KIT | KIT-Bibliothek | Impressum | Datenschutz

Validation of Satellite Rainfall Estimates over Equatorial East Africa

Ageet, Simon; Fink, Andreas H.; Maranan, Marlon; Diem, Jeremy E.; Hartter, Joel; Ssali, Andrew L.; Ayabagabo, Prosper

Abstract:

Rain gauge data sparsity over Africa is known to impede the assessments of hydrometeorological risks and of the skill of numerical weather prediction models. Satellite rainfall estimates (SREs) have been used as surrogate fields for a long time and are continuously replaced by more advanced algorithms and new sensors. Using a unique daily rainfall dataset from 36 stations across equatorial East Africa for the period 2001–2018, this study performs a multi-scale evaluation of gauge-calibrated SREs, namely, IMERG, TMPA, CHIRPS and MSWEP (v2.2 and v2.8). Skills were assessed from daily to annual timescales, for extreme daily precipitation, and for TMPA and IMERG near real-time (NRT) products. Results show that: 1) the SREs reproduce the annual rainfall pattern and seasonal rainfall cycle well, despite exhibiting biases of up to 9%; 2) IMERG is the best for shorter temporal scales while MSWEPv2.2 and CHIRPS perform best at the monthly and annual timesteps, respectively; 3) the performance of all the SREs varies spatially, likely due to an inhomogeneous degree of gauge calibration, with the largest variation seen in MSWEPv2.2; 4) all the SREs miss between 79% (IMERG-NRT) and 98% (CHIRPS) of daily extreme rainfall events recorded by the rain gauges; 5) IMERG-NRT is the best regarding extreme event detection and accuracy; and 6) for return values of extreme rainfall, IMERG and MSWEPv2.2 have the least errors while CHIRPS and MSWEPv2.8 cannot be recommended. ... mehr


Download
Originalveröffentlichung
DOI: 10.1175/JHM-D-21-0145.1
Scopus
Zitationen: 25
Web of Science
Zitationen: 22
Dimensions
Zitationen: 31
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2021
Sprache Englisch
Identifikator ISSN: 1525-755X, 1525-7541
KITopen-ID: 1000141048
HGF-Programm 12.11.34 (POF IV, LK 01) Improved predictions from weather to climate scales
Erschienen in Journal of hydrometeorology
Verlag American Meteorological Society
Band 23
Heft 2
Seiten 129-151
Vorab online veröffentlicht am 06.12.2021
Nachgewiesen in Web of Science
Dimensions
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 11 – Nachhaltige Städte und Gemeinden
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page