relation to its neighbors
within a time window. For each time step, we normalized discharge into the range
[0, 1] using Eq. 2.4, where Qmax is the largest value of Q within the window and Qmin

is the smallest:

QRM =
Q(t)−Qmin

Qmax − Qmin
. (2.4)

A value of QRM = 0 indicates that Q(t) is the smallest discharge within the ana-
lyzed window, and a value of QRM = 1 indicates that it is the largest. We calculated
these values for many window sizes and for windows with the time step under
consideration in the center (QRMC), at the right end (QRMR) and at the left end (QRML)
of the window. The best results were obtained for a time-centered window of 65 h.
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For further details see Sect. 2.3.2.2.

Slope of discharge Qslope [m3 s−1 h−1]

This is the local inclination of the hydrograph. This predictor was created to take
into consideration the rate and direction of discharge changes. We calculated both
the slope from the previous to the current time step applying Eq. 2.5 and the slope
from the current to the next time step applying Eq. 2.6, where positive values always
indicate rising discharge:

Qslopebefore
=

Q(t)−Q(t− 1)

t− (t− 1)
, (2.5)

Qslopebefore
=

Q(t + 1)−Q(t)
(t + 1)− t

. (2.6)

Precipitation P [mm h−1]

This is the precipitation as measured at Ebnit.

Model-based event probability ep [−]

In general, information about a target of interest can be encoded in related data such
as the predictors introduced above, but it can also be encoded in the ordering of
data. This is the case if the processes that are shaping the target exhibit some kind
of temporal memory or spatial coherence. For example, the chance of a particular
time step to be classified as being part of an event increases if the discharge is on the
rise, and it declines if the discharge declines. We can incorporate this information
by adding to the predictors discharge from increasingly distant time steps, but this
comes at the price of a rapidly increasing impact of the curse of dimensionality. To
mitigate this effect, we can use sequential or recursive modeling approaches; in a first
step, we build a model using a set of predictors and apply it to predict the target.
In a next step, we use this prediction as a new, model-derived predictor, combine
it with other predictors in a second model, use it to make a second prediction of
the target and so forth. Each time we map information from the multi-dimensional
set of predictors onto the one-dimensional model output, we compress data and
reduce dimensionality while hoping to preserve most of the information contained
in the predictors. Of course, if we apply such a recursive scheme and want to avoid
iterations, we need to avoid circular references, i.e., the output of the first model
must not depend on the output of the second. In our application, we assured this by
using the output from the first model at time step t− 1 as a predictor in the second
model to make a prediction at time step t. Comparable to a Markov model, this kind
of predictor helps the model to better stick to a classification after a transition from
event to non-event or vice versa.

2.3.2.2 Selecting the optimal window size for the QRM predictor

To select the most informative window size when using relative magnitude of dis-
charge as a predictor, we calculated conditional entropy of the target given discharge
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Figure 2.4: Window size definitions for window types. (a) QRMC, (b) QRML, and (c) QRMR
window definitions, and (d) window size analysis.

and the QRMC, QRML and QRMR predictors for a range of window sizes on the full
dataset. The definition of the window sizes for the different window types and the
conditional entropies are shown in Fig. 2.4.

The best (lowest) value of conditional entropy was obtained for a time-centered
window (QRMC) with 2 ∗ 32 + 1 = 65 h of total width. We used this value for all
further analyses.

2.3.2.3 Model classification, selection and evaluation

Model classification

All the models we set up and tested in this study can be assigned to one of three
distinct groups. The groups distinguish both typical situations of data availability
and the use of recursive and non-recursive modeling approaches. Models in the
Q-based group apply exclusively discharge-based predictor(s). For models in the
P-based group, we assumed that in addition to discharge, precipitation data are also
available. This distinction was made, because in the literature two main groups of
event detection methods exist: one relying solely on discharge data the other using
precipitation data additionally. Finally, models in the model-based group all apply a
two-step recursive approach as discussed in Sect. 2.3.2.1. In this case, the first model
is always from the Q- or P-based group. Later, event predictions at time step t− 1 of
the first model application are then, together with additional predictors from the Q-
or P-based group, used as a predictor in the second model.

Model selection

In order to streamline the model evaluation process, we applied an approach
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of supervised model selection and gradually increasing model complexity, we started
by setting up and testing all possible one-predictor models in the Q- and P-based
group. From these, we selected the best-performing model and combined it with
each remaining predictor into a set of two-predictor models. The best-performing
two-predictor model was then expanded to a set of three-predictor models using each
remaining predictor and so forth. For the model-based group, the strategy was to
take the best-performing models from both the Q- and the P-based group as the first
model and then combine it with an additional predictor. In the end, we stopped at
four-predictor models, since beyond it, the uncertainty contribution due to limited
sample size became dominant.

Model evaluation

Among models with the same number of predictors, we compared model per-
formance via the conditional entropy (target given the predictors), calculated from the
full dataset. However, when comparing models with different numbers of predictors,
the influence of the curse of dimensionality needs to be taken into account. To this
end, we calculated sample-based cross entropy and Kullback–Leibler divergence as
described in Sect. 2.2.3 for samples of size of 50 up to the size of the full dataset, using
the following sizes: 50, 100, 500, 1000, 1500, 2000, 2500, 5000, 7500, 10 000, 15 000,
20 000, 30 000, 40 000, 50 000, 60 000, 70 000 and 78 912. To eliminate effects of chance,
we repeated the resampling 500 times for each sample size and took their averages. In
Appendix A, the resampling strategy and the choice of repetitions are discussed in
more detail.

2.3.3 Application II – ITM and CPM comparison

The second application aims to compare the performances of the ITM and another
automatic event identification method from a more familiar perspective. The predic-
tions were performed in a separate dataset, and, as a measure of diagnostic, concepts
from the receiver operating characteristic (ROC) curve quantified the hits and misses
of the predictions of both models according to a time series of user-classified events
(considered the true value). More about the ROC analysis can be found in Fawcett
(2005).

For the comparison, the characteristic point method (CPM) was chosen, because,
in contrast with the data-driven ITM, it is a physically based approach for event
identification, which is applicable to and recommended for the characteristics of the
available dataset (hourly timescale data on catchment precipitation and discharge)
and open source. The essence of the method is to characterize flow events with
three points (start, peak(s) and end of the event) and then associate the event to a
corresponding rainfall event (Mei and Anagnostou, 2015). For the event identification,
a baseflow separation is previously needed and proposed by coupling the revised
constant k method (Blume et al., 2007) and the recursive digital filter proposed by
Eckhardt (2005). More about the CPM can be attained in Mei and Anagnostou (2015).

Since the outcome of the CPM is dichotomous, classified as either event or non-
event, the probabilistic outcome of the ITM must be converted into a binary solution.
The binarization was reached in the study by choosing an optimum threshold of the



32 information theory for event detection

probabilistic prediction (pthreshold), where all time steps with probabilities equal to or
greater than it were classified as being part of an event. The objective function of the
optimization was based on the ROC curve and sought to minimize the distance to
the top-left corner of the ROC curve, i.e., the Euclidean distance between the true
positive rate (RTP, proportion of events correctly identified in relation to the total of
true events) and false positive rate (RFP, proportion of false events in relation to the
total of true non-events) to the perfect model (where RTPperfect = 1 and RFPperfect = 0),
as expressed in Eq. 2.7 1:

min
√

(1− RTP)2 + (0− RFP)2. (2.7)

Even though the physically based CPM method theoretically does not require a
calibration step, for avoiding misleading comparison, the parameter Rnc (rate of no
change, used to quantify null-change ratio in recession coefficient k) was optimized
by Eq. 2.7. Thus, RTP and RFP ∈ [0, 1] are calculated as a function of the optimized
parameter pthreshold (for the ITM) and Rnc (for the CPM).

Due to the pthreshold and Rnc optimization and to enable the cross-validation of
the models in a new dataset, the available data were divided into training and testing
sets. And, since the ITM model requires a minimum dataset size to guarantee the
model robustness, the holdout split was based on the data requirement of the selected
ITM model obtained according to application I, Sect. 2.3.2. Therefore, the training
dataset was used to build the ITM model and to calibrate the pthreshold (needed for the
binarization) and Rnc.

After that, the calibrated models (ITM and CPM) were applied to a new dataset
(testing dataset), and measures of quality based on the ROC curve were computed in
order to evaluate and compare their performance, such as (i) the true positive rate
(RTP), which represents the percentage of event classification hits (counting of events
correctly classified by the model, PT, divided by the amount of the true events in the
testing dataset, P); (ii) the false positive rate (RFP), which represents the percentage of
false events identified by the model (counting of events misclassified by the model,
PF, divided by the amount of the true non-events in the testing dataset, N); (iii) the
accuracy, which reflects the total proportion of events (PT) and non-events (or true
negative, NT) that were correctly predicted by the model; and (iv) the distance to the
perfect model given by the Eq. 2.7, which represents the norm between the results
obtained by the method and a perfect prediction.

2.4 results and discussion

2.4.1 Results for application I

2.4.1.1 Model performance for the full dataset

Here we present and discuss the model results when constructed and applied to the
complete dataset. As we stick to the complete dataset, Kullback-Leibler divergence will
always be zero, and model performance can be fully expressed by conditional entropy
(see Sect. 2.3.2.3; Model Evaluation), with the (unconditional) Shannon entropy of

1 A detailed discussion about the cut-off values of the ROC curve can be found in Habibzadeh et al.
(2016).
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Table 2.2: Conditional entropy and relative uncertainty reduction of one-predictor models.

no. Predictive model H (X|Y) H (X|Y) /H(X)a

(X|Y) [bit]

Q-based group

1 e | Q(t− 2) 0.269 52.1%

2 e | Q(t− 1) 0.264 51.3%

3 e | Q(t) 0.260 50.3%

4 e | Q(t + 1) 0.255 49.4%

5 e | Q(t + 2) 0.250 48.6%

6 e | ln Q(t− 2) 0.269 52.2%

7 e | ln Q(t− 1) 0.265 51.3%

8 e | ln Q(t) 0.260 50.4%

9 e | ln Q(t + 1) 0.255 49.4%

10 e | ln Q(t + 2) 0.251 48.6%

11 e | QRMC 0.505 97.9%

12 e | Qslopebefore
0.473 91.8%

13 e | Qslopeafter
0.473 91.8%

P-based group

14 e | P 0.472 91.6%

a H(X) = H(e) = 0.516 bits.

the target data H(e) = 0.516 bits as an upper limit, which we use as a reference to
calculate the relative uncertainty reduction for each model. In Table 2.2, conditional
entropies and their relative uncertainty reductions are shown for each Q- and P-based
one-predictor model.

One-predictor models based on Q and ln Q reduced uncertainty to about 50%
(models no. 1–10 in Table 2.2, fourth column), with a slight advantage of Q over ln Q.
Interestingly, both show their best results for the time offset t + 2, i.e., future discharge
is a better predictor of event detection than discharge at the current time step. As we
were not sure whether this also applies to two-predictor models, we decided to test
both the t + 2 and t predictors of Q and ln Q in the next step. Compared to Q and
ln Q, relative magnitude of discharge QRMC and discharge slope Qslope performed
poorly, and so did P, the only model in the P-based group. This is most likely because
for a certain time step, being part of an event is not as dependent on precipitation
at this particular time step but is rather dependent on the accumulated rainfall in
a period preceding it. Despite its poor performance, we decided to use it in higher-
order models to see whether it becomes more informative in combination with other
predictors.

Based on these considerations and the model selection strategy described in
Sect. 2.3.2.3, we built and evaluated all possible two-predictor models. The mod-
els and results are shown in Table 2.3.

As could be expected from the information inequality, adding a predictor improved
the results, and for some models (no. 16 and no. 20), the t predictors outperformed
their t + 2 counterparts (no. 17 and no. 21, respectively). Once more, Q predictors
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Table 2.3: Conditional entropy and relative uncertainty reduction of two-predictor models.

no. Predictive model H (X|Y) H (X|Y) /H(X)a

(X|Y) [bit]

Q-based group

15 e | Q(t + 2), Q(t) 0.226 43.9%

16 e | Q(t), QRMC 0.182 35.3%

17 e | Q(t + 2), QRMC 0.191 37.1 %

18 e | Q(t), Qslopeafter
0.254 49.3 %

19 e | ln Q(t + 2), ln Q(t) 0.233 45.1%

20 e | ln Q(t), QRMC 0.185 35.8%

21 e | ln Q(t + 2), QRMC 0.194 37.5%

22 e | ln Q(t), Qslopeafter
0.254 49.3%

P-based group

23 e | Q(t), P 0.248 48.2%

24 e | Q(t + 2), P 0.247 48.0%

25 e | ln Q(t), P 0.249 48.2%

26 e | ln Q(t + 2), P 0.249 48.2%

a H(X) = H(e) = 0.516 bits.

Table 2.4: Conditional entropy and relative uncertainty reduction of three-predictor models.

no. Predictive model H (X|Y) H (X|Y) /H(X)a

(X|Y) [bit]

Q-based group

27 e | Q(t), QRMC, Q(t + 2) 0.144 28.0%

P-based group

28 e | Q(t), P, QRMC 0.167 32.5%

a H(X) = H(e) = 0.516 bits.

performed slightly better than ln Q such that for all higher-order models, we only
used Q(t) and ignored Q(t + 2), ln Q(t) and ln Q(t + 2).

In the P-based group, adding any predictor greatly improved results by about 50%,
but not a single P-based model outperformed even the worst of the Q-based group.

Finally, from both the Q- and P-based group, we selected the best model using
t predictors (no. 16 and no. 23, respectively) and extended them to three-predictor
models with the remaining predictors. The models and results are shown in Table 2.4.

Again, for both models, the added predictor improved results considerably, and
we used both of them to build a recursive four-predictor model as described in
Sect. 2.3.2.3. The new predictor, ep(t− 1) is simply the probabilistic prediction of a
model (no. 27 or no. 28, in this case) for time step t− 1 of being part of an event,
with a value range of [0, 1]. This means that ep27(t− 1) carries the memory from the
previous predictions of model no. 27 (and ep28(t− 1) from model no. 28, accordingly),
and the new four-predictor models no. 29 and no. 30 as shown in Table 2.5 are simply
copies of these models, extended by a memory term: ep(t− 1).
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Table 2.5: Conditional entropy and relative uncertainty reduction of recursive four-predictor
models.

no. Predictive model H (X|Y) H (X|Y) /H(X)a

(X|Y) [bit]

Model-based group

29 e | Q(t), QRMC, Q(t + 2), ep27(t− 1) 0.114 22.2%

30 e | Q(t), P, QRMC, ep28(t− 1) 0.142 27.6%

a H(X) = H(e) = 0.516 bits.

Table 2.6: Models selected for sample-based tests.

Model group 1 predictor 2 predictors 3 predictors 4 predictors

Q-based group a Q(t)
no. 3

Q(t), QRMC
no. 16

Q(t), QRMC, Q(t+2)
no. 27

–

P-based group b – Q(t), P
no. 23

Q(t), P, QRMC
no. 28

–

Model-based with
Q-based
predictors a

– – – Q(t), QRMC, Q(t+2), ep27(t–1)
no.29

Model-based with
P-based
predictors b

– – – Q(t), P, QRMC, ep28(t–1)
no. 30

a Models which apply exclusively discharge-based predictor(s).
b Models which apply discharge- and precipitation-based predictor(s).

Again, model performance improved, and model no. 29 was the best among all
tested models, though so far the effect of sample size was not considered, which
might have a strong impact on the model rankings. This is investigated in the next
section.

2.4.1.2 Model performance for samples

The sample-based model analysis is computationally expensive, so we restricted these
tests to a subset of the models from the previous section. Our selection criteria were
to (i) include at least one model from each predictor group, (ii) include at least one
model from each dimension of predictors, and (iii) choose the best-performing model.
Altogether we selected the seven models shown in Table 2.6. Please note that despite
our selection criteria, we ignored the one-predictor model using precipitation due to
its poor performance.

For these models, we computed the cross entropies between the full dataset and
each sample size N for W repetitions, and in the end, for each sample size N, we took
the average of the W repetitions. The results are shown in Fig. 2.5. For comparison,
the cross entropies between the target dataset and samples thereof are also included
and labeled as model no. 0.

In Fig. 2.5, the cross entropies at the right end of the the x axis, where the sample
contains the entire dataset, equal the conditional entropies, as the effect of sample size
is zero. However, with decreasing sample size, cross entropy grows in a non-linear
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Figure 2.5: Cross entropy for models in Table 2.6 as a function of sample size.

fashion as DKL starts to grow. If we walk through the space of sample sizes in the
opposite direction, i.e., from left to right, we can see that as the samples grow, the
rate of change of cross entropy decreases, the reason being that the rate of change of
DKL decreases, which means that the model learns less and less from new data points.
Thus, by visually exploring these “learning curves” of the models we can make two
important statements related to the amount of data required to inform a particular
model: we can state how large a training dataset should be to sufficiently inform a
model, and we can compare this size to the size of the actually available dataset. If the
first is much smaller than the latter, we gain confidence that we have a well-informed,
robust model. If not, we know that it may be beneficial to gather more data, and if
this is not possible, we should treat model predictions with caution.

As mentioned in Sect. 2.2.3, besides Fig. 2.5 informing the amount of data needed
to have a robust model (implying that sample size is enough to represent the full
dataset), it allows the comparison of competing models with different dimensions
and selection of the optimal number of predictors (taking advantage of the available
information and avoiding overfitting). In this sense, in the P-based group and for
sample sizes smaller 5000, the two-predictor model no. 23 performs best, but for
larger samples sizes, the four-predictor model no. 30 takes the lead. Likewise, in the
Q-based group and for sample sizes smaller than 2500, the single-predictor model
no. 3 is the best but is outperformed by the two-predictor model no. 16 from 2500

until 10 000, which in turn is outperformed by the four-predictor model no. 29 from
10 000 to the end. Across all groups, models no. 3, no. 16 and no. 29 form the lower
envelope curve in Fig. 2.5, which means that one of them is always the best model
choice, depending on the sample size.

Interestingly, the best-performing model for large sample sizes (no. 29) includes
predictors which reflect the definition criteria that guided manual event detection
(Sect. 2.3.1): Q(t) and Q(t + 2) contain information about the absolute magnitude
of discharge, QRMC expresses the magnitude of discharge relative to its vicinity, and
ep27(t− 1) relates it to the requirement of events to be coherent.
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Table 2.7: Application I – curse of dimensionality and data size validation for models in
Table 2.6.

no. Predictive model H(X) H(X)/H(X)a Sample size where Sample Number

[bit] DKL/H(X) ≤ 5% size [a] of bins

% of the full dataset b

0 e 0.516 100% ≥ 4398 (5.6%) 0.5 2

no. Predictive model H(X|Y) H(X|Y)/H(X)a Sample size where Sample Number

[bit] DKL/H(X|Y) ≤ 5% size [a] of bins

% of the full dataset b

3 e | Q(t) 0.260 50.4% ≥ 9952 (12.6%) 1.1 68

16 e | Q(t), QRMC 0.182 35.3% ≥ 29 460 (37.3%) 3.4 748

23 e | Q(t), P 0.248 48.2% ≥ 18 880 (23.9%) 2.2 2108

27 e | Q(t), QRMC, Q(t+2) 0.144 28.0% ≥ 60 178 (76.3%) 6.9 25 432

28 e | Q(t), P, QRMC 0.167 32.5% ≥ 50 377 (63.8%) 5.8 23 188

29 e | Q(t), QRMC, Q(t+2), ep27(t–1) 0.114 22.2% ≥ 69 102 (87.6%) 7.9 279 752

30 e | Q(t), P, QRMC, ep28(t–1) 0.142 27.6% ≥ 62 667 (79.4%) 7.2 255 068

a H(X) = H(e) = 0.516 bits.
b Size of the full dataset: 78 912 data points (9 years).

We also investigated the contribution of sample size effects to total uncertainty by
analyzing the ratio of DKL and H(X|Y) as described in Sect. 2.2.3. As expected, for
all models the contribution of sample size effects to total uncertainty decreases with
increasing sample size, but the absolute values and the rate of change strongly differ.
For the one-predictor model no. 3, the DKL contribution is small already for small
sample sizes (circa 65% for a sample size equal to 50), and it quickly drops to almost
zero with increasing sample size. For multi-predictor models such as no. 29, the DKL

and H(X|Y) contribution to uncertainty exceeds that of H(X|Y) by a factor of 7 for
small samples (circa 700% for sample size equal 50), and it decreases only slowly with
increasing sample size.

In Table 2.7 (fifth column), we show the minimum sample size to keep the DKL

contribution below a threshold of 5% for each model.
As expected, the models with few predictors require only small samples to meet

the 5% requirement (starting from a subset of 12.6% of the full dataset for the one-
predictor model to 37.3% for the two-predictor model), but for multi-predictor models
such as models no. 29 and no. 30, more than 60 000 data points are required (87.6% and
79.4% of the full dataset, respectively). This happens because the greater the number
of predictors, the greater the number of bins in the model. This means that we need a
much larger dataset to populate the PMF with the largest number of bins; for example,
model no. 29 has 279 752 bins and requests 7.9 years of data. Considering that the
amount of data available in the study is limited, this also means that increasing the
number of predictors and/or bins also increases the risk of creating an overfitted or
non-robust model. Thus, the ratio DKL/H(X|Y) and visual inspection of the curve in
Fig. 2.5 orientate the user when to stop adding new predictors to avoid overfitting. In
this fashion, Table 2.7 shows that each of the models tested meets the 5% requirement,
claiming up to 87.6% of the available dataset (69 102 out of 78 912 data points for
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Figure 2.6: Application I – probabilistic prediction of four-predictor model no. 29 (Table 2.5)
for a subset of the training data.

model no. 29), which indicates that all of them are robustly supported by the data. In
this case, we can confidently choose the best-performing model among them (no. 29,
with uncertainty equal to 0.114 bits) for further use. Interestingly, with this analysis, it
was also possible to identify the drivers of the user classification, which, in the case of
model no. 29, were the predictors Q(t), QRMC, Q(t + 2) and ep(t− 1).

2.4.1.3 Model application

In the previous sections, we developed, compared and validated a range of models
to reproduce subjective, manual identification of events in a discharge time series.
Given the available data, the best model was a four-predictor recursive model built
with the full dataset and Q(t), QRMC, Q(t + 2) and ep(t− 1) as predictors (no. 29;
Table 2.7). This model reduced the initial predictive uncertainty by 77.8%, decreasing
conditional entropy from 0.516 to 0.114 bits. This sounds reasonable, but what do
the model predictions actually look like? As an illustration, we applied the model
to a subset of the training data, from 22 April to 22 June 2001. For this period, the
observed discharge, the manual event classification by the user and the model-based
prediction of event probability are shown in Fig. 2.6.

In the period from 1 to 21 June, four distinct rainfall-runoff events occurred which
were also classified as such by the user. During these events, the model-based pre-
dictions for event probability remained consistently high, except for some times at
the beginning and end of events or in times of low flow during an event. Obviously,
the model here agrees with the user classification, and if we wished to obtain a
binary classification from the model, we could get it by introducing an appropriate
probability threshold (as further described in Sect. 2.4.2).

Things look different, though, in the period of 26 April to 10 May, when snowmelt
induced diurnal discharge patterns. During this time, the model identified several
periods with reasonable (above 50%) event probability, but the user classified the
entire period as a non-event. Arguably, this is a difficult case for both manual and
automated classification, as the overall discharge is elevated, but it is not elevated
by much, and diurnal events can be distinguished but are not pronounced. In such
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Table 2.8: Cross-validation dataset – characteristics of the user event classification set.

Dataset Time steps classified Time steps classified Percentage of Percentage of Total

as positive events (P) as non-events (N) events (P/T) events (N/T) (T)

Training 8150 60 952 11.8% 88.2% 69 102

Testing 942 8868 9.6% 90.4% 9810

Sum 9092 69 820 11.5% 9.9% 78 912

cases, both the user-based and the model-based classifications are uncertain and may
disagree.

To identify snowmelt events or potentially improve the information contained in
the precipitation set, other predictors could have been used in the analysis (such as
aggregated precipitation, snow depth, air temperature, nitrate concentrations, moving
average of discharge, etc.), or the target could have been classified according to it
type (rainfall, snowmelt, upstream reservoir operation, etc.), instead of having a
dichotomous outcome, i.e., event and non-event. The choice of target and potential
predictors occurs according to user interest and data availability.

Another point that may be of interest to the user is the improvement of the con-
sistency of the event duration. This can be reached by selection of predictors or
through a post-processing step. As previously discussed in Sect. 2.3.2.1, by apply-
ing a recursive predictor ep(t− 1), a memory effect is incorporated into the model,
bringing some inertia for the transition from event to non-event or vice versa. If it is
in the user’s interest, the memory effect could be further enhanced by adding more
recursive predictors, such as ep(t− 2), ep(t− 3) and so on. An alternative option for
clearing very short discontinuous time steps or very short events would be to increase
event coherence in a post-processing step with an autoregressive model, with model
parameters found by maximizing agreement with the observed events.

Finally, in contrast to the evaluation approach presented, where the subsets are
compared to the full dataset (subset data plus data not seen during training), the
next section will present the evaluation of the ITM and CPM applied for mutually
exclusive training and testing sets.

2.4.2 Results for application II

Sect. 2.4.1 showed that, for the full dataset, the best model was the recursive one with
Q(t), QRMC, Q(t + 2) and ep(t − 1) as the drivers of the user classification (model
no. 29, Table 2.7), which could be robustly built with a sample size of 69 102. Thus,
to assure its robustness for the second application, since we are creating a new PMF
based only on the training set, the split of the data (discharge, precipitation and
user event classification) divided the 78 912 time steps into two periods composed of
(i) 87.6% of the full dataset (69 102 time steps) forming the training dataset (from 31

October 1996 at 01:00 to 18 September 2004 at 06:00 GMT+1) and (ii) the remaining
12.4% (9810 time steps) forming the testing dataset (from 18 September 2004 at 07:00 to
1 November 2005 at 00:00 GMT+1). The characteristics of the user event classification
dataset, used as the true classification for accounting the hits and misses of the ITM
and CPM, is presented in Table 2.8.
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Table 2.9: Application II – ITM and CPM performance.

Event detection True positive RTP False positive RFP Accuracy % Eq. 2.7

method (PT) (PT/P a) (PF) (PF/N a) (PT+NT
b)/(P a+N a) distance c

ITM 918 97.5% 1113 12.6% 88.4% 0.13

CPM 796 84.5% 877 9.9% 89.6% 0.18

a P = 942, N = 8868 (Table 2.8). b NT = N − PF. c Distance to the perfect model of the ROC curve.

For model training, input data from both models, the ITM and CPM, were smoothed.
First, a 24 h moving average was applied to the discharge of the CPM (this was
recommended by the first author of the method, Yiwen Mei, during personal com-
munications in 2018), and to avoid misleading comparison, it was then applied to
the probabilities of the ITM right before the binarization. The smoothing improved
the results of both models and worked as a post-processing filter which removed
some noise (events with a very short duration) and attenuated effects from snowmelt.
Note that this is a feature of our training dataset, and it is therefore not necessarily
applicable to other similar problems and neither is a required step.

Following the data smoothing, we proceeded with the optimization of the following
parameters: the threshold for the probability output of the ITM and rate of no change
for the CPM (Sect. 2.3.3). The results of the two models also improved with the
optimization performed. The optimum parameters obtained were pthreshold = 0.26
and Rnc = −6.6. For these values, the final distances in the training dataset given by
Eq. 2.7 were 0.05 and 0.23 for the ITM and CPM, respectively.

After the model training, the calibrated models were applied to the testing dataset
to predict binary events. The event predictions were then compared to the true
classification (Table 2.8, testing row), and their hits and misses were calculated
in order to evaluate and compare their performance. The results are compiled in
Table 2.9.

The quality parameters presented in Table 2.9 show that the ITM true positive rate
equals 97.5%, i.e., it is 13.0% higher than the CPM RTP). In contrast, the CPM false
negative rate is equal to 9.9%, while the ITM RFP is equal to 12.6% (2.7% higher).
These results indicate that the ITM is more likely to predict events than the CPM but
at the cost of increasing the false positive rate. Combining these two rates into a single
success criterion according to Eq. 2.7 showed that the ITM is slightly superior to the
CPM (Table 2.9, last column).

Considering only the hits of the models, both methods performed similarly, reaching
almost 90% accuracy, with the CPM being slightly better than the ITM. However, it
should be emphasized that although the accuracy of the model gives a good notion
of the model hits, it was not used as a criterion for success because it is a myopic
criterion for the false event classifications. False positives are essential in the context of
event prediction, since most of the data are non-events (88.2% of the training dataset;
Table 2.8), and a blind classification of all time steps as being non-event, for example,
would overcome the accuracy obtained by both models (90.4% of the testing dataset;
Table 2.8), even though it is not a useful model.

As an illustration, in the context of the binary analysis, the observed discharge, the
true event classification (manually made by an expert), the ITM-predicted events and
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Figure 2.7: Application II – binary prediction of ITM and CPM for a subset of the testing
dataset.

CPM-predicted events are shown in Fig. 2.7 for a subset of the testing data, from 29

June to 19 August 2005.
For the analyzed subset, nine distinct rainfall-runoff events occurred and were

identified as such by the ITM and CPM. However, different from the true identification,
both models grouped some of these events (20 July, 7 and 16 August) with events with
longer duration. False events were also observed in both models, where three false
events were identified by the ITM (5, 7 and 26 July), and two (but contemplating the
same period as the ITM) were identified by the CPM. It should be noted that they are
false in relation to the user classification; however, we can not exclude the possibility
of false classification by the visual inspection process. A further criticism is that the
holdout cross-validation involves a single run, which is not as robust as multiple
runs. Nevertheless, the way that the split was proposed recognizes the logical order of
obtaining the data. Thus, despite the subjectivity of event selection by a user and the
application of a simplified method of cross-validation, it is possible to conclude that,
overall, the ITM and CPM behaved similarly and provided reasonable predictions, as
seen numerically in Table 2.9 and qualitatively through Fig. 2.7.

An interesting conclusion is that the ITM was able to overcome the CPM while
requiring only discharge data and a training dataset of classified events (also based
on the discharge set), whereas the CPM demanded precipitation, catchment area
and discharge as inputs. It is important to note that the CPM can be modified to be
used without precipitation data; however in our case it resulted in a considerably
higher false positive rate, since the rainfall event-related filters cannot be applied. In
contrast, since the CPM is a physically based approach, it does not require a training
dataset with identified events (although the optimization in the calibration step has
representatively improved its results), and there are no limitations in terms of dataset
size, which eliminates the robustness analysis, being then a method more easily
implemented for binary classification. The binarization of the ITM predictions and
parameter optimization in the CPM are not included in the original methods, however,
they were essential adaptations to allow a fair comparison of the models. Finally, the
suitability or not of the existing event detection techniques depends mainly on the
user’s interest and the data available for application.
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2.5 summary and conclusions

Typically, it is easy to manually identify rainfall-runoff events due to the high discrimi-
native and integrative power of the brain–eye system. However, this is (i) cumbersome
for long time series; (ii) subject to handling errors; and (iii) hard to reproduce, since it
dependents on acuity and knowledge of the event identifier. To mitigate these issues,
this study has proposed an information theory approach to learn from data and to
choose the best predictors, via uncertainty reduction, for creating predictive models
that automatically identify rainfall-runoff events in discharge time series.

The method was established in four main steps: the model hypothesis, building,
evaluation and application. Each association of predictor(s) to the target is equivalent
to formulating a model hypothesis. For the model building, nonparametric models
constructed discrete distributions via bin-counting, requiring at least a discharge time
series and a training dataset containing a yes or no event identification as target. In
the evaluation step, we used Shannon entropy and conditional entropy to select the
more informative predictors and Kullback–Leibler divergence and cross entropy to
analyze the model in terms of overfitting and curse of dimensionality. Finally, the best
model was applied to its original dataset to compare the predictability of the events.
For the purpose of benchmarking, a holdout cross-validation and a comparison of the
proposed data-driven method with an alternative physically based approach were
performed.

The approach was applied to discharge and precipitation data from the Dornbirner
Ach catchment in Austria. In this case study, 30 models based on 16 predictors were
built and tested. Among these, seven predictive models with a number of predictors
varying from one to four were selected. Interestingly, across these models, the three
best-performing ones were obtained using only discharge-based predictors. The
overall best model was a recursive one applying four predictors: discharge from two
different time steps, the relative magnitude of discharge compared to all discharge
values in a surrounding 65 h time window and event predictions from the previous
time step. When applying the best model, the uncertainty of event classification was
reduced by 77.8%, decreasing conditional entropy from 0.516 to 0.114 bits. Since
the conditional entropy reduction of the models with precipitation was not higher
than the ones exclusively based on discharge information, it was possible to infer
that (i) the information coming from precipitation was likely already contained in
the discharge data series and (ii) the event classification is not so much dependent
on precipitation at a particular time step but rather on the accumulated rainfall in
the period preceding it. Furthermore, precipitation data are often not available for
analysis, which makes the model exclusively based on discharge data even more
attractive.

Further analysis using cross entropy and Kullback–Leibler divergence showed that
the robustness of a model quickly dropped with the number of predictors used (an
effect known as the curse of dimensionality) and that the relation between number of
predictors and sample size was crucial to avoid overfitting. Thus, the model choice
is a tradeoff between predictive power and robustness, given the available data. For
our case, the minimum amount of data to build a robust model varied from 9952

data points (one-predictor model with 0.260 bits of uncertainty) to 69 102 data points
(four-predictor model with 0.114 bits of uncertainty). Complementarily, the quality
of the model was verified in a more traditional way, by a cross-validation analysis
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(where the model was built in a training dataset and validated in a testing dataset),
and a comparative investigation between our data-driven approach and a physically
based model. As a result, in general, both models presented reasonable predictions
and reached similar quality parameters, with almost 90% of accuracy. In the end,
the comparative analysis and cross-validation reinforced the quality of the method,
previously validated in terms of robustness using measures from information theory.

In the end, the data-driven approach based on information theory is a consolidation
of descriptive and experimental investigations, since it allows one to describe the
drivers of the model through predictors and investigates the similarity of the model
hypothesis with respect to the true classification. In summary, it presents advantages
such as the following: (i) it is a general method that involves a minimum of additional
assumptions or parameterizations; (ii) due to its nonparametric approach, it preserves
the full information of the data as much as possible, which might get lost when
expressing the data relations with functional relationships; (iii) it obtains data relations
from the data itself; (iv) it is flexible in terms of data requirement and model building;
(v) it allows one to measure the amount of uncertainty reduction via predictors;
(vi) it is a direct way to account for uncertainty; (vii) it permits explicitly comparing
information from various sources in a single currency, the bit; (viii) it allows one to
quantify minimal data requirements; (ix) it enables one to investigate the curse of
dimensionality; (x) it is a way of understanding the drivers (predictors) of the model
(also useful in machine learning, for example); (xi) it one permits to choose the most
suitable model for an available dataset; and (xii) the predictions are probabilistic,
which compared to a binary classification, additionally provides a measure of the
confidence of the classification.

Although the procedure was employed to identify events from a discharge time
series, which for our case were mainly triggered by rainfall and snowmelt, the method
can be applied to reproduce user classification of any kind of event (rainfall, snowmelt,
upstream reservoir operation, etc.) and even identify them separately. Moreover, one
of the strengths of the data-based approach is that it potentially accepts any data to
serve as predictors, and it can handle any kind of relation between the predictor(s)
and the target. Thus, the proposed approach can be conveniently adapted to another
practical application.
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abstract

Interpolation of spatial data has been regarded in many different forms, varying from
deterministic to stochastic, parametric to nonparametric, and purely data-driven to
geostatistical methods. In this study, we propose a nonparametric interpolator, which
combines information theory with probability aggregation methods in a geostatistical
framework for the stochastic estimation of unsampled points. Histogram via entropy
reduction (HER) predicts conditional distributions based on empirical probabilities,
relaxing parameterizations and, therefore, avoiding the risk of adding information
not present in data. By construction, it provides a proper framework for uncertainty
estimation since it accounts for both spatial configuration and data values, while
allowing one to introduce or infer properties of the field through the aggregation
method. We investigate the framework using synthetically generated datasets and
demonstrate its efficacy in ascertaining the underlying field with varying sample
densities and data properties. HER shows a comparable performance to popular
benchmark models, with the additional advantage of higher generality. The novel
method brings a new perspective of spatial interpolation and uncertainty analysis to
geostatistics and statistical learning, using the lens of information theory.
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3.1 introduction

Spatial interpolation methods are useful tools for filling gaps in data. Since information
of natural phenomena is often collected by point sampling, interpolation techniques
are essential and required for obtaining spatially continuous data over the region
of interest (Li and Heap, 2014). There is a broad range of methods available that
have been considered in many different forms, from simple approaches, such as
nearest neighbor (NN; Fix and Hodges Jr, 1951) and inverse distance weighting (IDW;
Shepard, 1968), to geostatistical and, more recently, machine-learning methods.

Stochastic geostatistical approaches, such as ordinary kriging (OK), have been
widely studied and applied in various disciplines since their introduction to geology
and mining by Krige (1951), bringing significant results in the context of environ-
mental sciences. However, like other parametric regression methods, it relies on prior
assumptions about theoretical functions and, therefore, includes the risk of suboptimal
performance due to suboptimal user choices (Yakowitz and Szidarovszky, 1985). OK
uses fitted functions to offer uncertainty estimates, while deterministic estimators
(NN and IDW) avoid function parameterizations at the cost of neglecting uncer-
tainty analysis. In this sense, researchers are confronted with the trade-off between
avoiding parameterization assumptions and obtaining uncertainty results (stochastic
predictions).

More recently, with the increasing availability of data volume and computer power
(Bell et al., 2009), machine-learning methods (here referred to as “data-driven” meth-
ods) have become increasingly popular as a substitute for or complement to estab-
lished modeling approaches. In the context of data-based modeling in the environ-
mental sciences, concepts and measures from information theory are being used
for describing and inferring relations among data (Liu et al., 2016; Mälicke et al.,
2020; Thiesen et al., 2019), quantifying uncertainty and evaluating model performance
(Chapman, 1986; Liu et al., 2016; Thiesen et al., 2019), estimating information flow
(Darscheid, 2017; Weijs, 2011), and measuring similarity, quantity, and quality of
information in hydrological models (Loritz et al., 2018, 2019; Nearing and Gupta,
2017). In the spatial context, information-theoretic measures were used to obtain
longitudinal profiles of rivers (Leopold and Langbein, 1962), to solve problems of
spatial aggregation and quantify information gain, loss, and redundancy (Batty, 1974;
Singh, 2013), to analyze spatiotemporal variability (Brunsell, 2010; Mishra et al., 2009),
to address risk of landslides (Roodposhti et al., 2016), and to assess spatial dissim-
ilarity (Naimi, 2015), complexity (Pham, 2010), uncertainty (Wellmann, 2013), and
heterogeneity (Bianchi and Pedretti, 2018).

Most of the popular data-driven methods have been developed in the computational
intelligence community and, since they are not built for solving particular problems,
applying these methods remains a challenge for the researchers outside this field
(Solomatine and Ostfeld, 2008). The main issues for researchers in hydroinformatics
for applying data-driven methods lie in testing various combinations of methods
for particular problems, combining them with optimization techniques, developing
robust modeling procedures able to work with noisy data, and providing the adequate
model uncertainty estimates (Solomatine and Ostfeld, 2008). To overcome these
challenges and the mentioned parameterization–uncertainty trade-off in the context
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of spatial interpolation, this paper is concerned with formulating and testing a novel
method based on principles of geostatistics, information theory, and probability
aggregation methods to describe spatial patterns and to obtain stochastic predictions.
In order to avoid fitting of spatial correlation functions and assumptions about the
underlying distribution of the data, it relies on empirical probability distributions
to (i) extract the spatial dependence structure of the field, (ii) minimize entropy of
predictions, and (iii) produce stochastic estimation of unsampled points. Thus, the
proposed histogram via entropy reduction (HER) approach allows nonparametric and
stochastic predictions, avoiding the shortcomings of fitting deterministic curves and,
therefore, the risk of adding information not contained in the data, but still relying on
geostatistical concepts. HER is seen as a solution in between geostatistics (knowledge
driven) and statistical learning (data driven) in the sense that it allows automated
learning from data bounded by a geostatistical framework.

Our experimental results show that the proposed method is flexible for combining
distributions in different ways and presents comparable performance to ordinary
kriging (OK) for various sample sizes and field properties (short and long range; with
and without noise). Furthermore, we show that its potential goes beyond prediction
since, by construction, HER allows inferring of or introducing physical properties
(continuity or discontinuity characteristics) of a field under study and provides a
proper framework for uncertainty prediction, which takes into account not only the
spatial configuration but also the data values.

The paper is organized as follows. The method is presented in Sect. 3.2. In Sect. 3.3,
we describe the data properties, performance parameters, validation design, and
benchmark models. In Sect. 3.4, we explore the properties of three different aggrega-
tion methods, present the results of HER for different samples sizes and data types,
compare the results to benchmark models, and, in the end, discuss the achieved
outcomes and model contributions. Finally, we draw conclusions in Sect. 3.5.

3.2 method description

Histogram via entropy reduction method (HER) has three main steps, namely (i) char-
acterization of the spatial correlation, (ii) selection of aggregation method and optimal
weights via entropy minimization, and (iii) prediction of the target probability distri-
bution. The first and third steps are shown in Fig. 3.1.

In the following sections, we start with a brief introduction to information-theoretic
measures employed in the method and then detail all three method steps.

3.2.1 Information theory

The entropy of a probability distribution measures the average uncertainty in a random
variable. The measure, first derived by Shannon (1948), is additive for independent
events (Batty, 1974). The formula of Shannon entropy, H, for a discrete random
variable, X, with a probability, p(x), and x ∈ χ is defined by the following:

H(X) = − ∑
x∈X

p(x) log2 p(x). (3.1)
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Figure 3.1: HER method. Flowcharts illustrating (a) spatial characterization and (b) z proba-
bility mass function (PMF) prediction.

We use the logarithm to base two so that the entropy is expressed in bits. Each bit
corresponds to an answer to one optimal yes–no question asked with the intention of
reconstructing the data. It varies from zero to log2 n, where n represents the number
of bins of the discrete distribution. In the study, Shannon entropy is used to extract
the infogram and correlation length of the dataset (explored in Sect. 3.2.2).

Besides quantifying the uncertainty of a distribution, it is also possible to compare
similarities between two probability distributions, p and q, using the Kullback–Leibler
divergence (DKL(p||q)). Comparable to the expected logarithm of the likelihood
ratio (Allard et al., 2012; Cover and Thomas, 2006), the Kullback–Leibler divergence
quantifies the statistical “distance” between two probability mass functions p and q,
using the following equation:

DKL(p||q) = ∑
x∈X

p (x) log2
p(x)

q(x)
. (3.2)

Also referred to as relative entropy, DKL(p||q) can be understood as a measure of in-
formation loss of assuming that the distribution is q when in reality it is p (Weijs et al.,
2010). It is nonnegative and is zero strictly if p = q. In HER context, Kullback–Leibler
divergence is optimized to select the weights for aggregating distributions (detailed
in Sect. 3.2.3). The measure is also used as a scoring rule for performance verification
of probabilistic predictions (Gneiting and Raftery, 2007; Weijs et al., 2010).

Note that the measures presented by Eqs. 3.1 and 3.2 are defined as functionals of
probability distributions and do not depend on the variable X value or its unit. This
is favorable as it allows joint treatment of many different sources and sorts of data in
a single framework.
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Figure 3.2: Spatial characterization. Illustration of (a) infogram cloud, (b) ∆z probability mass
functions (PMFs) by class, and (c) infogram.

3.2.2 Spatial characterization

The spatial characterization (Fig. 3.1a) is the first step of HER. It consists of quantifying
the spatial information available in data and of using it to infer its spatial correlation
structure. To capture the spatial variability and related uncertainties, concepts of
geostatistics and information theory are integrated into the method. As shown in
Fig. 3.1a, the spatial characterization phase aims to, first, obtain ∆z probability mass
functions (PMFs), where z is the variable under study; second, the behavior of entropy
as a function of lag distance (which the authors denominate as “infogram”); and,
finally, the correlation length (range). These outputs are outlined in Fig. 3.2 and
attained in the following steps:

(i) Infogram cloud (Fig. 3.2a): calculate the difference in the z values (∆z) between
pairs of observations; associate each ∆z to the Euclidean separation distance
of its respective point pair. Define the lag distance (demarcated by red dashed
lines), here called distance classes or, simply, classes. Divide the range of ∆z
values into a set of bins (demarcated by horizontal gray lines);

(ii) ∆z PMFs (Fig. 3.2b): construct, for each distance class, the ∆z PMF from the ∆z
values inside the class (conditional PMFs). Also construct the ∆z PMF from all
data in the dataset (unconditional PMF);

(iii) Infogram (Fig. 3.2c): calculate the entropy of each ∆z PMF and of the uncon-
ditional PMF. Compute the range of the data; this is the distance at which the
conditional entropy exceeds the unconditional entropy. Beyond this point, the
neighbors start becoming uninformative, and it is pointless to use information
outside of this neighborhood.

The infogram cloud is the preparation needed for constructing the infogram. It
contains a complete cloud of point pairs. The infogram plays a role similar to that of
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the variogram; through the lens of information theory, we can characterize the spatial
dependence of the dataset, calculate the spatial (dis-)similarities, and compute its
correlation length (range). It describes the statistical dispersion of pairs of observations
for the distance class separating these observations. Quantitatively, it is a way of
measuring the uncertainty about ∆z given the class. Graphically, the infogram shape
is the fingerprint of the spatial dependence, where the larger the entropy of one class,
the more uncertain (disperse) its distribution. It reaches a threshold (range) where the
data no longer show significant spatial correlation. We associate neighbors beyond the
range to the ∆z PMF of the full dataset. By doing so, we restrict ourselves to the more
informative classes and reduce the number of classes to be mapped, thus improving
the results and the speed of calculation. Note that, in the illustrative case of Fig. 3.2,
we limited the number of classes shown to four classes beyond the range. A complete
infogram cloud and infogram is presented and discussed in the method application
(Fig. 3.5 in Sect. 3.4.1).

Naimi (2015) introduced a similar concept to the infogram called an entrogram,
which is used for the quantification of the spatial association of both continuous and
categorical variables. In the same direction, Bianchi and Pedretti (2018) employed the
term entrogram to quantify the degree of spatial order and rank different structures.
Both works, and the present study, are carried out with a variogram-like shape and
entropy-based measures and are looking for data (dis-)similarity, yet with different
purposes and metrics. The proposed infogram terminology seeks to provide an
easy-to-follow association with the quantification of information available in the data.

Converting the frequency distributions of ∆z into PMFs requires a cautious choice
of bin width, since this decision will frame the distributions used as the model and
directly influence the statistics we compute for evaluation (DKL). Many methods for
choosing an appropriate binning strategy have been suggested (Gong et al., 2014;
Knuth, 2013; Pechlivanidis et al., 2016; Thiesen et al., 2019). These approaches are either
founded on a general physical understanding and relate, for instance, measurement
uncertainties to the binning width (Loritz et al., 2018) or are exclusively based on
statistical considerations of the underlying field properties (Scott, 1979). Regardless
of which approach is chosen, the choice of bin width should be communicated in
a clear manner to make the results as reproducible as possible. Throughout this
paper, we will stick to equidistant bins since they have the advantage of being simple,
computationally efficient (Ruddell and Kumar, 2009), and of introducing minimal
prior information (Knuth, 2013). The bin size was defined, based on Thiesen et
al. (2019), by comparing the cross entropy Hpq = H(p) + DKL(p||q)) between the
full learning set and subsamples for various bin widths. The selected one shows a
stabilization of the cross entropy for small sample sizes, meaning that the bin size
is reasonable for small and large sample sizes and analyzed distribution shapes. For
favoring comparability, the bins are kept the same for all applications and performance
calculations.

Additionally, to avoid distributions with empty bins, which might make the PMF
combination (discussed in Sect. 3.2.3.1) unfeasible, we assigned a small probability
equivalent to the probability of a single point pair count to all bins in the histogram
after converting it to a PMF by normalization. This procedure does not affect the
results when the sample size is large enough (Darscheid et al., 2018), and it was
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inspected by result and cross-entropy comparison (as described in the previous
paragraph). It also guarantees that there is always an intersection when aggregating
PMFs, and that we obtain a uniform distribution (maximum entropy) in case we
multiply distributions where the overlap happens uniquely on the previously empty
bins. Furthermore, as shown in the Darscheid et al. (2018) study, for the cases where
no distribution is known a priori, adding one counter to each empty bin performed
well across different distributions.

Altogether, the spatial characterization stage provides a way of inferring conditional
distributions of the target given its observed neighbors without the need, for example,
to fit a theoretical correlation function. In the next section, we describe how these
distributions can be jointly used to estimate unknown points and how to weight them
when doing so.

3.2.3 Minimization of estimation entropy

To infer the conditional distribution of the target z0 (unsampled point) given its
neighbors zi (where i = 1, . . . , n are the indices of the sampled points), we use the
∆z PMFs obtained at the spatial characterization step (Sect. 3.2.2). To do so, each
neighbor zi is associated to a class and, hence, to a ∆z distribution according to their
distance to the target z0. This implies the assumption that the empirical ∆z PMFs
apply everywhere in the field, irrespective of specific location, and only depend on the
distance between points. Each ∆z PMF is then shifted by the zi value of the observation
it is associated to, yielding the z PMF of the target given the neighbor i, which is
denoted by p(z0|zi). Assume, for instance, three observations, z1, z2, and z3, for which
we want to predict the probability distribution of the target z0. In this case, what we
infer at this stage is the conditional probability distributions, p(z0|z1), p(z0|z2), and
p(z0|z3).

Now, since we are in fact interested in the probability distribution of the target
conditioned to multiple observations, namely p(z0|z1, z2, z3), how can we optimally
combine the information gained from individual observations to predict this target
probability? In the next sections, we address this issue by using aggregation methods.
After introducing potential ways to combine PMFs (Sect. 3.2.3.1), we propose an
optimization problem, via entropy minimization, to define the weight parameters
needed for the aggregation (Sect. 3.2.3.2).

3.2.3.1 Combining distributions

The problem of combining multiple conditional probability distributions into a single
one is treated here by using aggregation methods. This subsection is based on the work
by Allard et al. (2012), which we recommend as a summary of existing aggregation
methods (also called opinion pools), with a focus on their mathematical properties.

The main objective of this process is to aggregate probability distributions coming
from different sources into a global probability distribution. For this purpose, the
computation of the full conditional probability p(z0|z1, . . . , zn) – where z0 is the event
we are interested in (target), and zi with i = 1, . . . , n is a set of data events (or
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neighbors) – is obtained by the use of an aggregation operator, PG, called pooling
operator, with the following:

p (z0|z1, . . . , zn) ≈ PG (p(z0|z1), . . . , p(z0|zn)) . (3.3)

From now on, we will adopt a similar notation to that of Allard et al. (2012),
using the more concise expressions Pi(z0) to denote p(z0|zi) and PG(z0) for the global
probability, PG (P1(z0), . . . , Pn(z0)).

The most intuitive way to aggregate the probabilities p1, . . . , pn is by linear pooling,
which is defined as follows:

PGOR(z0) =
n

∑
i=1

wORi Pi(z0), (3.4)

where n is the number of neighbors, and wORi are positive weights verifying
∑n

i=1 wORi = 1. Eq. 3.4 describes mixture models in which each probability pi rep-
resents a different population. If we set equal weights wORi to every probability
Pi the method reduces to an arithmetic average, coinciding with the disjunction
of probabilities proposed by Tarantola (2005) and Tarantola and Valette (1982), as
illustrated in Fig. 3.3b. Since it is a way of averaging distributions, the resulting
distribution PGOR is often multimodal. Additive methods, such as linear pooling, are
related to union of events and to the logical operator OR.

Multiplication of probabilities, in turn, is described by the logical operator AND,
and it is associated to the intersection of events. One aggregation method based on
the multiplication of probabilities is the log-linear pooling operator, defined by the
following:

ln PGAND (z0) = ln ζ +
n

∑
i=1

wANDi ln Pi (z0), (3.5)

or equivalently PGAND(z0) ∝ ∏n
i=1 Pi (z0)wANDi , where ζ is a normalizing constant, n

is the number of neighbors, and wANDi are positive weights. One particular case
consists of setting wANDi = 1 for every i. This refers to the conjunction of probabilities
proposed by Tarantola (2005) and Tarantola and Valette (1982), as shown in Fig. 3.3c. In
contrast to linear pooling, log-linear pooling is typically unimodal and less dispersed.

Aggregation methods are not limited to the log-linear and linear pooling presented
here. However, the selection of these two different approaches to PMF aggregation
seeks to embrace distinct physical characteristics of the field. The authors naturally
associate the intersection of distributions (AND combination; Eq. 3.5) to fields with
continuous properties. This idea is supported by Journel (2002), who remarked that
a logarithmic expression evokes the simple kriging expression (used for continuous
variables). For example, if we have two points z1 and z2 with different values and
want to estimate the target z0 at a location between them in a continuous field, we
would expect that the estimate z0 would be somewhere between z1 and z2, which
can be achieved by an AND combination. In a more intuitive way, if we notice that,
for kriging, the shape of the predicted distribution is assumed to be fixed (Gaussian,
for example), multiplying two distributions with different means would result in
a Gaussian distribution as well, less dispersed than the original ones, as also seen
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Figure 3.3: Examples of the different pooling operators. Illustration of (a) normal PMFs
N (µ, σ2) to be combined; (b) linear aggregation of (a), Eq. 3.4; (c) log-linear
aggregation of (a), Eq. 3.5; and (d) log-linear aggregation of (b) and (c), Eq. 3.6.

for the log-linear pooling. It is worth mentioning that some methods for modeling
spatially dependent data, such as copulas (Bárdossy, 2006; Kazianka and Pilz, 2010)
and effective distribution models (Hristopulos and Baxevani, 2020), also use log-linear
pooling to construct conditional distributions.

On the other hand, Krishnan (2008) pointed out that the linear combination, given
by linear pooling, identifies a dual-indicator kriging estimator (kriging used for
categorical variables), which we see as an appropriate method for fields with dis-
continuous properties. Along the same lines, Goovaerts (1997, p. 420) defended the
idea that phenomena that show abrupt changes should be modeled as mixture of
populations. In this case, if we have two points z1 and z2 belonging to different
categories, a target z0 between them will either belong to the category of z1 or z2,
which can be achieved by the mixture distribution given by the OR pooling. In other
words, the OR aggregation is a way of combining information from different sides of
the truth; thus, a conservative way of considering the available information from all
sources.

Note that, for both linear and log-linear pooling, weights equal to zero will lead to
uniform distributions, therefore bypassing the PMFs in question. Conveniently, the
uniform distribution is the maximum entropy distribution among all discrete distri-
butions with the same finite support. A practical example of the pooling operators is
illustrated at the end of this section.

The selection of the most suitable aggregation method depends on the specific
problem (Allard et al., 2012), and it will influence the PMF prediction and, therefore,
the uncertainty structure of the field. Thus, depending on the knowledge about the
field, a user can either add information to the model by applying an a priori chosen
aggregation method or infer these properties from the field. Since, in practice, there
is often a lack of information to accurately describe the interactions between the
sources of information (Allard et al., 2012), inference is the approach we tested in the
comparison analysis (Sect. 3.4.2). For that, we propose estimating the distribution PG

of a target, by combining PGAND and PGOR , as follows:

PG(z0) ∝ PGAND (z0)α PGOR (z0)β, (3.6)

where α and β are positive weights varying from zero to one, which will be found by
optimization. Eq. 3.6 is the choice made by the authors as a way of balancing both
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natures of the PMF aggregation. The idea is to find the appropriate proportion of α

(continuous) and β (discontinuous) properties of the field by minimizing the estimated
relative entropy. Note that, when the weight α or β is set to zero, the final distribution
results, respectively, in a pure OR, Eq. 3.4, or pure AND aggregation, Eq. 3.5, as
special cases. The equation is based on the log-linear aggregation, as opposed to linear
aggregation, since the latter is often multimodal, which is an undesirable property
for geoscience applications (Allard et al., 2012). Alternatively, Eqs. 3.4 and 3.5 or a
linear pooling of PGAND(z0) and PGOR(z0) could be used. We explore the properties of
the linear and log-linear pooling in Sect. 3.4.1.

The practical differences between the pooling operators used in this paper are
illustrated in Fig. 3.3, where Fig. 3.3a introduces two PMFs to be combined, and
Figs. 3.3b to 3.3d show the resulting PMFs for Eqs. 3.4 to 3.6, respectively. In Fig. 3.3b,
we use equal weights for both PMFs, and the resulting distribution is the arithmetic
average of the bin probabilities. In Fig. 3.3c, we use unitary PMF weights so that the
multiplication of the bins (AND aggregation) leads to a simple intersection of PMFs
weighted by the bin height. Figure 3.3d shows a log-linear aggregation of the two
previous distributions (Fig. 3.3b,c). In all three cases, if the weight of one distribution
is set to one and the other is set to zero (not shown), the resulting PMF would be
equal to the distribution which receives all the weight.

The following section addresses the optimization problem for estimating the weights
of the aggregation methods.

3.2.3.2 Weighting PMFs

Scoring rules assess the quality of probabilistic estimations (Gneiting and Raftery,
2007) and, therefore, can be used to estimate the parameters of a pooling opera-
tor (Allard et al., 2012). We selected Kullback–Leibler divergence (DKL, Eq. 3.2) as
the loss function to optimize α and β, Eq. 3.6, and the wORk and wANDk weights
(Eqs. 3.4 and 3.5, respectively), here generalized as wk. The logarithmic score pro-
posed by Good (1952), associated to Kullback–Leibler divergence by Gneiting and
Raftery (2007) and reintroduced from an information-theoretic point of view by Roul-
ston and Smith (2002), is a strictly proper scoring rule since it provides summary
metrics that address calibration and sharpness simultaneously by rewarding narrow
prediction intervals and penalizing intervals missed by the observation (Gneiting and
Raftery, 2007).

By means of a leave one out cross-validation (LOOCV), the optimization problem is
then defined in order to find the set of weights which minimizes the expected relative
entropy (DKL) of all targets. The idea is to choose weights so that the disagreement of
the “true” distribution (or observation value when no distribution is available) and
estimated distribution is minimized. Note that the optimization goal can be tailored
for different purposes, e.g., by binarizing the probability distribution (observed and
estimated) with respect to a threshold in risk analysis problems or categorical data. In
Eqs. 3.4 and 3.5, we assign one weight to each distance class k. This means that, given
a target z0, the neighbors grouped in the same distance class will be assigned the
same weight. For a more continuous weighting of the neighbors, as an extra step we
linearly interpolate the weights according to the Euclidean distance and the weight of
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the next class. Another option could be narrowing down the class width, in which
case more data are needed to estimate the respective PMFs.

Firstly, we obtained, in parallel, the weights of Eqs. 3.4 and 3.5 by convex optimiza-
tion, and later α and β by grid search with both weight values ranging from 0 to 1
(steps of 0.05 were used in the application case). In order to facilitate the convergence
of the convex optimization, the following constraints were employed: (i) for linear
pooling, set wOR1 = 1, to avoid non-unique solutions; (ii) force weights to decrease
monotonically (i.e., wk+1 ≤ wk); (iii) define a lower bound to avoid numerical in-
stabilities (e.g., wk ≥ 10−6); iv) define an upper bound (wk ≤ 1). Finally, after the
optimization, normalize the weights to verify ∑k wORk = 1 for linear pooling (for
log-linear pooling, the resulting PMFs are normalized).

In order to increase computational efficiency, and due to the minor contribution of
neighbors in classes far away from the target, the authors only used the 12 neighbors
closest to the target when optimizing α and β and when predicting the target. Note
that this procedure is not applicable for the optimization of the wORk and wANDk

weights, since we are looking for one weight wk for each class k, and therefore, we
cannot risk neglecting those classes for which we have an interest in their weights. For
the optimization phase discussed here, and for the prediction phase (in next section),
the limitation of the number of neighbors together with the removal of classes beyond
the range are efficient means of reducing the computational effort involved in both
phases.

3.2.4 Prediction

With the results of the spatial characterization step (classes, ∆z PMFs, and range, as
described in Sect. 3.2.2), the definition of the aggregation method and its parameters
(Sect. 3.2.3.1 and 3.2.3.2, respectively), and the set of known observations, we have the
model available to predict distributions.

Thus, to estimate a specific unsampled point (target), first, we calculate the Eu-
clidean distance from the target to its neighbors (sampled observations). Based on this
distance, we obtain the class of each neighbor and associate to each its corresponding
∆z PMF. As mentioned in Sect. 3.2.2, neighbors beyond the range are associated to the
∆z PMF of the full dataset. To obtain the z PMF of target z0 given each neighbor zi,
we simply shift the ∆z PMF of each neighbor by its zi value. Finally, by applying the
defined aggregation method, we combine the individual z PMFs of the target given
each neighbor to obtain the PMF of the target conditional on all neighbors. Fig. 3.1b
presents the z PMF prediction steps for a single target.

3.3 testing her

For the purpose of benchmarking, this section presents the data used for testing the
method, establishes the performance metrics, and introduces the calibration and test
design. Additionally, we briefly present the benchmark interpolators used for the
comparison analysis and some peculiarities of the calibration procedure.
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Figure 3.4: Synthetic fields and summary statistics. (a) Short-range field without noise (SR0),
(b) short-range field with noise (SR1), (c) long-range field without noise (LR0), and
(d) long-range field with noise (LR1).

3.3.1 Data properties

To test the proposed method in a controlled environment, four synthetic 2D spatial
datasets with grid size 100×100 were generated from known Gaussian processes. A
Gaussian process is a stochastic method that is specified by its mean and a covariance
function or kernel (Rasmussen and Williams, 2006). The data points are determined
by a given realization of a prior, which is randomly generated from the chosen kernel
function and the associated parameters. In this work, we used a rational quadratic
kernel (Pedregosa et al., 2011) as the covariance function, with two different correlation
length parameters for the kernel, namely 6 and 18 units, to produce two datasets
with fundamentally different spatial dependence. For both short- and long-range
fields, white noise was introduced by a Gaussian distribution, with a mean of zero
and standard deviation equal to 0.5. The implementation was taken from the Python
library, namely scikit-learn (Pedregosa et al., 2011). The generated sets comprise (i) a
short-range field without noise (SR0), (ii) a short-range field with noise (SR1), (iii) a
long-range field without noise (LR0), and (iv) a long-range field with noise (LR1).
Fig. 3.4 presents the field characteristics and their summary statistics. The summary
statistics of each field type are included in Appendix B.1.

3.3.2 Performance criteria

To evaluate the predictive power of the models, a quality assessment was carried out
with three criteria, namely mean absolute error (EMA) and Nash–Sutcliffe efficiency
(ENS), for the deterministic cases, and mean of the Kullback–Leibler divergence (DKL),
for the probabilistic cases. EMA was selected because it gives the same weight to all
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errors, while ENS penalizes variance as it gives more weight to errors with larger
absolute values. ENS also shows a normalized metric (limited to one), which favors
general comparison. All three metrics are shown in Eqs. 3.7, 3.8 and 3.2, respectively.
The validity of the model can be asserted when the mean error is close to zero,
Nash–Sutcliffe efficiency is close to one, and mean of Kullback–Leibler divergence is
close to zero. The deterministic performance coefficients are defined as follows:

EMA =
1
n

n

∑
i=1
|ẑi − zi| , (3.7)

ENS = 1− ∑n
i=1 (ẑi − zi)

2

∑n
i=1 (zi − z)2 , (3.8)

where ẑi and zi are, respectively, the predicted and observed values at the ith location,
z is the mean of the observations, and n is the number of tested locations. For the
probabilistic methods, ẑi is the expected value of the predictions.

For the applications in the study, we considered that there is no true distribution
(ground truth) available for the observations in all field types. Thus, the DKL scoring
rule was calculated by comparing the filling of the single bin in which the observed
value is located; i.e., in Eq. 3.2, we set p equal to one for the corresponding bin and
compared it to the probability value of the same bin in the predicted distribution. This
procedure is just applicable to probabilistic models, and it enables one to measure
how confident the model is in predicting the correct observation. In order to calculate
this metric for ordinary kriging, we must convert the predicted probability density
functions (PDFs) to PMFs, employing the same bins used in HER.

3.3.3 Calibration and test design

To benchmark and investigate the effect of sample size, we applied holdout validation
as follows. Firstly, we randomly shuffled the data, and then divided it into three
mutually exclusive sets: one to generate the learning subsets (containing up to 2000

data points), one for validation (containing 2000 data points), and another 2000 data
points (20% of the full dataset) were used as the test set. We calibrated the models
on learning subsets with increasing sizes of 200, 400, 600, 800, 1000, 1500, and 2000

observations. We used the validation set for fine adjustments and plausibility checks.
To avoid multiple calibration runs, the resampling was designed in a way that the
learning subsets increased in size by adding new data to the previous subset; i.e.,
the observations of small sample sizes were always contained in the larger sets.
To facilitate model comparison, the validation and test datasets were fixed for all
performance analyses, independently of the analyzed learning set. This procedure
also avoided variability of results coming from multiple random draws since, by
construction, we improved the learning with growing sample size, and we always
assessed the results in the same set. The test set was kept unseen until the final
application of the methods, as a “lock-box approach” (Chicco, 2017), and its results
were used to evaluate the model performance presented in Sect. 3.4. See Appendix B.1
for the summary statistics of the learning, validation, and test subsets.
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3.3.4 Benchmark interpolators

In addition to presenting a complete application of HER (Sect. 3.4.1), a comparative
analysis among the best-known and used methods for spatial interpolation in the
earth sciences (Li and Heap, 2011; Myers, 1993) is performed (Sect. 3.4.2). Covering
deterministic, probabilistic, and geostatistical methods, three interpolators were cho-
sen for the comparison, namely nearest neighbor (NN), inverse distance weighting
(IDW), and ordinary kriging (OK).

As in HER, all these methods assume that the similarity of two point values
decreases with increasing distance. Since NN simply selects the value of the nearest
sample to predict the value at an unsampled point without considering the remaining
observations, it was employed as a baseline comparison. IDW, in turn, linearly
combines the set of sample points to predict the target, inversely weighting the
observations according to their distance to the target. The particular case in which
the exponent of the weighting function equals two is the most popular choice (Li
and Heap, 2008). It is known as the inverse distance squared (IDS), and it is the one
applied here.

OK is more flexible than NN and IDW since the weights are selected depending on
how the correlation function varies with distance (Kitanidis, 1997, p. 78). The spatial
structure is extracted by the variogram, which is a mathematical description of the
relationship between the variance of pairs of observations and the distance separating
these observations (also known as lag). It is also described as the best linear unbiased
estimator (BLUE; Journel and Huijbregts, 1978, p. 57), which aims at minimizing the
error variance, and provides an indication of the uncertainty of the estimate. The
authors suggest consulting Goovaerts (1997) and Kitanidis (1997), for a more detailed
explanation of variogram and OK, and Li and Heap (2008), for NN and IDW.

NN and IDS do not require calibration. To calibrate HER aggregation weights, we
applied LOOCV, as described in Sect. 3.2.3.2, to optimize the performance of the
left-out sample in the learning set. As the loss function, the minimization of the mean
DKL was applied. After learning the model, we used the validation set for plausibility
check of the calibrated model and, eventually, adjustment of parameters. Note that no
function fitting is needed to apply HER.

For OK, the fitting of the model was applied in a semi-automated approach. The
variogram range, sill, and nugget were fitted individually to each of the samples taken
from the four fields. They were selected by least squares (Branch et al., 1999). The
remaining parameters, namely the semi-variance estimator, the theoretical variogram
model, and the minimum and maximum number of neighbors considered during OK,
were jointly selected for each field type (short and long range; SR and LR, respectively),
since they are derived from the same field characteristics. This means that, for all
sample sizes of SR0 and SR1, the same parameters were used, except for the range, sill,
and nugget, which were fitted individually to each sample size. The same applies to
LR0 and LR1. These parameters were chosen by expert decision, supported by result
comparisons for different theoretical variogram functions, validation, and LOOCV.
Variogram fitting and kriging interpolation were applied using the scikit-gstat Python
module (Mälicke and Schneider, 2019).
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The selection of lag size has important effects on the HER infogram and, as dis-
cussed in Oliver and Webster (2014), on the empirical variogram of OK. However,
since the goal of the benchmarking analysis was to find a fair way to compare the
methods, we fixed the lag distances of OK and HER at equal intervals of two dis-
tance units (three times smaller than the kernel correlation length of the short-range
dataset).

Since all methods are instance-based learning algorithms, due to the fact that the
predictions are based on the sample of observations, the learning set is stored as part
of the model and used in the test phase for the performance assessment.

3.4 results and discussion

In this section, three analyses are presented. Firstly, we explore the results of HER
using three different aggregation methods on one specific synthetic dataset (Sect. 3.4.1).
In Sect. 3.4.2, we summarize the results of the synthetic datasets LR0, LR1, SR0, and
SR1 for all calibration sets and numerically compare HER performance with traditional
interpolators. For all applications, the performance was calculated on the same test
set. For brevity, the model outputs were omitted in the comparison analysis, and
only the performance metrics for each dataset and interpolator are shown. Finally,
Sect. 3.4.3 provides a theoretical discussion on the probabilistic methods (OK and
HER), contrasting their different properties and assumptions.

3.4.1 HER application

This section presents three variants of HER, applied to the LR1 field with a calibration
subset of 600 observations (LR1-600). This dataset was selected since, due to its
optimized weights, α and β (which reach almost the maximum value of one suggested
for Eq. 3.6), it favors contrasting the uncertainty results of HER when applying the
three distinct aggregation methods proposed in Eqs. 3.4–3.6.

As a first step, the spatial characterization of the selected field is obtained and
shown in Fig. 3.5. For brevity, only the odd classes are shown in Fig. 3.5b. In the same
figure, the Euclidean distance (in grid units) relative to the class is indicated after the
class name in interval notation (left-open, right-closed interval). For both z PMFs and
∆z PMFs, a bin width of 0.2 (10% of the distance class width) was selected and kept the
same for all applications and performance calculations. As mentioned in Sect. 3.3.4, we
fixed the lag distances to equal intervals of two distance units. Based on the infogram
cloud (Fig. 3.5a), the ∆z PMFs for all classes were obtained. Subsequently, the range
was identified as the point beyond which the class entropy exceeded the entropy of
the full dataset (seen as the intersect of the blue and red-dotted lines in Fig. 3.5c). This
occurs at class 23, corresponding to a Euclidean distance of 44 grid units. In Fig. 3.5c,
it is also possible to notice a steep reduction in entropy (red curve) for furthest classes
due to the reduced number of pairs composing the ∆z PMFs. A similar behavior is
also typically found in experimental variograms (not shown).

The number of pairs forming each ∆z PMF and the optimum weights obtained for
Eqs. 3.4 and 3.5 are presented in Fig. 3.6. Fig. 3.6a shows the number of pairs which
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Figure 3.5: Spatial characterization of LR1-600 showing the (a) infogram cloud, (b) ∆z PMFs
by class, and (c) infogram.

Figure 3.6: LR1-600, with (a) class cardinality and (b) optimum weights – Eqs. 3.4 and 3.5.
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compose the ∆z PMF by class, where the first class has just under 500 pairs and the
last class inside the range (light blue) has almost 10 000 pairs. About 40% of the pairs
(142 512 out of 359 400 pairs) are inside the range. We obtained the weight of each class
by convex optimization, as described in Sect. 3.2.3.2. The dots in Fig. 3.6b represent
the optimized weights of each class. As expected, the weights reflect the decreasing
spatial dependence of variable z with distance. Regardless of the aggregation method,
LR1-600 models are highly influenced by neighbors up to a distance of 10 grid units
(distance class 5). To estimate the z PMFs of target points, the following three different
methods were tested:

(i) Model 1: AND/OR combination, proposed by Eq. 3.6, where LR1-600 weights
resulted in α = 1 and β = 0.95;

(ii) Model 2: pure AND combination, given by Eq. 3.5;

(iii) Model 3: pure OR combination, given by Eq. 3.4.

The model results are summarized in Table 3.1 and illustrated in Fig. 3.7, where the
first column of the panel refers to the AND/OR combination, the second column to
the pure AND combination, and the third column to the pure OR combination. To
assist in visually checking the heterogeneity of z, the calibration set representation
is scaled by its z value, with the size of the cross increasing with z. For the target
identification, we used its grid coordinates (x,y).

Fig. 3.7a shows the E-type estimate1 of z (expected z obtained from the predicted
z PMF) for the three analyzed models. Neither qualitatively (Fig. 3.7a) nor quantita-
tively (Table 3.1) is it possible to distinguish the three models based on their E-type
estimate or its summary statistics. Deterministic performance metrics (EMA and ENS;
Table 3.1) are also similar among the three models. However, in probabilistic terms,
the representation given by the entropy map (Fig. 3.7b; which shows the Shannon
entropy of the predicted z PMFs), the statistics of predicted z PMFs, and the DKL

performance (Table 3.1) reveal differences.
By its construction, HER takes into account not only the spatial configuration of

data but also the data values. In this fashion, targets close to known observations
will not necessarily lead to reduced predictive uncertainty (or vice-versa). This is,
for example, the case of targets A (10,42) and B (25,63). Target B (25,63) is located
in between two sampled points in a heterogeneous region (small and large z values,
both in the first distance class) and presents distributions with a bimodal shape and
higher uncertainty (Fig. 3.7c), especially for model 3 (4.68 bits). For the more assertive
models (1 and 2), the distributions of target B (25,63) have lower uncertainty (3.42

and 3.52 bits, respectively). They shows some peaks, due to small bumps in the PMF
neighbors (not shown), which are boosted by the wANDk exponents in Eq. 3.5. In
contrast, target A (10,42), which is located in a more homogeneous region, with the
closest neighbors in the second distance class, shows a sharper z PMF in comparison
to target B (25,63) for models 1 and 3 and a Gaussian-like shape for all models.

1 E-type estimate refers to the expected value derived from a conditional distribution, which depends on
data values (Goovaerts, 1997, p. 341). They differ, therefore, from ordinary kriging estimates, which are
obtained by linear combination of neighboring values.
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Figure 3.7: LR1-600 results showing the (a) E-type estimate of z, (b) entropy map (bit), and
(c) z PMF prediction for selected points. The first, second, and third columns of
the panel refer to the results of model 1 (AND/OR), model 2 (AND), and model 3

(OR), respectively.
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Table 3.1: Summary statistics and model performance of LR1-600.

Test set

HER
AND/OR
(Model 1)

HER
pure AND
(Model 2)

HER
pure OR
(Model 3)

True
test set

Summary mean -0.98 -0.98 -0.98 -1.00

statistics of standard deviation 0.89 0.89 0.90 1.03

the E-type entropy (H) 4.07 4.04 4.10 4.39

estimate of z maximum 1.32 1.26 1.33 2.14

median -0.83 -0.82 -0.85 -0.96

minimum -2.82 -2.77 -2.92 -3.75

kurtosis 2.23 2.19 2.27 2.44

skewness 0.02 0.02 0.03 0.02

Summary median entropy 3.45 3.75 4.17 –

statistics of z maximum a
2.40 3.20 2.60 –

predicted z minimum a -4.20 -7.00 -4.80 –

distribution target (49,73): [95% CI]
mean

[-0.40, 1.60]
0.69

[-0.60, 1.60]
0.66

[-1.20, 2.20]
0.70

–
1.35

target (47,16): [95% CI]
mean

[-2.00, -0.20]
-0.99

[-2.20, 0.00]
-1.00

[-2.60, 0.20]
-0.98

–
-1.02

target (25,63): [95% CI]
mean

[-2.40, -0.40]
-1.19

[-2.40, -0.40]
-1.33

[-4.00, 0.60]
1.20

–
-1.34

target (10,42): [95% CI]
mean

[-3.00, -1.20]
-2.06

[-3.20, -1.20]
-2.06

[-3.80, -0.80]
-2.05

–
-1.64

Performance EMA 0.43 0.43 0.44 –

ENS 0.72 0.72 0.71 –

mean DKL 3.54 3.58 3.76 –

a Considering a 95% confidence interval (CI).
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Targets C (47,16) and D (49,73) are predictions for locations where observations are
available. They were selected in regions with high and low z values to demonstrate
the uncertainty prediction in locations coincident with the calibration set. For all three
models, target C (47,16) presented lower entropy and ∆z (not shown) in comparison
to target D (49,73) due to the homogeneity of z values in the region.

Although the z PMFs (Fig. 3.7c) from models 1 and 2 present comparable shapes, the
uncertainty structure (color and shape displayed in Fig. 3.7b) of the overall field differs.
Since model 1 is derived from the aggregation of models 2 and 3, as presented in
Eq. 3.6, this combination is also reflected in its uncertainty structure, lying somewhere
in between models 2 and 3.

Model 1 is the bolder (more confident) model since it has the smallest median
entropy (3.45 bits; Table 3.1). On the other hand, due to the averaging of PMFs,
model 3 is the more conservative model, verified by the highest overall uncertainty
(median entropy of 4.17 bits). Model 3 also predicts a smaller minimum and higher
maximum of the E-type estimate; in addition, for the selected targets, it provides the
widest confidence interval.

The authors selected model 1 (AND/OR combination) for the sample size and
benchmarking investigation presented in the next section. There, we evaluate various
models via direct comparison of performance measures.

3.4.2 Comparison analysis

In this section, the test set was used to calculate the performance of all methods (NN,
IDS, OK, and HER) as a function of sample size and dataset type (SR0, SR1, LR0,
and LR1). HER was applied using the AND/OR model proposed by Eq. 3.6. See
Appendix B.2 for the calibrated parameters of all models discussed in this section.

Fig. 3.8 summarizes the values of mean absolute error (EMA), Nash–Sutcliffe ef-
ficiency (ENS), and mean Kullback–Leibler divergence (DKL) for all interpolation
methods, sampling sizes, and dataset types. The SR fields are located in the left
column and the LR in the right. Datasets without noise are represented by continuous
lines, and datasets with noise are represented by dashed lines. EMA is presented in
Fig. 3.8a,b for the SR and LR fields, respectively. All models have the same order
of magnitude of EMA for the noisy datasets (SR1 and LR1; dashed lines), with the
performance of the NN model being the poorest, and OK being slightly better than
IDS and HER. For the datasets without noise (SR0 and LR0; continuous lines), OK
performed better than the other models, with a decreasing difference given sample
size. In terms of ENS, all models have comparable results for LR (Fig. 3.8d), except
NN in the LR1 field. A larger contrast in the model performances can be seen for the
SR field (Fig. 3.8c), where, for SR1, NN performed the worst and OK the best. For
SR0, especially for small sample sizes, OK performed better and NN poorly, while
IDS and HER had similar results, with a slightly better performance for HER.

The probabilistic models of OK and HER were comparable in terms of DKL, with
OK being slightly better than HER, especially for small sample sizes (Fig. 3.8e,f). An
exception is made for OK in LR0. Since the DKL scoring rule penalizes extremely
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Figure 3.8: Performance comparison of NN, IDS, OK, and HER. (a,b) Mean absolute error,
(c,d) Nash–Sutcliffe efficiency, and (e,f) Kullback–Leibler divergence scoring rule
for the SR datasets in the left panels (a, c, and e) and the LR datasets in the right
panels (b, d, and f). Continuous line refers to datasets without noise and dashed
lines to datasets with noise.
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confident but erroneous predictions, DKL of OK tended to infinity for LR0 and,
therefore, it is not shown in Fig. 3.8f.

For all models, the performance metrics for LR showed better results when com-
pared to SR (compare the left and right columns in Fig. 3.8). The performance
improvement given the sample size is similar for all models, which can be seen by the
similar slopes of the curves. In general, we noticed a prominent improvement in the
performance in SR fields up to a sample size of 1000 observations. On the other hand,
in LR fields, the learning process already stabilizes at around 400 observations. In
addition to the model performance presented in this section, the summary statistics
of the predictions and the correlation of the true value and the residue of predictions
can be found in Appendix B.3.

In the next section, we discuss the fundamental aspects of HER and debate its
properties with a focus on comparing it to OK.

3.4.3 Discussion

3.4.3.1 Aggregation methods

Several important points emerge from this study. Because the primary objective
was to explore the characteristics of HER, we first consider the effect of selecting the
aggregation method (Sect. 3.4.1). Independent of the choice of the aggregation method,
the deterministic results (E-type estimate of z) of all the models were remarkably
similar. In contrast, we could see different uncertainty structures of the estimates
for all three cases analyzed, ranging from a more confident method to a more
conservative one. The uncertainty structures also reflected the expected behavior
of larger errors in locations surrounded by data that are very different in value, as
mentioned in Goovaerts (1997, p. 180, 261). In this sense, HER has proved effective in
considering both the spatial configuration of data and the data values regardless of
which aggregation method is selected.

As previously introduced in Sect. 3.2.3.1, the choice of pooling method can happen
beforehand in order to introduce physical knowledge to the system, or several can
be tested to learn about the response of the field to the selected model. Aside from
their different mathematical properties, the motivation behind the selection of the two
aggregation methods (linear and log-linear) was the incorporation of continuous or
discontinuous field properties. The interpretation is supported by Goovaerts (1997,
p. 420), Journel (2002) and Krishnan (2008), where the former connects a logarithmic
expression (AND) to continuous variables, while the latter two associate linear pooling
(OR) to abrupt changes in the field and categorical variables.

As verified in Sect. 3.4.1, the OR (=averaging) combination of distributions to esti-
mate target PMFs was the most conservative (with the largest uncertainty) method
among all those tested. For this method of PMF merging, all distributions are consid-
ered feasible, and each point adds new possibilities to the result, whereas the AND
combination of PMFs was a bolder approach, intersecting distributions to extract
their agreements. Here, we are narrowing down the range of possible values so that
the final distribution satisfies all observations at the same time. Complementarily,
considering the lack of information to accurately describe the interactions between
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the sources of information, we proposed inferring α and β weights (the proportion of
AND and OR contributions, respectively) using Eq. 3.6. It resulted in a reasonable
trade-off between the pure AND and the pure OR model and was hence used for
benchmarking HER against traditional interpolation models in Sect. 3.4.2.

With HER, the spatial dependence was analyzed by extracting ∆z PMFs and
expressed by the infogram, where classes composed of point pairs further apart were
more uncertain (presented higher entropy) than classes formed by point pairs close to
each other. Aggregation weights (Appendix B.2; Figs. B.1 and B.2) also characterize
the spatial dependence structure of the field. In general, as expected, noisy fields (SR1
and LR1) lead to smaller influence (weights) of the closer observations than nonnoisy
datasets (Fig. B.1). In terms of α and β contribution (Fig. B.2), while α received, for all
sample sizes, the maximum weight, β increased with the sample size. As expected, in
general the noisy fields reflected a higher contribution of β due to their discontinuity.
For LR0, starting at 1000 observations, β also stabilized at 0.55, indicating that the
model identified the characteristic β of the population. The most noticeable result
along these lines was that the aggregation method directly influences the probabilistic
results, and therefore, the uncertainty (entropy) maps can be adapted according to
the characteristics of the variable or interest of the expert.

3.4.3.2 Benchmarking and applicability

Although the primary objective of this study is to investigate the characteristics of
HER, Sect. 3.4.2 compares it to three established interpolation methods. In general,
HER performed comparably to OK, which was the best-performing method among
the analyzed ones. The probabilistic performance comparison was only possible
between HER and OK where both methods also produced comparable results. Note
that the datasets were generated using Gaussian process (GP) so that they perfectly
fulfilled all recommended requisites of OK (field mean independent of location;
normally distributed data), thus favoring its performance. Additionally, OK was also
favored when converting their predicted PDFs to PMFs, since the defined bin width
was often orders of magnitude larger than the standard deviation estimated by OK.
However, the procedure was a necessary step for the comparison, since HER does not
fit continuous functions for their predicted PMFs.

Although environmental processes hardly fulfill Gaussian assumptions (Hristopulos
and Baxevani, 2020; Kazianka and Pilz, 2010), GP allows the generation of a controlled
dataset in which we could examine the method performances in fields with different
characteristics. Considering that it is common to transform the data so that it fits
the model assumptions and back transform it in the end, the used datasets are, to
a certain extent, related to environmental data. However, the authors understand
that, due to being nonparametric, HER handles different data properties without the
need to transform the available data to fulfill model assumptions. And since HER
uses binned transformations of the data, it is also possible to handle binary (e.g.,
contaminated and safe areas) or even, with small adaptations, categorical data (e.g.,
soil types), covering another spectrum of real-world data.
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3.4.3.3 Model generality

Especially for HER, the number of distance classes and the bin width define the
accuracy of our prediction. For comparison purposes, bin widths and distance classes
were kept the same for all models and were defined based on small sample sizes.
However, with more data available, it would be possible to better describe the spatial
dependence of the field by increasing the number of distance classes and the number of
bins. Although the increase in the number of classes would also affect OK performance
(as it improves the theoretical variogram fitting), it would allow more degrees of
freedom for HER (since it optimizes weights for each distance class), which would
result in a more flexible model and closer reproducibility of data characteristics. In
contrast, the degrees of freedom in OK would be unchanged, since the number of
parameters of the theoretical variogram does not depend on the number of classes.

HER does not require the fitting of a theoretical function; its spatial dependence
structure (∆z PMFs; infogram) is derived directly from the available data, while,
according to Putter and Young (2001), OK predictions are only optimal if the weights
are calculated from the correct underlying covariance structure, which, in practice,
is not the case since the covariance is unknown and estimated from the data. Thus,
the choice of the theoretical variogram for OK can strongly influence the predicted z,
depending on the data. In this sense, for E-type estimates, HER is more robust against
user decisions than OK. Moreover, HER is flexible in the way that it aggregates the
probability distributions, not being a linear estimator like OK. In terms of the number
of observations, and being a nonparametric method, HER requires sufficient data to
extract the spatial dependence structure, while OK can fit a mathematical equation
with fewer data points. The mathematical function of the theoretical variogram
provides advantages with respect to computational effort. Nevertheless, relying on
fitted functions can mask the lack of observations since it still produces attractive, but
not necessarily reliable, maps (Oliver and Webster, 2014).

OK and HER have different levels of generality. OK weights depend on how the
fitted variogram varies in space (Kitanidis, 1997, p. 78), whereas HER weights take
into consideration the spatial dependence structure of the data (via ∆z PMFs) and the
z values of the observations, since they are found by minimizing DKL between the
true z and its predicted distribution. In this sense, the variance estimated by kriging
ignores the observation values, retaining only the spatial geometry from the data
(Goovaerts, 1997, p. 180), while HER is additionally influenced by the z value of the
observations. This means that HER predicts distributions for unsampled points that
are conditioned to the available observations and based on their spatial correlation
structure, a characteristic which was first possible with the advent of indicator kriging
(Journel, 1983). Conversely, when no nugget effect is expected, HER can lead to
undesired uncertainty when predicting the value at or near sampled locations. This can
be overcome by defining a small distance class for the first class, changing the binning
to obtain a point–mass distribution as a prediction, or asymptotically increasing the
weight towards infinity as the distance approaches zero. With further developments,
the matter could be handled by coupling HER with sequential simulation or using
kernels to smooth the spatial characterization model.
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3.4.3.4 Weight optimization

Another important difference is that OK performs multiple local optimizations (one
for each target), and the weight of the observations varies for each target, whereas HER
performs only one optimization for each one of the aggregation equations, obtaining a
global set of weights which are kept fixed for the classes. Additionally, OK weights can
reach extreme values (negative or greater than one), which, on the one hand, is a useful
characteristic for reducing redundancy and predicting values outside the range of the
data (Goovaerts, 1997, p. 176) but, on the other hand, can lead to unacceptable results,
such as negative metal concentrations (Goovaerts, 1997, p. 174–177) and negative
kriging variances (Manchuk and Deutsch, 2007). HER weights are limited to the range
of [0, 1]. Since the used dataset was evenly spaced, a possible issue of redundant
information in the case of clustered samples was not considered in this paper. The
influence of data clusters could be reduced by splitting the search neighborhood
into equal-angle sectors and retaining within each sector a specified number of
nearest data (Goovaerts, 1997, p. 178) or discarding measurements that contain no
extra information (Kitanidis, 1997, p. 70). Although kriging weights naturally control
redundant measurements based on the data configuration, OK does not account for
clusters with heterogeneous data since it presumes that two measurements located
near each other contribute the same type of information (Goovaerts, 1997, p. 176, 180;
Kitanidis, 1997, p. 77).

Considering the probabilistic models, both OK and HER present similarities. The
two approaches take into consideration the spatial structure of the variables, since
their weights depend on its spatial correlation. As with OK (Goovaerts, 1997, p. 261),
we verified that HER is a smoothing method since the true values are overestimated
in low-valued areas and underestimated in high-valued areas (Appendix B.3; Fig. B.3).
However, HER revealed a reduced smoothing (residue correlation closer to zero)
compared to OK for SR0, SR1, and LR1. In particular, for points beyond the range,
both methods predict by averaging the available observations. While OK calculates
the same weight for all observations beyond the range and proceeds with their linear
combination, HER associates ∆z PMF of the full dataset to all observations beyond
the range and aggregates them using the same weight (last-class weight).

3.5 summary and conclusion

In this paper, we introduced a spatial interpolator which combines statistical learning
and geostatistics for overcoming parameterization with functions and uncertainty
trade-offs present in many existing methods. Histogram via entropy reduction (HER)
is free of normality assumptions, covariance fitting, and parameterization of distribu-
tions for uncertainty estimation. It is designed to globally minimize the predictive
entropy (uncertainty) and uses probability aggregation methods to introduce or infer
the (dis-)continuity properties of the field and estimate conditional distributions
(target point conditioned to the sampled values).

Throughout the paper, three aggregation methods (OR, AND, and AND/OR)
were analyzed in terms of uncertainty and resulted in predictions ranging from
conservative to more confident ones. HER’s performance was also compared to
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popular interpolators (nearest neighbor, inverse distance weighting, and ordinary
kriging). All methods were tested under the same conditions. HER and ordinary
kriging (OK) were the most accurate methods for different sample sizes and field
types. HER has featured the following properties: (i) it is nonparametric in the sense
that predictions are directly based on empirical distribution, thus bypassing function
fitting and, therefore, avoiding the risk of adding information not available in the
data; (ii) it allows one to incorporate different uncertainty properties according to
the dataset and user interest by selecting the aggregation method; (iii) it enables the
calculation of confidence intervals and probability distributions; (iv) it is nonlinear,
and the predicted conditional distribution depends on both the spatial configuration
of the data and the field values; (v) it has the flexibility of adjusting the number
of parameters to be optimized according to the amount of data available; (vi) it
is adaptable for handling binary or even categorical data, since HER uses binned
transformations of the data; and (vii) it can be extended to conditional stochastic
simulations by directly performing sequential simulations on the predicted conditional
distribution.

Considering that the quantification and analysis of uncertainties are important in
all cases where maps and models of uncertain properties are the basis for further
decisions (Wellmann, 2013), HER proved to be a suitable method for uncertainty esti-
mation, where information-theoretic measures, geostatistics, and aggregation-method
concepts are put together to bring more flexibility to uncertainty prediction and
analysis. Additional investigation is required to analyze the method in the face of spa-
tiotemporal domains, categorical data, probability and uncertainties maps, sequential
simulation, sampling designs, and handling additional variables (covariates), all of
which are possible topics to be explored in future studies.
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abstract

Uncertainty quantification is an important topic for many environmental studies,
such as identifying zones where potentially toxic materials exist in the soil. In this
work, the nonparametric geostatistical framework of histogram via entropy reduction
(HER) is adapted to address local and spatial uncertainty in the context of risk of
soil contamination. HER works with empirical probability distributions, coupling
information theory and probability aggregation methods to estimate conditional dis-
tributions, which gives it the flexibility to be tailored for different data and application
purposes. To explore how HER can be used for estimating threshold-exceeding proba-
bilities, it is applied to map the risk of soil contamination by lead in the well-known
dataset of the region of Swiss Jura. Its results are compared to indicator kriging (IK)
and to an ordinary kriging (OK) model available in the literature. For the analyzed
dataset, IK and HER predictions achieve the best performance and exhibit comparable
accuracy and precision. Compared to IK, advantages of HER for uncertainty estima-
tion in a fine resolution are that it does not require modeling of multiple indicator
variograms, correcting order-relation violations, or defining interpolation/extrapola-
tion of distributions. Finally, to avoid the well-known smoothing effect when using
point estimations (as is the case with both kriging and HER), and to provide maps
that reflect the spatial fluctuation of the observed reality, we demonstrate how HER
can be used in combination with sequential simulation to assess spatial uncertainty
(uncertainty jointly over several locations).
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4.1 introduction

Modeling the uncertainty about the unknown is of crucial importance for evaluating
the risk involved in any decision-making process. The traditional approach of model-
ing the uncertainty with respect to geostatistical interpolation consists of computing a
kriging estimate and its attached error variance, and explicitly assuming a Gaussian
distribution for assessing the confidence interval (Goovaerts, 1997, p. 261; Kitanidis,
1997, p. 68; Bourennane et al., 2007). The major restrictions of this approach are (i) that
the distribution of the estimation error is assumed to be normal, and (ii) that the
variance of the errors is assumed to be independent of the data values, and only
dependent on the data configuration (Kitanidis, 1997, p. 68; Goovaerts, 1997, p. 261).
These Gaussian and homoscedastic assumptions are unfortunately rarely fulfilled
for environmental attributes and soil variables. Instead, they often display skewed
distributions (Bourennane et al., 2007; Goovaerts, 1997, p. 261).

More rigorous approaches such as multivariate-Gaussian model (MGM) and indica-
tor kriging (IK) address the problem of modeling local uncertainty through conditional
probability distributions (CPD). Different from the traditional approach, in these CPD
models, first the uncertainty about the unknown is assessed and then an estimate
optimal in some appropriate sense is deduced (Goovaerts, 1997, p. 262). MGM is
widely used thanks to its mathematical simplicity and easy inference (Goovaerts, 1997,
p. 265; Gómez-Hernández and Wen, 1998). However, under the multi-Gaussian spatial
law it applies, all marginal and conditional distributions are Gaussian, and hence the
variance of the CPD depends only on the data configuration, not on the data values
(Goovaerts, 1997; Ortiz et al., 2004, p. 284). Likewise, due to its strong distribution
hypothesis, it is unfeasible to check the normality of multiple-point (in contrast to
two-point) experimental CPD (Goovaerts, 1997, p. 284) and it might produce inade-
quate results caused by an erroneous parametric model assumption (Fernández-Casal
et al., 2018). IK, on the other hand, was developed to avoid assuming any particular
shape or analytical expression of the CPD. Although it is a nonparametric model,
when a complete CPD is needed as output, its shortcomings lie in the need to fit
multiple indicator variograms (one per cutoff), to correct order-relation violations, and
to interpolate and extrapolate the CPD. Furthermore, due to the indicator transform
of the observations (e.g., from continuous to binary) it loses information available in
data (Fernández-Casal et al., 2018).

Recently, for avoiding the risk of adding information not present in data, Thiesen
et al. (2020b) proposed combining information theory with probability aggregation
methods in a geostatistical framework as a novel nonparametric method for stochastic
estimation at unsampled locations. Histogram via entropy reduction (HER) was
primarily proposed to bypass fitting spatial correlation functions and assumptions
about the underlying distribution of the data. In addition, it is a proper framework
for uncertainty estimation since it accounts for both spatial configuration and data
values and offers higher generality than ordinary kriging (OK). HER uses binned
transformation of the data and optimization of the information content, which gives
some flexibility to adapt the method to handle different kinds of data and problems.
Furthermore, it allows incorporating different uncertainty properties by selecting the
aggregation method. For the present paper, these primary findings paved the way for
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the further development of the spatial interpolation framework of HER to assess both
(i) the local uncertainty when dealing with categorical data and threshold-exceeding
probabilities, and (ii) the spatial uncertainty by reproducing the spatial fluctuation of
the dataset with sequential simulation.

In the context of risk mapping, an important goal of many environmental applica-
tions is to delimit zones in the soil containing potentially toxic substances (Goovaerts,
1997, p. 334). For decision-making in such a context, it is often more pertinent to
calculate the risk of exceeding regulatory limits (risk of contamination) rather than
deriving a single value estimate (Goovaerts, 1997, p. 333). Thus, the purpose of this
paper is to extend HER to evaluate the probability or risk, given the data, that a
pollutant concentration exceeds a critical threshold at a particular location of in-
terest, and compare its results to existing benchmark methods. To do so, we tailor
HER’s optimization problem for dealing with threshold-exceeding probabilities and
investigate the framework using the established Swiss Jura dataset (Atteia et al.,
1994; Webster et al., 1994). The estimation and local uncertainty results of HER are
then compared to IK, the most widely employed approach to estimate exceeding
probabilities (Fernández-Casal et al., 2018), and to an OK model available in the
literature.

Although local estimation methods honor local data, are locally accurate, and have
a smoothing effect appropriate for visualizing trends, they are inappropriate for
simulating extreme values (Rossi and Deutsch, 2014, p. 167). In addition, they are
suitable for assessing the uncertainty at a specific unsampled location, but not for
assessing uncertainty at many locations simultaneously (spatial uncertainty; Goovaerts,
2001). Therefore, to reproduce the variability observed in the original data and to
provide a joint model of uncertainty, HER is expanded using sequential simulation
(a version named HERs) which generates stochastic realizations of the field under
study. For brevity, in this paper we only demonstrate the feasibility of HERs. Further
applications, e.g., for the definition of remediation costs of contaminated areas or the
use of transfer functions (Goovaerts, 2001) are possible but not included.

The paper is organized as follows. HER method and its adaptations are presented
in Sect. 4.2. In Sect. 4.3, we describe the dataset, performance criteria, and benchmark
models; apply OK, IK, and HER to a real dataset; and compare their estimation and
local uncertainty results. Finally, a proof of concept of HERs is presented. In Sect. 4.4
we discuss results, and in the closing Sect. 4.5, we summarize the key findings and
draw conclusions.

4.2 method description

In the following sections, we give a brief presentation of information theoretic mea-
sures employed in the HER method (Sect. 4.2.1) and introduce its three main steps
(Sect. 4.2.2). Specifically in Sect. 4.2.2.3, we propose an adaptation of the minimization
problem tailored to estimating local threshold-exceeding probabilities. Finally, we
expand HER for spatial uncertainty analysis in Sect. 4.2.3.
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4.2.1 Information theoretic measures employed in HER

To assess the spatial dependence structure of data, minimize estimation uncertainties,
and evaluate the quality of probabilistic predictions, we apply two measures of
information theory, namely Shannon entropy (H) and Kullback-Leibler divergence
(DKL). This section is based on Cover and Thomas (2006), which we suggest for an
introduction to the topic.

For a discrete random variable X with a probability mass function p(x), x ∈ χ, the
Shannon entropy equation is defined as:

H(X) = − ∑
x∈X

p(x) log2 p(x). (4.1)

The logarithm to base two denotes entropy in unit of bits, which is associated to the
number of binary questions needed to reconstruct a random variable. This means that,
e.g., the entropy of a fair coin toss is 1 bit or, in other words, the answer of one yes-no
question (e.g., is it tails?) is enough to identify the toss output. Therefore, the above
expression measures the average uncertainty of a probability distribution. HER uses
Shannon entropy to evaluate the spatial dependence of the dataset and its correlation
length.

Kullback-Leibler divergence (or relative entropy) compares similarities between
two probability distributions p and q:

DKL(p||q) = ∑
x∈X

p (x) log2
p(x)

q(x)
. (4.2)

Expressed in bits, it measures the statistical “distance” between two distributions,
where one (p) is the reference, and the other (q) a model thereof. Kullback-Leibler
divergence is nonnegative and it is equals zero if and only if p = q. It can be used (i) to
quantify the information loss of assuming that the distribution is q when really it is p
and (ii) as a performance metric for probabilistic predictions (Gneiting and Raftery,
2007; Weijs et al., 2010). In this study, DKL is applied for two purposes. Primarily, it
defines the optimization problem of HER (its loss function), which minimizes the
information loss when aggregating distributions. Additionally, it is used as a scoring
rule for performance verification of probabilistic predictions.

Note that from now on, instead of x (used to present general information theoretic
concepts in this section), we adjust the variable terminology to z and ∆z when dealing
with spatial problems.

4.2.2 HER for local uncertainty

The brief introduction to HER presented in the following is based on Thiesen et al.
(2020b), further details can be found there. HER is a distribution-free interpolator en-
closed in a geostatistical framework. It was formulated to describe spatial patterns and
solve spatial interpolation problems. In HER, we incorporate concepts from informa-
tion theory and probability aggregation methods for globally minimizing uncertainty
and predicting conditional probability distributions (CPD) directly based on empirical
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discrete distributions (also referred to as probability mass functions, PMFs). HER
comprises three main steps: (i) characterization of spatial dependence, (ii) selection
of an aggregation method and associated optimal weights, and (iii) prediction of the
target CPD. These steps are explained in the following sections.

4.2.2.1 Characterization of spatial dependence

Let us consider the situation illustrated in Fig. 4.1c, where z is the attribute under
study and we are interested in inferring the z PMF of the target 0 (p(z0) is the
estimated probability mass function of z at the unsampled location u0) given its
neighbors 1, 2, and 3 (z1, z2, and z3 are available observations sampled at locations u1,
u2, and u3). In order to characterize the spatial dependence, we extract the distribution
associated to each neighbor and the correlation length (range) in the following actions.
First, for each lag distance interval k – also called distance class or simply class – with
bounds dk−1 and dk, we calculate the difference of the z-values between all pairs of
observations within the interval (∆Zk =

{
zi − zj

∣∣ i 6= j, dk−1 <
∣∣ui − uj

∣∣ ≤ dk} )
and generate the corresponding ∆z PMF (p∆Zk (∆z), Fig. 4.1a)1. The entropy values of
each ∆z PMF (one for each distance class k) is visualized as a 2D plot called infogram
(H (∆Zk), Fig. 4.1b). The infogram describes the statistical dispersion of pairs of
observations for the distance separating these observations (Thiesen et al., 2020b).
Quantitatively, it is a way of measuring the uncertainty about ∆z given the separation
distance of the data, meaning that observations start becoming less informative as
the distance increases. Note that in the same figure, the range can be identified as
the distance where the entropy of the classes exceeds the full dataset entropy H (∆Z),
calculated over the difference of z-values between all pairs of observations in the
dataset (∆Z =

{
zi − zj

∣∣ i 6= j}). This range definition is based on the principle that the
observations beyond this distance start becoming uninformative, and it is pointless to
use information outside of this neighborhood2. Finally, we associate to each neighbor
the ∆z PMF of the corresponding class k, according to its absolute lag distance
from the target, then shift this distribution by its z-value p(z0|zi) = p∆Zk(z0 − zi), as
outlined in Fig. 4.1c. In the end of this first step, we have inferred the conditional
PMFs p(z0|z1), p(z0|z2), and p(z0|z3). A practical example using HER is shown in
Fig. C.1 with more details.

4.2.2.2 Probability aggregation

For the second step of the method, the individual conditional distributions obtained
in the previous step are combined by using probability aggregation methods. The
aggregation method is based on work by Allard et al. (2012), which we recommend
as a summary of existing aggregation methods. The probability aggregation yields a

1 Note that Z and ∆Z are random variables within the continuous intervals z ∈ [zmin − ∆zmax , zmax +
∆zmax] and ∆z ∈ [−∆zmax, ∆zmax], respectively, where ∆zmax = |zi − zj|, zmin = zi and zmax = zi are
calculated over all observations zi in the calibration dataset.

2 In the unusual case where the entropy of the classes at large distances does not exceed the entropy of
the full dataset, to improve the computational efficiency, we recommend to manually set the range of
the infogram by identifying the saturation on the entropy of the classes (similarly to the process done
for a variogram fitting).
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Figure 4.1: Schematic of the HER method. (a) ∆z PMFs p∆Zk (∆z) of the difference in the
z-values (∆z) between all pairs of observations within distance class k and ∆z PMF
p∆Z(∆z) of the full dataset; (b) infogram, obtained by calculating the entropy
H(∆Zk) of PMFs in (a) and plotting them against their respective distance class,
with the range determined by the entropy of the full dataset H(∆Z); and (c) prac-
tical example where the target value to be estimated is z0 and the available
observations are z1, z2, and z3.

single, global distribution for the target 0, so that the joint probability p (z0|z1, ..., zn) ≈
PG (p (z0|z1) , . . . , p (z0|zn)), with z0 being the estimation of the target value (at an
unsampled location) and zi values at neighboring locations, where i = 1, ..., n are
the indices of the sampled observations and z is the variable under study. For brevity,
from now on we use Pi(z0) to denote p (z0| zi) and PG (z0) for the global probability
PG (P1 (z0) , . . . , Pn(z0)).

Two basic aggregation methods were discussed by Thiesen et al. (2020b), namely
linear pooling and log-linear pooling. Linear pooling (Eq. 4.3) is a way of averaging
distributions. It is related to the union of events and associated with the logical
operator OR. Multiplication of probabilities, or log-linear pooling in Eq. 4.4, in
turn, is associated with the logical operator AND, and related to the intersection of
events. Due to their distinct characteristics, Thiesen et al. (2020b) associated the linear
aggregation to discontinuous field properties, and the log-linear to continuous ones.
The authors exemplified that, if we have two points A and B with different z-values
(zA, zB) and want to estimate the z-value of a the target point X located between both
in a continuous field, we would expect that zX would be somewhere between the
z-values of A and B, which can be achieved by an AND combination. On the other
hand, in the case of categorical data (or abrupt changes; Goovaerts, 1997, p. 420),
considering A and B belonging to different categories, a target X located between
both will either belong to the category of A or B, which can be achieved by an OR
combination.

The third pooling operator (Eq. 4.5), which combines PGAND and PGOR , was proposed
and explored in Thiesen et al. (2020b). It optimally expresses continuous and dis-
continuous properties of a field (controlled by parameters α and β, respectively) by
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minimizing the relative entropy (DKL) of the estimation and the true data. Since the
final distribution of this pooling contains a pure OR, Eq. 4.3, and pure AND, Eq. 4.4,
aggregation as special cases, it was recommended by the authors for cases where the
field properties are not known a priori.

PGOR(z0) =
n

∑
i=1

wORi Pi(z0), (4.3)

where n is the number of neighbors, and wORi are positive weights verifying
∑n

i=1 wORi = 1.

ln PGAND (z0) = ln ζ +
n

∑
i=1

wANDi ln Pi (z0), (4.4)

where ζ is a normalizing constant satisfying ∑z PGAND(z) = 1, n is the number of
neighbors, and wANDi are positive weights.

PG(z0) ∝ PGAND (z0)α PGOR (z0)β, (4.5)

where α and β are positive weights varying from 0 to 1.

4.2.2.3 Entropy minimization

After selecting the appropriate aggregation method, we address the optimization
problem for estimating the weights of the pooling operators. In Thiesen et al. (2020b),
the authors were interested in comparing HER results with OK estimates. Therefore,
by means of leave-one-out cross-validation, they chose a global set of weights such
that the disagreement of the “true” observation (left-out measurement) and the
estimated probability of the bin containing the true observation was minimized.
For doing so, the optimization problem was tailored to find the set of weights (one
for each distance class) which minimizes the expected relative entropy (DKL) of
all targets. Note that when dealing with single-value observations (or categorical
data), this is equivalent to subtracting the probability of the bin containing the true
value from one. The DKL evaluation of a single prediction is outlined in Fig. 4.2a.
In the present study, we propose an adaptation of this loss function (Fig. 4.2a) to

Figure 4.2: Optimization problem. (a) Maximizing the probability of the “true” observation
(Thiesen et al., 2020b) and (b) maximizing the estimation of threshold-exceeding
probability.

focus on the estimation of threshold-exceeding probabilities (Fig. 4.2b). Here, instead
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of optimizing the probability of a single bin containing the true observation, we
minimize the probability disagreement (relative entropy, DKL) of the binarized left-
out measurement (above or below zc threshold) and the cumulative probability
of the estimated distribution (also binary, above or below zc threshold). With this
adaptation, the optimization problem focusses on selecting weights which maximize
the probability of the target matching the true classification. The authors’ goals were
to reduce the risk that an unsampled site is declared “safe” when in reality the soil is
“toxic” and vice versa, and to open the possibility of working with categorical data.
The method adaptation proposed in Fig. 4.2b will be used throughout the paper and
will simply be referred to as HER.

For both optimization problems (Fig. 4.2a,b), one optimum weight is obtained for
each distance class k and used in Eqs. 4.3 and 4.4, referred to as wORk and wANDk ,
respectively (here generalized as wk). After that, α and β from Eq. 4.5 are optimized
by grid search, with candidate values ranging from 0 to 1 (steps of 0.05 were used in
the application case).

Particularly for the present study, another adaptation was done to avoid undesired
non-zero uncertainty when predicting z-values at sampled locations: within the first
distance class, we asymptotically increase the weight towards infinity as the distance
approaches zero, by scaling with the inverse of the distance. For all other distance
classes, similarly to Thiesen et al. (2020b), we linearly interpolate the weights according
to the Euclidean distance and the weight of the next class. A practical example of the
proposed interpolation is illustrated in Fig. C.2.

4.2.2.4 PMF prediction

As seen before, to estimate the z-value of the target 0 (i.e., the unknown observation
z0), first we classify its neighbors zi (sampled observations) according to their distance
to the target. Each neighbor is then associated to its corresponding ∆z PMF and
shifted by its zi value. Finally, by applying the selected aggregation method and its
optimum weights, we combine the individual z PMFs of the neighbors to obtain the
z distribution of the target conditioned on all neighbors (z PMF). By construction,
the assessed PMF is nonparametric since no prior assumption is made regarding the
shape of the distribution of possible values.

In order to increase computational efficiency, we do not use classes beyond the range
(neighbors beyond the range are associated to the ∆z PMF of the full dataset) and, due
to the minor contribution of neighbors in classes far away from the target, the authors
only used the closest 30 neighbors when estimating the target. Knowledge of the
(conditional) local distribution obtained here allows a straightforward assessment of
the uncertainty about the unknown value, independently of the choice of a particular
estimate for it (Goovaerts, 1997, p. 333).

4.2.3 HER for spatial uncertainty

So far, we proposed modeling distributions to obtain estimates of values and related
uncertainties at specific locations (local uncertainty) using the HER method. However,
these single-point PMFs do not allow to simultaneously assess the uncertainty about
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attribute values at several locations (Goovaerts, 1997, p. 262). Simply multiplying
CPDs of several locations to obtain their joint probability would assume independence
between the data, a case of little interest (Goovaerts, 1997, p. 372). Therefore, we
address multiple-point – or spatial – uncertainty by combining HER with sequential
simulation (HERs). Stochastic simulation was introduced in the early 1970’s to correct
for the smoothing effect of kriging and to provide maps that reflect the spatial
fluctuation of the observed reality (Deutsch and Journel, 1998, p. 18; Journel, 1974).
Geostatistical simulation generates a model of uncertainty that is represented by
multiple sets of possible values distributed in space, one set of possible outcomes
is referred to as a realization (Leuangthong et al., 2004). Different yet equiprobable
realizations, all conditioned on the same dataset and reflecting the same dispersion
characteristics, can be produced to be used for numerical and visual appreciation
of spatial uncertainty (Deutsch and Journel, 1998, p. 19; Journel, 2003; Journel and
Huijbregts, 1978). Such equiprobable realizations are known as stochastic images
and share the same sample statistics and conditioning data (Gómez-Hernández and
Cassiraga, 1994).

Sequential simulations with HER are generated by first establishing a random
path along all nodes in the grid network. Then, for each node, and in the order
of the random path we (i) derive the PMF of the node using HER as explained in
Sect. 4.2.2, (ii) randomly draw a single value from this PMF, and (iii) assign the
value to the grid as an additional observation. With this procedure, we sequentially
include the simulated values to the original dataset and used them to condition
predictions at the remaining locations. The simulated value (step ii) is derived from
a Monte Carlo simulation (Metropolis and Ulam, 1949), where we randomly draw
a p-value uniformly distributed between 0 and 1 and obtain the z value from the
estimated PMF. Equiprobability is ensured by triggering each realization by one
random seed drawn from a uniform distribution (Deutsch and Journel, 1998, p. 19;
Goovaerts, 1999).

Due to the randomness of the path and draws, repetitions of the stochastic process
will yield different realizations, but all will honor the data and model statistics. Thus,
for assessing the spatial uncertainty, multiple realizations can be used to calculate
the joint probability of a set of locations simultaneously rather than one at a time.
Therefore, while HER as well as OK and IK smooth out the real fluctuation of the
attribute due to the missing variability between unsampled locations, HER-based
sequential simulation (HERs) reproduces the spatial variability of the sample data. In
this study, we are interested in developing and presenting the realizations generated
by HERs as a proof of concept.

4.3 application to real data

4.3.1 Jura dataset

We evaluate HER (Sect. 4.2.2) and HERs (Sect. 4.2.3) by applying them to the well-
known Jura dataset, which is often used as benchmarking in the geostatistical liter-
ature, e.g., Allard et al. (2011), Atteia et al. (1994), Bandarian et al. (2018), Bel et al.
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(2009), Dabo-Niang et al. (2016), Goovaerts (1997), Goovaerts et al. (1997), Loquin and
Dubois (2010), and Webster et al. (1994). The data were collected by the Swiss Federal
Institute of Technology at Lausanne from a 14.5 km² area in the Swiss Jura region.
A comprehensive description of the sampling, field, and laboratory procedures is
available in Atteia et al. (1994) and Webster et al. (1994), and a detailed exploratory
data analysis can be found in Goovaerts (1997).

The data contain topsoil concentrations of seven heavy metals, including lead (Pb),
which is used in the present study. Lead concentrations were sampled at 359 locations
scattered in space and are available in two mutually exclusive sets: a calibration set
of 259 observations and a validation set of 100 observations. Lead concentrations
are expressed in parts per million (ppm, S.I. units = mg kg−1) or their logarithm
transform. To simplify benchmarking comparison, the authors decided to use the
logarithm to base ten of Pb throughout the paper (the same logarithm base was used
for the Pb model in Atteia et al., 1994).

Fig. 4.3 illustrates the Pb concentrations at the locations of the calibration set, the
locations of the validation set, and histogram and cumulative distribution of the cali-
bration set. Table 4.1 presents the summary statistics of Pb for all datasets. The Swiss
federal ordinance defined the regulatory threshold used as the tolerable maximum
for healthy soil (Fix and Hodges Jr., 1987): locations with lead concentrations above
the critical threshold (zc) of 50 mg kg−1 (or zc = 1.699 in its logarithm transform) are
considered contaminated. For the available dataset, this limit is exceeded at 42.1% of
the calibration set locations, see Fig. 4.3c. The dotted line in Fig. 4.3a indicates the
transect SW-NE to be discussed in Sect. 4.3.4.1, which was based on the cross section
shown in Goovaerts (1997).

Table 4.1: Summary statistics of log10(Pb) datasets.

Statistic Calibration set Validation set Full dataset

n 259 100 359

mean 1.687 1.689 1.688

entropy a
5.348 5.167 5.453

std. deviation 0.184 0.214 0.193

variance 0.034 0.046 0.037

cv 0.109 0.127 0.114

maximum 2.361 2.477 2.477

median 1.667 1.672 1.670

minimum 1.278 1.271 1.271

kurtosis 4.328 4.891 4.651

skewness 0.854 1.038 0.931

a Evenly spaced bins, with intervals of 0.015 (more in Sect. 4.3.3).
Regulatory threshold: zc = 1.699.
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Figure 4.3: Calibration set. (a) Concentration values, (b) histogram, and (c) cumulative distri-
bution.

4.3.2 Performance criteria

The quantitative evaluation of the predictive power of the models was carried out
with two criteria for the deterministic results, namely, mean absolute error (EMA)
and Nash-Sutcliffe efficiency (ENS), and another two for the probabilistic outcomes,
i.e., Kullback-Leibler divergence (DKL) and goodness statistic (G). These metrics are
presented in Eqs. 4.6, 4.7, 4.2, and 4.9, respectively.

The deterministic performance metrics are defined as:

EMA =
1
n

n

∑
i=1
|ẑi − zi| , (4.6)

ENS = 1− ∑n
i=1 (ẑi − zi)

2

∑n
i=1 (zi − z)2 , (4.7)

where ẑi and zi are, respectively, the expected value of the predictions and observed
values at the i-th location, z is the mean of the measurements, and n is the number of
tested locations. EMA was selected because it gives the same weight to all errors, while
ENS penalizes variance as it gives more weight to errors with larger absolute values.
With its limitation to a maximum value of 1, ENS facilitates general comparison.

For verifying the quality of predicted probability distributions, their accuracy and
precision will be calculated for the validation set (where a “true” measurement
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is available). While precision is a measure of the narrowness of the distribution,
accuracy measures if the true value is contained in some fixed symmetric probability
p-probability intervals (PI), e.g., interquartile range (Deutsch, 1997). For evaluating
accuracy and precision together, we assess the Kullback-Leibler divergence (DKL,
Eq. 4.2 between the binary probability distribution (above-below threshold) and the
true measurement (as shown in Fig. 4.2b) and take the mean over all validation points.
DKL is more than a measure of accuracy, since it does not need the definition of a
probability cutoff to classify the binary distribution as hit or misclassification, and it
is dependent on the probability values predicted. A maximum agreement DKL = 0
is obtained when all binary PMFs are very precise (probability of 1) and accurate
(correct prediction) in predicting the true (above or below threshold), and it goes to
infinity when a maximum disagreement is met.

Additionally, the accuracy and precision of the full distribution (without binariza-
tion) is quantified by analyzing different symmetric p-PI. For the predicted conditional
probability distribution (CPD) at location u, a series of symmetric p-PI can be con-
structed by identifying the limits (1− p)/2 and (1 + p)/2 quantiles. For example,
0.5-PI is bounded by the first and third quantiles. In this case, a probability distribu-
tion is said to be accurate if there is a 0.5 probability that the true z-value at the target
location falls into that interval or, equivalently, that over the study area, 50% of the
0.5-PI include the true value (Deutsch, 1997; Goovaerts, 2001). The fraction of true
values falling into the symmetric p-PI is computed as:

ξ (p) =
1
n

n

∑
i=1

ξ (ui; p) ∀ p ∈ [0, 1] , (4.8)

with ξ (ui; p) =

1 i f F−1
(

ui;
1−p

2

)
< zi ≤ F−1

(
ui;

1+p
2

)
0 otherwise

.

A distribution is said to be accurate when ξ (p) ≥ p. The cross plot of the estimated
ξ(p) versus expected fractions p is referred to as an “accuracy plot”. To assess the
closeness of the estimated and theoretical fractions and, consequently, the associated
measure of accuracy of the distribution, Deutsch (1997) proposed the following
goodness statistic (G):

G = 1− 1
L

L

∑
l=1

wl
∣∣ξ (pl)− pl

∣∣, (4.9)

where wl = 1 if ξ(pl) > pl , and 2 otherwise. L represents the discretization level
of the computation, i.e., the number of p-PI. Twice as much penalization is given to
deviations when ξ(pl) < pl (inaccurate case). Maximum goodness G = 1 is obtained
when ξ (pl) = pl , and G = 0 (the worst case) when no true values are contained in
any p-PI, hence ξ (pl) = 0.

To visualize the spread of the CPD and therefore the precision of the distribution,
Goovaerts, 2001 averages the width of the PIs that include the true values for a series
of probabilities p, as follows:

W(p) =
1

nξ(p)

n

∑
i=1

ξ (ui; p)

[
F−1

(
ui;

1 + p
2

)
− F−1

(
ui;

1− p
2

)]
. (4.10)
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The cross plot of the estimated W(p) versus the expected fractions p is referred as
an “PI-width plot”. To be legitimate, uncertainty cannot be artificially reduced at the
expense of accuracy (or achieve accuracy at the expense of precision; Goovaerts, 1997,
p. 435), therefore a correct modeling of local uncertainty will entail the balance of
both, accuracy and precision.

Overall, the validity of the model can be asserted when the mean error is close to 0,
Nash-Sutcliffe efficiency is close to 1, mean of Kullback-Leibler divergence is close to 0,
and accuracy (given by the goodness statistic) close to 1. Visually, a goodness statistic
equal to 1 corresponds to an “accuracy plot” with maximum agreement between ξ (p)
and p-PI. Note that the precision is only visually verified throughout the “PI-width
plot”, where the narrower the width of the PI (y-axis) the better. In Sect. 4.3.4.2, we
discuss with real examples how these two plots (Fig. 4.10) interact.

4.3.3 Benchmark models and setup of HER

This section presents how HER was set up for the described dataset (Sect. 4.3.1)
and briefly describes the two benchmark models, namely ordinary kriging (OK) and
indicator kriging (IK). The authors suggest consulting Deutsch and Journel (1998),
Goovaerts (1997), and Kitanidis (1997) for a more detailed explanation of the OK
and IK methods. For brevity, details of the implemented models were included in
Appendix C.1.

In OK, the unsampled values are estimated by a linear combination of the available
data, which are weighted according to a spatial variability function (variogram) fitted
to the data. It was selected for the comparison analysis due to the availability of a
complete model for (the logarithm base of) lead concentrations of the Jura dataset
in the literature. Therefore, OK parameters and results were taken directly from
Atteia et al. (1994). The fitted variogram parameters are specified in Appendix C.1
(Table C.1). It is noteworthy that Atteia et al. (1994) estimated the model parameters
by training on the full dataset (calibration plus validation set) while for all other
models used in this paper, parameters are estimated by training exclusively on the
calibration dataset and the performance is obtained in the validation set only. Since the
uncertainty of OK models ignores the observation values, retaining only the spatial
geometry from the data (Goovaerts, 1997, p. 180), we used the explicit assumption
of normally distributed estimation errors in this study, which is a common practice
for modeling local uncertainty in linear geostatistics (Goovaerts, 1998; Kitanidis, 1997,
p. 68). Finally, to keep the results comparable, we discretized the predicted probability
density functions employing the same discretization (bins) as used in HER. This
binning scheme is presented and discussed in the next paragraph.

Similar to HER, the objective of IK is to directly estimate the distribution of z
at an unsampled location without assuming a predefined uncertainty shape. For
that, considering a defined cutoff value, an indicator transform (above-below cutoff)
of the available data is combined with kriging weights to assess the probability of
the z unsampled locations being above or below this threshold. When dealing with
continuous variables, many cutoffs can be defined so that putting together their
probabilities results in a full cumulative distribution. Since we are dealing with



88 uncertainty analysis with her

continuous lead concentrations, for a fair comparison between HER and IK, the IK
cutoffs were defined to coincide with the bins of HER. Therefore, in total, 69 cutoff
values were specified, varying from 1.290 to 2.295 in steps of 0.015 (plus the critical
limit zc for the logarithm of lead concentration of 1.699). We defined the extremes of
the distributions predicted by IK as the minimum and maximum Pb concentration of
the calibration set (1.278 and 2.361, Table 4.1) as proposed by Deutsch and Journel
(1998, p. 238) and Goovaerts (2009). Furthermore, the lag spacing used for the IK
variogram was also the same as that used for the HER infogram, namely 70 meters
(0.07 km). The parameter file used to model IK is shown in Appendix C.1 (Fig. C.3).
Although choosing such a large number of thresholds is not common practice, it
facilitates local uncertainty comparison (entropy maps and CPDs).

By using many thresholds, the impact of the linear modeling for the interpolation
(within class probabilities) and extrapolation (upper and lower tails) of the distribution
is reduced (Goovaerts, 2009), however at the cost of potentially increasing order
relation problems (Rossi and Deutsch, 2014, p. 160; Goovaerts, 1997, p. 321). Therefore,
results from a more common model referred to as IK10 are presented in Appendix C.2.
Following (Goovaerts, 1998, 2001), it was modeled with 10 cutoffs, nine deciles
of the calibration histogram plus the critical limit zc. This is also in line with the
recommendation by Rossi and Deutsch (2014, p. 160) to use between 8 and 15 cutoff
values. Finally, for each target, we linearly interpolate the calculated probabilities and
extrapolate the tails to the calibration bounds for obtaining a complete distribution.
This procedure is implemented in the AUTO-IK code by Goovaerts (2009), which we
used in this paper.

For comparison purposes, we fixed the lag distances of IK and HER at equal
intervals of 70 meters (0.07 km) and the predicted log10(Pb) distributions of OK,
IK, and HER were equally discretized with evenly spaced intervals of 0.015. We
selected this bin width for HER according to Thiesen et al. (2019), in which the size
of 0.015 (equivalent to a concentration difference of 1.7 ppm around zc)3 showed a
stabilization of the cross-entropy (Hpq = H (p) + DKL(p| |q)) when comparing the
full calibration set and subsamples for various bin widths. Furthermore, to increase
computational efficiency, and due to the minor contribution of faraway neighbors, we
used only the 30 neighbors closest to the target. With the lag (or class), bin width, and
number of neighbors defined, it was possible to assess the spatial characterization and,
consequently, to proceed with the weight optimization (both available in Appendix C.1,
Fig. C.1 and Fig. C.2). As shown in Fig. C.1, the calculated range contains 20 distance
classes, reaching 1.4 km (roughly a third of the length of the x-domain). Considering
the optimization problem proposed in Sect. 4.2.2.3, the optimum weights (wOR and
wAND) obtained for Eqs. 4.3 and 4.4 are illustrated in Appendix C.1 (Fig. C.2b).
Both contributions considerably decrease until the sixth class (circa 0.4 km), beyond
which they stabilize and decrease almost linearly until reaching the range (1.4 km,
class 20). The optimum contributions obtained for AND and OR aggregation in
Eq. 4.5 are α = 0.65 and β = 0, therefore exclusively intersecting distributions. The
spatial characterization, aggregation method, optimal weights, and the set of known
observations define the HER model for predicting local distributions.

3 Note that 1.7 ppm is approximately half of the standard deviation of various-sources errors estimated in
Atteia et al. (1994) for the Pb dataset.
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Table 4.2: Summary of the method procedures and associated performance metrics.

Target results OK IK HER Performance metric

Estimate With OK, we first
obtained the estimate of
the target and the
associated error variance.

The expected value is
obtained from the
target distribution. It
is particularly called
E-type estimate
because it comes from
a conditional
distribution.

Same as IK. We measured the
performance of
the estimates
using EMA and
ENS.

Distribution a With an explicit Gaussian
assumption, we derived
the target distribution
using the error variance
centered on the estimated
value. The distribution
was then discretized in
bins. The Gaussian
assumption calls for a
kriging variance which is
independent of the data
values.

The local conditional
cumulative
distribution of the
target is modeled
though a series of
cutoffs, interpolated
when required, and
converted to a
conditional probability
distribution (CPD)
discretized in bins.

We directly
calculated the
local
conditional
probability
distribution
(CPD) of the
target already
discretized in
bins.

We measured the
accuracy of the
distributions
using G and the
“accuracy-plot”,
and its precision
by the “PI-width
plot”.

Probability of
being above
or below zc

To obtain the probability
of the target being above
zc, we cumulate the
probability of the
distribution in two bins,
greater than zc and less
than or equal to zc.

Same as OK. Same as OK. We measured the
performance of
the classification
probability using
DKL.

a All distributions are discretized by the same binning scheme.

The general procedures to obtain target estimates, distributions, and the binary
probability for the contamination classification are summarized for each method in
Table 4.2. The performance metrics related to each output are also shown.

4.3.4 Results from local estimation with HER, IK, and OK

Considering the similarities between HER and IK (both nonparametric methods with
data dependent distributions), Sect. 4.3.4.1 focuses on presenting the local predictions
of these two methods. OK maps are offered in Appendix C.2. In Sect. 4.3.4.2, the
performance of all three interpolators is compared and discussed.

4.3.4.1 Model application

This section presents maps and distributions produced by IK and HER, using ex-
clusively the Jura calibration set in their logarithm transform. Hereafter, we omit its
logarithm form and refer to the data and results simply as lead (Pb) concentrations.
For comparison purposes, an identical color range was used for maps presenting
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the same information. Additionally, the color bars of Figs. 4.4 and 4.5 discriminate,
respectively, the zc threshold of lead concentration (1.699) and the entropy of the
calibration set (5.348 bits, Table 4.1). All maps were developed using a grid with size
of 0.05 km by 0.05 km.

In Fig. 4.4, we show the expected values (E-type) of lead concentrations. In general, a
similar trend (given by the color shapes) for HER and IK can be seen, with similar low
and high pollutant concentration areas. HER is slightly bolder in predicting extremely
low (below 1.5) and high (above 2.1) concentrations, presenting larger areas in dark
blue and yellow. The estimate map of OK is available in Fig. C.5a (Appendix C.2).

Figure 4.4: E-type map. (a) HER method, and (b) IK method.

Despite the similar trend of E-type values, the local uncertainty (Fig. 4.5) consistently
differs between HER and IK. While IK predictions show generally lower uncertainty
(all values are below the calibration set entropy of 5.348 bits), HER shows a broader
range of entropy values. As expected, HER modeled a higher uncertainty to the
west of the study area (Fig. 4.5a), where no nearby measurements are available, and
lower uncertainty in the regions with a higher density of observations. Conversely, IK
presents higher entropy in these denser areas.

The generally lower entropy of the IK map can be attributed, in this case, to the res-
olution of the local PMF, which is given by the numbers of cutoffs used for modeling.
Although supporting the comparison analysis, the use of a finer resolution resulted in
local distributions with empty bins (visible in Fig. 4.8), thus reducing the uncertainty
of the distribution in terms of entropy. The entropy map and predicted distributions
of an IK model with coarse resolution (IK10) are available in Appendix C.2 (Fig. C.4
and Fig. C.6, respectively). Although different in magnitude, the same behavior of
higher uncertainty in denser areas can be seen in IK10 (Appendix C.2, Fig. C.4). The
entropy map of OK is available in Fig. C.5b (Appendix C.2).
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Figure 4.5: Entropy map. Local uncertainty in terms of entropy. (a) HER method, and (b) IK
method.

Using the maximum acceptable concentration of lead (zc), probability maps for
exceeding this critical threshold were produced (Fig. 4.6). These maps were built by
cumulating probabilities above zc. Both methods, HER and IK, show high probability
of contamination (in black) in zones of higher Pb concentrations and low probability
of contamination (in light gray) in areas of lower concentration. HER shows larger
areas in black and light gray than IK, being therefore a bit bolder in its predictions.
Note that IK maps in Figs. 4.6b and 4.7b do not suffer any negative impact due to a
large number of cutoffs, since only one cutoff (zc) was used. The probability map of
OK is available in Fig. C.5c (Appendix C.2).

According to Goovaerts (1997, p. 362), contaminated areas can be delineated by
setting a location as “contaminated” if the probability of exceeding the tolerable
maximum (zc = 1.699) is larger than the marginal probability of contamination
(0.421, estimated in Sect. 4.3.1), and “safe” otherwise. The proportion of wrongly
classified points generally reaches its minimum close to the marginal probability of
contamination (Goovaerts, 1997, p. 366). In the present application, all lead models
(OK, IK, and HER) presented the minimum misclassification occurring close to the
probability of 0.5 instead of the marginal probability of 0.421 (further discussed in
Appendix C.2, Fig. C.8). However, considering that there are several ways to account
for uncertainty in the decision-making process, and therefore greatly different results
may be reached depending on the classification criteria (Goovaerts, 1997, p. 347, 362),
comparing their differences is not within the scope of this work.

Thus, based on the probability map for zc (Fig. 4.6) and the marginal probability
of contamination (0.421), we binarize the probabilities to classify the results in “con-
taminated” and “safe” areas. HER and IK results are shown in Fig. 4.7, and OK in
Fig. C.5d (Appendix C.2).
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Figure 4.6: Probability map. Probability of exceeding the critical threshold (zc= 1.699). (a) HER
method, and (b) IK method.

The classification maps of HER and IK are relatively similar, however areas declared
safe by IK are slightly more connected (Fig. 4.7b). In contrast, contaminated areas are
more connected in the HER map (Fig. 4.7a). The respective OK maps can be found in
Appendix C.2 (Fig. C.5), revealing a very local influence of each calibration point. For
a more detailed theoretical comparison between HER and OK, please refer to Thiesen
et al. (2020b).

Finally, six locations were selected to be explored in more detail. Four of them
are from the validation set, and therefore represent a ground truth (targets A to D,
Fig. 4.8), and two of them were selected from the grid by their distance to neighbors
and their homogeneity (targets E and F, Fig. 4.8). These points, neighbors, and results
are presented in Fig. 4.8. The locations were chosen with the goal to encompass targets
with low (targets A and B) and high (targets C and D) concentration as ground truth,
and a more homogeneous (targets A, C, and E) and a more heterogeneous (targets B,
D, and F) neighborhood.

In general, all IK distributions (Fig. 4.8) contain empty bins between sampled values,
while by construction, HER offers a higher resolution in the sense that the estimated
CPD is more continuous. As a trade-off for these empty bins, in IK10 (Appendix C.2,
Fig. C.6), fewer IK cutoffs were used, and the resolution was artificially increased
by linearly interpolating the probability values within each cutoff. Nevertheless, IK
and HER show relatively similar shapes and spread for targets A and E, locations
with more homogeneous neighbors. Although their uncertainty differs, the expected
values are also comparable, being equal for target E. Despite the homogeneity of
their neighborhood, the expected values of targets A and C are not equal to their
true value. One reason for this is that just a few (or no) nearby calibration points
have a concentration as low (target A) or as high (target C) as their true value. The
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Figure 4.7: Classification map. Classification of locations as contaminated by lead on the basis
that the probability of exceeding the critical threshold (zc= 1.699) is larger than
the marginal probability of contamination (0.421). (a) HER method, and (b) IK
method.

same applies to target D, although it is in a heterogeneous neighborhood. At last,
target F, which is located far from the calibration set, presents a higher entropy when
predicted with HER, and a more certain distribution for IK. The local distributions of
these targets and the IK10 model are available in Appendix C.2 (Fig. C.6). Neither IK
nor IK10 achieved the finer resolution of HER.

Finally, Fig. 4.9 depicts the mean and two confidence intervals (CI) of the SW-NW
cross section exclusively for the HER model. The SW-NW cross section location and its
neighborhood are shown in Fig. 4.3a. The CI image also contains nine points from the
calibration set (black circles), and seven points from the validation set (red squares),
all of them located close to the cross section.

Some of the calibration points exactly match the SW-NE cross section. They can
be identified in Fig. 4.9 as locations where the uncertainty goes to zero (from left to
right, 1

st, 4
th, and 9

th black circles). For points not exactly on the cross section, their
influence in reducing the uncertainty due to their proximity to the transect is visible.
In particular, the 3

rd and 4
th calibration points (black circles, Fig. 4.9) are in contrasting

situations. The 3
rd one is in a region with homogeneous calibration points close by –

which result in a narrower uncertainty band –, while the 4
th one presents an abrupt

uncertainty reduction since it is located exactly in the transect, but its surrounding is
rather heterogenous – which explains the wider CI in its surrounding.

Validation points of high Pb concentrations (2nd and 3
rd red squares, Fig. 4.9) are

outside the 95% CI. This happens due to relatively homogeneous neighbors in the
first six distance classes (within a radius of circa 0.4 km), where none presents such
high Pb concentration. On the other hand, for the more homogeneous regions (4th,
6

th, and 7
th red squares), E-type predictions are close to the true values. Note that
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Figure 4.8: Local distribution of targets of the validation set (targets A to D) and grid (targets
E and F) for HER (gray) and IK (red). Targets are identified by their coordinates
(x, y). The location of each target is shown in a buffer of 600 m by 600 m.
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Figure 4.9: HER confidence interval (CI) of the SW-NE cross section (shown in Fig. 4.3a).

despite their continuous vicinity (with an increasing or decreasing tendency), these
three validation points present different uncertainty band sizes. It is wider for 6

th and
7

th since they are located in a more heterogeneous region.

4.3.4.2 Performance comparison

In this section, the validation set is used to calculate the performance metrics of
OK, IK, and HER. Table 4.3 summarizes their mean absolute error (EMA), Nash-
Sutcliffe efficiency (ENS), Kullback-Leibler divergence (DKL), and goodness statistic
(G). Accuracy and precision are shown in Fig. 4.10.

Considering the deterministic metrics (based on the expected value), all models
have a comparable EMA. OK presents larger ENS errors than IK and HER (Table 4.3).
IK and HER have similar efficiency ENS. On the other hand, when we cumulate the
predicted distributions for the validation set in two bins (above and below threshold
zc) and compare its results to the true observation (as in Fig. 4.2b), HER presents the
smallest divergence DKL (mean over all validations points) between predicted and
true probability, and OK the largest.

With respect to the Goodness statistic, OK and HER obtained the best G (Table 4.3).
This reflects their accuracy in estimating distributions. Accuracy results are also
shown in Fig. 4.10a. The nonparametric models (IK and HER) present points below
the 45° line, which indicates the inaccuracy of these probabilistic models for large
p-PI (mainly p > 0.70). The lower G of IK can be attributed to the goodness statistic,
Eq. 4.9, penalizing inaccurate predictions, which shows points further away from
the bisector line (around 0.80-PI, Fig. 4.10a) in comparison to OK and HER. Since
a high G can be obtained by distributions with large spread, we used Fig. 4.10b to
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Table 4.3: Cross-validation results for OK, IK, and HER method.

Method EMA ENS DKL G

OK 0.139 0.199 0.858 0.939

IK 0.135 0.233 0.840 0.928

HER 0.134 0.232 0.808 0.938

EMA mean absolute error (best: 0), ENS Nash-Sutcliffe efficiency (best: 1),
DKL Kullback-Leibler divergence (best: 0), G goodness statistic (best: 1).

Figure 4.10: OK, IK, and HER performance. (a) Proportion of the true lead values falling
within the probability intervals (p-PI) of increasing sizes, and (b) width of these
intervals versus p-PI. The goodness statistic (G) quantify the similarity between
the expected and observed proportions in the accuracy plots.

evaluate the precision of the models. The PI-width plot shows the estimated W(p)

versus expected fractions p.
Considering that the smaller the PI-width (y-axis), the narrower (more precise) the

distribution, Fig. 4.10b indicates that HER and OK predict more precise distributions
approximately for p < 0.40, HER for 0.40 < p < 0.70, and IK for p > 0.70. Besides
being the model with narrower predicted distributions until p < 0.70 (Fig. 4.10b), HER
points in Fig. 4.10a are above the bisector line being, therefore, considered accurate.
On the other hand, for intervals of p > 0.70, HER and IK are considered more precise
than OK (Fig. 4.10b), but at the cost of increasing their inaccuracy (Fig. 4.10a), i.e.,
their narrowness in the predicted distributions may cause the proportion of true
values falling into these intervals to be smaller than for the OK model.

The accuracy and PI-width plots of the coarse model IK10 with linear interpolation
of cutoffs are available in Appendix C.2 (Fig. C.7). Even though IK and IK10 present
similar EMA, ENS, and DKL (Appendix C.2, Table C.2), IK10 linear extrapolation of the
distribution tails contributes to its increase in uncertainty (PI-widths as large as OK
for large intervals, Fig. C.7b), therefore increasing accuracy (G = 0.960, Fig. C.7a).
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Figure 4.11: Ergodic fluctuations of 100 realizations generated with HERs. (a) Infogram and
(b) scatterplot of the mean and entropy values.

4.3.5 Results from spatial simulation with HERs

Smooth interpolated maps, such as the ones produced by IK and HER, although
locally accurate on average and appropriate for visualizing trends (Rossi and Deutsch,
2014, p. 167), fail to reproduce clusters of large concentrations, and consequently,
should not be used for applications sensitive to the presence of extreme values and
their patterns of continuity (Goovaerts, 1997, p. 370). Therefore, in this section, we
show the results from applying HER in combination with sequential simulation (HERs,
detailed in Sect. 4.2.3) for generating multiple realizations of the Pb concentration
that match the calibration statistics and conditioning data. By construction, all these
realizations honor the calibration values at their locations and should reflect the
statistics deemed consequential for the problem at hand (Goovaerts, 1997, p. 370).

HERs was calibrated such that the statistical fluctuations of the realizations were
reasonable and unbiased (Leuangthong et al., 2005). The statistical fluctuations due
to a finite domain size are referred to as ergodic fluctuations, which mainly happen
due to the size of the domain relative to the correlation length. We can expect these
statistical fluctuations for anything less than an infinite domain (Leuangthong et
al., 2005). In HER and HERs case, the correlation length reaches 1.4 km, i.e., circa
one third of the x-domain length. Additionally, Rossi and Deutsch (2014, p. 168)
argue that between 20 and 50 simulations are generally sufficient to characterize
the range of possible values for the simulated values. We used 100 realizations to
match the number of simulations done by Goovaerts (1997) for the Jura dataset.
The fluctuation analysis of one hundred realizations is presented in Fig. 4.11, where
we show their discrepancies in relation to the calibration infogram and marginal
distribution. The challenges faced during the model calibration and details about the
entropy calculation due to finite sample can be found in Appendix C.1.

As desired, the fluctuations of the infogram of the 100 realizations (gray curves in
Fig. 4.11a) are unbiased in relation to the calibration infogram (red curve), spreading
above and below it. This means that the spatial variability of the calibration set is
reproduced by the realizations (although with some fluctuation). Departures between



98 uncertainty analysis with her

the calibration statistics and realizations are expected, due to the finite domain and
density of conditioning data (Goovaerts, 1997, p. 372), and important, since they allow
one to indirectly account for the uncertainty of the sample statistics (Goovaerts, 1997,
p. 427). Furthermore, artificially eliminating it by removing realizations with fluctua-
tions in relation to calibration set is assuming some certainty. Just for illustration, by
calculating the E-type at each location over all 100 realizations, we could also assess its
smoothing effect (blue curve). As expected (Goovaerts, 1997, p. 372), the HERs E-type
infogram (blue curve) depicts much smaller uncertainty in relation to the calibration
infogram (red curve), which reflects the underestimation of the short-range variability
of Pb values. It presents also similar shape and magnitude in relation to the infogram
of HER E-type (not shown).

Fig. 4.11b depicts that the entropy of the realizations (gray dots) is above and
below the entropy of the calibration set (red dot), and that the mean entropy of the
realizations (5.335 bits, represented by the gray dashed line) is close to the entropy
of the calibration (red dot, 5.348 bits), indicating a reasonable reproduction of the
uncertainty in the observed data. On the other hand, the mean of the realizations
(1.704) is approximately 1% higher than the mean of the calibration set (1.687) and
less than 0.25% higher than the mean of the E-type of IK (1.704) and HER (1.700).
In this sense, the difference between the mean values of the simulation and the
calibration dataset could reflect a bias due to spatial clustering of the observations,
instead of a bias in the realizations with respect to the true mean of the population
(Goovaerts, 1997, p. 370). Although it was not done here, when the simulated PMF is
deemed too different from the target PMF an adjustment of the simulated PMFs is
possible (Goovaerts, 1997, p. 427). According to Deutsch and Journel (1998, p. 134),
any realization can be postprocessed to reproduce the sample histogram; hence the
sample mean and variance. To do so, Journel and Xu (1994) proposed a posterior
identification of the histogram, which allows improving reproduction of the target
PMF while still honoring the conditioning data and without significant modification
of the spatial correlation patterns in the original realization. For the sake of brevity,
the improved reproduction of PMFs is beyond the scope of this paper. We should bear
in mind that verifying the quality of the reproduction does not provide an indication
on the goodness of the set of realizations as a whole, because unlike models of local
uncertainty (that have true observations to be compared), there is no reference spatial
distribution of values to be used in models of spatial uncertainty (Goovaerts, 2001).

For illustration, two arbitrary stochastic images constructed with HERs and the
calibration dataset are pictured in Fig. 4.12.

One can notice that the generated stochastic images (Fig. 4.12) do not smooth out
details of the spatial variation of the Pb concentration as in estimation maps (Fig. 4.4).
And compared to interpolation techniques like OK, IK, and HER, the variability
of the simulated maps is higher due to the incorporation of variability between
unsampled points. A comparison between the E-type and simulation variability in
space is available in Fig. 4.11a.

In general, both images present low concentration zones (blue) to the North and
Southeast of the study area, which are derived from the low uncertainty and the
tendency of low concentration previously verified in the regions (Fig. 4.5a and Fig. 4.4a,
respectively). Similarly, the zone with high concentration and low uncertainty (around
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Figure 4.12: Realizations generated with HERs. (a) Realization #42 and (b) realization #94.
Simulation grid size of 0.05 km x 0.05 km.

x=2.5 and y=2.5, Fig. 4.4a and Fig. 4.5a) presents, in both realizations, high Pb
concentrations. On the other hand, regions with higher uncertainty (due to the
heterogeneity of the sample data or because they are far away from sample data)
present a more variable concentration when comparing both images.

4.4 discussion

In general, IK and HER are conceptually different in their modeling. HER relies on
empirical probability distributions to describe the spatial dependence of the study
area and uses aggregation methods to combine distributions. IK estimates a number
of probabilities for a series of cutoffs, for each of which an indicator variogram
is modeled to describe the spatial continuity of the study area, and the estimated
probabilities are then interpolated to obtain the full distribution. Furthermore, a
global set of weights for the classes is obtained with HER, while IK performs multiple
local optimizations, one for each target and cutoff. Both methods share similarities:
they are nonparametric in the sense that no prior assumption about the shape of the
distribution being estimated is made, their results are data dependent, and they can be
applied to continuous or categorical variables. Such characteristics do not apply to OK,
therefore, we focused our analysis on IK and HER. A detailed conceptual discussion
comparing OK and HER is available in Thiesen et al. (2020b). Although HER is
considered nonparametric, two assumptions are implicit in defining the weights used
for the PMF aggregation: one in linearly interpolating the optimum weights obtained
for each class, and the other in defining the optimization problem (both topics are
discussed in Sect. 4.2.2.3). An analogous interpretation of these assumptions can be
applied to IK, where the weights are obtained by minimizing the variance and applied
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to the linear combination of the observations. The latter step is comparable to the
choice of the aggregation method in HER.

IK and HER are distance models between any two pair of points, with different
forms of inference. While in IK the spatial variability of the attribute values can
be fully characterized by a single covariance function, which differs for each cutoff
(Goovaerts, 1997, p. 33), HER relies directly on the dataset to extract one distribution
for each distance class (as seen in Fig. C.1). The stationarity assumption behind the
inference is a model decision (and not a characteristic of the physical phenomenon)
and can be deemed inappropriate if its consequences do not allow one to reach the
goal of the study (Goovaerts, 1997, p. 438). The inference of the spatial characterization
together with the aggregation procedure allows the spread of the local distributions
in HER as well as the simulated values of HERs to naturally reach values beyond the
calibration set (both above the maximum and below the minimum). For IK, this is
only possible if the user imposes extremes beyond the calibration set. Likewise, the
extremes of HER distributions can be restricted by the user according to their interest.

Interestingly, despite their conceptual differences, in this study HER and IK show
comparable performance in both deterministic and probabilistic terms (Table 4.3 and
Fig. 4.10). One exception is the Kullback-Leibler divergence (DKL), for which HER was
able to classify “contaminated” and “safe” areas with higher precision and accuracy.
Such accomplishment may be explained by the fact that the HER optimization problem
was built around this metric (Sect 4.2.2.3), although this does not guarantee the
best performance in the validation set. Regardless of the performance comparison
presented, we should be mindful that there is no unique, best, or true model for
modeling uncertainty (Journel, 2003). Consequently, there can be several alternatives
that depend on the user decision to model the uncertainty which can be more suitable
to the problem at hand.

When applying IK, two major issues arise, namely, inconsistent (negative) proba-
bilities when estimating distributions and the choice of interpolation/extrapolation
models to increase the resolution of the estimated distribution (Goovaerts, 1997,
p. 441, 319, 326; Goovaerts, 2009). The first is known as order relation deviations and
is typically treated by a posteriori correction of the estimated probabilities, which
imposes nonnegative slopes to the cumulative distribution (Goovaerts, 2009). For
the latter, there are different ways of achieving a finer resolution of the distribution.
Increasing the number of cutoffs leads to cumbersome inference and modeling of
multiple indicator variograms (one for each cutoff), which consequently increases the
likelihood of order relation deviations due to the empty cutoff classes (Goovaerts,
1997, p. 326; Rossi and Deutsch, 2014, p. 160). As an alternative to that, multiple
interpolation and extrapolation models are available in the literature. In such cases,
where interpolation/extrapolation models are used, besides the arbitrariness of the
model selection (Goovaerts, 2009), distribution statistics such as the mean or variance
may overly depend on the modeling of the upper and lower tails of the distribu-
tion (Goovaerts, 1997, p. 337). Therefore, due to the trade-off between increasing
the number of thresholds and using models to derive continuous distributions, both
alternatives were discussed in this paper (IK and IK10). Regardless of the chosen
approach, the risk of suboptimal choices by the user remains. Conversely, HER avoids
imposing these corrections to the distributions and multiple variogram fitting, but its
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parameter choices (such as distance class size, bin width, number of neighbors, and
aggregation type) are also subjective. Yet, for both methods HER and IK, parameter
decisions can be based on performance metrics via leave-one-out cross-validation, for
example.

Both IK and HER estimated remarkably similar values of Pb concentration (E-type
map, Fig. 4.4). On the other side, the maps associated with the probabilistic results
(entropy map in Fig. 4.5, probability of exceeding the critical threshold in Fig. 4.6,
and classification map in Fig. 4.7) are distinct, with increasing uncertainty of HER
in data sparse regions. We noticed that when dealing with sparse data, there is not
enough data to fill each cutoff in IK, which, due to the resulting empty bins, decreases
the uncertainty (entropy). The opposite happens in denser regions, where more data
is available and the chances of more bins being filled is higher, increasing therefore
the entropy for heterogeneous regions. As discussed in Sect. 4.3.4.1 (Fig. 4.8), both
methods reflected the expected behavior of larger errors in locations surrounded by
data that are very different in value (as expected and argued by Goovaerts, 1997,
p. 180). However, in terms of PMF resolution, the greater computational and inference
cost of HER in comparison to IK is balanced by a finer resolution of the distributions,
which could be neither achieved by the IK nor the IK10 model. The lack of resolution
in IK is particularly severe when using indicator-related algorithms with only a few
cutoff values such as the nine deciles of the sample (Deutsch and Journel, 1998, p. 134).
In this case, the loss of information available in continuous data is more accentuated
in IK than in HER, due to the indicator transform of the data (Fernández-Casal et al.,
2018) and few cutoffs. In contrast, the resolution of HER distributions is given by the
selected bin width and, consequently, an indicator transform would only be needed
as a post-processing step (such as for a probability analysis of exceeding a critical
threshold or a classification map).

In terms of simulation, HERs has proven to be difficult to calibrate. Many parameters
were tested until the entropy (variability) of the realizations converged to the entropy
of the calibration dataset. In the sensitivity analysis performed (not shown), the
authors verified a strong impact of the number of aggregated distributions (thus,
number of neighbors) when intersecting distributions. The stronger the contribution
of the AND combination (which is the case here), and the higher the homogeneity
of the data, the more sensitive the spatial variability of HERs is to the number
of neighbors. Therefore, in general, too many equal (homogeneous) PMFs would
result in a very narrow output (deflation of the spatial variability), whereas too few
could inflate it. Although a first analysis of the simulation procedure and results of
HERs was introduced in this paper with promising results, further investigations
considering the influence of different data properties, implementation of strategies
(such as search neighborhood and multiple-grid simulation available in Goovaerts
(1997, p. 378 p. 379), and the addition of transfer functions are needed.

Finally, we should bear in mind that uncertainty arises from our lack of knowledge
about the phenomenon under study and, therefore, it is not an intrinsic property of
the phenomenon (Goovaerts, 1997, p. 441). Uncertainty is data-dependent and, most
importantly, model-dependent, and, consequently, can be controlled by the expert
according to their wishes (Journel, 2003). No model, hence, no uncertainty measure,
can ever be objective: the point is to accept this limitation and to document clearly
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all its aspects (Goovaerts, 1997, p. 441; Journel, 2003). Thus, despite the uncertainty
differences between IK and HER and our attempt to quantify their performances, IK
and HER presented legitimate results, which exhibited similar accuracy and precision
performances.

4.5 summary and conclusion

Maps derived from local uncertainty estimates can be used for various decision-
making processes, including the assessment for additional data (Journel, 1989, p. 30).
Particularly for concentrations of toxic or nutrient elements, which are rarely known
with certainty, decisions are most often made in the face of uncertainty (Goovaerts,
1997, p. 347). There are various ways to assess uncertainty, such as mapping the
probability of exceeding a critical threshold or generating sets of realizations of the
spatial distribution of the phenomenon under study. In this paper, we addressed
the issue of uncertainty assessment of the continuous attribute of lead concentration
in soil by adapting the HER method (histogram via entropy reduction; Thiesen et
al., 2020b) to deliver local and spatial uncertainty. HER results were compared to
two different benchmarking models, namely ordinary kriging (OK) and indicator
kriging (IK), with a focus on the latter due to its similarity to HER in terms of being
nonparametric and predicting conditional distributions. In general, OK presented
the worst performance. IK and HER presented legitimate results, which exhibited
comparable accuracy (similarity to the true value) and precision (narrowness of the
distribution). One exception was the performance of HER when dealing with the
probability of exceeding a critical threshold (zc), which presented a higher accuracy
and precision when binarizing the distributions according to zc and considering the
local probability of each point being above or below this threshold. This may be
explained by the way that the optimization problem was tailored.

Visually contrasting IK and HER, they presented quite similar maps of expected
values (E-type map) while their local uncertainty (entropy map) presented different
shapes, and different magnitudes (depending on how IK was modeled, with more or
fewer cutoffs). An interesting aspect verified in the visual comparison was the lack of
resolution of the predicted distributions of IK in relation to HER, since no interpola-
tion/extrapolation assumption was done for predicting continuous distributions in IK
in the presence of sparse data and it is limited to the sample dataset values (Goovaerts,
2009). For predicting continuous distributions, such interpolation/extrapolation as-
sumptions introduce the risk of suboptimal user choices and of adding information
not available in the data (IK case), while its lack turns the model computationally
demanding and changes the form of inference (HER case).

HER-based sequential simulation (called HERs) allowed generating realizations
that reproduced the spatial variability of the sample set. The quality of the realizations
was verified in terms of their statistical fluctuation in relation to the sample set.
However, no further analyses of the results (such as benchmarking comparison or
adding transfer functions) were carried out, due to the typical absence of a spatial
distribution of values to be used as a reference (Goovaerts, 2001).
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HER and its adaptation HERs allow nonparametric estimation and stochastic
predictions, avoiding the shortcomings of fitting any kind of deterministic curves and,
therefore, the risk of adding information that is not contained in the data (or losing
available information), but still relying on two-point geostatistical concepts. In relation
to IK, HER has shown to be a unique tool for estimating nonparametric conditional
distributions with the advantage of (i) not presenting problems of order-relation
deviations, (ii) being free of function assumptions for interpolating probabilities or
extrapolating tails of distributions, (iii) not requiring the definition of various cutoffs
and, consequently, their respective indicator variogram modeling, (iv) displaying a
finer resolution of the predicted distribution, (v) avoiding strong loss of information
due to data binarization, and (vi) bringing more flexibility to uncertainty prediction
through the different aggregation methods and optimization strategies. Finally, due
to the growing use of stochastic simulation algorithms for uncertainty assessment in
soil science and the potential improvement of results given the consideration of soft
variables (secondary data), the authors believe that additional investigations of HERs
and model adaptations of HER are topics worth of further research.





Part V

C O N C L U S I O N

This closing chapter compiles the key findings and
results of this thesis, and discusses their general rel-
evance for Earth system modeling and geostatistics.
In addition, supported by the limitations faced in the
study, I raise opportunities for future research.





5
C O N C L U S I O N

5.1 summary and contributions

Motivated by the challenges of complexity and underdeterminism
of Earth system science problems, this thesis develops and tests
a nonparametric, probabilistic framework to express and apply
geoscientific knowledge. In particular, it focuses on uncertainty
analysis using information theory (IT) in spatial and temporal Probability and

information theory
are applied to
nonparametric
learning and to
address uncertainty.

contexts. The key challenges for building such a modeling frame-
work are to find efficient ways to work with large datasets, to
consider the effects of learning from limited data, to find general-
ized ways to combine various sources of information, and to deal
with uncertainty. The results indicate that IT is a proper choice
for uncertainty and information quantification, which, together
with probabilistic modeling directly derived from data, adds
generality to the modeling process and helps to learn relations The three testbed

applications explore
learning and
prediction from
temporal and spatial
data in terms of
information.

between data unconstrained by functional or strong parametric
assumptions. All three applications proposed here explore a new
framework firmly rooted in probability and information theory,
which together allow nonparametric learning and prediction in
temporal and spatial domains. I start with the analysis of time se-
ries in the context of rainfall-runoff events in chapter 2, followed
by spatial interpolation (chapters 3 and 4), and simulation for
soil contamination analysis (chapter 4). The main contributions Properties of the

framework proposed
in this thesis:

of the work are both theoretical and application-oriented, which
drives the research to the following key conclusions:

• Usually, raw data carry some uncertainty caused by equip-
ment errors, calibration, or different kinds of methodolog-
ical assumptions and expert’s judgment (Savelyeva et al.,
2010). In the proposed framework, predictive relationships
are directly derived from data and expressed as discrete - avoids the

introduction of
undesirable side
information or
erasing existing
information by using
discrete probability
distributions;

probability distributions. The advantage of this is that it
helps us to make good use of the available data since,
as much as possible, it avoids the introduction of unde-
sirable side information or erasing existing information
coming, e.g., from suboptimal expert’s parametric choices,
data transformation, or lossy compressions (Neuper and
Ehret, 2019). Furthermore, applying a probabilistic rela-
tion in the way it is proposed has the benefit of providing
joint statements about the target and the related estimation
uncertainty unconstrained by functional assumptions.

107
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• The guiding theme of this work is the application of IT to
Earth science problems. IT allows to extract information
about the patterns and relations from data or to compress
data while preserving the information they contain. Particu-
larly in this thesis, IT allows to directly quantify uncertainty- enables to directly

quantify uncertainty
and information

content of datasets,
and to analyze

patterns and
data-relations in a

single unit, bit;

and information content of datasets, measure data-relations
and uncertainty reduction of models, investigate the repre-
sentativeness and predictive power of variables and models,
compute minimal data requirements to avoid overfitting,
characterize the spatial dependence fingerprint of a variable
in a field, calculate model performance, and optimize model
structures – all of this using the same universal currency
of bit. The use of a single unit is beneficial, as it allows
explicitly comparing and joint treatment of many different
sources of information in a single framework.

• Specifically in chapter 2, the proposed data-driven approach
based on IT is seen as a consolidation of descriptive and
experimental investigations since it allows one to describe- describes the

drivers of a system; the drivers of the model by quantifying the information con-
tribution of the predictors and to investigate the similarity
of the model hypothesis with respect to the ground truth.
Beyond being a way of understanding the drivers of the- allows the selection

of the most
informative model

according to the
dataset;

system (also useful for, e.g., feature selection in the machine
learning context), the framework enables to consider the
effects of time ordering, learning from limited data and
from models with increasing complexity and, consequently,
choosing the most suitable model for the available dataset.

• These primary findings pave the way for proposing an
information-theoretic framework for spatial interpolation
(chapter 3) called HER. Here, IT is anchored to principles
of geostatistics, allowing to characterize the spatial depen-
dence of a variable by quantifying the information content- relaxes assumptions

and minimizes
uncertainties;

of the data conditioned on the lag distance to extract its
correlation length and to minimize the disagreement be-
tween observed data and predictions. By the same token,
the probabilistic embedding (data-driven and nonparamet-
ric distributions) allows an honest accounting of the related
uncertainties, bypassing function fitting of the spatial depen-
dence structure and, therefore, avoiding the risk of adding- incorporates

different uncertainty
properties with

aggregation methods;

information not available in data. It also brings more flexi-
bility to the model since it is feasible to adjust the number
of lags to be optimized according to the amount of data
available. Additionally, the use of aggregation methods for
combining distributions (Allard et al., 2012) brings a new
facet to spatial interpolation, allowing one to incorporate
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different uncertainty properties according to the dataset
and expert interest.

• In the subsequent chapter 4, the spatial interpolation frame-
work of HER is further developed to assess local uncer- - allows simulating

data properties and
fluctuations;

tainty when dealing with categorical data and threshold-
exceeding probabilities, and to reproduce the spatial fluctu-
ation of the dataset reality with sequential simulation and,
thus, assessing spatial uncertainty with HERs. Here, it is - permits to deal with

categorical or
continuous data
without issues
presented in
traditional
approaches;

verified that, different from traditional approaches, HER
does not present problems of order-relation deviations, is
free of function assumptions for interpolating probabilities
or extrapolations tails of distributions, allows a fine reso-
lution of the predicted distribution, avoids a strong loss of
information caused by data binarization, does not require
the definition of various cutoffs and, consequently, their
respective indicator variogram modeling.

Altogether, the three applications have proven to be successful
across a range of applications: from event detection (chapter 2) - addresses any kind

of data-relations; andto spatial interpolation and simulation of toxic elements in soil
(chapters 3 and 4). They explore data-based modeling firmly
rooted in probability and information theory. This integration, - is flexible to be

adapted to different
problems at hand.

on the one hand, entails the generality and flexibility needed to
handle any kind of data-relations and limitations in data volume
while, on the other hand, provides a tool for interpretation in
terms of information content or its counterpart of uncertainty.

5.2 outlook and recommendations

The benefits of working data-driven and being unconstrained by
strong assumptions however come at a price. Although mitigated The work limitations

of this thesis
encompass:

by the increasing availability of data volume and computer power
(Bell et al., 2009), learning robust data-based relations requires a
considerable amount of data, and applying them for predictions
is computationally more expensive than using deterministic func-
tions (Neuper and Ehret, 2019). To enhance the computational
effort, with further developments, it might be advantageous to
work with kernels (or fitting probability density functions, pdf) to
replace empirical distributions with mathematical functions. Es-
pecially for the HER interpolation method, kernels and pdfs have - the issue of

computational
performance and
dataset size;

the potential benefit of providing a transition in the spatial char-
acterization model, which is currently defined for each distance
lag individually. Although this has the potential of improving
the calculations and model results, the choice of kernel brings
the risk of adding side information and new assumptions to the
framework, which is the reason why nonparametric distributions
are used so far. Other possibilities would be to reduce redun-



110 conclusion

dant computations by dividing the study domain in subdomains
according to their similarity (as in Ehret et al., 2020).

Eventually, the use of mathematical functions might also help
to deal with the caveats in defining the discretization of the data
in bins to build distributions. The perils related to the bin width
selection are challenging and directly influence the entropy quan-
tification (Gong et al., 2014; Pechlivanidis et al., 2016). Choosing
a too fine discretization (too many bins) increases the risk of over-
fitting and, therefore, higher uncertainty, while too few bins can
lead to oversmoothing distributions (Larson, 2010) and, hence,
lower uncertainty. In this thesis, the effect of bin resolution is ad-
dressed when calculating the amount of data needed to obtain a- the issue of binning

transformations of
data;

robust learning curve in order to avoid the problem of overfitting.
Additionally, the binning scheme is kept constant throughout
each analysis, so that the uncertainty increase (or decrease) is
always relative to a fixed model. Although challenging, the bin-
ning transformations of data brings an intuitive interpretation
of uncertainty, data resolution, and information content of the
related distribution, allowing, for example, associating the bins to
physical or uncertainty knowledge of the variable under study. It
further facilitates the adaptation of frameworks built to deal with
continuous data to also handle categorical data while maintaining
the underlying logic of the framework.

Specifically related to the spatial interpolator, it is not pos-
sible to mathematically compare the proposed HER to kriging
equations to argue that kriging results are a particular case of
many possibilities of HER. This happens because both methods,
although based on fundamentals of geostatistics, are fundamen-
tally different in their implementation. While in HER a global set
of weights are kept fixed for the lags, kriging performs multiple
local optimizations (one per target), and, therefore, the weight of- the issue of

complexity; the observations varies according to each target. Additionally, the
inclusion of aggregation methods has a two-fold impact. On the
one hand, it adds complexity to the framework, raising questions
on how to select the aggregation method to be used, how to
define and solve the optimization problem, or how to interpret
the different possibilities of aggregation. On the other hand, it
brings flexibility to adapt the method according to the type of
available data and to work with different uncertainty properties.

The modeling approach presented in this thesis is limited to
dealing with problems that assume stationarity in space or time.
In this fashion, they will fail if addressed to questions of change,
i.e., if the past from which we have learned does not represent
the future we want to predict or if the spatial dependence is not
the same along the field. The stationarity assumption behind
the inference is a model decision (and not a characteristic of the
physical phenomenon) and can be deemed inappropriate if its
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consequences do not allow one to reach the goal of the study
(Goovaerts, 1997, p. 438). In this sense, further research is required
to tackle nonstationarity questions. Similarly to Ehret et al. (2020),
who proposed an adaptive clustering to address space-time data
by grouping the model domain into similar subdomains, an - the issue of

stationarity; andadaptive model (of spatial, temporal, or spatio-temporal data)
could be applied according to the similarity of subdomains. In
this case, information-theoretical concepts could be properly used
to measure similarity and grouping the subdomains. In turn, the
multiple subdomains, each one with its own model, comes at the
price of rapidly increasing data demand with system size and
number of subdomains, demands that consequently amplify the
computational effort.

Along with the increasing interest in data-driven methods, an
interesting avenue of research is to incorporate aspects of physical
theory into data-driven models. This desire for coupling physics-
based and data-driven approaches is engaging for a number
of reasons. While data-driven methods and statistical learning
contribute to both accounting and extracting patterns from data,
the use of models which are based in, or constrained by, physical
properties allows us to both learn about the underlying processes - the issue of

physics-based and
data-driven models.

of the systems we are modeling and to extrapolate the modeling
to situations that have never been seen before. As a step in
this direction, in chapters 2 the physically-based approach of
CPM (characteristic point method; Mei and Anagnostou, 2015)
is improved using data to calibrate the CPM model. In a more
subtle manner, the proposed frameworks already incorporate
some physical knowledge implicitly by the choice of predictors
in chapter 2 and by the assumption that near things are more
related than distant things (a condition known as the first law of
geography; Tobler, 1970) in chapters 3 and 4.

The studies presented here are limited to dealing with time
series and spatial interpolation separately and focus on a partic-
ular problem. Therefore, additional investigations are required
to analyze the method in the face of spatio-temporal domains Topics worth of

further research:
- spatio-temporal
problems;
- regionalization; and
- improving
predictions with
covariables.

and to quantify the degree of consistency (similarity) between
data of two systems in order to transfer relations learned from a
particular system to another (a process referred to as regionaliza-
tion). Most especially in the spatial context, improvements in the
theoretical and modeling areas are important to further address
the use of information of additional variables (also known as
covariables), handling redundant data, integrating continuous
and categorical data in the same framework, analyzing the contri-
butions of the searching neighborhoods, and the influence of the
aggregation method in the inflation/deflation of the variability
of simulated locations.
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5.3 concluding remarks

As argued by Singh (2018), due to the computing prowess and
sophisticated instrumentation available these days, integration
of hydrology, and therefore, Earth science, with allied areas is
rapidly increasing and will so continue. Here, at the same timeThis thesis looks

afresh at typical
Earth science

problems through the
lens of information

theory.

that this work proposes an interdisciplinary approach to analyze
different Earth science problems, this can be contrasted to the fact
that the model construction and evaluation are firmly rooted in
a single property – information. Notwithstanding the discussed
caveats and limitations, several important findings emerge from
the three studies displayed in this thesis. In general, the knowl-
edge about relations between data is represented by discrete,
multivariate, probability distributions derived directly from ob-
served data. The common goal of the proposed applications is
to avoid conceptualization and compression of data-relations by
nonparameterization of distributions, helping to preserve the
information content of the data and, at the same time, allow-The proposed

framework entails
the generality needed

for modeling in
terms of purpose,

degrees of freedom,
and data availability.

ing an honest account of the related uncertainties. Overall, the
developed framework shows that the integration of probability
and information theory allows a generalized way to build so-
lutions tailored to the problem at hand. Altogether, the three
applications have proven to be successful across a wide range of
domains, showing great modeling flexibility in terms of purpose,
degrees of freedom, and data availability. All things considered, it
is my expectation that the research work presented in this thesis
has contributed to look afresh at typical geoscientific problems
through the lens of information theory.
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a.1 resampling strategy and number of repetitions

In the study, samples of size N from the dataset were obtained through bootstrapping,
i.e., they were taken randomly but continuously in time, with replacement among the
W repetitions. For each sample size, we repeated draws W times and took the average
cross entropy and DKL to eliminate effects of chance (see repetition statements N and
W in Fig. 2.1). Thus, in order to find the value of W which balances statistical accuracy
and computational efforts, we did a dispersion analysis through calculating the
Shannon entropy (as a measure of dispersion) of the cross entropy distribution of the
(unconditional) target model (model no. 0 in Table 2.7). Sixty one bins ranging from 0

to 6 in steps of 0.1 bits were used; this contemplates the range of all possible cross
entropy values among the tested pairs of N and W. Fig. A.1 presents the Shannon
entropy applied as a dispersion parameter to analyze the effect of the number of
repetitions W for different sample sizes N.

Considering the graph in Fig. A.1, in general, the behavior of the Shannon entropy
among the repetitions is similar for each sample size analyzed, indicating that the
dispersion of the results according to the number of repetitions does not vary too
much, i.e., the bins are similarly filled. However, it is possible to see that, as the sample
size increases, the Shannon entropy for the different number of repetitions approaches
that for the 50 000 repetitions. For sample sizes up to 7500, the bars from 50, 100 and
300 repetitions present some peaks and troughs, indicating some dispersion in filling
the bins. Thus, in this case study, the minimum of 500 repetitions was assumed as a
reasonable number of repetitions for computing the mean of the cross entropy in the
sample size investigation. This number of repetitions was also validated considering
the smoothness and logical behavior of the curves obtained during the data size
validation and curse of dimensionality analyses (Fig. 2.5 in Sect. 2.4.1.2).

Figure A.1: Dispersion analysis of the cross entropy. The effect of the number of repetitions in
the target model (no. 0 in Table 2.7).
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b.1 summary statistics of the resampled datasets

Table B.1: Summary statistics of the resampled datasets – Short-range (SR0 and SR1).
Sample
size

200 400 600 800 1000 1500 2000
2000
(val. set)

2000
(test set)

10 000
(full set)

SR0

mean -0.57 -0.59 -0.58 -0.59 -0.59 -0.58 -0.57 -0.53 -0.56 -0.55

sd. 1.05 1.06 1.02 1.01 0.99 0.99 0.99 0.99 1.00 0.99

H 4.27 4.38 4.34 4.33 4.31 4.32 4.32 4.31 4.34 4.34

max. 1.76 1.92 1.92 1.92 1.92 1.92 2.05 2.08 2.02 2.08

median -0.42 -0.50 -0.51 -0.56 -0.54 -0.52 -0.52 -0.46 -0.50 -0.49

min. -3.68 -3.68 -3.68 -3.68 -3.68 -3.68 -3.68 -3.67 -3.71 -3.71

kur. 3.21 3.04 3.12 3.15 3.17 3.14 3.12 3.18 3.07 3.09

sk. -0.62 -0.43 -0.41 -0.35 -0.35 -0.32 -0.30 -0.36 -0.33 -0.34

SR1

mean -0.52 -0.54 -0.55 -0.57 -0.57 -0.57 -0.56 -0.54 -0.54 -0.55

sd. 1.17 1.17 1.14 1.12 1.11 1.10 1.10 1.11 1.12 1.11

H 4.46 4.54 4.51 4.50 4.49 4.49 4.49 4.49 4.52 4.50

max. 2.50 2.70 2.70 2.70 2.70 2.70 2.99 2.96 2.86 2.99

median -0.36 -0.51 -0.51 -0.55 -0.56 -0.54 -0.53 -0.51 -0.48 -0.51

min. -3.66 -3.66 -3.66 -3.84 -3.84 -4.01 -4.01 -4.63 -4.25 -4.63

kur. 2.82 2.83 2.93 2.94 2.99 3.03 3.04 3.24 3.09 3.11

sk. -0.40 -0.15 -0.19 -0.19 -0.18 -0.20 -0.20 -0.28 -0.26 -0.25

sd.: standard deviation; H: entropy; max.: maximum; min.: minimum; kur.: kurtosis; sk.: skewness.
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Table B.2: Summary statistics of the resampled datasets – Long-range dataset (LR0 and LR1).

Sample
size

200 400 600 800 1000 1500 2000
2000
(val. set)

2000
(test set)

10 000
(full set)

LR0

mean -0.98 -0.96 -1.03 -1.01 -1.01 -1.01 -1.02 -1.00 -1.02 -1.01

sd. 0.90 0.88 0.89 0.89 0.90 0.91 0.91 0.90 0.91 0.90

H 3.99 4.02 4.07 4.09 4.09 4.11 4.11 4.11 4.12 4.12

max. 1.04 1.15 1.23 1.23 1.23 1.23 1.23 1.28 1.27 1.28

median -0.77 -0.81 -0.92 -0.92 -0.91 -0.91 -0.92 -0.88 -0.89 -0.89

min. -2.78 -2.78 -3.07 -3.07 -3.07 -3.08 -3.08 -3.00 -3.07 -3.08

kur. 2.11 2.18 2.26 2.24 2.21 2.16 2.20 2.22 2.16 2.20

sk. -0.09 -0.07 0.02 0.02 0.03 0.03 0.03 -0.03 0.00 -0.01

LR1

mean -0.92 -0.91 -0.99 -1.00 -1.00 -1.01 -1.01 -1.01 -1.00 -1.00

sd. 0.98 1.00 1.01 1.02 1.03 1.04 1.03 1.05 1.03 1.03

H 4.21 4.31 4.34 4.37 4.38 4.40 4.39 4.41 4.39 4.40

max. 1.40 1.87 1.87 1.87 1.96 1.96 2.00 2.29 2.14 2.29

median -0.88 -0.91 -0.97 -0.98 -0.99 -0.99 -0.98 -0.98 -0.96 -0.96

min. -3.19 -3.65 -3.65 -3.74 -3.74 -3.74 -3.95 -4.02 -3.75 -4.02

kur. 2.51 2.67 2.56 2.56 2.59 2.50 2.53 2.59 2.44 2.53

sk. -0.09 0.02 0.06 0.04 0.06 0.05 0.04 -0.02 0.02 0.00

sd.: standard deviation; H: entropy; max.: maximum; min.: minimum; kur.: kurtosis; sk.: skewness.
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b.2 parameter tuning

This appendix consolidates the final parameters used in the models presented in
Sect. 3.4.2. Particularly for HER, Fig. B.1 presents the final weights optimized for
Eqs. 3.4 and 3.5. It was limited to 18 grid units (nine distance classes), due to the
small contribution of the faraway classes. Similarly, Fig. B.2 shows α and β weights of
Eq. 3.6. Finally, Table B.3 and Table B.4 summarize the calibrated parameters obtained
for each model (varying method, sample size and dataset type).

Figure B.1: HER optimized weights by distance class: (a,b) wOR, Eq. 3.4, and (c,d) wAND,
Eq. 3.5. SR datasets on the left panel and LR datasets on the right panel. Continuous
line refers to datasets without noise and dashed lines to datasets with noise.

Figure B.2: HER α and β weights by sample size, Eq. 3.6: (a) SR datasets on the left panel and
(b) LR datasets on the right panel. Continuous line refers to datasets without noise
and dashed lines to datasets with noise
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Table B.3: Method calibration by sample size – parameters of the models for the short-range
dataset (SR0 and SR1).

Sample size 200 400 600 800 1000 1500 2000

Method Parameter SR0

NN n.n. 1 1 1 1 1 1 1

IDS exp. 2 2 2 2 2 2 2

OK n.n. 12 12 12 12 12 12 12

lag width 2 2 2 2 2 2 2

variogram Spherical Spherical Spherical Spherical Spherical Spherical Spherical

eff. range 35.99 35.43 33.63 33.50 33.13 33.21 33.65

nugget 0.00 0.00 0.00 0.00 0.00 0.00 0.00

sill 1.24 1.28 1.16 1.13 1.11 1.09 1.08

max. lag 60 60 60 60 60 60 60

n.n. [min.,max.] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20]

HER n.n. 12 12 12 12 12 12 12

class width 2 2 2 2 2 2 2

bin widths (z, ∆z) 0.2 0.2 0.2 0.2 0.2 0.2 0.2

model range 36.00 24.00 26.00 26.00 26.00 26.00 26.00

α 1.00 1.00 1.00 1.00 1.00 1.00 1.00

β 0.70 0.60 0.45 0.40 0.50 0.65 0.80

Method Parameter SR1

NN n.n. 1 1 1 1 1 1 1

IDS exp. 2 2 2 2 2 2 2

OK n.n. 12 12 12 12 12 12 12

lag width 2 2 2 2 2 2 2

variogram Spherical Spherical Spherical Spherical Spherical Spherical Spherical

eff. range 43.53 35.81 35.43 34.69 32.70 32.18 33.30

nugget 0.28 0.15 0.18 0.18 0.17 0.17 0.20

sill 1.29 1.39 1.25 1.22 1.19 1.16 1.12

max. lag 60 60 60 60 60 60 60

n.n. [min.,max.] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20]

HER n.n. 12 12 12 12 12 12 12

class width 2 2 2 2 2 2 2

bin widths (z, ∆z) 0.2 0.2 0.2 0.2 0.2 0.2 0.2

model range 38.00 26.00 26.00 26.00 26.00 26.00 26.00

α 1.00 1.00 1.00 1.00 1.00 1.00 1.00

β 0.70 0.55 0.60 0.55 0.55 0.70 0.80

n.n.: number of neighbors; exp.: exponent of the weighting function; eff. range: effective range;
max.: maximum; min.: minimum.
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Table B.4: Method calibration by sample size – parameters of the models for the long-range
dataset (LR0 and LR1).

Sample size 200 400 600 800 1000 1500 2000

Method Parameter LR0

NN n.n. 1 1 1 1 1 1 1

IDS exp. 2 2 2 2 2 2 2

OK n.n. 12 12 12 12 12 12 12

lag width 2 2 2 2 2 2 2

variogram Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian

eff. range 67.47 66.93 69.10 68.23 69.12 71.82 73.01

nugget 0.00 0.00 0.00 0.00 0.00 0.00 0.00

sill 1.06 0.99 1.03 1.03 1.05 1.10 1.10

max. lag 100 100 100 100 100 100 100

n.n. [min.,max.] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20]

HER n.n. 12 12 12 12 12 12 12

class width 2 2 2 2 2 2 2

bin widths (z, ∆z) 0.2 0.2 0.2 0.2 0.2 0.2 0.2

model range 46.00 48.00 48.00 46.00 46.00 48.00 48.00

α 1.00 1.00 1.00 1.00 1.00 1.00 1.00

β 0.70 0.20 0.25 0.40 0.55 0.55 0.55

Method Parameter LR1

NN n.n. 1 1 1 1 1 1 1

IDS exp. 2 2 2 2 2 2 2

OK n.n. 12 12 12 12 12 12 12

lag width 2 2 2 2 2 2 2

variogram Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian Gaussian

eff. range 81.79 76.14 71.43 69.02 74.43 78.75 78.05

nugget 0.29 0.31 0.29 0.28 0.30 0.29 0.29

sill 0.99 0.95 0.98 1.00 1.03 1.10 1.08

max. lag 100 100 100 100 100 100 100

n.n. [min.,max.] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20] [3,20]

HER n.n. 12 12 12 12 12 12 12

class width 2 2 2 2 2 2 2

bin widths (z, ∆z) 0.2 0.2 0.2 0.2 0.2 0.2 0.2

model range 48.00 46.00 44.00 44.00 44.00 46.00 46.00

α 1.00 1.00 1.00 1.00 1.00 1.00 1.00

β 0.70 0.65 0.95 0.75 0.90 0.95 1.00

n.n.: number of neighbors; exp.: exponent of the weighting function; eff. range: effective range;
max.: maximum; min.: minimum.
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b.3 summary statistics of the model predictions

This appendix summarizes the statistics of the deterministic predictions (mean of
z) for the test set by method and learning sets (from 200 to 2000 observations).
HER outcomes refer to the AND/OR aggregation. The four random fields types
are presented from Table B.5 to Table B.8. Finally, Fig. B.3 illustrates their residue
correlation (obtained by calculating the Pearson correlation coefficient between the
true values and the residue of the predictions).

Fig. B.3 illustrates the residue correlation of the models calculated using the test
set. The more negative the residue correlation, the greater the tendency of true z
values being overestimated in low-valued regions of the field and underestimated in
high-valued regions.

Figure B.3: Performance comparison of NN, IDS, OK and HER: (a) residue correlation for
SR datasets and (b) residue correlation for LR datasets. Continuous line refers to
datasets without noise and dashed lines to datasets with noise.
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Table B.5: Summary statistics of the prediction on test set by model – short-range dataset
without noise (SR0).

Method Statistics 200 400 600 800 1000 1500 2000

SR0

NN mean -0.54 -0.55 -0.56 -0.56 -0.56 -0.56 -0.56

sd. 1.01 1.03 1.01 1.00 1.00 1.01 1.00

H 4.17 4.33 4.31 4.31 4.31 4.34 4.33

max. 1.76 1.92 1.92 1.91 1.91 1.91 1.91

median -0.44 -0.47 -0.57 -0.57 -0.53 -0.53 -0.52

min. -3.68 -3.68 -3.68 -3.68 -3.68 -3.68 -3.68

kur. 3.37 3.13 3.06 3.04 3.07 3.08 3.08

sk. -0.56 -0.43 -0.36 -0.30 -0.32 -0.30 -0.32

IDS mean -0.54 -0.57 -0.58 -0.59 -0.57 -0.57 -0.57

sd. 0.79 0.88 0.89 0.90 0.91 0.93 0.94

H 3.96 4.13 4.16 4.19 4.21 4.24 4.26

max. 1.58 1.80 1.79 1.80 1.80 1.79 1.80

median -0.55 -0.53 -0.53 -0.56 -0.53 -0.54 -0.53

min. -3.49 -3.49 -3.51 -3.53 -3.54 -3.56 -3.58

kur. 3.56 3.28 3.27 3.17 3.15 3.13 3.10

sk. -0.44 -0.37 -0.37 -0.32 -0.32 -0.30 -0.30

OK mean -0.53 -0.56 -0.56 -0.57 -0.56 -0.56 -0.56

sd. 0.86 0.92 0.93 0.94 0.95 0.97 0.97

H 4.11 4.21 4.24 4.26 4.27 4.30 4.30

max. 1.63 1.86 1.90 1.90 1.90 1.90 1.90

median -0.47 -0.49 -0.49 -0.52 -0.51 -0.51 -0.51

min. -3.60 -3.56 -3.57 -3.63 -3.66 -3.67 -3.67

kur. 3.46 3.18 3.13 3.09 3.08 3.08 3.08

sk. -0.46 -0.41 -0.39 -0.34 -0.35 -0.32 -0.33

HER mean -0.54 -0.56 -0.58 -0.57 -0.57 -0.57 -0.57

sd. 0.87 0.95 0.92 0.96 0.94 0.98 0.98

H 4.08 4.23 4.21 4.26 4.24 4.31 4.31

max. 1.70 1.82 1.81 1.83 1.82 1.83 1.86

median -0.50 -0.51 -0.54 -0.57 -0.54 -0.53 -0.53

min. -3.55 -3.55 -3.57 -3.61 -3.58 -3.59 -3.61

kur. 3.54 3.18 3.22 3.10 3.13 3.10 3.07

sk. -0.54 -0.43 -0.37 -0.31 -0.32 -0.30 -0.31

sd.: standard deviation; H: entropy; max.: maximum; min.: minimum;
kur.: kurtosis; sk.: skewness.
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Table B.6: Summary statistics of the prediction on test set by model – short-range dataset with
noise (SR1).

Method Statistics 200 400 600 800 1000 1500 2000

SR1

NN mean -0.50 -0.52 -0.55 -0.55 -0.56 -0.55 -0.56

sd. 1.15 1.16 1.14 1.14 1.13 1.11 1.11

H 4.45 4.51 4.49 4.50 4.50 4.48 4.49

max. 2.50 2.70 2.70 2.70 2.70 2.70 2.99

median -0.43 -0.51 -0.53 -0.54 -0.54 -0.53 -0.54

min. -3.66 -3.66 -3.66 -3.84 -3.84 -3.84 -4.00

kur. 2.86 2.79 2.92 2.91 2.90 2.97 2.97

sk. -0.27 -0.05 -0.05 -0.09 -0.14 -0.13 -0.18

IDS mean -0.49 -0.53 -0.55 -0.58 -0.56 -0.56 -0.56

sd. 0.85 0.92 0.92 0.95 0.95 0.96 0.96

H 4.09 4.22 4.24 4.28 4.27 4.29 4.30

max. 2.19 2.37 2.34 2.28 2.27 2.19 2.07

median -0.47 -0.47 -0.50 -0.53 -0.51 -0.53 -0.52

min. -3.42 -3.30 -3.29 -3.50 -3.52 -3.59 -3.55

kur. 3.17 2.84 2.97 2.86 2.91 2.98 2.92

sk. -0.23 -0.13 -0.19 -0.21 -0.21 -0.22 -0.23

OK mean -0.49 -0.52 -0.54 -0.57 -0.55 -0.56 -0.56

sd. 0.79 0.90 0.91 0.93 0.93 0.94 0.94

H 3.99 4.20 4.21 4.24 4.25 4.25 4.25

max. 1.58 2.30 2.22 2.20 2.21 2.17 1.90

median -0.48 -0.46 -0.48 -0.51 -0.49 -0.49 -0.49

min. -3.17 -3.16 -3.19 -3.31 -3.44 -3.51 -3.45

kur. 3.22 2.82 2.84 2.76 2.85 2.94 2.89

sk. -0.22 -0.19 -0.24 -0.25 -0.26 -0.27 -0.26

HER mean -0.50 -0.53 -0.54 -0.57 -0.55 -0.56 -0.56

sd. 0.90 0.96 0.98 0.98 0.97 0.97 0.97

H 4.16 4.28 4.31 4.33 4.31 4.31 4.30

max. 2.24 2.31 2.35 2.28 2.28 2.26 2.00

median -0.47 -0.48 -0.50 -0.54 -0.51 -0.53 -0.52

min. -3.32 -3.32 -3.38 -3.46 -3.45 -3.55 -3.54

kur. 3.11 2.70 2.89 2.82 2.85 2.98 2.89

sk. -0.27 -0.13 -0.14 -0.16 -0.20 -0.19 -0.24

sd.: standard deviation; H: entropy; max.: maximum; min.: minimum;
kur.: kurtosis; sk.: skewness.
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Table B.7: Summary statistics of the prediction on test set by model – long-range dataset
without noise (LR0).

Method Statistics 200 400 600 800 1000 1500 2000

LR0

NN mean -1.03 -1.02 -1.01 -1.02 -1.02 -1.01 -1.02

sd. 0.91 0.91 0.91 0.91 0.91 0.91 0.91

H 3.98 4.06 4.10 4.11 4.11 4.12 4.11

max. 1.04 1.15 1.15 1.23 1.23 1.23 1.23

median -0.92 -0.91 -0.90 -0.90 -0.90 -0.90 -0.90

min. -2.78 -2.78 -3.07 -3.07 -3.07 -3.08 -3.08

kur. 2.10 2.13 2.20 2.18 2.20 2.15 2.16

sk. 0.00 0.02 0.03 0.02 0.03 0.01 0.00

IDS mean -1.04 -1.02 -1.02 -1.02 -1.02 -1.02 -1.02

sd. 0.85 0.87 0.88 0.89 0.89 0.90 0.90

H 3.91 3.98 4.05 4.07 4.07 4.08 4.09

max. 0.99 1.08 1.14 1.15 1.16 1.14 1.14

median -0.86 -0.88 -0.89 -0.88 -0.88 -0.88 -0.89

min. -2.72 -2.71 -3.01 -3.01 -3.01 -3.02 -3.02

kur. 1.95 2.01 2.11 2.12 2.12 2.11 2.13

sk. -0.12 -0.03 -0.03 -0.01 -0.01 -0.02 -0.01

OK mean -1.04 -1.02 -1.02 -1.02 -1.02 -1.02 -1.02

sd. 0.91 0.91 0.91 0.91 0.91 0.91 0.91

H 4.11 4.11 4.12 4.12 4.12 4.12 4.12

max. 1.34 1.28 1.24 1.28 1.27 1.27 1.27

median -0.93 -0.88 -0.89 -0.89 -0.89 -0.89 -0.89

min. -2.89 -2.97 -3.08 -3.08 -3.07 -3.07 -3.07

kur. 2.12 2.15 2.17 2.17 2.16 2.16 2.16

sk. 0.01 0.01 0.01 0.01 0.01 0.00 0.00

HER mean -1.04 -1.02 -1.02 -1.02 -1.02 -1.02 -1.02

sd. 0.88 0.88 0.89 0.90 0.90 0.90 0.91

H 3.98 4.03 4.07 4.09 4.09 4.09 4.09

max. 1.02 1.13 1.14 1.22 1.20 1.15 1.15

median -0.89 -0.90 -0.90 -0.90 -0.90 -0.90 -0.90

min. -2.77 -2.78 -3.06 -3.07 -3.07 -3.08 -3.07

kur. 2.02 2.09 2.17 2.16 2.16 2.13 2.14

sk. -0.05 0.00 0.00 0.00 0.01 -0.01 -0.01

sd.: standard deviation; H: entropy; max.: maximum; min.: minimum;
kur.: kurtosis; sk.: skewness.
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Table B.8: Summary statistics of the prediction on test set by model – long-range dataset with
noise (LR1).

Method Statistics 200 400 600 800 1000 1500 2000

LR1

NN mean -1.00 -0.99 -1.00 -1.01 -1.01 -1.00 -1.01

sd. 1.00 1.02 1.03 1.03 1.04 1.05 1.05

H 4.23 4.33 4.36 4.35 4.39 4.40 4.40

max. 1.40 1.87 1.87 1.87 1.87 1.87 1.87

median -0.90 -0.94 -0.97 -0.99 -0.99 -0.99 -0.98

min. -3.19 -3.65 -3.65 -3.65 -3.65 -3.65 -3.87

kur. 2.50 2.66 2.56 2.57 2.57 2.51 2.49

sk. -0.11 0.03 0.02 0.10 0.08 0.06 0.03

IDS mean -0.99 -0.98 -0.99 -1.01 -1.00 -1.01 -1.01

sd. 0.86 0.90 0.91 0.92 0.92 0.93 0.93

H 4.04 4.14 4.14 4.16 4.18 4.17 4.16

max. 1.21 1.76 1.48 1.45 1.61 1.54 1.43

median -0.79 -0.85 -0.85 -0.88 -0.90 -0.88 -0.90

min. -3.04 -3.12 -3.12 -3.12 -3.05 -3.15 -3.25

kur. 2.21 2.39 2.28 2.31 2.32 2.26 2.26

sk. -0.26 0.01 0.04 0.06 0.05 0.05 0.03

OK mean -0.98 -0.96 -0.98 -1.00 -1.00 -1.01 -1.01

sd. 0.79 0.83 0.85 0.86 0.87 0.88 0.89

H 3.89 4.01 4.00 4.02 4.02 4.04 4.05

max. 0.81 1.29 1.25 1.32 1.30 1.14 1.19

median -0.78 -0.81 -0.81 -0.84 -0.84 -0.86 -0.88

min. -2.85 -2.82 -2.74 -2.76 -2.69 -2.84 -2.92

kur. 2.28 2.38 2.17 2.18 2.18 2.13 2.13

sk. -0.40 -0.10 -0.04 -0.01 -0.01 -0.01 -0.01

HER mean -0.99 -0.97 -0.98 -1.01 -1.00 -1.01 -1.01

sd. 0.85 0.89 0.89 0.90 0.90 0.92 0.91

H 4.01 4.11 4.07 4.11 4.11 4.12 4.11

max. 1.20 1.64 1.32 1.33 1.36 1.30 1.30

median -0.80 -0.83 -0.83 -0.86 -0.89 -0.89 -0.89

min. -3.00 -2.98 -2.82 -2.90 -2.83 -2.98 -3.13

kur. 2.21 2.46 2.23 2.28 2.27 2.23 2.23

sk. -0.28 0.03 0.02 0.05 0.04 0.05 0.02

sd.: standard deviation; H: entropy; max.: maximum; min.: minimum;
kur.: kurtosis; sk.: skewness.
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c.1 model parameters

This section presents complementary material regarding the calibration of the models
analyzed in the paper, namely, ordinary kriging (OK), indicator kriging (IK), histogram
via entropy reduction (HER), and its sequential simulation version (HERs).

OK

Due to the availability of an OK model for the logarithm base of the Jura dataset in
the literature, OK was parametrized according to Atteia et al. (1994). It was modeled
with two spherical variograms, with the following parameters:

Table C.1: Parameters of OK fitted variograms as proposed by Atteia et al. (1994).

log10(Pb) Nugget Sill Range (km)

spherical model 1 0.0096 0.0228 0.287

spherical model 2 0.0131 – 2.605

HER

This section presents the spatial characterization of the lead dataset using HER
(Fig. C.1) and the optimum weights obtained to be used in aggregation methods
(Fig. C.2).

Fig. C.1a presents the raw infogram from where the class PMFs (Fig. C.1b) and,
consecutively, the infogram (Fig. C.1c) were obtained. In Fig. C.1b, the Euclidean
distance (in km) relative to the class is indicated after the class name in interval
notation (left-open, right-closed interval) and, for brevity, only the odd classes are
shown. The visual increasing of the spread of the ∆z PMFs given the distance class
(Fig. C.1b) is numerically verified also in the infogram (red curve, Fig. C.1c), which
presents increasing entropy (therefore, decreasing spatial dependence or increasing
spatial disorder) with distance. As shown in Fig. C.1c, the calculated range included 20

classes, reaching 1.4 km (circa three times smaller than the x-domain length of about
4 km). The range was identified as the point beyond which the class entropy exceeded
the entropy of the full dataset (seen as the intersect of the blue and red-dotted lines).

The number of pairs forming each ∆z PMF and the optimum weights (wOR and
wAND) obtained for Eqs. 4.3 and 4.4, respectively, are illustrated in Fig. C.2. About
30% of the pairs (20 294 out of 66 822 pairs) are inside the range, where the first class
has just under 500 pairs and the last class inside the range (light blue) has above 1500

pairs. Decreasing contribution of the weight with the distance is seen in Fig. C.2b, with
strong influence of the first six classes (until about 0.4 km). Furthermore, the optimum
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Figure C.1: Spatial characterization of the lead dataset using HER. (a) Infogram cloud,
(b) ∆z PMFs by class, and (c) infogram.

Figure C.2: HER model characteristics of the lead dataset. (a) Class cardinality and (b) opti-
mum weights – Eqs. 4.3 and 4.4.

contribution of AND and OR aggregation, Eq. 4.5, for this model was α = 0.65 and
β = 0.

IK and IK10

This section presents the parameters used in AUTO-IK program (developed by
Goovaerts, 2009) to calibrate the indicator kriging model (called IK) for the paper
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dataset. The parameter file employed is available Fig. C.3. The program AUTO-IK
described in Goovaerts (2009) is available on his personal website sites.google.com/

site/goovaertspierre/pierregoovaertswebsite/download/indicator-kriging.

Figure C.3: Parameter file used for geostatistical analysis of lead required by AUTO-IK.exe.
Indicator semivariograms for thresholds corresponding to 68 equally spaced
cutoffs plus zc threshold, are computed using 30 lags of 0.07 km. The models are
fitted automatically and used to perform full ordinary indicator kriging using up
to the 32 closest observations located within a radius of 2 km.

Based on this IK model, the authors also generate a model using 10 cutoffs, of
which nine are equally spaced p-quantiles of the sample histogram and one is the
zc threshold, i.e., [1.488, 1.543, 1.576, 1.619, 1.667, 1.699 (zc), 1.709, 1.752, 1.816, 1.907].
The decision was based on (Goovaerts, 1997, p. 285), who recommends using zc as a
cutoff to avoid the later interpolation of its probability and argues that cutoff values
beyond the first and ninth decile of the calibration set may be inappropriate, since
they depend on the spatial distribution of a few pairs of points. In general, (Rossi and
Deutsch, 2014, p. 160) also recommend between 8 and 15 cutoff values. Thus, due to
its 10 cutoff values, this model is called IK10.

HERs

For the sequential simulation model (HERs), we verified the quality of the reproduc-
tion of the realizations similarly to the work of Goovaerts (1997) and Leuangthong
et al. (2005). The final optimum weights were practically the same as HER model,
with the identical infogram and PMF of the classes of HER (as in Fig. C.1), same car-
dinality and similar wOR and wAND (as in Fig. C.2), α = 0.55 (intersecting PMFs), and

sites.google.com/site/goovaertspierre/pierregoovaertswebsite/download/indicator-kriging
sites.google.com/site/goovaertspierre/pierregoovaertswebsite/download/indicator-kriging
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β = 0 (averaging PMFs). The small changes on the optimum weights (automatically
obtained) happened since the number of neighbors used for HERs was set to seven
(instead of 30 used for HER).

Although HER and HERs models resulted both in a pure intersection of PMFs
(since we have just α contribution), the influence in the number of neighbors plays an
important role when intersecting distributions and, therefore, we reduced it to seven
in HERs. As explored in (Thiesen et al., 2020b), the higher the number of (similar)
distributions to be intersected, the smaller the uncertainty of the resultant distribution.
Consequently, due to the sequential procedure of HERs – in which for each iteration
we artificially add an extra sample to the data to condition the next prediction – the
number of distributions to be intersected greatly increase in relation to the validation
set. Thus, to balance this decrease in the entropy (uncertainty), the authors have
chosen to reduce the number of neighbors. This implementation decision (number of
neighbors) was done by simply checking the infogram of each realization, until it was
unbiased in relation to the sample set (Fig. 4.11a). This is how we also validate the
model regarding ergodic fluctuations.

It is important to note that estimating entropy via a finite sample have the tendency
to be underestimated (Darscheid, 2017). Therefore, considering the great discrepancy
in the amount of data between the calibration set (259 observations) and realizations
(grid with more than 10 000 targets), we introduced a bias in the realizations so that
they could be compared to the calibration set (Fig. 4.11b). This was conducted by
drawing 259 points from each realization (with no replacement), calculating their
entropy, repeating it 1 000 times, and taking the mean of these repetitions. Although
the bias of the calibration set could be estimated (as proposed by Darscheid, 2017;
Steck and Jaakkola, 2004), a bias correction of the entropy of the calibration set is not
straightforward since the obtained value is just a reference to bound the maximum
bias and not its exact value. Conversely, adding a bias to the realizations allowed the
comparison of the entropy of the calibration set and of the realizations.

Additionally, the authors verified the existence of connectivity of extremely high
and small concentration values using indicator variograms for the deciles of 0.2 and
0.8 and different realizations (not shown). The results pointed out no destructuration
effect (also known as maximum entropy property, (Goovaerts, 1997, p. 272, 393),
e.g., for the realizations #42 and #94 (Fig. 4.12), due to the similarity of the indicator
variogram of the calibration set and simulated realizations for the different deciles.
Therefore, HERs present itself as an appropriate method for cases where extreme
values are spatially correlated.

c.2 extra results

This section consolidates extra results for the local uncertainty of OK, IK, IK10 and
HER models. Fig. C.4 displays the entropy map of IK10. It is noteworthy that the
E-type, probability, and classification maps were not included for IK10 due to their
similarity to the ones produced to the refined IK model.

Fig. C.5 displays the local results for the OK model, including estimation, entropy,
probability and classification maps. Similar to Goovaerts (1997, p. 362), the estimation
map of OK (Fig. C.5a), which is optimal for least-square criterion, tends to overestimate
the Pb concentration, leading to most locations being classified as contaminated
(Fig. C.5d). While the OK estimates (Fig. C.5a) and E-type estimates presented in
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Figure C.4: Entropy map. Local uncertainty in terms of entropy for IK10.

Table C.2: Cross-validation results for OK, IK, IK10, and HER method.

Method EMA ENS DKL G

OK 0.139 0.199 0.858 0.939

IK 0.135 0.233 0.840 0.928

IK10 0.135 0.230 0.840 0.960

HER 0.134 0.232 0.808 0.938

EMA mean absolute error (best: 0), ENS Nash-Sutcliffe efficiency (best: 1),
DKL Kullback-Leibler divergence (best: 0), G goodness statistic (best: 1).

the paper (Fig. 4.4) are similar, their uncertainty (Figs. C.5b and 4.5) are completely
different. The map of OK entropy indicates greater uncertainty where data are sparse,
whereas the uncertainty is smallest near data locations. Such effect is expected since
OK ignores the observation values, retaining only the spatial geometry from the data
(Goovaerts, 1997, p. 180).

The local distributions of IK, IK10, and HER models are displayed in Fig. C.6. In this
image, we can relate the bin-filling effect of the linear interpolation and extrapolation
of the distribution assumed in IK10 with IK.

Table C.2 (performance results) and Fig. C.7 (accuracy and PI-width plots) contain
information already presented in the paper, with the inclusion of IK10.

The misclassification given different probability cutoffs is shown in Fig. C.8. Dif-
ferent than expected, all lead models (OK, IK, and HER) presented the minimum
misclassification occurring close to the probability of 0.5 instead of the marginal
probability of 0.421 (estimated in Sect. 4.3.1). This could be explained by the fact that
the marginal probability was calculated on the calibration set and we are analyzing
the models on the validation set, or by the fact that no declustering of the calibration
data was done before calculating the marginal probability. Although, for all models,
misclassification is not minimal at the marginal probability of 0.421, they have a
similar monotonic tendency of decreasing its values until the minimum (at about 0.5).
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Figure C.5: OK maps for log10(Pb) dataset. (a) Estimates, (b) local uncertainty in terms of
information, (c) probability of exceeding the critical threshold (zc= 1.699), and
(d) classification of locations as contaminated by lead on the basis that the proba-
bility of exceeding the critical threshold zc is larger than the marginal probability
of contamination (0.421).

IK10 presented similar misclassification in comparison to IK, which was not plotted to
avoid interference with the visualization.
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Figure C.6: Local distribution of targets of the validation set (targets A to D) and grid (targets
E and F) for HER (gray), IK (red), and IK10 (purple).

Figure C.7: OK, IK, IK10, and HER performance. (a) Proportion of the true lead values falling
within the probability intervals (p-PI) of increasing sizes and (b) the width of
these intervals versus p-PI.
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Figure C.8: Proportion of validation locations (a) that are declared contaminated with respect
to lead concentration and (b) that are wrongly classified for OK, IK, and HER
models.
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Thiesen, Stephanie; Vieira, Diego M.; Mälicke, Mirko; Loritz, Ralf; Wellmann, J. Flo-
rian; Ehret, Uwe (2020): HER – an information theoretic alternative for geostatistics. In:
Global Young Scientists Summit – GYSS 2020, 14-17 January 2020, Singapore/Singapore.
Poster.

Thiesen, Stephanie; Darscheid, Paul; Ehret, Uwe (2019). Identifying rainfall-runoff
events in discharge time series: A data-driven method based on information theory.
In: Tag der Hydrologie, 28-29 March 2019, Karlsruhe/Germany. Poster.

Thiesen, Stephanie; Darscheid, Paul; Ehret, Uwe (2018): Identifying rainfall-runoff
events in discharge time series – a data-driven method based on information theory.
In: II Workshop on Information Theory & Earth Sciences – SWITES 2018, 16–19 May 2028,
Santander/Spain. Poster.

(Papers)

Thiesen, Stephanie; Geraldi, Matheus Soares; Kaestner, Camile Luana (2017): Sim-
ulador online para dimensionamento otimizado de reservatório de água da chuva
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