
Input Secrecy & Output Privacy:
Efficient Secure Computation of Differential Privacy

Mechanisms

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Jonas Böhler
aus Bad Säckingen

Tag der mündlichen Prüfung: 10.11.2021

1. Referent: Prof. Dr. JörnMüller-Quade
2. Referent: Prof. Dr. Florian Kerschbaum

Abstract

Data is the driving force of modern businesses. For example, customer-generated data is col-
lected by companies to improve their products, discover emerging trends, and provide insights
to marketers. However, data might contain personal information which allows to identify a per-
son and violate their privacy. Examples of privacy violations are abundant – such as revealing
typical whereabout and habits, financial status, or health information, either directly or indi-
rectly by linking the data to other available data sources. To protect personal data and regulate
its collection and processing, the general data protection regulation (GDPR) was adopted by all
members of the European Union.
Anonymization addresses such regulations and alleviates privacy concerns by altering per-

sonal data to hinder identification. Differential privacy (DP), a rigorous privacy notion for anon-
ymizationmechanisms, is widely deployed in the industry, e.g., byGoogle, Apple, andMicrosoft.
Additionally, cryptographic tools, namely, secure multi-party computation (MPC), protect the
data during processing. MPC allows distributed parties to jointly compute a function over their
data such that only the function output is revealed but none of the input data. MPC andDP pro-
videorthogonal protection guarantees. MPCprovides input secrecy, i.e.,MPCprotects the inputs
of a computation via encrypted processing. DP provides output privacy, i.e., DP anonymizes the
output of a computation via randomization. In typical deployments of DP the data is random-
ized locally, i.e., by each client, and aggregated centrally by a server. MPCallows to apply the ran-
domization centrally as well, i.e., only once, which is optimal for accuracy. Overall, MPC andDP
augment each other nicely. However, universal MPC is inefficient – requiring large computation
and communication overhead – which makes MPC of DP mechanisms challenging for general
real-world deployments.
In this thesis,wepresentefficientMPCprotocols fordistributedparties tocollaboratively com-

pute DP statistics with high accuracy. We support general rank-based statistics, e.g., min, max,
median, as well as decomposable aggregate functions, where local evaluations can be efficiently
combined to global ones, e.g., for convex optimizations. Furthermore, we detect heavy hitters,
i.e., most frequently appearing values, over known as well as unknown data domains. We prove
the semi-honest security and differential privacy of our protocols. Also, we theoretically analyse
and empirically evaluate their accuracy as well as efficiency. Our protocols provide higher ac-
curacy than comparable solutions based on DP alone. Our protocols are efficient, with running
times of seconds tominutes evaluated in real-worldWANs between Frankfurt and Ohio (100ms
delay, 100Mbits/s bandwidth), and have modest hardware requirements compared to related
work (mainly, 4 CPU cores at 3.3GHz and 2GB RAM per party). Additionally, our protocols can
be outsourced, i.e., clients can send encrypted inputs to few serverswhich run theMPCprotocol
on their behalf.

i

Zusammenfassung

Daten sind die Antriebskraft moderner Unternehmen. Von Kunden generierte Daten werden
von Firmen gesammelt, um Produkte zu verbessern, aufkommende Trends zu entdecken, und
sie an Vermarkter zu verkaufen. Allerdings beinhalten diese Daten potentiell personenbezo-
gene Informationen, die es erlauben eine Person zu identifizieren und den Schutz ihrer Privat-
sphäre zu verletzen. Datenschutzverletzungen lassen sich imÜberfluss finden – versehentliche
Bekanntgabe von typischen Aufenthaltsorten und Gewohnheiten, Finanzstatus, oder gesund-
heitlichen Informationen–entwederdirekt oder indirekt, indemDatenmit anderenverfügbaren
Datenquellen verbunden werden. Um personenbezogene Daten zu schützen, ihre Sammlung
und Verarbeitung zu regulieren, wurde die allgemeine Datenschutzgrundverordnung (DSGVO)
von allen Mitgliedern der Europäischen Union verabschiedet. Anonymisierung – die Verän-
derungvonpersonenbezogenenDaten, umIdentifikation zuverhindern–dientdemZweck, den
gesetzlich geforderten Datenschutz zu gewährleisten. Differential Privacy (DP) formalisiert den
Schutz vonAnonymisierungsmechanismenundfindetweit verbreitetenEinsatz in der Industrie
– unter anderem bei Google, Apple undMicrosoft. Zusätzlichen Schutz während der Datenver-
arbeitungbieten kryptografischeVerfahrenwie sichereMehrparteienberechnung (imEnglischen
securemulti-party computation, MPC). MPC ermöglicht es verteilten Parteien gemeinsam eine
Funktion über ihren Daten zu berechnen, sodass nur die Funktionsausgabe bekannt wird, aber
die Eingaben geheim bleiben. MPC und DP bieten orthogonale Schutzgarantien. MPC bietet
Geheimhaltung der Eingaben (input secrecy), d.h., MPC schützt die Eingaben, indem deren Ve-
rarbeitung nur verschlüsselt erfolgt. DP liefertDatenschutz für Ausgaben (output privacy), d.h.,
DP anonymisiert die Ausgabe einer Berechnung mithilfe von Randomisierung. Die Garantien
von MPC und DP ergänzen sich sehr gut. Allerdings ist MPC generell ineffizient und erfordert
großen Zusatzaufwand – in Form von Berechnungszeit und Kommunikation – welcher eine
Hürde für den praktischen Einsatz vonMPC für DP-Mechanismen darstellt.
Diese Dissertation präsentiert effiziente MPC-Protokolle, um DP-Statistiken über vereinten

Daten von verteilten Parteien mit hoher Genauigkeit zu berechnen. Wir unterstützen Rank-
basierte Statistiken wie den Median und zerlegbare Aggregatsfunktionen (decomposable aggre-
gate functions), wobei lokale Auswertungen effizient zu globalen Ergebnissen aggregierbar sind,
beispielsweise für konvexe Optimierung. Des Weiteren finden wir häufig vorkommende Werte
(heavy hitters) aus bekannten und unbekannten Wertebereichen. Wir beweisen, dass unsere
Protokolle Geheimhaltung während der Berechnung (semi-honest security) und Datenschutz
der Ausgabe (differential privacy) bieten. Wir evaluieren die Genauigkeit und Effizienz unserer
Protokolle sowohl theoretisch als auch empirisch. Unsere Protokolle bieten eine höhere Genau-
igkeit als vergleichbare Lösungen, die nur auf DP basieren. Unsere Protokolle sind effizient
mit Laufzeiten von Sekunden zu Minuten in einemWAN zwischen Frankfurt und Ohio (100ms
Verzögerung, 100Mbits/s Bandbreite) undwir haben verhältnismäßig geringe Ansprüche andie
Hardware (hauptsächlich 4 CPU-Kerne mit 3.3GHz, 2GB RAM pro Partei). Zusätzlich kann die
Berechnung unserer Protokolle ausgelagert werden, d.h., Clients können ihre verschlüsselten
Eingaben auf wenige Servern verteilen, welche die Protokolle an ihrer Stelle ausführen.

iii

Acknowledgement

First and foremost, I want to thank JörnMüller-Quade and Florian Kerschbaum for their invalu-
able advice, academic guidance, and insightful discussions. Jörn’s fascinating and joyous cryp-
tography lectures reinforcedmy interest in security and privacywhile studying at KIT, which put
me on a path towards research. Florian helped me navigate and illuminate this unmapped and
often dark research path with his vast knowledge and political acumen.
I also want to thank my SAP colleagues and friends, who for a while not only shared a room

but plenty of inspiring thoughts with me. Namely, applied cryptography researchers Florian1,
Anselme, Andreas, Benny; anonymization researchers Daniel and Benjamin; and my SAPman-
agers Detlef Plümper, Roger Gutbrod, andMathias Kohler.
Onapersonal note, Iwant to thankmy family for their endless love, trust, and encouragement.

Lastly andmost importantly, I’meternally grateful formygirlfriendDorothée forherpatient sup-
port and love during this arduous adventure. I’m looking forward to our next adventure, raising
our amazing sonMax, whowaited long enough to come into this world forme to (almost) finish
this thesis.

1Different Florian.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Question . 3
1.3 Contributions . 5
1.4 Our Protocols: EMmed, EM∗,HH, PEM . 5
1.5 Structure . 8

2 Preliminaries 11
2.1 SecureMulti-party Computation . 12

2.1.1 Security Models . 12
2.1.2 Primitives & Paradigms . 13
2.1.3 Garbled Circuits . 15
2.1.4 Secret Sharing . 17
2.1.5 Conversion between Additive Secret Shares & Garbling 19
2.1.6 Basic MPC protocols . 19

2.2 Differential Privacy . 21
2.2.1 From Syntactic to Semantic Notions of Privacy 21
2.2.2 Computational Differential Privacy . 22
2.2.3 Properties of Differential Privacy . 23
2.2.4 Mechanisms . 24
2.2.5 Distributed Noise Generation . 27

3 Related Work 29
3.1 PrivacyModels . 29
3.2 MPC and DP . 30
3.3 Data Pruning & Domain Reduction . 31
3.4 LimitedMachine Precision and Privacy Violations 32
3.5 Decomposability . 33
3.6 DPMedian . 33

3.6.1 Sensitivity and Utility Functions for DPMedian 33
3.6.2 DPMedian and PrivacyModels . 35

3.7 DP Heavy Hitters . 38

4 Methodology 43
4.1 Security Assessment . 43
4.2 Privacy Assessment . 44
4.3 Accuracy Assessment . 44
4.4 Efficiency Assessment . 46

4.4.1 Evaluation Setup . 46
4.4.2 Running Time . 47

vii

Contents

4.4.3 Communication . 47
4.5 MPC Frameworks . 48

5 EMmed: DP Median 49
5.1 Building Blocks for DPMedian Selection . 49

5.1.1 Chapter-specific Notation . 49
5.1.2 Ideal Functionality . 50
5.1.3 Utility with Static Access Pattern . 50
5.1.4 Median Sampling . 54
5.1.5 Input Pruning & Utility . 54
5.1.6 Accuracy &MaximumNumber of Pruning Steps 56

5.2 Secure Sublinear Time Differentially PrivateMedian Computation 58
5.2.1 Protocol Description . 58
5.2.2 Sorting via Garbled Circuits . 60
5.2.3 Exponentiation and Arithmetics . 60
5.2.4 Selection via Garbled Circuits . 60
5.2.5 Running Time Complexity . 62
5.2.6 Security . 62
5.2.7 Extensions: Outsourcing, Multiple Parties, MaliciousModel 64

5.3 Evaluation . 65
5.3.1 Running Time . 66
5.3.2 Consistency Checking Overhead . 68
5.3.3 Prune-neighboring . 68
5.3.4 Sampling . 71
5.3.5 Absolute Error with and without Pruning 72
5.3.6 Circuit size & Communication . 72
5.3.7 Comparison to RelatedWork . 72

5.4 Summary . 73

6 EM∗: Decomposable DP Aggregate Functions 75
6.1 EM&Decomposability . 75

6.1.1 Decomposability & Applications . 76
6.1.2 DecomposableMedian Utility Function . 77
6.1.3 Ideal Functionality FEM∗ . 79
6.1.4 Ideal Functionality FGM∗ . 80
6.1.5 Accuracy of DPMedian . 80

6.2 MPC for DPMedian . 84
6.2.1 Subrange Selection . 84
6.2.2 Weightsln(2) . 86
6.2.3 Weightsln(2)/2𝑑 . 87
6.2.4 Weights∗ . 87
6.2.5 GM∗ . 87
6.2.6 Precision and Privacy . 89
6.2.7 Running Time Complexity . 89
6.2.8 Security . 89
6.2.9 Scaling toMany Parties . 90

viii

Contents

6.3 Evaluation . 91
6.3.1 Running Time . 91
6.3.2 Communication . 93
6.3.3 Malicious Security . 94
6.3.4 Privacy Budget vs. Running Time . 94
6.3.5 Accuracy Comparison to RelatedWork . 94

6.4 Summary . 96

7 HH & PEM: DP Heavy Hitters 97
7.1 Federated Heavy Hitters . 98

7.1.1 Ideal Functionality FHH . 98
7.1.2 Ideal Functionality FPEM . 99
7.1.3 When to use FHH or FPEM . 101
7.1.4 Distributed Noise Generation . 102

7.2 MPC for DPHeavy Hitters . 102
7.2.1 HH: MPC of FHH . 103
7.2.2 PEM: MPC of FPEM . 103
7.2.3 Running Time Complexity . 105
7.2.4 Security . 106

7.3 Evaluation . 108
7.3.1 Comparing different DP notions . 108
7.3.2 Running Time . 109
7.3.3 Communication . 110
7.3.4 Malicious Security . 111
7.3.5 Accuracy . 111
7.3.6 MPC Frameworks . 115
7.3.7 AWS Costs . 115

7.4 Summary . 116

8 Conclusion 117
8.1 Summary . 117
8.2 Directions for Future Research . 118

Author’s Publications 119

Bibliography 121

ix

Acronyms

DP Differential privacy

EM Exponential mechanism

GM Gumbel mechanism

GRR Generalized randomized response

LM Laplacemechanism

LAN Local-area network

MPC Multi-party computation

PPT Probabilistic polynomial-time

RTT Round-trip time

WAN Wide-area network

xi

1 Introduction

In Section 1.1, we motivate our research question, which we present and discuss in Section 1.2.
In Section 1.3, we list our contributions, i.e., efficient, secure protocols for distributed, privacy-
preserving statistics. We present an overview of our protocols in Section 1.4. Finally, Section 1.5
describes how the remainder of this thesis is structured.

1.1 Motivation

Data is valuable. In most of the 20th century, a limiting factor in data collection was stor-
age space and information retrieval. Information printed on paper documents used to fill en-
tire archive buildings and retrieval required manual labor; nowadays, an exponentially larger
amount of data is stored in data centers where indexed databases allow nearly instantaneous
retrieval1. The digital revolution enabled data collection and processing on a scale that was pre-
viously unthinkable. Presently, the business model of some of the most valuable companies in
the world is entirely based on collecting and monetizing data of individuals, mainly by selling
it to advertisers for targeted advertising. Furthermore, government spending, such as funding
of public services and implementation of policy decisions, is informed by demographic studies
and census data [And21, Section 11.2].
Data is personal. Already a few collected data points suffice to identify someone from credit

card metadata [DMRS+15]2, infer an individual’s typical whereabouts and routines from smart-
phonedata [DMHVB13]3, and learnbehavioral patterns fromsmartmetermeasurements [AF10,
MMSF+10]4. To regulate the rapidly increasing data collection and consistently govern the pro-
cessing of personal data, the European Union adopted the General Data Protection Regulation
(GDPR)5 for all its members states which became enforceable in May 2018. The GDPR states:
“The protection of natural persons in relation to the processing of personal data is a fundamen-
tal right.”6

1 For example, documents collected by theMinistry for State Security (colloquially called “Stasi”) of the German Demo-
cratic Republic (1949-1990) fill 111 kilometers of shelf space. Since 1998 the records are indexed in a database. https:
//www.bstu.de/en/archives/about-the-archives/

2Montjoye et al. [DMRS+15, Figure 2] identified 90%of individuals, given the date and location of four of their purchases,
in a data set with 1.1 million credit card transactions.

3 Strava, a fitness tracking app, revealed “locations and habits of military bases and personnel, including those of Amer-
ican forces in Iraq and Syria” https://www.nytimes.com/2018/01/29/world/middleeast/strava-heat-map.html.

4 The European Data Protection Supervisor [Eur12, Point 19] warned that smart meters not only reveal, e.g., vacation
times and sleeppatterns, but potentially also health conditions (e.g., kidneyproblems) by identifying electricalmedical
devices (e.g., dialysis machines).

5 EU regulation 2016/679, https://eur-lex.europa.eu/eli/reg/2016/679/oj
6 GDPR defines personal data in Article 4, point (1) as “any information relating to an identified or identifiable natu-
ral person (..) who can be identified, directly or indirectly, in particular by reference to an identifier such as a name,
an identification number, location data, an online identifier or to one or more factors specific to the physical, physi-
ological, genetic, mental, economic, cultural or social identity of that natural person;” and processing in point (4) as
“any operation or set of operations which is performed on personal data or on sets of personal data, whether or not by
automated means, such as collection, recording, organisation, structuring, storage, adaptation or alteration, retrieval,
consultation, use, disclosureby transmission, disseminationorotherwisemakingavailable, alignmentor combination,
restriction, erasure or destruction;”

1

https://www.bstu.de/en/archives/about-the-archives/
https://www.bstu.de/en/archives/about-the-archives/
https://www.nytimes.com/2018/01/29/world/middleeast/strava-heat-map.html
https://eur-lex.europa.eu/eli/reg/2016/679/oj

1 Introduction

Cryptography protects data processing. Secure multi-party computation (MPC) [Gol09] is
a cryptographic protocol to exchange and operate on encrypted data such that only the out-
put of the computation is revealed. As such, MPC protects the data of multiple parties during
processing. MPC has been researched for over 30 years, and recently real-world deployments
have emerged in industry and government [Lin20, Section 5]: Google and Mastercard report-
edly deployed secure computation to track ad conversion by securely linking Google’s online
ad impressions with offline purchases based on credit card transactions handled byMastercard
[Blo18, IKN+17, IKN+20]. Estonian government institutes applied it to detect tax fraud [BJSV15]
andcombined income tax recordswithuniversity records, toanalyse ifworkingduringuniversity
studies negatively impacts earning a degree [BKK+16]. The Boston Women’s Workforce Council
deployed secure computation to investigate gender-based wage gaps in the greater Boston area
with the participation of 114 employers with 166 705 employees [LJA+18, Lin20].
MPC protects the data during processing, however, releasing exact outputs does not limit in-

ference of inputs and allows reconstruction attacks [DN03]. Recently, the US census bureau
showed that even high-level aggregate statistics, i.e., demographic counts for residential areas,
suffice to identify millions of individuals of the 2010 US census when combined with commer-
cially available data [DKM19, GAM19].
Anonymization controls inference. Differential privacy (DP) [Dwo06, DMNS06] is a rigor-

ous anonymization definition. DP requires fine-tuned, computation-dependent randomization
which introduces uncertainty hindering reconstruction attacks. In other words, DP limits infer-
enceof any input given theoutput. DP iswidely deployed tomitigateprivacy risks and regulatory
concerns. The US census bureau adopted DP for the 2020 census [Abo18]. Apple deploys DP to
privately learn frequently typedwordsonmobile devices to improve auto-complete suggestions,
and to detect websites with large resource consumptions to optimize the browsing experience
in iOS and macOS [App16, App17]. Google privately detects popular Chrome browser settings
[EPK14, FPE16a] aswell asbusy times forbusinesses inGoogleMaps [Goo19]. Also,Microsoft de-
ploys differentially private telemetry data collection inWindows 10 (Creators Fall Update) across
millions of devices [DKY17] and LinkedIn’s Audience Engagement API lets marketers perform
DP queries to learn, e.g., most frequently shared articles among users with a specific skill set
[RSP+20, Rog20]. Real-world deployments [App16, DKY17, EPK14, FPE16a, Goo19] mainly im-
plement the localmodel ofDP, i.e., users locally randomize their data and send it to an untrusted
aggregator. In the central model, e.g., used by LinkedIn [RSP+20, Rog20] and the US Census bu-
reau [Abo18], a trusted party has access to the raw data, which only needs to apply randomiza-
tion once, on the aggregated result. The local model has fewer assumptions (no trusted party).
However, it generally requires exponentiallymore data samples to achieve the optimal accuracy
offered by the centralmodel at the same privacy level [KLN+11]. Small data is themost challeng-
ing regime forDP [BEM+17,NRVW20] as the randomization,mostly in the formof additivenoise,
easily exceeds the signal in the data.
Composing cryptography & anonymization is inefficient. MPC and DP provide orthogonal

protections and augment each other. MPC protects input data during processing, and DP lim-
its inference of any inputs given the output. In theory, combining existing solutions for MPC
andDP bridges the gap between the local and central model of DP and simultaneously provides
strong privacy (no trusted third party) with high accuracy (centralized randomization). In prac-
tice, however, generalMPC is inefficient as it suffers fromprohibitive computation and commu-
nication overhead hindering real-world deployments.

2

1.2 Research Question

1.2 Research Question

The research question investigated in this dissertation is:

Can distributed parties efficiently and accurately compute statistics over their small data
sets without revealing secret inputs and ensuring strong privacy guarantees for the output?

In the following, we briefly overview our answer to the research question, and detail aspects
of the research question in the remainder of this section. In this thesis, we present secure and
efficient protocols for privacy-preserving statistics over distributed parties with high accuracy.
Our protocols provide input secrecy via MPC, i.e., no input is revealed to others, as well as out-
put privacy via DP, i.e., the output limits inference about any input. MPC already ensures high
accuracy for DP and themain challenge is designing efficient MPC protocols. Our protocols are
efficient with running times in seconds to minutes over the Internet, and practical with modest
hardware requirements compared to related work7. Furthermore, our protocols support out-
sourcing where input parties (clients) send encrypted inputs to computation parties (servers)
who run the protocol on their behalf. WhileMPC solutions for DP aggregate statistics exist (e.g.,
sum andmean), DP statistics based on an element’s rank or frequency (e.g., median andmode)
lack efficient and accurate MPC protocols. We support general rank-based statistics, e.g., min,
max, median, percentiles, but focus on the median for illustration purposes. We also support
decomposable aggregate functions, as used in MapReduce-style frameworks, applicable to, e.g.,
convex optimizations. Additionally, we discover heavy hitters, i.e., most frequently appearing
values, over known as well as unknown data domains. Next, we further detail aspects of the re-
search question.

Input Secrecy

We consider a distributed setting with two ormore parties. To ensure that the parties can jointly
compute a function without revealing their secret inputs to the other parties, we employ MPC
[Gol09]. Informally,MPC is a cryptographic protocol to exchange andoperate on encrypted data
(formalized in Section 2.1). While secure computation protects the inputs of a computation, the
exact output is released, potentially leading to privacy violations [DN03].

Output Privacy

To limit inference from the output, we employ DP [Dwo06, DMNS06], a rigorous privacy notion
restricting the privacy loss of any party who participates in a computation. Informally, DP intro-
duces uncertainty by applying fine-tuned, computation-dependent randomization (formalized
in Section 2.2).

Accuracy & Small Data

WeuseMPCtosimulatea trusted thirdparty, resulting inhighlyaccurateDPstatistics. Ourproto-
cols also support largedata sizes, however, our focus is on small data. Small data is themost chal-
lenging regime forDP [BEM+17,NRVW20], as thenoise fromthe randomization caneasily drown
the (statistical) signal in the data. Even Google’s large-scale data collection [BEM+17, EPK14],
7Wemainly used AmazonWeb Services t2.medium instances with 4 CPU cores and 2GB RAM for our evaluation. How-
ever, for one of our largest evaluations, we used 8GB RAM, and to evaluate specialized version of one of our protocols,
optimized for multi-threading, we required 8 cores and 15GB RAM. For details, we refer to Section 4.4.1.

3

1 Introduction

with billions of daily user reports in the local model, is insufficient if the statistical value of in-
terest appears infrequently [BEM+17, Section 2.2], e.g., the median. Specifically, an exponential
separation exists between the local and central model regarding accuracy and sample complex-
ity [KLN+11].

Efficiency

General-purpose MPC solutions are inefficient for DP, i.e., they suffer from large computation
and communication overhead as well as liveness constraints in a wide-area network (WAN). In
this thesis, we design efficient, special-purposeMPC protocols for DP – including novel alterna-
tives to secure exponentiations. OurMPC protocols run in seconds tominutes over the Internet
onmodest hardware and our client communication is in the order of kilobytes.

Statistics

In our protocols, we focus on rank-based statistics, also called order statistics, decomposable
aggregate functions, and heavy hitters over distributed data. For distributed aggregate statistics,
e.g.,meanand sum, variousDP solutions exist [DKM+06,GX17, RN10, TKZ16] that basically con-
sist of summing values from each party. Rank-based statistics, however, require knowledge of an
element’s position in the sorted data, posing a challenge for distributed data. Similarly, heavy
hitters, i.e., frequent values, can be easily identified for small data domains, e.g., by building a
histogram. However, efficient discovery of heavy hitters on large or even unknown domains re-
quires additional considerations and clever approximations [CH10, WLJ19].
Formally, rank-based statistics are defined over sorted data set 𝐷 = {𝑑1, . . . , 𝑑𝑛 }, where 𝑑1 ≤

𝑑2 ≤ · · · ≤ 𝑑𝑛 . Rank-based statistics include

• theminimum 𝑑1 andmaximum 𝑑𝑛 ,

• the range 𝑑𝑛 − 𝑑1,

• 𝑝 th-percentile 𝑑 d𝑛 ·𝑝/100e , i.e., the value larger than 𝑝 percent of𝐷 ,

• interquartile range 𝑑 d0.75𝑛 e − 𝑑 d0.25𝑛 e ,

• and themedian 𝑑 d𝑛/2e , i.e., the 50th-percentile which splits the sorted data roughly in half.

Themedian is a robust statistic, i.e., few input changesdonot lead to largeoutput changes [DL09,
Section 1.2]. The median is used to represent a “typical” value from a data set, e.g., median in-
come is more representative thanmean income8, and insurance companies use themedian life
expectancy to adjust insurance premiums. Themedian is also useful in the collection of private
usage statistics. Reporting themedian in addition to themeanallows the collector to detect skew
in the distribution, i.e., if outliers exist.
Decomposableaggregate functions areemployed inMapReduce-style frameworks toefficiently

compute statistics over distributed data. We consider decomposability for utility functions,
which score how close any possible output is to a desired evaluation output (formalized in Sec-
tion 2.2.4). Decomposable utility scores can be in the formof ranks, frequencies, or loss function
8 For example, consider Medina, Washington, a Seattle suburb near the headquarters of Amazon and Microsoft. With
a population of around 3 000 the median income in 2018 was around $192 000 while the average income was about
308 000 [US 18]. The average income could even be in themillions due to outliers that skew the result of themean, e.g.,
the billionaires Jeff Bezos and Bill Gates. However, such outliers may be removed from local statistics and only appear
in national aggregates [And21, Section 11.2.1.5].

4

1.3 Contributions

scores, and applications include federated learning with compressed gradients [BWAA18], em-
pirical risk minimization [BST14], and digital goods auctions [MT07] (Section 6.1.1).
Heavy hitters, also known as top-𝑘 , are the 𝑘 most frequently appearing elements in a data set.

A special heavy hitter is themode, themost frequent element. As stated before, heavy hitters are
often collected to learn common patterns and trends, e.g., frequently typed new words [App16,
App17], common user settings [EPK14, FPE16a], and often shared articles [RSP+20].

1.3 Contributions

Previouswork onDPmedian (resp., DP heavy hitters), either require a large number of parties to
be accurate [STU17, WGSX20] (resp., [App16, DKY17, EPK14, FPE16a]) or rely on a trusted third
party [DL09, McS09, NRS07] (resp., [RSP+20, Rog20]). General MPC solutions for DP statistics
cannot scale to large data set or domain sizes [EKM+14, PL15]. Relatedwork is discussed inmore
detail in Section 3.
Our protocols provide novel alternatives for DP statistics that are efficiently computable even

for large data or domain sizes without a trusted party. Our contributions are as follows:

• Our protocols EMmed and EM∗ securely compute the DP median with a running time sub-
linear in the domain size, and support general order statistics (e.g., min, max, percentiles).
Protocol EM∗ is extensible to decomposable aggregate functions, allowing efficient aggre-
gation over distributed data sets as found inMapReduce-style frameworks.

• OurprotocolsHHandPEM securelydiscoverDPheavyhitters. HHhasa running time linear
in the data size and supports unknown domains, PEM is sublinear in the size of the known
domain.

• We implement our protocols with secure computation frameworks, prove the security of
our protocols against semi-honest (passive) adversaries, and discuss extension for mali-
cious (active) adversaries (Sections 5.2.6, 6.2.8, 7.2.4).
Protocol EMmed is implemented in ABY [DSZ15a], EM∗ is implemented in SCALE-MAMBA
[AKR+20],HH and PEM are implemented in SCALE-MAMBA as well as MP-SPDZ [Kel20].

• Our protocols provide high accuracy even for small data sizes, which is themost challeng-
ing regime for DP.
We analyze the accuracy of our protocols (Sections 5.1.6, 6.1.5, 7.1) and empirically com-
pare them to related work (Sections 5.3.7, 6.3.5, 7.3.5).

• Our protocols achieve efficient running times of seconds tominutes in aWANwith 100ms
delay and 100Mbits/s on modest hardware with 4 CPU cores at 3.3GHz and mainly 2GB
RAM (see Section 4.4.1 for details).
We analyze the running-time complexity of our protocols (Sections 5.2.5, 6.2.7, 7.2.3), and
measure running time and communication in real-world networks (Sections 5.3, 6.3, 7.3).

1.4 Our Protocols: EMmed, EM∗, HH, PEM

In this section, we give an overview of our protocols EMmed, EM∗, HH, and PEM. First, we need
to informally describe DP mechanisms, which we later formalize in Section 2.2.4. Then, we de-

5

1 Introduction

scribe implementation challenges regarding MPC of DP. Finally, we describe our protocols and
how they address these challenges.

DP Mechanisms

So far, we said that differential privacy ensures randomized outputs. Inmore detail, randomized
algorithms, called mechanisms in DP literature, provide the randomization either via additive
noise or probabilistic selection. Additive noise is used in the Laplace mechanism LM: Given a
data set𝐷 anda function 𝑓 to evaluate, e.g., themedian, LMoutputs 𝑓 (𝐷)+𝑙 , where 𝑙 is noise from
the Laplace distribution parameterized with privacy parameter 𝜖. Probabilistic selection is used
by the exponential mechanism EM: Output 𝑟 of EM is selected with probability proportional to
exp(𝑢 (𝐷, 𝑟)𝜖), where utility function𝑢 scores how “close” 𝑟 is to the desired output 𝑓 (𝐷). Higher
scores translate to higher selectionprobabilities. Note that scores andprobabilities for the entire
output domain of 𝑓 must be computed. The Gumbel mechanism GM provides the same output
distribution as EM by selecting the element with the largest noisy utility score, where noise is
sampled from the Gumbel distribution.
We later show that EM provides better accuracy than LM for the median (Section 3.6.1, Sec-

tion 6.1.5), hence, we use EM in our protocols. In fact, most of our protocols – namely, EMmed,
EM∗, and PEM – are build upon the exponential mechanism EM and only HH implements the
Laplacemechanism LM.

Implementation Challenges & Design Considerations

Let𝔇 denote the data domain and 𝐷 = {𝑑1, . . . , 𝑑𝑛 } ∈ 𝔇𝑛 the combined data of all parties. We
identify and address the following key challenges for efficient computation of the exponential
mechanism, especially withMPC:

(i) Large domains: the running time complexity of EM is linear in the domain size |𝔇| as prob-
abilities for all possible outputs in𝔇 are computed.

(ii) Costly exponentiation: a straightforward implementation of EM requires |𝔇| exponentia-
tions, which is prohibitive for MPC [ABZS13, AS19, DFK+06, Kam15].

Additionally, we investigate trade-offs between running time and privacy as well as accuracy:

(iii) Balancing trade-offs: standard EM neither considers a relaxation of DP nor does it permit
a parameterized trade-off between running time and accuracy.

Our protocols tackle these challenges by partitioning the domain, eliminating secure expo-
nentiation, and enabling parameterized trade-offs.

Our Protocols

EMmed (Section 5) is a two-party protocol to securely compute the DPmedian with EM and can
be extended tomultiple parties (Section 5.2.7). Our protocol EMmed

(i) handles large domains by operating over sorted (subset of the) data with running time sub-
linear in the domain size,

6

1.4 Our Protocols: EMmed, EM∗,HH, PEM

(ii) avoids costly exponentiations by leveraging a data-independent utility functionwhose ex-
ponentiations canbe computed locally; the key insight being that an element’s utility score
corresponds to its position in the sorted data,

(iii) allows a trade-off between running time and privacy relaxation by pruning the data if its
size is not sublinear in the domain size: Pruning from Aggarwal et al. [AMP10] lets EMmed

efficiently support large data sets as only a small subset of the datamust be sorted securely.
However, pruning relaxes DP and allows only limited group privacy (Section 5.3.3).

EM∗ (Section 6) is a multi-party protocol to securely evaluate EM for decomposable utility
functions illustrated for the DP median. We also implement GM∗, a variation of EM∗ based on
the Gumbel mechanism GM. Our protocol EM∗

(i) handles large domains by iteratively partitioning and selecting domain subranges of de-
creasing size with running time sublinear in the domain size,

(ii) avoids costly exponentiations via decomposable utility functions whose local partial eval-
uations canbe efficiently combined similar toMapReduce-style frameworks; i.e., givende-
composableutility function𝑢 (𝐷, ·) = ∑𝑛

𝑖=1 𝑢 (𝑑𝑖 , ·) local exponentiations𝑥𝑖 (·) = exp(𝑢 (𝑑𝑖 , ·)𝜖)
can be combined as exp(𝑢 (𝐷, ·)𝜖) = ∏𝑛

𝑖=1 𝑥𝑖 (·) (Section 6.1.1),

(iii) allowsaparameterized trade-offbetween running timeandaccuracy:many iterationswith
few subranges is faster, however, few iterations with many subranges improve accuracy
(Section 6.3.4).

HH (Section 7) is a multi-party protocol to securely discover DP heavy hitters for small data
sizes with unknown domain via LM. HH is based on the sketch byMisra and Gries [MG82], i.e., a
space-efficient data structure, and our protocol

(i) handles large domains by operating over the small data set, keeping amapof frequent data
elements and their approximate counts, with a running time linear in the small data size,

(ii) avoids costly exponentiations by implementing the Laplace mechanism, which does not
require exponentiation,

(iii) allows a parameterized trade-off between running time and accuracy: smaller map size is
faster, however, larger map size improves accuracy (Sections 7.1.3, 7.3.5).

PEM (Section 7) is a multi-party protocol to securely discover DP heavy hitters for arbitrary
data sizes with known domain via GM. PEM is based on a local-model protocol by Wang et
al. [WLJ19], and our protocol

(i) handles large domains by iteratively selecting domain bit-prefixes of increasing size from
disjoint subsets of input parties with a running time sublinear in the domain size,

(ii) avoids costly exponentiations by implementing the Gumbel mechanism, which does not
require exponentiation,

(iii) allows a parameterized trade-offbetween running time and accuracy: gathering small pre-
fixes frommany small groups is faster, however, largeprefixes fromfew large groups improve
accuracy (Sections 7.1.2, 7.3.5). WhileHH ismore accurate for small data sets,PEM is faster
for larger data sets.

7

1 Introduction

1.5 Structure

The remainder of this thesis is structured as follows.

Chapter 2 presents preliminaries and definitions for cryptographic primitives and anonymiza-
tion techniques employed in this thesis. First, we define secure multi-party computation,
common security models, namely, semi-honest (passive) and malicious (active) adver-
saries, and implementation paradigms, namely, garbled circuits and secret sharing. Then,
we briefly summarize previous anonymizationmethods leading to differential privacy. Fi-
nally, we formalize differential privacy, list its properties, and detail mechanisms to satisfy
this privacy notion.

Chapter 3 discusses relatedwork. First, we compare different privacymodels, mainly, the local,
central and MPC model of DP. Then, we describe related work combining MPC and DP
with a focus on the exponentialmechanism. We overview techniques to simplify sampling
from the exponential mechanism, describe the influence of limited machine precision on
DP, and discuss decomposability in the context of DP. Finally, we survey related work for
DPmedian and DP heavy hitters grouped by the before mentioned privacymodels.

Chapter 4 describes our methodology to address the research question stated above. We first
detail howweassess security of ourprotocols via simulation-basedarguments, andhowwe
assess privacy by accounting for the worst-case privacy loss. Then, we detail our method-
ologies to assess accuracy, mainly, absolute error for themedian and non-cumulative rank
for heavy hitters, and to assess efficiency, i.e., running time and communication of our im-
plementations in aWAN.

Chapter 5 presents our secure two-party protocolEMmed for rank-based statistics, illustrated for
the DPmedian. First, we describe a high-level overview of EMmed, its building blocks, and
howwe satisfy DP. To support large data sets, we consider pruning. Pruning requires a pri-
vacy relaxation whose influence on accuracy and privacy we discuss and evaluate. Then,
we formalize EMmed and prove its semi-honest security. We detail extensions to EMmed for
multiple parties andmalicious adversaries. Finally, we empirically evaluate our privacy re-
laxation and its accuracy, measure running time and communication of EMmed inmultiple
real-world WANs between Ohio and N. Virgina, Canada, and Frankfurt, respectively, and
compare EMmed to our closest related work.

Chapter 6 presents our securemulti-party protocolEM∗ for decomposable aggregate functions.
First, wedefinedecomposability and list applicationswithdecomposable utility functions,
which includes the median. Furthermore, we leverage decomposability to divide the data
domain in subranges, and iteratively select increasingly smaller subranges, until we find
theDPmedian. Then, we discuss accuracy for the DPmedian, and detail multiple alterna-
tives for secure exponentiations to compute selection weights. We proof the semi-honest
security of our differentially private protocol EM∗ and detail an extension formalicious ad-
versaries. Finally, we evaluate running time and communication of EM∗ and its variation
GM∗ in a real-worldWAN (Frankfurt–Ohio) and compare accuracy to related work.

Chapter 7 presents our securemulti-party protocolsHH andPEM for DP heavy hitters. First, we
present a non-private approach and a local-model protocol to discover heavy hitters on
which we base our protocols HH and PEM, respectively. We adapt the existing approaches

8

1.5 Structure

for differential privacy in the central model with a trusted third party. Then, we replace the
trusted third party withMPC, detail optimizations of ourMPC protocol, and show that it is
semi-honestly secure. Finally, wemeasure running time as well as communication for HH
andPEM in a real-worldWAN (Frankfurt–Ohio), and compare accuracy to the state-of-the-
art solution in the local model [WLJ19].

Chapter 8 concludes this thesis where we summarize our main insights and contributions per
chapter.

9

2 Preliminaries

In Section 2.1, we present preliminaries for secure multi-party computation (MPC). In Sec-
tion 2.2, we describe preliminaries for differential privacy (DP). We assume a familiarity with
basic mathematical notation and present some notation and general preliminaries next.
Algorithm. An algorithm 𝑓 is a finite sequence of operations applied on an input 𝑖 to produce

anoutput𝑜, denotedas𝑜 = 𝑓 (𝑖). A (cryptographic) protocol is adescriptionof the executionof al-
gorithms run jointly bymultiple parties, including their interactions, the structure of exchanged
messages (e.g., encryption method, number representation) and how they are processed. Algo-
rithms are modelled as Turing machines which read inputs from an input tape, perform opera-
tions on a working tape, and write the output to an output tape. Probabilistic polynomial-time
(PPT) algorithms run in time that is polynomial in the length of the input and are equippedwith
an additional random tape initializedwith randomness to allownon-deterministic behavior. We
use PPT algorithms to model computationally bounded adversaries trying to break secure pro-
tocols whose complexity is governed by a security parameter 𝜅 . The security parameter is com-
monly given to the adversary as input in unary encoding, i.e., 1𝜅 , which we also assume but do
not explicitly state. In protocol descriptions, we use upper case letters mainly to denote arrays,
i.e., ordered, indexed lists, andwrite the index in square brackets. For example, 𝐴 [𝑖] refers to the
value at index 𝑖 in array 𝐴. We also use 𝑥 ← 𝑦 to denote assignment of value 𝑦 to variable 𝑥 .
Big O notation describes asymptotic behavior of functions (and the algorithms implement-

ing them) where 𝑓 (𝑛) = 𝑂 (𝑔 (𝑛)) denotes that 𝑔 (𝑛) upper bounds | 𝑓 (𝑛) | up to constant factors.
Formally, | 𝑓 (𝑛) | ≤ 𝑐 · 𝑔 (𝑛) for some 𝑐 > 0 and all 𝑛 larger than some threshold.
Data set and domain.Weconsider a set of partiesP = {𝑃1, . . . , 𝑃𝑛 }, where party𝑃𝑖 holds a data

element 𝑑𝑖 (also called datum), and 𝐷 denotes their combined data set (or database). The data
set𝐷 = {𝑑1, . . . , 𝑑𝑛 } ∈ 𝔇𝑛 consists of elements from data domain𝔇. Duplicates are non-distinct
data elements, i.e., 𝑑𝑖 = 𝑑𝑗 with 𝑖 ≠ 𝑗 . A range [𝑎, 𝑏] over domain 𝔇 is the set containing all
domain elements 𝑥 ∈ 𝔇 satisfying 𝑎 ≤ 𝑥 ≤ 𝑏 and (𝑎, 𝑏] denotes the half-open range excluding 𝑎
(likewise [𝑎, 𝑏) excludes 𝑏).
NumberRepresentation.Wemainly operate on integers (ℤ)which allowmore efficient secure

protocols [ABZS13]. The subset of integers from 0 to 𝑝 − 1 are denoted ℤ𝑝 , which is a field if 𝑝 is
prime. Rational numbers (ℚ) canbe expressed as integers viafixed-point number representation.
A binary number of bit-length 𝑏 can represent 𝑑 ∈ ℚ as 𝑑 ′ ∈ ℤ if 𝑑 = 𝑑 ′ · 2−𝑓 with −2𝑏−1 + 1 ≤
𝑑 ′ ≤ 2𝑏−1 − 1 and scaling factor 2−𝑓 where 𝑓 ∈ ℕ [CDH10, Section 2]. Real numbers (ℝ) are
approximated via floating-point number representation. We adopt the notation from Aliasgari
et al. [ABZS13] and represent a floating-point number 𝑓 as (1 − 2𝑠) (1 − 𝑧) · 𝑣 · 2𝑥 with sign bit
𝑠 set when the value is negative, zero bit 𝑧 only set when the value is zero, 𝑙𝑣 -bit significand 𝑣 ,
and 𝑙𝑥-bit exponent 𝑥 . Thus, a floating point value 𝑓 is a 4-tuple (𝑣, 𝑥, 𝑠 , 𝑧). To refer to, e.g., the
significand𝑣 of 𝑓 wewrite 𝑓 .𝑣 . Note thatwe sometimesusea fractionwitha small denominator in
our protocol description (e.g., 𝑛/2) but implicitly assume fractions (and the values they interact
with) to be expressed as a scaled integer and only distinguish between operations on integers
and floating-point numbers.

11

2 Preliminaries

Probability. A random variable 𝑋 can take a value 𝑥𝑖 from a sample space Ω with probability
𝑝𝑖 , which we write as 𝑝𝑖 = Pr[𝑋 = 𝑥𝑖]. A (probability) distribution is a collection of probabilities
for all possible samples. The probability mass is the sum (resp., integral) of a subset of samples
from a discrete (resp., continuous) distribution. Probabilities are positive and their total mass
(for all of Ω) equals 1. Unnormalized probabilities whose total mass is not 1 are called weights.
The cumulative distribution function 𝐹 (𝑥𝑖) = Pr[𝑋 ≤ 𝑥𝑖] gives the probability mass for all 𝑥𝑗 ∈ Ω
with 𝑥𝑗 ≤ 𝑥𝑖 . We let 𝑋 ∼ 𝑃 denote that random variable 𝑋 follows probability distribution 𝑃 and
sampling refers to the computation of a sample 𝑋 ∼ 𝑃 given 𝑃 . The expected value of a random
variable 𝑋 over a discrete distribution is 𝔼[𝑋] = ∑𝑘

𝑖=1 𝑥𝑖𝑝𝑖 where 𝑥1, . . . , 𝑥𝑘 are all possible values
for 𝑋 and their corresponding probabilities are 𝑝1, . . . , 𝑝𝑘 .
Negligible. A function 𝑓 : ℕ→ ℝ is called negligible if for every positive polynomial 𝑝 (·) there

exists an 𝑁 such that for all 𝑛 > 𝑁 , 𝑓 (𝑛) < 1
𝑝 (𝑛) . We write negl(𝑥) to denote a function negligible

in parameter 𝑥 , e.g., negl(𝑥) = 2−𝑥 .

2.1 Secure Multi-party Computation

Securemulti-partycomputation (MPC)allowsasetof twoormorepartiesP = {𝑃1, . . . , 𝑃𝑛 }, where
party 𝑃𝑖 holds sensitive input 𝑑𝑖 , to jointly compute a function 𝑦 = 𝑓 (𝑑1, . . . , 𝑑𝑛) while protecting
their inputs [Gol09, HL10]. The secure computation must be correct, i.e., the correct 𝑦 is com-
puted, and secret, i.e., only 𝑦 and nothing else is revealed. The secrecy property is typically called
privacy in the literature, however, we call it (input) secrecy, to distinguish it from (output) pri-
vacy. We assume the existence of secure communication channels for each pair of input parties,
as commonly provided by secure computation frameworks [AKR+20, DSZ15a, Kel20].
In the following, we describe common security models in Section 2.1.1. In Section 2.1.2, we

describe cryptographic primitive and briefly summarize implementation paradigms for MPC.
Then, we detail the paradigms used in our protocols, namely, garbled circuits in Section 2.1.3
and secret sharing in Section 2.1.4, and conversions between them in Section 2.1.5. Finally, we
list basic MPC protocols (e.g., secure comparison) used in our protocols in Section 2.1.6.

2.1.1 Security Models

Security guarantees of MPC are mainly based on the behavior and computational power of an
adversary, who corrupts a subset of the parties, views their internal state, reads received mes-
sages and, possibly, alters the corrupted parties actions during the protocol execution [Gol09,
Section 7.1.1], [HL10, Section 1.1], [LK15, Section 10].

Behavior

In the semi-honest model a passive adversary behaves honestly and does not deviate from the
protocol. However, the adversary tries to infer additional information that should remain se-
cret from the messages received during the protocol execution. Semi-honest adversaries are
also called honest-but-curious. In themaliciousmodel an active adversary can deviate from the
protocol execution, e.g., altermessages. Typically, maliciously-secure protocols are less efficient
than protocols in the semi-honest model [HL10, Section 1.1].

12

2.1 SecureMulti-party Computation

Computational Power

An adversary’s computational power further specifies the security model, leading to different
security notions. Computational indistinguishability refers to security against adversaries with
bounded computational power (PPT) where the computational complexity is governed by a se-
curity parameter 𝜅 .

Definition1 (Computational Indistinguishability). Two sets of indexeddistributionsX = {𝑋𝑖 }𝑖 ∈ℕ,
Y = {𝑌𝑖 }𝑖 ∈ℕ are said to be computational indistinguishable, denoted asX c≈ Y, if for every PPTA
and𝜅 ∈ ℕ

|Pr[A(𝑋 ∼ 𝑋𝜅) = 1] − Pr[A(𝑌 ∼ 𝑌𝜅) = 1] | ≤ negl(𝜅).

In the presence of adversarieswith unbounded computational resources, twonotions of secu-
rity canbedistinguished. Onenotion is statistical indistinguishability, where a statistical security
parameter 𝜎 restricts the probability of an adversary to learn a party’s input. More formally, the
probability (for finiteΩ) is bounded by the statistical distance

1
2

∑︁
𝑟 ∈Ω
|Pr[𝑋 ∼ 𝑋𝜅 = 𝑟] − Pr[𝑌 ∼ 𝑌𝜅 = 𝑟] |.

Theother notion is information-theoretic security, where the statistical security parameter can
be seen as infinite, i.e., an adversary has zero probability to learn any party’s input.

Our Model

In this work, we consider the semi-honest model with computationally-bounded parties and
we discuss extensions of our protocols to the malicious model. The MPC frameworks, in which
we implement our protocols (described in Section 4.5), use security parameter 𝜅 as well as an
additional statistical security parameter 𝜎 [AKR+20, DSZ15a, Kel20]. Utilizing both security pa-
rameters simultaneously is interpreted as allowing security violations with probability at most
2−𝜎 + negl(𝜅) [EKR+18, Section 2.1].

2.1.2 Primitives & Paradigms

First, we describe basic building blocks for MPC protocols, also called cryptographic primitives.
Then, we provide a brief overview of implementation paradigms for MPC. With these prelimi-
naries, we detail the MPC paradigms we employ, namely, garbled circuits and secret sharing, in
the following Sections 2.1.3 and 2.1.4, respectively.

Cryptographic Primitives

Hash Function. Ahash function𝐻 : {0, 1}∗ → {0, 1}𝑙 is a deterministic function that compresses
an input, represented as binary strings of arbitrary length, to an output of fixed bit-length 𝑙 . A
cryptographic hash function satisfies additional properties, namely, pre-image resistance, i.e.,
given image 𝐻 (𝑥) it is hard to find pre-image 𝑥 , and collision-resistance, i.e., finding any 𝑥, 𝑥 ′
(𝑥 ≠ 𝑥 ′) with collision 𝐻 (𝑥) = 𝐻 (𝑥 ′) is hard. Hardness is defined via a PPT adversary who only
succeeds infinding inputs as abovewithprobabilitynegligible in 𝑙 (often set to𝜅). While it should
be efficient to compute𝐻 (𝑥) with knowledge of 𝑥 , the reverse is decidedly not the case – a prop-
erty known as one-way.

13

2 Preliminaries

Encryption. A symmetric encryption scheme consists of three PPT algorithms Gen, Enc, Dec.
Algorithm Gen takes 1𝜅 as input and outputs a key 𝑘 . Encryption algorithm Enc transforms a
plaintext𝑚 into a ciphertext 𝑐 where the transformation is controlled by a secret key 𝑘 . Wewrite
𝑐 ← Enc𝑘 (𝑚) to denote this transformation where key 𝑘 and plaintext𝑚 are input to Enc which
outputs 𝑐 . Decryption algorithmDec reverses the transformation, i.e.,𝑚 ← Dec𝑘 (𝑐).
An asymmetric encryption scheme lets Gen produce two keys, a public key for encryption Enc

(publicly available), and a secret key for decryptionDec (kept secret).
Symmetric schemesare computationallymoreefficient thanasymmetric schemesas the latter

require computational hardness assumptions (e.g., factoring, discrete logarithm) [IR89, CO15]
and typically uses modular exponentiations [NP01]. Encryption schemes are basic building
blocks for cryptographicprotocols. We refer toGoldreich [Gol09, Section5.2] for technicaldetails
of encryption schemes.
Oblivious Transfer. A powerful cryptographic primitive is oblivious transfer (OT) [Rab81]. In

principle, OT is equivalent to MPC [Kil88], i.e., OT suffices to perform any MPC and MPC can
provideOT, and several OT protocols exist [BM89, NP01, CO15]. In 1-out-of-𝑘 OT a receiver re-
ceives one of 𝑘 possible secrets from a sender, without the sender learningwhich one. OT proto-
cols require costly computations, i.e., asymmetric cryptography [NP01]. However,OTextensions
[Bea96, IKNP03] can efficiently extend few base OTs into many with more efficient symmetric
cryptography. For a concreteOT protocol description, we refer to “SimplestOT” fromChou and
Orlandi [CO15, Figure 1] which is based on the Diffie-Hellman key exchange [DH76].

Implementation Paradigms

Thereare twomain implementationparadigms forMPC[EKR+18,KPR18]: garbledcircuits [Yao86]1,
where the parties construct a (large, encrypted) Boolean circuit and evaluate it at once, and se-
cret sharing [Sha79, Bla79] where the parties interact for each arithmetic circuit gate. In general,
the former allows for constant number of rounds but requires larger bandwidth (as fewer, but
bigger messages are sent), and the latter has low bandwidth (small messages per gate) and high
throughput, where the number of rounds depends on the circuit depth. Alternative paradigms
are (partially)homomorphic encryption allowing, e.g., secureevaluationsofeitheraddition [Pai99]
or multiplication [RSA78, ElG85], and fully homomorphic encryption [Gen09] supporting both.
We focus on schemes based on secret sharing and garbled circuits as they are more efficient for
general purpose computations [EKR+18] and are supported by mature frameworks for secure
computation (see Section 4.5).
Recent MPC typically operates in two phases [BDOZ11, DPSZ12, KPR18]:

• a slow offline phase to pre-compute correlated randomness,

• and a fast online phase relying on thematerial from the offline phase.

Notably, the offline phase does not depend on the inputs or what computation is performed ex-
cept for an upper bound on the number of requiredmultiplications [BDO14]. The offline phase
computes, e.g., base OTs for garbled circuits (Section 2.1.3) or Beaver triples [Bea91] for secret
sharing (Section 2.1.4). The online phase is generally more efficient since the offline phase re-
quires asymmetric cryptography [KRSW18]. Our evaluations always consider the entireMPCex-
ecution andmeasure the offline and online phase together (Section 5.3, 6.3, 7.3).
1 Yaodescribed a garbled circuit for twoparties in an oral presentation about secure function evaluation [Yao86], the first
written description is by Goldreich et al. [GMW87], and the first proof was given by Lindell and Pinkas [LP09].

14

2.1 SecureMulti-party Computation

Garble
Gb

Encode
En

Eval
Ev

Decode
De

1𝜅

𝑓

garbled circuit 𝐹

garbled
input J𝑥K

encoding
info 𝑒

input 𝑥

garbled
output J𝑦K

decoding info 𝑑

𝑓 (𝑥)

Figure 2.1: Components of a Garbling Scheme G = (Gb,En,De,Ev, ev) [BHR12, Fig. 1]. Gb produces string encodings:
garbled function 𝐹 , encoding function 𝑒 , and decoding function 𝑑 . En(𝑥, 𝑒) produces garbled input J𝑥K.
Ev(J𝑥K, 𝐹) outputs the garbled output J𝑦K, which can be decoded to the actual output 𝑦 if 𝑑 is known. Final
output 𝑦 = De(𝑑, J𝑦K) must equal ev(𝑓 , 𝑥) .

2.1.3 Garbled Circuits

Garbled circuits are cryptographic Boolean circuits. Bellare et al. [BHR12] formalize a scheme to
create and evaluate garbled circuits, whose components are shown in Figure 2.1 and described
in the following.

Definition 2 (Garbling Scheme). Let string refer to a sequence of bits 𝑏 ∈ {0, 1} of finite length
used to describe a function, e.g., as a circuit. A garbling scheme is the tuple of algorithms G =

(Gb,En,De,Ev, ev), where Gb is probabilistic and all others are deterministic.

• (𝐹 , 𝑒 , 𝑑) ← Gb(1𝜅 , 𝑓): Takes as input a security parameter 𝜅 ∈ ℕ and the string 𝑓 describing
the original function to evaluate, ev(𝑓 , ·), and outputs string 𝐹 describing the garbled func-
tion, Ev(𝐹 , ·), string 𝑒 describing an encoding function, En(𝑒 , ·), and string 𝑑 describing a
decoding function,De(𝑑, ·), as defined in the following.

• J𝑥K ← En(𝑒 , 𝑥) is an encoding function, described by string 𝑒 , that maps an initial input
𝑥 ∈ {0, 1}𝑙 to a garbled input J𝑥K.

• 𝑦 ← De(𝑑, J𝑦K) is a decoding function, described by string𝑑 , thatmaps a garbled output J𝑦K
to a final output 𝑦 .

• J𝑦K← Ev(𝐹 , J𝑥K) is an evaluation function, described by string 𝐹 , that maps a garbled input
J𝑥K to a garbled output J𝑦K.

• 𝑦 ← ev(𝑓 , 𝑥) is an evaluation function, described by string 𝑓 , that maps the input 𝑥 to the
output 𝑦 , where ev(𝑓 , ·) : {0, 1}𝑙 → {0, 1}𝑚 is the original functionwe want to garble.

A garbling scheme fulfills the following properties:

Correctness: Decoded garbled outputDe(𝑑,Ev(𝐹 ,En(𝑒 , 𝑥))) equals actual output ev(𝑓 , 𝑥),

Secrecy: (𝐹 , J𝑥K, 𝑑) reveals nothing beyond 𝑓 (𝑥).

For further technicaldetails,we refer toBellareetal. [BHR12]. Inourprotocols,we letEn(·),De(·)
denote theencoding (garbling) anddecoding (de-garbling) operations andomit the correspond-
ing encoding and decoding strings 𝑒 , 𝑑 .
To describe Boolean circuits, we require some notation. A binary number 𝑏 ∈ {0, 1}𝑙 is rep-

resented as a sequence of bits 𝑏 = 𝑏𝑙 . . . 𝑏1. We say a bit 𝑏𝑖 in 𝑏 is set if it is 1 and unset if it is 0.
Boolean circuits consist of a series of gates realizing logical operations. Gates are connected by

15

2 Preliminaries

wires which feed the output from one gate as input into other gates. A basic logical operation
with a single input and output bit is NOT (with operator ¬), outputting the inverse of its input
(i.e., 0 on input 1, 1 on input 0). Basic logical bit operations with two input bits and one output
bit are AND (∧), returning bit 1 only if both input bits are 1,OR (∨), returning 1 only if both input
bits are not 0, and XOR (⊕), returning 1 only if both input bits differ; otherwise 0 is returned by
these operations. The operations handle a sequence of bits as inputs by applying the operation
bit-wise. Also, we extend a single bit 𝑐 ∈ {0, 1} to a sequence 𝑐 . . . 𝑐 ∈ {0𝑙 , 1𝑙 } if 𝑐 is one of the
inputs of an operation on 𝑙 bits, e.g., 𝑥𝑙 . . . 𝑥1 = XOR(𝑏, 𝑐) with 𝑥𝑖 = 𝑏𝑖 ⊕ 𝑐 .
Having defined the basic terms of circuits, we can now describe the original semi-honest gar-

bling scheme from Yao [Yao86].

Yao’s Garbled Circuits

Yao’s garbled circuit protocol consists of two parties: the garbler (or generator) with input 𝑥1 ∈
{0, 1}𝑙 , which creates the garbled circuit, and the evaluator with input 𝑥2 ∈ {0, 1}𝑙 , which evalu-
ates the garbled circuit without learning intermediate values.

Garbling: The garbler executes (𝐹 , 𝑒 , 𝑑) ← Gb(1𝜅 , 𝑓), where 𝑒 contains random keys (also called
wire labels) for each wire, 𝐹 is a representation of the garbled circuit for 𝑓 , and 𝑑 maps the
last output (keys) to actual bits. Then, the garbler garbles his input as J𝑥1K← En(𝑒 , 𝑥1).
In more detail, the garbler transforms 𝑓 into a Boolean circuit and associates two random
keys 𝑘𝑤0 , 𝑘𝑤1 ∈ {0, 1}𝜅 for each possible bit value (0, 1) on each wire 𝑤 . Assume each gate
𝑔 has two input wires 𝑖 , 𝑗 and one output wire 𝑞 and 𝑔 (·, ·) denotes the logical operation
provided by the gate. For each gate, the garbler uses (input wire) keys 𝑘 𝑖𝑏𝑖 , 𝑘

𝑗
𝑏 𝑗
, for all 𝑏𝑖 , 𝑏 𝑗 ∈

{0, 1}, to encrypt (output wire) keys 𝑘𝑞
𝑔 (𝑏𝑖 ,𝑏 𝑗) , i.e.,

Enc
𝑘 𝑖𝑏𝑖

,𝑘
𝑗
𝑏𝑗

(
𝑘𝑞
𝑔 (𝑏𝑖 ,𝑏 𝑗)

)
,

with a suitable symmetric encryption scheme Enc2. As an example, an AND-gate results in
the following ciphertexts, also called garbled table:



Enc
𝑘 𝑖0,𝑘

𝑗
0

(
𝑘𝑞0

)
Enc

𝑘 𝑖0,𝑘
𝑗
1

(
𝑘𝑞0

)
Enc

𝑘 𝑖1,𝑘
𝑗
0

(
𝑘𝑞0

)
Enc

𝑘 𝑖1,𝑘
𝑗
1

(
𝑘𝑞1

)


,

where the rows are randomly permuted. Overall, the garbled circuit 𝐹 is the collection of
garbled tables required to compute 𝑓 .

Sending: After the garbling, the garbler sends the garbled circuit 𝐹 , his garbled input J𝑥1K and
decoding information 𝑑 to the evaluator.

2 For example, AES [DSZ15a, Section V.A]. Alternatively, with cryptographic hash function𝐻 and concatenation denoted
as | |, one can set Enc

𝑘 𝑖
𝑏𝑖
,𝑘
𝑗
𝑏𝑗

(𝑥) = 𝐻 (𝑘 𝑖𝑏𝑖 | | 𝑘
𝑗
𝑏 𝑗
| | 𝑞) ⊕ 𝑥 [HEKM11, Section 3.4]

16

2.1 SecureMulti-party Computation

Input Retrieval: Evaluator (as receiver) and garbler (as sender) execute anOTprotocol such that
the evaluator only learns her garbled input J𝑥2K, i.e., keys corresponding to the bits in 𝑥2,
and the garbler does not learn the evaluator’s input bits.

Evaluation: The evaluator evaluates the garbled circuit for J𝑥K = (J𝑥1K, J𝑥2K) and outputs the re-
sultDe(𝑑,Ev(𝐹 , J𝑥K)).

Note that the evaluator cannot learn both keys per wire as this allows evaluation of the circuit
(on fixed 𝑥1) with all possible values for 𝑥2 which reveals more than intended [LP09, Section 1].
Many optimizations of Yao’s initial protocol have been developed, including (but not limited to)
point-and-permute (decrypting one table entry instead of all via a “hint” bit) [BMR90], garbled
row reduction (reducing the table size by choosing keys such that one ciphertext is 0) [NPS99],
andFreeXOR(removingdecryptions forXORgatesby setting their output key tobe theXORof the
input keys) [KS08]. Furthermore, this semi-honest two-party scheme can be extended to mali-
ciousparties (e.g., cut-and-choose: constructingmultiple garbledcircuits, openingandchecking
one half randomly, and using majority output of the rest) [HL10, Section 4.1.1] and generalized
tomultiple parties (e.g., distributed circuit generation with secret-shared wire labels) [BMR90].

2.1.4 Secret Sharing

A (𝑡 , 𝑛)-secret sharing scheme splits a secret 𝑠 into 𝑛 shares 𝑠𝑖 such that at least 𝑡 shares are re-
quired to reconstruct the secret. Evans et al. [EKR+18] formally define a secret sharing scheme as
follows:

Definition 3 (Secret Sharing Scheme). LetS be the domain of secrets andT the domain of shares.
Let Shr : S → T 𝑛 be a (possibly randomized) sharing algorithm, and Rec : T 𝑙 → S be a recon-
struction algorithm. A (𝑡 , 𝑛)-secret sharing scheme is a pair of algorithms (Shr,Rec) that satisfies
these two properties:

Correctness: Let (𝑠1, . . . , 𝑠𝑛) = Shr(𝑠) denote the sharing of 𝑠 among the 𝑛 parties. Then,

Pr
[∀𝑙 ≥ 𝑡 , Rec(𝑠𝑖1 , . . . , 𝑠𝑖𝑙) = 𝑠

]
= 1,

where {𝑖1, . . . , 𝑖𝑙 } ⊆ {1, . . . , 𝑛}.

Secrecy: Any set of shares of size less than 𝑡 does not reveal anything about the secret (in the infor-
mation theoretic sense). More formally, for any two secrets 𝑎, 𝑏 ∈ S and any possible vector
of shares 𝑣 = (𝑣1, . . . , 𝑣𝑙), such that 𝑙 < 𝑡 ,

Pr[𝑣 = Shr(𝑎) |𝑙] = Pr[𝑣 = Shr(𝑏) |𝑙],

where |𝑙 denotes appropriate projection on a subspace of 𝑙 elements.

A scheme with these properties is secure in the semi-honest model; it is even secure in the
maliciousmodel if the reconstruction and secrecy properties hold againstmalicious adversaries
[EKR+18]. We refer to Pullonen et al. [PBS12] for security proofs of secret sharing. We let 〈𝑠 〉 de-
note thevector (𝑠1, . . . , 𝑠𝑛), i.e., the sharingof 𝑠 , andwrite 〈𝑠 〉𝑖 insteadof 𝑠𝑖 ifwewant toemphasize
that it is the share of party 𝑖 . Secret sharing can be realized, e.g., over integers and polynomials,
and we describe these realizations next.

17

2 Preliminaries

Additive Secret Sharing

Our two-party protocol EMmed (Section 5) uses additive secret sharing [DSZ15a, Section III.A] as
well as garbled circuits. For additive secret sharing, we require all values to be in the ringℤ264 and
(implicitly) perform operations on secret shares modulo 264.

Sharing: To construct an additive (2, 2)-sharing of a secret 𝑠 the party holding 𝑠 draws a uni-
formly random 𝑟 ∈ ℤ264 and sends 𝑠 − 𝑟 to the other party, i.e., (𝑟 , 𝑥 − 𝑟) = (𝑠1, 𝑠2) = Shr(𝑠).

Evaluation: Note that additionwith linearly secret-shared values 〈𝑥〉, 〈𝑦 〉 is straightforward since
〈𝑥〉+〈𝑦 〉 = (𝑥1+𝑦1, 𝑥2+𝑦2), as ismultiplicationwithapublic value 𝑧 where 𝑧 ·〈𝑥〉 = (𝑧 ·𝑥1, 𝑧 ·𝑥2).
However,multiplication of secret shared values 〈𝑥〉 and 〈𝑦 〉 requires additional techniques,
e.g., a precomputedBeaver triple 〈𝑎〉, 〈𝑏〉, 〈𝑐〉 such that 𝑐 = 𝑎 ·𝑏 [Bea91]. Given such a triple,
the parties compute 〈𝑥 − 𝑎〉, 〈𝑦 − 𝑏〉, and 𝛼 = Rec(〈𝑥 − 𝑎〉) and 𝛽 = Rec(〈𝑦 − 𝑏〉 to obtain

〈𝑥𝑦 〉 = 〈𝑐〉 + 𝛼〈𝑏〉 + 𝛽 〈𝑎〉 − 𝛼 · 𝛽.

Beaver triplets can be constructed, e.g., via additive homomorphic encryption and oblivi-
ous transfer [DSZ15a, Section III.A 4)&5)]. Analternative technique formultiplicationuses
replicated secret sharing à laMaurer [Mau06]where shares are replicated amongmanypar-
ties.

Reconstruction: The reconstruction takes both shares as inputs and adds the shares to produce
the output, i.e, 𝑠 = 〈𝑠 〉1 + 〈𝑠 〉2 = Rec(𝑠1, 𝑠2).

Shamir’s Secret Sharing

Ourmulti-party protocols EM∗,HH, PEM (Sections 6, 7) use Shamir’s secret sharing [Sha79]. The
geometric intuition behind Shamir secret sharing is that a certain number of points suffice to
uniquely define a curve, i.e., a polynomial of degree 𝑡 − 1 is uniquely determined by 𝑡 points.

Sharing: For a (𝑡 , 𝑛)-secret sharing, a secret 𝑠 is encoded as point 𝑝 (0) of a polynomial 𝑝 with
degree 𝑡 − 1 over a finite field 𝔽. In more detail, 𝑝 (𝑥) = 𝑠 + 𝑐1𝑥 + 𝑐2𝑥2 + · · · + 𝑐𝑡−1𝑥𝑡−1 with
coefficients 𝑐𝑖 ∈ 𝔽 where 𝔽 is, e.g., the set of integers modulo a large prime. The sharing of
𝑠 consists of points of 𝑝 , i.e., (𝑝 (1), . . . , 𝑝 (𝑛)) = (𝑠1, . . . , 𝑠𝑛) = Shr(𝑠). Each party 𝑃𝑖 receives
point 𝑝 (𝑖) and at least 𝑡 points are required to reconstruct 𝑝 and thus 𝑠 .

Evaluation: Addition of shares and multiplication with a public 𝑐 ∈ 𝔽 is straightforward as with
additive secret sharingandcanbedirectlyperformedon theunderlyingpolynomials (resp.,
their points). Multiplication, once again, requires special handling as a naive approach
fails: Let 𝑓𝑎 , 𝑓𝑏 denote the polynomials for secrets 𝑎, 𝑏 then polynomial ℎ (𝑥) = 𝑓𝑎 (𝑥) · 𝑓𝑏 (𝑥)
represents secret 𝑎 · 𝑏 . However, the degree of ℎ is 2𝑡 − 2 (and will increase for furthermul-
tiplications) and it is not random (e.g., it is not irreducible as it is the product of two poly-
nomials) [BGW88]. As before, pre-computed Beaver triples can be used to allow multipli-
cation of secret values. Alternatively, the parties share a value of the product polynomial as
described by Genaro et al. [GRR98, Figure 2].

Reconstruction: Given 𝑘 ≥ 𝑡 shares 𝑠𝑖1 , . . . , 𝑠𝑖𝑘 where 𝐼 = {𝑖1, . . . , 𝑖𝑘 } ⊆ {1, . . . , 𝑛}, the secret 𝑠 can
be reconstructed via polynomial interpolation at point 0, i.e., 𝑠 = ∑

𝑖 ∈𝐼
(
𝑠𝑖

∏
𝑗 ∈𝐼 ,𝑖≠𝑗

−𝑗
𝑖−𝑗

)
.

18

2.1 SecureMulti-party Computation

Conversion Output #Operations #Messages Communication (bits)

GC2SS(J𝑎K) 〈𝑎〉 6𝑙 2 𝑙𝜅 + (𝑙2 + 𝑙)/2
SS2GC(〈𝑎〉) J𝑎K 12𝑙 2 6𝑙𝜅

Table 2.1: Complexity of converting between garbled values and secret shares for 𝑙-bit integers as implemented in ABY
[DSZ15a, Table I], where #Operations refers to the number of symmetric cryptographic operations, #Messages
refers to the number of messages in the online phase, and Communication (sent bits) relies on the security
parameter𝜅 of the symmetric encryption scheme.

MPC Protocol Output #Gates (2-input non-XOR)

XOR(J𝑎K, J𝑏K) J𝑎 ⊕ 𝑏K 0
AND(J𝑎K, J𝑏K) J𝑎 ∧ 𝑏K 𝑙

OR(J𝑎K, J𝑏K) J𝑎 ∨ 𝑏K 𝑙

LT(J𝑎K, J𝑏K) J𝑎 < 𝑏K 𝑙

Mux(J𝑎K, J𝑏K, J𝑐K) J𝑎K if bit 𝑐 = 1 else J𝑏K 𝑙

Add(J𝑎K, J𝑏K) J𝑎 + 𝑏K 𝑙

Sub(J𝑎K, J𝑏K) J𝑎 − 𝑏K 𝑙

Table 2.2: Basic garbled circuits protocols with number of (2-input non-XOR) gates for 𝑙-bit integers [KSS09, Table 2]
used in ABY [DSZ15a, Section III.C] with FreeXOR [KS08].

2.1.5 Conversion between Additive Secret Shares & Garbling

Some operations aremore efficient withMPCbased on secret sharing instead of garbled circuits
and vice versa. For example, addition of 𝑙-bit integers requires 𝑂 (𝑙) gates in a Boolean circuit
but only one gate in an arithmetic circuits with secret sharing. Comparisons, on the other hand,
are more efficient with garbled circuits than secret sharing. To leverage the advantage of both
paradigms in amixed-protocol execution, one requires conversions between them.
Converting an additive secret sharing to a garbled value is straightforward, i.e., one evaluates

a garbled circuit to add the shares. Similarly, evaluating a subtraction circuit for garbled value
J𝑥K and a random value 𝑟 ∈ ℤ264 (chosen by the garbler) produces J𝑥 − 𝑟 K, which the evaluator is
allowed to decode. Thus, the garbler knows 𝑟 and the evaluator 𝑥 −𝑟 , i.e., an additive (2, 2)-secret
sharing of 𝑥 . ABY provides amore efficient conversion based on 1-out-of-𝜅 OT [DSZ15a, Section
IV.B], and we list the complexity of ABY’s conversions in Table 2.1. We denote a conversion from
secret shares to garbled circuits as SS2GC and the reverse as GC2SS.

2.1.6 Basic MPC protocols

In the following, we list the basicMPC protocols required as building blocks for our protocols as
well as their complexities. If not otherwise noted, all protocols operate on integers.

Garbled Circuit Protocols

OurprotocolEMmed requires the logical operations for garbledcircuits listed inTable2.2 andcon-
versions between garbled values and secret shares as listed in Table 2.1 in Section 2.1.5. Tomake
our protocol descriptions clearer, we list Sub as a separate operation, although it is expressed

19

2 Preliminaries

MPC protocol Output / Functionality Rounds Interactive Operations

Rand(𝑏) 〈𝑟 〉, uniform random 𝑏-bit value 𝑟 0 0
Add(〈𝑎〉, 〈𝑏〉) 〈𝑎 + 𝑏〉 0 0
Sub(〈𝑎〉, 〈𝑏〉) 〈𝑎 − 𝑏〉 0 0
Rec(〈𝑎〉) 𝑎 1 1
Mul(〈𝑎〉, 〈𝑏〉) 〈𝑎 · 𝑏〉 1 2
Mux(〈𝑎〉, 〈𝑏〉, 〈𝑐〉) 〈𝑎〉 if bit 𝑐 = 1 else 〈𝑏〉 1 2
Mod2m(〈𝑎〉, 𝑏) 〈𝑎 mod 2𝑏 〉 with public 𝑏 log𝑏 + 2 3𝑏 − 1
Trunc(〈𝑎〉, 𝑏) 〈b𝑎/2𝑏 c〉 with public 𝑏 log𝑏 + 2 3𝑏 − 1
LT(〈𝑎〉, 〈𝑏〉) 〈1〉 if 𝑎 < 𝑏 else 〈0〉 log(𝑙 − 1) + 2 3𝑙 − 4
LE(〈𝑎〉, 〈𝑏〉) 〈1〉 if 𝑎 ≤ 𝑏 else 〈0〉 log(𝑙 − 1) + 2 3𝑙 − 4
EQ(〈𝑎〉, 〈𝑏〉) 〈1〉 if 𝑎 = 𝑏 else 〈0〉 log 𝑙 + 2 2𝑙
Int2FL(〈𝑎〉) 〈𝑎〉FL log𝑣 + 13 log𝑣 (2𝑣 − 3) − 11
AddFL (〈𝑎〉FL, 〈𝑏〉FL) 〈𝑎 + 𝑏〉FL 𝑂 (log𝑣) 𝑂 (𝑣 log𝑣 + 𝑥)
MulFL (〈𝑎〉FL, 〈𝑏〉FL) 〈𝑎 · 𝑏〉FL 11 8𝑣 + 10
LTFL (〈𝑎〉FL, 〈𝑏〉FL) 〈1〉 if 𝑎 < 𝑏 else 〈0〉 6 4𝑣 + 5𝑥 + 4 log 𝑥 + 13

Table 2.3: Basic MPC protocols and their complexity for 𝑙-bit integers, floats with 𝑣-bit significand and 𝑥-bit exponent
[ABZS13, Table 1] [CDH10, Table 5] [EKM+14, Table 6] [Sec09, Table 10]. Per default we operate on integers
andmark secret-shared floats as well as protocols operating on themwith subscript FL.

via Add, i.e., addition of negative number. The more complex operations from Table 2.2 con-
sist mainly of XOR gates, which can be evaluated for free [KS08], and AND gates. For example,
OR(𝑎, 𝑏) is expressed as NOT(AND(NOT(𝑎),NOT(𝑏)) with NOT(𝑎) = XOR(1, 𝑎) andMux(𝑎, 𝑏, 𝑐)
can be represented as XOR(𝑏,AND(XOR(𝑎, 𝑏), 𝑐)). We refer to the ABY documentation [Eng18,
Section 3.2] and Kolesnikov et al. [KSS09] for details about efficient constructions.

Secret Sharing Protocols

Our protocols EM∗, HH, and PEM use MPC protocols based on secret sharing listed in Table 2.3.
We assume pre-computed Beaver triples for multiplication. MPC complexity is typically mea-
sured in the number of interactive operations and rounds [ABZS13, CDH10, EKM+14]. The num-
ber of interactive operations is an abstract measure of computation complexity, and interactive
operations require exchanging messages with other parties. For example, share reconstruction
andmultiplication of shares are interactive operations, whereas addition of shares can be com-
puted locally by each party. The number of rounds is a measure of time complexity, a round can
consist ofmultiple interactive operationswhich are assumed to run in parallel andmessages are
sent in a single batch per round. For example, multiplication with pre-computed Beaver triples
requires 2 interactive operations (share reconstructions) in 1 round (shares can be sent in one
batch).
Per default we operate on integers, but a version of EM∗ also requires floating-point numbers,

andwe use subscript FL to denote protocols operating on floating-point numbers. For example,
Add denotes addition on integers while AddFL denotes its floating-point equivalent.

20

2.2 Differential Privacy

As before, we list Sub as a separate operation, based onAdd, tomake our protocol descriptions
clearer. Note thatMux(𝑎, 𝑏, 𝑐) is implementedwith onemultiplication as𝑏 + (𝑎 −𝑏) · 𝑐 , and in the
offline-online paradigmRand is an element of a pre-computed Beaver triple. For someprotocols
– namely Mod2m, Trunc, LT, LE, EQ – there exist implementations with a constant or a logarith-
mic number of rounds. We present only the complexity for logarithmic round versions, which
provide better performance in practice [AKR+20]. We refer to Catrina and De Hoogh [CDH10,
Table 5] for the complexity of constant-round versions and how pre-computation can reduce
the complexity of logarithmic round versions.

2.2 Differential Privacy

In Section 2.2.1, we briefly discuss privacy notions leading to differential privacy (DP), and de-
scribe its connection to cryptography, before formalizing DP. We describe a notion of DP suited
for MPC in Section 2.2.2. After defining DP, we describe its properties in Section 2.2.3, and how
additive noise and probabilistic selection satisfy DP in Section 2.2.4. In Section 2.2.5, we discuss
noise distributions suitable for distributed deployments of DPmechanisms.

2.2.1 From Syntactic to Semantic Notions of Privacy

Next, we briefly summarize the evolution of privacy notions based onNissim andWood [NW18,
Section 2.2]. Initial research for anonymization considered syntactic privacy notions (e.g., 𝑘-
anonymity [SS98, Sam01], 𝑙-diversity [MKGV07], 𝑡 -closeness [LLV07]), whichplace requirements
on how the anonymized data should look. Typically, syntactic notions are achieved by sup-
pression of identifiers (e.g., name, government id number), detecting quasi-identifiers (unique
combinations of non-identifiers), and coarsening them (e.g., replace values by ranges). For a
thorough and formal overview of syntactic privacy notions, we refer to Desfontaines [Des20,
Section 2]. Notable privacy incidents are due to incomplete suppression (e.g., “anonymized”
search logs contained identifying search terms [BZJ06]), and neglecting auxiliary information
(e.g., “anonymized”Netflixmovie ratingswere linked topublic IMdBprofiles [NS08]), andplenty
of further examples exist [And21, Section 11], [LLSY16, Section 1.1.1], [DKM19, Appendix A],
[DMHVB13, DMRS+15, NSR11, SH12]. Recently, the US census bureau showed that high-level
aggregate statistics (demographic counts in residential areas) suffice to identifymillions of indi-
viduals of the 2010 US census by linking it with commercially available data [DKM19, GAM19].
As a consequence of such reconstruction attacks, first formalized by Dinur and Nissim [DN03],
the US census adopted differential privacy [Abo18].
Differential privacy, introducedbyDwork et al. [Dwo06,DMNS06], is a semantic notion,which

places a requirement on the anonymization mechanismM itself. Informally, when the input
data set ofM changes in a single element3, the effect on the output is bounded. Differential
privacy is inspired by the cryptographic notion of semantic security [GM84], where an adver-
sary seeing the output of an encryption scheme (ciphertext) has at most a negligible change to
infer anything about the input (plaintext)4. However, a semantic privacy notion requires non-
negligible information leakage to allow anymeaningful statistic [DMNS06, Section 1]; if a single

3 As noted by Kifer and Machanavajjhala [KM11], there are two natural ways to interpret “data sets 𝐷,𝐷′ that differ in
a single entry”. A neighboring data set 𝐷′ can be created by either replacing an element in 𝐷 (e.g., [DMNS06]) or by
adding/removing an element (e.g., [Dwo06]). Throughout this work, we will use the add/remove interpretation in ac-
cordance with Li et al. [LLSY16].

4 Except the length of the plaintext.

21

2 Preliminaries

individual cannot (at least slightly) change the outcome of an anonymized statistic, then neither
can a population ofmillions, and useful insights are impossible. Differential privacy bounds this
information leakage in general, i.e., independent of the computational strength and auxiliary
information an adversary might possess [Dwo08, Section 2]. The formal definition is as follows:

Definition 4 (Differential Privacy (DP)). Data sets𝐷,𝐷 ′, where𝐷 ′ is created from𝐷 by adding or
removing an element are called neighbors and denoted 𝐷 ' 𝐷 ′. A mechanismM satisfies (𝜖, 𝛿)-
differential privacy, where 𝜖 ≥ 0, 𝛿 ≥ 0, if for all neighboring data sets 𝐷,𝐷 ′, and all sets 𝑆 ⊆
Range(M)

Pr[M(𝐷) ∈ 𝑆] ≤ exp(𝜖) · Pr[M(𝐷 ′) ∈ 𝑆] + 𝛿 ,

where Range(M) denotes the set of all possible outputs of mechanismM.

We abbreviate (𝜖, 0)-DP as 𝜖-DP. The original definition [Dwo06, DMNS06] with 𝛿 = 0 is also
called pure differential privacy to distinguish it from approximate differential privacy with 𝛿 > 0.
Privacy parameter 𝜖, also called privacy budget, is a small constant [DR14], where smaller values
correspond to a decrease in privacy loss. Typically, 𝛿 is assumed to be negligible in the size 𝑛 of
thedata set [DR14]. Theparameter𝛿 hasasimilarmotivationas the statistical securityparameter
𝜎 in MPC, i.e., permitting a negligible probability to violate DP5 to increase accuracy (see also
Section 2.2.3). Privacy parameter 𝜖, for which there is no equivalent inMPC, allows a finer trade-
off between privacy and accuracy than 𝛿 . As noted before, some information has to be gained
from the output to allow any meaningful statistic. Roth [McS16] points out that 𝜖 = 0 provides
perfectprivacy, asall outputsareequally likelyand inputs𝐷,𝐷 ′ indistinguishable. But this comes
at the price of zero accuracy as we gain no insights from uniformly random outputs. On the
other hand, 𝜖 = ∞ corresponds to perfect accuracy, as the raw data is revealed, but provides zero
privacy. Notably, exp(𝜖) ≈ 1 + 𝜖, for small values of 𝜖6, i.e., the probability to receive an output
based on𝐷 is withinmultiplicative factor 1 + 𝜖 of an output based on𝐷 ′.
Various variations and relaxations of differential privacy exist, see, e.g., [DP20] for an overview,

that relax theguarantee (e.g., average-case insteadofworst-case) orusedifferentmetrics tomea-
sure the privacy loss (e.g., Rényi divergence). Note that Definition 4 (implicitly) assumes that
mechanismM has access to the raw data 𝐷 . In a distributed setting, where each party locally
randomizes her datum 𝑑 , the notion of local DP (LDP) [KLN+11] is used. Here, for any inputs
𝑑, 𝑑 ′ ∈ 𝐷 the output changes are 𝜖-bounded, i.e., Pr[M(𝑑) ∈ 𝑆] ≤ exp(𝜖) · Pr[M(𝑑 ′) ∈ 𝑆]. Also,
Definition 4 implicitly holds against a computationally unbounded adversary (i.e., no adversary
restriction is defined), and later work considered restrictions on computational power [EKM+14,
HMFS17,MPRV09, Vad17]. Due to our use ofMPC,wedefine a computational notion ofDPnext.

2.2.2 Computational Differential Privacy

We consider semi-honest parties performing a joint secure computation in the presence of a
computationally-boundedadversaryA, who tries todistinguish if theoriginal𝐷 or aneighboring
data set 𝐷 ′ was used in the computation, and outputs a bit 𝑏 ∈ {0, 1} accordingly. AdversaryA
corrupts a subset C of the parties P, and sees the views of corrupted parties, i.e., all exchanged
messages and internal state. The view is also called the transcript of a protocol. Let VIEWCΠ (𝐷) =
{VIEW𝑝Π (𝐷)}𝑝 ∈C denote the views of corrupted parties C ⊂ P during the execution of protocol Π
on input𝐷 . The following definition is based on Vadhan [Vad17, Section 10].
5 For a thorough discussion of the subtleties in interpreting 𝛿 , we refer to the technical report fromMeiser [Mei18].
6 For 𝜖 ≤ 0.138, exp(𝜖) − (1 + 𝜖) < 0.01.

22

2.2 Differential Privacy

Definition5 (ComputationalDifferentialPrivacy). Arandomizedprotocol Π implementedamong
a set of parties P = {𝑃1, . . . , 𝑃𝑛 } achieves computational differential privacywith regard to a coali-
tion C ⊂ P of semi-honest parties of size at most 𝑡 , if for all neighbors 𝐷,𝐷 ′ and probabilistic
polynomial-time adversariesA

Pr
[
A

(
VIEWCΠ (𝐷)

)
= 1

]
≤ exp(𝜖) · Pr

[
A

(
VIEWCΠ (𝐷 ′)

)
= 1

]
+ 𝛿 (𝜅),

where 𝛿 (𝜅) = 𝛿 + negl(𝜅) with security parameter𝜅 .

Implicitly, this assumes a datum of a party in C does not change between 𝐷 and 𝐷 ′, as oth-
erwise the DP guarantee is trivially broken. The definition can be expanded to the malicious
model by replacing the semi-honest parties P and semi-honestly secure protocol Π with ma-
licious parties and a maliciously secure protocol. Notably, computational indistinguishability
(Definition 1) is equivalent to computational differential privacy for 𝜖 = 0, 𝛿 = 0.

2.2.3 Properties of Differential Privacy

Differential privacy exhibits desirable properties. The privacy guarantee of differential privacy
cannot be reduced via post-processing. No adversary can increase the privacy loss of a mecha-
nismM when a data-independent function 𝑓 is applied onM, denoted as 𝑓 ◦ M [DR14, Sec-
tion 2.3]. In other words, auxiliary information cannot reduce the privacy guarantee. For com-
putational differential privacy (Definition 5), post-processing is restricted to computationally
bounded adversaries.
Group privacy extends the neighboring definition from changing a single element to 𝑘 ele-

ments which leads the privacy budget to increase linearly in 𝑘 , i.e., a standard 𝜖-DPmechanism
satisfies 𝑘 𝜖-DP with group size 𝑘 > 1 [DR14, Theorem 2.2].
Differential privacy supports the composition of 𝑘 mechanismsM1, . . . ,M𝑘 where eachM𝑖

satisfies (𝜖𝑖 , 𝛿𝑖)-DP. Parallel composition considers the application of eachM𝑖 on disjoint sub-
sets of a data set and satisfies (max1≤𝑖 ≤𝑘 𝜖𝑖 ,max1≤𝑖 ≤𝑘 𝛿𝑖)-DP [LLSY16, Section 2.2.2]. Sequential
composition considers sequential executionofmechanisms, i.e.,M𝑘 ◦M𝑘−1◦· · ·◦M1. Sequential
composition satisfies at least (∑𝑘

𝑖=1 𝜖𝑖 ,
∑𝑘
𝑖=1 𝛿𝑖)-DP [DR14, Theorem 3.16]. For (𝜖, 𝛿)-DP mecha-

nismsM𝑖 , i.e., mechanisms with the same privacy parameters, a tighter composition bound is
(
√︁
2𝑘 log(1/𝛿 ′)𝜖 + 𝑘 𝜖 (exp(𝜖) − 1), 𝑘𝛿 + 𝛿 ′)-DP where 𝛿 , 𝛿 ′ ≥ 0 [DR14, Theorem 3.20].
Note that approximate DP (𝛿 > 0) requires less privacy budget (𝜖) than pure DP (𝛿 = 0) when

𝑘 is large enough, as we show next.

Lemma1. Sequentially composing𝑘mechanisms satisfying (𝜖, 𝛿)-DP requires a smaller total pri-
vacy budget 𝜖 than (𝜖, 0)-DPmechanisms when 𝑘 >

2 log(1/𝛿 ′)
(2−exp(𝜖))2 with 𝛿

′ > 0.

Proof. Running 𝑘 (𝜖, 𝛿)-DP mechanisms on the same data leads to a total privacy budget of 𝑘 𝜖
for pure DPmechanisms (𝛿 = 0), and (

√︁
2𝑘 log(1/𝛿 ′)𝜖 + 𝑘 𝜖 (exp(𝜖) − 1), 𝑘𝛿 + 𝛿 ′) for approximate

DPmechanisms (𝛿 , 𝛿 ′ > 0) [DR14, Theorem 3.20]. Therefore,
√︁
2𝑘 log(1/𝛿 ′)𝜖 + 𝑘 𝜖 (exp(𝜖) − 1) <

𝑘 𝜖 ⇔ 1√
𝑘

√︁
2 log(1/𝛿 ′) + (exp(𝜖) − 1) < 1⇔ 𝑘 >

2 log(1/𝛿 ′)
(2−exp(𝜖))2 . (See also [MV16, Appendix A]).

For further details about composition we refer to Murtagh and Vadhan [MV16] and Dong et
al. [DDR20].

23

2 Preliminaries

2.2.4 Mechanisms

Differential privacy requires randomized algorithms calledmechanisms in the DP literature. So
far, we have detailedwhat notion of privacy DP offers. After defining a function’s sensitivity, we
can formalize howmechanisms satisfy DP.
The randomization magnitude depends on the privacy parameter 𝜖 and the sensitivity Δ𝑓 of

the function 𝑓 evaluated on the data. Sensitivity is an upper bound on any individual’s influence
on the output of 𝑓 , i.e., the largest possible difference of neighboring data sets evaluated on 𝑓 .

Definition 6 (Sensitivity). The (global) sensitivity of a function 𝑓 : 𝔇𝑛 → ℝ is

Δ𝑓 = max
∀𝐷'𝐷′

| 𝑓 (𝐷) − 𝑓 (𝐷 ′) | .

Various specialized or relaxed sensitivity notions exist [ABCP13, BBK17, DR14, NRS07] and
later, in Section 3.6.1, we discuss related work with notions customized for themedian.
Having defined the required noisemagnitude for a function, we can nowpresentmechanisms

that achieve DP. DP mechanisms can be classified by how they randomize, i.e., with additive
noise or via probabilistic selection.

Mechanisms with Additive Noise

Noise, added to the function output, is one way to achieve differential privacy, e.g., via the
Laplace mechanism [DR14].

Definition 7 (Laplacemechanism LM). Mechanism LM, for function 𝑓 : 𝔇𝑛 → ℝwith sensitivity
Δ𝑓 , privacy parameter 𝜖, and a data set𝐷 , releases

𝑓 (𝐷) + Laplace(Δ𝑓 /𝜖),

where Laplace(𝑏) denotes a random variable from the Laplace distribution with scale 𝑏 and den-
sity

Laplace(𝑥 ;𝑏) = 1
2𝑏 exp

(
− |𝑥 |
𝑏

)
.

The Laplacemechanism is 𝜖-DP [DR14, Theorem 3.6].

Mechanisms with Probabilistic Selection

The alternative to additive noise is probabilistic selection, which expands the application of dif-
ferential privacy to functions with non-numerical output domain R, or when the output is not
robust to additive noise, e.g., auction bids [MT07] or themedian [LLSY16].
The simplest selectionmechanism is randomized response introduced byWarner [War65] and

we describe it according to Dwork and Roth [DR14, Section 3.2]:

Definition 8 (Randomized Response). Randomized response handles sensitive survey questions
with yes and no answers, i.e., R = {yes,no}, as follows:

1. Flip a coin.

2. If it comes up tails, answer truthfully.

3. If it comes up heads, flip again and answer yes if heads and no if tails.

24

2.2 Differential Privacy

Randomizedresponsepre-datesdifferentialprivacybutwas showntosatisfy log𝑒 (3)-DP [DR14,
Section 3.2]. It basically provides a form of plausible deniability, i.e., respondents can always
claim that they did not answer truthfully (“my first flip showed heads”). Randomized response
protects each individual respondent and yet allows inference over the population of all respon-
dents as follows. Let 𝑓 ′𝑦 denote the fraction of reported yes answers, and let 𝑓𝑦 denote the fraction
of respondents whose actual answer would be yes. The reported fraction of positive answers
can be expressed as 𝑓 ′𝑦 = 1/4 + 𝑓𝑦/2, i.e., answers due to heads-heads (occurs with probability
1/2 · 1/2 = 1/4) plus truthful answers due to tails (actual 𝑓𝑦 times probability for tails). Thus, the
actual fraction of yes answers, 𝑓𝑦 , can be estimated as 2𝑓 ′𝑦 − 1/2.
Randomized response can be generalized to arbitrary domains R as follows. Respondents re-

port their true value 𝑥 ∈ R with probability 𝑝 and any other 𝑧 ∈ R\{𝑥} with probability 𝑞 = 1 − 𝑝 .

Definition 9 (Generalized Randomized Response GRR). Mechanism GRR : R → R, applied on
𝑥 ∈ R with privacy parameter 𝜖, outputs 𝑟 ∈ R with probability

Pr[GRR(𝑥) = 𝑟] =

𝑝 = exp(𝜖)

exp(𝜖)+ |R |−1 if 𝑥 = 𝑟

𝑞 = 1
exp(𝜖)+ |R |−1 if 𝑥 ≠ 𝑟

.

GRR is 𝜖-DP as the quotient 𝑝/𝑞 is bounded by exp(𝜖). Again, let 𝑓 ′𝑥 denote the fraction of
reports with value 𝑥 . The actual fraction 𝑓𝑥 is approximated as 𝑓 ∗𝑥 = 𝑓 ′𝑥−𝑞

𝑝−𝑞 , which is an unbiased
estimator, i.e., 𝔼[𝑓 ∗𝑥] = 𝑓𝑥 [WBLJ17, Theorem 1].
The exponential mechanism, introduced by McSherry and Talwar [MT07], additionally ana-

lyzes the data set to provide instance-specific selection probabilities per domain element. The
mechanism is exponentially more likely to select “good” results quantified via utility function
𝑢 (𝐷, 𝑟) which takes as input a data set𝐷 ∈ 𝔇𝑛 , and a potential output 𝑟 ∈ R from a fixed set of ar-
bitrary outputs R. Informally, higher utility means the output is more desirable and its selection
probability is increased accordingly.

Definition 10 (ExponentialMechanism EM). The exponentialmechanism EM𝜖
𝑢 (𝐷), for any util-

ity function 𝑢 : (𝔇𝑛 × R) → ℝ and privacy parameter 𝜖, outputs 𝑟 ∈ R with probability propor-
tional to exp(𝜖𝑢 (𝐷,𝑟)2Δ𝑢), i.e.,

Pr
[
EM𝜖

𝑢 (𝐷) = 𝑟
]
=

exp
(
𝜖𝑢 (𝐷,𝑟)
2Δ𝑢

)
∑
𝑟 ′∈R exp

(
𝜖𝑢 (𝐷,𝑟 ′)
2Δ𝑢

) , (2.1)

where
Δ𝑢 = max

∀𝑟 ∈R,𝐷'𝐷′
|𝑢 (𝐷, 𝑟) − 𝑢 (𝐷 ′, 𝑟) |

is the sensitivity of the utility function.

The exponentialmechanism is 𝜖-DP [MT07, Theorem 6]7 and is universal, i.e., can implement
any DPmechanismM by defining utility function 𝑢 (𝐷, 𝑟) to be the logarithm of the probability
density ofM(𝐷) at 𝑟 [MT07, Section 3]. Wewrite EM, i.e., omit𝑢, 𝜖,𝐷 , if they can be derived from
the context. In thiswork,we consider theoutput domainR to be thedatadomain𝔇or apartition
of it, e.g., subranges of𝔇.

7 The original definition [MT07, Definition 2] omits normalization term 2Δ𝑢 fromDefinition 10 and is 2Δ𝑢𝜖-DP, which is
equivalent to 𝜖-DP with the normalization.

25

2 Preliminaries

TheGumbel mechanism achieves the same output distribution as EM [DR19a, Lemma 4.2] by
adding noise from theGumbel distribution to the utility scores and selecting the output element
with the largest noisy utility scores. In otherwords, by taking the argmaxover noisyutility scores.

Definition 11 (Gumbel Mechanism GM). Mechanism GM, for utility function 𝑢 : (𝔇𝑛 × R) → ℝ

with sensitivity Δ𝑢 = max∀𝑟 ∈R,𝐷'𝐷′ |𝑢 (𝐷, 𝑟) − 𝑢 (𝐷 ′, 𝑟) |, outputs 𝑟 ∈ R via

argmax
𝑟 ∈R

{𝑢 (𝐷, 𝑟) + Gumbel(2Δ𝑢/𝜖)},

whereGumbel(𝑏) denotes a random variable from the Gumbel distributionwith scale 𝑏 and den-
sity

Gumbel(𝑥 ;𝑏) = 1
𝑏
exp

(
−
(𝑥
𝑏
+ exp

(
−𝑥
𝑏

)))
.

The Gumbel mechanism is also known as the Gumbel-(soft)max trick [Gum48, MTM14]. It is
originally found inmachine learning literature to efficiently compute Equation (2.1) – also called
the softmax function whichmaps arbitrary inputs to probabilities – and only recently applied in
DP literature [DR19b].
Report One-Sided Noisy Argmax [DR14, Section 3.4] achieves similar guarantees as EM [DR14,

Remark 3.13]8 by selecting outputs based on the argmax over utility scores with additive noise
from the exponential distribution9. The exponential distribution with scale 𝑏 is defined as

Expon(𝑥 ;𝑏) = 1
𝑏
exp

(
−𝑥
𝑏

)
for 𝑥 > 0 and 0 elsewhere.

Inverse Transform Sampling

After computing the selection probabilities according to the exponential mechanism EM, we
need to sample an output based on these probabilities, which we realize with inverse transform
sampling. Inverse transformsamplinguses theuniformdistribution,where all values are equally
likely, to simulate any distribution based on its cumulative distribution function 𝐹 (𝑥). Specifi-
cally for EM,

𝐹 (𝑥) = Pr[EM𝜖
𝑢 (𝐷) ≤ 𝑥

]
=

∑
𝑟 ∈R,𝑟 ≤𝑥 exp

(
𝜖𝑢 (𝐷,𝑟)
2Δ𝑢

)
∑
𝑟 ′∈R exp

(
𝜖𝑢 (𝐷,𝑟 ′)
2Δ𝑢

) .

Inverse transform sampling, given 𝐹 and a uniform random 𝑠 ∈ (0, 1], finds the first output 𝑥
such that 𝑠 < 𝐹 (𝑥) and outputs it [EKM+14, Section 3], [AMFD12, Section 5.2]. To illustrate why
this works, consider the following example. Let𝔇 = {𝑎, 𝑏} with selection probabilities 0.7 for 𝑎
and 0.3 for 𝑏 . Now, we take a large array 𝐴 and fill 70% of 𝐴 with 𝑎 and the rest with 𝑏 , sample
an index 𝑖 of 𝐴 at uniform random, and output 𝐴 [𝑖]. The output is 𝑎 with 70% probability and 𝑏
otherwise.

8 Some sources state that report one-sided noisy argmax and EM have the same distribution (e.g., [BGG+16, Section 5]
cites older version of [DR14, Theorem 3.13]) however, recent work shows the distributions are different [DKS+21].

9 The name of the mechanism is due to the fact that the exponential distribution is also called one-sided Laplace distri-
bution [BGG+16].

26

2.2 Differential Privacy

2.2.5 Distributed Noise Generation

Sampling noise via secure computation is inefficient for distributed semi-honest parties, as
they have to securely evaluate the inverse cumulative density function requiring complex op-
erations such as the logarithm. For example, sampling Laplace(𝑏) is equivalent to computing
(−1)𝑠𝑏 log(𝑟) given uniform random numbers 𝑟 ∈ (0, 1], 𝑠 ∈ {0, 1} [JWEG18, Supplementary
Material]. Distributed noise generation is more efficient, i.e., each party locally computes par-
tial noises, which are securely combined. Such noise generation is commonly found in the DP
literature [ÁC11, DKM+06, HLK+17, GX17]. Distributed noise generation is straightforward for
distributions that are infinitely divisible, i.e., samples can be expressed as the sum of indepen-
dent and identically distributed random variables. Next, we describe distributed noise for the
Laplace, exponential and Gumbel distribution, which are infinitely divisible [BS13, GX17].

Distributed Laplace Noise

Random variable Laplace(𝑏) can be expressed via the gamma distribution [KKP12, Table 2.3],
i.e.,

𝑛∑︁
𝑗=1

(
𝑌 1
𝑗 −𝑌 2

𝑗

)
, 𝑌 1

𝑗 ,𝑌
2
𝑗 ∼ Gamma

(1
𝑛
,𝑏

)
,

where the gamma distribution with shape 𝑘 and scale 𝑏 has density

Gamma(𝑥 ;𝑘, 𝑏) = 1
Γ(𝑘)𝑏𝑘 𝑥

𝑘−1 exp
(
−𝑥
𝑏

)
.

To avoid floating-point numbers, which lead to larger overhead for secure computation com-
pared to integers [ABZS13] and can lead to privacy violations with limited machine precision
(see Section 3.4), one can use the discrete Laplace distribution defined over integers. The dis-
crete Laplace distribution is infinitely divisible and samples can be expressed as the difference
of two Pólya random variables [GX17].

Distributed Exponential Noise

Random variable Expon(𝑏) can be expressed similarly to distributed Laplace noise10 as

𝑛∑︁
𝑗=1

𝑌𝑗 , 𝑌𝑗 ∼ Gamma
(1
𝑛
,𝑏

)
.

Distributed Gumbel Noise

Random variable Gumbel(𝑏) can be expressed via the exponential distribution [BS13], i.e.,

𝑏 · lim
𝑛→∞


𝑛∑︁
𝑗=1

𝑌𝑗

𝑗
− log(𝑛)

, 𝑌𝑗 ∼ Expon(1).

10 The Laplace distribution is also called the double exponential distribution. Laplace-distributed random variables can
be written as the difference of two random variables from the exponential distribution [KKP12, Table 2.3]; hence, the
similarity to distributed Laplace noise.

27

2 Preliminaries

While the Laplace distribution can be expressed as afinite sumof randomvariables, theGum-
bel distribution requires an infinite sum. However, the expected approximation error for the
Gumbel distribution can bemade arbitrarily small in the number 𝑠 of summands:

Theorem 1. For Gumbel |𝑠 (𝑏) = 𝑏
∑𝑠
𝑗=1

𝑌𝑗
𝑗 − 𝑏 log(𝑛), where 𝑌𝑗 ∼ Expon(1), we have expected

approximation error |Gumbel(𝑏) − Gumbel |𝑠 (𝑏) | =𝑂 (𝑏/𝑠).

Proof. We have 𝔼[Gumbel(𝑏)] = 𝛾EM · 𝑏 , where 𝛾EM = lim𝑛→∞
(∑𝑛

𝑖=1 1/𝑖 − log𝑒 (𝑛)
) ≈ 0.5772

is the Euler-Mascheroni constant. Furthermore, 𝔼
[
Gumbel |𝑠 (𝑏)

]
= 𝑏

∑𝑠
𝑗=1

𝔼[𝑌𝑗]
𝑗 − 𝑏 log(𝑛) ≤

𝑏
(
𝛾EM + 1/(2𝑠) +𝑂

(1/𝑠2)) , due to 𝔼[𝑌𝑖] = 1 and an inequality for the difference of the 𝑛-th har-
monic number and log𝑛 [GK07, Eq. (4.30)]. Altogether,��𝔼[

Gumbel(𝑏) − Gumbel |𝑠 (𝑏)
] �� = ��𝔼[Gumbel(𝑏)] − 𝔼[

Gumbel |𝑠 (𝑏)
] ��

≤ |𝛾EM𝑏 − 𝑏 (𝛾EM +𝑂 (1/𝑠)) | = 𝑏𝑂 (1/𝑠).

28

3 Related Work

In Section 3.1, we describe existing privacymodels for implementingDP –mainly, the local, cen-
tral, and MPC model – and focus on the MPC model in Section 3.2. We discuss techniques to
prune the data or reduce the domain to improve efficiency in Section 3.3. Finite machine pre-
cision, resulting privacy violations, and mitigations are summarized in Section 3.4. Decompos-
ability in the context of DP is discussed in Section 3.5. Finally, we discuss related work grouped
by privacymodels: DPmedian in Section 3.6 and DP heavy hitters in Section 3.7.

3.1 Privacy Models

Differentially private mechanisms can be implemented in different models, visualized in Fig-
ure 3.1 [BK20b, Böh21]. Next, we describe the models, their trade-offs with regards to accuracy
and privacy, and howMPC simultaneously supports high accuracy with strong privacy.
In the centralmodel (Figure 3.1a) every client sends their unprotecteddata to a trusted, central

server which runs mechanismM on the clear data. The central model provides the highest ac-
curacy as the randomization inherent to DP algorithms, is only applied once. In the local model
(Figure 3.1b), introduced by Kasiviswanathan et al. [KLN+11], clients applyM locally and send
anonymized values to an untrusted server for aggregation. The accuracy is limited as the ran-
domization is appliedmultiple times. Hence, it requires a very large number of users to achieve
accuracy comparable to thecentralmodel [BEM+17,CSU+19,HKR12,KLN+11,MMP+10]. Specif-
ically, an exponential separation exists between the local and central model regarding the ac-
curacy and sample complexity [KLN+11]. Recently, an intermediate shuffle model (Figure 3.1c)
was introduced by Bittau et al. [BEM+17]1: A trusted party is added between client and server
in the local model, the shuffler, who does not collude with anyone. The shuffler permutes and
forwards the randomized client values. The permutation breaks the mapping between a client
and her value, which reduces randomization requirements. The accuracy of the shuffle model
lies between the local and central model, however, in general it is strictly weaker than the cen-
tral model [BC20, CSU+19]. To illustrate this separation, consider counting queries with 𝑛 par-
ties: the central model has accuracy𝑂 (1), the shuffle model (with a single message per party)
has accuracy𝑂 (log𝑛), and the local model suffers error𝑂 (√

𝑛
) [WHMM21]. In addition, Cheu

et al. [CU21] showed that in the shuffle model no general analogue exists for the exponential
mechanism, which is the basis for most of our protocols.
Asour goal is highaccuracywithout trustedparties even for a small numberofusers,we imple-

ment theMPCmodel (Figure3.1d). Inotherwords,we simulate thecentralmodel inadistributed
setting with cryptographic tools, as commonly found in the DP literature [AMFD12, DKM+06,
EKM+14, GX17, PL15, RN10, TKZ16]. General-purposeMPC incurs high computation and com-
munication overhead, reducing efficiency and scalability [CSU+19]. However, MPC combines

1 Bittau et al. [BEM+17] introduced the shuffle model for differentially private software monitoring, and Cheu et
al. [CSU+19] initiated the analytical study of the shuffle model. In the context of cryptography, a similar model was
introduced by Ishai et al. [IKOS06], utilizing anonymous communication as a building block for MPC.

29

3 RelatedWork

𝑃1
...

𝑃𝑛

Trusted
Server

𝑑1

𝑑𝑛

M(𝑓 (𝑑1, . . . , 𝑑𝑛))

(a) Central Model

𝑃1
...

𝑃𝑛

Untrusted
Server

𝑟1 =M(𝑑1)

𝑟𝑛 =M(𝑑𝑛)
𝑓 (𝑟1, . . . , 𝑟𝑛)

(b) Local Model

𝑃1
...

𝑃𝑛

Shuffler Untrusted
Server

𝑟1 =M(𝑑1)

𝑟𝑛 =M(𝑑𝑛)

𝑟𝜋 (1)

...
𝑟𝜋 (𝑛)

𝑓 (𝑟𝜋 (1) , . . . , 𝑟𝜋 (𝑛))

(c) ShuffleModel with permutation 𝜋

𝑃1
...

𝑃𝑛

𝐶1

𝐶2 𝐶3

𝑠11 , . . . , 𝑠
1
𝑛

𝑠21 , . . . , 𝑠
2
𝑛 𝑠31 , . . . , 𝑠

3
𝑛

MPC
messages

(𝑠11 , 𝑠21 , 𝑠31)
= Shr(𝑑1)

(𝑠1𝑛 , 𝑠2𝑛 , 𝑠3𝑛)
= Shr(𝑑𝑛)

M(𝑓 (𝑑1, . . . , 𝑑𝑛))

(d) MPCModel with 3 Computation Parties𝐶𝑖

Figure 3.1: Implementationmodels for DPmechanismM. Party 𝑃𝑖 sends amessage – raw 𝑑𝑖 or randomized data 𝑟𝑖 – to
a server, who combines all messages with function 𝑓 . In theMPCmodel, party 𝑃𝑖 distributes secret shares
Shr(𝑑𝑖) among𝑚 computation parties.

the respective benefits of the models, namely, high accuracy and strong privacy, i.e., no disclo-
sure of values to a third party, and we implement efficient and scalable special-purpose MPC
protocols.

3.2 MPC and DP

Dwork et al. [DKM+06] first mentioned that differential privacy combines well with secure com-
putation and many works build upon this observation [DKM+06, TKZ16, RN10, PL15, EKM+14,
NPR19]. Secure DP summation is easily achieved via additive noise, see, e.g., [GX17] for a survey
of such work. Goyal et al. [GKM+16] showed that in general distributed DP protocols can only
achieve optimal accuracy when combined with secure computation.
Recently, cryptographic primitives receivedmore attention in theDP literature to improve the

shuffle model [GKMP20, BBGN20]. Mainly, these improvements build upon the work of Ishai
et al. [IKOS06], which uses anonymous communication as a building block for MPC. Also, DP

30

3.3 Data Pruning & Domain Reduction

is used in cryptographic protocols to bound their leakage such as revealing some access pat-
terns to improve overall efficiency [CCMS19]. It is also used, e.g., in private record matching
to securely compute and release exact matches while protecting the number of non-matching
records by adding a certain number of dummy records [HMFS17]. An overview of cryptographic
applications of DP is given byWagh et al. [WHMM21]. In this work, we focus on efficient secure
computation of DP statistics with high accuracy, especially on small data sets.

MPC of the Exponential Mechanism

Our protocols aremainly realized as secure computations of the exponentialmechanism for the
median, decomposable aggregate utility functions, and heavy hitters. Alhadidi et al. [AMFD12]
design a secure two-party protocol for the exponential mechanism restricted to “max utility
functions”, where eachparty reports theirmaximumvalue for a generalized class (e.g., subrange)
which are added together [AMFD12, Section 5.1]. They use garbled circuits to compute themax-
imum and comparisons, and oblivious polynomial evaluation [NP01] as well as secret sharing
like Bunn and Ostrovsky [BO07] to approximate the Taylor series for the exponential function
(i.e., exp(𝑥) = ∑∞

𝑛=0 𝑥
𝑛/𝑛!). They only estimate the running time of their design [AMFD12, Sec-

tion 7.2], whereas we implement all our protocols and provide evaluations in real-world net-
works (Section 4.4.1). Also, we avoid complex approximations of the exponential function by
leveraging data-independent utility functions (EMmed), decomposable utility functions (EM∗),
and the Gumbel mechanism (GM∗, PEM). Furthermore, our protocol EM∗ is more general as we
support more than two parties and a broader class of utility functions, including but not limited
to max utility functions. Eigner et al. [EKM+14] present and implement a carefully designed se-
cure exponential mechanism in the multi-party setting. While their work is more general than
ours, i.e., supporting arbitrary utility functions and also malicious parties, they are linear in the
size of the domain, and securely compute the exponential function. Our protocols EMmed, EM∗,
PEM are sublinear in the domain size without costly secure exponentiation. Secure exponentia-
tion is complex [ABZS13, AS19, DFK+06, Kam15], requiring many interactive rounds. The semi-
honest protocol of Eigner et al. requires 42 seconds in a LAN (on an Intel i5 3.20 GHz, 16GBRAM
machine) to select an output from a very small domain of only 5 elements whereas EM∗ handles
at least 105 domain elements in the same time (on AWS t2.medium instances with 4vCPUs, 2GB
RAM), i.e., an improvement of at least 5 orders of magnitude (see Section 6.3.1).

3.3 Data Pruning & Domain Reduction

Efficiently sampling thedistributiondefinedby theexponentialmechanism isnon-trivial [DR14,
Section 3.4], thus, a reduction of the sampling space is considered by related work [BDB16,
GLM+10, LLSY16, PL15].

Data Pruning for DP Median

Pettai and Laud [PL15] define MPC protocols for differentially private analytics, including the
median (detailed in 3.6.2). In case of filtering (i.e., predicate matching), Pettai and Laud [PL15]
apply a form of input pruning and replace half of the excluded values with a small (resp. large)
constant. They mention that this does not always preserve the median, unlike the pruning ap-
proach by Aggarwal et al. [AMP10] implemented in EMmed.

31

3 RelatedWork

Domain Reduction for DP Median

Gupta et al. [GLM+10] suggest reducing the output domain for combinatorial problems fromex-
ponential to polynomial size and sample from the reduced set with the exponentialmechanism.
Blocki et al. [BDB16] follow this suggestion and use a relaxed exponential mechanism to sample
a DP password frequency list in the central model. They allow a negligible error 𝛿 , i.e., they only
sample the exponential mechanism correctly with probability 1 − 𝛿 , which improves sampling
from (potentially) exponential time to𝑂 (|𝐷 |1.5/𝜖) . However, they require full access to the data𝐷
in clear. Li et al. [LLSY16] suggest to divide domain𝔇 into equal-sized ranges, select a rangewith
the exponential mechanism and sample an element in the range at uniform random. However,
with this approach any element in the selected range is equally likely to be output independent
of its utility. Our two-party protocol EMmed, on the other hand, samples themedian only among
elementswith the same utility. Ourmulti-partyprotocolEM∗ splits thedomainas suggestedbyLi
et al. [LLSY16], however, wedivide ranges iteratively: We select thebest range, divide the selected
range into subranges and repeat the selectionuntil the subrange contains only one element. Our
multi-party protocol PEM iteratively finds frequent bit-prefixes of increasing size. Furthermore,
our protocols provide a parameterized trade-off between accuracy and running time for the ex-
ponential mechanism.

Domain Reduction for DP Heavy Hitters

Domain reduction and efficient encoding (e.g., hashing, sketching) are the main challenges of
heavy hitter discovery, where the domain is either large or unknown, and discussed in detail in
Section 3.7.

3.4 Limited Machine Precision and Privacy Violations

In general, DP mechanisms operate on reals, whereas actual implementations are limited to
the precision of physical machines. However, limited precision can lead to privacy violations.
Mironov [Mir12] showed that the Laplacemechanism is vulnerable to finite precision, as the set
of possible outcomes can differ between neighboring data sets due to irregularities of floating-
point implementations. The proposed mitigation is to perform “snapping”, roughly, clamping
the noisy result to a fixed range and ensuring evenly spaced outputs. For a detailed implementa-
tion description see [Mic20a]. Gazeau et al. [GMP16] consider general finite precision semantics
and suggest using fixed precision (via rounding, truncation) for bounded privacy degradation.
Recent work by Ilvento [Ilv20] extends this line of study to the exponential mechanism, which
is also vulnerable to finite precision. The suggested mitigation is switching from base 𝑒 to base
2 to perform precise arithmetic, e.g., for integer-valued utility functions one approximates 𝜖 as
𝜖 ′ = − log2 (𝑥/2𝑦) for integers 𝑥, 𝑦 such that 𝑥/2𝑦 ≤ 1.
The investigation of privacy violations due to limited machine precision is outside the scope

of thiswork. However, our protocols donot rely onnoise or utility scores represented as floating-
point numbers: Our protocol EMmed (Section 5) uses fixed point numbers, i.e., scaled and trun-
cated integers, instead of floating point numbers. Interestingly, the mitigation techniques from
Ilvento [Ilv20] are similar to the optimizations deployed in our protocol EM∗ (Section 6), i.e., we
utilize base-2 and integer utility functions for efficiency (detailed in Section 6.2.6). Our protocols

32

3.5 Decomposability

PEM,HH (Section 7) use scaled, truncated noise from a continuous distribution (PEM) or can be
realized with noise from a discrete distribution defined over the integers (HH).

3.5 Decomposability

Decomposability is often found in the context ofMapReduce,which is a programmingparadigm
for distributed data aggregation: Roughly, a mapper produces intermediary results (e.g., partial
sums) that a reducer combines into a result (e.g., total sum). Airavat [RSK+10] is aHadoop-based
MapReduce programming platform for DP statistics based on additive noise (Laplace mecha-
nism) with an untrusted mapper but trusted reducer. We consider decomposable utility func-
tions for probabilistic selection via the exponential mechanismwithout any trusted parties. Ex-
isting secure exponential mechanisms [AMFD12, EKM+14] use decomposable utility functions
(max and counts), but neither classify nor provide optimizations for such functions. Blocki et
al. [BDB16] minimize cumulative error for DP password frequency lists. They use (decompos-
ability of) frequencies for their dynamic programming, which has access to all the data in the
clear. We, on the other hand, use decomposable aggregate functions to efficiently and securely
combine distributed inputs in EM∗.

3.6 DP Median

In the context of the DP median, we first detail different sensitivity notions and their accuracy
in Section 3.6.1. Then, we discuss related work for the DPmedian grouped by privacymodels in
Section 3.6.2.

3.6.1 Sensitivity and Utility Functions for DP Median

Recall Definition 6, i.e., the sensitivity is the maximum difference of a function evaluated on
neighboring data sets. Different sensitivity notions exist, and we discuss those relevant for the
median next.

Sensitivity of the Median

According to Definition 6, the sensitivity of the median is max𝔇 −min𝔇2. Definition 6 is also
called global sensitivity as it considers all possible data sets and their neighbors. Note that con-
sidering only a fixed data set instance and its neighbors, known as local sensitivity, violates dif-
ferential privacy [NRS07, Section 2.1]3.
Smooth sensitivity, developed by Nissim et al. [NRS07], satisfies DP as a smooth upper bound

on the local sensitivities of all neighbors of a fixed data set instance. Smooth sensitivity is not
always computable [NRS07, Section 1] but provides instance-specific randomization, typically

2 To illustrate, consider a sorted data set 𝐷1 = {𝑥, 𝑥, 𝑦 , 𝑦 } where 𝑥, 𝑦 ∈ 𝔇 and the median is 𝑥 . However, 𝑦 can be the
median after a single change (i.e., remove any 𝑥). The difference |𝑥 − 𝑦 | is maximized for 𝑥 = min𝔇, 𝑦 = max𝔇, hence,
themedian sensitivity stated above.

3 For example, consider𝐷2 = {𝑥, 𝑦 , 𝑦 } with 𝑥 = min𝔇, 𝑦 = max𝔇 andmedian 𝑦 = 𝑑d𝑛/2e . 𝐷2 is a neighbor of𝐷1 (remove
𝑥 from𝐷1), and𝐷3 = {𝑥, 𝑦 , 𝑦 , 𝑦 } (add 𝑦 to𝐷2). The local sensitivity of𝐷2 is the same as the global sensitivity as median
𝑦 can become 𝑥 after a single change (add 𝑥). However, the local sensitivity of 𝐷3 is 0, i.e., 𝑦 remains the median after
one addition/removal. Recall that sensitivity, alongside the privacy parameter 𝜖, governs the noise magnitude for DP
mechanisms. Now, 𝐷3 is a neighbor of 𝐷2 but the large difference in the local sensitivity, thus, altered additive noise,
suffices to distinguish if𝐷2 or𝐷3 was an input toM which violates differential privacy [NRS07, Section 1.3].

33

3 RelatedWork

smaller than global sensitivity. For the median, Nissim et al. [NRS07, Proposition 3.4] define the
smooth sensitivity as follows.

Definition 12 (Smooth Sensitivity of theMedian). The smooth sensitivity of themedian of sorted
data set𝐷 = {𝑑1, . . . , 𝑑𝑛 } ∈ 𝔇𝑛 is

max
𝑘=0,..,𝑛

𝑒−𝑘 𝜖 max
𝑡=0,..,𝑘+1

(
𝑑 𝑛

2 +𝑡 − 𝑑 𝑛
2 +𝑡−𝑘−1

)
,

where 𝑑𝑖 = min𝔇 for 𝑖 < 1 and 𝑑𝑗 = max𝔇 for 𝑗 > 𝑛.

Informally, sensitivity of neighboring data sets “further away” (i.e., increasing 𝑘) from fixed
instance𝐷 receive exponentially lessweight (𝑒−𝑘 𝜖). While smooth sensitivity can be smaller than
global sensitivity, computing smooth sensitivity requires access to the entire data set, otherwise
the error increases further4, which prohibits efficient (secure) computation with high accuracy.
Smooth sensitivity is used in DP mechanisms based on additive noise. However, for proba-

bilistic selection via the exponentialmechanism a smaller and data-independent sensitivity can
be defined for themedian, as described next.

Utility Function for the Median

Li et al. [LLSY16, Section 2.4.3] note that the Laplacemechanism is ineffective for themedian, as
(smooth) sensitivity can be high, and present a low-sensitivity utility function for the exponen-
tial mechanism. They quantify an element’s utility via its rank relative to the median. The rank
of 𝑥 ∈ 𝔇 in a data set 𝐷 is the number of values in 𝐷 smaller than 𝑥 . More formally, rank𝐷 (𝑥) =
|{𝑑 | 𝑑 ∈ 𝐷 : 𝑑 < 𝑥}|. Note that for the median, we have R = 𝔇, which means every domain ele-
ment is a potential output.

Definition 13 (Median Utility Function). Themedian utility function 𝑢𝜇 : (𝔇𝑛 ×𝔇) → ℤ gives a
utility score for each 𝑥 ∈ 𝔇with regard to𝐷 ∈ 𝔇𝑛 as

𝑢𝜇 (𝐷, 𝑥) = − min
rank𝐷 (𝑥) ≤𝑗 ≤rank𝐷 (𝑥+1)

���𝑗 − 𝑛2 ���.
The sensitivity of 𝑢𝜇 is only 1/2 since adding an element increases 𝑛/2 by 1/2 and 𝑗 either in-

creases by 1 or remains the same [LLSY16, Section 2.4.3]5. Thus, the denominator 2Δ𝑢 in the
exponents of Equation (2.1) in Definition 10 equals 1, and we will omit it in the definitions of
our DP median protocols. We focus on MPC of the DP median but Definition 13 supports any
𝑘 th-ranked element by replacing 𝑛/2 with 𝑘 and adapting the sensitivity accordingly [Mic20b].

4 Smooth sensitivity approximations exist that provide a factor of 2 approximation in linear-time, or an additive error of
max (𝔇)/poly(|𝐷 |) in sublinear-time [NRS07, Section 3.1.1]. Note that this error 𝑒 is with regard to smooth sensitivity 𝑠 ,
and the additive noise is even larger as it scales with (𝑠 + 𝑒)/𝜖.

5 Here, we point out a technicality, which is a moot point for even data sizes or if the median appears multiple times in
the data. Li et al. [LLSY16] approximate the median position as 𝑛/2 to get low sensitivity 1/2. We defined the median
position as d𝑛/2e, which is the same for even data sizes. However, one cannot use a roundedmedian position in Defi-
nition 13, as it increases the sensitivity to 1, i.e., rounded positions do not change between neighbors but the ranks can
change by ±1. Overall, the median (at position d𝑛/2e) and an adjacent element might receive the same utility score. In
this case, one outputs either one of those data elements (resp., domain elements in between)with the sameprobability.
In expectation, one outputs the average of them, similar to the commonmedian definition which returns the average
(𝑑𝑚 + 𝑑𝑚+1)/2 for 𝑚 = 𝑛/2 and even 𝑛. However, this technicality is of little to no consequence when the elements
adjacent to the median are very similar or the same – as is to be expected. Recall, the median represents a “typcial”
element in the data. The median is considered a robust statistic, i.e., few input changes (resp., small positional shifts)
do not lead to large output changes [DL09, Section 1.2].

34

3.6 DPMedian

0.1 0.25 0.5
0
5
10
15
20
25

𝜖

A v
g.
Ab

s.
Er
ro
rs Smooth

Sensitivity
Exponential
Mechanism

(a) Credit card transactions,
first 100 000 payment records
in Cents [ULB18].

0.1 0.25 0.5
0
2
4
6
8
10
12

𝜖

Av
g.
Ab

s.
Er
ro
rs Smooth

Sensitivity
Exponential
Mechanism

(b) Walmart supply chain data,
≈ 175 000 shipment weights as
integers [Kag18].

0.1 0.25 0.5
0
1
2

3
4

5

𝜖

Av
g.
Ab

s.
Er
ro
rs Smooth

Sensitivity
Exponential
Mechanism

(c) NYC taxi trips, first 75 000 fares
in Cents [TLC19].

Figure 3.2: Absolute errors with 95% confidence intervals, averaged for 100 differentially private median computations
via Laplacemechanismwith smooth sensitivity and the exponential mechanism.

Exponential Mechanism is more accurate than Smooth Sensitivity

To illustrate that additive noise can be high for DP median, we empirically evaluate the abso-
lute error of the Laplacemechanismwith smooth sensitivity and the exponential mechanism in
Figure 3.2 on real-world data sets [Kag18, ULB18, TLC19]. For low 𝜖, corresponding to a stronger
privacy protection, the exponentialmechanism ismore accurate. Note thatwe evaluated an ide-
alizedversionof smooth sensitivityby ignoring requiredconstants that further increase thenoise
magnitude [NRS07, Lemma 2.9] [MG20, Proposition 2], and still see better accuracy for the ex-
ponential mechanism. Medina and Gillenwater [MG20] also compared the exponential mecha-
nism to smooth sensitivity for DPmedian and found the former to be superior as well.
Overall, our protocols EMmed, EM∗ achieve better accuracy, i.e., average absolute error, for

DP median than approaches without the exponential mechanism for low 𝜖 with better scala-
bility than the standard exponential mechanism. We discuss accuracy bounds of EMmed in Sec-
tion 5.1.6 and provide empirical evaluations in Section 5.3. For EM∗, we discuss accuracy in Sec-
tion 6.1.5 and detail empirical evaluations with regard to related work in Section 6.3.5.

3.6.2 DP Median and Privacy Models

In the following, we discuss related work for DP median grouped by privacy models, i.e., non-
private, local DP, central DP, andMPC of DP.

Non-private Median

The exact median can be computed by general MPC, which offers input secrecy but does not
provide any output privacy. Aggarwal et al. [AMP10] present very efficient secure protocols for
finding the median of two (resp., multiple) parties requiring only a logarithmic number of se-
cure comparisons in the size of the data (resp., domain). Their protocols iteratively prune the
data (resp., domain) until only themedian remains and operate similar to binary search. In each
iteration, their two-party protocol securely compares local medians and lets each party discard
half of their sorted data that cannot contain their mutual median. We formalize their two-party
protocol in Section 5.1.5 and detail theirmulti-party protocol in Section 5.2.7. While Aggarwal et
al. compute the exact median we compute the DPmedian. For large data sets, EM∗ employs the
pruning from Aggarwal et al. to reduce the input size until it is sublinear in the domain size, so
we can efficiently sample the DPmedian from the pruned input.

35

3 RelatedWork

Local DP Median

Smith et al. [STU17] and Gaboardi et al. [WGSX20] consider the restrictive non-interactive local
model, where atmost onemessage is sent from client to server, and achieve optimal localmodel
error. However, local DP requires more samples to achieve the same accuracy as central DP for
the sameprivacy parameter andnonon-interactive LDPprotocol [STU17,WGSX20] can achieve
asymptotically better sample complexity than𝑂 (𝜖−2𝛼−2) for error 𝛼 [DJW13]. We, on the other
hand, are interested in high accuracy as in the central model even for small sample sizes

Central DP Median

Dwork and Lei [DL09] present DP mechanisms for robust statistics where data samples are as-
sumed to be drawn independent and identically distributed. Robust statistics (e.g., median) are
not very sensitive to outliers (unlike, e.g., the mean) and small input changes do not drastically
alter the result [DL09, Section 1.2]. Theydescribe apropose-test-release paradigm,where an ana-
lyst (without data access) first proposes a bound on the local sensitivity to the data owner. Then,
thedataownerperformsadifferentially private test on thedata to check if this bound suffices. Fi-
nally, if the test succeeds, theDP statistic is releasedwith the proposed bound. Their DPmedian
approach is the first that does not require a bounded data domain. However, it aborts if the data
are not from a “nice” distribution, e.g., the local sensitivity is high. Their DP median approach
is based on a private estimation 𝑠 of the data scale (also called dispersion) via the inter-quartile
range. However, their noise magnitude 𝑠𝑛−1/3 for the median can be prohibitively large, espe-
cially for small data sizes 𝑛.
Smooth sensitivity, introducedbyNissimet al. [NRS07], is a smoothupper boundon local sen-

sitivity. Smooth sensitivity analyzes the data to provide ideally small instance-specific additive
noise. As discussed in Section 3.6.1, the exponentialmechanismprovides better accuracy for low
𝜖 andwe provide efficient computations over a data subset (EMmed) or domain subranges (EM∗),
whereas computing smooth sensitivity for themedian requires access to the entire sorted data.

MPC DP Median

As mentioned before, Pettai and Laud [PL15] securely compute DP statistics, including the DP
median. Their implementation is based on secret sharingwith 3 parties and realizes the sample-
and-aggregatemechanism [NRS07, Section 4]. Typically, the sample-and-aggregatemechanism
partitions the data in multiple equal-sized subsets, performs a computation per subset, and
aggregates the results to provide a noisy approximation. For the median, however, Pettai and
Laud [PL15] compute the noisy average of the 100 values closest to themedianwithin a clipping
range. This approach provides limited accuracy, especially, if the data contains outliers or large
gaps (see discussion in Section 6.1.5 and evaluation in Section 6.3.5). The exponential mech-
anism, which we securely implement for the median utility function, selects an actual domain
element and not a noisy approximation.
Crypt𝜖 [CWH+20] employs two non-colluding untrusted servers and homomorphic encryp-

tion [Pai99] as well as garbled circuits to compute noisy histograms (Laplace mechanism) for
SQL queries (e.g., count, distinct count, counts grouped by matching attributes) which can be
extended to compute the median. However, computing DPmedian with probabilistic selection
ismore accurate than additive noise for low 𝜖 (Section 3.6.1 and Section 6.3.5). Crypt𝜖 has a run-
ning time linear in the data size. For a data set of one million records, Crypt𝜖 requires around

36

3.6 DPMedian

DPmedianmethods Error bound 𝛼 of (𝛼, 𝛽)-accuracy

Nissimet al. [NRS07] –Additivenoisewith SmoothSensitivity:
reduced, instance-specific noise. max

𝑘=0,..,𝑛
𝑒−𝑘 𝜖 max

𝑡=0,..,𝑘+1

(
𝑑 𝑛

2 +𝑡 − 𝑑 𝑛
2 +𝑡−𝑘−1

)
𝛾

Dwork and Lei [DL09] – Additive noise with Propose-Test-
Release: propose boundon sensitivity, privately test if it is suf-
ficient, and release noisy result if test succeeded.

𝑑d0.75𝑛e−𝑑d0.25𝑛e
𝑛1/3 𝛾

Pettai and Laud [PL15] – Additive noise with Sample-and-
Aggregate: average 𝑗 elements closest to the median in clip-
ping range [𝑐𝑙 , 𝑐𝑢], release noisy average.

(
𝑐𝑢−𝑐𝑙
𝑗 + max (𝔇)−min(𝔇)

𝜖 exp(Ω(𝜖√𝑗))
)
𝛾

This work (Section 6.1.5) – Probabilistic selection with Expo-
nential Mechanism: iteratively select subranges containing
themedian.

max
𝑖 ∈{+1,−1}·

⌊
ln(|𝔇|/𝛽)

𝜖

⌋ ���𝑑 𝑛
2 +𝑖 − 𝑑 𝑛

2

���
Table 3.1: DPmedianmethods in the central model with𝛾 = ln(1/𝛽)/𝜖. Data𝐷 ∈ 𝔇𝑛 is sorted and the error terms are

simplified to ease comparison: omitting small constants (mainly 𝛿) [NRS07, DL09], assuming expected sen-
sitivity [DL09], shortened approximation error term [PL15] (see [NRS07, Th. 4.2]), and applying one selection
step for this work.

17 minutes for a count with three conditions, e.g., “count of male employees of Mexico having
age 30”, with pre-computed DP index for country using Google Cloud c2-standard-8 instances
with 8vCPUs and 32GB RAM [CWH+20, Section 9]. The pre-computed DP index, which con-
sumes part of the privacy budget, approximately shows the locationwhere sorted encrypted val-
ues change from one value to another to speed up processing. Without such pre-computation
the runtime increases to hours. Similarly, computing a noisy histogram for the attribute age in
the form of the cummulative density function over integer domain [1, 100] requires around half
an hour for around 32,000 records without pre-computation [CWH+20, Table 3]. Our protocols,
on the other hand, can process data in real-time, i.e., without large pre-computation overhead
for new data, and our evaluations cover the entire protocol running time. Our DP median pro-
tocol EMmed is sublinear in the data domain with pruning (linear in the data size without prun-
ing) and runs in less than 7 seconds for one million records in a WAN with 100ms latency and
100Mbits/s bandwidth onmachineswith only 2GBRAMand 4vCPUs (Figure 5.6 in Section 5.3).
Our protocol EM∗ is independent of the data size and optimized for decomposable functions.
GM∗ (a variation of EM∗) achieves a running time of less than 90 seconds for millions of domain
elements with the same hardware and real-worldWAN (Figure 6.4 in Section 6.3).

Theoretical Accuracy Bounds

Table 3.1 lists theoretical accuracy bounds for related work closest to ours, i.e., computation of
theDPmedian in the central orMPCmodel, omitting any dependence on 𝛿 . The table compares
the (𝛼, 𝛽)-accuracy, i.e., the probability that the absolute error is atmost𝛼 is at least 1−𝛽 (formal-
ized inDefinition15 inSection4.3). Note that the table entries, except for thiswork, are the sensi-
tivityof themethodmultipliedby factor𝛾 = ln(1/𝛽)/𝜖withanadditional error termforPettai and
Laud [PL15]. Related works draw additive noise 𝑟 from zero-centered Laplace distribution with
scale 𝑠/𝜖 for sensitivity 𝑠 (Laplacemechanism, Definition 7). Since Pr[|𝑟 | ≤ 𝑡 · 𝑠/𝜖] = 1 − exp(−𝑡)
[DR14, Fact 3.7], we can bound the absolute error |𝑟 | as in Table 3.1 by setting 𝛽 = exp(−𝑡),𝛾 =

𝑡 /𝜖 = ln(1/𝛽)/𝜖. As the theoretical guarantees show strong data dependence, which hinder
straightforward comparisons (as discussed in Section 6.1.5), we also provide empirical accuracy
comparisons in Section 6.3.5.

37

3 RelatedWork

300
1,000 3,000 5,000

0
0.2
0.4
0.6
0.8
1

𝑛
N
CRHH

PEM
PEMorig

(a) Zipf

300
1,000 3,000 5,000

0
0.2
0.4
0.6
0.8
1

𝑛

N
CRHH

PEM
PEMorig

(b) Retail prices [ULB19]

Figure 3.3: Accuracy (NCR) of ourMPC protocols PEM andHH compared to LDP protocol PEMorig [WLJ19] for param-
eters 𝑘 = 8, |𝔇 | = 232, 𝜖 = 2 with 𝑛 ∈ {300, 1 000, 3 000, 5 000}.

3.7 DP Heavy Hitters

First, we briefly illustrate that our protocols provide better accuracy than existing local model
approaches. Then, we discuss approaches for heavy hitter discoverywithout privacy protection,
with local DP, central DP, andMPC of DP.

Accuracy for DP Heavy Hitters

Wewant to illustrate that theMPCmodel providesbetter accuracy than the localmodel for heavy
hitters. For this purpose, we compare our MPC protocols PEM and HH with a state-of-the-art
localmodel approach fromWang et al. [WLJ19]whichwedenotePEMorig. Wemeasure top-𝑘 ac-
curacy likeWang et al. via non-cumulative rank (NCR), which is similar to the F1 score weighted
by an element’s rank, where the most frequent value has rank 𝑘 , the second most frequent rank
𝑘 −1, etc. (formalized inDefinition 16 in Section 4.3). We used synthetic data from the same Zipf
distribution as Wang et al.6 as well as a real-world Online retail data set [ULB19]. Figure 3.3 il-
lustrates that our protocols provide higher accuracy than PEMorig which in turn provides better
accuracy compared to other LDP approaches [WLJ19]. The accuracy drop in the real-world data
set for 𝑛 = 3, 000 (Figure 3.3b) is mainly due to an increase in the number of distinct data ele-
ments, which decreases the relative frequency of heavy hitters. We informally describe PEMorig
later in this section and formalize it in Section 7.1.2. A more detailed evaluation (with varying
𝑘 , 𝜖) is provided in Section 7.3.

Non-private Heavy Hitters

Algorithms for heavy hitter detection are roughly grouped into three classes [CH10, ABL+17]:
Quantile algorithms, which use estimated quantiles of range endpoints to approximate frequen-
cies of range elements; hash-based sketches, which provide a space-efficient frequency estima-
tion, and counter-based sketches, where a set of counters are updated when new data arrives.
Counter-based sketches are the best with regards to space, speed and accuracy [CH10, ABL+17];
thus, we selected one of them, namely, Misra-Gries [MG82], [CH10, Alg. 1] as basis for HH. HH
provides differential privacy unlike related work [MG82, CH10, ABL+17]. While recent improve-
ments achieve better performance [ABL+17] (amortized over the control flow), we cannot lever-
age them inHH due to our use of MPC (which hides the control flow).

6 Zipf(1.5), i.e., the 𝑗 -thmost frequent value appears with probability proportional to 1/𝑗 1.5.

38

3.7 DPHeavy Hitters

Local DP Heavy Hitters

LDP heavy hitter approaches [BS15, BNST17, EPK14, FPE16a, WLJ19, ZKM+20] mainly differ in
their client-side encoding and server-side decoding of candidates, for which counts are esti-
mated. Such encoding (in the form of domain reduction, e.g., Bloom filters [EPK14], matrix
projection [BS15]) incurs information loss, which can exceed the loss due to DP randomiza-
tion [WLJ19]. Notably, some encodings already provide some form of DP, e.g., [ZKM+20] (or
[CDSKY20] for distinct counts), but only with large 𝜖 or for large data sizes.
Wang et al. [WLJ19] carefully analyze related work [BS15, BNST17, EPK14, FPE16a], which

mainly use non-overlapping segments (e.g., report single bits or sets of bits), present a state-
of-the-art protocol by leveraging overlapping prefixes, and show that it provides better accuracy
than other LDP approaches.
We build upon the work of Wang et al. [WLJ19], which we denote PEMorig, as basis for our

central-model protocol PEM. PEMorig, described in detail in Section 7.1.2, splits the clients into
groups which report increasingly larger randomized prefixes. First, the clients encode the pre-
fix of their datum by hashing it to reduce the data domain for generalized randomize response
GRR (Definition 9 in Section 2.2.4). Then, GRR is applied on the hash before sending it to server.
The server approximates the count for each possible prefix candidate by hashing the candidate
and comparing it to all messages. If a hash matches, the candidate count is increased. Roughly,
frequent candidate prefixes of, say, length𝜂, reported by the first group, are extended by all pos-
sible bit strings of length 𝜂, and are used to find matching candidates from the second group,
who reports prefixes of length 2𝜂, etc.
We decode and output heavy hitters as our sketches contain the values or bit representation

of heavy hitters. Related work, on the other hand, requires costly search to find heavy hitters
from their encoded representation (e.g, hash), which has to be mapped to potential candidates
from the domain [EPK14, FPE16a,WLJ19]. Note that searching to find count estimates fromper-
turbed reports consumes significant computational resources: PEMorigperforms𝑛2𝑞 hash com-
putations to match potential heavy hitters with randomized hashes. Even for small data of size
𝑛 = 1000 around 1 billion hashes are computed with recommended 𝑞 = 20. Likewise, RAP-
POR [FPE16a, FPE16b] (follow-up to [EPK14]) detects frequent strings (e.g., browser homepage,
installed software) by estimating joint probabilities of randomized 𝑛-grams via the expectation
maximization algorithm, with complexity𝑂 (|𝐷 | |𝐿 |𝑛𝑟) for 𝑟 reported 𝑛-grams per party for string
alphabet 𝐿 [FPE16b, Section V.B].
Our MPC protocols have better running time complexity than the above mentioned LDP ap-

proaches (Section 7.2.3), provide better accuracy (Section 7.3.5), and the computation can be
outsourced to a few computation parties independent of the number of users (Section 7.2.4)

Central DP Heavy Hitters

An alternative to approximate DP with thresholding is probabilistic selection with pure DP, e.g.,
via exponential mechanism [MT07] or report noisy max [DR14] (which outputs the index of the
largest noisy count using Laplace noise). These alternatives can be applied in a peeling fashion
to find the most frequent value from a known domain, remove it from the domain, and repeat
until 𝑘 values are found. More computationally efficient one-shot methods [DSZ15b, Rog20] re-
lease 𝑘 values in one go. We choose thresholding as it is preferable, especially for small data, for
two reasons: First, selection requires considering all elements from a known domain and sam-
plinganoutput fromtheentiredomainwithprobabilityproportional toanelement’sutility. With

39

3 RelatedWork

thresholding, on the other hand, focusing on data elements (from an unknown domain) suffices
– leveraged by our protocol HH. Second, for large domains (e.g., of size 232) and small data (e.g.,
fewhundred elements) the probabilitymass of elementswith count zero (i.e., not in the data but
in the domain) can exceed the selection probability of even the most frequent element, which
destroys accuracy (especially using disjoint groups that split the counts among them).
Durfee and Rogers [DR19b] first compute the actual top-𝑘 ′, where 𝑘 ′ > 𝑘 , and use (𝜖, 0)-DP

noise and 𝛿 -based thresholding to release at most 𝑘 (𝜖, 𝛿)-DP heavy hitters. All central DP ap-
proaches assume access to the raw data or a trusted third party. We, on the other hand, securely
discover top-𝑘 ′ without such assumptions, and apply thresholding on noisy counts [DR19b] to
release at most 𝑘 DP heavy hitters in PEM. Due to thresholding, we cannot guarantee to find ex-
actly 𝑘 heavy hitters but only at most 𝑘 as values with small counts (unlikely to be heavy hitters)
might not exceed the threshold and are dropped. Durfee and Rogers [DR19a, Section 8] note
that in such cases, e.g., flat distributions where all counts are very similar, additional output is
(almost) uniformly random. Then, no output is preferable as it providesmore insights about the
data (i.e., flat histogram) than randomness.

MPC DP Heavy Hitters

Melis et al. [MDDC16] consider count-min and count sketches build via secure aggregation, i.e.,
parties evaluate multiple hash functions on their input, set the counters indexed by the hash
functions to 1, and securely aggregate the counters. However, such sketches require search ef-
forts linear in thedomain size tofindheavyhitters (as eachcandidate ismapped to sketchentries
by evaluatingmultiple hash functions), whereas our protocols are linear in the data size (HH) or
sublinear in the domain size (PEM), and efficiently handle unknown or large domains.
Naor et al. [NPR19] consider DP collection of frequently used passwords with malicious par-

ties. On a very high-level, their hash-then-match approach is similar to PEMorig with 𝑛2𝑙 server
operations, albeit more efficient ones (no hashing): Each user 𝑗 receives a random 𝑙-bit value 𝑟𝑗
from the server, computes 𝑙-bit hashℎ 𝑗 of her password and reports one bit, the inner product of
𝑟𝑗 and GRR(ℎ 𝑗) modulo 2. The server keeps 2𝑙 counters, tries to find a matching 𝑥 ∈ 2𝑙 for every
report and increments the corresponding counters. Hashvalues are released if their noisy counts
exceed a fixed fraction of the user count. It is almost an LDP protocol, with the same accuracy
limitations, where secure computation is required asmalicious users cannot learn 𝑟𝑗 . Their pro-
tocol is a series of two-party computations between users and server, whereas our protocol is a
multi-party computation, where users can outsource the computation and only need to secret
share their inputs.
Boneh et al. [BBC+21] securely compute heavy hitters in a malicious setting with two compu-

tation servers. They focus on novel cryptographic primitives, i.e., incremental distributed point
functions, allowing secret shares of size𝑂 (𝑚) to represent a vector of 2𝑚 values with only one
non-zero element. They considerDP only optionally to bound their protocol’s information leak-
age. In contrast, DP with high accuracy is at the heart of our design. They require large noise
addition from each server, prohibiting anymeaningful DP statistics for small number of clients,
andoverall provide less accuracy thanourDP-focusedprotocols. They requiremillions of clients
to achieve an absolute error of 16% for 𝜖 < 1 [BBC+21, Appendix E] and add noisemultiple times
and not per group. While their server communication ismore efficient than ours (requiring only
kilobytes), wehave similar client communication (kilobytes), however, their computation time is
linear in the number of parties. PEM, for semi-honest clients (andpotentiallymalicious servers),

40

3.7 DPHeavy Hitters

is linear in the domain bit-length and asymptotically faster than Boneh et al. [BBC+21]. Adjusted
for 𝑘 = 256, 𝑏 = 256, PEM is faster than their approach formore than 6million clients7, however,
wemainly focus on small data (corresponding to few clients).

7 Bonehet al. [BBC+21, Table9]processapproximately120clients/secondwith32vCPUs, 60GBRAM,≈62msWANdelay,
domain bit-length 𝑏 = 256 and 𝑘 as 0.1% of number of clients. PEM runs in less than 12 minutes in total (Figure 7.4b
in Section 7.3.2) on 4 vCPUs, 8GB RAM with 100ms delay, 𝑏 = 64, 𝑘 = 16 and is independent of client count 𝑛, but
linear in 𝑘 and 𝑏 . PEM’s time in seconds multiplied by 256/16 (adjusts 𝑘), 256/64 (adjusts 𝑏), and 120 clients/s, results
in 5, 529, 600 clients.

41

4 Methodology

In the following, we describe the assessmentmethodology of the security, privacy, and accuracy
of our protocols, howwemeasure their efficiency, and describe the usedMPC frameworks.
We prove the security of our protocols with a simulation argument as detailed in Section 4.1.

Weprove the privacy of our protocols by composing knownDPmechanisms as described in Sec-
tion 4.2. We measure accuracy mainly as the average absolute error with 95% confidence inter-
vals as detailed in Section 4.3. The efficiency assessment of our protocols, i.e., average running
time and communication with 95% confidence intervals, is detailed in Section 4.4. The MPC
frameworks employed in this work are described in Section 4.5.

4.1 Security Assessment

To prove the security of a protocol in the presence of a semi-honest adversary A, we show the
existence of a simulator Sim according to Goldreich [Gol09]. The simulator operates in an ideal
world with a trusted third party providing an ideal functionality F , i.e., each party 𝑃𝑖 sends its
input 𝑑𝑖 to the trusted party which releases only F (𝑑1, . . . , 𝑑𝑛). A secure protocol Π realizing F
operates in the real world and replaces the trusted third party with MPC. The goal is to show
that distributions of the real-world view and a simulated view constructed in the ideal world are
computationally indistinguishable.
Informally, an adversary in the ideal world learns nothing except protocol inputs of corrupted

parties and their outputs, hence, if he cannot distinguish simulated views (ideal world) from ac-
tual views (real world), he learns nothing in real-world implementations.
Next, we formalize the ideal and real-world executions – denoted ideal and real, respectively

– based on Evans et al. [EKR+18, Section 2.3]. Let VIEW𝑝Π denote the view of party 𝑝 during the
executionofprotocolΠ on input𝐷 , i.e., all exchangedmessagesand internal state. Theadversary
A corrupts a subset C of the parties P and has access to their views.

({VIEW𝑖Π (𝑑𝑖)}𝑖 ∈C , {𝑦𝑖 }𝑖 ∈P) ← realΠ (𝜅,C, {𝑑𝑖 }𝑖 ∈P), the real-world execution receives as input se-
curity parameter𝜅 , the set C ⊂ P of corrupted parties, and each parties input 𝑑𝑖 . Then, the
real-world execution runs protocol Π, with each party 𝑖 ∈ P behaving honestly using its
own input 𝑑𝑖 , and outputs the view of all corrupted parties as well as the final output 𝑦𝑖 of
each party 𝑖 ∈ P.

(S, {𝑦𝑖 }𝑖 ∈P) ← idealF,Sim (𝜅,C, {𝑑𝑖 }𝑖 ∈P), the ideal-world executionwith the same inputs, relies on
ideal functionality F to compute {𝑦𝑖 }𝑖 ∈P ← F ({𝑑𝑖 }𝑖 ∈P). Then, the simulator receives the
set of corrupted parties with their inputs and outputs and creates simulation S, i.e., S ←
Sim(C, {(𝑑𝑖 , 𝑦𝑖)}𝑖 ∈C). Finally, simulationS is output alongwith the protocol outputs of each
party, i.e., {𝑦𝑖 }𝑖 ∈P .

A protocol is secure if the output distributions of ideal and real are computationally indistin-
guishable [EKR+18, Def. 2.2].

43

4 Methodology

Definition 14 (Semi-honest Security). A protocol Π securely realizes F in the presence of semi-
honest PPT adversaries if there exists a PPT simulator Sim such that for every subset of corrupted
parties C ⊂ P and all possible inputs {𝑑𝑖 }𝑖 ∈P the distributions of the simulated and real-world
execution are computationally indistinguishable in security parameter𝜅 , i.e.,

idealF,Sim (𝜅,C, {𝑑𝑖 }𝑖 ∈P) c≈ realΠ (𝜅,C, {𝑑𝑖 }𝑖 ∈P).

Extension to Malicious Model

Malicious security requires additional considerations as corrupted parties can use arbitrary in-
puts and can alter what output honest parties receive. For further technical details of the mali-
ciousmodel, we refer to Evans et al. [EKR+18, Section 2.3.3] and Goldreich [Gol09, Section 7.5].
We also consider extensions to the malicious model. Note that implementing our protocols

with maliciously secure frameworks is not sufficient to achieve malicious security. As malicious
users might change their inputs, we also have to ensure that inputs remain consistent between
steps (EMmed, EM∗) or are valid (PEM expects bit-vectors with at most one set bit). We describe
the consistency checks required for our protocols EMmed, EM∗,PEM in Sections 5.2.7, 6.2.8, 7.2.4,
respectively.

Composition

Our protocols consists of multiple subroutines realized with basic MPC protocols listed in Sec-
tion 2.1.6. To analyze the security of an entire protocol, we apply the well-known composition
theorem [Gol09, Section 7.3.1]: a protocol calling an ideal functionality (a subroutine provided
bya trusted thirdparty) remains secure if the ideal functionality is replacedwithanMPCprotocol
implementing the same functionality.

4.2 Privacy Assessment

We prove that our protocols provide differential privacy as well as semi-honest security; overall,
we satisfy computational differential privacy (Definition 5).
To prove privacy, we show that our protocols compose known DP mechanisms and account

for the total privacy budget 𝜖 of our compositemechanismM. Inmore detail, we rely on privacy
proofs of existing DPmechanisms, namely, EM [MT07], GM [DR19b], LM [DR14], and sequential
or parallel composition as detailed in Section 2.2.3. To prove security, we show the existence of
a simulator Sim that simulates the view of the real-world protocol execution over data𝐷 , where
Sim only knows the final output (and inputs of corrupted parties). As a consequence of these
proofs, we satisfy computational differential privacy: the simulator Sim, given neighbor𝐷 ′ of𝐷 ,
computes the protocol outputM(𝐷 ′) and simulates aDP view of the real-world execution over
𝐷 .

4.3 Accuracy Assessment

In this section, we overview our accuracy assessment and reference the corresponding evalua-
tion sections for ourprotocols. We theoretically analyzeourprotocols andalsoprovide empirical
evaluations.

44

4.3 Accuracy Assessment

Wedefine themedian like Aggarwal et al. [AMP10] as the element at position d𝑛/2e in a sorted
data set of size 𝑛. If not noted otherwise, we assume the data to be even and omit the ceiling
notation d·e for themedian position.

Theoretical Accuracy Analyses

For EMmed with pruning, we analyze the selection accuracy, i.e., the probability to select an ele-
ment from the remaining elements (close to themedian) insteadof theprunedelements (further
away). The formal description is given in Definition 23 in Section 5.1.6 as it requires additional
preliminaries. Later, in Section 6.1.5, we expand the theoretical accuracy analysis to the absolute
error between actual andDPmedian for EMmed and EM∗. Inmore detail, as DP requires random-
ization, we consider (𝛼, 𝛽)-accuracy, where the absolute error is bounded by 𝛼 with probability
at least 1 − 𝛽.

Definition 15 ((𝛼, 𝛽)-Accuracy). Given differentially privatemechanismM 𝑓 computing function
𝑓 , bound 𝛼, and probability 𝛽. We sayM 𝑓 is (𝛼, 𝛽)-accuratewith regards to 𝑓 if

Pr
[| 𝑓 (𝐷) −M 𝑓 (𝐷) | < 𝛼

]
> 1 − 𝛽.

For heavy hitter discovery, we rely on the accuracy analysis of existing work [CH10, MG82,
WLJ19], on which we base our protocols, as described in Section 7.1.

Empirical Accuracy Evaluation

We always compute the average over multiple runs with 95% confidence intervals as DP mech-
anisms are inherently randomized. We mainly define empirical accuracy as the absolute error
between the actual result 𝜇 and the DP result 𝜇, i.e., |𝜇 − 𝜇 |. In Sections 5.3.5 and 6.3.5, we em-
pirically evaluate accuracy for EMmed and EM∗, respectively.
Protocols for heavy hitter discovery return a set instead of a single value, requiring a different

accuracy notion. For heavy hitters, we define accuracy likeWang et al. [WLJ19] as thenormalized
cumulative rank (NCR). In the following, let C𝑘 denote the set of actual top-𝑘 values and C the
presumed top-𝑘 as returned by our protocols.

Definition 16 (Normalized Cumulative Rank (NCR)). The normalized cumulative rank of C is∑
𝑐 ∈C 𝑟 (𝑐)∑
𝑐 ′∈C𝑘 𝑟 (𝑐 ′)

,

where the frequency rank 𝑟 (𝑐𝑖) = 𝑘 + 1 − 𝑖 for the 𝑖-th most frequent element 𝑐𝑖 ∈ C𝑘 and zero
otherwise.

Basically, detecting themost frequent element increases the cumulative rank by 𝑘 , the second
most frequent element adds another 𝑘 − 1, etc., and the sum is normalized to [0, 1] by dividing it
withmaximum score∑

𝑐 ′∈C𝑘 𝑟 (𝑐 ′) = 𝑘 (𝑘 + 1)/2. We also evaluated F1 scores and compared them
to NCR.

Definition 17 (F1 Score). The F1 score
2𝑝𝑟
𝑝 + 𝑟

is the harmonic mean of precision 𝑝 = C𝑘∩CC and recall 𝑟 = C𝑘∩CC𝑘 .

45

4 Methodology

𝐶1

...

𝐶 d𝑚/2e

Ohio

𝐶 d𝑚/2e+1

...

𝐶𝑚

Frankfurt

100ms, 100Mbits/s

Figure 4.1: Evaluation setup: AWS EC2 instances𝐶1, . . . ,𝐶𝑚 split between AWS regions Ohio and Frankfurt with an ap-
proximately 100ms RTT, 100Mbits/s WAN.

In other words, precision is the fraction of detected heavy hitters from all presumed heavy hit-
ters, and recall is the fraction of detected heavy hitters from all actual heavy hitters. NCR, unlike
the F1-score, also considers an element’s frequency and gives more weight to more frequent el-
ements. We empirically evaluate accuracy forHH and PEM in Section 7.3.5.

4.4 Efficiency Assessment

First, we describe our evaluation setup in Section 4.4.1. Then, we discuss the theoretically anal-
ysed as well empirically measured running time of our protocols in Section 4.4.2. Finally, we
discuss the communication for clients as well as servers in Section 4.4.3. We always present the
average running time and communication with 95% confidence intervals, however, we omit the
intervals if they are not significant (e.g., barely visible in our graphics).

4.4.1 Evaluation Setup

We consider 𝑛 input parties (clients) with sensitive inputs, and𝑚 computation parties (servers).
The input parties outsource the computation, i.e., they create and send (𝑡 ,𝑚)-shares of their in-
puts to the computation parties, which run the secure computation on their behalf. Wemeasure
running time and communication of the computation parties.
Our two-party protocol EMmed assumes 𝑛 = 𝑚 = 2 and can be extended to handle multiple

input parties. Our multi-party protocols EM∗, HH, PEM assume an honest majority, i.e., at most
𝑡 = d𝑚/2e − 1 corrupted computation parties. Notably, secret-sharing based outsourcing can be
augmented to provide fault tolerance and handle up to 1/3 of parties dropping out during the
protocol [BIK+16].
Our protocols were deployed on Elastic Compute Cloud (EC2) from Amazon Web Services

(AWS). We evaluated all our protocols in real-world wide area networks (WAN) between Ohio
(AWS region us-east2) and Frankfurt (eu-central1), with approximately 100ms delay (round-trip
time, RTT) and100Mbits/s bandwidth, and split theparties between these locations as shown in
Figure 4.1. For EMmed, we additionally measured running time for AWS regions with round-trip
timesof 12ms (Ohio–N.Virginia) and25ms (Ohio–Canada),withbandwidthsof 430Mbits/s and
160Mbits/s, respectively. Our evaluation hardware are rathermodest t2.medium instances with
4vCPUS and 2GB RAM, where each vCPU “is a thread of either an Intel Xeon core or an AMD
EPYC core” with clock speeds of “up to 3.3GHz” according to the AWS EC2 website [Ama20a].
For our heavy hitter protocolsHH and PEMwith our largest evaluation parameters (Section 7.3),

46

4.4 Efficiency Assessment

weused t2.large instances alsowith4vCPUsbut 8GBRAM1. Also, amulti-threadedversionofHH,
denoted HHthreads, was evaluated on c4.2xlarge instances with 8vCPUs and 15GB RAM. Related
work typically provides evaluation on machines with similar clock speeds [BBC+21, EKM+14,
PL15]. While our machines are equipped with mainly 2GB, related work uses 16GB [EKM+14],
32GB [PL15], or even 60GB [BBC+21].

4.4.2 Running Time

In the following, we describe howwe analyse andmeasure the running time of our protocols.

Theoretical Running Time

We give the running time complexity of our protocols as the number of basic MPC protocols
fromSection 2.1.6 called during our protocol execution. Wepresent the theoretical running time
complexity for EMmed, EM∗, HH and PEM in Sections 5.2.5, 6.2.7, 7.2.3, respectively. Whereas the
exponential mechanism is linear in the domain size, our protocols are sublinear in the domain
size (EMmed, EM∗, PEM) or linear in the data size (EMmed,HH).

Empirical Running Time

We measure the entire protocol execution, i.e., offline and online phase, in a real-world WAN
with approximately 100ms delay and 100Mbits/s bandwidth. The evaluation setup is detailed
in Section 4.4.1. Our protocol EMmed uses𝑚 = 2 computation parties, for EM∗ we evaluate𝑚 ∈
{3, 6, 10}, and forHH andPEMwe set𝑚 = 3. We present the average running time of 20 runswith
95% confidence intervals. In our graphics, we omit the confidence intervals if they are barely
visible (e.g., average deviation below 1% for Section 6.3.1).
Detailed running time measurements are provided in Sections 5.3.1, 6.3.1, 7.3.2. Our proto-

cols EMmed / GM∗ (EM∗ variation) / HHthreads (HH variation) / PEM run in around 7 seconds (Fig-
ure 5.6b) / 1.5 minutes (Figure 6.4a,𝑚 = 3) / 11 minutes (Figure 7.3d) 5.4 minutes (Figure 7.4a)
for millions of data values (EMmed) or domain elements (GM∗,HH, PEM).

4.4.3 Communication

Next, we distinguish two types of communication. Client communication refers to the commu-
nication requiredbyaclient to send its (secret shared) input to the servers executinganMPCpro-
tocol on the client’s behalf. Server communication refers to the communication between servers
during the execution of anMPC protocol.

Client Communication

The client communication is small, atmost in the order of kilobytes (Section 7.3.3) as clients only
need to secret share their inputs with the computation servers. Thus, our evaluations focus on
server communication as detailed next.

1We note that less RAM suffices with the restart feature from SCALE-MAMBA [AKR+20]: Instead of executing a large
program with 𝑠 loops, unrolled during MPC compilation, we execute 𝑠 smaller programs consecutively – while still
performing only a single offline phase. However, our exploratory evaluations foundno significant improvements of the
running time, andmemorymanagement with this feature is considered experimental so we did not further test it.

47

4 Methodology

Server Communication

OurprotocolEMmed is realizedmainlywithgarbledcircuits, requiring secret sharingonly inan in-
termediate step. Overall, the garbler is responsible for the bulk of the communication i.e., send-
ing the circuit. As the servers have different communication complexities, we present the total
communication for EMmed. Our protocols EM∗, HH, PEM are based on secret sharing and the
communication is roughly evenly divided among the parties. Hence, we present per-server com-
munication for these protocols.
The detailed communication evaluations are presented in Sections 5.3.6, 6.3.2, 7.3.3. The

server communication is in the order of megabytes. For𝑚 = 3 servers (resp., 2 for EMmed) and
EMmed /GM∗ /HH /PEM (32-bit domain), the evaluated server communication is atmost 60 MB
(Figure 5.9b, total) / 116 MB (Table 6.3, per server) / 122 MB (Figure 7.5a, per server) / 500 MB
(Figure 7.6a, per server), respectively.

4.5 MPC Frameworks

While there aremanyMPC frameworks – see, e.g., Hastings et al. [HHNZ19] for an overview –we
focus onmature frameworks (i.e., having gone through years of research and development) that
are still in active development, provide detailed documentation, and support secret sharing.
Our two-party protocol EMmed employs both implementation paradigms, namely, secret shar-

ing and garbled circuits, for their respective advantages. We implement our two-party protocol
in the semi-honest mixed-protocol framework ABY [DSZ15a], which supports both paradigms
aswell as efficient conversionsbetween them(seeSection2.1.5). Code inABY iswritten inC/C++
and in our evaluation we deployed the version fromOctober 19, 20192.
Ourmulti-party protocols EM∗, PEM,HH employMPC based on secret sharing for an efficient

implementation in a network with reasonable latency and are implemented in the maliciously
secure SCALE-MAMBA framework [AKR+20]. Furthermore, we provide some comparison to the
MP-SPDZ framework [Kel20] which is a fork of SPDZ2, a predecessor of SCALE-MAMBA, sup-
porting semi-honest as well as malicious security. Code in SCALE-MAMBA and MP-SPDZ is
written in a Python-like language calledMAMBA3 and canbe largely re-usedbetween the frame-
works. We deployed SCALE-MAMBA [AKR+20] version 1.3 andMP-SPDZ [Kel20] version 0.1.8 in
our evaluation.

2 https://github.com/encryptogroup/ABY/tree/08baa853de76a9070cb8ed8d41e96569776e4773
3 SCALE-MAMBA is in the process of moving fromMAMBA to Rust.

48

https://github.com/encryptogroup/ABY/tree/08baa853de76a9070cb8ed8d41e96569776e4773

5 EMmed: DP Median

In this chapter, we present EMmed, an efficient MPC protocol for DP rank-based statistics, illus-
trated for the median, of the union of two confidential data sets. This chapter is based on the
following publication:

Jonas Böhler, Florian Kerschbaum. Secure Sublinear Time Differentially Private Median
Computation. InNetworkandDistributedSystemsSecuritySymposium,NDSS,2020 [BK20b].

Themedian is an important robust statisticalmethoduseful for enterprisebenchmarking, e.g.,
companies compare typical employee salaries and insurance companies can usemedian life ex-
pectancy to adjust insurance premiums [AMP10, Section 1]. Our protocol EMmed combines the
benefits of the local model (no trusted third party) and central model (better accuracy), and has
a running time sublinear in the size of the data domain.
The remainder of this chapter is organized as follows. In Section 5.1, we define building blocks

of our protocol. Our main insight is that the utility score for rank-based statistics can be locally
evaluated on securely sorted data instead of the entire data domain. Thus, the exponentiations
for the selection weights can be computed locally, avoiding costly secure exponentiations. We
provide differential privacy for small data sets (sublinear in the size of the data domain) and
prune large data sets with a relaxed neighboring notion of differential privacy providing limited
group privacy. In Section 5.2, we describe our MPC protocol EMmed. We use dynamic program-
ming with a static, i.e., data-independent, access pattern, achieving low complexity of the se-
cure computation circuit. In Section 5.3, we provide a comprehensive evaluation over multiple
AWS regions (from Ohio to N. Virgina, Canada, and Frankfurt) with a large real-world data set
achieving a practical running time of less than 7 seconds for millions of records. We conclude
this chapter in Section 5.4 by summarizing our results.

5.1 Building Blocks for DP Median Selection

In the following, we explain the building blocks of our protocolEMmed, a practically efficient sub-
linear time dynamic programming, which overcomes the challenges mentioned in Section 1.4,
namely, running time linear in the domain size and costly secure exponentiations.
Additional notation for this chapter are given in Section 5.1.1. We give an overview of our ap-

proach in Section 5.1.2. To reduce the running time complexity, we simplify the median utility
definition by using𝐷 instead of𝔇 as input in Section 5.1.3. We detail how to compute selection
probabilities and sample themedian in Section 5.1.4. Then, we describe how to prune large data
sets𝐷 in Section 5.1.5 to further reduce complexity of the secure computation.

5.1.1 Chapter-specific Notation

We consider a two-party setting, where party 𝐴 and party 𝐵 hold data sets 𝐷𝐴 and 𝐷𝐵 , respec-
tively. The data sets 𝐷𝐴 and 𝐷𝐵 aremultisets (also called bags) over domain𝔇 and can contain

49

5 EMmed: DPMedian

duplicates. For our proofs, we apply union undermultiset semantics, i.e., the combined data set
𝐷 = 𝐷𝐴 ∪ 𝐷𝐵 is a multiset, containing all elements from 𝐷𝐴 and 𝐷𝐵 (including duplicates). This
interpretation of union is equivalent to the sum function formultisets. We treat the difference of
multisets, denoted𝐷𝐴\𝐷𝐵 , as a set containing only unique elements from𝐷𝐴 that are not also in
𝐷𝐵 . Formally,𝐷𝐴\𝐷𝐵 = {𝑥 ∈ 𝔇 | 𝑥 ∈ 𝐷𝐴 and 𝑥 ∉ 𝐷𝐵 }.
In this chapter, we start counting indices with zero, i.e., 𝐷 = {𝑑0, 𝑑1, . . . , 𝑑𝑛−1} ∈ 𝔇𝑛 , as it sim-

plifies some of our notation1, and assume data domain𝔇 to be an integer range, i.e.,𝔇 = {𝑥 ∈
ℤ | 𝑎 ≤ 𝑥 ≤ 𝑏} with 𝑎, 𝑏 ∈ ℤ. To simplify the description we assume the size 𝑛 of 𝐷 to be even
which can be ensured by padding. Then, with zero-indexing and padding, the median is the
value 𝑑𝑛/2−1 in sorted𝐷 . We denote with 𝐼𝐷 = {0, . . . , 𝑛 − 1} the set of indices for𝐷 .

5.1.2 Ideal Functionality

For now, we focus on a single data set𝐷 as we later prune andmerge the data sets from the two
parties intoonedata set. Fordata set𝐷 withdomain𝔇wecompute the selectionprobabilities for
themedian for all of𝔇 using only𝐷 by utilizing dynamic programming. To compute the proba-
bilities efficiently we first define a simplified utility function utility, which computes utility for all
domain elements but only requires𝐷 as input, in Section 5.1.3. The simplified utility provides in-
correct utility scores in the presence of duplicates. Thus, we define gap to discard these incorrect
scores andcompute the selectionprobabilities, denotedasweight. The sumof theseprobabilities
is the basis for the cumulative distribution function, which we denote withmass. Then, we sam-
ple thedifferentially privatemedianbasedonmass and gap as detailed in Section 5.1.4. To further
reduce complexity of the secure computation complexity we prune the input𝐷 in Section 5.1.5.
A high-level overview of our protocol EMmed with ideal functionalities is visualized in Fig-

ure 5.1, and we present our full protocol in Section 5.2. In the first step, the parties prune their
input. Then, they securelymerge and secret share their pruned data. In the third step they com-
pute selection probabilities and, in the last step, sample the differentially private median.
Note that in the followingwe define gap, utility, andweight such that direct access to the data𝐷

– and therefore the need for secure computation – is minimized: Each party can compute utility
and weight without any access to 𝐷 . Furthermore, gap has a static access pattern, independent
of the elements in (sorted)𝐷 , whichmakes the gap function data-oblivious, i.e., an attacker who
sees the access pattern cannot learn anything about the sensitive data.

5.1.3 Utility with Static Access Pattern

Recall Definition 13, where themedian utility function𝑢𝜇 : (𝔇𝑛 ×𝔇) → ℤ gives a utility score for
each 𝑥 ∈ 𝔇 w.r.t. 𝐷 ∈ 𝔇𝑛 as 𝑢𝜇 (𝐷, 𝑥) = −minrank𝐷 (𝑥) ≤𝑗 ≤rank𝐷 (𝑥+1)

��𝑗 − 𝑛
2
��. The exponential mecha-

nism evaluates the utility function 𝑢𝜇 for all elements in the data domain𝔇. However, per defi-
nition of 𝑢𝜇 certain outputs have the same utility, namely, duplicates and elements in𝔇\𝐷 . We
use this observation to simplify themedian utility definition and evaluate it only for elements in
data set𝐷 instead of the entire domain𝔇.

1 The rank of 𝑑𝑖 becomes 𝑖 with zero-based indexing of sorted, distinct data.

50

5.1 Building Blocks for DPMedian Selection

𝐴 𝐵

𝑐 = 𝜇𝐴 <𝜇𝐵

〈𝐷𝑠 〉𝐴 + 〈𝐷𝑠 〉𝐵 is
sorted 𝐷𝑠

𝐴 ∪ 𝐷𝑠
𝐵

Sample median 𝜇
via EM

(I) FCompare

(II) FMergeAndShare

(IV) FMedianSelection

𝜇𝐴 is the median of 𝐷𝑖
𝐴

𝐷𝑖+1
𝐴 is upper half of 𝐷𝑖

𝐴 if
𝑐 = 1 else lower half

loop: for 𝑖 = 0 to 𝑠 − 1

𝜇𝐴 𝜇𝐵

𝑐 𝑐

𝐷𝑠
𝐴 , 〈𝐷𝑠 〉𝐴 𝐷𝑠

𝐵

〈𝐷𝑠 〉𝐵

〈𝐺 〉𝐴 , 〈𝑀 〉𝐴 ,
〈𝐷𝑠 〉𝐴 , N𝐴

〈𝐺 〉𝐵 , 〈𝑀 〉𝐵 ,
〈𝐷𝑠 〉𝐵 , N𝐵

𝜇 𝜇

Generate list 〈𝐷𝑠 〉𝐴 of mask-
ing values

(III) Selection probability:
Compute gaps 〈𝐺 〉𝐴 and
probability masses 〈𝑀 〉𝐴 ,
draw list N𝐴 of nonces

Figure 5.1: High-level overview of EMmed in four steps (I)–(IV) where ideal functionalities F(·) are later realized
with secure computation. Commented for 𝐴 where 𝑠 is the number of pruning steps,𝐷0

𝐴 is sorted𝐷𝐴 ,
and 〈𝐷𝑠 〉𝐴 , 〈𝐺 〉𝐴 , 〈𝑀 〉𝐴 are 𝐴’s shares for all values 𝑑𝑠𝑖 , gaps gap(𝑖) , andmassesmass(𝑖) respectively (𝑖 ∈
{0, . . . , |𝐷𝑠 | − 1}).

Definition 18 ((Simplified) Median Utility Function). Let data set𝐷 ∈ 𝔇𝑛 be sorted. Themedian
utility function utility : 𝐼𝐷 → ℤ scores the utility of an element of𝐷 at position 𝑖 ∈ 𝐼𝐷 as

utility(𝑖) =

𝑖 − 𝑛

2 + 1 if 𝑖 < 𝑛
2

𝑛
2 − 𝑖 else

.

First, we prove the equivalence of utility function utility and 𝑢𝜇 only for distinct data (𝐷 ⊆ 𝔇)
then we define gap to help with the utility computation for data sets with duplicates.

Theorem 2 (Utility equivalence). For𝐷 ⊆ 𝔇 and index 𝑖 ∈ 𝐼𝐷 we have

𝑢𝜇 (𝐷, 𝑥) = utility(𝑖)

for 𝑥 ∈ [𝑑𝑖 , 𝑑𝑖+1) with 𝑖 < 𝑛/2 and 𝑥 ∈ (𝑑𝑖−1, 𝑑𝑖] with 𝑖 ≥ 𝑛/2.

Proof. First, we show that all elements in 𝑥 ∈ [𝑑𝑖 , 𝑑𝑖+1) for 𝑖 < 𝑛/2 and 𝑥 ∈ (𝑑𝑖−1, 𝑑𝑖] for 𝑖 ≥ 𝑛/2
have the same utility. The utility 𝑢𝜇 of an element 𝑥 ∈ 𝔇 is based on a rank from the set 𝑆𝑥 = {𝑗 |
rank𝐷 (𝑥) ≤ 𝑗 ≤ rank𝐷 (𝑥 + 1)} according to Definition 13. For 𝑖 < 𝑛/2, 𝑥 ≥ 𝑑𝑖 and 𝑥 + 1 < 𝑑𝑖+1 we
have rank𝐷 (𝑥 + 1) = rank𝐷 (𝑑𝑖+1). All elements in the open range (𝑑𝑖 , 𝑑𝑖+1) have the same rank set
𝑆 = {rank𝐷 (𝑥 + 1)}. The rank set for 𝑑𝑖 , 𝑆𝑑𝑖 , is a superset of 𝑆 that also includes ranks smaller than
rank𝐷 (𝑥 + 1). However, rank𝐷 (𝑥 + 1) = 𝑆𝑑𝑖 ∩ 𝑆 minimizes the term |rank𝐷 (𝑥 + 1) − 𝑛/2| since it is
the value closest to 𝑛/2. Thus, all elements in the half-open range [𝑑𝑖 , 𝑑𝑖+1) have the same utility.
Analogously, for 𝑖 ≥ 𝑛/2 elements in (𝑑𝑖−1, 𝑑𝑖] have the same utility.

51

5 EMmed: DPMedian

utility(𝑖) 0− 𝑛2 +1 1− 𝑛2 +1 𝑛
2 −2 𝑛

2 −3

index 𝑖 0 1 2 3
sorted𝐷 𝑑0 𝑑1 𝑑2 𝑑3

gap(𝑖) 𝑑1−𝑑0 1 𝑑2−𝑑1 𝑑3−𝑑2

Figure 5.2: utility and gap computed on sorted𝐷 with static access pattern.

For sorted𝐷 ⊆ 𝔇and 𝑖 ∈ 𝐼𝐷 , wehave rank𝐷 (𝑑𝑖) = 𝑖 and𝑆𝑑𝑖 = {rank𝐷 (𝑑𝑖), rank𝐷 (𝑑𝑖+1)} = {𝑖 , 𝑖+1}.
Thus,

𝑢𝜇 (𝐷,𝑑𝑖) = − min
𝑗 ∈{𝑖 ,𝑖+1}

���𝑗 − 𝑛2 ��� = 
𝑖 + 1 − 𝑛

2 if 𝑖 < 𝑛
2

𝑛
2 − 𝑖 else

= utility(𝑖).

Thus, the sensitivity of utility is the same as 𝑢𝜇. We stress that utility(𝑖) only depends on the
position 𝑖 in the sorted data. Basically, we assume all elements in 𝐷 are distinct, in this case
utility(𝑖) = 𝑢𝜇 (𝐷,𝑑𝑖). To only retain the correct utility in the presence of duplicates we define
gap next.

Definition19 (Gap). The gap function gap : 𝐼𝐷 → ℕ0 provides thenumberof consecutive elements
in𝔇with the same utility as 𝑑𝑖 with

gap(𝑖) =


𝑑𝑖+1 − 𝑑𝑖 if 𝑖 < 𝑛

2 − 1
1 if 𝑖 = 𝑛

2 − 1
𝑑𝑖 − 𝑑𝑖−1 else

.

Each party can compute utility (Definition 18)without any access to𝐷 . Furthermore, gap (Def-
inition 19) has a static access pattern, independent of the elements in (sorted) 𝐷 , which makes
the gap function data-oblivious, i.e., an attacker who sees the access pattern cannot learn any-
thing about 𝐷 . Figure 5.2 visualizes how we compute utility and gap with static access pattern
over sorted data 𝐷 . Note that gap is defined for all 𝑛 indices although there are only 𝑛 − 1 gaps
between values in𝐷 . We set the median’s gap to 1 as it is the only element not contained in the
union of all half-open ranges. If 𝐷 contains duplicates, gap is zero for all except the duplicate
closest to themedian. Thus, a gap value of zero indicates incorrect utility for a duplicate and we
use this to eliminate such utility values in the following.
First, with the help of utility we define the unnormalized selection probability, which we call

weight.

Definition 20 (Weight). The weight function weight : 𝐼𝐷 → ℝ gives the unnormalized selection
probability for an element at index 𝑖 ∈ 𝐼𝐷 as

weight(𝑖) = exp (𝜖 · utility(𝑖))

where 𝜖 is the privacy parameter fromDefinition 4.

52

5.1 Building Blocks for DPMedian Selection

index 𝑖 0 1 2 – 3 4 5 6 – 7
sorted𝐷 1 2 2 3,4,5 6 6 7 7 8,9 10
rank𝐷 (·) 0 1 1 3 3 3 5 5 7 7
𝑢𝜇 (𝐷, ·) −3 −1 −1 −1 0 0 −1 −1 −3 −3
utility(𝑖) −3 −2 −1 −1 0 0 −1 −2 −3 −3

gap(𝑖) 1 0 4 – 1 0 1 0 – 3

min(𝔇), max(𝔇) Missing elements𝔇\𝐷

Table 5.1: Utility function𝑢𝜇 compared with𝑢 with static access pattern and gap for sorted𝐷 = {2, 2, 6, 6, 7, 7} from
𝔇 = {1, . . . , 10}. To cover utility for all of𝔇we addmin(𝔇) ,max (𝔇) to𝐷 .

Then, we use weight and gap to define the probability mass of elements with the same utility,
which we callmass.

Definition 21 (Mass). The probability mass functionmass : 𝐼𝐷 → ℝ at 𝑖 ∈ 𝐼𝐷 is

mass(𝑖) =
𝑖∑︁

ℎ=0
weight(ℎ) · gap(ℎ).

To ensure that mass covers all elements in 𝔇 we append the smallest (resp., largest) domain
element to the beginning (resp., end) of𝐷 before computingmass. Now, we show thatmass is the
(unnormalized) cumulative density function for the distribution defined by EM𝜖

𝑢 (𝐷).

Theorem 3. Let R = {𝑑0, . . . , 𝑑𝑖 } ⊆ 𝔇with𝐷 sorted,min(𝔇),max(𝔇) ∈ 𝐷 and 𝑖 ∈ 𝐼𝐷 , then

mass(𝑖)
𝑁

=
∑︁
𝑟 ∈R

Pr
[
EM𝜖

𝑢 (𝐷) = 𝑟
]
,

with𝑢 = 𝑢𝜇 and normalization𝑁 =
∑
𝑟 ′∈𝔇

Pr
[
EM𝜖

𝑢 (𝐷) = 𝑟 ′
]
.

Proof. Without duplicates utility = 𝑢𝜇 (Theorem 2), thus, weight(𝑖) = exp(𝜖 · 𝑢𝜇 (𝐷,𝑑𝑖)) for 𝑖 ∈ 𝐼𝐷 .
With duplicatesweight can produce incorrect values, however,weight(𝑖) · gap(𝑖) = 0 as gap is zero
for all duplicates except the one closest to the median. In other words, we eliminate weights
based on incorrect utility values as they do not alter the summass[𝑖] = ∑𝑖

ℎ=0 weight(ℎ) · gap(ℎ).
On the other hand, gap > 0 indicates the number of consecutive elements in 𝔇 with same

utility, and weight(𝑖) · gap(𝑖) is their unnormalized probability mass. Thus, mass[𝑖] equals the
sum of unnormalized probabilities for elements in R = {min(𝔇), . . . , 𝑑𝑖 }, and mass[𝑖]/𝑁 equals
normalized probabilities∑

𝑟 ∈R Pr
[
EM𝜖

𝑢 (𝐷) = 𝑟
]
.

An example for utility and gap can be found in Table 5.1. It illustrates that utility for sorted 𝐷
is just a sequence that increases until it reaches the median and decreases afterwards. As men-
tioned above, we add min(𝔇) to the beginning and max(𝔇) to the end of𝐷 (dark blue columns
in Table 5.1). The utility for “missing elements” in 𝔇\𝐷 (light gray columns) is the same as for
the preceding or succeeding element in 𝐷 . Furthermore, gap is zero for the duplicates furthest
away from the median and otherwise indicates the number of consecutive elements in𝔇 with
the same utility (e.g., gap(2) = 4 since 2, 3, 4, 5 have the same utility as 𝑑2 = 2).

53

5 EMmed: DPMedian

5.1.4 Median Sampling

We use inverse transform sampling (Section 2.2.4) to sample the differentially private median
from the cumulative distribution functionmass. Givenmass, we first need to find an index 𝑗 ∈ 𝐼𝐷2
such thatmass(𝑗−1) ≤ 𝑟 < mass(𝑗) for auniformrandom 𝑟 . Then,weselect anelementatuniform
random among the gap(𝑗) consecutive elements with the same utility as the element at index 𝑗 .
Overall, with our simplified utility, we only need to iterate over the (small) data set𝐷 , instead of
the entire domain𝐷 .

5.1.5 Input Pruning & Utility

Our focus is on small data sets whose size is sublinear in the size of their data domain. To also
support larger data sets, one can apply pruning and carefully discard data elements that cannot
be the median. For this purpose, Aggarwal et al. [AMP10, Protocol 1] developed a very efficient,
secure pruning technique which we denote Prune. Informally, Prune compares the local median
of each party, and lets the parties discard the lower (resp., upper) half of their sorted data, which
cannot contain their median of their joint data. This is repeated log𝑛 times until only one ele-
ment remains, i.e., their mutual median. For our protocol, it suffices to perform 𝑠 < log𝑛 steps,
until the data is sublinear in the domain size. Wewill formalizePrune and 𝑠 shortly, however, first
we have to address an issue: Prune is deterministic and a comparison leaks a single bit (whose
local median is larger). This leakage can potentially allow to distinguish neighboring data sets
and violate differential privacy. A first idea is to randomize the comparison result itself, e.g., via
randomized response (Definition8). However, theprobability that thehalf of thedata containing
themedian is never discarded decreases exponentially in the number of comparisons [HLM17].
Hence, accuracy is significantly impacted and we dismiss randomized pruning in favor of a re-
laxation of differential privacy. To eliminate distinguishing events, we restrict the neighboring
definition. He et al. [HMFS17] introduced a suitable restriction called 𝑓 -neighboring. Informally,
𝑓 -neighbors are neighbors that also have the same output w.r.t. a function 𝑓 . The following def-
inition assumes two parties 𝐴,𝐵 with data sets𝐷𝐴 , 𝐷𝐵 of size 𝑛𝐴 , 𝑛𝐵 , respectively.

Definition 22 (𝑓 -Neighbor). Given function 𝑓 : 𝔇𝑛𝐴 ×𝔇𝑛𝐵 → R, 𝑛𝐴 , 𝑛𝐵 ∈ ℕ, and𝐷𝐴 ∈ 𝔇𝑛𝐴 . Data
sets𝐷𝐵 and𝐷 ′𝐵 are 𝑓 -neighborsw.r.t. 𝑓 (𝐷𝐴 , ·) if

1. they are neighbors, and

2. 𝑓 (𝐷𝐴 , 𝐷𝐵) = 𝑓 (𝐷𝐴 , 𝐷 ′𝐵).

𝑓 -neighboring for𝐷𝐵 is similarly defined.

He et al. apply 𝑓 -neighboring to record matching, where neighbors differ in at most one non-
matching record. We, on the other hand, set 𝑓 to be Prune. To verify that Prune-neighboring
is not too restrictive and can be used in real-world applications we evaluated neighbors from
real-world data sets [CMS17, Kag18, Soo18, ULB18] and found they are all also Prune-neighbors
– albeit with limited group privacy. See Section 5.3 for details of the experiment.
Next, we detail how Aggarwal et al. [AMP10] use pruning to securely find the median of two

parties 𝐴, 𝐵 with respective data sets𝐷𝐴 , 𝐷𝐵 . Their algorithm Prune is presented in Algorithm 2.
To indicate that an operation is performed locally by, e.g., party 𝐴, we place “Party 𝐴:” before
an operation. Initially, Prune calls subroutine Pad described in Algorithm 1. In more detail, 𝐴
2 For notational convenience let 𝑗 − 1 < 0 be 0.

54

5.1 Building Blocks for DPMedian Selection

Algorithm 1 Pad pads the input of party 𝑃 ∈ {𝐴,𝐵} such that the element with rank 𝑘 is at the
position of themedian [AMP10, Steps 1–3 of Protocol 1] .
Input: Data𝐷𝑃 , rank 𝑘 , padding 𝑝
Output: Input padded to place 𝑘 th-ranked element at median position of the union of𝐷𝐴 , 𝐷𝐵

1: Sort𝐷𝑃 and retain only the 𝑘 smallest values
2: Pad𝐷𝑃 with +∞ until |𝐷𝑃 | = 𝑘
3: Pad𝐷𝑃 with 𝑝 until |𝐷𝑃 | = 2 dlog2 (𝑘) e
4: return𝐷𝑃

Algorithm 2 Prune prunes𝐷𝐴 ,𝐷𝐵 to𝐷 𝑠
𝐴 ,𝐷 𝑠

𝐵 via [AMP10, Protocol 1].
Input: Data𝐷𝐴 from 𝐴,𝐷𝐵 from 𝐵 , pruning steps 𝑠 , median rank 𝑘 = d(|𝐷𝐴 | + |𝐷𝐵 |)/2e.
Output: 𝐴 has pruned data𝐷 𝑠

𝐴 , likewise 𝐵 has𝐷 𝑠
𝐵 .

1: Party 𝐴: 𝐷0
𝐴 ← Pad(𝐷𝐴 , 𝑘 ,+∞) // Algorithm 1

2: Party 𝐵 : 𝐷0
𝐵 ← Pad(𝐷𝐵 , 𝑘 ,−∞)

3: for 𝑖 ← 0 to 𝑠 − 1 do
4: Party 𝐴: 𝜇𝐴 ←median of𝐷 𝑖

𝐴

5: Party 𝐵 : 𝜇𝐵 ←median of𝐷 𝑖
𝐵

6: J𝜇𝐴K← En(𝜇𝐴), J𝜇𝐵K← En(𝜇𝐵)
7: 𝑐 ← De(LT(J𝜇𝐴K, J𝜇𝐵K))
8: Party 𝐴: 𝐷 𝑖+1

𝐴 ← upper half of𝐷 𝑖
𝐴 if 𝑐 = 1 else lower half

9: Party 𝐵 : 𝐷 𝑖+1
𝐵 ← lower half of𝐷 𝑖

𝐵 if 𝑐 = 1 else upper half
10: end for

calls Pad(𝐷𝐴 , 𝑘 ,+∞) and 𝐵 calls Pad(𝐷𝐴 , 𝑘 ,−∞) with 𝑘 = d(|𝐷𝐴 | + |𝐷𝐵 |)/2e. Note that we assume
the data size of each party, i.e., |𝐷𝐴 |, |𝐷𝐵 |, to be known, however, it can be hidden via additional
padding [AMP10]. The pre-processing stepPad ensures the parties 𝐴,𝐵 sort their respective data
sets𝐷𝐴 ,𝐷𝐵 and only retain the smallest 𝑘 = d|𝐷𝐴 | + |𝐷𝐵 |e/2 values3. Then, they pad the remaining
data with −∞,+∞ to be of size 2 dlog2 (𝑘) e in a way that preserves the position of the median. In
each pruning step, i.e., lines 4–9 in Algorithm 2, the parties compute their respective medians,
𝜇𝐴 , 𝜇𝐵 , performasecurecomparison𝜇𝐴 < 𝜇𝐵 , anduse the result todiscard thehalvesof theirdata
that cannot contain their mutual median, i.e., 𝐴 retains the upper half of 𝐷𝐴 if 𝜇𝐴 < 𝜇𝐵 and the
lower half otherwise, 𝐵 does the opposite. After log𝑛 iterations only their exact mutual median
remains. As we are interested in the DPmedian, we perform only 𝑠 iterations as discussed next.
We denote data sets 𝐷𝐴 , 𝐷𝐵 after pruning step 𝑠 as 𝐷 𝑠

𝐴 , 𝐷
𝑠
𝐵 and their union as 𝐷 𝑠 . The median

𝜇 of 𝐷 is also the median of 𝐷 𝑠 as shown in [AMP10, Lemma 1]. How the data 𝐷 is distributed
among parties changes the intermediary outcome of the pruning, i.e., what elements remain
in 𝐷 𝑠

𝐴 , 𝐷
𝑠
𝐵 . However, utility depends on an element’s closeness to the median which remains or

increases if elements in between are removed.

Theorem 4. Prune does not decrease utility.

Proof. Let 𝐷𝐴 = {𝑎1, . . . , 𝑎𝑚 }, 𝐷𝐵 = {𝑏1, . . . , 𝑏𝑚 } with 𝑎1 < 𝑎2 < · · · < 𝑎𝑚 and 𝑏1 < 𝑏2 < · · · < 𝑏𝑚

(otherwise we use padding and uniqueness encoding from [AMP10]). Let 𝑎𝑠𝑖 = 𝐷 𝑠
𝐴 [𝑖], i.e., the

element at index 𝑖 in the data of 𝐴 after pruning step 𝑠 . If some indices 𝑖 , 𝑗 , 𝑘 exist such that
𝑎𝑠−1𝑖 < 𝑏 𝑠−1𝑗 ≤ 𝑏 𝑠−1𝑘 < 𝑎𝑠−1𝑖+1 where 𝑏 𝑠−1𝑗 , . . . , 𝑏 𝑠−1𝑘 are not in 𝐷 𝑠

𝐵 but 𝑎𝑠−1𝑖 is in 𝐷 𝑠
𝐴 then pruning step

𝑠 removed 𝑏 𝑠−1𝑗 , . . . , 𝑏 𝑠−1𝑘 but neither 𝑎𝑠−1𝑖 nor 𝑎𝑠−1𝑖+1 , one of which is further away from themedian

3 If thedata containsduplicates,
⌈
log2 𝑛

⌉+1bits are added to theelement’s binary representation tomake it unique,which
is required for the security proof from Aggarwal et al. [AMP10, Section 3.2]. We implement the uniqueness encoding
but omit it in the presented protocol to simplify its description.

55

5 EMmed: DPMedian

Original𝐷 : 𝑎1 𝑏1 𝑎2 𝑏2 𝑎3 𝑏3 𝑎4 𝑏4
𝑢𝜇 (𝐷, ·) : −3 −2 −1 0 0 −1 −2 −3

Pruned𝐷1: – 𝑏1 – 𝑏2 𝑎3 – 𝑎4 –
𝑢𝜇 (𝐷1, ·) : −2 −1 −1 0 0 −1 −1 −2

Table 5.2: Utility does not decrease before and after one pruning step for sorted𝐷 = 𝐷𝐴 ∪ 𝐷𝐵 where𝐷𝐴 = {𝑎1, . . . , 𝑎4 },
𝐷𝐵 = {𝑏1, . . . , 𝑏4 }. Removed elements are indicated with “–” in pruned data𝐷1.

than 𝑏 𝑠−1𝑗 , . . . , 𝑏 𝑠−1𝑘 . However, the utility of such a removed element either remains the same (it is
a duplicate of a remaining element), or increases, i.e., they have the utility of their predecessor
(resp., successor) in𝐷 𝑠 . Since one of the elements 𝑎𝑠−1𝑖 , 𝑎𝑠−1𝑖+1 is closer to themedian after pruning
step 𝑠 than before, its utility increases and so does the utility for all elements between 𝑎𝑠−1𝑖 and
𝑎𝑠−1𝑖+1 . If no such indices 𝑖 , 𝑗 , 𝑘 exist, then we only remove the elements furthest away from the
median and the utility for remaining elements is unchanged. The utility for removed element 𝑥
either remains the same (𝑥 is equal to a remaining element) or increases. The latter is due to the
fact that removed elements have the same rank-based distance to themedian, either rank𝐷𝑠 (𝑥) =
0 or rank𝐷𝑠 (𝑥) = |𝐷 𝑠 |. Since |𝐷 𝑠 | < |𝐷 𝑠−1 | we have𝑢𝜇 (𝐷 𝑠 , 𝑥) > 𝑢𝜇 (𝐷 𝑠−1, 𝑥).

An example of non-decreasing utility after pruning is shown in Table 5.2 for unique elements.
For example, element 𝑎1 has utility −3 before pruning, after pruning its utility increases to −2,
whereas the utility for 𝑏2, 𝑎3 remain as before. Removed elements in the pruned data, indicated
with dashes, receive the same utility as themedian-closest remaining element next to them. We
empirically show that pruning has only a small impact on utility and the output DP median in
Section 5.3.5.

5.1.6 Accuracy & Maximum Number of Pruning Steps

On small data sets, EM∗ selects the same output as the exponentialmechanism (Theorem 3). On
largedata sets,EM∗ performs 𝑠 pruning stepswhereprunedelements receive the lowest selection
probability. If 𝑠 is too large, however, the selected output might differ as the probability mass of
pruned elements can exceed the mass of remaining elements. In the following, we first define
the selection accuracy, i.e., the probability to select from remaining instead of pruned elements,
and then derive themaximum 𝑠 based on this definition.
We separate the domain𝔇 in two disjunct sets of remaining elements R and pruned elements
P where R = {𝑥 ∈ 𝔇 | min(𝐷 𝑠) ≤ 𝑥 ≤ max(𝐷 𝑠)} ⊆ 𝔇 and P = {𝑥 ∈ 𝔇 | 𝑥 < min(𝐷 𝑠) or 𝑥 >

max(𝐷 𝑠)} = 𝔇\R. Note that R contains the domain elements closest to themedian.

Definition 23 (Selection Accuracy). Let𝑢 = 𝑢𝜇, then selection accuracy is

𝑝R = 1 − 𝑝P =
∑︁
𝑥 ∈R

Pr
[
EM𝜖

𝑢 (𝐷 𝑠) = 𝑥] ,
i.e., 𝑝R is the probability mass of all remaining elements.

With accuracy 𝑝R > 1/2 it is more likely to select the differentially private median among R
than among P. In our evaluation, we use accuracy 𝑝R = 0.9999. The number of pruning steps 𝑠
enables a trade-off between accuracy𝑝R and computation complexity: smaller 𝑠 leads to higher
accuracy and larger 𝑠 translates into smaller input size for the secure computation. We are inter-

56

5.1 Building Blocks for DPMedian Selection

ested in the maximum number of pruning steps such that it is more likely to select an element
from R instead of P.

Theorem 5 (Upper Bound for Pruning Steps). Let 𝐷 be a data set with domain 𝔇, 𝜖 > 0, and
0 < 𝛼 < 1. The upper bound for pruning steps 𝑠 fulfilling 𝑝R ≥ 𝛼 is

blog2 (𝜖𝑛) − log2
(
log𝑒

(𝛼

1 − 𝛼 (|𝔇| − 1)
))
− 1c.

Proof. Wefind themaximumnumber of pruning steps 𝑠 by examiningwhat themaximumprob-
ability mass 𝑝P for pruned elements can be.
First, note that the utility for all 𝑥 ∈ P is the same independent of the values in𝐷 𝑠 : Half of the

values in P are smaller (resp., larger) than the median 𝜇 of 𝐷 𝑠 , i.e., rank𝐷𝑠 (𝑥) = 0 if 𝑥 < 𝜇 and
rank𝐷𝑠 (𝑥) = |𝐷 𝑠 | otherwise. Thus, 𝑢𝜇 (𝐷 𝑠 , 𝑥) = −

���0 − |𝐷𝑠 |
2

��� = −���|𝐷 𝑠 | − |𝐷𝑠 |
2

��� = − 𝑛
2𝑠+1 since |𝐷 𝑠 | = 𝑛

2𝑠 .
(Recall that𝐷 is padded before pruning such that 𝑛 is a power of two.)
As the utility, and thus selection probability, is the same for all elements in P the probability

mass 𝑝P is maximized if |P | is maximized. The maximum for |P | is |𝔇| − 1 as R must contain at
least one element, themedian 𝜇.
Let 𝑝 ′R , 𝑝 ′P be the unnormalized probability masses 𝑝R , 𝑝P respectively, then

𝑝 ′R = exp(
𝜖𝑢𝜇 (𝐷 𝑠 , 𝜇)) = 1

since R = {𝜇} and𝑢𝜇 (𝐷 𝑠 , 𝜇) = 0, and

𝑝 ′P = (|𝔇| − 1) exp
(
−𝜖 𝑛

2𝑠+1
)

with normalization term𝑁 = 𝑝 ′P + 𝑝 ′R . Now accuracy 𝑝R of at least 𝛼 is equivalent to

𝛼 ≤ 𝑝 ′R
𝑁

=
1

(|𝔇| − 1) exp
(
− 𝜖𝑛
2𝑠+1

)
+ 1

⇔ exp
(
− 𝜖𝑛

2𝑠+1
)
≤ 1 − 𝛼
𝛼 (|𝔇| − 1)

⇔ log𝑒
(
𝛼 (|𝔇| − 1)
1 − 𝛼

)
≤ 𝜖𝑛

2𝑠+1

⇔ 𝑠 ≤ log2
(

𝜖𝑛

log𝑒
(𝛼
1−𝛼 (|𝔇| − 1)

)) − 1.
As 𝑠 ∈ ℕwe use 𝑠 = blog2

(
𝜖𝑛

log𝑒 (𝛼
1−𝛼 (|𝔇 |−1))

)
− 1c which concludes the proof.

This is a worst-case analysis and a tighter upper bound can be obtained by using |P | instead
of |𝔇| − 1. However, the size of P leaks information about 𝐷 , hence, we refrain from using the
tighter bound. Furthermore, we guarantee an accuracy of at least 𝛼, the actual accuracy can be
even higher.

Lemma 2 (Sublinear Input Size). If 𝑛 ≤ log |𝔇| our input is already sublinear in the size of the
domain. Otherwise, 𝑛 > log |𝔇|, we perform pruning with 𝑠 ∈ 𝑂 (log(𝑛) − log log |𝔇|) and the
pruned data set’s size is sublinear in the size of the data domain, i.e., |𝐷 𝑠 | = 𝑛/2𝑠 ∈ 𝑂 (log |𝔇|).

57

5 EMmed: DPMedian

Algorithm 3MergeAndSharemerges𝐷 𝑠
𝐴 ,𝐷 𝑠

𝐵 into sorted𝐷 𝑠 via [HEK12] and secret shares it.
Input: Pruned data 𝐷 𝑠

𝐴 from 𝐴 in ascending order, array 〈𝐷 𝑠 〉𝐴 of 2|𝐷 𝑠
𝐴 | random values in ℤ264

from 𝐴,𝐷 𝑠
𝐵 from 𝐵 sorted in descending order.

Output: 𝐴 has secret shares 〈𝐷 𝑠 〉𝐴 of sorted union of pruned data, resp. 𝐵 has 〈𝐷 𝑠 〉𝐵 .
1: J𝐷 𝑠 K← En(𝐷 𝑠

𝐴 appended with𝐷 𝑠
𝐵)

2: Merge(0, |𝐷 𝑠 | − 1, J𝐷 𝑠 K) // Algorithm 6 sorts 𝐷 𝑠 in-place
3: 〈𝐷 𝑠 〉 ← GC2SS(J𝐷 𝑠 K) // E.g., set 〈𝐷 𝑠 〉𝐵 ← 𝐷 𝑠 − 〈𝐷 𝑠 〉𝐴 mod 264
4: return 〈𝐷 𝑠 〉𝐵 to 𝐵

5.2 Secure Sublinear Time Differentially Private Median Computation

First, we describe our full protocol in Section 5.2.1. Then, we provide more details, i.e., how to
sort and sample securely, and describe optimizations in Sections 5.2.2–5.2.4. In Section 5.2.5
we present a running time complexity analysis and in Section 5.2.6 we prove the security of our
protocol.

5.2.1 Protocol Description

Our protocol uses pruning developed by Aggarwal et al. [AMP10], which requires padding as a
pre-processing step as described in Section 5.1.5. The selection probabilities are computed on
securely sorted, pruned data realized via oblivious merging fromHuang et al. [HEK12], detailed
in Algorithm 6 in Section 5.2.2. The randomness for inverse transform sampling is provided by
the parties as described in Algorithm 7 in Section 5.2.4. We build our protocol EMmed from basic
secure protocols for garbled circuits listed in Table 2.2 in Section 2.1.6. Note that our operations
on secret shares – addition, subtraction, andmultiplication with public values – require no spe-
cial protocols and can be performed locally (Section 2.1.4).
Our protocol EMmed has four steps, denoted with (I)–(IV):

(I) Input Pruning (Algorithm 2): Executed if the data size is not sublinear in the size of the
domain. Both parties prune their data sets 𝐷𝐴 , 𝐷𝐵 to 𝐷 𝑠

𝐴 , 𝐷 𝑠
𝐵 based secure comparisons

[AMP10] realized with garbled circuits.

(II) Oblivious Merge & Secret Sharing (Algorithm 3): Thepartiesmerge their pruneddata𝐷 𝑠
𝐴 ,

𝐷 𝑠
𝐵 into sorted𝐷 𝑠 viabitonicmergers [HEK12] implementedwithgarbledcircuits. Note that

𝐷 𝑠 = {𝑑 𝑠0, . . . , 𝑑 𝑠|𝐷𝑠 |−1} is secret shared, i.e., 𝐴 holds shares 〈𝑑 𝑠𝑖 〉𝐴 , 𝐵 holds 〈𝑑 𝑠𝑖 〉𝐵 for all 𝑖 ∈ 𝐼𝐷𝑠 .

(III) Selection Probability (Algorithm 4): The parties compute utility, weight, and gap to pro-
duce shares ofmass. Each party 𝑃 ∈ {𝐴,𝐵} now holds shares 〈𝑑 𝑠𝑖 〉𝑃 , 〈gap(𝑖)〉𝑃 and 〈mass(𝑖)〉𝑃
for all 𝑖 ∈ 𝐼𝐷𝑠 ,

(IV) Median Selection (Algorithm 5): The parties reconstruct all shares and select the differ-
entially privatemedian via inverse transform sampling realizedwith garbled circuits. First,
they sample 𝑑 𝑠𝑗 ∈ 𝐷 𝑠 based onmass. Then, they select the differentially privatemedian 𝜇 at
uniform random among the gap(𝑗) consecutive elements with the same utility as 𝑑 𝑠𝑗 .

To optimize the performance of the secure computation we utilize garbled circuits as well as
secret sharing to use their respective advantages. E.g., multiplication of two 𝑏-bit values ex-
pressed as a Boolean circuit leads to a large circuit of size 𝑂 (

𝑏2
) and is more efficiently done

58

5.2 Secure Sublinear Time Differentially PrivateMedian Computation

Algorithm 4 SelectionProbability computes the probabilities for themedian utility.
Input: Secret shares 〈𝐷 𝑠 〉𝐴 from𝐴, resp. 〈𝐷 𝑠 〉𝐵 from𝐵 , of sorteddata𝐷 𝑠 , andnumber𝑞 ofnonces.
Output: 𝐴 holds secret shares 〈𝐺𝐴〉 of gaps and 〈𝑀𝐴〉 of probability masses, also nonces

q
N1𝐴

y
,q

N2𝐴
y
; likewise party 𝐵 has 〈𝐺𝐵 〉, 〈𝑀𝐵 〉,

q
N1𝐵

y
,
q
N2𝐵

y
.

1: Party 𝐴: 〈𝐷 𝑠 〉𝐴 ← (0, 〈𝐷 𝑠 〉𝐴 , 0)
2: Party 𝐵 : 〈𝐷 𝑠 〉𝐵 ← (min(𝔇), 〈𝐷 𝑠 〉𝐵 ,max(𝔇))

// Local computations without interaction
3: each party 𝑃 ∈ {𝐴,𝐵} does
4: Define arrays 〈𝑀 〉𝑃 , 〈𝐺 〉𝑃 of size |𝐷 𝑠 |
5: for 𝑖 ← 0 to |𝐷 𝑠 | − 1 do

6: 𝑢𝑡 𝑖𝑙𝑖𝑡 𝑦 ←
{
𝑖 − |𝐷𝑠 |

2 + 1 if 𝑖 < |𝐷𝑠 |
2|𝐷𝑠 |

2 − 𝑖 else
7: 𝑤𝑒𝑖 𝑔ℎ𝑡 ← exp (𝜖 · 𝑢𝑡 𝑖𝑙𝑖𝑡 𝑦)

8: 〈𝐺 [𝑖]〉𝑃 ←

〈𝑑 𝑠𝑖+1〉𝑃 − 〈𝑑 𝑠𝑖 〉𝑃 if 𝑖 < |𝐷𝑠 |

2 − 1
〈1〉𝑃 if 𝑖 = |𝐷𝑠 |

2 − 1
〈𝑑 𝑠𝑖 〉𝑃 − 〈𝑑 𝑠𝑖−1〉𝑃 else

9: 𝑡 ← 〈𝑀 [𝑖 − 1]〉𝑃 if 𝑖 > 0 else 0
10: 〈𝑀 [𝑖]〉𝑃 ← 𝑡 +𝑤𝑒𝑖 𝑔ℎ𝑡 · 〈𝐺 [𝑖]〉𝑃
11: end for
12: Generate lists N1𝑃 , N

2
𝑃 each with 𝑞 nonces from [0,max(𝔇) −min(𝔇)]

13:
q
N1𝑃

y← En(N1𝑃),
q
N2𝑃

y← En(N2𝑃)
14: end each

Algorithm 5MedianSelection selects themedian via inverse transform sampling.
Input: Secret shares 〈𝐺 〉𝐴 of gaps, 〈𝑀 〉𝐴 of probability masses, and 〈𝐷 𝑠 〉𝐴 of 𝐴’s (pruned) data,

also garbled lists of nonces
q
N1𝐴

y
,
q
N2𝐴

y
from 𝐴; resp., 〈𝐺 〉𝐵 , 〈𝑀 〉𝐵 , 〈𝐷 𝑠 〉𝐵 ,

q
N1𝐵

y
,
q
N2𝐵

y
from 𝐵 .

Output: Differentially private median 𝜇 of𝐷𝐴 ∪𝐷𝐵 .
1: J𝑁 K← SS2GC(〈𝑀 [|𝐷 𝑠 | − 1]〉𝐴 , 〈𝑀 [|𝐷 𝑠 | − 1]〉𝐵)
2: J𝑟 K← RandomDraw(J𝑁 + 1K, qN1𝐴

y
,
q
N1𝐵

y) // Section 5.2.4
// Store first index 𝑗, datum 𝑑 ← 𝑑 𝑠𝑗 , and gap 𝑔 ← 𝐺 [𝑗] where 𝑟 < 𝑀 [𝑗]

3: Initialize J𝑗 K← J0K, J𝑑K← SS2GC(〈𝑑 𝑠0〉𝐴 , 〈𝑑 𝑠0〉𝐵), J𝑔 K← SS2GC(〈𝐺 [0]〉𝐴 , 〈𝐺 [0]〉𝐵)
4: for 𝑖 ← 0 to |𝐷 𝑠 | − 2 do
5: J𝑚K← SS2GC(〈𝑀 [𝑖]〉𝐴 , 〈𝑀 [𝑖]〉𝐵)
6: J𝑑succK← SS2GC(〈𝑑 𝑠𝑖+1〉𝐴 , 〈𝑑 𝑠𝑖+1〉𝐵)
7: J𝑔succK← SS2GC(〈𝐺 [𝑖 + 1]〉𝐴 , 〈𝐺 [𝑖 + 1]〉𝐵)
8: J𝑐K← LT(J𝑟 K, J𝑚K)
9: J𝑗 K← Mux(J𝑗 K, J𝑖 + 1K, J𝑐K) // Set 𝑗 , 𝑑, 𝑔 to successors if 𝑐 is 0
10: J𝑑K← Mux(J𝑑K, J𝑑succK, J𝑐K)
11: J𝑔 K← Mux(J𝑔 K, J𝑔succK, J𝑐K)
12: end for
13: J𝑔rndK← RandomDraw(J𝑔 K,

q
N2𝐴

y
,
q
N2𝐵

y)
14: J𝑐K← LT(J𝑗 K,

r
|𝐷𝑠 |
2 − 1

z
)

15: J𝜇K← Mux(Add(J𝑑K, J𝑔rndK), Sub(J𝑑K, J𝑔rndK), J𝑐K)
16: returnDe(J𝜇K) to 𝐴, 𝐵

via secret sharing. On the other hand, comparison is more efficient with garbled circuits. Al-
gorithms 3, 4 are implemented with garbled circuits. In Algorithm 2 only line 7 requires garbled
circuits, the rest is either data-independent or executed locally. Secret shares, denoted with 〈·〉,
are created in Algorithm 3, used in Algorithm 4, and recombined in Algorithm 5. Furthermore,
we compute the required exponentiations inAlgorithm4 line 7without any secure computation.
Next, we reiterate portions of Section 5.1.3 but in the new context of secure computation.

59

5 EMmed: DPMedian

Algorithm 6Merge sorts bitonic list𝐷 𝑠 = 𝐷 𝑠
𝐴 ∪𝐷 𝑠

𝐵 [HEK12].
Input: Left index 𝑙 , right index 𝑟 , bitonic list J𝐷 𝑠 K.
Output: None, J𝐷 𝑠 K is sorted in-place.
1: return if 𝑟 < 𝑙
2: 𝑚 ← 𝑙 + 𝑟−𝑙

2
3: for 𝑖 ← 𝑙 to𝑚 do
4: 𝑒 ← 𝑖 + ⌊

𝑟−𝑙
2 + 1

⌋
5: J𝑐K← LT(J𝑑 𝑠𝑒 K,

q
𝑑 𝑠𝑖

y)
6: J𝑡 K← AND(XOR(q𝑑 𝑠𝑖

y
, J𝑑 𝑠𝑒 K), J𝑐K)

7: (J𝐷 𝑠 [𝑖]K, J𝐷 𝑠 [𝑒]K) ← (XOR(q𝑑 𝑠𝑖
y
, J𝑡 K),XOR(J𝑑 𝑠𝑒 K, J𝑡 K)) // Swap 𝑑 𝑠𝑖 with 𝑑 𝑠𝑒 if 𝑑 𝑠𝑒 < 𝑑 𝑠𝑖

8: end for
9: Merge(𝑙 ,𝑚 − 1, J𝐷 𝑠 K)
10: Merge(𝑚 + 1, 𝑟 , J𝐷 𝑠 K)

5.2.2 Sorting via Garbled Circuits

Our utility definition requires the data to be sorted which inherently relies on comparisons.
Comparisonsaremoreefficiently implemented inbinarycircuits thanarithmetic circuits, hence,
weuse the former. We leverage that𝐷 𝑠

𝐴 and𝐷 𝑠
𝐵 are already sorted andmerge them insteadof sort-

ing the union. Obliviousmerging of two lists of 𝑛 sorted 𝑏-bit elements only requires 2𝑏𝑛 log(𝑛)
binary gateswhereas oblivious sorting requiresΘ(𝑛 log(𝑛))with a large constant factor [HEK12].
Weuse bitonicmergers fromHuang et al. [HEK12], as formalized inAlgorithm6,which requires a
bitonic list as input. A bitonic listmonotonically increases and thendecreases (or vice versa). We
can generate a bitonic list by appending𝐷 𝑠

𝐴 sorted in ascending orderwith𝐷 𝑠
𝐵 sorted in descend-

ing order (Algorithm 3 line 1). Bitonic merging recursively splits the list in halves and compares
and swaps elements such that every elementof onehalf is greater thanevery elementof theother
half until the list is sorted.

5.2.3 Exponentiation and Arithmetics

To compute the probabilities for 𝑖 ∈ 𝐼𝐷𝑠 we require exponentiations of the form exp(𝜖 · utility(𝑖)).
Note that none of the arguments are secret, since 𝜖 is a public parameter andwe defined utility to
not require data access. Therefore, we are able to compute the required exponentiationswithout
any secure computation. The computation of the probability mass, weight(𝑖) · gap(𝑖), requires
twoarithmetic operations: subtractions over secret data𝐷 𝑠 to compute gap andmultiplication of
public values (weight),with secret values (gap). Bothoperationsaremoreefficiently implemented
with secret sharing, hence, we implement it that way.

5.2.4 Selection via Garbled Circuits

Themedian selection is realized with inverse transform sampling which is better suited for gar-
bled circuits as it requires comparisons. First, we provide an overviewof the sampling procedure
assuming we have a uniform random number. Then, we describe how to securely draw such a
number. Given an uniform random number 𝑟 ∈ [0, 𝑁], we compute the first index 𝑗 ∈ 𝐼𝐷𝑠 such
that the probability mass is larger than 𝑟 : mass(𝑗) > 𝑟 (line 4 in Algorithm 5). Note that we do
not sample 𝑟 from [0, 1] but from [0, 𝑁] where 𝑁 = mass(|𝐷 𝑠 | − 1), i.e., the normalization fac-
tor from Equation (2.1). This allows us to use the unnormalized probabilities and eliminates
divisions used in normalization. In the final step, we select the differentially private median at

60

5.2 Secure Sublinear Time Differentially PrivateMedian Computation

Algorithm 7 RandomDraw returns uniformly random integer in given range.
Input: Upper bound𝑀 and lists of 𝑞 nonces N𝐴 ,N𝐵 from 𝐴, 𝐵 .
Output: Uniform random integer in [0,𝑀).

// Find most significant 1-bit in 𝑀 , set following bits to 1 in 𝑚𝑎𝑠𝑘
1: Initialize J𝑚𝑎𝑠𝑘K← J0K, J𝑡 K← J0K,
2: for 𝑖 ← bit-length 𝑏 to 1 do
3: J𝑡 K← OR(J𝑡 K, q𝑖 th bit of𝑀 y)
4:

q
𝑖 th bit of𝑚𝑎𝑠𝑘

y← J𝑡 K
5: end for

// Rejection sampling with abort, based on [MM08]
6: Initialize J𝑠𝑢𝑐𝑐𝑒𝑠𝑠K← J0K, define J𝑠𝑎𝑚𝑝𝑙𝑒K
7: for 𝑖 ← 0 to 𝑞 − 1 do
8: J𝑡 K← XOR(JN𝐴 [𝑖]K, JN𝐵 [𝑖]K)
9: J𝑟 K← AND(J𝑡 K, J𝑚𝑎𝑠𝑘K)
10: J𝑐K← LT(J𝑟 K, J𝑀 K)
11: J𝑠𝑎𝑚𝑝𝑙𝑒K← Mux(J𝑟 K, J𝑠𝑎𝑚𝑝𝑙𝑒K, J𝑐K)
12: J𝑠𝑢𝑐𝑐𝑒𝑠𝑠K← OR(J𝑠𝑢𝑐𝑐𝑒𝑠𝑠K, J𝑐K) // True (1) if at least one sample was accepted
13: end for
14: abort if De(J𝑠𝑢𝑐𝑐𝑒𝑠𝑠K) is 0
15: return J𝑠𝑎𝑚𝑝𝑙𝑒K

uniform random among the gap(𝑗) consecutive elements with the same utility (and thus proba-
bility) as 𝑑 𝑠𝑗 (line 15 in Algorithm 5). Note that the range [0,max(𝔇) −min(𝔇)] is used for nonces
in Algorithm 4 line 12 as it is the maximum possible normalization and gap value (Algorithm 5
lines 2, 13)4.
A straightforward way for two semi-honest parties to draw a uniform random 𝑟 is to compute

the sum of two nonces modulo𝑁 + 1, where each party provides one nonce. However, this pro-
vides slightly biased results (as modulo does not evenly divide the nonce range, slightly prefer-
encing smaller values). We implemented RandomDraw in Algorithm 7 with rejection sampling
using efficient operations for garbled circuits, namely XOR,OR, AND, and comparison LT.
Rejection sampling is used in, e.g., Apple’s macOS [MM08] and is unbiased. For a fixed input

size of 𝑞 nonces rejection sampling might abort. However, the abort probability is at most 2−𝑞
as we describe next. We consider the worst-case rejection rate, i.e., comparison 𝑟 < 𝑀 in line 10
of Algorithm 7. Recall that 𝑟 is the XOR of uniform random values, thus, each bit in 𝑟 is uniform
random as well and𝑚𝑎𝑠𝑘 has all bits set after (and including) the most significant set bit in𝑀 .
Masking ensures that only those bits of 𝑟 remain set that are also set in𝑚𝑎𝑠𝑘 , i.e., 𝑟 ≤ 𝑚𝑎𝑠𝑘 . The
rejection rate is maximized if only one bit in 𝑀 is set: Masking still leaves undesired values in
[𝑀,𝑚𝑎𝑠𝑘] and range size𝑚𝑎𝑠𝑘 −𝑀 + 1 is maximized when𝑚𝑎𝑠𝑘 is at its largest compared to
𝑀 , i.e., when only a single bit is set in𝑀 , say at position 𝑘 . Then, 𝑟 is rejected with probability
1/2 as all 𝑟 with 0 at position 𝑘 are accepted (𝑟 < 𝑀), while the other half is rejected. Increas-
ing the number of set bits in𝑀 decreases the rejection rate (as more 𝑟 can be smaller than𝑀).
Thus, the rejection probability per sample 𝑟 is at most 1/2, for an overall rejection probability of
2−𝑞 as stated before. An alternative to rejection sampling is a slightly biased sampling algorithm
without abort requiring only one nonce per party instead of 𝑞 : If themaskedXOR of nonces (𝑟) is
larger than𝑀 one uses 𝑟 −𝑀 as the sampled output. However, we use rejection sampling as it is

4 Anupperbound fornormalization term𝑁 canbeobtainedbygivingall possibleuniqueelements, i.e.,max (𝔇)−min(𝔇)
elements, the highest utility, 0, thus𝑁 = (max (𝔇) −min(𝔇)) exp(𝜖 · 0) = max (𝔇) −min(𝔇) . Themaximum gap is the
largest possible difference of domain elements in𝔇, which is max (𝔇) −min(𝔇) .

61

5 EMmed: DPMedian

unbiased, and only has a small impact on the running time and communication (see evaluation
in Section 5.3.4).
Weperforma linear scanover thepruneddata toobliviouslyfind index 𝑗 (line4 inAlgorithm5).

Later, in Chapter 6 where we present our protocol EM∗, we use binary search to find 𝑗 over sub-
ranges of the data domain (Section 6.2.1). However, we cannot apply binary search here as well.
Binary search leaks the search pattern, especially 𝑗 , whichwe cannot reveal as it allows inference
about the data5. To avoid such leakage we cannot reveal 𝑗 and run a linear scan.

5.2.5 Running Time Complexity

Weanalyse the running timeofEMmed basedon thenumberof secureprotocols listed inTable 2.2
in Section 2.1.6. The secure protocols require at most 𝑙 operations for integers with bit-length 𝑙 .

Theorem 6. The running time complexity of EMmed is

𝑂 (max{log𝑛 − log log |𝔇|, log |𝔇| · log log |𝔇|}),

which is sublinear in 𝑛 for 𝑛 > log |𝔇|log |𝔇 |+1, and sublinear in |𝔇| otherwise.

Proof. Step (I), requires 𝑠 ∈ 𝑂 (log𝑛 − log log |𝔇|) comparisons (seeTheorem5). Step (II) requires
2𝑏 |𝐷 𝑠 | log |𝐷 𝑠 | binary gates [HEK12] for |𝐷 𝑠 | elements with bit length 𝑏 . Steps (III) and (IV) re-
quire 𝑂 (|𝐷 𝑠 |) operations each. Since |𝐷 𝑠 | ∈ 𝑂 (log |𝔇|) (Lemma 2), our overall running time is
𝑂 (max{log𝑛 − log log |𝔇|, log |𝔇| · log log |𝔇|}).

5.2.6 Security

We combine different secure computation techniques in the semi-honest model introduced by
[Gol09] where corrupted protocol participants do not deviate from the protocol but gather ev-
erything created during the run of the protocol. Our protocol consists of multiple subroutines
realized with secure computation. To analyze the security of the entire protocol we rely on the
well-known composition theorem [Gol09, Section 7.3.1]. Basically, a secure protocol that uses an
ideal functionality (a subroutine provided by a trusted third party) remains secure if the ideal
functionality is replaced with a secure computation implementing the same functionality. We
consider Prune-neighboring data sets (Definition 22), i.e., neighboring data sets with the same
pruning result.

Theorem 7 (Security). Our protocol EMmed securely implements the ideal functionality of dif-
ferentially private median selection via the steps Prune, MergeAndShare, SelectionProbability and
MedianSelection in the semi-honest model.

Proof. First,weshowthatPrune is securebasedonasimulationproof fromAggarwalet al. [AMP10,
Section 3.2]. Then, we define andmap ideal functionalities to our real-world implementation.
Aggarwal et al. [AMP10] developed the input pruning we utilize and give a simulation-based

security proof only using comparisons as ideal functionality. Note that these comparisons leak

5 Asanexample, consider sorted𝐷𝑠 = {min𝔇, 4, 5, 5, 6,max𝔇}with𝐷𝑠
𝐴 = {5, 6}, 𝐷𝑠

𝐵 = {4, 5}, andwestopatmedian index
𝑗 = 2 and output 𝜇 = 5. Then, 𝐵 can infer that𝐷𝐴 cannot contain only values smaller than 4 via proof by contradiction:
Assume that𝐷𝐴 contains only values smaller than 4with outputs 𝑗 ,𝜇 as above. Then,𝐷𝑠 [2] < 4 (due to sorting) and𝜇 =
𝐷𝑠 [2]+𝑔 with 𝑔 ∈ [0, gap(𝑗)) . Perdefinitiongap(𝑗) = 1 for themedian indexand so 𝑔 = 0. Thus,𝜇 < 4whichcontradicts
𝜇 = 5. Note that without knowing 𝑗 , one cannot rule out, e.g., 𝑗 = 0 with uniformly random 𝜇 ∈ [min𝔇,min(𝐷𝐴 ∪𝐷𝐵)) ,
which prohibits such inference.

62

5.2 Secure Sublinear Time Differentially PrivateMedian Computation

Algorithm 8 SimulatePruning simulates the 𝑘 th-ranked element computation [AMP10, Algo. 2].
Input: Parameter element rank 𝑘 , real execution result 𝜇 and iteration count 𝑗 . Note that 𝐷𝐴 is

known to 𝐴 and all items in𝐷𝐴 ∪𝐷𝐵 are distinct.
Output: Simulation of running the protocol for finding the 𝑘 th-ranked element 𝜇 in𝐷𝐴 ∪𝐷𝐵 .
1: 𝐴 initializes𝐷1

𝐴 ← Pad(𝐷𝐴 , 𝑘 ,+∞) // Section 5.1.5
2: for 𝑖 ← 0 to 𝑗 − 1 do
3: 𝐴 computes 𝜇𝐴 ← median(𝐷 𝑖

𝐴)
4: Secure comparison result 𝑐 is set to 1 if 𝜇𝐴 < 𝜇 (i.e., 𝜇𝐴 < 𝜇𝐵) otherwise it is 0
5: 𝐴 sets𝐷 𝑖+1

𝐴 ← upper half of𝐷 𝑖
𝐴 if 𝑐 = 1 otherwise it is the lower half

6: end for
7: The final secure comparison result 𝑐 is set to 1 if 𝜇𝐴 < 𝜇 and else it is 0

nothing about Prune-neighboring data sets. Prune, a partial execution of the protocol from Ag-
garwal et al., allows the same simulation argument. Theyprove the security of their computation
of the 𝑘 th-ranked element in the semi-honestmodel by showing that𝐴 (similarly𝐵) can simulate
the secure protocol given its own input𝐷𝐴 , and the value𝜇 of the 𝑘 th-ranked element. We repro-
duce their simulation in the following as we use the same argument with small modifications.
The simulation executed by 𝐴 (similarly 𝐵) by Aggarwal et al. [AMP10, Algorithm 2] is detailed in
Algorithm 8. If the data 𝐷𝐴 contains duplicates,

⌈
log2 |𝐷𝐴 |

⌉ + 1 bits are added to the binary rep-
resentation of each element to make it unique as required for the simulation. E.g., 𝐴 adds for
each element the bit 0 followed by the rank of the element in the least significant bit positions.
𝐵 follows the same procedure using 1 instead of 0. These bits are removed from the final out-
put. Aggarwal et al. [AMP10] execute the simulation as SimulatePruning(𝑘, 𝜇, dlog2 (𝑘)e), i.e., full
pruning until only one element remains. [AMP10, Lemma 2] states that the transcript of the real
execution and the simulated execution are equivalent. Additionally, the state information, i.e.,
pruned data 𝐷 𝑖

𝐴 , that 𝐴 has at each iteration 𝑖 is the same as well. Our protocol is a partial exe-
cution with 𝑠 iterations. We do not know the exact value 𝜇, however, 𝐴 knows its state 𝐷 𝑠

𝐴 at the
final step andwe use themedian of𝐷 𝑠

𝐴 , denotedmedian(𝐷 𝑠
𝐴), instead of 𝜇. Altogether, we call the

simulation with SimulatePruning(𝑘,median(𝐷 𝑠
𝐴), 𝑠). We now show by contradiction that our sim-

ulation outputs the correct comparison results. Assume 𝑐 = 1, i.e., 𝜇𝐴 < 𝜇𝐵 , at iteration 𝑖 in our
real execution but our simulation outputs 0, i.e., 𝜇𝐴 ≥ median(𝐷 𝑠

𝐴). Then𝐷 𝑖+1
𝐴 is the lower half of

𝐷 𝑖
𝐴 and only elements smaller than or equal to 𝜇𝐴 = median(𝐷 𝑖

𝐴) remain in 𝐷 𝑖+1
𝐴 and thus in 𝐷 𝑠

𝐴 .
In other words, for 𝑥 ∈ 𝐷 𝑖+1

𝐴 we have 𝑥 ≤ 𝜇𝐴 and due to 𝐷 𝑠
𝐴 ⊆ 𝐷 𝑖+1

𝐴 we have median(𝐷 𝑠
𝐴) < 𝜇𝐴 .

However, this contradicts 𝜇𝐴 ≥ median(𝐷 𝑠
𝐴), i.e., output 0. Analogously, we find a contradiction if

𝑐 = 0 in our real execution but 1 in the simulation.
Next, we use the composition theorem to analyze the security of our protocol: We define re-

quired ideal functionalities, showhow theymap to our garbled circuit implementation (steps (I),
(II), (IV)), and how it combines with secret sharing (step (III)). For the interactive computation,
we require the ideal functionalities as shown in Figure 5.1, which we formalize next:

• 𝑐 ← FCompare (𝜇𝐴 ;𝜇𝐵).
In step (I) the ideal functionalityon input𝜇𝐴 , 𝜇𝐵 , i.e.,median from𝐴,𝐵 respectively, outputs
the result of comparison 𝜇𝐴 < 𝜇𝐵 as bit 𝑐 to both parties.

• 〈𝐷 𝑠 〉𝐴 , 〈𝐷 𝑠 〉𝐵 ← FMergeAndShare (𝐷 𝑠
𝐴 ;𝐷 𝑠

𝐵).
In step (II) the ideal functionality receives as input the pruned data 𝐷 𝑠

𝐴 , 𝐷 𝑠
𝐵 from 𝐴, 𝐵 re-

spectively, and outputs the sorted, merged data as secret shares, i.e., 〈𝐷 𝑠 〉𝐴 , 〈𝐷 𝑠 〉𝐵 is output
to 𝐴, 𝐵 respectively.

63

5 EMmed: DPMedian

• 𝜇 ← FMedianSelection (〈𝐺 〉𝐴 , 〈𝑀 〉𝐴 , 〈𝐷 𝑠 〉𝐴 ; 〈𝐺 〉𝐵 , 〈𝑀 〉𝐵 , 〈𝐷 𝑠 〉𝐵).
In step (IV) party 𝐴 inputs 〈𝐺 〉𝐴 , 〈𝑀 〉𝐴 , 〈𝐷 𝑠 〉𝐴 , party 𝐵 inputs 〈𝐺 〉𝐵 , 〈𝑀 〉𝐵 , 〈𝐷 𝑠 〉𝐵 and the ideal
functionality outputs the DPmedian 𝜇 to both.

Step (III), SelectionProbability, performs local computations without interaction, and does not
require any ideal functionality. We realize FCompare with garbled circuits in Algorithm 2 line 7.
The ideal functionality FMergeAndShare, from merging step (II), is implemented as MergeAndShare
in Algorithm 3 with garbled circuits. Note that 𝐴 provides the randomness for the secret shar-
ing, i.e., 〈𝐷 𝑠 〉𝐴 , as additional input which is generally not required by the ideal functionality.
Garbled circuits are also used in the selection step (IV), where FMedianSelection is implemented as
MedianSelection in Algorithm 5. Additionally, to the input mentioned for the ideal functional-
ity, the parties also provide nonces as a source of randomness. We rely on the established secu-
rity proofs for garbled circuits in the semi-honest model provided by Lindell and Pinkas [LP09].
Outputs of (II), (III) are intermediate states of our interactive computation. As noted by Gol-
dreich [Gol09, Section 7.1.2.3] such state can be maintained securely among the computation
parties in a secret sharing manner. For security proofs of secret sharing we refer to Pullonen et
al. [PBS12] and for security proofs for converting between garbled circuits and secret sharing we
refer to Demmler et al. [DSZ15a].
Altogether, the execution of FPrune, FMergeAndShare, SelectionProbability, and FMedianSelection con-

stitute the ideal functionality for differentially private median. Utilizing the composition theo-
rem and [Gol09, Section 7.1.2.3] we replace the ideal functionality with secure implementations
Prune,MergeAndShare,MedianSelection and secret share the intermediate states.

5.2.7 Extensions: Outsourcing, Multiple Parties, Malicious Model

Outsourcing. The two input parties, holding data sets𝐷𝐴 , 𝐷𝐵 , can outsource the protocol evalu-
ation to two non-colluding computation parties, who run the computation on their behalf. Our
protocol can be outsourced as most of the operations are data-independent, i.e., using only in-
dices of the (pre-sorted) data sets or secret-shared values. Instead of secret sharing their sorted
data sets with each other, the input parties now secret share it with the computation parties.
Outsourcing requires small augmentations to Prune andMergeAndShare as follows: Prune selects
intermediate median values based on their position in the sorted, secret-shared data and con-
verts them from secret-shared to garbled values. Then, Prune proceeds as before, i.e., compares
the local medians, and the computation parties discard the upper/lower half of their (secret-
shared) input data. MergeAndShare now also receives shares, converts them, and proceeds as
before. SelectionProbability and MedianSelection already operate on secret-shared input values,
output by the previous step, and require no changes. With outsourcing the input parties do not
learn the Prune-neighborhood if the computation parties only return the differentially private
median and no intermediate computations.
Multi-party extension. Similarly, our two-party protocol can be extended to a multi-party

protocol. Consider the case where the number of input parties is sublinear in the size of the
data domain and each party 𝑃𝑖 holds a single datum 𝑑𝑖 . Then, we do not require pruning, as the
total input size is already sublinear in the size of the data domain. In this case, the input par-
ties can outsource the computation by secret sharing their inputs with two computation parties,
who run MergeAndShare (with additional reconstruction step as above), SelectionProbability, and
MedianSelection. If the number of input parties is not sublinear in the domain size (or the parties

64

5.3 Evaluation

hold large data sets instead of a single datum), we need to adaptPrune to handlemultiple inputs.
Prune is a partial execution of a two-party protocol from Aggarwal et al. [AMP10, Section 3], who
also provide a secure pruning protocol for more than two parties [AMP10, Section 4]. Next, we
describe their protocol augmented with secret-sharing and outsourcing. First, the input parties
compute the counts of elements smaller and larger than median candidate 𝜇′ = d𝑎+𝑏2 e, where
𝑎 = min𝔇, 𝑏 = max𝔇, and secret-share these counts with the computation parties. The compu-
tationparties combine these counts (per inputparty) into lower andupperboundson the rankof
candidate𝜇′ and compare themagainst themedian’s rank: If the lower bound of𝜇′ is larger than
themedian’s rank, the input parties set𝑏 = 𝜇′−1. If the upper bound is smaller, the input parties
set 𝑎 = 𝜇′ +1. These pruning steps are repeatedwith updatedmedian candidate𝜇′ = d𝑎+𝑏2 e, until
the rank fits within the bounds. Note that the two-party protocol for pruning [AMP10, Section 3]
is logarithmic in the sizeof thedata set (as it discardshalf of thedataper step),whereas themulti-
party protocol [AMP10, Section 4] is logarithmic in the size of thedata domain (as it discards half
of the domain range [𝑎, 𝑏] per step). After pruning, the computation parties runMergeAndShare
(with additional reconstructions), SelectionProbability, andMedianSelection as before. Altogether,
thesemodifications allow our protocol EM∗ to support more than two input parties.
From Semi-honest to Malicious. To extend our protocol from semi-honest to malicious par-

ties, we first need to implement our protocol in a maliciously secure framework, i.e., replace
semi-honest sub-protocols (e.g., addition)withmaliciously secureones. Maliciously secure sub-
protocols ensure that malicious behavior is prevented, e.g., changing inputs during computa-
tion. In case of initial pruning,which requires adaptive iterations, we alsoneed to ensure that the
input remains consistent between iterations. Aggarwal et al. [AMP10] define consistency checks
for their adaptive pruning, which we can leverage as well. Informally, the checks ensure that in-
puts from the current iteration fall within bounds from previous iterations. These bounds are
not revealed to the parties, and if a check fails, the computation aborts. For the two-party case,
Aggarwal et al. [AMP10, Protocol 1] initialize bounds as 𝑙𝐴 = −∞, 𝑙𝐵 = −∞, and𝑢𝐴 = ∞, 𝑢𝐵 = ∞. In
each pruning step, the localmedians𝜇𝐴 , 𝜇𝐵 are checked as 𝑙𝐴 < 𝜇𝐴 < 𝑢𝐴 , 𝑙𝐵 < 𝜇𝐵 < 𝑢𝐵 . If𝜇𝐴 ≥ 𝜇𝐵 ,
update 𝑢𝐴 = 𝜇𝐴 , 𝑙𝐵 = 𝜇𝐵 . Otherwise (𝜇𝐴 < 𝜇𝐵), update 𝑙𝐴 = 𝜇𝐴 , 𝑢𝐵 = 𝜇𝐵 . The multi-party case is
similar, however, with checks on counts 𝑎, 𝑏 instead of local median values [AMP04, Protocol 3].
Aswe consider semi-honest partiesweomit these checks in our evaluation. However, wediscuss
the overhead for consistency checks in Section 5.3.2

5.3 Evaluation

Our implementation is written in C/C++ using the mixed-protocol framework ABY developed
by Demmler et al. [DSZ15a]. We use the default parameters, i.e., security parameter 𝜅 = 128
and statistical security parameter 𝜎 = 40. We chose ABY as it supports secure two-party compu-
tation based on arithmetic sharing and Yao’s garbled circuits and provides efficient conversion
between them (Section 2.1.5). We implemented two versions of our protocol – GC, with garbled
circuits, andGC + SS, with garbled circuits as well as secret sharing – to show that using amixed-
protocol, which requires additional conversion between the schemes, is still more efficient than
only utilizing garbled circuits.

65

5 EMmed: DPMedian

Setup

We ran the evaluation on AWS t2.medium instances with 2GB RAM and 4 vCPUs (Section 4.4.1).
As garbled circuits and pruning are interactive protocols they are influenced by network de-
lay and bandwidth, therefore, we evaluated our protocol in real networks between different
AWS regions with round trip times (RTT) of none (LAN), 12ms (Ohio–N. Virginia), 25ms (Ohio–
Canada), and 100ms (Ohio–Frankfurt), with bandwidths of 1Gbits/s, 430Mbits/s, 160Mbits/s
and 100Mbits/s respectively.

Data & Parameterization

Weevaluatedon theOpenPayments 2017data set from theCenters forMedicare&Medicaid Ser-
vices (CMS) [CMS17]. The CMS collects all payments made to physicians from drug or medical
devicemanufacturers as required by the Physician Payments Sunshine Act. We evaluated differ-
ent numbers of remaining elements after pruning (i.e., different sizes of 𝐷 𝑠) which is inversely
proportional to the privacy parameter 𝜖 as the number of pruning steps depends on it (see The-
orem 5). We used an accuracy value of 0.9999 to determine the number of pruning steps.

Precision

Our implementation uses fixed-point numbers with 64 bits. As probabilities are floating point
numbers we evaluated the loss of decimal precision of our secure implementation compared to
a floating point operation with access to unprotected data [CMS17]. For the maximum evalu-
ated number of remaining elements, i.e., 256 (corresponding to 𝜖 = 0.25), the difference for all
elements combined was less than 6.5 · 10−15.

5.3.1 Running Time

We evaluated the running time of GC and GC + SS, which includes setup time (OT extensions,
garbling) and online time in seconds (or milliseconds in the LAN setting). The evaluations of
running time are presented in Figure 5.3–5.6 with increasing delays and decreasing bandwidths.
In each figure we plotted different data set sizes |𝐷𝐴 | = |𝐷𝐵 | = |𝐷 |/2 ∈ {103, 104, 105, 106} to show
thatourprotocol scaleswith increasingly largerdata sets. Theplotted running time is theaverage
of 20 runs and brackets indicate the 95% confidence interval. The running time plots forGC and
GC + SS have the same scale (and are grouped side-by-side) to allow for an easier comparison.
The advantage of GC + SS over GC is most obvious in the LAN setting, where the running time

for GC + SS, see Figure 5.3b, is always below that of GC, see Figure 5.3a. The same is true for
modest network delay as can be seen by comparing Figure 5.4b with Figure 5.4a.
For network delay of up to 100ms with 100Mbits/s bandwidth GC + SS is still faster than GC

but less so for 32 remaining elements (𝜖 = 2), as shown in Figure 5.5 and 5.6. The reason for
GC + SS being not much faster is the increased number of interactive pruning steps required to
reach this number of remaining elements. Also, the number of additional garbled circuits to go
from GC + SS to GC is smaller for few remaining elements (see Figure 5.9a), so that the pruning
hasmore impact. Even formillions of recordsGC + SShas a running timeof less than 2.6 seconds
with 25ms network delay (Figure 5.5b) and less than 7 seconds for 100ms delay (Figure 5.6b).

66

5.3 Evaluation

(2) (1) (0.5) (0.25)
32 64 128 256

0
250
500
750

1,000
1,250
1,500
1,750
2,000

Remaining elements
(corresponding 𝜖)

M
ill
ise

co
nd

s

Data size
per party

106
105
104
103

(a)GC

(2) (1) (0.5) (0.25)
32 64 128 256

0
250
500
750

1,000
1,250
1,500
1,750
2,000

Remaining elements
(corresponding 𝜖)

M
ill
ise

co
nd

s

Data size
per party

106
105
104
103

(b)GC + SS

Figure 5.3: Running time without network delay and 1Gbits/s bandwidth (LAN).

(2) (1) (0.5) (0.25)
32 64 128 256

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

Remaining elements
(corresponding 𝜖)

Se
co
nd

s

Data size
per party

106
105
104
103

(a)GC

(2) (1) (0.5) (0.25)
32 64 128 256

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

Remaining elements
(corresponding 𝜖)

Se
co
nd

s

Data size
per party

106
105
104
103

(b)GC + SS

Figure 5.4: Running time for ∼12ms RTT, ∼430Mbits/s (Ohio and N. Virginia).

(2) (1) (0.5) (0.25)
32 64 128 256

0
1
2
3
4
5
6
7

Remaining elements
(corresponding 𝜖)

Se
co
nd

s

Data size
per party

106
105
104
103

(a)GC

(2) (1) (0.5) (0.25)
32 64 128 256

0
1
2
3
4
5
6
7

Remaining elements
(corresponding 𝜖)

Se
co
nd

s

Data size
per party

106
105
104
103

(b)GC + SS

Figure 5.5: Running time for ∼25ms RTT, ∼160Mbits/s (Ohio and Canada).

(2) (1) (0.5) (0.25)
32 64 128 256

2
4
6
8
10
12

Remaining elements
(corresponding 𝜖)

Se
co
nd

s

Data size
per party

106
105
104
103

(a)GC

(2) (1) (0.5) (0.25)
32 64 128 256

2
4
6
8
10
12

Remaining elements
(corresponding 𝜖)

Se
co
nd

s

Data size
per party

106
105
104
103

(b)GC + SS

Figure 5.6: Runtime for ∼100ms RTT, ∼100Mbits/s (Ohio and Frankfurt).

67

5 EMmed: DPMedian

Index 𝑗 − 1 𝑗 𝑗 + 1
𝐷𝐵 · · · 𝑑𝑗−1 𝑑𝑗 𝑑𝑗+1 · · ·

𝐷𝐵 \ {𝑥} · · · 𝑑𝑗 𝑑𝑗+1 𝑑𝑗+2 · · ·

𝐷𝐵 ∪ {𝑥} · · ·
[
𝑑𝑗−3, 𝑑𝑗−2

] [
𝑑𝑗−2, 𝑑𝑗−1

]
𝑑𝑗−1 · · ·

Figure 5.7: Neighbors of𝐷𝐵 in relation to comparison index 𝑗 used by Prune (values highlighted in gray). Neighbors are
𝐷𝐵 with a value 𝑥 ∈ 𝐷𝐵 removed or 𝑥 ∈ 𝔇 added, illustrated for 𝑥 < 𝑑𝑗 . All data sets are sorted.

5.3.2 Consistency Checking Overhead

Malicious security requires to check input consistency between pruning steps as described in
Section 5.2.7. Next, we roughly approximate the computation overhead for these checks.
The consistency checks for the two-party protocol with 𝑠 pruning steps require 4𝑠 compar-

isons (LT) and 4𝑠 Mux to update the bounds. Note that both operations have the same complex-
ity (Table 2.2 in Section 2.1.6). The additional operations per pruning step can be integrated in
the pruning circuit with a small communication overhead in the order of kilobytes. We ignore
this small communication overhead and consider a LAN setup to approximate the computation
overhead. Evaluating a circuit with a single comparison required atmost 5ms in our evaluations
(including its construction in a LAN). Thus, the absolute overhead is atmost 640ms for 8𝑠 check
operations and our largest pruningwith 𝑠 = 16, i.e., only 32 remaining elements. Note that this is
not a tight upper bound as our entire protocol requires less than 500ms for the same setup (Fig-
ure 5.6). With this upper bound, the relative overhead is at most 10% in aWAN (Figure 5.3) with
our largest pruning evaluations. We estimated the overhead in semi-honest ABY, however, for
malicious security an implementation with consistency checks in a maliciously secure frame-
work is required.

5.3.3 Prune-neighboring

Our focus is on small data sets (say, a few hundred values), as they are the most challenging
for differential privacy. Our protocol EM∗ supports such data sets with accuracy as in the cen-
tral model for standard differential privacy. However, to support also larger data sets, we first
prune the datawithPrunewhich requires a relaxation of differential privacy in the formofPrune-
neighboring (Definition 22), i.e., neighboring data sets also have the same output w.r.t. Prune.
Next, we discuss the influence ofPrune onneighboring data sets and how it limits group privacy.
Recall, Prune compares the sorted, padded data 𝐷𝐴 , 𝐷𝐵 at some fixed index 𝑗 in each pruning

step, and aneighbor is𝐷𝐵 with an element 𝑥 removedor added. As Figure 5.7 illustrates, compar-
ing a neighbor at index 𝑗 is similar to using the original𝐷 at an adjacent index. Thus, neighbors
are likely Prune-neighbors when the data containsmultiple duplicates or is dense (no large gaps
between values) and less so for sparse, unique data. In more detail, we first consider 𝑥 < 𝑑𝑗

where 𝑑𝑗 denotes the value of 𝐷𝐵 at index 𝑗 . Let the data be padded to some fixed size. Then,
removing 𝑥 from 𝐷𝐵 “shifts” values larger than 𝑥 to the left whereas adding 𝑥 can shift smaller
values to the right in the sorted data. Removing 𝑥 ∈ 𝐷𝐵 leads to a single shift left, i.e., Prune uses
𝑑𝑗+1 instead of 𝑑𝑗 . For addition at most two right shifts can occur as we now have to consider
𝑥 ∈ 𝔇 instead of 𝑥 ∈ 𝐷𝐵 . Adding 𝑥 ∈

[
𝑑𝑗−2, 𝑑𝑗−1

]
places it at index 𝑗 in the sorted neighbor.

Thus, in the worst-case for addition, Prune uses 𝑑𝑗−2 instead of 𝑑𝑗 . Note that adding/removing

68

5.3 Evaluation

𝐷𝐴

𝐷𝐵 Wages
[Soo18]

Trans-
actions
[ULB18]

Times
[ULB18]

Pay-
ments
[CMS17]

Weights
[Kag18]

Quan-
tities
[Kag18]

Wages [Soo18] >100 | 18 >100 | 14 12 | 12 22 | 22 >100 | 12 46 | 21
Transactions [ULB18] 65 | 65 8 | 8 >100 | 20 37 | 30 36 | 36 23 | 23

Times [ULB18] >100 | 22 33 | 18 6 | 6 >100 | 13 >100 | 21 25 | 25
Payments [CMS17] 28 | 28 >100 | 11 >100 | >100 6 | 6 >100 | 41 >100 | 13

Weights [Kag18] >100 | 43 34 | 33 4 | 4 33 | 33 >100 | 21 48 | 19
Quantities [Kag18] 30 | 30 >100 | 25 >100 | 12 >100 | 9 14 | 14 14 | 14

Table 5.3:Minimum changes (worst-case) in𝐷𝐵 to sample a neighbor that is not a Prune-neighbor w.r.t.𝐷𝐴 . Evaluated
for 52 000 neighbors (all combinations of up to 50 removals and 50 additions with 20 samples per combina-
tion). Each row shows theminimum changes for 𝜖 = 1 | 𝜖 = 2 and >100 indicates none were found for up to
100 changes.

𝑥 ≥ 𝑑𝑗 affects only positions larger than 𝑗 , and all such neighbors are Prune-neighbors for this
index. Also, if the original comparison (of 𝐷𝐴 , 𝐷𝐵 at 𝑗) is true, then removing 𝑥 < 𝑑𝑗 produces
the same result in Prune (neighbor has an even larger value at 𝑗). Likewise if it is false and we
add 𝑥 . To empirically verify that Prune-neighboring (Definition 22) is not too restrictive we eval-
uated multiple columns from real-world data sets [CMS17, Kag18, Soo18, ULB18], and found
that all neighbors are also Prune-neighbors. To illustrate our evaluation methodology, one can
imagine the neighboring definition in differential privacy (DP) as a graph. Each database is a
vertex and if two data sets are neighbors they are connected by an edge. The common neigh-
boring definition in DP (adding/removing one element) results in a graph. Prune-neighboring is
a restriction on that graph in the sense that it removes certain edges, similar constraints on the
input databases are considered in [BSRW17, HMFS17]. Any neighboring database must be in a
connected component of the neighboring graph where all nodes have the same output of the
Prune-function. The result of the Prune steps in our protocol determines the connected compo-
nent, in which the other party’s database is DP in. In that sense DPwith Prune-neighboring can-
not be violated by any adversary. Any choice of inputs by party 𝐴 will lead to one (but different)
connected component for the DP of 𝐵 ’s database, i.e., 𝐵 ’s database will always remain differen-
tially private. We empirically showed thatPrune-neighboring is not too restrictive, i.e., it does not
remove too many edges and make the resulting connected component too small. We sampled
edges from the neighboring graph resulting from the commondefinition on real-world data sets
[CMS17, Kag18, Soo18, ULB18] using the following method: Given a real-world database for 𝐵 ,
an element to be added or removed chosen by 𝐴 (note that 𝐴 must choose before knowing the
result), and a step in the protocol does there exist any neighbor for 𝐵 ’s database that is excluded
by the Prune-neighboring definition. For up to 16 consecutive pruning steps (the maximum ac-
cording to Theorem 5 for our highest evaluated parameters 𝜖 = 2, and accuracy of 0.9999), we
found none. Given that the connectivity in the neighboring graph is high, this implies that the
connected component is expected to remain large.
Group privacy extends the neighboring definition from including (or excluding) a single value

to multiple values. Therefore, to quantify group privacy we considermultiple changes and pro-
vide worst-case and average-case evaluation for Prune-neighboring.

69

5 EMmed: DPMedian

𝐷𝐴

𝐷𝐵 Wages
[Soo18]

Trans-
actions
[ULB18]

Times
[ULB18]

Payments
[CMS17]

Weights
[Kag18]

Quantities
[Kag18]

Wages [Soo18] 58.6± 0.26 50.7± 0.25 49.7± 0.13 50.0± 0.17 53.9± 0.26 50.9± 0.24
Transactions [ULB18] 76.6± 9.59 50± 0.18 50.5± 0.26 48.5± 0.18 72.3± 0.52 55.6± 0.16

Times [ULB18] 63.7± 0.22 64.9± 0.20 50.3± 0.18 50± 0.25 61.2± 0.20 62.5± 0.10
Payments [CMS17] 68.9± 0.35 59.8± 0.19 >100 50± 0.15 71.4± 1.26 57.9± 0.13

Weights [Kag18] 55.0± 1.77 49.6± 0.15 50.9± 0.18 50.7± 0.14 61.2± 0.20 50.5± 0.24
Quantities [Kag18] 68.3± 0.63 64.7± 0.31 51± 0.25 51± 0.25 54.5± 0.18 59.6± 0.13

Table 5.4: Average changes in𝐷𝐵 to sample a neighbor that is not a Prune-neighbor w.r.t.𝐷𝐴 . Evaluated for 52 000
neighbors (all combinations of up to 50 removals and 50 additions with 20 samples per combination). Each
row shows the average changes for 𝜖 = 2 with 95% confidence interval and >100 indicates none were found
for up to 100 changes.

Worst-case Evaluation

Table 5.3 shows theminimum changes required to produce a neighbor that is not also a Prune-
neighbor6. We evaluated 52 000 neighbors (all combinations of up to 50 removals and 50 addi-
tions with 20 samples per combination) for each of the 36 ways to distribute the data between
two parties (6 data sets [CMS17, Kag18, Soo18, ULB18] distributed between 2 parties). Prune-
neighboring provides only limited group privacy for the largest number of pruning steps (𝜖 = 2).
However, for our strongest privacy guarantee 𝜖 = 0.25 we found changes leading to violations
in only 2 from 36 data set combinations, requiring at least 12 changes. Furthermore, sequential
composition is still supportedas the result of ourprotocol is themedian selectedby theexponen-
tial mechanismwhich can be used as input for another (DP)mechanism. (Parallel composition,
running our protocol onmultiple subsets of the data at once, outputsmultiplemedian values of
these subsets.)

Average-case Evaluation

Table 5.4 shows the average number of changes in a data set 𝐷𝐵 to create a neighbor that is not
a Prune-neighbor w.r.t.𝐷𝐴 . The number of changes corresponds to the average group privacy we
can expect. Each additional pruning step increases the possibility to find a non-Prune-neighbor.
Thus, we use 𝜖 = 2 as it leads to the most number of pruning steps in our evaluation. Overall,
at least 49 changes were required on average to violate Prune-neighboring on the evaluated data
sets.

Average-case compared to Worst-case

Table 5.5 shows that lower valuesof 𝜖 providehigher groupprivacy. We list thedetailedminimum
and average number of changes for 𝜖 ∈ {0.25, 0.5, 1, 2} where𝐷𝐴 consists of credit card transac-
tions [ULB18]. Note that we list theminimumover all pruning steps (i.e., the value forminimum
changes canbe the same fordifferentpruning stepsand their corresponding 𝜖). Overall, themin-
imum number of changes are 20 (when𝐷𝐵 consists of transaction times [ULB18]) and for 𝜖 < 1
we found no group privacy violations for up to 100 changes.

6 Some values are the same for 𝜖 ∈ {1, 2} as we only report theminimum number of changes over all pruning steps.

70

5.3 Evaluation

𝐷𝐵 𝜖 Avg. Min.

Open Payments [CMS17]
(6M payments)

0.25 >100 >100
0.5 >100 >100
1 50.1 ± 0.26 37
2 48.5 ± 0.18 30

California public salaries [Soo18]
(71k wages)

0.25 >100 >100
0.5 >100 >100
1 76.6 ± 25.38 65
2 76.6 ± 9.59 65

Walmart supply chain [Kag18]
(175k shipment weights)

0.25 >100 >100
0.5 >100 >100
1 72.3 ± 0.73 36
2 72.3 ± 0.52 36

Walmart supply chain [Kag18]
(175k shipment quantities)

0.25 >100 >100
0.5 >100 >100
1 55.6 ± 0.23 23
2 55.6 ± 0.16 23

Credit card [ULB18]
(284k transaction times)

0.25 >100 >100
0.5 >100 >100
1 >100 >100
2 50.5 ± 0.26 20

Table 5.5: Average &minimum changes in𝐷𝐵 to sample a neighbor that is not a Prune-neighbor w.r.t.𝐷𝐴 , where𝐷𝐴

consits of 284k credit card transactions [ULB18]. Evaluated for 52 000 neighbors (all combinations of up
to 50 removals and 50 additions with 20 samples per combination) Evaluated for 𝜖 ∈ {0.25, 0.5, 1, 2} (with
95% confidence interval for average), and >100 indicates no violation was found for up to 100 changes.

5.3.4 Sampling

For our evaluation in Section 5.3 we used 𝑞 = 20 nonces per rejection sampling. An alternative
to rejection sampling is a slightly biased sampling algorithm without abort requiring only one
nonce instead of 𝑞 per party. Biased sampling uses 𝑟 −𝑀 as the sampled output if the masked
XORof nonces (𝑟) is larger than𝑀 instead of rejecting the biased sample (i.e., replaces loop line 7
in Algorithm 7). Themasking and subtraction results in a simplifiedmodulo operation, and the
bias is due to the fact that modulo does not necessarily divide the nonce range evenly.
We compared biased sampling with rejection sampling (𝑞 = 20) using the median of 20 runs

for our largest circuit (𝜖 = 0.25, |𝐷 | = 2 · 106) with approximately 100ms delay and 100Mbits/s
bandwidth. Biased sampling required around28k fewer gates and sent 400KB less than rejection
samplingwith𝑞 = 20,whichcorresponds toa reduction incircuit sizeandcommunicationof less
than 1% forGC and around 3–4% forGC + SS. The running timewith biased sampling decreased
by 2.2 seconds for GC (18.5% faster) but only by 0.18 seconds for GC + SS (2.6%). (For 𝑞 = 30 an
additional 44k gates and 600KB are required compared to biased sampling, leading to similar
running times as for 𝑞 = 20.) Thus, we use rejection sampling as it is unbiased with only small
impact on the runtime of GC + SS.

71

5 EMmed: DPMedian

0.1 0.25 0.5
0

1

2

3

4

𝜖

Av
g.
Ab

s.
Er
ro
r Original𝐷

Pruned𝐷𝑠

(a) Credit card data [ULB18], first 105
payment records in Cents.

0.1 0.25 0.5
0

0.25
0.5
0.75

1
1.25
1.5
1.75

𝜖

Av
g.
Ab

s.
Er
ro
r Original𝐷

Pruned𝐷𝑠

(b) Walmart supply chain data [Kag18],
175k shipment weights as integers.

Figure 5.8: Absolute error averaged over 100 runs with and without pruning.

5.3.5 Absolute Error with and without Pruning

Pruning preserves the elements closest to the median and the absolute error compared to the
original data is small. We evaluated the absolute error, i.e., actual median versus DP median,
for the exponential mechanism on original data and pruned data: Figure 5.8 shows the average
over 100 runs, where brackets indicate the 95% confidence interval. Before pruning the datawas
randomly split between both parties. Our evaluation shows the absolute error decreases by 3%
on average over all evaluated 𝜖 ∈ {0.1, 0.25, 0.5}. However, this iswithin themargin of error, since
the confidence intervals for pruned data overlap with original data’s confidence intervals.

5.3.6 Circuit size & Communication

We only report circuit size and communication for 106 records as smaller data sizes (i.e., fewer
pruning steps) do not noticeably reduce the numbers (recall, a pruning step consists of a single
comparison). The number of garbled gates for GC and GC + SS depends on the number of re-
maining elements and is visualized in Figure 5.9a. GC requires an order ofmagnitudemore gates
asGC + SS sinceGC requires larger circuits for arithmetic operations whereasGC + SS avoids the
need for this additional circuit complexity. Thecommunicationcost,measured inmegabytesper
numberof remainingelements, canbe found inFigure 5.9b. Wedonotdistinguishbetween (pre-
computed) setup andonlinephase andpresent the total number ofmegabytes sent. WhereasGC
sends about 15megabytes for 64 remaining elements (𝜖 = 1),GC + SS requires less than that even
for 256 remaining elements (𝜖 = 0.25) as fewer gates have to be garbled and evaluated.

5.3.7 Comparison to Related Work

Next, we compare EM∗ with Pettai and Laud [PL15], our closest related work for the secure
computation of differentially private median (i.e., without a trusted third party). Later, in Sec-
tion6.3.5,weexpand this comparison to relatedworks in the centralmodel of differential privacy
(i.e., with a trusted third party).
Pettai and Laud [PL15] compute differentially private analytics on distributed data via secret

sharing for three parties, whereas we optimize our protocol for rank-based statistics of two par-
ties and also use garbled circuits.7 Both parties learn the Prune-neighborhood (for large data
sets requiring pruning), but the median output can be shared (or output to only a single party)

7Note that 3-party computation on secret shares are usually faster than cryptographic 2-party computations [ABPP16].

72

5.4 Summary

(2) (1) (0.5) (0.25)
32 64 128 256

0
1 · 106
2 · 106
3 · 106
4 · 106
5 · 106
6 · 106
7 · 106
8 · 106

Remaining elements
(corresponding 𝜖)

Nu
m
be
ro
fG

at
es GC

GC+SS

(a) Number of garbled circuit gates.

(2) (1) (0.5) (0.25)
32 64 128 256

0
10
20
30
40
50
60

Remaining elements
(corresponding 𝜖)

M
By
te
sS
en
t

GC
GC+SS

(b) Total megabytes sent.

Figure 5.9: Circuit size and communication forGC vs.GC + SS.

104 105 106
0
5
10
15
20
25
30
35

Dataset sizes

Se
co
nd

s

Pettai & Laud
GC+SS

Figure 5.10: Running time ofGC + SS (∼25ms RTT and ∼160Mbits/s, 256 remaining elements, 𝜖 = 0.25) vs. Pettai and
Laud [PL15] (LAN).

and processed further. Pettai and Laud [PL15] evaluated their median computation with 48GB
RAM and a 12-core 3GHz CPU in a LAN. We, on the other hand, used a comparatively modest
setup (t2.medium instances with 2GB RAM, 4vCPUs) and evaluated in multiple WANs. A com-
parison of our protocol (with ∼25ms delay, ∼160Mbits/s) and [PL15] (in a LAN) is visualized in
Figure 5.10. Their median computation requires 34.5 seconds for 106 elements in a LAN. Our
protocol runs in less than 2.6 secondswith twice asmany elements evenwith network delay and
restricted bandwidth. Pettai and Laud [PL15, Section 11] perform integer comparisons with se-
cret sharing, which requires about 6.5 seconds per million elements which is the entire runtime
of GC + SSwith 100ms delay and 100Mbits/s bandwidth.

5.4 Summary

We presented a protocol for secure differentially private median computation on private data
sets from two parties with a running time sublinear in the size of the data domain. Our protocol
implements the exponential mechanism as in the local model using a distributed, secure com-
putation protocol to achieve accuracy as in the central model without trusting a third party. For
the median the exponential mechanism provides the best utility vs. privacy trade-off for low 𝜖

compared to additive noise (Section 3.6.1). The output is selected with an exponential bias to-
wards elements close to themedian while providing differential privacy for the individuals con-
tained in the sensitive data. We note that our protocol can be easily extended to any rank-based
DP statistic, e.g.,𝑝 th-percentile, by replacing the rank of themedianwith the desired rank inDef-
inition 13 and adjusting sensitivity Δ𝑢 accordingly. Our experiments evaluate real-world delay

73

5 EMmed: DPMedian

and bandwidth, unlike related work [PL15], which we still outperform by at least a factor of 13
(with 25ms delay and less powerful hardware) by utilizing secret sharing as well as garbled cir-
cuits for their respective advantages. We optimize our protocol by computing as little as possible
using cryptographic protocols and by applying dynamic programming with a static, i.e., data-
independent, access pattern, yielding lower complexity of the secure computation circuit. Our
comprehensive evaluation with a large real-world payment data set [CMS17] achieves high ac-
curacy as in the central model and a practical running time of less than 7 seconds formillions of
records in real-worldWANs.

74

6 EM∗: Decomposable DP Aggregate
Functions

In this chapter, we present theMPC protocol EM∗ to efficiently compute the exponential mech-
anism for decomposable utility functions, which supports, e.g., general rank-based statistics
(e.g., median, 𝑝 th-percentile, interquartile range) and convex optimizations. We illustrate our
approach for the differentially private median. This chapter is based on the following publica-
tion:

Jonas Böhler, Florian Kerschbaum. Secure Multi-party Computation of Differentially Pri-
vateMedian. InUSENIX Security Symposium, USENIXSec, 2020 [BK20a].

Existing solutions to compute the differentially private median provide good accuracy only
for large amounts of users (local model [STU17, WGSX20]), by using a trusted third party (cen-
tral model [DL09, McS09, NRS07]), or support only small data sizes or domains (MPC [EKM+14,
PL15]). Our approach is efficient (practical running time), scalable (sublinear in thedata domain
size) and accurate, i.e., the absolute error is smaller than comparable methods, and is indepen-
dent of the number of users, hence, our protocols can be used even for a small number of users.
The remainder of this chapter is organized as follows. In Section 6.1, we define decomposable

utility functions with examples and present our ideal functionality. Our main insights are two-
fold: First, decomposability, as used in MapReduce-style frameworks for efficient aggregation
over distributed data, can be satisfied by a large class of utility functions (see Section 6.1.1). Sec-
ond, splitting large domains iteratively into subranges and selecting ranges instead of domain
elements allows trading off some accuracy for faster running times. In Section 6.2, we describe
ourMPC protocol EM∗ (based on the exponential mechanism) as well as a variation GM∗ (based
on the Gumbel mechanism). In Section 6.3, we evaluate our protocols. In our experiments, we
were able to compute the DPmedian for 1 million users in 3minutes using 3 semi-honest com-
putation parties distributed over the Internet. We conclude this chapter in Section 6.4.

6.1 EM & Decomposability

We implement amulti-party computation of the exponential mechanism EM for decomposable
aggregate functions as used inMapReduce-style algorithms. Weevaluatedour protocol for rank-
based statistics to enable distributed parties to learn the differentially private median of their
joint data. Next, we restate themain challenges of securely implementing the exponentialmech-
anism from Section 1.4:

(i) large domain: the running time complexity is linear in |𝔇|, i.e., the size of the domain,

(ii) costly exponentiation: standard EM is too inefficient, requiring |𝔇| exponentiations.

75

6 EM∗: Decomposable DP Aggregate Functions

We solve these challenges by (i) recursively dividing the data domain into subranges to achieve
sublinear running time in |𝔇|, and (ii) focusing on utility functions that are efficiently com-
putable in a distributed setting. We call such utility functions decomposable, whichwe formalize
in Section 6.1.1, and give example applications.
In the following, we describe an overview of our solution. Our protocol EM∗ securely im-

plements the exponential mechanism and our protocol GM∗ securely implements the Gumbel
mechanism, a variation of the exponential mechanism. We achieve running time complexity
sublinear in the size of the data domain 𝔇 by dividing 𝔇 into 𝑘 subranges. We select the best
subrange and also split it into 𝑘 subranges for the next iteration, until the last subrange is small
enough to directly select the final output from it. After dlog𝑘 |𝔇|e iterations the selected sub-
range contains only one element. Each subrange selection increases the overall privacy loss 𝜖,
and we enable users to select a trade-off between running time, privacy loss and accuracy. For
EM∗, we present three different sub-protocols to compute weights (i.e., unnormalized selection
probabilities) of the exponential mechanismw.r.t. 𝜖:

• Weightsln(2) fixes 𝜖 = ln(2) to compute exp(𝜖𝑦) as 2𝑦 ,

• Weightsln(2)/2𝑑 allows 𝜖 = ln(2)
2𝑑 for some integer 𝑑 > 0,

• Weights∗ supports arbitrary 𝜖.

On a high-level, we have three phases in each iteration of EM∗, GM∗:

1. Evaluate: Each party locally computes the basis for utility scores for each subrange.

2. Combine: They combine their results into a global result and compute selection weights.

3. Select : Finally, they select an output based on its selection weights.

The results of the evaluation step are computed over sensitive data and might also be sensitive
(e.g., utility functions formedian andmode leak exact counts [LLSY16]). Therefore, we combine
them via MPC to preserve privacy. To ensure efficient implementation of the combination step
we require utility functions to have a certain structure as detailed next.

6.1.1 Decomposability & Applications

Recall, each party 𝑃𝑖 holds a single value 𝑑𝑖 (we can generalize to data sets𝐷𝑖). To combine local
utility scores per party into a global score for all, we require utility functions to be decomposable:

Definition24 (Decomposability). Wecall a function𝑢 : (𝔇𝑛×R) → ℝdecomposablewith regard
to function𝑢 ′ : (𝔇 × R) → ℝ if

𝑢 (𝐷, 𝑥) =
𝑛∑︁
𝑖=1

𝑢 ′(𝑑𝑖 , 𝑥)

for 𝑥 ∈ R and𝐷 = {𝑑1, . . . , 𝑑𝑛 }.

We use decomposability to easily combine utility scores in Weightsln(2) , Weightsln(2)/2𝑑 , and to
avoid costly secure evaluation of the exponential function [ABZS13, AS19, DFK+06, Kam15] in
Weights∗. If 𝑢 is decomposable, users can compute weights locally, and securely combine them
viamultiplications: ∏

𝑖

exp(𝑢 ′(𝑑𝑖 , 𝑥)𝜖) = exp(
∑︁
𝑖

𝑢 ′(𝑑𝑖 , 𝑥)𝜖) = exp(𝑢 (𝐷, 𝑥)𝜖).

76

6.1 EM&Decomposability

Application Utility

Convexoptimization: find𝑥 thatminimizes∑𝑛
𝑖=1 𝑙 (𝑥, 𝑑𝑖)withconvex loss

function 𝑙 defined over 𝐷 ; e.g., empirical risk minimization in machine
learning [BST14, STU17], and integer partitions (password frequency
lists) [BDB16]

−∑𝑛
𝑖=1 𝑙 (𝑥, 𝑑𝑖)

Unlimited supply auction: find price 𝑥 maximizing revenue 𝑥 ∑
𝑖 𝑏𝑖 (𝑥),

where bidder demand curve 𝑏𝑖 indicates how many goods bidder 𝑖 will
buy at price 𝑥 ; e.g., digital goods [MT07]

𝑥
∑
𝑖 𝑏𝑖 (𝑥)

Frequency: select 𝑥 based on its frequency in 𝐷 ; e.g., mode [LLSY16],
where indicator variable 1𝑐 is 1 if condition 𝑐 is met and 0 otherwise

∑𝑛
𝑖=1 1𝑥=𝑑𝑖

Rank-based statistics: select 𝑥 based on its rank in sorted 𝐷 ; e.g., 𝑘 th-
ranked element [LLSY16] See Section 6.1.2

Table 6.1: Applications with decomposable utility functions.

Generalization from a single value, 𝑑𝑖 , tomultiple values, i.e., data set𝐷𝑖 , per party is straight-
forward with decomposability: the parties compute sum of decomposable utility per value. De-
composability is satisfied by a wide range of selection problems: counts are clearly decompos-
ableandsoareutility functions that canbeexpressedasa sumofdecomposableutility scores; ex-
amples of which are listed in Table 6.1. Also, many queries can be represented as counts via one-
hot-encoding, i.e., a bit-vector where set bits indicate satisfied predicates [EKM+14, CWH+20].
An additional example for decomposable utility is gradient-compressed federated learning (to
solve non-convex optimization problems with efficient communication), e.g., with signSGD
[BWAA18]: each party only provides the sign of the gradient and the aggregate of all signs is
used to perform the update step. Themedian, whose decomposable utility functionwe describe
shortly, is also used in federated learning to allow robust distributed gradient descent with fault
tolerance [YCKB18]. To be sublinear in the size of the domain we consider decomposability
w.r.t. ranges instead of elements: parties only report one utility score per range, instead of one
score per element. Note that decomposability for elements 𝑥 ∈ 𝔇 does not imply decomposabil-
ity for ranges𝑅 ⊂ 𝔇1. Later, in Chapter 7wherewe present ourDP heavy hitter protocolsHH and
PEM, we use counts of increasingly longer frequent bit-prefixes to address this issue. Next, we
present a decomposable utility function w.r.t. ranges for rank-based statistics.

6.1.2 Decomposable Median Utility Function

First, we extend the median utility function from Definition 13 from elements to ranges. Then,
we present a reformulation more convenient for secure implementation and show that it is de-
composable. Li et al. [LLSY16, Section 2.4.3] quantify an element’s utility via its rank relative to
the median, where the rank of 𝑥 ∈ 𝔇 in a data set𝐷 is the number of values in𝐷 smaller than 𝑥 .
As𝔇 can be large, they divide𝔇 in 𝑘 equal-sized ranges, and also define utility per range:

Definition 25 (MedianUtility Function for Ranges). Themedianutility function𝑢𝜇 : (𝔇𝑛 ×𝔇) →
ℤ gives a utility score for a range 𝑅 = [𝑟𝑙 , 𝑟𝑢) where 𝑟𝑙 , 𝑟𝑢 ∈ 𝔇w.r.t.𝐷 ∈ 𝔇𝑛 as

𝑢𝜇 (𝐷,𝑅) = − min
rank𝐷 (𝑟𝑙) ≤𝑗 ≤rank𝐷 (𝑟𝑢)

���𝑗 − 𝑛2 ���.
1 Consider themode, i.e., themost frequent element in𝐷 . Parties cannot simply report the count of their most frequent
element per range as their local mode might not be the global mode. For example, for two parties with data sets 𝐷1 =
{1, 1, 1, 2, 2}, 𝐷2 = {2, 2, 3, 3, 3} themode per data set is 1 resp. 3; however, themode for the combined data is 2.

77

6 EM∗: Decomposable DP Aggregate Functions

· · · 𝜇 − 2 𝜇 − 1 𝜇 𝜇 + 1 𝜇 + 2 · · ·

· · · 𝜇 − 2 𝜇 − 1 𝜇 𝜇 + 1 𝜇 + 2 · · ·

· · · 𝜇 − 2 𝜇 − 1 𝜇 𝜇 + 1 𝜇 + 2 · · ·

Range 𝑅 = [𝑟𝑙 , 𝑟𝑢) before median, i.e., 𝑟𝑢 ≤ 𝜇

𝑅 contains median: 𝑟𝑙 ≤ 𝜇 and 𝑟𝑢 > 𝜇

𝑅 after median: 𝑟𝑙 > 𝜇

Figure 6.1: Possible positions of range 𝑅 = [𝑟𝑙 , 𝑟𝑢) relative tomedian 𝜇.

To compute 𝑢𝜇 one needs to find rank 𝑗 minimizing the distance between the median and all
range elements by iterating over all 𝑗 where rank𝐷 (𝑟𝑙) ≤ 𝑗 ≤ rank𝐷 (𝑟𝑢). However, a naive imple-
mentation of 𝑢𝜇 leaks information as the iteration count depends on the number of duplicates
in the data. We adapt 𝑢𝜇 next to remove this leakage. To avoid iterating over range elements ob-
serve that the utility for a range 𝑅 = [𝑟𝑙 , 𝑟𝑢) is defined by the element in the range closest to the
median 𝜇. Thus, it suffices to consider three cases as illustrated in Figure 6.1: The range is either
positioned “before” themedian (𝑟𝑢 ≤ 𝜇), contains it, or comes “after” it (𝑟𝑙 > 𝜇). This observation
leads to the following definition without iterations2:

Definition 26 (SimplifiedMedianUtility Function). Themedian utility function𝑢𝑐𝜇 : (𝔇𝑛 ×𝔇) →
ℤ gives a utility score for a range 𝑅 = [𝑟𝑙 , 𝑟𝑢) of𝔇w.r.t.𝐷 ∈ 𝔇𝑛 as

𝑢𝑐𝜇 (𝐷,𝑅) =


rank𝐷 (𝑟𝑢) − 𝑛

2 if rank𝐷 (𝑟𝑢) < 𝑛
2

𝑛
2 − rank𝐷 (𝑟𝑙) if rank𝐷 (𝑟𝑙) > 𝑛

2

0 else

.

Next, we show equality of Definitions 25 and 26 with proof by cases.

Lemma 3. Definitions 25 and 26 are equal.

Proof. Consider range 𝑅 = [𝑟𝑙 , 𝑟𝑢) and its position relative to themedian 𝜇 for Definition 25:

i) for 𝑟𝑢 < 𝜇 we have rank𝐷 (𝑟𝑢) < 𝑛/2, thus,𝑢𝜇 (𝐷, 𝑟𝑢) = −|rank𝐷 (𝑟𝑢) − 𝑛/2| = rank𝐷 (𝑟𝑢) − 𝑛/2,

ii) for 𝑟𝑙 > 𝜇 we have rank𝐷 (𝑟𝑙) > 𝑛/2, thus,𝑢𝜇 (𝐷, 𝑟𝑙) = 𝑛/2 − rank𝐷 (𝑟𝑙),

iii) otherwise, the range contains themedian, i.e.,𝑢𝜇 equals 0.

Note that it suffices to look at 𝑟𝑙 in case i) (resp., 𝑟𝑢 in case ii)), as rank𝐷 (𝑟𝑙) ≤ rank𝐷 (𝑟𝑢) and the
range endpoint closest to 𝜇 defines the utility for the range. Overall, Definition 26 considers the
same cases and is an alternative way to express Definition 25.

In the following, we generalize from a single value per (input) party, 𝑑𝑖 , tomultiple values, i.e.,
data set 𝐷𝑖 , as computation parties operate on data sets later on. Utility function 𝑢𝑐𝜇 is decom-
posable with regard to

𝑢 ′(𝐷𝑖 , 𝑅) =


rank𝐷𝑖 (𝑟𝑢) − |𝐷𝑖 |

2 if rank𝐷 (𝑟𝑢) < 𝑛
2

|𝐷𝑖 |
2 − rank𝐷𝑖 (𝑟𝑙) if rank𝐷 (𝑟𝑙) > 𝑛

2

0 else
,

2 Similar to Aggarwal et al. [AMP10], see also Section 5.2.7.

78

6.1 EM&Decomposability

FEM∗

1. Set 𝑠 = dlog𝑘 |𝔇|e and split privacy budget 𝜖 into 𝜖1, . . . , 𝜖𝑠
2. Initialize 𝑆 = 𝔇 and repeat below steps 𝑠 times:

a) Every party 𝑝 ∈ P divides 𝑆 into 𝑘 equal-sized subranges {𝑅 𝑖 = [𝑟 𝑖𝑙 , 𝑟 𝑖𝑢)}𝑘𝑖=1
i. if 𝜖 𝑗 = ln(2)/2𝑑 in step 𝑗 (with integer 𝑑 ≥ 0) then party 𝑝 sends the
following input to the functionality{

rank𝐷𝑝 (𝑟 𝑖𝑙), rank𝐷𝑝 (𝑟 𝑖𝑢)
}𝑘
𝑖=1

and 𝑑

ii. else the input is{
𝑒
𝜖 𝑗

(
rank𝐷𝑝 (𝑟 𝑖𝑢)−|𝐷𝑝 |/2

)
, 𝑒
𝜖 𝑗

(
|𝐷𝑝 |/2−rank𝐷𝑝 (𝑟 𝑖𝑙)

) }𝑘
𝑖=1

and 𝜖 𝑗

b) The functionality combines the inputs (Section 6.1.2) and outputs 𝑆 = 𝑅 𝑖

with probability proportional to exp(𝑢𝑐𝜇 (𝐷,𝑅 𝑖)𝜖 𝑗)

Figure 6.2: Ideal functionality FEM∗ for EM∗.

where rank𝐷 (𝑟) =
∑𝑛
𝑖=1 rank𝐷𝑖 (𝑟) for range endpoints 𝑟 . We will use both utility definitions inter-

changeably. Specifically, we use 𝑢𝜇 to simplify notation in our accuracy proofs (Section 6.1.5),
and𝑢𝑐𝜇 in our implementation (Section 6.2).
For implementations Weightsln(2) , Weightsln(2)/2𝑑 the parties input ranks for lower and upper

range endpoints (as in 𝑢 ′ above), which we combine (as 𝑢𝑐𝜇) to efficiently compute weights. For
Weights∗we let theparties inputweights, i.e., exp(𝜖𝑢 ′), whichwecanefficiently combine viamul-
tiplication. Inmore detail, weights for𝑢 ′ are:

𝑒 𝜖 ·𝑢
′ (𝐷𝑖 ,𝑅) =


𝑒
𝜖
(
rank𝐷𝑖 (𝑟𝑢)−

|𝐷𝑖 |
2

)
if 𝑒 𝜖(rank𝐷 (𝑟𝑢)− 𝑛2)) < 1

𝑒
𝜖
(|𝐷𝑖 |

2 −rank𝐷𝑖 (𝑟𝑙)
)

if 1 > 𝑒 𝜖(𝑛2 −rank𝐷 (𝑟𝑙))

1 else

,

where, e.g., 𝑒 𝜖(rank𝐷 (𝑟)− 𝑛2)) = ∏𝑛
𝑖=1 𝑒

𝜖
(
rank𝐷𝑖 (𝑟)−

|𝐷𝑖 |
2

)
for range endpoints 𝑟 . Given these inputs, we are

ready to describe an idealized version of our protocols next.

6.1.3 Ideal Functionality FEM∗

The ideal functionality FEM∗ in Figure 6.2 describes our DPmedian protocol EM∗ as executed by
a trusted third party, which we later replace by implementing FEM∗ with MPC. We iteratively se-
lect subranges of domain𝔇w.r.t. DPmedian via the exponentialmechanism. After 𝑠 = dlog𝑘 |𝔇|e
steps the last selected subrange contains only theDPmedian. We split 𝜖, also calledprivacy bud-
get, into 𝑠 parts such that 𝜖 =

∑𝑠
𝑗=1 𝜖 𝑗 , and consume 𝜖 𝑗 for each subrange selection. We describe

the budget composition in Section 6.1.5 and provide a heuristic in Section 6.3. Overall, FEM∗ pro-
vides 𝜖-differential privacy:

Theorem 8. FEM∗ , with privacy parameter 𝜖 𝑗 in step 𝑗 ∈ {1, . . . , 𝑠 }, is 𝜖-differentially private for
𝜖 =

∑𝑠
𝑗=1 𝜖 𝑗 .

79

6 EM∗: Decomposable DP Aggregate Functions

FGM∗

1. Set 𝑠 = dlog𝑘 |𝔇|e and split privacy budget 𝜖 into 𝜖1, . . . , 𝜖𝑠
2. Initialize 𝑆 = 𝔇 and repeat below steps 𝑠 times:

a) Every party 𝑝 ∈ P divides 𝑆 into 𝑘 equal-sized subranges {𝑅 𝑖 = [𝑟 𝑖𝑙 , 𝑟 𝑖𝑢)}𝑘𝑖=1
b) Party 𝑝 inputs {

rank𝐷𝑝 (𝑟 𝑖𝑙), rank𝐷𝑝 (𝑟 𝑖𝑢), 𝜌 𝑖𝑝 (𝜖 𝑗)
}𝑘
𝑖=1

,

where 𝜌 𝑖𝑝 (𝜖 𝑗) is distributed Gumbel noise (Section 2.2.5) for subrange 𝑖
with 𝜖 𝑗 in step 𝑗 .

3. The functionality combines the inputs into a utility score (Section 6.1.2) and
outputs 𝑆 = 𝑅 𝑖 , the argmax over the noisy utility scores.

Figure 6.3: Ideal functionality FGM∗ forGM∗.

Proof. FEM∗ performs 𝑠 sequential steps, and each step applies the exponential mechanism
EM𝜖𝑖

𝑢𝑐𝜇
. Since EM𝜖𝑖

𝑢𝑐𝜇
is 𝜖𝑖 -DP (Section 2.2.4). we have 𝜖𝑖 -DP per step Thus, according to the com-

position theorem [DR14], the total privacy budget after all steps is∑𝑠
𝑗=1 𝜖 𝑗 .

6.1.4 Ideal Functionality FGM∗

As before, the ideal functionalityFGM∗ in Figure 6.3 assumes the existence of a trusted third party.
We later remove this assumptionby implementingFGM∗ withMPCasGM∗. WhereasFEM∗ realizes
DP median selection via the exponential mechanism EM, protocol FGM∗ implements selection
via the Gumbel mechanism GM. The main difference between the ideal functionalities is that
FGM∗ additionally requires distributed noise generation (as detailed in Section 2.2.5) but does
not require to inputweights. The sameDPproof as for FEM∗ applies asGM andEMhave the same
output distribution (Section 2.2.4).

6.1.5 Accuracy of DP Median

We recall Definition 15 from Section 4.3, i.e., given DP mechanismM 𝑓 computing function 𝑓 ,
(𝛼, 𝛽)-accuracy is defined as Pr[| 𝑓 (𝐷) −M 𝑓 (𝐷) | < 𝛼

]
> 1 − 𝛽. In other words, the absolute error

between actual result and DP result is bounded by 𝛼 with probability at least 1 − 𝛽. In the fol-
lowing, we discuss how the data distribution influences accuracy. Then, we present worst-case
bounds on the accuracy of the exponential mechanism for median selection.

Data Distribution

Accuracy depends on the data distribution, specifically, on gaps 𝑑𝑖+1 − 𝑑𝑖 , and duplicates 𝑑𝑖 = 𝑑𝑗
with 𝑖 ≠ 𝑗 . Recall that a differentially private mechanism bounds the probability that data set
𝐷 and its neighbor 𝐷 ′ can be distinguished from the mechanism output. As neighbor 𝐷 ′ may
contain values from the gaps of𝐷 , these gap values must be output with a non-zero probability.
This is why bounds for absolute error depend on such gaps between data elements in this and
related work (see Table 3.1 in Section 3.6.2). As a worst-case example, consider a data set with
domain 𝔇 = {0, 1, . . . , 109}, and equal number of duplicates for 0 and 109. Then, smooth sen-
sitivity is extremely large with 109 and the exponential mechanism outputs a value at uniform

80

6.1 EM&Decomposability

random. However, for such pathological, worst-case data even the actual median does not pro-
videmuch insight. On theotherhand, thenumberofduplicates in thedatacan increaseaccuracy
dramatically. For example, consider a data set where themedian has 2𝑐 duplicates: 𝑑𝑛/2±𝑖 = 𝑑𝑛/2
for 𝑖 ∈ {1, . . . , 𝑐 }. Then, the probability that the exponential mechanism outputs the median is
exp(𝑐 𝜖) times higher than for any other element. Such duplicates also fit the intuition that the
median is a “typical” value from the data that represents it well. In general, the probability to
output a “bad” element 𝑥 decreases exponentially in ∑

𝑐𝑖 , where 𝑐𝑖 ≥ 1 are duplicate counts of
“good” elements 𝑦𝑖 , which are closer to themedian than 𝑥 .

Accuracy Bounds

In the following, we show that the output of EM𝜖
𝑢 (𝐷) over domainR contains an element atmost⌊

ln(|R |/𝛽)
𝜖

⌋
positions away fromthemedian in the sorteddata. Note that |R | is𝑘 ifwe select among

𝑘 subranges or |𝔇| if we output elements directly.
For our accuracy proofs we structure the domain as a tree: we set 𝔇 as the root of a tree of

height log𝑏 |𝔇|, for some base 𝑏 , with 𝑘 child nodes per parent. The child nodes are equal-sized
subranges of the parent node and 𝑅 𝑗

𝑖 denotes the 𝑖 th subrange in level 𝑗 .

Theorem 9 (Median Accuracy for Ranges). Fixing a data set𝐷 of size 𝑛 with a set of 𝑘 subranges
R = {𝑅 𝑗

1, . . . , 𝑅
𝑗
𝑘 } of data domain𝔇. Then, output of EM𝜖

𝑢 (𝐷) over domain R contains an element
at most

⌊
ln(𝑘/𝛽)

𝜖

⌋
positions away frommedian position 𝑛

2with probability at least 1 − 𝛽.

Our proof uses Corollary 3.12 from [DR14], which we restate as the following Lemma:

Lemma 4 (Accuracy of the Exponential Mechanism). Fixing a data set𝐷 , and let the maximum
utility score of any element 𝑟 ∈ R be denoted OPT = max𝑟 ∈R 𝑢 (𝐷, 𝑟). Then, we have

Pr
[
𝑢 (𝐷,EM𝜖

𝑢 (𝐷)) ≤ OPT −
2Δ𝑢
𝜖
(ln |R | + 𝑡)

]
≤ exp(−𝑡).

Proof of Theorem 9. First, we bound the utility difference between optimal and selected output.
Then, we translate this to a bound on the output’s rank.
The complementary of Lemma 4 with Δ𝑢 = 1

2 is

Pr
[
OPT − 𝑢 (𝐷,EM𝜖

𝑢 (𝐷)) <
ln |R | + 𝑡

𝜖

]
> 1 − exp(−𝑡).

Let 𝑅 𝑗
𝑖 = [𝑟𝑙 , 𝑟𝑢) be the output of EM𝜖

𝑢 (𝐷). Recall, that for median utility OPT = 0, then,

OPT − 𝑢 (𝐷,EM𝜖
𝑢 (𝐷)) = 0 − 𝑢 (𝐷,𝑅 𝑗

𝑖)
= min

rank𝐷 (𝑟𝑙) ≤𝑗 ≤rank𝐷 (𝑟𝑢)

���𝑗 − 𝑛2 ���.
Next, we consider different cases for 𝑅 𝑗

𝑖 to bound the rank difference between the selected
range and the range that contains the median. Assume median 𝜇 ∉ 𝑅 𝑗

𝑖 , as otherwise the bound
holds trivially, and let 𝑑 denote the utility difference OPT − 𝑢 (𝐷,EM𝜖

𝑢 (𝐷)).
For 𝑟𝑢 < 𝜇 we have 𝑑 = |rank𝐷 (𝑟𝑢) − 𝑛

2 | = 𝑛
2 − rank𝐷 (𝑟𝑢) from which we obtain rank𝐷 (𝑟𝑢) >

𝑛
2 − ln |R |+𝑡

𝜖 with probability at least 1 − exp(−𝑡). Analog, for 𝑟𝑙 > 𝜇 we have 𝑑 = rank𝐷 (𝑟𝑙) − 𝑛
2 , and

obtain rank𝐷 (𝑟𝑙) < 𝑛
2 + ln |R |+𝑡

𝜖 with the same probability. Altogether, 𝑅 𝑗
𝑖 is at most

⌊
ln |R |+𝑡

𝜖

⌋
rank

81

6 EM∗: Decomposable DP Aggregate Functions

positions away frommedian rank 𝑛/2 with probability at least 1 − exp(−𝑡). We have 𝑘 = |R | and
setting 𝛽 = exp(−𝑡) concludes the proof.

To obtain an absolute error with regards to data elements, consider domain elements instead
of subranges as the output domain of the exponential mechanism.

Corollary 1 (Median Accuracy). Fixing a sorted data set𝐷 of size 𝑛, let 𝜇 be themedian of𝐷 , and
𝜇 the output of EM𝜖

𝑢 (𝐷) over domain𝔇. Then, absolute error |𝜇 − 𝜇 | is at most

max
𝑖 ∈{+1,−1}· bln(|𝔇 |/𝛽)/𝜖 c

���𝑑 𝑛
2 +𝑖 − 𝑑 𝑛

2

���
with probability at least 1 − 𝛽.

The proof follows directly from Theorem 9 by replacing 𝑘 with |𝔇|.
The same analysis applies to our protocol EMmed (Section 5) on small data, i.e., without prun-

ing. With pruning, we only need to replace𝐷 with pruned𝐷 𝑠 in all statements.

Accuracy for Evenly Spaced Data

Next, we consider a special case, evenly spaced data, to obtain a tighter error bound. Nissim et
al. [NRS07, Section 3.1] illustrate that smooth sensitivity of themedian is superior to global sen-
sitivity with evenly spaced data. Likewise, we illustrate that the exponential mechanism is even
better. Note that evenly spaced data has a constant gap 𝑑𝑖+1 − 𝑑𝑖 , which simplifies the accuracy
analysis. First, we bound the accuracy of EM for evenly spaced data in Theorem 10; then, we
compare the accuracy to smooth sensitivity in Theorem 11.

Theorem10 (Median Accuracy for Evenly SpacedData). Let the𝑛 elements in𝐷 be evenly spaced
in [0, 1], i.e., 𝑑𝑖 = 𝑖

𝑛 , let 𝑛 be even (can be ensured with padding), and R consist of all subranges
[𝑖𝑛 , 𝑖+1𝑛) for 𝑖 ∈ {1, . . . , 𝑛}. Let 𝜇 be the median of𝐷 , and 𝜇 the output of EM𝜖

𝑢 (𝐷,R). Then,

Pr
[
|𝜇 − 𝜇 | ≤ 𝛾

𝑛

]
≥ 1 − 𝑒−𝜖 (𝛾+1)

for𝛾 ∈ ℕ.

Proof. Evenly spaced𝐷 containsonlyuniqueelements andTheorem2 fromSection5.1.3 applies
(we assume even 𝑛 to conformwith Section 5). Thus, we canwrite the unnormalized probability
mass of EM𝜖

𝑢 (𝐷), i.e., denominator in Equation (2.1), as

𝑁 =
∑︁
𝑜∈R

exp(𝜖𝑢 (𝐷,𝑜)) = 2
𝑛
2 −1∑︁
𝑖=0

exp(−𝑖 𝜖) = 2𝑒
𝜖 − 𝑒−𝜖(𝑛2 −1)
𝑒 𝜖 − 1 .

The last equality comes from the fact that𝑁 is a geometric series [GKPL94, Eq. (2.25)].
We are interested in the unnormalized probabilitymass𝑁𝛾 for outputs with error atmost𝛾/𝑛.

This corresponds to rank difference of at most𝛾 for evenly spaced data, and we can write

𝑁𝛾 = 2
𝛾∑︁
𝑖=0

exp(−𝑖 𝜖) = 2𝑒
𝜖 − 𝑒−𝜖𝛾
𝑒 𝜖 − 1 .

82

6.1 EM&Decomposability

Altogether, the (normalized) probability for outputs with error at most 𝛾𝑛 is

𝑁𝛾

𝑁
=

𝑒 𝜖 − 𝑒−𝜖𝛾
𝑒 𝜖 − 𝑒−𝜖(𝑛2 −1)

=
1 − 𝑒−𝜖 (𝛾+1)
1 − 𝑒−𝜖 (𝑛2 −2)

≥ 1 − 𝑒−𝜖 (𝛾+1) .

Next, we compare the exponential mechanism to the Laplacemechanismwith smooth sensi-
tivity. Weusean idealizedversionof smooth sensitivity as inSection3.6.1, i.e., ignoring constants
that increase the noise [NRS07, Lemma 2.9] [MG20, Proposition 2]. We consider the probability
that the absolute error is less than 1/𝑛, i.e., the gap between adjacent data elements.

Theorem 11. For evenly spaced data and output domain R as in Theorem 10, absolute error less
than 1/𝑛, and 𝜖 < 2, the exponentialmechanism ismore likely to provide better accuracy than the
Laplace mechanismwith smooth sensitivity for the median.

Proof. For evenly spaced data, smooth sensitivity 𝑠 of the median is at most 1
𝜖𝑛 [NRS07, Section

3.1] (whereas global sensitivity is 1). The probability that the Laplacemechanism adds noise less
than 1/𝑛 is𝑝 = 1− exp(−𝜖2). Note that for 𝑋 ∼ Laplace(𝑠/𝜖) we have Pr[|𝑋 | < 𝑡 𝑠/𝜖] = 1− exp(−𝑡)
[DR14, Fact 3.7]. With 𝑠 = 1

𝜖𝑛 and 𝑡 𝑠/𝜖 = 1/𝑛 we get 𝑡 = 𝜖2 and arrive at the stated probability
𝑝 . However, the same result with the exponential mechanism occurs with probability at least
𝑞 = 1 − exp(−2𝜖) according to Theorem 10 (𝛾 = 1 leads to error less than 1/𝑛). Thus, for 𝜖 < 2 we
have 𝑞 > 𝑝 , i.e., the exponential mechanism is more likely to produce higher accuracy.

Choice of Epsilon

Note that it is more likely to select a “good” subrange as it is to directly select a “good” element
from the entire domain (as𝑘 � |𝔇|). However, sequential (subrange) selections consumes 𝜖 𝑗 per
selection step 𝑗 which adds up to a total privacy budget of 𝜖 = ∑

𝑗 𝜖 𝑗 as described in Section 6.1.3.
We now show how to choose 𝜖 𝑗 to select the subrange containing the median in each iteration
step with probability at least 1 − 𝛽.

Theorem 12 (Choice of 𝜖). Let R = {𝑅 𝑗
1, . . . , 𝑅

𝑗
𝑘 }, where 𝑅

𝑗
𝑖 = [𝑟𝑙 , 𝑟𝑢) contains the median, and

𝑛𝑖 𝑗 = min{|rank𝐷 (𝜇) − rank𝐷 (𝑟𝑙) |, |rank𝐷 (𝑟𝑢 + 1) − rank𝐷 (𝜇 + 1) |} is the minimum count of data
elements in 𝑅 𝑗

𝑖 smaller resp. larger than themedian. Then, EM𝜖
𝑢 (𝐷) over domain R selects 𝑅 𝑗

𝑖 with
probability at least 1 − 𝛽 if

𝜖 𝑗 ≥ ln(𝑘/𝛽)
𝑛𝑖 𝑗

.

Proof. Ranges 𝑅 𝑗
ℎ without the median have a rank at least 𝑛𝑖 𝑗 positions away frommedian rank.

More formally,

OPT − 𝑢 (𝐷,𝑅 𝑗
ℎ) ≥

���(𝑛2 ± 𝑛𝑖 𝑗) − 𝑛2 ��� = 𝑛𝑖 𝑗 .
According to Lemma 4 we have Pr

[
𝑛𝑖 𝑗 ≥ ln |R |+𝑡

𝜖 𝑗

]
≤ exp(−𝑡). Thus, for 𝜖 𝑗 ≥ ln |R |+𝑡

𝑛𝑖 𝑗
the proba-

bility that any range 𝑅 𝑗
ℎ is selected is at most exp(−𝑡). We have 𝑘 = |R | and setting 𝛽 = exp(−𝑡)

concludes the proof.

Parameter 𝜖 𝑗 is undefined for 𝑛𝑖 𝑗 = 0, i.e., when the median is a range endpoint. However, an
undefined 𝜖 𝑗 can be avoided by using an additional discretization of the domain, with different

83

6 EM∗: Decomposable DP Aggregate Functions

subrange endpoints, and switching to it if a (differentially private) check suggests 𝑛𝑖 𝑗 = 0 [DL09].
Note that the exact value of𝑛𝑖 𝑗 is data-dependent. E.g., for the uniformdistribution𝑛𝑖 𝑗 ≈ |𝐷 |/𝑘 𝑗 .
A differentially private 𝑛𝑖 𝑗 can be efficiently computed by distributed sum protocols [DKM+06,
GX17, TKZ16, RN10] as it is just a count of data elements. However, a differentially private count
also consumes a portion of the privacy parameter. For low epsilon (e.g., 𝜖 = 0.1) we want to use
the entire privacy budget on the actual median selection to achieve high accuracy. Thus, we use
a heuristic in our evaluation: larger subranges, that hold exponentially more elements, receive
exponentially smaller portions 𝜖 𝑗 of the privacy budget (see Section 6.3 for details).

6.2 MPC for DP Median

In the following, we describe details of our protocol EM∗, which implements ideal functionality
FEM∗ , analyse its running time and security.
On a high-level, our protocol recursively selects the best subrange until the DP median is

found: First, each party locally evaluates a utility score (or weight) for each subrange. They com-
bine their results into a global result. Then, they select a subrange based on the combined result.
We use upper case letters to denote arrays in our protocol, and 𝐴 [𝑗] denotes the 𝑗 th element in
array 𝐴. Our protocol EM∗ operates on integers as well as floating point numbers whereas GM∗

operates only on integers. We briefly recall the number representation described in Section 2: a
floating-point number 𝑓 is expressed as (1− 2𝑠) (1− 𝑧) · 𝑣 · 2𝑥 with sign bit 𝑠 set when the value is
negative, zero bit 𝑧 only setwhen the value is zero, 𝑙𝑣 -bit significand𝑣 , and 𝑙𝑥-bit exponent 𝑥 . The
sharing 〈𝑓 〉FL of a floating-point number 𝑓 is a 4-tuple (〈𝑣〉, 〈𝑥〉, 〈𝑠 〉, 〈𝑧〉) andwe use subscripts to
refer to parts of a sharing, e.g., 𝑓 .𝑣 refers to the significand 𝑣 of 𝑓 .
The basicMPC protocols used in our protocol are detailed in Table 2.3 in Section 2.1.6. Recall,

as a default we assume integer operations and use subscript FL to highlight basicMPCprotocols
operating onfloating-point numbers, e.g.,Adddenotes addition on integerswhileAddFL denotes
its floating-point equivalent.

6.2.1 Subrange Selection

On a high level, protocol EM∗, implemented in Algorithm 9, computes selection weights for
possible outputs (via Algorithm 10) and selects an output according to these weights (via Al-
gorithm 11 or 12). We assume that the domain 𝔇 and combined data size 𝑛 are known to all
parties, however, the latter can be hidden via padding [AMP10]. Recall, that efficient weight
computation and selection from a large domain are the main challenges for our secure expo-
nential mechanism. Straightforward selection over all domain elements is linear in the size of
𝔇. To achieve a running time sublinear in the size of𝔇we select subranges instead: Algorithm 9
selects one of 𝑘 subranges based on their median utility. The selected subrange is recursively
divided into 𝑘 subranges until the last subrange, after at most dlog𝑘 |𝔇|e iterations, contains
only one element: the differentially private median3. Alternatively, one can use fewer selection
steps 𝑠 and select an element from the last subrange at uniform random (line 15 in Algorithm 9).
We discuss the running time vs. accuracy trade-offs of reduced selection steps in Section 6.3.
We implement selection with inverse transform sampling (Section 2.2.4) via binary search in

3 To simplify presentation, assume that log𝑘 |𝔇 | is an integer. Otherwise the last subrange might contain less than 𝑘
elements, and fewer weight computations are needed in the last step.

84

6.2 MPC for DPMedian

Algorithm 9 EM∗ iteratively selects smaller subranges containing DPmedian via EM.
Input: Number of subranges 𝑘 , size 𝑛 of combined data 𝐷 , number of selection steps 𝑠 ∈
[1, dlog𝑘 |𝔇|e], and (𝜖1, . . . , 𝜖𝑠). Data domain𝔇 is known to all parties.

Output: Differentially private median of𝐷 .
1: 𝑟𝑙 , 𝑟𝑢 ← 0, |𝔇|
2: for 𝑗 ← 1 to 𝑠 do
3: 𝑟# ← max{1, b 𝑟𝑢−𝑟𝑙𝑘 c}
4: 𝑘 ← min{𝑘, 𝑟𝑢 − 𝑟𝑙 }
5: Define array𝑊 of size 𝑘
6: if 𝜖 𝑗 = ln(2)/2𝑑 for some integer 𝑑 then
7: 〈𝑊 〉FL ←Weightsln(2)/2𝑑 (𝑟𝑙 , 𝑟𝑢 , 𝑟#, 𝑘 , 𝑛, 𝑑) // Algorithm 11
8: else
9: 〈𝑊 〉FL ←Weights∗ (𝑟𝑙 , 𝑟𝑢 , 𝑟#, 𝑘 , 𝑛, 𝜖 𝑗) // Algorithm 12
10: end if
11: 𝑖 ← Select(〈𝑊 〉FL) // Algorithm 10
12: 𝑟𝑙 ← 𝑟𝑙 + (𝑖 − 1) · 𝑟#
13: 𝑟𝑢 ← 𝑟𝑙 + 𝑟# if 𝑖 < 𝑘
14: end for
15: returnUniform random element in [𝔇[𝑟𝑙],𝔇[𝑟𝑢])

Algorithm 10 Select samples range index according to its selection weights.
Input: List 〈𝑊 〉FL of weights with size 𝑘 .
Output: Index 𝑗 ∈ [1, 𝑘] sampled according to 〈𝑊 〉FL.
1: Define array𝑀 of size 𝑘 // Probability mass
2: 〈𝑀 [1]〉FL ← 〈𝑊 [1]〉FL
3: for 𝑗 ← 2 to 𝑘 do
4: 〈𝑀 [𝑗]〉FL ← AddFL (〈𝑊 [𝑗]〉FL, 〈𝑀 [𝑗 − 1]〉FL)
5: end for
6: 〈𝑡 〉 ← Rand(𝑏) // Bit-length 𝑏
7: 〈𝑓 〉FL ← Int2FL(〈𝑡 〉)
8: 〈𝑥〉 ← Sub(〈𝑓 .𝑥〉, 〈𝑏〉)
9: 〈𝑓 〉FL ← (〈𝑓 .𝑣〉, 〈𝑥〉, 〈𝑓 .𝑧〉, 〈𝑓 .𝑠 〉)
10: 〈𝑟 〉FL ← MulFL (〈𝑀 [𝑘]〉FL, 〈𝑓 〉FL)
11: 𝑖𝑙 ← 1; 𝑖𝑢 ← 𝑘
12: while 𝑖𝑙 < 𝑖𝑢 do
13: 𝑖𝑚 ←

⌊
𝑖𝑙+𝑖𝑢
2

⌋
14: 〈𝑐〉 ← LTFL (〈𝑀 [𝑖𝑚]〉FL, 〈𝑟 〉FL)
15: 𝑐 ← Rec(〈𝑐〉)
16: 𝑖𝑙 ← 𝑖𝑚 + 1 if 𝑐 = 1 else 𝑖𝑢 ← 𝑖𝑚
17: end while
18: return 𝑖𝑙

Algorithm 10 similar to Eigner et al. [EKM+14]. Inverse transform sampling (as detailed in Sec-
tion2.2.4) uses theuniformdistribution to realize anydistributionbasedon its cummulativedis-
tribution function. Formally, one draws 𝑟 ∈ (0, 1] at uniform randomandoutputs the first𝑅 𝑗 ∈ R
with ∑𝑗−1

𝑖=1 Pr
[
EM𝜖

𝑢 (𝐷,R) = 𝑅𝑖
] ≤ 𝑟 <

∑𝑗
𝑖=1 Pr

[
EM𝜖

𝑢 (𝐷) = 𝑅𝑖
]
. Recall, we compute unnormalized

probabilities (weights), which do not require division for normalization, thus, reducing compu-
tation complexity. To use weights instead of probabilities in inverse transform sampling we only
need tomultiply 𝑟 with normalization𝑁 =

∑
𝑜∈R exp(𝑢 (𝐷,𝑜)𝜖) (lines 6–10 in Algorithm 10).

Weusedecomposableutility functions to combine local evaluationsover eachparty’sdata into
a global utility score for the joint data. Next, we present three solutions to efficiently compute
weights for decomposable utility functions.

85

6 EM∗: Decomposable DP Aggregate Functions

Algorithm 11Weightsln(2)/2𝑑 computes weights based on local ranks.
Input: Range [𝑟𝑙 , 𝑟𝑢), subrange size 𝑟#, number 𝑘 of subranges, data size 𝑛, and parameter 𝑑 ∈
{0, 1}. Subrange ranks 〈rank𝐷𝑝 (·)〉 are input by each party 𝑝 ∈ {1, . . . ,𝑚}.

Output: List of weights.
1: Define array 𝑅 of size 𝑘 + 1, array𝑊 of size 𝑘 ; initialize 𝑅 with zeros
2: for 𝑝 ← 1 to𝑚 do // Get input from each party
3: for 𝑗 ← 1 to 𝑘 do // Divide range into 𝑘 subranges
4: 𝑖𝑙 ← 𝑟𝑙 + (𝑗 − 1) · 𝑟#
5: 〈𝑅 [𝑗]〉 ← Add(〈𝑅 [𝑗]〉, 〈rank𝐷𝑝 (𝔇[𝑖𝑙])〉)
6: end for
7: 〈𝑅 [𝑘 + 1]〉 ← Add(〈𝑅 [𝑘 + 1]〉, 〈rank𝐷𝑝 (𝔇[𝑟𝑢])〉)
8: end for
9: for 𝑗 ← 1 to 𝑘 do
10: 〈𝑢upper〉 ← Sub(〈𝑅 [𝑗 + 1]〉, 〈𝑛2 〉)
11: 〈𝑢lower〉 ← Sub(〈𝑛2 〉, 〈𝑅 [𝑗]〉)
12: 〈𝑐upper〉 ← LT(〈𝑅 [𝑗 + 1]〉, 〈𝑛2 〉)
13: 〈𝑐lower〉 ← LT(〈𝑛2 〉, 〈𝑅 [𝑗]〉)
14: 〈𝑡 〉 ← Mux(〈𝑢upper〉, 〈0〉, 〈𝑐upper〉)
15: 〈𝑢〉 ← Mux(〈𝑢lower〉, 〈𝑡 〉, 〈𝑐lower〉)
16: if 𝑑 = 0 then
17: 〈𝑊 [𝑗]〉FL ← (〈2〉, 〈𝑢〉, 〈0〉, 〈0〉) // float 〈2𝑢 〉
18: else
19: 〈𝑡 〉 ← Trunc(〈𝑢〉, 𝑑)
20: 〈𝑒 〉FL ← (〈2〉, 〈𝑡 〉, 〈0〉, 〈0〉)
21: 〈𝑐〉 ← Mod2m(〈𝑢〉, 𝑑)
22: 〈𝑠 〉FL ← MuxFL (〈1〉FL, 〈

√
2〉FL, 〈𝑐〉)

23: 〈𝑊 [𝑗]〉FL ← MulFL (〈𝑒 〉FL, 〈𝑠 〉FL)
24: end if
25: end for
26: return 〈𝑊 〉FL

6.2.2 Weightsln(2)

We implementWeightsln(2) as a special case of our approachWeightsln(2)/2𝑑 in Algorithm 11 (with
𝑑 = 0 in line 16). Here, parties locally compute ranks which are combined into global utility
scores. Weights for these scores use a fixed 𝜖 of ln(2) to let us compute 2𝑢 instead of exp(𝜖 · 𝑢).
Solutions for secure exponentiation of 2𝑢 exist where 𝑢 is an integer or a float [DFK+06, AS19,
Kam15, ABZS13]. When𝑢 is an integer (resp. a float) the result 2𝑢 is an integer (resp. float) aswell.
The complexity of the integer-based solution is linear in the bit-length of 𝑢 , however, this is not
sufficient for us: Recall, that the utility is based on ranks, i.e., counts of data elements, thus𝑢 can
be roughly as large as the size of the data. An integer representation of 2𝑢 has bit-length𝑢 , which
is potentially unbounded. Eigner et al. [EKM+14] use the float-based solution from [ABZS13] but
we present amore efficient computation in the following. Although our exponent𝑢 is an integer,
we do not require the result to be an integer as well. We use the representation of floating point
numbers as a 4-tuple to construct a new float to represent 2𝑢 as (2, 𝑢, 0, 0), where sign and zero
bit are unset, as 2𝑢 cannot be negative or zero. Note that we require no interaction as each party
can construct such a float with their share of 𝑢 . Also, a naive approach requires 2𝑘 total inputs
per party (one per endpoint per 𝑘 ranges). However, with half-open ranges [𝑟 𝑖𝑙 , 𝑟 𝑖𝑢) in each step 𝑖 ,
they overlap for 𝑖 > 1: 𝑟 𝑖−1𝑢 = 𝑟 𝑖𝑙 . Thus, the parties only input 𝑘 + 1 ranks (Algorithm 11 lines 5, 7).

86

6.2 MPC for DPMedian

Algorithm 12Weights∗ computes (global) weights based on local weights.
Input: Range [𝑟𝑙 , 𝑟𝑢), subrange size 𝑟#, number 𝑘 of subranges, data size 𝑛, and 𝜖. Subrange

weights 〈𝑒 𝜖 (·)〉 are input by each party 𝑝 ∈ {1, . . . ,𝑚}.
Output: List of weights.
1: Define arrays𝑊 𝑙 ,𝑊 𝑢 ,𝑊 of size 𝑘 ; initialize𝑊 𝑙 ,𝑊 𝑢 with ones
2: for 𝑝 ← 1 to𝑚 do // Get input from each party
3: for 𝑗 ← 1 to 𝑘 do // Divide range into 𝑘 subranges
4: 𝑖𝑙 ← 𝑟𝑙 + (𝑗 − 1) · 𝑟#
5: 𝑖𝑢 ← 𝑟𝑢 if 𝑗 = 𝑘 else 𝑟𝑙 + 𝑗 · 𝑟#
6: 〈𝑊 𝑙 [𝑗]〉FL ← MulFL (〈𝑊 𝑙 [𝑗]〉FL, 〈𝑒 𝜖

(|𝐷𝑝 |
2 −rank𝐷𝑝 (𝔇[𝑖𝑙])

)
〉FL)

7: 〈𝑊 𝑢 [𝑗]〉FL ← MulFL (〈𝑊 𝑢 [𝑗]〉FL, 〈𝑒 𝜖
(
rank𝐷𝑝 (𝔇[𝑖𝑢])−

|𝐷𝑝 |
2 |

)
〉FL)

8: end for
9: end for
10: for 𝑗 ← 1 to 𝑘 do
11: 〈𝑐𝑢 〉 ← LTFL (〈𝑊 𝑢 [𝑗]〉FL, 〈1〉FL)
12: 〈𝑐𝑙 〉 ← LTFL (〈𝑊 𝑙 [𝑗]〉FL, 〈1〉FL)
13: 〈𝑡 〉FL ← MuxFL (〈𝑊 𝑢 [𝑗]〉FL, 〈1〉FL, 〈𝑐𝑢 〉)
14: 〈𝑊 [𝑗]〉FL ← MuxFL (〈𝑊 𝑙 [𝑗]〉FL, 〈𝑡 〉FL, 〈𝑐𝑙 〉)
15: end for
16: return 〈𝑊 〉FL

6.2.3 Weightsln(2)/2𝒅

Next, we generalize the weight computation to support 𝜖 = ln(2)/2𝑑 for integers 𝑑 ≥ 1. To il-
lustrate our approach, we implement Weightsln(2)/2𝑑 in Algorithm 11 for 𝑑 = 1, and describe the
approach for any integer 𝑑 : Recall, our goal is to compute the weight exp(𝜖𝑢) with efficientMPC
protocols. As we can efficiently compute 2𝜖𝑢 if 𝜖𝑢 is an integer, we approximate the weight by
truncating 𝜖𝑢 to an integer before exponentiation with base 2. To avoid a loss of precision we
correct this approximation with a multiplicative term based on the truncated remainder. More
formally, with 𝜖 as above the weight for𝑢 is

2𝑢/2𝑑 = 2 b𝑢/2𝑑 c · 2(𝑢 mod 2𝑑)/2𝑑 .

First, we compute 2 b𝑢/2𝑑 c (lines 19–21 in Algorithm 12). Then, we multiply this with one of 2𝑑
constants of the form 2(𝑢 mod 2𝑑)/2𝑑 . E.g., for 𝑑 = 1, we either use 1, if 𝑢 is even, or

√
2 otherwise

(line 22). The constants themselves are not secret and can be pre-computed. Which constant
was selected, leaks the last 𝑑 bits from𝑢 , thus, we choose them securely.

6.2.4 Weights∗

We implement Weights∗ in Algorithm 12. To allow arbitrary values for 𝜖 we avoid costly secure
exponentiation for weight computation altogether: Utility 𝑢 , decomposable w.r.t. 𝑢 ′, allows for
efficient combination of local weights for 𝐷𝑖 , input by the parties, into global weights for 𝐷 via
multiplication as described in Section 6.1.2).

6.2.5 GM∗

Algorithm 13, denotedGM∗, iteratively calls the GumbelmechanismGMwhich outputs the sub-
range index with highest noisy utility score. The subrange iteration code is the same as for EM∗

87

6 EM∗: Decomposable DP Aggregate Functions

Algorithm 13 GM∗ iteratively selects smaller subranges containing DPmedian via GM.
Input: Number of subranges 𝑘 , size 𝑛 of combined data 𝐷 , number of selection steps 𝑠 ∈
[1, dlog𝑘 |𝔇|e], and privacy budget (𝜖1, . . . , 𝜖𝑠). Subrange ranks 〈rank𝐷𝑝 (·)〉 and distributed
noises 〈𝜌𝑝 〉 are input by each party 𝑝 ∈ {1, . . . ,𝑚}. Data domain𝔇 is known to all parties.

Output: Differentially private median of𝐷 .
1: 𝑟𝑙 , 𝑟𝑢 ← 0, |𝔇|
2: for 𝑖 ← 1 to 𝑠 do // Get ranks and distributed noise from each party
3: 𝑟# ← max{1, b 𝑟𝑢−𝑟𝑙𝑘 c}
4: 𝑘 ← min{𝑘, 𝑟𝑢 − 𝑟𝑙 }
5: Define arrays: 𝑅 of size 𝑘 + 1 and 𝑆,𝑁 of size 𝑘 ; initialize 𝑅,𝑁 with zeros
6: for 𝑝 ← 1 to𝑚 do // Get ranks and distributed noise from each party
7: for 𝑗 ← 1 to 𝑘 do // Divide range into 𝑘 subranges
8: 𝑖𝑙 ← 𝑟𝑙 + (𝑗 − 1) · 𝑟#
9: 〈𝑅 [𝑗]〉 ← Add(〈𝑅 [𝑗]〉, 〈rank𝐷𝑝 (𝔇[𝑖𝑙])〉) // Combine local ranks
10: 〈𝑁 [𝑗]〉 ← Add(〈𝑁 [𝑗]〉, 〈𝜌 𝑗𝑝 (𝜖𝑖)〉) // Combine partial noises
11: end for
12: 〈𝑅 [𝑘 + 1]〉 ← Add(〈𝑅 [𝑘 + 1]〉, 〈rank𝐷𝑝 (𝔇[𝑟𝑢])〉)
13: end for
14: for 𝑗 ← 1 to 𝑘 do
15: 〈𝑢𝑢 〉 ← Sub(〈𝑅 [𝑗 + 1]〉, 〈𝑛2 〉)
16: 〈𝑢𝑙 〉 ← Sub(〈𝑛2 〉, 〈𝑅 [𝑗]〉)
17: 〈𝑐𝑢 〉 ← LT(〈𝑅 [𝑗 + 1]〉, 〈𝑛2 〉)
18: 〈𝑐𝑙 〉 ← LT(〈𝑛2 〉, 〈𝑅 [𝑗]〉)
19: 〈𝑡 〉 ← Mux(〈𝑢𝑢 〉, 〈0〉, 〈𝑐𝑢 〉)
20: 〈𝑆 [𝑗]〉 ← Mux(〈𝑢𝑙 〉, 〈𝑡 〉, 〈𝑐𝑙 〉) // Utility score
21: end for
22: Initialize 〈𝑢max〉 ← Add(〈𝑆 [1]〉, 〈𝑁 [1]〉) and 〈𝑗argmax〉 ← 〈1〉
23: for 𝑗 ← 2 to 𝑘 do
24: 〈𝑢noisy〉 ← Add(〈𝑆 [𝑗]〉, 〈𝑁 [𝑗]〉)
25: 〈𝑐〉 ← LT(〈𝑢noisy〉, 〈𝑢max〉)
26: 〈𝑢max〉 ← Mux(〈𝑢max〉, 〈𝑢noisy〉, 〈𝑐〉)
27: 〈𝑗argmax〉 ← Mux(〈𝑗argmax〉, 〈𝑗 〉, 〈𝑐〉)
28: end for
29: 𝑗argmax ← Rec(〈𝑗argmax〉)
30: 𝑟𝑙 ← 𝑟𝑙 + (𝑗argmax − 1) · 𝑟#
31: 𝑟𝑢 ← 𝑟𝑙 + 𝑟# if 𝑗argmax < 𝑘
32: end for
33: returnUniform random element in [𝔇[𝑟𝑙],𝔇[𝑟𝑢])

implemented in Algorithm 9 (i.e., they share the same first and last four lines), and the utility
scores are computed as in Algorithm11 (compare lines 10–15 in Algorithm11with lines 15–20 in
Algorithm 13). The main difference is that now each party additionally inputs distributed noise
values (Section2.2.5). We let 𝜌 𝑗𝑝 (𝜖𝑖) denote thedistributednoiseofparty𝑝 for subrange 𝑗 parame-
terizedwith 𝜖𝑖 in selection step 𝑖 . These noise values are scaled, truncated integers and subrange
ranks are scaled with the same scaling factor.
Furthermore, to implement the exponential mechanism EM, we compute selection weights

exp(𝜖 ·𝑢) per utility score𝑢 and sample an output via inverse transform sampling. For the Gum-
bel mechanism GM, on the other hand, we have to find the element whose noisy utility score is
the largest. Computing argmax for GM requires 𝑘 steps compared to the (at most) dlog2 𝑘 e steps
to sample from EM (binary search in Algorithm 10). However, the former operations can be im-
plementedwith (scaled) integers, whereas the latter always requires floatingpoint numbers (due
to potentially large exponents).

88

6.2 MPC for DPMedian

6.2.6 Precision and Privacy

As mentioned in Section 3.4, Ilvento [Ilv20] showed that limited machine precision can lead to
privacy violationswhen implementing the exponentialmechanism. Interestingly, the suggested
mitigations are similar to our efficient secure computation. Our implementation is based on an
integer utility function andWeightsln(2) uses base 2 for efficiency reasons and is not vulnerable to
suchattacks. Wecan strengthenWeightsln(2)/2𝑑 , with 𝜖 = ln(2)/2𝑑 , byusing randomized rounding
for non-integer utilities [Ilv20, Section 3.2.2] if we omit 1/2𝑑 from 𝜖 and include it as a factor in
the utility definition (making the utility non-integers). ForWeights∗, which supports arbitrary 𝜖,
careful choices for 𝜖 mitigate attacks on limited precision (Section 3.4). Our protocol GM∗ oper-
ates on integers anddoes not suffer fromprivacy issues due to limitedprecision of floating-point
numbers.

6.2.7 Running Time Complexity

Next, we analyse the running time of EM∗ w.r.t. MPC protocols from Table 2.3 in Section 2.1.6
(omitting non-interactive addition/subtraction):

Theorem 13. EM∗ with Weightsln(2) or Weightsln(2)/2𝑑 requires𝑂
(
𝑘 dlog𝑘 |𝔇|e

)
MPC protocol calls,

withWeights∗ we require𝑂
(
𝑚𝑘 dlog𝑘 |𝔇|e

)
. Note that complexity of these MPC protocols is at most

𝑂 (𝑙𝑣 log 𝑙𝑣 + 𝑙𝑥) for bit-lengths 𝑙𝑣 , 𝑙𝑥 as detailed in Table 2.3 in Section 2.1.6.

Proof. EM∗ invokes theweight computation and Select atmost dlog𝑘 |𝔇|e times. An invocation of
Weightsln(2) orWeightsln(2)/2𝑑 performs 𝑘 truncationsTrunc, 2𝑘 comparisons LT and 2𝑘 selections
Mux. Additionally,Weightsln(2)/2𝑑 also requires one truncationTrunc, moduloMod2m, float selec-
tion MuxFL and float multiplication MulFL. Weight computation via Weights∗ requires 2𝑘𝑚 float
multiplications MulFL, 2𝑘 float comparisons LTFL and 2𝑘 float selections MuxFL. Each invoca-
tion of Select requires 𝑘 − 1 float additionsAddFL, only one randomdrawRand, conversion Int2FL
andfloatmultiplicationMulFL. Also, Selectperforms atmost log2 (𝑘) comparisons LTFL and share
reconstruction steps during binary search.

Analogously, we analyse the running time of GM∗ as the number of (interactive) calls to MPC
protocols.

Theorem 14. GM∗ requires𝑂
(
𝑘 dlog𝑘 |𝔇|e

)
MPC protocol calls, Note that complexity of theseMPC

protocols is at most𝑂 (𝑙) for 𝑙-bit integers as detailed in Table 2.3 in Section 2.1.6.

Proof. The first loop performs atmost dlog𝑘 |𝔇|e iterationswith a single reconstruction (Rec) per
iteration. Nested in the first loop are two sequential loops which perform at most 𝑘 iterations.
Recall, we omit addition as it is interaction-free. In total,GM∗ performs𝑂 (

𝑘 dlog𝑘 |𝔇|e
) iterations.

Eachof these iterations requires 3 comparisonsLT and4 selectionsMux leading to𝑂 (
𝑘 dlog𝑘 |𝔇|e

)
operations in total.

6.2.8 Security

Recall, we consider the semi-honest model introduced by Goldreich [Gol09] where corrupted
protocol participants do not deviate from the protocol but gather everything created during
the run of the protocol. Our protocols EM∗, GM∗ consists of multiple subroutines realized with
MPC protocols listed in Table 2.3. We rely on the well-known composition theorem [Gol09, Sec-
tion 7.3.1] for our security analysis: MPC protocols using an ideal functionality remain secure if

89

6 EM∗: Decomposable DP Aggregate Functions

the ideal functionality is replaced with an MPC protocol implementing the same functionality.
We implement such ideal functionality with the maliciously secure SCALE-MAMBA framework
[AKR+20]. Our protocol performsmultiple subrange selections and each selection round is ma-
liciously secure. Overall, we only provide semi-honest security as malicious adversaries can
deviate from inputs provided in previous rounds. We later show how to extend our protocol to
malicious adversaries, but first we proof semi-honest security for EM∗:

Theorem 15. Protocol EM∗ realizes FEM∗ in the presence of semi-honest adversaries.

To prove semi-honest security we show the existence of a simulator Sim such that the distri-
butions of the protocol transcript EM∗ is computationally indistinguishable from a simulated
transcript using FEM∗ produced in an “ideal world” with a trusted third party (see Section 4.1).

Proof. Simulator Sim produces a transcript for realEM∗ as follows: As we operate on secret shares,
denoted with 〈·〉, which look random to the parties [EKR+18], Sim replaces all secret shares with
random values to create VIEW𝑖 . Likewise, the secret-shared output of the weight computations
(Algorithm 11 and 12) are replaced with randomness. Sim can simulate Algorithm 10 by recur-
sively splitting𝔇 into 𝑘 subranges, and outputting the subrange containing 𝜇 in each selection
step. Finally, Sim outputs a uniform random element from the last subrange (Algorithm 9). Al-
together, a semi-honest adversary cannot learn more than the (ideal-world) simulator as this
information is sufficient to produce a transcript of our (real-world) protocol.

Theorem 16. Protocol GM∗ realizes FGM∗ in the presence of semi-honest adversaries.

Proof. As before, Sim replaces all secret shares with random values to create VIEW𝑖 and the sim-
ulation proceeds similar to EM∗ as GM∗ and EM∗ share most of their code: GM∗ and EM∗ have
the same subrange iteration and same utility scoring. The main difference are the additionally
provided partial noises, the noise aggregation, and finding the maximum noisy score. However,
the in- and outputs of these operations are all secret shared as well, and Sim replaces themwith
randomness.

From Semi-honest to Malicious

Formalicious adversaries, we need to ensure consistency between rounds similar to Aggarwal et
al. [AMP10], who securely compute the (non-DP)median via comparison-basedpruning rounds
(see Section 5.1.5). Informally, wehave two consistency constraints: First, valid rank inputsmust
be monotone within a step. Second, for consistency between steps, valid inputs are contained
in the subrange output in the previous step. Formally, let {𝑅 𝑖1, . . . , 𝑅 𝑖𝑘 } denote the set of sub-
ranges in the 𝑖 th step of EM∗ and let 𝑙 𝑖𝑗 , 𝑢 𝑖𝑗 denote the lower resp. upper range endpoint of 𝑅 𝑖𝑗 .
Then, rank𝐷𝑝 (𝑙 𝑖1) ≤ rank𝐷𝑝 (𝑙 𝑖2) ≤ · · · ≤ rank𝐷𝑝 (𝑙 𝑖𝑘) ≤ rank𝐷𝑝 (𝑢 𝑖𝑘) describes monotone input in step
𝑖 for party 𝑝 . Consistency between step 𝑖 and 𝑖 + 1, if the 𝑗 th range was selected, is expressed as
rank𝐷𝑝 (𝑙 𝑖+11) = rank𝐷𝑝 (𝑙 𝑖𝑗) and rank𝐷𝑝 (𝑢 𝑖+1𝑘) = rank𝐷𝑝 (𝑢 𝑖𝑗). Inotherwords, the subrangeoutput in the
previous step is used in the current step. Analogously, we can enforce consistency for weights as
they are based on rank values. Note thatmalicious users have limited influence on a rank-based
statistic: a collection of 𝑡 malicious parties can change the output’s rank by at most ±𝑡 .

6.2.9 Scaling to Many Parties

Recall, we distinguish two sets of parties: Input parties send shares of their input to computa-
tion parties which run the secure computation on their behalf. The computation parties can be

90

6.3 Evaluation

a subset of the input parties or some AWS instances executing our protocol. This scales nicely
as the number of computation parties is independent of the number of input parties and can be
constant, e.g., 3. In our evaluation in Section 6.3,𝑚 ∈ {3, 6, 10} computation parties perform the
computation for 106 input parties, each holding a single datum. Addition suffices forWeightsln(2)

and Weightsln(2)/2𝑑 to combine local rank values into a global rank. Addition is essentially “free”
as it requires no interaction between the computation parties. ForWeights∗ we require multipli-
cation to combine the local weights, which requires interaction during the preprocessing step.
However, log𝑛 rounds suffice to combine the inputs by building a tree of pairwise multiplica-
tions with 2𝑖 multiplications at level 𝑖 [ABZS13].

6.3 Evaluation

We implementation our protocols with SCALE-MAMBA [AKR+20] using Shamir secret sharing
with a 128-bit modulus and honest majority (d𝑚/2e − 1 corrupted parties). SCALE-MAMBA’s
floating point numbers (sfloat) are associated with a statistical security parameter 𝜅 satisfying
𝜅 < 𝑏 − 2 · 𝑙𝑣 where 𝑏 is the bit-length of the modulus and 𝑙𝑣 is the bit-length of the significand.
Securitywith𝜅 = 40 is thedefault for𝑏 = 128andweuse 𝑙𝑣 = 40 inourevaluation, to support large
utility values. Next, we evaluate the running time, privacy budget and accuracy of our solution.

6.3.1 Running Time

For our evaluation we used t2.medium instances from Amazon Web Services (AWS) with 2GB
RAM, 4 vCPUs [Ama20b] and the Open Payments data set from the Centers forMedicare &Med-
icaid Services (CMS) [CMS17] as in Section 5.3. Our evaluation uses 106 records from the Open
Payments data set, however, our approach scales to any data set size aswe consider domain sub-
ranges. We used the maximum number of selection steps, i.e., 𝑠 = dlog𝑘 |𝔇|e, with 𝑘 = 10 ranges
per step. We evaluated the average running time of 20 runs of the entire protocolEM∗, i.e., offline
as well as online phase, and evaluated in a LAN and aWAN.

LAN

Wemeasured running time for 3 parties in a LAN with 1Gbits/s bandwidth in Table 6.2 to com-
pare our protocols to Eigner et al. [EKM+14] who only report LAN running times. Eigner et
al. [EKM+14] evaluated their protocol with a sum utility function on a machine equipped with
a 3.20 GHz Intel i5 CPU and 16GB RAM. They are linear in the size of the domain and com-
pute weights for a very small domain of only 5 elements. We, on the other hand, are sublinear
in the size of the domain as we compute weights per subrange and use efficient alternatives to
costly secure exponentiation. We evaluated domain sizes at least 5 order of magnitudes larger
than [EKM+14] with comparable running times: They compute weights per elements and re-
quire around 42 seconds for |𝔇| = 5, whereas our protocol EM∗ withWeightsln(2)/Weightsln(2)/2𝑑 /
Weights∗ runs in approximately 11 / 33 / 64 seconds and GM∗ runs in approximately 28 seconds
for |𝔇| = 105. Overall, our running time for is below the running time of Eigner et al. on rather
modest t2.medium instances (4 vCPUs, 2GB RAM) for domain size |𝔇| = 106 except for EM∗

with Weights∗. Even if we also consider weights per element (i.e., subrange size 1) for any de-
composable utility function our protocols compute at least 6 timesmore weights per second on
t2.medium instances. (E.g., for 𝑘 = 10, |𝔇| = 105 and Weights∗ we compute 50 weights in 64.3

91

6 EM∗: Decomposable DP Aggregate Functions

Protocol |𝔇| Running time

Eigner et al. [EKM+14] 5 42.3 s

GM∗
105 28.3 ± 1.9 s (18.5 ± 2.1 s)
106 31.6 ± 2.2 s (22.3 ± 2.2 s)
107 38.4 ± 2.4 s (26.1 ± 2.3 s)

EM∗ &Weightsln(2)
105 11.3 ± 0.8 s (7.7 ± 0.7 s)
106 13.5 ± 2.2 s (9.2 ± 1.1 s)
107 15.4 ± 1.4 s (10.7 ± 1.0 s)

EM∗ &Weightsln(2)/2𝑑 , 𝑑 = 2
105 33.7 ± 3.4 s (23.6 ± 1.3 s)
106 39.8 ± 3.7 s (27.8 ± 1.3 s)
107 46.8 ± 3.5 s (31.4 ± 1.3 s)

EM∗ &Weights∗
105 64.3 ± 3.0 s (41.6 ± 1.4 s)
106 77.3 ± 3.0 s (52.4 ± 1.8 s)
107 91.8 ± 4.2 s (61.1 ± 2.7 s)

Table 6.2: LAN: running times for 3 parties in a 1Gbits/s network for this work and Eigner et al. [EKM+14]. We report
the average of 20 runs with 95% confidence intervals on t2.medium instances with 4 vCPUs, 2GB RAM (and
r4.2xlarge instances with 8 vCPUs, 61GB RAM in parenthesis). Eigner et al. [EKM+14] evaluated on a 3.20
GHz (Intel i5), 16GB RAMmachine.

3 6 10
1

1.25
1.5
1.75

2
2.25
2.5

Number of Parties

M
in
ut
es

|𝔇| = 107
|𝔇| = 106
|𝔇| = 105

(a)GM∗

3 6 10

2.5
3

3.5
4

Number of Parties

M
in
ut
es

|𝔇| = 107
|𝔇| = 106
|𝔇| = 105

(b) EM∗,Weightsln(2)

3 6 10

10
12
14
16

Number of Parties

M
in
ut
es

|𝔇| = 107
|𝔇| = 106
|𝔇| = 105

(c) EM∗,Weightsln(2)/2𝑑

3 6 10
10
12
14
16
18

Number of Parties

M
in
ut
es

|𝔇| = 107
|𝔇| = 106
|𝔇| = 105

(d) EM∗,Weights∗

Figure 6.4: WAN: running times ofGM∗ and EM∗– with weight computation subroutinesWeightsln(2) ,Weightsln(2)/2𝑑

for 𝑑 = 2, andWeights∗– for 20 runs on t2.medium instances in Ohio and Frankfurt (100ms delay,
100Mbits/s bandwidth).

seconds, i.e., 0.78 weights per second, compared to 0.12 for [EKM+14].) We also evaluated our
protocol on r4.2xlarge instances (8 vCPUs, 61GB RAM), whichwe list in parenthesis in Table 6.2.
In a LAN the running time compared to t2.medium instances is reduced by at least 30%, how-
ever, in a WAN setting the latency plays a more important role than powerful hardware and the
running times aremuch closer. Thus, we only present running times for t2.medium instances in
aWAN next.

WAN

WeevaluatedGM∗ andEM∗withallweight computationsubroutines inFigure6.4 for𝑚 ∈ {3, 6, 10}
computation parties and |𝔇| ∈ {105, 106, 107}. We split the𝑚 computation parties into two re-
gions, Ohio (us-east-2) and Frankfurt (eu-central-1), and measured an inter-region round time

92

6.3 Evaluation

Protocol |𝔇| Communication
𝑚 = 3 𝑚 = 6 𝑚 = 10

GM∗
105 95MB 253MB 852MB
106 107MB 273MB 949MB
107 116MB 286MB 1.07GB

EM∗ &Weightsln(2)
105 178MB 402MB 1.41GB
106 202MB 448MB 1.54GB
107 222MB 497MB 1.75GB

EM∗ & Weightsln(2)/2𝑑 , 𝑑=2
105 634MB 1.38GB 4.73GB
106 748MB 1.63GB 5.58GB
107 866MB 1.88GB 6.39GB

EM∗ &Weights∗
105 664MB 1.56GB 5.59GB
106 785MB 1.83GB 6.57GB
107 907MB 2.11GB 7.59GB

Table 6.3: Communication cost: Data sent per party, average of 20 runs for𝑚 ∈ {3, 6, 10} parties and |𝔇 | ∈
{105, 106, 107 }.

trip (RTT) of approx. 100ms with 100Mbits/s bandwidth. The computation parties already re-
ceived and combined secret-shared inputs from 106 users (Section 6.2.9) and we report the av-
erage running time of our protocol. Note that the results are very stable and the 95% confidence
intervals deviate by less than 1% on average. Thus, we omit all confidence intervals in Figure 6.4
except the largest ones, i.e., for GM∗ with 3, 6 parties and |𝔇| = 107 in Figure 6.4a.
Our protocol GM∗ (Figure 6.4a) requires less than 90 seconds for 3 parties and all domain

sizes. GM∗ operates only on (scaled, truncated) integers and is always faster than EM∗, which
requires some floating-point operations for the weight computation and sampling. Weightsln(2)

(Figure 6.4b) is clearly the fastest weight computation, with running times around 3 minutes
for 3 parties, whereas Weightsln(2)/2𝑑 (Figure 6.4c) and Weights∗ (Figure 6.4d) requires around 13
and 14minutes respectively. However, we consider large domain sizes (billions of elements) in a
real-worldnetworkwith large latencyandEM∗, unlikeGM∗, requires somefloating-point compu-
tations. The choice ofweight computation enables a trade-off between faster running times, i.e.,
Weightsln(2) with fixed 𝜖, and smaller privacy loss 𝜖, i.e, Weights∗, with Weightsln(2)/2𝑑 positioned
in themiddle (faster running time thanWeights∗ with smaller 𝜖 compared toWeightsln(2)). While
GM∗ canbeused to avoid such trade-offs, the number𝑘 of subranges allows similar adjustments,
as discussed next.

6.3.2 Communication

The communication is detailed in Table 6.3. For 3 parties and 107 domain elements, the com-
munication for GM∗ is 116MB per party. For EM∗ with Weightsln(2) each party sends 222MB in
the same setting, with Weightsln(2)/2𝑑 it is 866MB, and with Weights∗ it is 907MB. We stress that
this communication is required formalicious security in each round as provided by the SCALE-
MAMBA implementation. MP-SPDZ [Kel20], a fork of SCALE-MAMBA’s predecessor SPDZ2, also
provides semi-honest security. MP-SPDZ with semi-honest security requires much less com-
munication, e.g., only around 25MB for 3 parties, |𝔇| = 105, andWeights∗. However, the running

93

6 EM∗: Decomposable DP Aggregate Functions

1.5
2

2.5
3

3.5
4

4.5

5𝜖
6𝜖
7𝜖
8𝜖
9𝜖
10𝜖
11𝜖

3 5 7 10 13 15
Number 𝑘 of Ranges

M
in
ut
es

PrivacyBudget

Running
Times 𝑚 = 6

𝑚 = 3 𝑚 = 10
Privacy
Budget

Figure 6.5: Privacy vs. running time trade-off: For increasing number 𝑘 of subranges the running time (left axis) in-
creases whereas the consumed privacy budget (right axis) decreases. (Illustrated for EM∗ withWeightsln(2)
and |𝔇 | = 105).

time in aWAN is someminutes slower compared to SCALE-MAMBA (presumably due to SCALE-
MAMBA’s batched communication rounds and integrated online and offline phases, where par-
allel threads createofflinedata “just-in-time” [AS19,AKR+20]). Thus, regardingourprotocol, one
can choose efficiency w.r.t. communication (MP-SPDZ) or running time (SCALE-MAMBA).

6.3.3 Malicious Security

To achieve malicious security, by consistency checks as detailed in Section 6.2.8, we require ad-
ditional running time and communication. For the maximum number of evaluated steps and
domain elements in aWAN (100Mbits/s with 100ms latency), GM∗ and EM∗ withWeightsln(2) or
Weightsln(2)/2𝑑 (𝑑 = 2) ensure consistency of ranks (integers), which additionally needs around
1.3/1.5/2 minutes and 115/260/825MB for 3/6/10 parties. EM∗ with Weights∗ needs to check
weights (floats) which additionally requires around 10/10/12 minutes and 0.65/1.4/5GB for
3/6/10 parties.

6.3.4 Privacy Budget vs. Running Time

The privacy budget is the sum of privacy parameters consumed per step, i.e., the overall privacy
loss. Figure 6.5 shows how the privacy budget and the running time are affected by the number 𝑘
of subranges. Larger 𝑘 leads to larger running times, as the number of securely computed opera-
tions dependson thenumber of ranges times thenumber of selection steps (i.e.,𝑘 · dlog𝑘 |𝔇|e, see
Section 6.2.7), which increases proportionally to 𝑘 . However, smaller values for 𝑘 require more
selection steps (dlog𝑘 |𝔇|e), which lead to an increase in the privacy budget. Overall, as evident
from Figure 6.5, for 𝑘 = 10 subranges, as used in our evaluation, the consumed privacy budget is
small with an acceptable running time.
For our protocols supporting arbitrary 𝜖 per step, the trade-off becomes accuracy vs. running

time: Larger 𝑘 means the overall budget is spread among fewer steps, which improves accuracy,
whereas smaller 𝑘 corresponds to faster running time.

6.3.5 Accuracy Comparison to Related Work

First, we detail how we choose the privacy parameter per selection step. Then, we compare our
accuracy to related work.

94

6.3 Evaluation

0.1 0.25 0.5
0
5
10
15
20
25
30
35

𝜖

Av
g.
Ab

s.
Er
ro
rs SA

SS
EM∗
EM

(a) Credit card data [ULB18], first
100 000 payment records in Cents.

0.1 0.25 0.5
0
5
10
15
20
25
30
35
40

𝜖

Av
g.
Ab

s.
Er
ro
rs SA

SS
EM∗
EM

(b) Walmart supply chain data [Kag18],
≈ 175 000 shipment weights as inte-
gers.

0.1 0.2 0.3 0.4 0.5
0
50
100
150
200
250
300
350

𝜖

Av
g.
Ab

s.
Er
ro
rs SA

SS
EM∗
EM

(c) California public salaries [Soo18],
≈ 71 000 records, state department’s
total wages.

0.1 0.25 0.5
0

2.5
5

7.5
10

12.5
15

17.5

𝜖
Av
g.
Ab

s.
Er
ro
rs SA

SS
EM∗
EM

(d) Normal distribution with 𝜎 = 3,
100 000 samples (as integers with
scaling factor 1000).

Figure 6.6: Comparing exponential mechanism (EM) as baseline, this work (EM∗), smooth sensitivity (SS) [NRS07],
sample-and-aggregate (SA) [PL15] on different data, 100 averaged runs.

Composition of the Privacy Budget

Our protocols perform multiple selection steps 𝑠 , each consume a portion 𝜖𝑖 of the overall pri-
vacy budget 𝜖 = ∑𝑠

𝑖=1 𝜖𝑖 . How to optimally split 𝜖 (optimal composition) is #P-complete [MV16].
Thus, we use the following heuristic to divide 𝜖 among the selection steps: Initial steps cover ex-
ponentially larger subranges, and require exponentially less of the privacy budget. After a while
an equal split is more advantageous, as the subranges become smaller and contain fewer ele-
ments. Altogether, we use 𝜖𝑖 = 𝜖/2𝑠−𝑖+1 if 𝑖 ≤ b𝑠/2c and 𝜖𝑖 = 𝜖 ′/(𝑠 − b𝑠/2c) else, where 𝜖 ′ is the
remaining privacy budget. We used 𝑠 = dlog𝑘 |𝔇|e − 1 for our accuracy evaluation. We found in
our experiments that performing one selection step less increases accuracy, as the privacy bud-
get can be better divided among the other remaining steps and the last subrange is already small
enough (at most 𝑘 elements).

Accuracy Comparison

We list theoretical accuracy bounds for related work in Table 3.1 in Section 3.6. The theoretical
accuracy bounds show that computing DP median exhibits a strong data dependence, which
makes straightforward comparison difficult. Therefore, we empirically evaluated the different
approaches closest to ours, i.e., supporting more than 2 parties, on real-world data sets [Kag18,
ULB18, Soo18] as well as the normal distribution in Figure 6.6 for 100 averaged runs with 95%-
confidence intervals. Recall that “small” data is the most challenging regime for DP [NRVW20,
BEM+17], thus, we use small data sets to better illustrate the accuracy differences. As EM∗ and
GM∗ have the same output distribution (Section 2.2.4) we only present the former in the figures.

95

6 EM∗: Decomposable DP Aggregate Functions

The evaluation for smooth sensitivity [NRS07] and the exponential mechanism for elements as-
sume a trusted party has access to the entire data set in clear. Note that only our approach and
sample-and-aggregate as implemented by [PL15] use MPC instead of a trusted party. Nissim et
al. [NRS07] (SS inFigure 6.6) compute instance-specific additivenoise, requiring full data access,
and achieve good accuracy, however, the exponential mechanism can provide better accuracy
for low 𝜖. Pettai and Laud [PL15] (SA in Figure 6.6) securely compute the noisy average of the
100 values closest to themedianwithin a clipping range for their running time evaluation. There
are three error sources: approximation error, clipping error, and and additive noise. In our accu-
racy evaluation (using 100 values aswell), the approximation error, without any additive noise or
clipping, was already larger than the error for the exponential mechanism for data set [ULB18].
Recall, the median is the 50th-percentile. To minimize the error from clipping range [𝑐𝑙 , 𝑐𝑢], we
choose 𝑐𝑙 = 49th-percentile, 𝑐𝑢 = 51th-percentile, i.e., we presume to already know a tight range
for the actual median. Nonetheless, in our experiments the absolute error of SA is the largest.
Overall, no solution isoptimal for all 𝜖 anddata sets. However, theexponentialmechanismEM,

and our protocols EM∗ and GM∗ provide the best accuracy for low 𝜖, i.e., high privacy, compared
to approaches with additive noise [NRS07, PL15].

6.4 Summary

We presented a novel alternative for differentially private median computation with high accu-
racy (even for small number of users), without a trusted party, that is efficiently computable
(practical running time) and scalable (sublinear in the size of the domain). Our semi-honest
multi-party protocols implement the exponential mechanism (resp., Gumbel mechanism) for
decomposable aggregate functions (e.g., rank-based statistics, convex loss functions) as used in
MapReduce-style algorithms, and can be extended to malicious parties. For the median, the
exponential mechanism provides the best utility vs. privacy trade-off for low 𝜖 in our evalua-
tions of related work in the central model. We optimize our protocols for decomposable func-
tions (allowing efficientMPCover distributeddata), anduse efficient alternatives to exponentia-
tions for floating-point numbers. We implemented our protocols in the SCALE-MAMBA frame-
work [AKR+20], and evaluated it for 1 million users using 3 semi-honest computation parties
with a running time of seconds in a LAN, and 3 minutes in a WAN with 100ms network delay,
100Mbits/s bandwidth.

96

7 HH & PEM: DP Heavy Hitters

The goal of federated heavy hitters discovery, also called top-𝑘 , is to learn the 𝑘 most frequent
values in a distributed data set. We present efficient MPC protocols PEM and HH to discover DP
heavy hitters achieving central-model accuracywithout a trusted party. This chapter is based on
the following publication:

Jonas Böhler, Florian Kerschbaum. Secure Multi-party computation of Differentially Pri-
vate Heavy Hitters. In Computer and Communications Security, CCS, 2021 [BK21].

DP is widely deployed in the industry for private heavy hitter discovery over user-generated
data. As detailed in Section 1, heavy hitters are typically collected to detect trends and pat-
terns, e.g., frequently typed newwords [App16, App17], common user settings [EPK14, FPE16a],
and often shared articles [RSP+20]. Existing solutions to find DP heavy hitters either require a
large number of parties to achieve meaningful accuracy (local model [App16, DKY17, EPK14,
FPE16a]), require a trusted third party (central model [RSP+20, Rog20]), or use cryptography but
do not achieve high accuracy with efficient protocols (MPC [BBC+21, MDDC16, NPR19]).
The remainder of this chapter is organized as follows. In Section 7.1, we first describe an ideal

version of our protocol with a trusted third party, whichwe later replacewithMPC. The straight-
forward algorithms to accurately detect heavy hitters are inefficient inMPC, and hence we need
to employ clever approximate algorithms called sketches over streams [CH10] or large domains
[WLJ19] tomake the securemulti-party computation efficient. Sketches are succinct data struc-
tures which typically store counters indexed by multiple hash functions, e.g., count-min sketch
[CH10, MDDC16] or Bloom filters [EPK14, FPE16a]. Usually, local-model users apply domain
reduction (e.g., hashing) [BS15, BNST17, WLJ19] before randomization. However, hash-based
techniques require costly search efforts, e.g., hashing the entire domain to findmatching heavy
hitters. Searching canconsumesignificant computational resources to, e.g., compute andmatch
billionsofhashes [WLJ19]or estimate jointprobabilitiesofperturbed𝑛-grams [FPE16b] (seeSec-
tion 3.7). Our key insight is that adapting suitable sketches that do not require search allows ef-
ficient MPC of DP heavy hitters with high accuracy.
In Section 7.2, we present two MPC protocols to discover the DP heavy hitters on distributed

user data: HH and PEM. Our protocols are based on state-of-the-art solutions for heavy hitter
detection –HH is build upon non-private detection in data streams [CH10], and PEM adapts the
localDPmethod fromWang et al. [WLJ19] – realized as efficientMPC implementations of central
DP randomizations [WZL+20, DR19a, DR19b].
InSection7.3,weprovideadetailedperformanceevaluation. HHhas running time linear in the

size of the data and is applicable for very small data sets (hundreds of values). PEM is sublinear
in the data domain (i.e., linear in the bit-length of domain size) and provides better accuracy
than HH for a large number of users (thousands to millions). In our experiments, we achieved
running times of less than 11 minutes using 3 semi-honest computation parties in a WAN with
100ms network delay, 100Mbits/s bandwidth. We conclude this chapter in Section 7.4.

97

7 HH& PEM: DP Heavy Hitters

FHH

1. Definemap𝑇 withmaximumsize 𝑡 to associate a datumwith a count.
2. For each user reported datum 𝑑 ∈ 𝐷 :

a) If 𝑑 ∈ 𝑇 , then increment counter𝑇 [𝑑].
b) Else if |𝑇 | < 𝑡 , then add 𝑑 to𝑇 , and set𝑇 [𝑑] to 1.
c) Else, decrement all counters𝑇 [𝑖], and remove 𝑖 from𝑇 if𝑇 [𝑖] = 0.

3. For each item 𝑖 ∈ 𝑇 :
a) Add noise Laplace(Δ/𝜖) to count𝑇 [𝑖].
b) Remove 𝑖 from𝑇 unless

𝑇 [𝑖] ≥ 𝜏HH,

where 𝜏HH = 1 − Δ log
(
2 − 2(1 − 𝛿)1/Δ

)
/𝜖.

4. Output items in𝑇 sorted by their noisy count.

Figure 7.1: Ideal functionality FHH combining heavy hitter detection in streams [MG82],[CH10, Alg. 1] with DP
bounded count release [WZL+20, Th. 2].

7.1 Federated Heavy Hitters

The following ideal functionalities FHH and FPEM describe our protocols as executed by a trusted
third party, which we later replace by implementing themwith optimizedMPC protocols as HH
andPEM, respectively. The straight-forward algorithms to accurately detect heavy hitters are in-
efficient in MPC. Therefore, we employ clever approximate algorithms that work over streams
with unknown domains [CH10] (non-private) or support large domains [WLJ19] (local model)
to make the secure multi-party computation efficient. The employed sketches do not require
hashing or domain reduction (e.g., Bloomfilters [EPK14], ormatrix projection [BS15]) and avoid
the additional search efforts associated with these techniques. Clients only send a single mes-
sage – either their value (FHH) or a bit vector indicating the bit-prefix of their value (FPEM) – and
the server updates a map that associates client messages with a count. We utilize central model
thresholds [WZL+20,DR19a,DR19b] andshowthatFHH,FPEM aredifferentiallyprivate. In the fol-
lowing, we let Δ denote the maximum number of counts an individual can influence, e.g., Δ = 1
if we query countries of origin, or Δ ≥ 1 for current and former employers. Next, we formalize
the top-𝑘 problem:

Definition 27 (Top-𝑘 or Heavy Hitter). Datum 𝑑 ∈ 𝐷 is a top-𝑘 element if its frequency 𝑓𝑑 in𝐷 is
among the 𝑘 most frequent elements, where 𝑓𝑑 = |{𝑥 | 𝑥 ∈ 𝐷 and 𝑥 = 𝑑}|/|𝐷 |.

7.1.1 Ideal Functionality FHH

Cormode andHadjieleftheriou [CH10] surveyed algorithms for (non-private) heavy hitter detec-
tion in data streams and found counter-based approaches, to be the best w.r.t. accuracy, speed
and space, which was re-confirmed by more recent work [ABL+17]. Next we describe a non-
private counter-based approach, which we augment to be privacy-preserving.

Non-private Misra-Gries

The counter-based approach Misra-Gries [MG82],[CH10, Alg. 1], is the main part of our ideal
functionality FHH in Figure 7.1: making up all steps, excluding the DP thresholding in step 3.

98

7.1 Federated Heavy Hitters

Misra-Gries uses counters to track the frequency of already seen elements in a data stream and
provides the following guarantee [ABL+17, Lemma 1]:

Lemma 5. Misra-Gries run on𝐷 of size 𝑛 with 𝑡 counters provides a frequency estimate 𝑓𝑑 for all
𝑑 ∈ 𝐷 satisfying 0 ≤ 𝑓𝑑 − 𝑓𝑑 ≤ 𝑛/(𝑡 + 1).

For skewed frequencies, i.e., data sets consisting of mainly a few very frequent items, Berinde
et al. [BICS10] show the following tail guarantee:

Lemma 6. Misra-Gries run on𝐷 of size 𝑛 with 𝑡 counters provides a frequency estimate 𝑓𝑑 for all
𝑑 ∈ 𝐷 satisfying 0 ≤ 𝑓𝑑 − 𝑓𝑑 ≤ 𝑛−𝑗 /(𝑡 + 1 − 𝑗), where 𝑘 < 𝑗 and 𝑛−𝑗 is the data size without the top 𝑗
most frequent elements.

Recent improvements [ABL+17] reduce the expected number of times the expensive decre-
ment branch is executed (2c in Figure 7.1), as it requires updating the entiremap𝑇 . However, as
we later implement FHH withMPC, whichmust hide the control flow to prevent leakage, we can-
not apply them and focus on the original version. Note that FHH, due to its use of Misra-Gries,
does not require any domain knowledge or distribution assumptions. Also, if the map size is
equal to the size of the (small) data set, FHH computes an exact histogramover an unknown data
domain.

Differentially private FHH

The ideal functionality FHH in Figure 7.1 approximates counts for frequent values seen so far via
Misra-Gries [MG82]butonly releasesnoisy counts that exceed the 𝛿 -based threshold𝜏HH defined
byWilson et al. [WZL+20, Th. 2].

Theorem 17. The ideal functionality FHH provides (Δ𝜖, 𝛿)-differential privacy.

Proof. Wilson et al. proof in [WZL+20, Th. 2] that the threshold𝜏HH satisfies (Δ𝜖, 𝛿)-DP for counts
of unique user contributions in SQL. (I.e., non-empty groups with noisy counts of say column 1
grouped by column 2 are released if they exceed the threshold, and the threshold bounds the
probability for releasing differing results between neighbors.) We briefly sketch their proof: A
noisy countwill be at least𝜏 with probability𝑝 = 1

2𝑒
− 𝜖 (𝜏−1)

Δ (property of Laplace distribution). The
probability for badevents (e.g., releasing a count for adata set butnot its neighbor) is boundedas
𝑝Δ ≤ 𝛿 and solving for𝜏 provides𝜏HH. As we assume a single value per user, each count qualifies
as a unique contribution per user, allowing us to use the same threshold 𝜏HH.

7.1.2 Ideal Functionality FPEM

Wang et al. [WLJ19] present a “prefix extension method” (PEM) for LDP heavy hitter detection
and show that it provides higher accuracy than other LDP approaches [FPE16a, BS15, BNST17].
We adapt their local model protocol, which we denote PEMorig, for our central model protocol
FPEM, and describe them next.

Local model PEMorig

PEMorig leverages overlapping segments by iteratively finding frequent prefixes of increasing
lengths. Informally, users are split evenly in disjoint groups. The first group reports perturbed
(𝛾 +𝜂)-bit prefixes of their datum to a server, and the server estimates the frequencies of all prefix

99

7 HH& PEM: DP Heavy Hitters

FPEM

1. Initialize prefix set 𝑆 = {0, 1} dlog𝑘 e , and split user data𝐷
in 𝑔 =

⌈
𝑏−dlog𝑘 e

𝜂

⌉
disjoint groups𝐷1, . . . , 𝐷𝑔 .

2. For each group 𝑗 ∈ {1, . . . , 𝑔 }:
a) Initialize empty map 𝑇 to associate a prefix with a count, and candidate

prefix set C = 𝑆 × {0, 1}𝜂 .
b) For each prefix 𝑐 ∈ C:

i. Set𝑇 [𝑐] = ∑
𝑑 ∈𝐷𝑗

𝜁 𝑐𝑑 , where 𝜁
𝑐
𝑑 ∈ {0, 1} is a user report indicating if her

value 𝑑 matches prefix candidate 𝑐 .
c) Set 𝑆 = {} and 𝑧 = min𝑐 ∈C 𝑇 [𝑐] + Laplace(1/𝜖).
d) For the top-𝑘 prefixes 𝑐𝑘 ∈ C:

i. Add noise Laplace(1/𝜖) to count𝑇 [𝑐𝑘].
ii. Add 𝑐𝑘 to 𝑆 if

𝑇 [𝑐𝑘] ≥ 𝜏PEM + 𝑧,
where 𝜏PEM = 1 + log(Δ/𝛿)/𝜖.

e) Output items in 𝑆 sorted by their noisy count.

Figure 7.2: Ideal functionality FPEM combining distributed heavy hitter detection [WLJ19] with central-DP threshold-
ing [DR19a, DR19b].

candidates (i.e., all binary stringswith the same length as thebit prefix). Then, theprefix length is
extended by𝜂, the second group reports their perturbed prefixes of length𝛾 + 2𝜂, and the server
estimates frequencies of prefixes that extend the top-2𝛾 prefixes of the previous group. This is
repeated until the prefix length reaches the domain bit-length 𝑏 .
To create the reports, a user first reduces the domain size via optimal local hashing [WBLJ17],

then applies generalized randomized response (GRR) on the reduced domain. In more detail, a
user in group 𝑖 selects a hash function 𝐻 : 𝔇 → {1, . . . , 𝑢} from a family of hash functions H ,
where 𝑢 = dexp(𝜖) + 1e. Then, she computes ℎ = GRR(𝐻 (𝑑 ′)) of the (𝛾 + 𝑖𝜂)-bit prefix 𝑑 ′ of her
datum 𝑑 . Recall Definition 9 from Section 2.2.4, GRR(𝑥) outputs 𝑥 with probability𝑝 = exp(𝜖)

exp(𝜖)+𝑢−1
and 𝑦 ≠ 𝑥 with probability 1

exp(𝜖)+𝑢−1 over domain {1, . . . , 𝑢} of size 𝑢 . Finally, she reports (𝐻 ,ℎ)
to the server. Given the reports, the server creates a candidate set C by extending the previous
top-2𝛾 prefixes with all possible binary strings of length𝜂. Then, the server estimates the count
of each prefix candidate 𝑐 ∈ C as 𝑠𝑐−𝑛/𝑢

𝑝−1/𝑢 [WLJ19, Eq. (2)], where 𝑠𝑐 is the number of reports with
matching hashes, i.e., 𝑠𝑐 = |{𝑐 | 𝑐 ∈ C and𝐻 (𝑐) = ℎ}|.
The parameter𝜂 provides the following trade-off: Smaller values lead tomore groups but less

(hash) computations, whereas larger values produces fewer groups but requiresmore computa-
tional resources. Note thatmore groupsmeans fewer counts per prefix candidatewhich can lead
to reduced accuracy. Wang et al. [WLJ19] set 𝛾 = dlog2 𝑘 e and limit the number of hash compu-
tations per report to 220 (i.e., set𝜂 to the largest integer satisfying 𝑔2𝛾+𝜂 < 220 for 𝑔 = d(𝑏 −𝛾)/𝜂e
groups). Overall, PEMorig, with these parameters, requires the server to compute 𝑛220 hashes.

Central model FPEM

Our protocol FPEM, shown in Figure 7.2, also leverages extending prefixes to find heavy hitters
over distributed data. Unlike PEMorig, FPEM operates on actual counts instead of estimates from
perturbed reports to increase the accuracy. We later implement FPEM with MPC to protect the

100

7.1 Federated Heavy Hitters

counts and use 𝜂 ∈ {4, 5} in our evaluation as this provides a practical trade-off between com-
putational efficiency and accuracy for a small number of users (Section 7.3).
FPEM releases intermediate results (set of frequent prefix candidates) to improve the frequency

estimation in multiple rounds, unlike minimal functionality HH, which only releases the final
result. However, this does not violate privacy: Differential privacy is enforced in line 2(d)ii of
Figure 7.2 by only releasing values whose associated (noisy) frequencies exceed a threshold. The
privacy budget of FPEM is given next.

Theorem18. The ideal functionalityFPEM provides
(
Δ𝜖, 𝛿4 (exp(Δ𝜖) + 1) (3 + log(Δ/𝛿))

)
-differential

privacy.

Proof. First, note that the claimholds for a single group, i.e., step 2d, as the thresholding satisfies(
Δ𝜖, 𝛿4 (exp(Δ𝜖) + 1) (3 + log(Δ/𝛿))

)
-DP [DR19a, Lemma 6.1]. Now we expand this, without addi-

tional privacy cost, to all groups (step 2): Recall, we compute counts on disjoint subsets (i.e.,𝐷𝑔

of 𝐷 for group 𝑔). Thus, we never count a user contribution more than once. Applying parallel
composition [LLSY16, Section 2.2.2] allows us to use themaximum (instead of the sum) over the
privacy budget for all steps as total budget. As we use the same budget per step themaximum is
equal to that of a single step, which concludes the proof.

Unrestricted Sensitivity

In the case of unrestricted sensitivity, i.e., Δ much larger than |C|, Durfee and Rogers [DR19a]
use Gumbel noise instead of Laplace noise. With Gumbel noise FPEM is (≈

√
𝑘 𝜖, 𝛿)-DP [DR19a,

Th. 1] (i.e., with a dependence on 𝑘 instead of Δ). To support unrestricted sensitivity in FPEM the
Laplace noise in lines 2c, 2(d)i of Figure 7.2 changes to Gumbel noise with the same scale with
new threshold 𝜏PEM = 1 + log(|C|/𝛿)/𝜖 (i.e., Δ replaced by |C|). In the following, we focus on
the setting with restricted sensitivity, i.e., Laplace noise, but our protocol can be extended to the
unrestricted case by using distributed Gumbel noise (Section 7.1.4).

7.1.3 When to use FHH or FPEM

In the following, we discuss the accuracy of FHH and FPEM in relation to each other.

Theorem 19. For data set𝐷 of size 𝑛, FHH with fixedmap size 𝑡 provides better accuracy in expec-
tation than FPEM if

𝜏HH + 𝑛

𝑡 + 1 < 𝑓𝑘-th ≤ 𝑔 ·
(
𝜏PEM + 𝑓 |C |-th

)
where 𝑓𝑘-th is the frequency of the 𝑘-th most frequent element in 𝐷 , 𝑔 is the number of groups in
FPEM, |C| is the size of the candidate set in FPEM, and 𝜏HH,𝜏PEM as in Figures 7.1, 7.2 respectively.

Proof. We consider the cases where FHH releases a candidate and FPEM does not. FHH releases
candidate 𝑐 if 𝑇 [𝑐] + Laplace(1/𝜖) > 𝜏HH. FHH uses estimated frequency 𝑇 [𝑐] = 𝑓𝑐 , which is at
most𝑛/(𝑡 +1) below actual frequency 𝑓𝑐 (Lemma 5). Thus,𝑇 [𝑐] > 𝑓𝑐 −𝑛/(𝑡 +1) using the fact that
Laplace noise is 0 in expectation and replacing 𝑓𝑐 with 𝑓𝑘-th, we have 𝜏HH + 𝑛/(𝑡 + 1) < 𝑓𝑘-th.
Analogously,PEM doesn’t release candidate 𝑐 if𝑇 [𝑐] +Laplace(1/𝜖) ≤ 𝜏PEM +Laplace(1/𝜖). As-

suming data is distributed uniformly between groups, we have𝑇 [𝑐] = 𝑓𝑐/𝑔 . Assuming expected
noise and 𝑧 = 𝑓 |C |-th, replacing 𝑓𝑐 by 𝑓𝑘-th as before, we arrive at 𝑓𝑘-th/𝑔 ≤ 𝑓 |C |-th + 𝜏PEM, which is
the right side of the inequality whenmultiplied with 𝑔 .

101

7 HH& PEM: DP Heavy Hitters

For fixed𝜂, larger domainbit-length leads to larger group size 𝑔 inFPEM. SinceFHH is indepen-
dent of the domain size, it provides better accuracy in such cases, as the counts per value are not
split amongmultiple groups. However, we want to keep 𝑡 small and fixed for our MPC protocol,
as FHH requires 𝑡 operations per datum in theworst case (decrement step). Fixed 𝑡 reduces accu-
racy for increasing data sizes (Lemma 5); therefore, FHH is better suited for small data sets (small
𝑛). Also, the candidate set inFPEM canbeempty if the counts are lower than the threshold, i.e., for
very small data sets (a few dozen or hundred values), which provides another argument in favor
of FHH for small data sets. Our empirical analysis in Section 7.3 confirms these observations.

7.1.4 Distributed Noise Generation

In our ideal functionalities, the noise comes from the trusted parties. In our MPC protocols, the
noise is provided by the input parties (resp., computation parties). Distributed noise generation
ismoreefficient thansecurely sampling fromanoisedistributionasdiscussed inSection2.2.5. In
ourMPCprotocols,wecombinepartial noise values 𝜌𝑝 fromeachparty𝑝 ∈ P, to sample fromthe
Laplace and Gumbel distribution as detailed in Section 2.2.5. Recent works consider alternative
Laplace noise representations on finitemachines, e.g., [BV19, GKMP20, BBGN20], whichwe can
leverage as well. The distributed noise representation does not affect ourMPC efficiency as they
are based on (integer) addition. Recall, the Gumbel distribution can be expressed as an infinite
sum of random variables from the exponential distribution. Note that the input parties can pre-
compute an arbitrary number of such sum terms, and add them to their prefix counts, thus, they
only need to provide one input per count for our MPC of FPEM: a (partially) noisy count 𝜁 𝑐𝑑 .
Alternatively, the computation parties can provide the noise.

7.2 MPC for DP Heavy Hitters

We describe details of our MPC protocols HH, PEM which realize the ideal functionalities FHH,
FPEM without a trusted party, and analyse their running time and security.
We use upper case letters to denote arrays in our protocol, and 𝐴 [𝑗] denotes the 𝑗 -th element

in array 𝐴. We indicate Boolean values (in the form of a bit) with 𝑏state (e.g., 𝑏match = 1 indicates
a match). TheMPC sub-protocols used in our protocol are listed in Table 2.3. While most of our
computation can be represented with integers, our protocol uses fixed-point numbers (scaled,
truncated floats) to handle DP noise. Limitedmachine precision of floating-point numbers can
lead to privacy violations in the implementation of the Laplacemechanism [Mir12]. These viola-
tions can bemitigated by careful truncation and rounding of floating-point numbers. We do not
release noisy counts and do not use floating-point numbers, nonetheless, similar attacks might
exist without careful selection of fixed-point numbers.

Secure Sort

Wewant to release the ordered top-𝑘 , i.e., the most frequent values sorted by their counts. Note
thatwe cannot release the noisy countswith their corresponding values to let the parties sort the
values locally. While Laplace noise is differentially private, allowing the release of noisy counts,
the same is not true for Gumbel noise [DR19a] as used by PEMwith unrestricted sensitivity. Fur-
thermore, we consider distributed noise generation, where each party provides partial noise val-
ues. Here, each party can remove its partial noise from the noisy count, requiring additional

102

7.2 MPC for DPHeavy Hitters

noise or secure noise sampling to prevent a privacy violation or degradation (briefly discussed
inSection7.2.4). Thus,wesecurely sort thevaluesby their correspondingcountsandonly release
the values like the ideal functionalities FHH and FPEM.
We use the existing secure sorting implemented in SCALE-MAMBA andMP-SPDZ in line 11 of

Algorithm 15. The implementations1 are based onmerge sort and conditional swaps. Whenever
an array value 𝐴 [𝑖] is smaller than 𝐴 [𝑖 + 1], i.e., 𝑐 = LE(𝐴 [𝑖 + 1], 𝐴 [𝑖]) is 1, they are swapped.
However, we slightly adapt it, and re-use the comparison result 𝑐 to sort a second array 𝐵 in the
sameway, i.e., for each swapwith𝐴wesimplyperform the same swapwith𝐵 . A conditional swap
of two inputs 𝑎, 𝑏 with a selection bit 𝑐 can be efficiently realized as (𝑎 + 𝑑,𝑏 − 𝑑) with a single
multiplication𝑑 = 𝑐 · (𝑏−𝑎). Then, for 𝑐 = 1 the elements are swapped as (𝑎 + (𝑏−𝑎), 𝑏−(𝑏−𝑎)) =
(𝑏, 𝑎), and for 𝑐 = 0 they remain as (𝑎 + 0, 𝑏 − 0) = (𝑎, 𝑏). We suggested this approach with a
singlemultiplication (as used by, e.g., Pettai and Laud [PL15]) to the SCALE-MAMBA team2, and
it replaced their previous approach with twomultiplications in version 1.9.

7.2.1 HH: MPC of FHH

Insteadof amap𝑇 , as inFHH, weuse twoarrays𝑉 and𝐶 which store a valueand its corresponding
count at the same index. Note that AND and NOT in lines 12, 14 of Algorithm 14 are just aliases
for Mul and Sub(1, ·), respectively. We use aliases to improve the readability of our protocol and
to highlight that their inputs and outputs are “bits”, which we represent as integers 0 and 1 in
the following. We ensure that the inputs to AND, NOT are in {0, 1}, thus, their outputs can only
be in {0, 1} as well. HH implements the different if-else branches of FHH via bits, i.e., 𝑏found is set
if a value is already in 𝑉 ; 𝑏empty,𝑗 is set if we had no match (NOT(𝑏found)) but index 𝑗 is empty;
and 𝑏decrement is set if we did not find a match and have no empty spots left. We employ the
following optimizations to reduce the number of MPC protocols: Instead of using arithmetic
OR(𝑎, 𝑏) = 𝑎 +𝑏 −𝑎 ·𝑏 , to combine bits𝑏match into bit𝑏found we add each bit𝑏match (which can be
set, i.e., 1, atmost once) to form𝑏found (which is 1 only if anymatch occurred) in line 7. Note that
only unique values are in array𝑉 . Thus, 𝑏match is 1 at most once in the loop and 𝑏found is either
0 or 1 and can be input to NOT and AND. Replacing OR by Add is beneficial, since Add can be
evaluated locally in secret sharing, i.e., without interaction, whereas arithmetic expression ofOR
requiresmultiplication and thus interaction. Similarly, we reduce the number ofMux operations
by directly using 𝑏decrement as a decrement value. Furthermore, we do not need to remove values
associated with empty counts, saving additionalMux operations. We only use counts to check if
a value is empty and if the value is matched (even with empty count), we set the new count to 1
(line 16), i.e., same as if we had not matched and found an empty spot.
We also implement a version more suited for parallelization, denoted as HHthreads in our eval-

uation (Section 7.3). The loop bodies in HH can be run in parallel, if we do not set 𝑖empty in the
first loop (as this requires locking). Thus, the main difference between HH and HHthreads is that
we use an additional (non-parallelized) loop to set 𝑖empty.

7.2.2 PEM: MPC of FPEM

PEM implements FPEM by using array 𝐶 to count candidate prefixes. The users themselves can
track which indices correspond to candidate prefixes, simplifying the secure computation com-
1 https://github.com/KULeuven-COSIC/SCALE-MAMBA/blob/862ecf547a01883cfbaf81a07c444c0c7cb53010/Compil

er/library.py#L424 and https://github.com/data61/MP-SPDZ/blob/v0.1.8/Compiler/library.py#L464
2 https://groups.google.com/g/spdz/c/urM4Xy46H6I/m/CWJLOjqtAAAJ

103

https://github.com/KULeuven-COSIC/SCALE-MAMBA/blob/862ecf547a01883cfbaf81a07c444c0c7cb53010/Compiler/library.py#L424
https://github.com/KULeuven-COSIC/SCALE-MAMBA/blob/862ecf547a01883cfbaf81a07c444c0c7cb53010/Compiler/library.py#L424
https://github.com/data61/MP-SPDZ/blob/v0.1.8/Compiler/library.py#L464
https://groups.google.com/g/spdz/c/urM4Xy46H6I/m/CWJLOjqtAAAJ

7 HH& PEM: DP Heavy Hitters

Algorithm 14HH: MPC of FHH

Input: User data 〈𝐷〉, distributed noises 〈𝜌𝑝 〉 per party 𝑝 ∈ P, output size 𝑘 , map size 𝑡 , and DP
threshold 𝜏HH.

Output: DP top-𝑘 .
1: Initialize arrays 〈𝑉 〉, 〈𝐶 〉 of size 𝑡 with 〈⊥〉, 〈0〉, resp.
2: for user datum 〈𝑑〉 ∈ 〈𝐷〉 do // Update counts 𝐶 for values 𝑉
3: Initialize 〈𝑏found〉 ← 〈0〉 and 〈𝑖empty〉 ← 〈−1〉
4: for index 𝑗 ← 1 to 𝑡 do
5: 〈𝑏match〉 ← EQ(〈𝑑〉, 〈𝑉 [𝑗]〉)
6: 〈𝑏empty〉 ← LE(〈𝐶 [𝑗]〉, 〈0〉)
7: 〈𝑏found〉 ← Add(〈𝑏found〉, 〈𝑏match〉)
8: 〈𝑖empty〉 ← Mux(〈𝑗 〉, 〈𝑖empty〉, 〈𝑏empty〉)
9: 〈𝐶 [𝑗]〉 ← Add(〈𝐶 [𝑗]〉, 〈𝑏match〉)
10: end for
11: 〈𝑏¬empty〉 ← EQ(〈𝑖empty〉, 〈−1〉)
12: 〈𝑏decrement〉 ← AND(〈𝑏¬empty〉, 〈NOT(〈𝑏found〉)〉) // AND,NOT are Mul, Sub(1, ·), resp.
13: for index 𝑗 ← 1 to 𝑡 do // Conditional decrement
14: 〈𝑏empty,𝑗 〉 ← AND(〈NOT(〈𝑏match〉)〉, 〈EQ(〈𝑖empty〉, 〈𝑗 〉)〉)
15: 〈𝑐〉 ← Sub(〈𝐶 [𝑗]〉, 〈𝑏decrement〉)
16: 〈𝐶 [𝑗]〉 ← Mux(〈1〉, 〈𝑐〉, 〈𝑏empty,𝑗 〉)
17: 〈𝑉 [𝑗]〉 ← Mux(〈𝑑〉, 〈𝑉 [𝑗]〉, 〈𝑏empty,𝑗 〉)
18: end for
19: end for
20: for index 𝑗 ← 1 to 𝑡 do // DP thresholding on noisy 𝐶
21: for party 𝑝 ∈ P do
22: 〈𝐶 [𝑗]〉 ← Add(〈𝐶 [𝑗]〉, 〈𝜌 𝑗𝑝 〉)
23: end for
24: 〈𝑏discard〉 ← LE(〈𝐶 [𝑗]〉, 〈𝜏HH〉)
25: 〈𝑉 [𝑗]〉 ← Mux(〈⊥〉, 〈𝑉 [𝑗]〉, 〈𝑏discard〉)
26: end for
27: Sort values 〈𝑉 〉 by corresponding counts 〈𝐶 〉 descendingly // Section 7.2
28: return Rec(〈𝑉 〉)

plexity. For group 𝑖 ∈ {1, . . . , 𝑔 }, the prefix bit-length 𝑖𝜂 + 𝛾 varies, however, each group reports
the samefixed number of counts, i.e., 2 dlog2 𝑘 e+𝜂 . Hence, the size of array𝐶 is fixed. As a toy exam-
ple, consider 𝑘 = 2,𝜂 = 1,𝛾 = 1. First, each user 𝑗 from group 1 reports 4 (noisy) counts {𝜁 𝑐𝑑𝑗 }𝑐 ∈𝑋
for prefix candidates 𝑋 = {00, 01, 10, 11}. The counts are aggregated in array𝐶 , where𝐶 [1]maps
to the first prefix 00 in 𝑋 ,𝐶 [2] to the second prefix 01, etc. Let the top-2 prefixes be 𝑍 = {00, 01},
i.e., Algorithm 15 outputs {1, 2} for 𝑖 = 1, which corresponds to the first two prefixes in 𝑋 . Then,
group 2 also reports 4 counts but for 𝑋 = 𝑍 × {0, 1}𝜂 = {000, 001, 010, 011}. Note that the number
of prefixes is the same but their bit-length is extended by 𝜂 = 1. Let the set of top-2 prefixes be
𝑍 = {001, 011}, i.e., Algorithm 15 outputs {2, 4} for 𝑖 = 2. And so on. Note that outputting indices
of an ordered list of prefix candidates suffices to reconstruct prefixes as above.
In the last round of PEM, less than 2 dlog𝑘 e+𝜂 iterations are required if (𝑏 − dlog𝑘 e)/𝜂 is not an

integer. We use this optimization in our implementation but omit it here for readability. If we are
not interested in the order, i.e., which value is the 𝑖-th most frequent, the sorting step can be re-
placedby linear scan (tofind theminimumcount for the threshold), improving the complexity of
this step from𝑂 (𝑐 log 𝑐) to 𝑐 for 𝑐 = 2 dlog𝑘 e+𝜂 (leading to 𝑐 instead of 𝑘 iterations for thresholding
in line 16 of Algorithm 15).

104

7.2 MPC for DPHeavy Hitters

Algorithm 15 PEM: MPC of FPEM

Input: Noisy user reports 〈𝜁 𝑐𝑑 〉 indicating if their 𝑑 ∈ 𝐷 has prefix 𝑐 (with distributed noise, Sec-
tion 7.1.4), distributed noises 〈𝜌𝑝 〉 per party𝑝 ∈ P, output size 𝑘 , domain bit-length 𝑏 , prefix
extension bit-length𝜂, and DP threshold 𝜏PEM.

Output: DP top-𝑘 .
1: Split users in 𝑔 =

⌈
𝑏−dlog𝑘 e

𝜂

⌉
disjoint groups where𝐷 =

⋃𝑔
𝑖=1𝐷𝑖

2: for group 𝑖 ← 1 to 𝑔 do
3: Initialize arrays 〈𝑆〉, 〈𝐶 〉 of sizes 𝑘, 2 dlog𝑘 e+𝜂 with zeros
4: Initialize array 〈𝐼 〉 ← {〈1〉, . . . , 〈2 dlog𝑘 e+𝜂〉}
5: Initialize 〈𝜌𝜏 〉 ← 〈0〉 and 〈𝜏〉 ← 〈0〉
6: for candidate 𝑐 ← 1 to 2 dlog𝑘 e+𝜂 do
7: for user datum 𝑑 ∈ 𝐷𝑖 do // Gather candidate counts
8: 〈𝐶 [𝑐]〉 ← Add(〈𝐶 [𝑐]〉, 〈𝜁 𝑐𝑑 〉)
9: end for
10: end for
11: Sort candidate indices 〈𝐼 〉 by corresponding counts 〈𝐶 〉 descendingly // Section 7.2
12: for party 𝑝 ∈ P do
13: 〈𝜌𝜏 〉 ← Add(〈𝜌𝜏 〉, 〈𝜌𝑝 〉)
14: end for
15: 〈𝜏〉 ← Add(〈Add(〈𝜏PEM〉, 〈𝜌𝜏 〉)〉, 〈𝐶 [2 dlog𝑘 e+𝜂]〉)
16: for candidate 𝑐 ← 1 to 𝑘 do // DP thresholding on noisy 𝐶
17: 〈𝑏discard〉 ← LE(〈𝐶 [𝑐]〉, 〈𝜏〉)
18: 〈𝑆 [𝑐]〉 ← Mux(〈⊥〉, 〈𝐼 [𝑐]〉, 〈𝑏discard〉)
19: end for
20: return Rec(〈𝑆〉)
21: end for

7.2.3 Running Time Complexity

We analyse the running time of our protocolsHH, PEMw.r.t. the number of basicMPC protocols
– namely, EQ, LE,Mul,Mux,Rec – as detailed in Table 2.3 in Section 2.1.6. Interaction-free proto-
cols, e.g., addition, are omitted, as the parties can compute them locally on secret shares. The
complexity for the required basic protocols is at most𝑂 (𝑙) for 𝑙-bit integers.
Theorem 20. HH has complexity𝑂 (𝑛𝑡).
Proof. For each of the 𝑛 values in𝐷 protocol HH requires: First, 𝑡 equality checks (EQ), compar-
isons (LE), and selections (Mux), to findmatching values and look for an empty index. Then, one
EQ, AND, andNOT operation to set bit 𝑏decrement. For the DP threshold, 𝑡 LE andMux operations
are used. Finally, we sort the small map, i.e.,𝑂 (𝑡 log 𝑡), and reconstruct the 𝑡 counts. Note that 𝑛
is the dominating factor as 𝑡 � 𝑛, i.e., 𝑛𝑡 > 𝑡 log 𝑡 . Overall,HH performs𝑂 (𝑛𝑡) operations.

Theorem 21. PEM with sorting has complexity𝑂 (𝑔 𝑐 log 𝑐), and PEM without sorting has com-
plexity𝑂 (𝑔 𝑐), where 𝑔 =

⌈
𝑏−dlog𝑘 e

𝜂

⌉
and 𝑐 = 2 dlog𝑘 e+𝜂 .

Proof. First, we consider PEM with sorting. For each group PEM sorts all 𝑐 candidates which
requires𝑂 (𝑐 log 𝑐) operations, and performs 𝑘 comparisons (LE) and oblivious selections (Mux).
Finally, 𝑘 (sorted) indices are returned. Overall, PEM with sorting requires𝑂 (𝑐 log 𝑐) operations
per group.

PEM, without sorting, requires 𝑐 comparisons per group to find the lowest candidate count
(used in the threshold). Then, PEM iterates over 𝑐 elements per group (instead of 𝑘 elements as
with sorting). Finally, 𝑐 indicesandcountsare returnedand theparties cansort themthemselves.
Altogether, PEMwithout sorting requires𝑂 (𝑐) operations per group.

105

7 HH& PEM: DP Heavy Hitters

Note that the summationof user reports per prefix candidates (line 8 inAlgorithm15) does not
require any interaction between the computation parties, as addition can be computed locally.

7.2.4 Security

Recall, we consider the semi-honest model introduced by Goldreich [Gol09] where corrupted
protocol participants do not deviate from the protocol but gather everything created during the
run of the protocol. Our protocols HH and PEM consists of multiple subroutines realized with
MPC protocols listed in Table 2.3 and we apply the composition theorem [Gol09, Section 7.3.1]
to analyze the overall security. Basically, protocols based on an ideal functionality remain secure
if the ideal functionality is realized with a secure protocol providing the same functionality. We
implement the ideal functionalities FHH, FPEM asHH,PEMwith secure computation frameworks
MP-SPDZ [Kel20] andSCALE-MAMBA [AKR+20] (andcompare their performance inSection7.3).
Now, we show the existence of simulators as defined in Section 4.1 for our protocols.

Theorem 22. ProtocolHH realizes FHH in the presence of semi-honest adversaries.

Proof. Simulator Sim, given final outputs𝑉 ,𝐶 (i.e., {𝑦𝑖 }𝑖 ∈P) can produce a transcript for realHH

by replacing all secret shared values with randomness. Note that all values in our protocols
are secret shared (marked with 〈·〉) and computationally indistinguishable from randomness
(except with negligible probability in the security parameter for some operations, e.g., integer
comparisons [AKR+20]). The only values that are not secret shared are publicly known iteration
counts (i.e., data size and map size 𝑡 for HH, and number of groups and number of candidates
in PEM). Finally, the simulator ensures the expected reconstruction, i.e, 𝑉 ,𝐶 , is produced by
Rec(𝑉),Rec(𝐶). Here, the corrupted parties, cannot distinguish actual from simulated recon-
struction as they cannot see the actual randomness (secret shares) from the other parties.

Theorem 23. Protocol PEM realizes FPEM in the presence of semi-honest adversaries.

Proof. We focus on a transcript for one group of PEM, which can be extended to all groups. Sim-
ulator Sim, given 𝑆 , produces a transcript of realPEM as follows: As before, Sim replaces all secret
shared values with randomness. Then, in the thresholding step, the index for each candidate 𝑐 ,
i.e., 𝑆 [𝑐] is set such that the reconstruction of 𝑆 provides the expected result.

From Semi-honest to Malicious

We consider semi-honest computation parties and design our protocol accordingly. However,
SCALE-MAMBAprovidesmalicious security, i.e., consistencywithin the computation is ensured
andmalicious tamperingcanbedetected. Weemploy (𝑡 ,𝑚)-secret sharing,whichpreventsup to
𝑡−1maliciousparties to reconstruct the secret. Still,maliciousparties (inputparties or computa-
tion servers) can provide incorrect initial inputs to skew the results, also known as a data poison-
ing attack. Next, we discuss the affect of poisoning attacks on our protocol as well as potential
(but not implemented) mitigations. In general, LDP protocols are vulnerable to data poison-
ing attacks [CSU21, CJG21]. Cryptographic tools, however, can prevent data poisoning attacks
and such attacks have limited impact on our protocols HH and PEM: For HH, each input party
provides a single value, which can change a count by at most 1; thus, a coalition of 𝑟 malicious
parties, can alter the count by at most 𝑟 . For PEM, assuming noise is added by the computation
parties, each input party provides a countper prefix, i.e., a single bit indicating if a prefixmatches

106

7.2 MPC for DPHeavy Hitters

their value’s prefix (1) or not (0). Thus, 𝑟 malicious parties can skew the total count per prefix by
at most 𝑟 when inputting bits. Ensuring that only one bit is set per input reduces the skew to 𝑟
over all prefixes. This is the best we can hope for as malicious parties are not required to provide
the actual inputs from their corrupted parties and can send any bit-vector with a single set bit.
Inmore detail, the following consistency checks are required for PEM. First, each prefix count

𝜁 must be in {0, 1}, which we check as we operate on integers and not bits3. Second, exactly a
single count is 1 and the others 0 per user. As PEM might drop rare prefixes between rounds a
user might report only zeros. To ensure that always exactly a single 1 is reported, an additional
count can be introduced indicating that a user’s datum matches none of the considered prefix
candidates. The additional count simplifies checking as it allows to reveal the sum 𝑠 of counts
per user which is always 1 for valid inputs. Without the additional count 𝑠 cannot be revealed as
𝑠 = 0 leaks that none of the prefixes matched and one must, e.g., securely compare 𝑠 ≤ 1 which
is less efficient. As straightforward comparisons (e.g., 0 ≤ 𝜁 ≤ 1) are expensive for MPC based
on secret sharing, we consider alternatives next. First, for each prefix count 𝑝 = 𝜁 𝑐𝑑𝑗 of prefix
candidate 𝑐 from user 𝑗 , we compute 𝑝 ′ = 𝑝2 − 𝑝 and reveal 𝑝 ′ to check 𝑝 ′ = 0. Note that 𝑝 ′ = 0
only if 𝑝 ∈ {0, 1}, thus, 𝑝 ′ ≠ 0 identifies cheaters. Second, for each user 𝑗 , we reveal the sum
over all prefix candidates, i.e., 𝑠 =

∑
𝑐 ∈C 𝜁 𝑐𝑑𝑗 , and check 𝑠 = 14. Combined with the first check,

this tells us that only a single count was 1 and the others 0. For PEM, we evaluated the overhead
of consistency checks to detect malicious inputs in Section 7.3.4. Similar checks for HH are not
possible, as each party inputs a single value from an unknown domain.

Distributed Noise Generation

Distributed noise generation in the presence of malicious parties is not possible without addi-
tional noise or computation overhead. For example, honest parties have to provide more noise
as the malicious parties might not provide any noise; see, e.g., Ács et al. [ÁC12, Section 8.3] for
a detailed analysis of the required noise increase. To achieve optimal noise magnitudes in the
presence ofmalicious parties the noise canbe sampled securely by evaluating the inverse cumu-
lative density function. Thus, Laplace noise Laplace(𝑏) can be computed as (−1)𝑠𝑏 log(𝑟) given
uniform random 𝑠 ∈ {0, 1}, 𝑟 ∈ (0, 1]5. Similarly, Gumbel noise Gumbel(𝑏) can be computed
as −𝑏 log(− log(𝑟)) for uniform random 𝑟 ∈ (0, 1]. However, securely computing logarithms in-
curs additional computation costs [AS19], whichwe do not consider, as we assume semi-honest
parties like most LDP protocols [EPK14, FPE16a, BS15, BNST17].

Outsourcing

To outsource the computation the 𝑛 input parties send shares of their input to𝑚 computation
parties which run the secure computation on their behalf. The latter can be a subset of the input
parties or non-colluding untrusted servers (e.g., multiple cloud service providers). After sending
their secret shared value forHH or candidate counts for PEM the input parties can go offline.

3 An alternative is to require secret-shared bits as inputs. However, to compute the count per prefix these bits must be
converted to secret-shared integers, which was slower than checking if integers are in {0, 1} in our evaluation.

4 Alternatively, one can compute and reveal sum 𝑠 ′ over all 𝑝′ and check 𝑠 ′ = 0, which requires less reconstructions (a
single reconstruction for 𝑠 ′ instead of one per 𝑝′) if it is sufficient to learn if there was cheating, i.e., 𝑠 ′ ≠ 0, but not
who cheated. Here, identifying cheaters requires, e.g., binary search over reconstructed partial sums to find users with
𝑝′ ≠ 0, which requires interaction for the sequential search steps.

5Uniform random numbers can be generated in a distributedmanner even in amalicious setting, e.g., byXOR-ing ran-
dom inputs from each parties (which is random as long as a single party provides actual randomness) [JWEG18, Sup-
plementaryMaterial], see also Section 5.2.4, or by using the randomness generated in the offline phase [AKR+20].

107

7 HH& PEM: DP Heavy Hitters

7.3 Evaluation

We implement our protocols with SCALE-MAMBA [AKR+20] (malicious security) as well as MP-
SPDZ [Kel20] (semi-honest security) using Shamir secret sharing with honest majority, and de-
fault settings, i.e., 128-bitmodulus and statistical security parameter𝜅 = 40. Code can be largely
re-usedbetween these frameworks asMP-SPDZ [Kel20] is a fork of SCALE-MAMBA’s predecessor
SPDZ2.

Setup

We briefly recall the evaluation setup from Section 4.4.1. We evaluated the running time and
communication of the entire protocol, i.e., offline as well as online phase, in a real-world WAN
for𝑚 = 3 parties. We split the computation parties into two AWS regions, Ohio (us-east-2) and
Frankfurt (eu-central-1), andmeasured an inter-region round time trip (RTT) of approx. 100ms
with 100Mbits/s bandwidth. The computation parties already received and combined secret-
shared inputs from the input users. We present the average of 10 runs for running time and
communication (except MP-SPDZ for HHthreads with 3 runs) and 20 runs for accuracy with 95%
confidence intervals, but omit the intervals inmost cases, as the results are very stable. We used
modest hardware, t2.medium AWS instances (2GB RAM, 4vCPUs) [Ama20b], to show that the
computational overhead of modern MPC is acceptable. More powerful hardware did not pro-
vide significant improvements. Recall, HHthreads is a parallelized version of HH (Section 7.2.1),
which required c4.2xlarge instances (15GB RAM, 8vCPUs) to leverage 8 threads. Also, t2.large
(8GB RAM, 4vCPUs) instances were used for PEM in two settings – MP-SPDZ with𝜂 = 5, 𝑘 = 16,
and SCALE-MAMBA with 𝜂 = 4, 𝑘 = 16 – as more memory was required for these larger pro-
grams. To evaluate running time and communication of HH, we set map size 𝑡 = 𝑘 , and fix it to
16 in our accuracy evaluation (Section 7.3.5). We stress that we evaluated a worst-case scenario
for PEM: Each round assumes that the maximum of 𝑘 prefix candidates are output after thresh-
olding. Fewer outputs decrease computation and communication due to smaller candidate sets
for the next round. Sensitivity Δ > 𝑘 requires less privacy budget if realized with Gumbel noise,
which is not differentially private by itself [DR19a], thus, we cannot release noisy counts and re-
quire sorting.
Next, we describe howwe compare approaches using different notions of differential privacy.

Then, we evaluate the accuracy, running time and communication of our protocols in a real-
worldWAN.

7.3.1 Comparing different DP notions

In our evaluation, we use the same value for 𝜖 to compare our approach to state-of-the-art
PEMorig for heavy hitter detection in the local model. Our protocols, however, operate in the
central model realized withMPC and approximate differential privacy (𝛿 > 0), whereas PEMorig
is a local model protocol with pure differential privacy (𝛿 = 0). The main benefit of approxi-
mate DP is improved composition [DR14, Section 3.5], i.e., running 𝑔 mechanisms on the same
data requires a smaller privacy budget of ≈ √𝑔 𝜖 instead of 𝑔 𝜖 for large enough 𝑔 . However, we
run PEM once per disjoint subsets of the data and not multiple times on the same data. Thus,
we gain no significant advantage over PEMorig from using approximate DP. Furthermore, for an
advantage to become noticeable one requires large values of 𝑔 (see Lemma 1 in Section 2.2.3.)

108

7.3 Evaluation

4 8 16

250
500
750

1,000
1,250

𝑘

S e
co
nd

s

𝑛𝑝 =100
𝑛𝑝 =30
𝑛𝑝 =10

(a) MP-SPDZ:HH

4 8 16

250
500
750

1,000
1,250

𝑘

Se
co
nd

s

𝑛𝑝 =100
𝑛𝑝 =30
𝑛𝑝 =10

(b) MP-SPDZ:HHthreads

4 8 16

200
400
600
800

𝑘

S e
co
nd

s
𝑛𝑝 =100
𝑛𝑝 =30
𝑛𝑝 =10

(c) SCALE-MAMBA:HH

4 8 16

200
400
600
800

𝑘

Se
co
nd

s

𝑛𝑝 =100
𝑛𝑝 =30
𝑛𝑝 =10

(d) SCALE-MAMBA:HHthreads

Figure 7.3: Running time ofHH,HHthreads.

4 8 16
150
175
200
225
250
275
300

𝑘

Se
co
nd

s

𝜂 =5
𝜂 =4
𝜂 =3

(a) MP-SPDZ: PEM, 𝑏 = 32

4 8 16
300
400
500
600
700

𝑘
Se
co
nd

s

𝜂 =5
𝜂 =4
𝜂 =3

(b) MP-SPDZ:PEM, 𝑏 = 64

4 8 16
250
500
750

1,000
1,250
1,500
1,750

𝑘

Se
co
nd

s

𝜂 =4
𝜂 =3
𝜂 =2

(c) SCALE-MAMBA: PEM, 𝑏 = 32

Figure 7.4: Running time of PEM.

7.3.2 Running Time

Figures 7.3, 7.4 show the running times for HH, PEM implemented with MP-SPDZ as well as
SCALE-MAMBAwithdata sizes𝑛𝑝 ∈ {10, 30, 100} per computationparty𝑝 i.e., |𝐷 | ∈ {30, 90, 300}.
To show the difference between HH and HHthreads, we used the same scale for MP-SPDZ (Fig-

ures 7.3a, 7.3b) and SCALE-MAMBA (Figures 7.3c, 7.3d). For MP-SPDZ, the running time with
8 threads increases, whereas it decreases with SCALE-MAMBA. Overall, for HH, and especially
HHthreads, SCALE-MAMBA is faster than MP-SPDZ, requiring at most 11 minutes for HHthreads,
and less than 16 forHH.
The opposite is the case for PEM: MP-SPDZ is much faster, taking less than 6 minutes for𝜂 =

5, whereas SCALE-MAMBA requires almost half an hour for 𝜂 = 4. Note that we used smaller
values of 𝜂 for SCALE-MAMBA (i.e., 𝜂 ∈ {2, 3, 4}) since the differences to MP-SPDZ are already
sufficiently pronounced here.

109

7 HH& PEM: DP Heavy Hitters

4 8 16

25
50
75
100

𝑘

M
Bs𝑛𝑝 =100

𝑛𝑝 =30
𝑛𝑝 =10

(a) MP-SPDZ:HH

4 8 16

25
50
75
100

𝑘

M
Bs𝑛𝑝 =100

𝑛𝑝 =30
𝑛𝑝 =10

(b) MP-SPDZ:HHthreads

4 8 16

200
400
600
800

𝑘

M
Bs𝑛𝑝 =100

𝑛𝑝 =30
𝑛𝑝 =10

(c) SCALE-MAMBA:HH

4 8 16
1,000
2,000
3,000
4,000
5,000

𝑘

M
Bs𝑛𝑝 =100

𝑛𝑝 =30
𝑛𝑝 =10

(d) SCALE-MAMBA:HHthreads

Figure 7.5: Communication per party forHH,HHthreads.

4 8 16

100
200
300
400

𝑘

M
Bs𝜂 =5

𝜂 =4
𝜂 =3

(a) MP-SPDZ: PEM, 𝑏 = 32

4 8 16

200
400
600
800

1,000

𝑘

M
Bs𝜂 =5

𝜂 =4
𝜂 =3

(b) MP-SPDZ: PEM, 𝑏 = 64

4 8 16
250
500
750

1,000
1,250
1,500
1,750

𝑘

M
Bs𝜂 =4

𝜂 =3
𝜂 =2

(c) SCALE-MAMBA: PEM, 𝑏 = 32

Figure 7.6: Communication per party for PEM.

7.3.3 Communication

Figure 7.5 shows the communication per computation party forHH andHHthreads and Figure 7.5
shows the communication for PEM.

Client Communication

ForHH, a client (inputparty) sendsher secret-sharedvalue toeachof the𝑚 servers (computation
parties). In total, a client sends𝑚 ·128 bits (our evaluated share size is 128 bits). ForPEM, a client
sends 2 dlog𝑘 e+𝜂 secret-shared counts, i.e., at most𝑚 · 8𝐾 𝐵 (our largest evaluation with𝜂 = 5, 𝑘 =

16).

Server Communication

As is to be expected, semi-honest MP-SPDZ always sends less than maliciously secure SCALE-
MAMBA. We briefly evaluated MP-SPDZ with malicious security (Section 7.3.6), and found it to

110

7.3 Evaluation

be still more communication-efficient, albeit slower, than SCALE-MAMBA. Next, we discuss the
average communication of HH and PEM per party for 𝑘 = 16. For HH the communication in-
creases linearly with the data size. We consider data size 𝑛𝑝 per computation party 𝑝 ∈ {1, 2, 3},
andMP-SPDZ requires ≈13/38/122MB for 𝑛𝑝 10/30/100. While SCALE-MAMBA provides better
running times than MP-SPDZ for HHthreads, MP-SPDZ requires much less communication, e.g.,
roughly 45 times less for HHthreads with 𝑘 = 16, 𝑛𝑝 = 100 (125MB vs 5.6GB), suggesting superior
communication batching and parallelization from SCALE-MAMBA compared to MP-SPDZ. For
PEM and 𝑏 = 32, MP-SPDZ sends ≈130/258MB and SCALE-MAMBA sends ≈989/1884MB for𝜂
3/4. Doubling the domain bit-length to 64 also roughly doubles the communication. Note that
PEM, unlikeHH, is independentof thedata size, aswenowconsider aggregatedcandidate counts
and not single values.

7.3.4 Malicious Security

HH is maliciously secure when its implementation is maliciously secure. Unlike PEM, there is
no additional check on client inputs for HH. Each HH client inputs a single value from an un-
known domain and malicious clients are not required to input their actual value. However, 𝑟
malicious clients can skew the count of a value by at most 𝑟 . To prevent malicious client inputs
for PEM, however, one can additionally check each input count 𝑝 by computing 𝑝 ′ = 𝑝2 − 𝑝 as
detailed in Section 7.2.4. For 10, 000 operations6 𝑝2 − 𝑝 , we give the average of 10 runs as be-
forewith 95% confidence intervals (omitted if close to zero) on 3 t2.medium instances in aWAN.
SCALE-MAMBAwithmalicious servers requires 32.4±3.9 seconds and 43.5±2.9 MB/party. MP-
SPDZwith semi-honest /malicious servers requires only 1.01 / 3.44±0.3 seconds and 0.32 / 2.88
MB/party (mainly due to a leaner offline phase than SCALE-MAMBA). For 𝑛 = 1, 000 clients and
our largest evaluation with 256 counts per client (i.e., 𝑘 = 16,𝜂 = 5), the checking overhead is
approximately 30 seconds / 90 seconds for MP-SPDZwith semi-honest / malicious servers.

7.3.5 Accuracy

Wemeasure accuracy of 𝑘 heavy hitters likeWang et al. [WLJ19] via normalized cumulative rank
(NCR) as in Definition 16 in Section 4.3. Basically, the most frequent element has score 𝑘 , the
next most frequent one 𝑘 − 1, etc., and NCR is computed as the sum of scores for our (at most 𝑘)
detected heavy hitters divided by the optimal score (∑𝑘

𝑖=1 𝑖).
For the accuracy evaluation, we set Δ = 1, 𝛿 = 10−7, assume domain bit-length 𝑏 = 32, and

report the average of 20 runs with 95% confidence intervals. Like Wang et al. [WLJ19], we use a
synthetic data set sampled from the Zipf distribution with parameter 1.5, i.e., the 𝑗 -th most fre-
quent value appears with probability proportional to 1/𝑗 1.5. We also used prices from an Online
retail data set [ULB19]. Note that we use small data sizes of only a few thousand on purpose, as
this is the most challenging regime for DP, as the ratio of “signal” (i.e., actual counts) to noise
is small. We compare PEM and PEMorig for different values of 𝜂 ∈ {4, 5}, where 𝜂 is given in
brackets (e.g., “PEM(𝜂 = 4)”), as well as with PEMorig with query limit count of 220 (denoted as
“PEMorig”), where𝜂 is set to the largest integer satisfying 𝑔2𝛾+𝜂 < 220 for 𝑔 = d(𝑏 − 𝛾)/𝜂e groups
and 𝛾 = dlog2 𝑘 e as suggested [WLJ19]. Figures 7.7, 7.9, show NCR for PEM with data size 1 000

6 Implemented in a loop with annotation @for_range_parallel() (provided byMP-SPDZ and SCALE-MAMBA) to pro-
cess the loop bodies in parallel as they are independent, i.e., result from loop 𝑖 is not used in loop 𝑖 + 1.

111

7 HH& PEM: DP Heavy Hitters

0.1
0.25

0.5 1 2
0

0.2
0.4
0.6
0.8
1

𝜖

N
CR

HH
PEM(𝜂 =5)
PEM(𝜂 =4)

PEMorig(𝜂 =5)
PEMorig(𝜂 =4)

PEMorig

(a) 𝑘 = 4

0.1
0.25

0.5 1 2
0

0.2
0.4
0.6
0.8
1

𝜖

N
CR

(b) 𝑘 = 8

0.1
0.25

0.5 1 2
0

0.2
0.4
0.6
0.8
1

𝜖

N
CR

(c) 𝑘 = 16

Figure 7.7: NCR of PEM variants andHH for Zipf with fixed 𝑛 = 1000, and varying 𝑘 ∈ {4, 8, 16}, 𝜖 ∈ {0.1, 0.25, 0.5, 1, 2}.

0.1
0.25

0.5 1 2
0

0.2
0.4
0.6
0.8
1

𝜖

N
CR

HH
PEM(𝜂 =5)
PEM(𝜂 =4)

PEMorig(𝜂 =5)
PEMorig(𝜂 =4)

PEMorig

(a) 𝑘 = 4

0.1
0.25

0.5 1 2
0

0.2
0.4
0.6
0.8
1

𝜖
N
CR

(b) 𝑘 = 8

0.1
0.25

0.5 1 2
0

0.2
0.4
0.6
0.8
1

𝜖

N
CR

(c) 𝑘 = 16

Figure 7.8: NCR of PEM variants andHH for Zipf with fixed 𝑛 = 5 000, and varying 𝑘 ∈ {4, 8, 16}, 𝜖 ∈ {0.1, 0.25, 0.5, 1, 2}.

0.1
0.25

0.5 1 2
0

0.2
0.4
0.6
0.8
1

𝜖

N
CR

HH
PEM(𝜂 =5)
PEM(𝜂 =4)

PEMorig(𝜂 =5)
PEMorig(𝜂 =4)

PEMorig

(a) 𝑘 = 4

0.1
0.25

0.5 1 2
0

0.2
0.4
0.6
0.8
1

𝜖

N
CR

(b) 𝑘 = 8

0.1
0.25

0.5 1 2
0

0.2
0.4
0.6
0.8
1

𝜖

N
CR

(c) 𝑘 = 16

Figure 7.9: NCR of PEM variants andHH for retail data [ULB19] with fixed 𝑛 = 1 000, varying 𝑘 ∈ {4, 8, 16},
𝜖 ∈ {0.1, 0.25, 0.5, 1, 2}.

0.1
0.25

0.5 1 2
0

0.2
0.4
0.6
0.8
1

𝜖

N
CR

HH
PEM(𝜂 =5)
PEM(𝜂 =4)

PEMorig(𝜂 =5)
PEMorig(𝜂 =4)

PEMorig

(a) 𝑘 = 4

0.1
0.25

0.5 1 2
0

0.2
0.4
0.6
0.8
1

𝜖

N
CR

(b) 𝑘 = 8

0.1
0.25

0.5 1 2
0

0.2
0.4
0.6
0.8
1

𝜖

N
CR

(c) 𝑘 = 16

Figure 7.10: NCR of PEM variants andHH for retail data [ULB19] with fixed 𝑛 = 5 000, varying 𝑘 ∈ {4, 8, 16},
𝜖 ∈ {0.1, 0.25, 0.5, 1, 2}.

for 𝜖 ∈ {0.1, 0.25, 0.5, 1, 2}, where we vary 𝑘 ∈ {4, 8, 16}. Likewise for Figures 7.8, 7.10, however,
with larger data size 5000.
First, we focus on comparing PEM with PEMorig. Figure 7.7c shows that for large 𝑘 (16) and

small Zipf data size (1 000), the difference between all approaches is not too strong, stillHH,PEM
provide better results. However, when we increase the data size (5 000) in Figure 7.8c the accu-
racy of PEM rises much faster than PEMorig (and its variations with fixed𝜂). We make the same
observation, with the real-world data set in Figures 7.9c, 7.10c, i.e., PEM is more accurate and its

112

7.3 Evaluation

300
1,000 3,000 5,000

0
0.2
0.4
0.6
0.8
1

𝑛

N
CR

HH
PEM(𝜂 =5)
PEM(𝜂 =4)

PEMorig(𝜂 =5)
PEMorig(𝜂 =4)

PEMorig

(a) Zipf

300
1,000 3,000 5,000

0
0.2
0.4
0.6
0.8
1

𝑛

N
CR

HH
PEM(𝜂 =5)
PEM(𝜂 =4)

PEMorig(𝜂 =5)
PEMorig(𝜂 =4)

PEMorig

(b) Retail

Figure 7.11: NCR of PEM variants andHH for fixed 𝜖 = 2, 𝑘 = 16, varying 𝑛 ∈ {300, 1 000, 3 000, 5 000}.

4 8 16
0

0.2
0.4
0.6
0.8
1

𝑘

N
CR

HH
PEM(𝜂 =5)
PEM(𝜂 =4)

PEMorig(𝜂 =5)
PEMorig(𝜂 =4)

PEMorig

(a) Zipf

4 8 16
0

0.2
0.4
0.6
0.8
1

𝑘

N
CR

HH
PEM(𝜂 =5)
PEM(𝜂 =4)

PEMorig(𝜂 =5)
PEMorig(𝜂 =4)

PEMorig

(b) Retail

Figure 7.12: NCR of PEM variants andHH for fixed 𝜖 = 2, 𝑛 = 1 000, varying 𝑘 ∈ {4, 8, 16}.

1 · 105
2 · 105 5 · 105

0
0.2
0.4
0.6
0.8
1

𝑛

N
CRHH

PEM(𝜂 =5)
PEM(𝜂 =4)

PEMorig(𝜂 =5)
PEMorig(𝜂 =4)

(a) Zipf

1 · 105
2 · 105 5 · 105

0
0.2
0.4
0.6
0.8
1

𝑛

N
CRHH

PEM(𝜂 =5)
PEM(𝜂 =4)

PEMorig(𝜂 =5)
PEMorig(𝜂 =4)

(b) Retail

Figure 7.13: NCR of PEM variants andHH for fixed 𝜖 = 0.25, 𝑘 = 16, varying 𝑛 ∈ {105, 2 · 105, 5 · 105 }.

accuracy improves faster when the data size increases. Overall, PEM provides higher accuracy
than PEMorig.
Next, we fix 𝑡 = 16 and compare HH to PEM. The choice of map size 𝑡 provides the following

trade-off: keeping 𝑡 fixed (to a small value)while increasing𝑘 decreases accuracy; however, small
values for 𝑡 provide better efficiency for ourMPC protocol. With data size 1 000 (Figures 7.7, 7.9)
HH provides the best accuracy. For data size 5 000 (Figures 7.8, 7.10) and 𝑘 = 4, HH still provides
the best accuracy, however, PEM improves upon HH for 𝑘 > 4. Altogether, the empirical evalua-
tion confirms our analysis in Section 7.1.3: HH provides better accuracy for small data sizes with
modest values for 𝑡 .
In Figure 7.12 we fix 𝜖 = 2, 𝑛 = 1 000 and vary 𝑘 ∈ {4, 8, 16}. As expected, when we increase

𝑘 while keeping 𝑛 fixed (and small), the accuracy decreases for all evaluated approaches. How-
ever, as shown in Figure 7.11 – where we fix 𝑘 = 16, 𝜖 = 2 and vary 𝑛 ∈ {300, 1000, 3000, 5000}
– increasing the data size improves accuracy, as the candidates receive more counts, which can
more easily surpass the DP thresholds.
Our protocols, especially PEM, also provide higher accuracy than local-model equivalents for

large data sizes, e.g., 105, as visualized in Figure 7.13. We omitted the comparison to PEMorig
with 𝜂 > 5 as the evaluation did not finish after 12 hours on our modest hardware. While HH

113

7 HH& PEM: DP Heavy Hitters

Data 𝑘 HH PEM
(𝜂 = 4)

PEM
(𝜂 = 5) PEMorig

Zipf
4 2.6% 1.6% 2.0% 14.8%
8 4.7% 1.4% 2.3% 16.7%
16 4.0% 0.6% 2.0% 20.0%

Retail
4 1.1% -2.1% -0.5% 6.1%
8 3.6% -0.6% 1.5% 9.2%
16 4.1% 0.0% 1.2% 48.0%

(a) 𝑛 = 1, 000.

Data 𝑘 HH PEM
(𝜂 = 4)

PEM
(𝜂 = 5) PEMorig

Zipf
4 0.9% 2.0% 1.4% 25.0%
8 7.0% 3.4% 5.6% 25.1%
16 5.7% 5.2% 5.0% 47.1%

Retail
4 1.5% 5.3% 10.9% 3.6%
8 4.9% 3.5% 1.0% 15.8%
16 5.0% 7.2% 5.4% 8.1%

(b) 𝑛 = 5, 000.

Table 7.1: (NCR−F1)/NCR for fixed 𝑛, varying 𝑘 ∈ {4, 8, 16} averaged over 𝜖 ∈ {0.1, 0.25, 0.5, 1, 2}.

Data 𝜖 HH PEM
(𝜂 = 4)

PEM
(𝜂 = 5) PEMorig

Zipf

0.1 0.0% 0.0% 0.0% 0.0%
0.25 4.3% 0.0% 0.0% 0.0%
0.5 3.0% 0.0% 0.0% 0.0%
1 5.9% 0.0% 4.3% 50.0%
2 7.0% 3.0% 5.9% 50.0%

Retail

0.1 0.0% 0.0% 0.0% 0.0%
0.25 0.0% 0.0% 0.0% 0.0%
0.5 2.9% 0.0% 0.0% 100.0%
1 9.0% 0.0% 0.0% 100.0%
2 8.6% 0.0% 6.0% 40.0%

(a) 𝑛 = 1, 000.

Data 𝜖 HH PEM
(𝜂 = 4)

PEM
(𝜂 = 5) PEMorig

Zipf

0.1 3.0% 0.0% 0.0% 0.0%
0.25 7.0% 4.3% 3.8% 100.0%
0.5 7.0% 5.7% 5.3% 45.5%
1 5.9% 8.2% 8.7% 46.7%
2 5.9% 7.5% 7.4% 43.3%

Retail

0.1 0.0% 0.0% 0.0% 0.0%
0.25 3.0% 6.3% 3.6% 0.0%
0.5 5.4% 8.1% 7.2% 0.0%
1 8.3% 7.1% 7.6% 0.0%
2 8.2% 14.8% 8.3% 40.6%

(b) 𝑛 = 5, 000.

Table 7.2: (NCR−F1)/NCR for fixed 𝑛 with 𝑘 = 16 and varying 𝜖 ∈ {0.1, 0.25, 0.5, 1, 2}.

(with fixed 𝑡 = 16) is outperformed by PEMorig for large enough data sets, i.e., around 𝑛 = 5 · 105,
PEM already finds almost all 𝑘 heavy hitters for 𝑛 = 105.

F1-Score

We also evaluated accuracy via F1 score, i.e., the harmonicmean of precision and recall (Defini-
tion17 inSection4.3). Next,wecompare the relativedifferenceofNCRtoF1, i.e., (NCR−F1)/NCR.
If NCR is 0, F1 is 0 as well, and we set the relative difference to 0. A positive value means NCR
is larger than F1, which is to be expected. Recall, unlike F1, NCR gives more weight to elements
that appear more frequently. However, negative values are possible (e.g., mode was not found).
Table 7.1a presents the relative difference of NCR to F1 averaged over 𝜖 ∈ {0.1, 0.25, 0.5, 1, 2}

for Zipf and retail data with 𝑛 = 1, 000. Table 7.1b presents the same for 𝑛 = 5, 000. Overall, the
averaged scores for F1 and NCR are very close for our protocols (mostly the difference is below
6%) and further apart forPEMorig (mostly above 6%andup to 48%difference), i.e., our protocols
provide superior F1 scores.
Table 7.2a gives the detailed comparisons for each 𝜖 on Zipf and retail data with 𝑛 = 1, 000 for

fixed 𝑘 = 16. Likewise, Table 7.2b presents the comparison for 𝑛 = 5, 000. Large relative differ-

114

7.3 Evaluation

ences for PEMorig result from its comparatively low scores. For example, PEMorig has NCR=0.1,
F1=0.06 for 𝑘 = 16, 𝑛 = 1, 000, 𝜖 = 2 on retail datawith a small absolute differencesNCR−F1=0.04
leading to a large relative difference of 40% (last row in Table 7.2a).

7.3.6 MPC Frameworks

We deployed SCALE-MAMBA [AKR+20] version 1.3 and MP-SPDZ [Kel20] version 0.1.8 in our
evaluation. Here, we evaluatedHH,HHthreads without the final sorting step.

SCALE-MAMBA: Version 1.3 vs. 1.9

Out-of-the-box, i.e., without adjusting options and runtime switches, SCALE-MAMBA version
1.3was faster than version 1.97 for our protocols. Versions 1.4 to 1.9mainly added featureswhich
our protocols do not rely on (e.g., support for garbled circuits, authenticated bits). We used run-
time switch -dOT from version 1.9, to reduce offline data creation (for features we are not using),
for a fairer comparisonwith1.3. Still, inourbrief evaluation,we found1.9 tobesomewhat slower:

• For PEM with 𝑘 = 8,𝜂 = 2, 𝑏 = 32 runtime increased by around 20% from 1.3 to 1.9 (≈206
vs. 248 s). Without -dOT communication almost doubled (≈237 vs. 460MB), with -dOT it
remained about the same.

• For HHthreads with 𝑘 = 16 runtime increased by around 10% from 1.3 to 1.9 (≈600 vs. 667 s).
Without -dOT communication increased by around 30% (≈5.5 vs. 7.2GB) with -dOT it re-
mained about the same.

MP-SPDZ: Semi-honest vs. Malicious

MP-SPDZ supports semi-honest as well as malicious security for multiple secure computation
paradigms (e.g,. Shamir secret sharing, BMR) [Kel20], whereas SCALE-MAMBA only supports
malicious security. In Section 7.3we evaluated semi-honestMP-SPDZ.Next, we briefly compare
SCALE-MAMBA andMP-SPDZ formaliciously secure Shamir :

• For PEM with 𝑘 = 16,𝜂 = 4, 𝑏 = 32, MP-SPDZ is more than twice as fast than SCALE-
MAMBA (≈14 vs. 30minutes) with around 400MB less communication (≈1.47 vs. 1.88GB).

• ForHHwith 𝑘 = 16 and 𝑛𝑝 = 30 per party𝑝 ∈ {1, 2, 3}, MP-SPDZ is roughly 27% slower than
SCALE-MAMBA (≈6 vs. 4.7 minutes), but requires around 60% less communication (≈192
vs. 313MB).

This suggests that, for malicious security and considering only running time, PEM is more effi-
cient withMP-SPDZ, whereasHH is more efficient with SCALE-MAMBA.

7.3.7 AWS Costs

AWS t2.medium instances cost less than 5 Cents per hour, and communication of 1 GB costs
around2Cents (permonth) [Ama20b]. If onewants tooptimize for cost,we suggest touseanMP-
SPDZ implementation: All ourMP-SPDZevaluations forHH,PEM run in less than30minutesand
require less than 1GB of communication, hence, even our largest MP-SPDZ evaluation cost less
7 Version 1.9 was themost recent version at the time of our evaluation; version 1.10 was released in October 2020.

https://github.com/KULeuven-COSIC/SCALE-MAMBA/commit/9eda34e6c6205279efa320c7be9e3d615cd6d2da

115

https://github.com/KULeuven-COSIC/SCALE-MAMBA/commit/9eda34e6c6205279efa320c7be9e3d615cd6d2da

7 HH& PEM: DP Heavy Hitters

than 5 Cents per computation party. (Except for 𝑘 = 16,𝜂 = 5 which uses t2.large instances that
costs less than 10 Cents per hour.) As a comparison, recall that LDP approach PEMorig requires
up to 220 hash computations for each user input. Our evaluation ofPEMorig – also on t2.medium
instances, without parallelization as this requires additional computational resources – showed
running times of hours compared to theminutes required for PEM.

7.4 Summary

We presented protocols for federated, differentially private top-𝑘 discovery with secure multi-
party computation. Our centralDPapproaches,HH andPEM, providehigher accuracy than local
DPmethods for small number of users, without a trusted third party due to our use of cryptogra-
phy. HH, based onnon-private heavy hitter discovery in data streams [CH10], has a running time
linear in the data size but supports unknown domains, and provides better accuracy than PEM
for very small data sizes, where local DP methods cannot provide meaningful accuracy. PEM,
based onWang et al. [WLJ19], iteratively finds and extends frequent prefixes, is linear in the bit-
length of the data domain, and provides better accuracy thanHH for larger data sizes. We imple-
mentedourprotocolswith twoMPC frameworks [AKR+20,Kel20], compared them, andachieved
practical running times of less than 11minutes in a real-worldWAN.

116

8 Conclusion

First, we summarize the chapters of this thesis in Section 8.1. Then, we briefly discuss directions
for future research in Section 8.2.

8.1 Summary

In Chapter 1, we first motivated and introduced the research question of this thesis:

Can distributed parties efficiently and accurately compute statistics over their small data sets
without revealing secret inputs and ensuring strong privacy guarantees for the output?

Then, we listed our scientific contributions, i.e., efficient protocols securely computing differen-
tially private statisticswithhighaccuracy. Namely,EMmed for rank-based statistics (e.g.,median),
EM∗ for decomposable aggregate functions (e.g., ranks, convex loss functions),HH for heavy hit-
ters (e.g., mode) from unknown domains and PEM for heavy hitters from known domains.
In Chapter 2, we provided basic notations and preliminaries used in the following chapters.

First, cryptographic tools, i.e., garbled circuits and secret sharing; then, anonymization mecha-
nisms, mainly, the Laplace, exponential, and Gumbel mechanism.
In Chapter 3, we described privacy models for DP, mainly, the local, central, and MPCmodel,

and detailed related work, grouped by the privacymodels.
In Chapter 4, we detailed our assessment methodology. We ensured semi-honest security of

our protocols by combining existing, basic MPC protocols via the MPC composition theorem
[Gol09, Section 7.3.1]. Furthermore, we ensured differential privacy of our protocols as they are
composedofexistingDPmechanisms, andwebounded the totalprivacy loss viaDPcomposition
theorems [LLSY16, Section 2.2.2], [DR14, Theorem 3.20]. We assessed the accuracy of our proto-
cols by comparing them to non-private evaluations. We assessed efficiency of our protocols by
measuring their running time and communication in a real-worldWAN (Frankfurt–Ohio).
In Chapter 5, we presented our secure two-party protocol EMmed for rank-based DP statistics.

EMmed is implemented with garbled circuits as well as secret sharing to leverage their respective
benefits, i.e., efficient comparisons and arithmetic operations. Our key insight was that sort-
ing simplifies the utility function for rank-based statistics making it almost data independent.
Thus, allowing local computation of exponentiations for selection weights, and selection over
small data sets instead of the entire data domain. To also support large data sets, we pruned
the data. However, pruning required a privacy relaxation as neighboring data sets might be dis-
tinguishable, which violates differential privacy. Thus, we employed 𝑓 -neighboring, a relaxed
neighboring notion [HMFS17].
In Chapter 6, we expanded from rank-based statistics to a larger class of functions based on

decomposable aggregates without any relaxations. Here, we described our secure multi-party
protocol EM∗ for decomposable aggregate functions. Our main insight was that decomposabil-
ity allows local, partial evaluations of utility scores, which can be efficiently combined. We pre-
sented multiple alternatives for secure exponentiation used in the exponential mechanism. To

117

8 Conclusion

handle large domains, we divided the domain in subranges and iteratively selected increasingly
smaller subranges with highest utility score.
In Chapter 7, we presented our secure multi-party protocols HH and PEM for DP heavy hit-

ters. Decomposability over subranges is not applicable for heavy hitters (see Section 6.1.1), re-
quiring a new approach. Our main insight was that suitable sketches, i.e., space-efficient data
structures, allow efficient MPC for heavy hitters. Related work used sketches which first encode
a datum (e.g., by hashing) and then increase an associated counter. However, mapping datums
(or prefixes) directly to counters avoids searching formatches (e.g., hashing entire domain). Our
protocol HH maps up to 𝑡 values to their (approximate) frequency in the data and supports un-
knowndomains. Our protocolPEMmaps increasingly longer bit-prefixes to their frequency over
disjoint subsets of the data, until the bit-prefixes reach the bit-length of the known domain.
Inconclusion,weanswered the researchquestion in theaffirmativebyprovidingefficientMPC

protocols for accurate DP statistics ensuring input secrecy as well as output privacy. Our proto-
cols provide high accuracywith efficient running times (seconds tominutes) for distributed par-
ties in real-world networks (100ms RTT, 100Mbits/s bandwidth) on modest hardware (mainly,
4 CPU cores at 3.3GHz and 2GB RAM per party).

8.2 Directions for Future Research

Recently, MPC has seen more practical applications and the founding of start-ups with MPC as
their core business enabler1 and differential privacy is already widely applied in the industry.
However, general-purpose combinations of MPC and DP, especially for the exponential mecha-
nism, are too inefficient for real-world deployments despite their desirable security and privacy
guarantees. This thesis presented solutions towards the combined application of MPC and DP
in real-world deployments with acceptable overhead.
A general direction for future research is to further increase the efficiency of MPC protocols.

Our protocols require basic MPC protocols, listed in Section 2.1.6, as building blocks. Improve-
ments of such building blocks directly improves the efficiency of the MPC protocols relying on
them. Alternatively, specialized secure hardware (such as Intel’s SGX and AMD’s SEV) reduces
computational overhead but is vulnerable to various side channel attacks (and, technically, as-
sumes the manufacturer to be a trusted third party). To alleviate side channels based on timing
attacks, one can implement constant-time algorithms, which evaluate all conditional branches
and prevent leakage of data-dependent information, like ourMPC protocols.
Amore specificdirection is to improve theefficiencyof sampling fromthedistribution induced

by the exponential mechanism. To handle large domains, we iteratively applied the exponential
mechanism to select domain subranges of decreasing size or bit-prefixes of increasing length.
An alternative is to find and discard large parts of the domain with negligible probability mass 𝛿
and sample from the remaining domain elements with approximate DP. However, this requires
a certain problem structure, e.g., combinatorial problems [BDB16, GLM+10]. So far, no efficient,
general-purpose equivalent of the exponential mechanism exists for MPC. Hence, specialized
MPC protocols are required for efficient solutions, leveraging insights about the problem struc-
ture to simplify the required computations.

1 For example, https://unboundsecurity.com/ (co-founded by Prof. Y. Lindell and Prof. N. Smart), https://partis
ia.com/ (co-founded by Prof. I. Damgård), https://dualitytech.com/ (co-founded by Prof. S. Goldwasser), https:
//zama.ai/ (CTODr. P. Paillier).

118

https://unboundsecurity.com/
https://partisia.com/
https://partisia.com/
https://dualitytech.com/
https://zama.ai/
https://zama.ai/

Author’s Publications

[BBK17] Jonas Böhler, Daniel Bernau, and Florian Kerschbaum. Privacy-preserving Outlier De-
tection for Data Streams. In IFIP Annual Conference on Data and Applications Security
and Privacy, DBSEC, 2017. http://www.fkerschbaum.org/dbsec17b.pdf.

[BK20a] Jonas Böhler and Florian Kerschbaum. Secure Multi-party Computation of Differ-
entially Private Median. In USENIX Security Symposium, USENIXSec, 2020. https:

//www.usenix.org/system/files/sec20-bohler.pdf.

[BK20b] Jonas Böhler and Florian Kerschbaum. Secure Sublinear Time Differentially Private
MedianComputation. InNetwork andDistributed Systems Security Symposium, NDSS,
2020. https://www.ndss-symposium.org/wp-content/uploads/2020/02/24150-pape

r.pdf.

[BK21] Jonas Böhler and Florian Kerschbaum. Secure Multi-party Computation of Differen-
tially Private Heavy Hitters. In Computer and Communications Security, CCS, 2021.
https://doi.org/10.1145/3460120.3484557.

[Böh21] Jonas Böhler. Secure Computation of Differentially Private Mechanisms. In Sushil Ja-
jodia, Pierangela Samarati, and Moti Yung, editors, Encyclopedia of Cryptography, Se-
curity and Privacy. Springer Berlin Heidelberg, 2021. https://doi.org/10.1007/978-

3-642-27739-9_1714-2.

119

http://www.fkerschbaum.org/dbsec17b.pdf
https://www.usenix.org/system/files/sec20-bohler.pdf
https://www.usenix.org/system/files/sec20-bohler.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24150-paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24150-paper.pdf
https://doi.org/10.1145/3460120.3484557
https://doi.org/10.1007/978-3-642-27739-9_1714-2
https://doi.org/10.1007/978-3-642-27739-9_1714-2

Bibliography

[ABCP13] Miguel Andrés, Nicolás Bordenabe, Konstantinos Chatzikokolakis, and Catuscia
Palamidessi. Geo-Indistinguishability: Differential Privacy forLocation-BasedSys-
tems. In Proceedings of the annual ACM Conference on Computer and Communi-
cations Security, CCS, 2013.

[ABL+17] Daniel Anderson, Pryce Bevan, Kevin Lang, Edo Liberty, Lee Rhodes, and Justin
Thaler. A high-performance algorithm for identifying frequent items in data
streams. In Proceedings of the Internet Measurement Conference, ICM, 2017.

[Abo18] John M. Abowd. The U.S. Census Bureau Adopts Differential Privacy. In Proceed-
ings of the annual ACM SIGKDD International Conference on Knowledge Discovery
& DataMining, KDD, 2018.

[ABPP16] David W. Archer, Dan Bogdanov, Benny Pinkas, and Pille Pullonen. Maturity and
performance of programmable secure computation. In IEEE Symposium on Secu-
rity and Privacy, SP, 2016.

[ABZS13] Mehrdad Aliasgari, Marina Blanton, Yihua Zhang, and Aaron Steele. Secure Com-
putation on Floating Point Numbers. InNetwork and Distributed Systems Security
Symposium, NDSS, 2013.

[ÁC11] Gergely Ács and Claude Castelluccia. I Have a DREAM! (DiffeRentially privatE
smArt Metering). In International Workshop on Information Hiding, IH, 2011.

[ÁC12] Gergely Ács and Claude Castelluccia. DREAM: DiffeRentially privatE smArtMeter-
ing. arXiv preprint arXiv:1201.2531, 2012. https://arxiv.org/pdf/1201.2531.pd

f (Technical Report Version).

[AF10] Ross Anderson and Shailendra Fuloria. On the Security Economics of Electricity
Metering. InWorkshop on the Economics of Information Security, WEIS, 2010.

[AKR+20] Abdelrahaman Aly, Marcel Keller, Dragos Rotaru, Peter Scholl, Nigel P. Smart, and
Tim Wood. SCALE–MAMBA documentation. https://homes.esat.kuleuven.be

/~nsmart/SCALE/, 2020.

[Ama20a] Amazon.com. Amazon Web Services: Instances Types. https://aws.amazon.com

/ec2/instance-types/, 2020.

[Ama20b] Amazon.com. Amazon Web Services: Pricing. https://aws.amazon.com/ec2/pr

icing/on-demand/, 2020.

[AMFD12] Dima Alhadidi, Noman Mohammed, Benjamin CM Fung, and Mourad Debbabi.
Secure distributed framework for achieving 𝜀-differential privacy. In International
Symposium on Privacy Enhancing Technologies Symposium, PETS, 2012.

121

https://arxiv.org/pdf/1201.2531.pdf
https://arxiv.org/pdf/1201.2531.pdf
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

Bibliography

[AMP04] Gagan Aggarwal, Nina Mishra, and Benny Pinkas. Secure Computation of the 𝑘 th-
Ranked Element. In Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, EUROCRYPT, 2004.

[AMP10] Gagan Aggarwal, Nina Mishra, and Benny Pinkas. Secure computation of the me-
dian (and other elements of specified ranks). Journal of Cryptology, 2010.

[And21] Ross Anderson. Security engineering: a guide to building dependable distributed
systems. JohnWiley & Sons, 2021.

[App16] Apple. WWDC 2016: Engineering Privacy for Your Users, 2016. https://develope

r.apple.com/videos/play/wwdc2016/709/.

[App17] Apple. Apple’s Differential Privacy Team: Learning with Privacy at scale,
2017. https://machinelearning.apple.com/2017/12/06/learning-with-priv

acy-at-scale.html.

[AS19] Abdelrahaman Aly and Nigel P Smart. Benchmarking Privacy Preserving Scientific
Operations. In International Conference on Applied Cryptography andNetwork Se-
curity, ACNS, 2019.

[BBC+21] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.
Lightweight techniques for private heavy hitters. In IEEE Symposium on Security
and Privacy, SP, 2021.

[BBGN20] Borja Balle, James Bell, Adria Gascon, and Kobbi Nissim. Private summation in
themulti-message shufflemodel. In Proceedings of the annual ACMConference on
Computer and Communications Security, CCS, 2020.

[BC20] Victor Balcer and Albert Cheu. Separating Local & ShuffledDifferential Privacy via
Histograms. In Conference on Information-Theoretic Cryptography, ITC, 2020.

[BDB16] Jeremiah Blocki, Anupam Datta, and Joseph Bonneau. Differentially Private Pass-
word Frequency Lists. In Network and Distributed Systems Security Symposium,
NDSS, 2016.

[BDO14] Carsten Baum, Ivan Damgård, and Claudio Orlandi. Publicly auditable secure
multi-party computation. In International Conference on Security and Cryptogra-
phy for Networks, SCN, 2014.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias. Semi-
homomorphic encryption and multiparty computation. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, EURO-
CRYPT, 2011.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In An-
nual International Cryptology Conference, CRYPTO, 1991.

[Bea96] DonaldBeaver. Correlatedpseudorandomness and the complexity of private com-
putations. In Proceedings of the annual ACM Symposium on Theory of Computing,
STOC, 1996.

122

https://developer.apple.com/videos/play/wwdc2016/709/
https://developer.apple.com/videos/play/wwdc2016/709/
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html

Bibliography

[BEM+17] Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghu-
nathan, David Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard
Seefeld. Prochlo: Strong privacy for analytics in the crowd. In Proceedings of the
Symposium on Operating Systems Principles, SOSP, 2017.

[BGG+16] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and Pierre-Yves
Strub. Proving differential privacy via probabilistic couplings. In ACM/IEEE Sym-
posium on Logic in Computer Science, LICS, 2016.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computing. In Proceedings of the
annual ACM Symposium on Theory of Computing, STOC, 1988.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled cir-
cuits. In Proceedings of the annual ACM Conference on Computer and Communi-
cations Security, CCS, 2012.

[BICS10] Radu Berinde, Piotr Indyk, GrahamCormode, andMartin J Strauss. Space-optimal
heavy hitters with strong error bounds. ACM Transactions on Database Systems,
2010.

[BIK+16] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical se-
cure aggregation for federated learning onuser-held data. InNeurIPSWorkshop on
Private Multi-Party Machine Learning, 2016.

[BJSV15] Dan Bogdanov,Marko Jõemets, Sander Siim, andMeril Vaht. How the estonian tax
and customs board evaluated a tax fraud detection system based on secure multi-
party computation. In International Conference on Financial Cryptography and
Data Security, FC, 2015.

[BKK+16] Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane, Ville Sokk, and Riivo
Talviste. Students and taxes: a privacy-preserving study using secure computa-
tion. In International Symposium on Privacy Enhancing Technologies Symposium,
PETS, 2016.

[Bla79] George Robert Blakley. Safeguarding cryptographic keys. In International Work-
shop onManaging Requirements Knowledge, MARK, 1979.

[Blo18] BloombergNews. Google andMastercardCut a Secret AdDeal toTrackRetail Sales,
2018.

[BM89] MihirBellareandSilvioMicali. Non-interactiveoblivious transferandapplications.
In Annual International Cryptology Conference, CRYPTO, 1989.

[BMR90] Donald Beaver, SilvioMicali, and Phillip Rogaway. The round complexity of secure
protocols. In Proceedings of the annual ACM Symposium on Theory of Computing,
STOC, 1990.

[BNST17] Raef Bassily, Kobbi Nissim, Uri Stemmer, and AbhradeepGuha Thakurta. Practical
locally private heavyhitters. InAdvances inNeural InformationProcessing Systems,
NeurIPS, 2017.

123

Bibliography

[BO07] Paul Bunn and Rafail Ostrovsky. Secure two-party k-means clustering. In Proceed-
ings of the annual ACM Conference on Computer and Communications Security,
CCS, 2007.

[BS13] Pierre Bosch and Thomas Simon. On the self-decomposability of the Fréchet dis-
tribution. Indagationes Mathematicae, 2013.

[BS15] Raef Bassily and Adam Smith. Local, private, efficient protocols for succinct his-
tograms. In Proceedings of the annual ACM Symposium on Theory of Computing,
STOC, 2015.

[BSRW17] Asia J. Biega, Rishiraj Saha Roy, and Gerhard Weikum. Privacy through solidarity:
A user-utility-preserving framework to counter profiling. In Proceedings of the In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR, 2017.

[BST14] Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk mini-
mization: Efficient algorithms and tight error bounds. In Annual IEEE Symposium
on Foundations of Computer Science, FOCS, 2014.

[BV19] Victor Balcer and Salil Vadhan. Differential Privacy on Finite Computers. Journal
of Privacy and Confidentiality, 2019. https://doi.org/10.29012/jpc.679.

[BWAA18] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima Anand-
kumar. signSGD: Compressed optimisation for non-convex problems. In Pro-
ceedings of the International Conference onMachine Learning, PMLR, 2018. http:

//proceedings.mlr.press/v80/bernstein18a/bernstein18a.pdf.

[BZJ06] Michael Barbaro and TomZeller Jr. A face is exposed for AOL searcher no. 4417749,
2006. New York Times.

[CCMS19] THHubert Chan, Kai-Min Chung, BruceMMaggs, and Elaine Shi. Foundations of
differentially oblivious algorithms. InProceedings of the annual ACMSIAM sympo-
sium on Discrete Algorithms, SODA, 2019.

[CDH10] Octavian Catrina and Sebastiaan De Hoogh. Improved primitives for secure mul-
tiparty integer computation. In International Conference on Security and Cryptog-
raphy for Networks, SCN, 2010.

[CDSKY20] Seung Geol Choi, Dana Dachman-Soled, Mukul Kulkarni, and Arkady Yerukhi-
movich. Differentially-Private Multi-Party Sketching for Large-Scale Statistics. In
Proceedings on Privacy Enhancing Technologies, PETS, 2020.

[CH10] Graham Cormode and Marios Hadjieleftheriou. Methods for finding frequent
items in data streams. The VLDB Journal, 2010.

[CJG21] Xiaoyu Cao, Jinyuan Jia, andNeil Zhenqiang Gong. Data poisoning attacks to local
differential privacy protocols. InUSENIX Security Symposium, USENIXSec, 2021.

[CMS17] CMSCenters forMedicare&MedicaidServices. Complete 2017ProgramYearOpen
Payments Dataset, 2017. https://www.cms.gov/OpenPayments/Explore-the-Da

ta/Dataset-Downloads.html.

124

https://doi.org/10.29012/jpc.679
http://proceedings.mlr.press/v80/bernstein18a/bernstein18a.pdf
http://proceedings.mlr.press/v80/bernstein18a/bernstein18a.pdf
https://www.cms.gov/OpenPayments/Explore-the-Data/Dataset-Downloads.html
https://www.cms.gov/OpenPayments/Explore-the-Data/Dataset-Downloads.html

Bibliography

[CO15] Tung Chou and Claudio Orlandi. The simplest protocol for oblivious transfer. In
International Conference onCryptology and Information Security in Latin America,
LATINCRYPT, 2015.

[CSU+19] Albert Cheu, Adam Smith, Jonathan Ullman, David Zeber, and Maxim Zhilyaev.
Distributed differential privacy via shuffling. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, EUROCRYPT, 2019.

[CSU21] Albert Cheu, Adam Smith, and Jonathan Ullman. Manipulation Attacks in Local
Differential Privacy. In IEEE Symposium on Security and Privacy, SP, 2021.

[CU21] Albert Cheu and JonathanUllman. The limits of panprivacy and shuffleprivacy for
learning and estimation. In Proceedings of the annual ACM Symposium on Theory
of Computing, STOC, 2021.

[CWH+20] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ashwin Machanavajjhala, and
Somesh Jha. Crypt𝜖: Crypto-assisted differential privacy on untrusted servers. In
Proceedings of the annual ACMSIGMOD International Conference onManagement
of data, SIGMOD, 2020.

[DDR20] Jinshuo Dong, David Durfee, and Ryan Rogers. Optimal Differential Privacy Com-
position for Exponential Mechanisms. In Proceedings of the International Confer-
ence on Machine Learning, PMLR, 2020. http://proceedings.mlr.press/v119/

dong20a/dong20a.pdf.

[Des20] Damien Desfontaines. Lowering the cost of anonymization. PhD thesis, ETH
Zürich, 2020.

[DFK+06] IvanDamgård,Matthias Fitzi, Eike Kiltz, Jesper Buus Nielsen, and Tomas Toft. Un-
conditionally secure constant-rounds multi-party computation for equality, com-
parison, bits andexponentiation. InTheoryofCryptographyConference, TCC,2006.

[DH76] Whitfield Diffie andMartin Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 1976.

[DJW13] John C. Duchi, Michael I. Jordan, andMartin J. Wainwright. Local privacy and sta-
tistical minimax rates. In Annual IEEE Symposium on Foundations of Computer
Science, FOCS, 2013.

[DKM+06] Cynthia Dwork, Krishnaram Kenthapadi, FrankMcSherry, Ilya Mironov, andMoni
Naor. Our Data, Ourselves: Privacy Via Distributed Noise Generation. In Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, EUROCRYPT, 2006.

[DKM19] Cynthia Dwork, Nitin Kohli, and DeirdreMulligan. Differential Privacy in Practice:
Expose Your Epsilons! Journal of Privacy and Confidentiality, 2019. https://doi.

org/10.29012/jpc.689.

[DKS+21] Zeyu Ding, Daniel Kifer, Thomas Steinke, Yuxin Wang, Yingtai Xiao, Danfeng
Zhang, et al. The permute-and-flip mechanism is identical to report-noisy-max
with exponential noise. arXiv preprint arXiv:2105.07260, 2021. https://arxiv.or

g/pdf/2105.07260.pdf.

125

http://proceedings.mlr.press/v119/dong20a/dong20a.pdf
http://proceedings.mlr.press/v119/dong20a/dong20a.pdf
https://doi.org/10.29012/jpc.689
https://doi.org/10.29012/jpc.689
https://arxiv.org/pdf/2105.07260.pdf
https://arxiv.org/pdf/2105.07260.pdf

Bibliography

[DKY17] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting Telemetry Data
Privately. In Advances in Neural Information Processing Systems, NeurIPS, 2017.

[DL09] Cynthia Dwork and Jing Lei. Differential privacy and robust statistics. In Proceed-
ings of the annual ACM Symposium on Theory of Computing, STOC, 2009.

[DMHVB13] Yves-Alexandre De Montjoye, César A Hidalgo, Michel Verleysen, and Vincent D
Blondel. Unique in the crowd: The privacy bounds of human mobility. Scientific
reports, 2013.

[DMNS06] CynthiaDwork, FrankMcSherry, KobbiNissim, andAdamSmith. Calibratingnoise
to sensitivity in private data analysis. In Theory of Cryptography Conference, TCC,
2006.

[DMRS+15] Yves-Alexandre De Montjoye, Laura Radaelli, Vivek Kumar Singh, et al. Unique in
the shoppingmall: On the reidentifiability of credit cardmetadata. Science, 2015.

[DN03] Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy.
In Proceedings of the ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, PODS, 2003.

[DP20] Damien Desfontaines and Balázs Pejó. SoK: Differential Privacies. In Privacy En-
hancing Technologies Symposium, PETS, 2020.

[DPSZ12] IvanDamgård, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty compu-
tation from somewhat homomorphic encryption. In Annual International Cryp-
tology Conference, CRYPTO, 2012.

[DR14] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential pri-
vacy. Foundations and Trends in Theoretical Computer Science, 2014.

[DR19a] DavidDurfee andRyanRogers. PracticalDifferentially PrivateTop-𝑘 Selectionwith
Pay-what-you-get Composition. arXiv preprint arXiv:1905.04273, 2019. (Extended
version). https://arxiv.org/abs/1905.04273.

[DR19b] DavidDurfee andRyanRogers. PracticalDifferentially PrivateTop-𝑘 Selectionwith
Pay-what-you-get Composition. InAdvances inNeural InformationProcessing Sys-
tems, NeurIPS, 2019.

[DSZ15a] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A Framework
for Efficient Mixed-Protocol Secure Two-Party Computation. InNetwork and Dis-
tributed Systems Security Symposium, NDSS, 2015.

[DSZ15b] Cynthia Dwork, Weijie Su, and Li Zhang. Private false discovery rate control. arXiv
preprint arXiv:1511.03803, 2015. https://arxiv.org/abs/1511.03803.

[Dwo06] Cynthia Dwork. Differential Privacy. In International Colloquium on Automata,
Languages, and Programming, ICALP, 2006.

[Dwo08] CynthiaDwork. Differential privacy: A surveyof results. In International conference
on theory and applications of models of computation, TAMC, 2008.

126

https://arxiv.org/abs/1905.04273
https://arxiv.org/abs/1511.03803

Bibliography

[EKM+14] Fabienne Eigner, Aniket Kate, Matteo Maffei, Francesca Pampaloni, and Ivan Pry-
valov. Differentially private data aggregation with optimal utility. In Proceedings of
the Annual Computer Security Applications Conference, ACSAC, 2014.

[EKR+18] David Evans, Vladimir Kolesnikov,Mike Rosulek, et al. A pragmatic introduction to
secure multi-party computation. Foundations and Trends® in Privacy and Secu-
rity, 2018.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on dis-
crete logarithms. IEEE Transactions on Information Theory, 1985.

[Eng18] Engineering Cryptographic Protocols Group (Encrypto, TU Darmstadt). ABY doc-
umentation. https://www.informatik.tu-darmstadt.de/media/encrypto/encr

ypto_code/abydevguide.pdf, 2018.

[EPK14] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized ag-
gregatable privacy-preserving ordinal response. In Proceedings of the annual ACM
Conference on Computer and Communications Security, CCS, 2014.

[Eur12] European Data Protection Supervisor. Opinion of the European Data Protection
Supervisor on the Commission Recommendation on preparations for the roll-out
of smart metering systems, 2012. https://edps.europa.eu/data-protection/o

ur-work/publications/opinions/smart-metering-systems_en.

[FPE16a] Giulia Fanti, Vasyl Pihur, and Úlfar Erlingsson. Building a RAPPOR with the un-
known: Privacy-preserving learning of associations and data dictionaries. In Pro-
ceedings on Privacy Enhancing Technologies, PETS, 2016.

[FPE16b] Giulia Fanti, Vasyl Pihur, and Úlfar Erlingsson. Building a RAPPOR with the un-
known: Privacy-preserving learning of associations and data dictionaries. arXiv
preprint arXiv:1503.01214, 2016. (Extended Version). https://arxiv.org/pdf/

1503.01214.pdf.

[GAM19] Simson Garfinkel, John M Abowd, and Christian Martindale. Understanding
database reconstructionattacksonpublicdata.Communicationsof theACM, 2019.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings
of the annual ACM Symposium on Theory of Computing, STOC, 2009.

[GK07] Daniel H Greene and Donald E Knuth. Mathematics for the Analysis of Algorithms.
Springer Science & Business Media, 2007.

[GKM+16] Vipul Goyal, Dakshita Khurana, IlyaMironov, Omkant Pandey, and Amit Sahai. Do
distributed differentially-private protocols require oblivious transfer? In Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP, 2016.

[GKMP20] Badih Ghazi, Ravi Kumar, Pasin Manurangsi, and Rasmus Pagh. Private counting
from anonymous messages: Near-optimal accuracy with vanishing communica-
tion overhead. In International Conference onMachine Learning, ICML, 2020.

[GKPL94] Ronald L Graham, Donald E Knuth, Oren Patashnik, and Stanley Liu. Concrete
Mathematics: A Foundation for Computer Science. Addison-Wesley, 1994.

127

https://www.informatik.tu-darmstadt.de/media/encrypto/encrypto_code/abydevguide.pdf
https://www.informatik.tu-darmstadt.de/media/encrypto/encrypto_code/abydevguide.pdf
https://edps.europa.eu/data-protection/our-work/publications/opinions/smart-metering-systems_en
https://edps.europa.eu/data-protection/our-work/publications/opinions/smart-metering-systems_en
https://arxiv.org/pdf/1503.01214.pdf
https://arxiv.org/pdf/1503.01214.pdf

Bibliography

[GLM+10] AnupamGupta, KatrinaLigett, FrankMcSherry, AaronRoth, andKunalTalwar. Dif-
ferentially private combinatorial optimization. In Proceedings of the annual ACM
SIAM symposium on Discrete Algorithms, SODA, 2010.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of computer
and system sciences, 1984.

[GMP16] IvanGazeau, DaleMiller, andCatuscia Palamidessi. Preserving differential privacy
under finite precision semantics. In Theoretical Computer Science, TCS, 2016.

[GMW87] OdedGoldreich, SilvioMicali, andAviWigderson. How toplay anymental game. In
Proceedings of the annual ACM Symposium on Theory of Computing, STOC, 1987.

[Gol09] OdedGoldreich. Foundations ofCryptography: Volume2, Basic Applications. Cam-
bridge university press, 2009.

[Goo19] GoogleDevelopers Blog. Enabling developers and organizations to use differential
privacy, 2019. https://developers.googleblog.com/2019/09/enabling-develo

pers-and-organizations.html.

[GRR98] Rosario Gennaro, Michael O Rabin, and Tal Rabin. Simplified VSS and fast-track
multiparty computationswith applications to threshold cryptography. InProceed-
ings of the annual ACM Symposium on Principles of distributed computing, PODC,
1998.

[Gum48] Emil Julius Gumbel. Statistical theory of extreme values and some practical appli-
cations: a series of lectures. US Government Printing Office, 1948.

[GX17] Slawomir Goryczka and Li Xiong. A comprehensive comparison of multiparty se-
cure additions with differential privacy. In IEEE Transactions on Dependable and
Secure Computing, TDSC, 2017.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are garbled
circuits better than customprotocols? InNetwork andDistributed Systems Security
Symposium, NDSS, 2012.

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party
computation using garbled circuits. InUSENIX Security Symposium, USENIXSec,
2011.

[HHNZ19] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic. SoK:
General purpose compilers for secure multi-party computation. In IEEE Sympo-
sium on Security and Privacy, SP, 2019.

[HKR12] Justin Hsu, Sanjeev Khanna, and Aaron Roth. Distributed private heavy hitters.
In International Colloquium on Automata, Languages, and Programming, ICALP,
2012.

[HL10] Carmit Hazay and Yehuda Lindell. Efficient secure two-party protocols: Techniques
and constructions. Springer Science & Business Media, 2010.

128

https://developers.googleblog.com/2019/09/enabling-developers-and-organizations.html
https://developers.googleblog.com/2019/09/enabling-developers-and-organizations.html

Bibliography

[HLK+17] MikkoHeikkilä, Eemil Lagerspetz, SamuelKaski, KanaShimizu, SasuTarkoma, and
Antti Honkela. Differentially private Bayesian learning on distributed data. In Ad-
vances in Neural Information Processing Systems, NeurIPS, 2017.

[HLM17] Naoise Holohan, Douglas J Leith, and Oliver Mason. Optimal differentially private
mechanisms for randomised response. IEEETransactions on InformationForensics
and Security, 2017.

[HMFS17] Xi He, Ashwin Machanavajjhala, Cheryl Flynn, and Divesh Srivastava. Compos-
ing Differential Privacy and Secure Computation: A case study on scaling private
record linkage. In Proceedings of the annual ACM Conference on Computer and
Communications Security, CCS, 2017.

[IKN+17] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth,
David Shanahan, andMoti Yung. Private Intersection-Sum Protocol with Applica-
tions to Attributing Aggregate Ad Conversions. Cryptology ePrint Archive, Report
2017/738, 2017. https://eprint.iacr.org/2017/738.

[IKN+20] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn
Seth, Mariana Raykova, David Shanahan, and Moti Yung. On Deploying Secure
Computing: Private Intersection-Sum-with-Cardinality. In IEEE European Sympo-
sium on Security and Privacy, EuroS&P, 2020.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious trans-
fers efficiently. In Annual International Cryptology Conference, CRYPTO, 2003.

[IKOS06] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography from
anonymity. In Annual IEEE Symposium on Foundations of Computer Science,
FOCS, 2006.

[Ilv20] Christina Ilvento. Implementing the Exponential Mechanism with Base-2 Differ-
ential Privacy. InProceedingsof theannualACMConferenceonComputerandCom-
munications Security, CCS, 2020.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of
one-way permutations. In Proceedings of the annual ACM Symposium on Theory
of Computing, STOC, 1989.

[JWEG18] Bargav Jayaraman, Lingxiao Wang, David Evans, and Quanquan Gu. Distributed
learning without distress: Privacy-preserving empirical risk minimization. In Ad-
vances in Neural Information Processing Systems, NeurIPS, 2018.

[Kag18] Kaggle.com. Walmart Supply Chain: Import and Shipment. https://www.kaggle

.com/sunilp/walmart-supply-chain-data/data, 2018. Retrieved: October, 2019,
https://www.kaggle.com/sunilp/walmart-supply-chain-data/data.

[Kam15] Liina Kamm. Privacy-preserving statistical analysis using secure multi-party com-
putation. PhD thesis, University of Tartu, 2015.

[Kel20] Marcel Keller. MP-SPDZ: A Versatile Framework for Multi-Party Computation. In
Proceedings of the annual ACM Conference on Computer and Communications Se-
curity, CCS, 2020.

129

https://eprint.iacr.org/2017/738
https://www.kaggle.com/sunilp/walmart-supply-chain-data/data
https://www.kaggle.com/sunilp/walmart-supply-chain-data/data
https://www.kaggle.com/sunilp/walmart-supply-chain-data/data

Bibliography

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of the an-
nual ACM Symposium on Theory of Computing, STOC, 1988.

[KKP12] Samuel Kotz, Tomasz Kozubowski, and Krzystof Podgorski. The Laplace distribu-
tionandgeneralizations: a revisitwithapplications to communications, economics,
engineering, and finance. Springer Science & Business Media, 2012.

[KLN+11] Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova,
and Adam Smith. What canwe learn privately? SIAM Journal on Computing, 2011.

[KM11] Daniel Kifer and Ashwin Machanavajjhala. No free lunch in data privacy. In Pro-
ceedings of the annual ACM SIGMOD International Conference on Management of
data, SIGMOD, 2011.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: making SPDZ great
again. In Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, EUROCRYPT, 2018.

[KRSW18] Marcel Keller, Dragos Rotaru, Nigel P Smart, and TimWood. Reducing communi-
cation channels inMPC. In International Conference on Security andCryptography
for Networks, SCN, 2018.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In International ColloquiumonAutomata, Languages, and
Programming, ICALP, 2008.

[KSS09] Vladimir Kolesnikov, Ahmad-Reza Sadeghi, and Thomas Schneider. Improved gar-
bled circuit building blocks and applications to auctions and computing minima.
In International Conference on Cryptology andNetwork Security, ACNS, 2009. (Full
version).

[Lin20] Yehuda Lindell. Secure Multiparty Computation (MPC). Communications of the
ACM, 2020.

[LJA+18] Andrei Lapets, Frederick Jansen, KinanDak Albab, Rawane Issa, Lucy Qin,Mayank
Varia, and Azer Bestavros. Accessible privacy-preserving web-based data analy-
sis for assessing and addressing economic inequalities. In Proceedings of the ACM
SIGCAS Conference on Computing and Sustainable Societies, COMPASS, 2018.

[LK15] Peeter Laud and Liina Kamm. Applications of secure multiparty computation. Ios
Press, 2015.

[LLSY16] NinghuiLi,MinLyu,DongSu, andWeiningYang. Differential Privacy: FromTheory
to Practice. Synthesis Lectures on Information Security, Privacy, & Trust, 2016.

[LLV07] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. 𝑡 -closeness: Privacy
beyond 𝑘-anonymity and 𝑙-diversity. In International Conference on Data Engi-
neering, ICDE, 2007.

[LP09] Yehuda Lindell and Benny Pinkas. A Proof of Security of Yao’s Protocol for Two-
Party Computation. Journal of Cryptology, 2009.

130

Bibliography

[Mau06] UeliMaurer. Securemulti-party computationmadesimple.DiscreteAppliedMath-
ematics, 2006.

[McS09] Frank McSherry. Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. In Proceedings of the annual ACMSIGMOD International
Conference onManagement of data, SIGMOD, 2009.

[McS16] Frank McSherry. Differential privacy and Demographics. https://github.com/f

rankmcsherry/blog/blob/master/posts/2016-02-06.md, 2016.

[MDDC16] LucaMelis, GeorgeDanezis, andEmilianoDeCristofaro. Efficient Private Statistics
with Succinct Sketches. In Network and Distributed Systems Security Symposium,
NDSS, 2016.

[Mei18] Sebastian Meiser. Approximate and Probabilistic Differential Privacy Definitions.
Cryptology ePrint Archive, Report 2018/227, 2018. (Technical Report) https://ep

rint.iacr.org/2018/277.

[MG82] Jayadev Misra and David Gries. Finding repeated elements. Science of computer
programming, 1982.

[MG20] Andrés Muñoz Medina and Jenny Gillenwater. Duff: A Dataset-Distance-
Based Utility Function Family for the Exponential Mechanism. arXiv preprint
arXiv:2010.04235, 2020. https://arxiv.org/abs/2010.04235.

[Mic20a] Microsoft &HarvardUniversity’s Privacy Tools andPrivacy Insights projects. Snap-
pingMechanismNotes. https://github.com/opendp/smartnoise-core/tree/de

velop/whitepapers/mechanisms/snapping, 2020.

[Mic20b] Microsoft & Harvard University’s Privacy Tools and Privacy Insights projects. The
Exponential Mechanism for Medians. https://github.com/opendp/smartnoise-

core/blob/develop/whitepapers/mechanisms/exponential_median/, 2020.

[Mir12] Ilya Mironov. On significance of the least significant bits for differential privacy.
In Proceedings of the annual ACM Conference on Computer and Communications
Security, CCS, 2012.

[MKGV07] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrish-
nan Venkitasubramaniam. 𝑙-diversity: Privacy beyond 𝑘-anonymity. ACM Trans-
actions on Knowledge Discovery fromData, 2007.

[MM08] DavidMazieres and DamienMiller. Source of arc4random.c, 2008.

[MMP+10] Andrew McGregor, Ilya Mironov, Toniann Pitassi, Omer Reingold, Kunal Talwar,
and Salil Vadhan. The limits of two-party differential privacy. In Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS, 2010.

[MMSF+10] Andrés Molina-Markham, Prashant Shenoy, Kevin Fu, Emmanuel Cecchet, and
David Irwin. Privatememoirs of a smartmeter. InProceedings of theACMworkshop
on embedded sensing systems for energy-efficiency in building, BuildSys, 2010.

[MPRV09] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. Computational
differential privacy. InAnnual InternationalCryptologyConference, CRYPTO, 2009.

131

https://github.com/frankmcsherry/blog/blob/master/posts/2016-02-06.md
https://github.com/frankmcsherry/blog/blob/master/posts/2016-02-06.md
https://eprint.iacr.org/2018/277
https://eprint.iacr.org/2018/277
https://arxiv.org/abs/2010.04235
https://github.com/opendp/smartnoise-core/tree/develop/whitepapers/mechanisms/snapping
https://github.com/opendp/smartnoise-core/tree/develop/whitepapers/mechanisms/snapping
https://github.com/opendp/smartnoise-core/blob/develop/whitepapers/mechanisms/exponential_median/
https://github.com/opendp/smartnoise-core/blob/develop/whitepapers/mechanisms/exponential_median/

Bibliography

[MT07] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In
Annual IEEE Symposium on Foundations of Computer Science, FOCS, 2007.

[MTM14] Chris J Maddison, Daniel Tarlow, and Tom Minka. A* sampling. In Advances in
Neural Information Processing Systems, NeurIPS, 2014.

[MV16] JackMurtagh and Salil Vadhan. The complexity of computing the optimal compo-
sition of differential privacy. In Theory of Cryptography Conference, TCC, 2016.

[NP01] MoniNaor andBenny Pinkas. Efficient oblivious transfer protocols. InProceedings
of the annual ACM SIAM symposium on Discrete Algorithms, SODA, 2001.

[NPR19] Moni Naor, Benny Pinkas, and Eyal Ronen. How to (not) share a password: Pri-
vacy preserving protocols for finding heavy hitters with adversarial behavior. In
Proceedings of the annual ACM Conference on Computer and Communications Se-
curity, CCS, 2019.

[NPS99] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and
mechanism design. In Proceedings of the ACM conference on Electronic commerce,
EC, 1999.

[NRS07] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and
sampling in private data analysis. In Proceedings of the annual ACM Symposium
on Theory of Computing, STOC, 2007.

[NRVW20] Seth Neel, Aaron Roth, Giuseppe Vietri, and Zhiwei Steven Wu. Oracle Efficient
Private Non-Convex Optimization. In Proceedings of the International Conference
onMachine Learning, PMLR, 2020. https://proceedings.icml.cc/static/paper

_files/icml/2020/354-Paper.pdf.

[NS08] ArvindNarayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse
datasets. In IEEE Symposium on Security and Privacy, SP, 2008.

[NSR11] ArvindNarayanan, Elaine Shi, and Benjamin IP Rubinstein. Link prediction by de-
anonymization: How we won the kaggle social network challenge. In The Interna-
tional Joint Conference on Neural Networks, IJCNN, 2011.

[NW18] Kobbi Nissim and AlexandraWood. Is privacy privacy? Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. InAnnual InternationalConferenceon theTheoryandApplicationsofCryp-
tographic Techniques, EUROCRYPT, 1999.

[PBS12] Pille Pullonen, Dan Bogdanov, and Thomas Schneider. The design and implemen-
tation of a two-party protocol suite for Sharemind 3. CYBERNETICA Institute of
Information Security, Tech. Rep., 2012.

[PL15] Martin Pettai and Peeter Laud. Combining differential privacy and secure multi-
party computation. In Proceedings of the Annual Computer Security Applications
Conference, ACSAC, 2015.

132

https://proceedings.icml.cc/static/paper_files/icml/2020/354-Paper.pdf
https://proceedings.icml.cc/static/paper_files/icml/2020/354-Paper.pdf

Bibliography

[Rab81] MoRabin. How to Exchange Secrets byOblivious Transfer. TechnicalMemo TR-81,
1981.

[RN10] Vibhor Rastogi and Suman Nath. Differentially private aggregation of distributed
time-serieswith transformation and encryption. InProceedings of the annual ACM
SIGMOD International Conference onManagement of data, SIGMOD, 2010.

[Rog20] Ryan Rogers. A Differentially Private Data Analytics API at Scale. InUSENIX Con-
ference on Privacy Engineering Practice and Respect, PEPR, 2020.

[RSA78] Ronald L Rivest, Adi Shamir, and Leonard Adleman. Amethod for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM, 1978.

[RSK+10] Indrajit Roy, Srinath TV Setty, Ann Kilzer, Vitaly Shmatikov, and Emmett Witchel.
Airavat: Security andprivacy forMapReduce. InUSENIXSymposiumonNetworked
Systems Design and Implementation, NSDI, 2010.

[RSP+20] RyanRogers, SubbuSubramaniam, SeanPeng,DavidDurfee, SeunghyunLee, San-
tosh Kumar Kancha, Shraddha Sahay, and Parvez Ahammad. LinkedIn’s Audi-
ence Engagements API: A Privacy Preserving Data Analytics System at Scale. arXiv
preprint arXiv:2002.05839, 2020. https://arxiv.org/abs/2002.05839.

[Sam01] Pierangela Samarati. Protecting respondents identities in microdata release. IEEE
Transactions on Knowledge and Data Engineering, 2001.

[Sec09] SecureSCM. Security Analysis, 2009. Deliverable D9.2, EU FP7 Project Secure Sup-
ply ChainManagement (SecureSCM).

[SH12] Mudhakar Srivatsa and Mike Hicks. Deanonymizing mobility traces: Using social
network as a side-channel. In Proceedings of the annual ACM Conference on Com-
puter and Communications Security, CCS, 2012.

[Sha79] Adi Shamir. How to share a secret. Communications of the ACM, 1979.

[Soo18] Gaurav Sood. California Public Salaries Data, 2018. https://doi.org/10.7910/

DVN/KA3TS8.

[SS98] Pierangela Samarati and Latanya Sweeney. Protecting privacy when disclosing in-
formation: 𝑘-anonymity and its enforcement through generalization and suppres-
sion. Technical Report, SRI International, 1998.

[STU17] AdamSmith, AbhradeepThakurta, and JalajUpadhyay. Is interactionnecessary for
distributed private learning? In IEEE Symposiumon Security and Privacy, SP, 2017.

[TKZ16] Hassan Takabi, Samir Koppikar, and Saman Taghavi Zargar. Differentially Private
Distributed Data Analysis. In IEEE International Conference on Collaboration and
Internet Computing, CIC, 2016.

[TLC19] TLC: NYC Taxi and Limousine Commision. Trip Record Data, January 1-5, 2019,
2019. https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

[ULB18] ULBMachine Learning Group. Credit Card Fraud Detection, 2018. https://www.

kaggle.com/mlg-ulb/creditcardfraud/data.

133

https://arxiv.org/abs/2002.05839
https://doi.org/10.7910/DVN/KA3TS8
https://doi.org/10.7910/DVN/KA3TS8
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.kaggle.com/mlg-ulb/creditcardfraud/data
https://www.kaggle.com/mlg-ulb/creditcardfraud/data

Bibliography

[ULB19] ULBMachine Learning Group. Online Retail, 2019. https://archive.ics.uci.ed

u/ml/datasets/Online+Retail+II.

[US 18] US Census Bureau. American Community Survey 2018, 2018. https://data.cen

sus.gov.

[Vad17] Salil Vadhan. Thecomplexityofdifferentialprivacy. InTutorials on theFoundations
of Cryptography. Springer, 2017.

[War65] Stanley L Warner. Randomized response: A survey technique for eliminating eva-
sive answer bias. Journal of the American Statistical Association, 1965.

[WBLJ17] Tianhao Wang, Jeremiah Blocki, Ninghui Li, and Somesh Jha. Locally differen-
tially private protocols for frequency estimation. InUSENIX Security Symposium,
USENIXSec, 2017.

[WGSX20] Di Wang, Marco Gaboardi, Adam Smith, and Jinhui Xu. Empirical Risk Minimiza-
tion in the Non-interactive Local Model of Differential Privacy. Journal of Machine
Learning Research, 2020. http://jmlr.org/papers/v21/19-253.html.

[WHMM21] Sameer Wagh, Xi He, Ashwin Machanavajjhala, and Prateek Mittal. DP-
cryptography: Marrying differential privacy and cryptography in emerging appli-
cations. Communications of the ACM, 2021.

[WLJ19] Tianhao Wang, Ninghui Li, and Somesh Jha. Locally differentially private heavy
hitter identification. In IEEE Transactions on Dependable and Secure Computing,
TDSC, 2019.

[WZL+20] Royce J Wilson, Celia Yuxin Zhang, William Lam, Damien Desfontaines, Daniel
Simmons-Marengo, and Bryant Gipson. Differentially private SQL with bounded
user contribution. In International SymposiumonPrivacy Enhancing Technologies
Symposium, PETS, 2020.

[Yao86] AndrewChi-Chih Yao. How to generate and exchange secrets. InAnnual IEEE Sym-
posium on Foundations of Computer Science, FOCS, 1986.

[YCKB18] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-
robust distributed learning: Towards optimal statistical rates. In Proceedings of the
International Conference on Machine Learning, PMLR, 2018. http://proceeding

s.mlr.press/v80/yin18a/yin18a.pdf.

[ZKM+20] Wennan Zhu, Peter Kairouz, BrendanMcMahan, Haicheng Sun, andWei Li. Feder-
atedHeavyHitters Discovery withDifferential Privacy. In International Conference
on Artificial Intelligence and Statistics, AISTATS, 2020. http://proceedings.mlr.

press/v108/zhu20a/zhu20a.pdf.

134

https://archive.ics.uci.edu/ml/datasets/Online+Retail+II
https://archive.ics.uci.edu/ml/datasets/Online+Retail+II
https://data.census.gov
https://data.census.gov
http://jmlr.org/papers/v21/19-253.html
http://proceedings.mlr.press/v80/yin18a/yin18a.pdf
http://proceedings.mlr.press/v80/yin18a/yin18a.pdf
http://proceedings.mlr.press/v108/zhu20a/zhu20a.pdf
http://proceedings.mlr.press/v108/zhu20a/zhu20a.pdf

	Introduction
	Motivation
	Research Question
	Contributions
	Our Protocols: EM-med, EM*, HH, PEM
	Structure

	Preliminaries
	Secure Multi-party Computation
	Security Models
	Primitives & Paradigms
	Garbled Circuits
	Secret Sharing
	Conversion between Additive Secret Shares & Garbling
	Basic MPC protocols

	Differential Privacy
	From Syntactic to Semantic Notions of Privacy
	Computational Differential Privacy
	Properties of Differential Privacy
	Mechanisms
	Distributed Noise Generation

	Related Work
	Privacy Models
	MPC and DP
	Data Pruning & Domain Reduction
	Limited Machine Precision and Privacy Violations
	Decomposability
	DP Median
	Sensitivity and Utility Functions for DP Median
	DP Median and Privacy Models

	DP Heavy Hitters

	Methodology
	Security Assessment
	Privacy Assessment
	Accuracy Assessment
	Efficiency Assessment
	Evaluation Setup
	Running Time
	Communication

	MPC Frameworks

	EM-med: DP Median
	Building Blocks for DP Median Selection
	Chapter-specific Notation
	Ideal Functionality
	Utility with Static Access Pattern
	Median Sampling
	Input Pruning & Utility
	Accuracy & Maximum Number of Pruning Steps

	Secure Sublinear Time Differentially Private Median Computation
	Protocol Description
	Sorting via Garbled Circuits
	Exponentiation and Arithmetics
	Selection via Garbled Circuits
	Running Time Complexity
	Security
	Extensions: Outsourcing, Multiple Parties, Malicious Model

	Evaluation
	Running Time
	Consistency Checking Overhead
	Prune-neighboring
	Sampling
	Absolute Error with and without Pruning
	Circuit size & Communication
	Comparison to Related Work

	Summary

	EM*: Decomposable DP Aggregate Functions
	EM & Decomposability
	Decomposability & Applications
	Decomposable Median Utility Function
	Ideal Functionality for EM
	Ideal Functionality for GM
	Accuracy of DP Median

	MPC for DP Median
	Subrange Selection
	Weights(ln(2))
	Weights(ln(2)/2**d)
	Weights(*)
	Noisy Ranks instead of Weights
	Precision and Privacy
	Running Time Complexity
	Security
	Scaling to Many Parties

	Evaluation
	Running Time
	Communication
	Malicious Security
	Privacy Budget vs. Running Time
	Accuracy Comparison to Related Work

	Summary

	HH & PEM: DP Heavy Hitters
	Federated Heavy Hitters
	Ideal Functionality for HH
	Ideal Functionality for PEM
	When to use which method
	Distributed Noise Generation

	MPC for DP Heavy Hitters
	HH
	PEM
	Running Time Complexity
	Security

	Evaluation
	Comparing different DP notions
	Running Time
	Communication
	Malicious Security
	Accuracy
	MPC Frameworks
	AWS Costs

	Summary

	Conclusion
	Summary
	Directions for Future Research

	Author's Publications
	Bibliography

