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Abstract

Data is the driving force of modern businesses. For example, customer-generated data is col-
lected by companies to improve their products, discover emerging trends, and provide insights
to marketers. However, data might contain personal information which allows to identify a per-
son and violate their privacy. Examples of privacy violations are abundant - such as revealing
typical whereabout and habits, financial status, or health information, either directly or indi-
rectly by linking the data to other available data sources. To protect personal data and regulate
its collection and processing, the general data protection regulation (GDPR) was adopted by all
members of the European Union.

Anonymization addresses such regulations and alleviates privacy concerns by altering per-
sonal data to hinder identification. Differential privacy (DP), arigorous privacy notion for anon-
ymization mechanisms, is widely deployed in the industry, e.g., by Google, Apple, and Microsoft.
Additionally, cryptographic tools, namely, secure multi-party computation (MPC), protect the
data during processing. MPC allows distributed parties to jointly compute a function over their
data such that only the function output is revealed but none of the input data. MPC and DP pro-
vide orthogonal protection guarantees. MPC provides input secrecy, i.e., MPC protects the inputs
of a computation via encrypted processing. DP provides output privacy, i.e., DP anonymizes the
output of a computation via randomization. In typical deployments of DP the data is random-
izedlocally, i.e., by each client, and aggregated centrally by a server. MPC allows to apply the ran-
domization centrally as well, i.e., only once, which is optimal for accuracy. Overall, MPC and DP
augment each other nicely. However, universal MPC is inefficient — requiring large computation
and communication overhead — which makes MPC of DP mechanisms challenging for general
real-world deployments.

In this thesis, we present efficient MPC protocols for distributed parties to collaboratively com-
pute DP statistics with high accuracy. We support general rank-based statistics, e.g., min, max,
median, as well as decomposable aggregate functions, where local evaluations can be efficiently
combined to global ones, e.g., for convex optimizations. Furthermore, we detect heavy hitters,
i.e., most frequently appearing values, over known as well as unknown data domains. We prove
the semi-honest security and differential privacy of our protocols. Also, we theoretically analyse
and empirically evaluate their accuracy as well as efficiency. Our protocols provide higher ac-
curacy than comparable solutions based on DP alone. Our protocols are efficient, with running
times of seconds to minutes evaluated in real-world WANs between Frankfurt and Ohio (100 ms
delay, 100 Mbits/s bandwidth), and have modest hardware requirements compared to related
work (mainly, 4 CPU cores at 3.3 GHz and 2 GB RAM per party). Additionally, our protocols can
be outsourced, i.e., clients can send encrypted inputs to few servers which run the MPC protocol
on their behalf.






Zusammenfassung

Daten sind die Antriebskraft moderner Unternehmen. Von Kunden generierte Daten werden
von Firmen gesammelt, um Produkte zu verbessern, aufkommende Trends zu entdecken, und
sie an Vermarkter zu verkaufen. Allerdings beinhalten diese Daten potentiell personenbezo-
gene Informationen, die es erlauben eine Person zu identifizieren und den Schutz ihrer Privat-
sphire zu verletzen. Datenschutzverletzungen lassen sich im Uberfluss finden — versehentliche
Bekanntgabe von typischen Aufenthaltsorten und Gewohnheiten, Finanzstatus, oder gesund-
heitlichen Informationen — entweder direkt oder indirekt, indem Daten mit anderen verfiigbaren
Datenquellen verbunden werden. Um personenbezogene Daten zu schiitzen, ihre Sammlung
und Verarbeitung zu regulieren, wurde die allgemeine Datenschutzgrundverordnung (DSGVO)
von allen Mitgliedern der Europdischen Union verabschiedet. Anonymisierung — die Veridn-
derungvon personenbezogenen Daten, um Identifikation zu verhindern — dient dem Zweck, den
gesetzlich geforderten Datenschutz zu gewihrleisten. Differential Privacy (DP) formalisiert den
Schutz von Anonymisierungsmechanismen und findet weit verbreiteten Einsatz in der Industrie
—unter anderem bei Google, Apple und Microsoft. Zusitzlichen Schutz wihrend der Datenver-
arbeitung bieten kryptografische Verfahren wie sichere Mehrparteienberechnung (im Englischen
secure multi-party computation, MPC). MPC erméglicht es verteilten Parteien gemeinsam eine
Funktion tiber ihren Daten zu berechnen, sodass nur die Funktionsausgabe bekannt wird, aber
die Fingaben geheim bleiben. MPC und DP bieten orthogonale Schutzgarantien. MPC bietet
Geheimhaltung der Eingaben (input secrecy), d.h., MPC schiitzt die Eingaben, indem deren Ve-
rarbeitung nur verschliisselt erfolgt. DP liefert Datenschutz fiir Ausgaben (output privacy), d.h.,
DP anonymisiert die Ausgabe einer Berechnung mithilfe von Randomisierung. Die Garantien
von MPC und DP erginzen sich sehr gut. Allerdings ist MPC generell ineffizient und erfordert
grollen Zusatzaufwand - in Form von Berechnungszeit und Kommunikation — welcher eine
Hiirde fiir den praktischen Einsatz von MPC fiir DP-Mechanismen darstellt.

Diese Dissertation prasentiert effiziente MPC-Protokolle, um DP-Statistiken {iber vereinten
Daten von verteilten Parteien mit hoher Genauigkeit zu berechnen. Wir unterstiitzen Rank-
basierte Statistiken wie den Median und zerlegbare Aggregatsfunktionen (decomposable aggre-
gate functions), wobei lokale Auswertungen effizient zu globalen Ergebnissen aggregierbar sind,
beispielsweise fiir konvexe Optimierung. Des Weiteren finden wir hdufig vorkommende Werte
(heavy hitters) aus bekannten und unbekannten Wertebereichen. Wir beweisen, dass unsere
Protokolle Geheimhaltung wihrend der Berechnung (semi-honest security) und Datenschutz
der Ausgabe (differential privacy) bieten. Wir evaluieren die Genauigkeit und Effizienz unserer
Protokolle sowohl theoretisch als auch empirisch. Unsere Protokolle bieten eine h6here Genau-
igkeit als vergleichbare Lésungen, die nur auf DP basieren. Unsere Protokolle sind effizient
mit Laufzeiten von Sekunden zu Minuten in einem WAN zwischen Frankfurt und Ohio (100 ms
Verzogerung, 100 Mbits/s Bandbreite) und wir haben verhéltnismaQig geringe Anspriiche an die
Hardware (hauptsédchlich 4 CPU-Kerne mit 3.3 GHz, 2 GB RAM pro Partei). Zusitzlich kann die
Berechnung unserer Protokolle ausgelagert werden, d.h., Clients kénnen ihre verschliisselten
Eingaben auf wenige Servern verteilen, welche die Protokolle an ihrer Stelle ausfiihren.
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1 Introduction

In Section 1.1, we motivate our research question, which we present and discuss in Section 1.2.
In Section 1.3, we list our contributions, i.e., efficient, secure protocols for distributed, privacy-
preserving statistics. We present an overview of our protocols in Section 1.4. Finally, Section 1.5
describes how the remainder of this thesis is structured.

1.1 Motivation

Data is valuable. In most of the 20th century, a limiting factor in data collection was stor-
age space and information retrieval. Information printed on paper documents used to fill en-
tire archive buildings and retrieval required manual labor; nowadays, an exponentially larger
amount of data is stored in data centers where indexed databases allow nearly instantaneous
retrieval®. The digital revolution enabled data collection and processing on a scale that was pre-
viously unthinkable. Presently, the business model of some of the most valuable companies in
the world is entirely based on collecting and monetizing data of individuals, mainly by selling
it to advertisers for targeted advertising. Furthermore, government spending, such as funding
of public services and implementation of policy decisions, is informed by demographic studies
and census data [And21, Section 11.2].

Data is personal. Already a few collected data points suffice to identify someone from credit
card metadata [DMRS*15]?, infer an individual’s typical whereabouts and routines from smart-
phone data [DMHVB13]3, and learn behavioral patterns from smart meter measurements [AF10,
MMSF+*10]*. To regulate the rapidly increasing data collection and consistently govern the pro-
cessing of personal data, the European Union adopted the General Data Protection Regulation
(GDPR)® for all its members states which became enforceable in May 2018. The GDPR states:
“The protection of natural persons in relation to the processing of personal data is a fundamen-
tal right.”®

1 For example, documents collected by the Ministry for State Security (colloquially called “Stasi”) of the German Demo-
cratic Republic (1949-1990) fill 111 kilometers of shelf space. Since 1998 the records are indexed in a database. https:
//www.bstu.de/en/archives/about-the-archives/

2 Montjoye et al. [DMRS™ 15, Figure 2] identified 90% of individuals, given the date and location of four of their purchases,
in a data set with 1.1 million credit card transactions.

3 Strava, a fitness tracking app, revealed “locations and habits of military bases and personnel, including those of Amer-
ican forces in Iraq and Syria” https://www.nytimes.com/2018/01/29/world/middleeast/strava-heat-map.html.

4 The European Data Protection Supervisor [Eurl2, Point 19] warned that smart meters not only reveal, e.g., vacation
times and sleep patterns, but potentially also health conditions (e.g., kidney problems) by identifying electrical medical
devices (e.g., dialysis machines).

5 EU regulation 2016/679, https://eur-1lex.europa.eu/eli/reg/2016/679/0j

6 GDPR defines personal data in Article 4, point (1) as “any information relating to an identified or identifiable natu-
ral person (..) who can be identified, directly or indirectly, in particular by reference to an identifier such as a name,
an identification number, location data, an online identifier or to one or more factors specific to the physical, physi-
ological, genetic, mental, economic, cultural or social identity of that natural person;” and processing in point (4) as
“any operation or set of operations which is performed on personal data or on sets of personal data, whether or not by
automated means, such as collection, recording, organisation, structuring, storage, adaptation or alteration, retrieval,
consultation, use, disclosure by transmission, dissemination or otherwise making available, alignment or combination,
restriction, erasure or destruction;”
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Cryptography protects data processing. Secure multi-party computation (MPC) [Gol09] is
a cryptographic protocol to exchange and operate on encrypted data such that only the out-
put of the computation is revealed. As such, MPC protects the data of multiple parties during
processing. MPC has been researched for over 30 years, and recently real-world deployments
have emerged in industry and government [Lin20, Section 5]: Google and Mastercard report-
edly deployed secure computation to track ad conversion by securely linking Google’s online
ad impressions with offline purchases based on credit card transactions handled by Mastercard
[Blo18, IKN*17, IKN*20]. Estonian government institutes applied it to detect tax fraud [BJSV15]
and combined income taxrecords with university records, to analyse if working during university
studies negatively impacts earning a degree [BKK*16]. The Boston Women’s Workforce Council
deployed secure computation to investigate gender-based wage gaps in the greater Boston area
with the participation of 114 employers with 166 705 employees [LJA*18, Lin20].

MPC protects the data during processing, however, releasing exact outputs does not limit in-
ference of inputs and allows reconstruction attacks [DNO3]. Recently, the US census bureau
showed that even high-level aggregate statistics, i.e., demographic counts for residential areas,
suffice to identify millions of individuals of the 2010 US census when combined with commer-
cially available data [DKM19, GAM19].

Anonymization controls inference. Differential privacy (DP) [Dwo06, DMNSO06] is a rigor-
ous anonymization definition. DP requires fine-tuned, computation-dependent randomization
which introduces uncertainty hindering reconstruction attacks. In other words, DP limits infer-
ence of any input given the output. DP is widely deployed to mitigate privacyrisks and regulatory
concerns. The US census bureau adopted DP for the 2020 census [Abo18]. Apple deploys DP to
privately learn frequently typed words on mobile devices to improve auto-complete suggestions,
and to detect websites with large resource consumptions to optimize the browsing experience
in i0S and macOS [App16, App17]. Google privately detects popular Chrome browser settings
[EPK14, FPE16a] as well as busy times for businesses in Google Maps [Goo19]. Also, Microsoft de-
ploys differentially private telemetry data collection in Windows 10 (Creators Fall Update) across
millions of devices [DKY17] and LinkedIn’s Audience Engagement API lets marketers perform
DP queries to learn, e.g., most frequently shared articles among users with a specific skill set
[RSP*20, Rog20]. Real-world deployments [App16, DKY17, EPK14, FPE16a, Goo19] mainly im-
plement the local model of DP i.e., users locally randomize their data and send it to an untrusted
aggregator. In the central model, e.g., used by LinkedIn [RSP*20, Rog20] and the US Census bu-
reau [Abo18], a trusted party has access to the raw data, which only needs to apply randomiza-
tion once, on the aggregated result. The local model has fewer assumptions (no trusted party).
However, it generally requires exponentially more data samples to achieve the optimal accuracy
offered by the central model at the same privacy level [KLN*11]. Small data is the most challeng-
ingregime for DP [BEM*17, NRVW20] as the randomization, mostly in the form of additive noise,
easily exceeds the signal in the data.

Composing cryptography & anonymization is inefficient. MPC and DP provide orthogonal
protections and augment each other. MPC protects input data during processing, and DP lim-
its inference of any inputs given the output. In theory, combining existing solutions for MPC
and DP bridges the gap between the local and central model of DP and simultaneously provides
strong privacy (no trusted third party) with high accuracy (centralized randomization). In prac-
tice, however, general MPC is inefficient as it suffers from prohibitive computation and commu-
nication overhead hindering real-world deployments.



1.2 Research Question

1.2 Research Question

The research question investigated in this dissertation is:

Can distributed parties efficiently and accurately compute statistics over their small data
sets without revealing secret inputs and ensuring strong privacy guarantees for the output?

In the following, we briefly overview our answer to the research question, and detail aspects
of the research question in the remainder of this section. In this thesis, we present secure and
efficient protocols for privacy-preserving statistics over distributed parties with high accuracy.
Our protocols provide input secrecy via MPC, i.e., no input is revealed to others, as well as out-
put privacy via DP, i.e., the output limits inference about any input. MPC already ensures high
accuracy for DP and the main challenge is designing efficient MPC protocols. Our protocols are
efficient with running times in seconds to minutes over the Internet, and practical with modest
hardware requirements compared to related work’. Furthermore, our protocols support out-
sourcing where input parties (clients) send encrypted inputs to computation parties (servers)
who run the protocol on their behalf. While MPC solutions for DP aggregate statistics exist (e.g.,
sum and mean), DP statistics based on an element’s rank or frequency (e.g., median and mode)
lack efficient and accurate MPC protocols. We support general rank-based statistics, e.g., min,
max, median, percentiles, but focus on the median for illustration purposes. We also support
decomposable aggregate functions, as used in MapReduce-style frameworks, applicable to, e.g.,
convex optimizations. Additionally, we discover heavy hitters, i.e., most frequently appearing
values, over known as well as unknown data domains. Next, we further detail aspects of the re-
search question.

Input Secrecy

We consider a distributed setting with two or more parties. To ensure that the parties can jointly
compute a function without revealing their secret inputs to the other parties, we employ MPC
[Gol09]. Informally, MPC is a cryptographic protocol to exchange and operate on encrypted data
(formalized in Section 2.1). While secure computation protects the inputs of a computation, the
exact output is released, potentially leading to privacy violations [DNO03].

Output Privacy

To limit inference from the output, we employ DP [Dwo06, DMNSO06], a rigorous privacy notion
restricting the privacy loss of any party who participates in a computation. Informally, DP intro-
duces uncertainty by applying fine-tuned, computation-dependent randomization (formalized
in Section 2.2).

Accuracy & Small Data

We use MPCto simulate a trusted third party, resulting in highly accurate DP statistics. Our proto-
cols also support large data sizes, however, our focus is on small data. Small data is the most chal-
lenging regime for DP [BEM*17, NRVW20], as the noise from the randomization can easily drown
the (statistical) signal in the data. Even Google’s large-scale data collection [BEM*17, EPK14],

”We mainly used Amazon Web Services t2.medium instances with 4 CPU cores and 2 GB RAM for our evaluation. How-
ever, for one of our largest evaluations, we used 8 GB RAM, and to evaluate specialized version of one of our protocols,
optimized for multi-threading, we required 8 cores and 15 GB RAM. For details, we refer to Section 4.4.1.
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with billions of daily user reports in the local model, is insufficient if the statistical value of in-
terest appears infrequently [BEM*17, Section 2.2], e.g., the median. Specifically, an exponential
separation exists between the local and central model regarding accuracy and sample complex-
ity [KLN*11].

Efficiency

General-purpose MPC solutions are inefficient for DB i.e., they suffer from large computation
and communication overhead as well as liveness constraints in a wide-area network (WAN). In
this thesis, we design efficient, special-purpose MPC protocols for DP —including novel alterna-
tives to secure exponentiations. Our MPC protocols run in seconds to minutes over the Internet
on modest hardware and our client communication is in the order of kilobytes.

Statistics

In our protocols, we focus on rank-based statistics, also called order statistics, decomposable
aggregate functions, and heavy hitters over distributed data. For distributed aggregate statistics,
e.g., mean and sum, various DP solutions exist [DKM*06, GX17, RN 10, TKZ16] that basically con-
sist of summing values from each party. Rank-based statistics, however, require knowledge of an
element’s position in the sorted data, posing a challenge for distributed data. Similarly, heavy
hitters, i.e., frequent values, can be easily identified for small data domains, e.g., by building a
histogram. However, efficient discovery of heavy hitters on large or even unknown domains re-
quires additional considerations and clever approximations [CH10, WLJ19].

Formally, rank-based statistics are defined over sorted data set D = {d,...,d,}, where d; <
dy < --- < d,. Rank-based statistics include

¢ the minimum d; and maximum d,,,

e theranged, — di,

 p_percentile d [n.p/1007, i.€., the value larger than p percent of D,

* interquartile range do.75,1 — dfo.25n1

e and the median d,2y, i.e., the 50®-percentile which splits the sorted data roughly in half.

The median is arobust statistic, i.e., few input changes do not lead to large output changes [DL09,
Section 1.2]. The median is used to represent a “typical” value from a data set, e.g., median in-
come is more representative than mean income?®, and insurance companies use the median life
expectancy to adjust insurance premiums. The median is also useful in the collection of private
usage statistics. Reporting the median in addition to the mean allows the collector to detect skew
in the distribution, i.e., if outliers exist.

Decomposable aggregate functions are employed in MapReduce-style frameworks to efficiently
compute statistics over distributed data. We consider decomposability for utility functions,
which score how close any possible output is to a desired evaluation output (formalized in Sec-
tion 2.2.4). Decomposable utility scores can be in the form of ranks, frequencies, or loss function

8 For example, consider Medina, Washington, a Seattle suburb near the headquarters of Amazon and Microsoft. With
a population of around 3 000 the median income in 2018 was around $192 000 while the average income was about
308000 [US 18]. The average income could even be in the millions due to outliers that skew the result of the mean, e.g.,
the billionaires Jeff Bezos and Bill Gates. However, such outliers may be removed from local statistics and only appear
in national aggregates [And21, Section 11.2.1.5].
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scores, and applications include federated learning with compressed gradients [BWAA18], em-
pirical risk minimization [BST14], and digital goods auctions [MT07] (Section 6.1.1).

Heavy hitters, also known as top-k, are the k most frequently appearing elements in a data set.
A special heavy hitter is the mode, the most frequent element. As stated before, heavy hitters are
often collected to learn common patterns and trends, e.g., frequently typed new words [App16,
Appl7], common user settings [EPK14, FPE16a], and often shared articles [RSP*20].

1.3 Contributions

Previous work on DP median (resp., DP heavy hitters), either require a large number of parties to
be accurate [STU17, WGSX20] (resp., [App16, DKY17, EPK14, FPE16a]) or rely on a trusted third
party [DL09, McS09, NRS07] (resp., [RSP*20, Rog20]). General MPC solutions for DP statistics
cannot scale to large data set or domain sizes [EKM*14, PL15]. Related work is discussed in more
detail in Section 3.

Our protocols provide novel alternatives for DP statistics that are efficiently computable even
for large data or domain sizes without a trusted party. Our contributions are as follows:

e Qur protocols EM,.q and EM* securely compute the DP median with a running time sub-
linear in the domain size, and support general order statistics (e.g., min, max, percentiles).

Protocol EM* is extensible to decomposable aggregate functions, allowing efficient aggre-
gation over distributed data sets as found in MapReduce-style frameworks.

* Our protocols HH and PEM securely discover DP heavy hitters. HH has arunning time linear
in the data size and supports unknown domains, PEM is sublinear in the size of the known
domain.

* We implement our protocols with secure computation frameworks, prove the security of
our protocols against semi-honest (passive) adversaries, and discuss extension for mali-
cious (active) adversaries (Sections 5.2.6, 6.2.8, 7.2.4).

Protocol EM,¢q4 is implemented in ABY [DSZ15a], EM* is implemented in SCALE-MAMBA
[AKR*20], HH and PEM are implemented in SCALE-MAMBA as well as MP-SPDZ [Kel20].

e Our protocols provide high accuracy even for small data sizes, which is the most challeng-
ing regime for DP.
We analyze the accuracy of our protocols (Sections 5.1.6, 6.1.5, 7.1) and empirically com-

pare them to related work (Sections 5.3.7, 6.3.5, 7.3.5).

e Our protocols achieve efficient running times of seconds to minutes in a WAN with 100 ms
delay and 100 Mbits/s on modest hardware with 4 CPU cores at 3.3 GHz and mainly 2 GB
RAM (see Section 4.4.1 for details).

We analyze the running-time complexity of our protocols (Sections 5.2.5, 6.2.7, 7.2.3), and
measure running time and communication in real-world networks (Sections 5.3, 6.3, 7.3).

1.4 Our Protocols: EM,,,cq, EM*, HH, PEM

In this section, we give an overview of our protocols EM,.4, EM*, HH, and PEM. First, we need
to informally describe DP mechanisms, which we later formalize in Section 2.2.4. Then, we de-
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scribe implementation challenges regarding MPC of DP. Finally, we describe our protocols and
how they address these challenges.

DP Mechanisms

So far, we said that differential privacy ensures randomized outputs. In more detail, randomized
algorithms, called mechanisms in DP literature, provide the randomization either via additive
noise or probabilistic selection. Additive noise is used in the Laplace mechanism LM: Given a
dataset D and a function f to evaluate, e.g., the median, LM outputs f (D)+[, where [ is noise from
the Laplace distribution parameterized with privacy parameter €. Probabilistic selection is used
by the exponential mechanism EM: Output r of EM is selected with probability proportional to
exp(u(D, r)e), where utility function u scores how “close” r is to the desired output f(D). Higher
scores translate to higher selection probabilities. Note that scores and probabilities for the entire
output domain of f must be computed. The Gumbel mechanism GM provides the same output
distribution as EM by selecting the element with the largest noisy utility score, where noise is
sampled from the Gumbel distribution.

We later show that EM provides better accuracy than LM for the median (Section 3.6.1, Sec-
tion 6.1.5), hence, we use EM in our protocols. In fact, most of our protocols — namely, EMeq,
EM*, and PEM - are build upon the exponential mechanism EM and only HH implements the
Laplace mechanism LM.

Implementation Challenges & Design Considerations

Let © denote the data domain and D = {d;,...,d,} € D" the combined data of all parties. We
identify and address the following key challenges for efficient computation of the exponential
mechanism, especially with MPC:

(i) Largedomains: the running time complexity of EM is linear in the domain size |D| as prob-
abilities for all possible outputs in D are computed.

(i) Costly exponentiation: a straightforward implementation of EM requires |D| exponentia-
tions, which is prohibitive for MPC [ABZS13, AS19, DFK*06, Kam15].

Additionally, we investigate trade-offs between running time and privacy as well as accuracy:

(iii) Balancing trade-offs: standard EM neither considers a relaxation of DP nor does it permit
a parameterized trade-off between running time and accuracy.

Our protocols tackle these challenges by partitioning the domain, eliminating secure expo-
nentiation, and enabling parameterized trade-offs.
Our Protocols

EM.eq (Section 5) is a two-party protocol to securely compute the DP median with EM and can
be extended to multiple parties (Section 5.2.7). Our protocol EMeq

(i) handles large domains by operating over sorted (subset of the) data with running time sub-
linear in the domain size,
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(ii) avoids costly exponentiations by leveraging a data-independent utility function whose ex-
ponentiations can be computed locally; the key insight being that an element’s utility score
corresponds to its position in the sorted data,

(iii) allows a trade-off between running time and privacy relaxation by pruning the data if its
size is not sublinear in the domain size: Pruning from Aggarwal et al. [AMP10] lets EMyeq
efficiently support large data sets as only a small subset of the data must be sorted securely.
However, pruning relaxes DP and allows only limited group privacy (Section 5.3.3).

EM™* (Section 6) is a multi-party protocol to securely evaluate EM for decomposable utility
functions illustrated for the DP median. We also implement GM*, a variation of EM* based on
the Gumbel mechanism GM. Our protocol EM*

(i) handles large domains by iteratively partitioning and selecting domain subranges of de-
creasing size with running time sublinear in the domain size,

(ii) avoids costly exponentiations via decomposable utility functions whose local partial eval-
uations can be efficiently combined similar to MapReduce-style frameworks; i.e., given de-
composable utility functionu(D, -) = 3.7 | u(d;, -) local exponentiations x; (-) = exp(u(d;, -)€)
can be combined as exp(u(D, -)e) = [}, x;(-) (Section 6.1.1),

(iii) allowsaparameterized trade-off between running time and accuracy: many iterations with
few subranges is faster, however, few iterations with many subranges improve accuracy
(Section 6.3.4).

HH (Section 7) is a multi-party protocol to securely discover DP heavy hitters for small data
sizes with unknown domain via LM. HH is based on the sketch by Misra and Gries [MG82], i.e., a
space-efficient data structure, and our protocol

(i) handleslarge domains by operating over the small data set, keeping a map of frequent data
elements and their approximate counts, with a running time linear in the small data size,

(i) avoids costly exponentiations by implementing the Laplace mechanism, which does not
require exponentiation,

(iii) allows a parameterized trade-off between running time and accuracy: smaller map size is
faster, however, larger map size improves accuracy (Sections 7.1.3, 7.3.5).

PEM (Section 7) is a multi-party protocol to securely discover DP heavy hitters for arbitrary
data sizes with known domain via GM. PEM is based on a local-model protocol by Wang et
al. [WLJ19], and our protocol

(i) handles large domains by iteratively selecting domain bit-prefixes of increasing size from
disjoint subsets of input parties with a running time sublinear in the domain size,

(i) avoids costly exponentiations by implementing the Gumbel mechanism, which does not
require exponentiation,

(iii) allows a parameterized trade-off between running time and accuracy: gathering small pre-
fixes from many small groups is faster, however, large prefixes from few large groups improve
accuracy (Sections 7.1.2, 7.3.5). While HH is more accurate for small data sets, PEM is faster
for larger data sets.
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1.5 Structure

The remainder of this thesis is structured as follows.

Chapter 2 presents preliminaries and definitions for cryptographic primitives and anonymiza-
tion techniques employed in this thesis. First, we define secure multi-party computation,
common security models, namely, semi-honest (passive) and malicious (active) adver-
saries, and implementation paradigms, namely, garbled circuits and secret sharing. Then,
we briefly summarize previous anonymization methods leading to differential privacy. Fi-
nally, we formalize differential privacy, list its properties, and detail mechanisms to satisfy
this privacy notion.

Chapter 3 discusses related work. First, we compare different privacy models, mainly, the local,
central and MPC model of DP. Then, we describe related work combining MPC and DP
with a focus on the exponential mechanism. We overview techniques to simplify sampling
from the exponential mechanism, describe the influence of limited machine precision on
DP and discuss decomposability in the context of DP. Finally, we survey related work for
DP median and DP heavy hitters grouped by the before mentioned privacy models.

Chapter 4 describes our methodology to address the research question stated above. We first
detail how we assess security of our protocols via simulation-based arguments, and how we
assess privacy by accounting for the worst-case privacy loss. Then, we detail our method-
ologies to assess accuracy, mainly, absolute error for the median and non-cumulative rank
for heavy hitters, and to assess efficiency, i.e., running time and communication of our im-
plementations in a WAN.

Chapter 5 presents our secure two-party protocol EM,4 for rank-based statistics, illustrated for
the DP median. First, we describe a high-level overview of EM 4, its building blocks, and
how we satisfy DP. To support large data sets, we consider pruning. Pruning requires a pri-
vacy relaxation whose influence on accuracy and privacy we discuss and evaluate. Then,
we formalize EM .4 and prove its semi-honest security. We detail extensions to EM,q for
multiple parties and malicious adversaries. Finally, we empirically evaluate our privacy re-
laxation and its accuracy, measure running time and communication of EM,4 in multiple
real-world WANs between Ohio and N. Virgina, Canada, and Frankfurt, respectively, and
compare EM,q to our closest related work.

Chapter 6 presents our secure multi-party protocol EM” for decomposable aggregate functions.
First, we define decomposability and list applications with decomposable utility functions,
which includes the median. Furthermore, we leverage decomposability to divide the data
domain in subranges, and iteratively select increasingly smaller subranges, until we find
the DP median. Then, we discuss accuracy for the DP median, and detail multiple alterna-
tives for secure exponentiations to compute selection weights. We proof the semi-honest
security of our differentially private protocol EM* and detail an extension for malicious ad-
versaries. Finally, we evaluate running time and communication of EM* and its variation
GM* in a real-world WAN (Frankfurt-Ohio) and compare accuracy to related work.

Chapter 7 presents our secure multi-party protocols HH and PEM for DP heavy hitters. First, we
present a non-private approach and a local-model protocol to discover heavy hitters on
which we base our protocols HH and PEM, respectively. We adapt the existing approaches
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for differential privacy in the central model with a trusted third party. Then, we replace the
trusted third party with MPC, detail optimizations of our MPC protocol, and show that it is
semi-honestly secure. Finally, we measure running time as well as communication for HH
and PEM in areal-world WAN (Frankfurt-Ohio), and compare accuracy to the state-of-the-
art solution in the local model [WLJ19].

Chapter 8 concludes this thesis where we summarize our main insights and contributions per
chapter.






2 Preliminaries

In Section 2.1, we present preliminaries for secure multi-party computation (MPC). In Sec-
tion 2.2, we describe preliminaries for differential privacy (DP). We assume a familiarity with
basic mathematical notation and present some notation and general preliminaries next.

Algorithm. An algorithm f is a finite sequence of operations applied on an input i to produce
an outputo, denoted as o = f(i). A (cryptographic) protocol is a description of the execution of al-
gorithms run jointly by multiple parties, including their interactions, the structure of exchanged
messages (e.g., encryption method, number representation) and how they are processed. Algo-
rithms are modelled as Turing machines which read inputs from an input tape, perform opera-
tions on a working tape, and write the output to an output tape. Probabilistic polynomial-time
(PPT) algorithms run in time that is polynomial in the length of the input and are equipped with
an additional random tape initialized with randomness to allow non-deterministic behavior. We
use PPT algorithms to model computationally bounded adversaries trying to break secure pro-
tocols whose complexity is governed by a security parameter x. The security parameter is com-
monly given to the adversary as input in unary encoding, i.e., 1*, which we also assume but do
not explicitly state. In protocol descriptions, we use upper case letters mainly to denote arrays,
i.e., ordered, indexed lists, and write the index in square brackets. For example, A[i] refers to the
value atindex i in array A. We also use x « y to denote assignment of value y to variable x.

Big O notation describes asymptotic behavior of functions (and the algorithms implement-
ing them) where f(n) = O(g(n)) denotes that g(n) upper bounds |f(#)| up to constant factors.
Formally, |f(n)| < ¢ - g(n) for some ¢ > 0 and all n larger than some threshold.

Data set and domain. We consider a set of parties ¥ = {Py, ..., P, }, where party P; holds a data
element d; (also called datum), and D denotes their combined data set (or database). The data
setD = {dj,...,d,} € D" consists of elements from data domain ®. Duplicates are non-distinct
data elements, i.e., d; = d; with i # j. A range [a, b] over domain D is the set containing all
domain elements x € D satisfyinga < x < b and (a, b] denotes the half-open range excluding a
(likewise [a, b) excludes b).

Number Representation. We mainly operate on integers (Z) which allow more efficient secure
protocols [ABZS13]. The subset of integers from 0 to p — 1 are denoted Z,,, which is a field if p is
prime. Rational numbers (Q) can be expressed as integers via fixed-point number representation.
A binary number of bit-length b can representd € Qasd’ € Z ifd = d’ - 27/ with -2b-1 + 1 <
d’ < 2P~ — 1 and scaling factor 2~/ where f € N [CDH10, Section 2]. Real numbers (R) are
approximated via floating-point number representation. We adopt the notation from Aliasgari
et al. [ABZS13] and represent a floating-point number f as (1 — 2s)(1 — z) - v - 2* with sign bit
s set when the value is negative, zero bit z only set when the value is zero, I,-bit significand v,
and I-bit exponent x. Thus, a floating point value f is a 4-tuple (v, x, s, z). To refer to, e.g., the
significand v of f we write f.v. Note that we sometimes use a fraction with a small denominator in
our protocol description (e.g., n/2) but implicitly assume fractions (and the values they interact
with) to be expressed as a scaled integer and only distinguish between operations on integers
and floating-point numbers.
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Probability. A random variable X can take a value x; from a sample space Q with probability
pi, which we write as p; = Pr[X = x;]. A (probability) distribution is a collection of probabilities
for all possible samples. The probability mass is the sum (resp., integral) of a subset of samples
from a discrete (resp., continuous) distribution. Probabilities are positive and their total mass
(for all of Q) equals 1. Unnormalized probabilities whose total mass is not 1 are called weights.
The cumulative distribution function F(x;) = Pr[X < x;] gives the probability mass for all x; € Q
with x; < x;. Welet X ~ P denote that random variable X follows probability distribution P and
sampling refers to the computation of a sample X ~ P given P. The expected value of a random
variable X over a discrete distribution is E[X] = Zf;l x;p; where x, ..., x; are all possible values
for X and their corresponding probabilities are py, ..., pk.

Negligible. A function f : N — R is called negligible if for every positive polynomial p(-) there
exists an N such that forall n > N, f(n) < -1-. We write negl(x) to denote a function negligible

p(n)*
in parameter x, e.g., negl(x) = 27*.

2.1 Secure Multi-party Computation

Secure multi-party computation (MPC) allows a set of two or more parties® = {Py, ..., P, }, where
party P; holds sensitive input d;, to jointly compute a function y = f(d;, ..., d,,) while protecting
their inputs [Gol09, HL10]. The secure computation must be correct, i.e., the correct y is com-
puted, and secret, i.e., only y and nothing else is revealed. The secrecy property is typically called
privacy in the literature, however, we call it (input) secrecy, to distinguish it from (output) pri-
vacy. We assume the existence of secure communication channels for each pair of input parties,
as commonly provided by secure computation frameworks [AKR*20, DSZ15a, Kel20].

In the following, we describe common security models in Section 2.1.1. In Section 2.1.2, we
describe cryptographic primitive and briefly summarize implementation paradigms for MPC.
Then, we detail the paradigms used in our protocols, namely, garbled circuits in Section 2.1.3
and secret sharing in Section 2.1.4, and conversions between them in Section 2.1.5. Finally, we
list basic MPC protocols (e.g., secure comparison) used in our protocols in Section 2.1.6.

2.1.1 Security Models

Security guarantees of MPC are mainly based on the behavior and computational power of an
adversary, who corrupts a subset of the parties, views their internal state, reads received mes-
sages and, possibly, alters the corrupted parties actions during the protocol execution [Gol09,
Section 7.1.1], [HL10, Section 1.1], [LK15, Section 10].

Behavior

In the semi-honest model a passive adversary behaves honestly and does not deviate from the
protocol. However, the adversary tries to infer additional information that should remain se-
cret from the messages received during the protocol execution. Semi-honest adversaries are
also called honest-but-curious. In the malicious model an active adversary can deviate from the
protocol execution, e.g., alter messages. Typically, maliciously-secure protocols are less efficient
than protocols in the semi-honest model [HL10, Section 1.1].

12
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Computational Power

An adversary’s computational power further specifies the security model, leading to different
security notions. Computational indistinguishability refers to security against adversaries with
bounded computational power (PPT) where the computational complexity is governed by a se-
curity parameter «.

Definition 1 (Computational Indistinguishability). Two sets of indexed distributions X = {X;};en,
Y = {Y;}ien are said to be computational indistinguishable, denoted as X ~ Y, if for every PPT A
andx € N

|Pr{AX ~ Xyx) = 1] = PrlA(Y ~ Yy) =1]| < negl(x).

In the presence of adversaries with unbounded computational resources, two notions of secu-
rity can be distinguished. One notion is statistical indistinguishability, where a statistical security
parameter o restricts the probability of an adversary to learn a party’s input. More formally, the
probability (for finite Q) is bounded by the statistical distance

1
5 Z|Pr[X ~ X, =r] = Pr[Y ~ Y, = r]].
reQ

The other notion is information-theoretic security, where the statistical security parameter can
be seen as infinite, i.e., an adversary has zero probability to learn any party’s input.

Our Model

In this work, we consider the semi-honest model with computationally-bounded parties and
we discuss extensions of our protocols to the malicious model. The MPC frameworks, in which
we implement our protocols (described in Section 4.5), use security parameter « as well as an
additional statistical security parameter o [AKR*20, DSZ15a, Kel20]. Utilizing both security pa-
rameters simultaneously is interpreted as allowing security violations with probability at most
279 + negl(x) [EKR*18, Section 2.1].

2.1.2 Primitives & Paradigms

First, we describe basic building blocks for MPC protocols, also called cryptographic primitives.
Then, we provide a brief overview of implementation paradigms for MPC. With these prelimi-
naries, we detail the MPC paradigms we employ, namely, garbled circuits and secret sharing, in
the following Sections 2.1.3 and 2.1.4, respectively.

Cryptographic Primitives

Hash Function. A hash function H : {0,1}* — {0, 1}! is a deterministic function that compresses
an input, represented as binary strings of arbitrary length, to an output of fixed bit-length I. A
cryptographic hash function satisfies additional properties, namely, pre-image resistance, i.e.,
given image H(x) it is hard to find pre-image x, and collision-resistance, i.e., finding any x, x’
(x # x’) with collision H(x) = H(x’) is hard. Hardness is defined via a PPT adversary who only
succeeds in finding inputs as above with probability negligible in  (often set to x). While it should
be efficient to compute H (x) with knowledge of x, the reverse is decidedly not the case — a prop-
erty known as one-way.

13
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Encryption. A symmetric encryption scheme consists of three PPT algorithms Gen, Enc, Dec.
Algorithm Gen takes 1* as input and outputs a key k. Encryption algorithm Enc transforms a
plaintext m into a ciphertext ¢ where the transformation is controlled by a secret key k. We write
¢ « Enci(m) to denote this transformation where key k and plaintext m are input to Enc which
outputs c. Decryption algorithm Dec reverses the transformation, i.e., m « Deci(c).

An asymmetric encryption scheme lets Gen produce two keys, a public key for encryption Enc
(publicly available), and a secret key for decryption Dec (kept secret).

Symmetric schemes are computationally more efficient than asymmetric schemes as the latter
require computational hardness assumptions (e.g., factoring, discrete logarithm) [IR89, CO15]
and typically uses modular exponentiations [NPO1]. Encryption schemes are basic building
blocks for cryptographic protocols. We refer to Goldreich [Gol09, Section 5.2] for technical details
of encryption schemes.

Oblivious Transfer. A powerful cryptographic primitive is oblivious transfer (OT) [Rab81]. In
principle, OT is equivalent to MPC [Kil88], i.e., OT suffices to perform any MPC and MPC can
provide OT, and several OT protocols exist [BM89, NP01, CO15]. In 1-out-of-k OT a receiver re-
ceives one of k possible secrets from a sender, without the sender learning which one. OT proto-
colsrequire costly computations, i.e., asymmetric cryptography [NPO1]. However, OT extensions
[Bea96, IKNPO3] can efficiently extend few base OTs into many with more efficient symmetric
cryptography. For a concrete OT protocol description, we refer to “Simplest OT” from Chou and
Orlandi [CO15, Figure 1] which is based on the Diffie-Hellman key exchange [DH76].

Implementation Paradigms

There are two main implementation paradigms for MPC [EKR*18, KPR18]: garbled circuits [Yao86],
where the parties construct a (large, encrypted) Boolean circuit and evaluate it at once, and se-
cret sharing [Sha79, Bla79] where the parties interact for each arithmetic circuit gate. In general,
the former allows for constant number of rounds but requires larger bandwidth (as fewer, but
bigger messages are sent), and the latter has low bandwidth (small messages per gate) and high
throughput, where the number of rounds depends on the circuit depth. Alternative paradigms
are (partially) homomorphicencryption allowing, e.g., secure evaluations of either addition [Pai99]
or multiplication [RSA78, EIG85], and fully homomorphic encryption [Gen09] supporting both.
We focus on schemes based on secret sharing and garbled circuits as they are more efficient for
general purpose computations [EKR*18] and are supported by mature frameworks for secure
computation (see Section 4.5).

Recent MPC typically operates in two phases [BDOZ11, DPSZ12, KPR18]:

e aslow offline phase to pre-compute correlated randomness,
* and a fast online phase relying on the material from the offline phase.

Notably, the offline phase does not depend on the inputs or what computation is performed ex-
cept for an upper bound on the number of required multiplications [BDO14]. The offline phase
computes, e.g., base OTs for garbled circuits (Section 2.1.3) or Beaver triples [Bea91] for secret
sharing (Section 2.1.4). The online phase is generally more efficient since the offline phase re-
quires asymmetric cryptography [KRSW18]. Our evaluations always consider the entire MPC ex-
ecution and measure the offline and online phase together (Section 5.3, 6.3, 7.3).

1 Yao described a garbled circuit for two parties in an oral presentation about secure function evaluation [Yao86], the first
written description is by Goldreich et al. [GMW87], and the first proof was given by Lindell and Pinkas [LP09].
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garbled circuit F garbled
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Figure 2.1: Components of a Garbling Scheme G = (Gb, En, De, Ev, ev) [BHR12, Fig. 1]. Gb produces string encodings:
garbled function F, encoding function e, and decoding function d. En(x, e) produces garbled input [x].
Ev([x], F) outputs the garbled output [y], which can be decoded to the actual output y if d is known. Final
output y = De(d, [y]) must equal ev(f, x).

2.1.3 Garbled Circuits

Garbled circuits are cryptographic Boolean circuits. Bellare et al. [BHR12] formalize a scheme to
create and evaluate garbled circuits, whose components are shown in Figure 2.1 and described
in the following.

Definition 2 (Garbling Scheme). Let string refer to a sequence of bits b € {0, 1} of finite length
used to describe a function, e.g., as a circuit. A garbling scheme is the tuple of algorithms G =
(Gb, En, De, Ev, ev), where Gb is probabilistic and all others are deterministic.

(F,e,d) « Gb(1¥, f): Takes as input a security parameter x € N and the string f describing
the original function to evaluate, ev(f, -), and outputs string F describing the garbled func-
tion, Ev(F, "), string e describing an encoding function, En(e, -), and string d describing a
decoding function, De(d, -), as defined in the following.

[x] < En(e,x) is an encoding function, described by string e, that maps an initial input
x € {0,1}! to a garbled input [x].

y « De(d, [y]) is adecoding function, described by stringd, that maps a garbled output [y]
to a final output y.

[y] < Ev(F, [x]) is an evaluation function, described by string F, that maps a garbled input
[x] to a garbled output [y].

y <« ev(f,x) is an evaluation function, described by string f, that maps the input x to the
outputy, whereev(f,-) : {0,1}} — {0, 1}™ is the original function we want to garble.

A garbling scheme fulfills the following properties:
Correctness: Decoded garbled output De(d, Ev(F, En(e, x))) equals actual outputev(f, x),
Secrecy: (F, [x], d) reveals nothing beyond f (x).

For further technical details, we refer to Bellare et al. [BHR12]. In our protocols, welet En(-), De(-)
denote the encoding (garbling) and decoding (de-garbling) operations and omit the correspond-
ing encoding and decoding strings e, d.

To describe Boolean circuits, we require some notation. A binary number b € {0, 1} is rep-
resented as a sequence of bits b = b;...b;. We say a bit b; in b is set if it is 1 and unset if it is 0.
Boolean circuits consist of a series of gates realizing logical operations. Gates are connected by
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wires which feed the output from one gate as input into other gates. A basic logical operation
with a single input and output bit is NOT (with operator —), outputting the inverse of its input
(i.e., 0 oninput 1, 1 on input 0). Basic logical bit operations with two input bits and one output
bit are AND (A), returning bit 1 only if both input bits are 1, OR (Vv), returning 1 only if both input
bits are not 0, and XOR (&), returning 1 only if both input bits differ; otherwise 0 is returned by
these operations. The operations handle a sequence of bits as inputs by applying the operation
bit-wise. Also, we extend a single bit ¢ € {0,1} to a sequence c...c € {0%,1'} if ¢ is one of the
inputs of an operation on [ bits, e.g., x; ... x; = XOR(b, ¢) with x; = b; & c.

Having defined the basic terms of circuits, we can now describe the original semi-honest gar-
bling scheme from Yao [Ya086].

Yao's Garbled Circuits

Yao’s garbled circuit protocol consists of two parties: the garbler (or generator) with input x; €
{0, 1}!, which creates the garbled circuit, and the evaluator with input x, € {0, 1}/, which evalu-
ates the garbled circuit without learning intermediate values.

Garbling: The garbler executes (F, e, d) < Gb(1%, f), where e contains random keys (also called
wire labels) for each wire, F is a representation of the garbled circuit for f, and d maps the
last output (keys) to actual bits. Then, the garbler garbles his input as [x;] < En(e, x1).

In more detail, the garbler transforms f into a Boolean circuit and associates two random
keys k', ki’ € {0, 1}* for each possible bit value (0, 1) on each wire w. Assume each gate
g has two input wires 7, j and one output wire g and g(-, -) denotes the logical operation
provided by the gate. For each gate, the garbler uses (input wire) keys k' k! forall b;, b i €

bi’ bj,
{0, 1}, to encrypt (output wire) keys k;’(b_ by
»Oj

i.e.,
Enc,; ; (kq )
k{,ivk{,j g(bi,bj) )’

with a suitable symmetric encryption scheme Enc?. As an example, an AND-gate results in
the following ciphertexts, also called garbled table:

where the rows are randomly permuted. Overall, the garbled circuit F is the collection of
garbled tables required to compute f.

Sending: After the garbling, the garbler sends the garbled circuit F, his garbled input [x;] and
decoding information d to the evaluator.

2 For example, AES [DSZ15a, Section V.A]. Alternatively, with cryptographic hash function H and concatenation denoted

as |, one cansetEnc, s (x) = H (K] |l k{)j [|g) ® x [HEKM11, Section 3.4]
ok
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Input Retrieval: Evaluator (asreceiver) and garbler (as sender) execute an OT protocol such that
the evaluator only learns her garbled input [x.], i.e., keys corresponding to the bits in x»,
and the garbler does not learn the evaluator’s input bits.

Evaluation: The evaluator evaluates the garbled circuit for [x] = ([x;], [x2]) and outputs the re-
sult De(d, Ev(F, [x])).

Note that the evaluator cannot learn both keys per wire as this allows evaluation of the circuit
(on fixed x;) with all possible values for x, which reveals more than intended [LP09, Section 1].
Many optimizations of Yao’s initial protocol have been developed, including (but not limited to)
point-and-permute (decrypting one table entry instead of all via a “hint” bit) [BMR90], garbled
row reduction (reducing the table size by choosing keys such that one ciphertext is 0) [NPS99],
and FreeXOR (removing decryptions for XOR gates by setting their output key to be the XOR of the
input keys) [KS08]. Furthermore, this semi-honest two-party scheme can be extended to mali-
cious parties (e.g., cut-and-choose: constructing multiple garbled circuits, opening and checking
one half randomly, and using majority output of the rest) [HL10, Section 4.1.1] and generalized
to multiple parties (e.g., distributed circuit generation with secret-shared wire labels) [BMR90].

2.1.4 Secret Sharing

A (t, n)-secret sharing scheme splits a secret s into n shares s; such that at least ¢ shares are re-
quired to reconstruct the secret. Evans et al. [EKR*18] formally define a secret sharing scheme as
follows:

Definition 3 (Secret Sharing Scheme). LetS be the domain of secrets and 7 the domain of shares.
LetShr : 8 — T be a (possibly randomized) sharing algorithm, and Rec : 7' — S be a recon-
struction algorithm. A (t, n)-secret sharing scheme is a pair of algorithms (Shr, Rec) that satisfies
these two properties:

Correctness: Let(sy,...,s,) = Shr(s) denote the sharing of s among the n parties. Then,
Pr[Vl > t, Rec(si,,...,s;) =s| =1,

where{iy,...,i;} € {1,...,n}.

Secrecy: Any set of shares of size less than t does not reveal anything about the secret (in the infor-
mation theoretic sense). More formally, for any two secrets a,b € S and any possible vector
of sharesv = (vy,...,v;), such thatl < t,

Prlv = Shr(a)|;] = Pr[v = Shr(b)|1],

where|; denotes appropriate projection on a subspace of | elements.

A scheme with these properties is secure in the semi-honest model; it is even secure in the
malicious model if the reconstruction and secrecy properties hold against malicious adversaries
[EKR*18]. We refer to Pullonen et al. [PBS12] for security proofs of secret sharing. We let (s) de-
note the vector (sy, ..., s,), i.e., the sharing of s, and write (s); instead of s; if we want to emphasize
that it is the share of party i. Secret sharing can be realized, e.g., over integers and polynomials,
and we describe these realizations next.
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Additive Secret Sharing

Our two-party protocol EM,.4 (Section 5) uses additive secret sharing [DSZ15a, Section II1.A] as
well as garbled circuits. For additive secret sharing, we require all values to be in the ring Z,s: and
(implicitly) perform operations on secret shares modulo 264,

Sharing: To construct an additive (2, 2)-sharing of a secret s the party holding s draws a uni-
formly random r € Z,es: and sends s — r to the other party, i.e., (r,x — r) = (s1, s2) = Shr(s).

Evaluation: Note that addition with linearly secret-shared values (x), (y) is straightforward since
(x)+(y) = (x1+)1, x2+)2), asis multiplication with a public value z where z-(x) = (z-x1, z-x2).
However, multiplication of secret shared values (x) and (y) requires additional techniques,
e.g., aprecomputed Beaver triple (a), (b), (c) such that c = a- b [Bea91l]. Given such a triple,
the parties compute (x — a), (y — b), and a = Rec({(x — a)) and § = Rec({y — b) to obtain

(xy) ={c) + alb) + f{a) —a- p.

Beaver triplets can be constructed, e.g., via additive homomorphic encryption and oblivi-
ous transfer [DSZ15a, Section I11.A 4) &5)]. An alternative technique for multiplication uses
replicated secret sharing ala Maurer [Mau06] where shares are replicated among many par-
ties.

Reconstruction: The reconstruction takes both shares as inputs and adds the shares to produce
the output, i.e, s = (s)1 + (s)2 = Rec(sy, 52).

Shamir’s Secret Sharing

Our multi-party protocols EM*, HH, PEM (Sections 6, 7) use Shamir’s secret sharing [Sha79]. The
geometric intuition behind Shamir secret sharing is that a certain number of points suffice to
uniquely define a curve, i.e., a polynomial of degree ¢ — 1 is uniquely determined by ¢ points.

Sharing: For a (z, n)-secret sharing, a secret s is encoded as point p(0) of a polynomial p with
degree ¢ — 1 over a finite field F. In more detail, p(x) = s + c1x + cox? + -+ - + ¢,_1x' ! with
coefficients ¢; € Fwhere Fis, e.g., the set of integers modulo a large prime. The sharing of
s consists of points of p, i.e., (p(1),...,p(n)) = (s1,...,s,) = Shr(s). Each party P; receives
point p(i) and at least ¢ points are required to reconstruct p and thus s.

Evaluation: Addition of shares and multiplication with a public ¢ € Fis straightforward as with
additive secret sharing and can be directly performed on the underlying polynomials (resp.,
their points). Multiplication, once again, requires special handling as a naive approach
fails: Let f, f;, denote the polynomials for secrets a, b then polynomial /(x) = f,(x) - f» (x)
represents secret a - b. However, the degree of /i is 2t — 2 (and will increase for further mul-
tiplications) and it is not random (e.g., it is not irreducible as it is the product of two poly-
nomials) [BGW88]. As before, pre-computed Beaver triples can be used to allow multipli-
cation of secret values. Alternatively, the parties share a value of the product polynomial as
described by Genaro et al. [GRR98, Figure 2].

Reconstruction: Given k > ¢ shares s;;, ..., s; whereI = {ij,..., it} € {1,..., n}, the secret s can

be reconstructed via polynomial interpolation at point 0, i.e., s = };¢; (si [Tjerizj %)
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Conversion  Output #Operations #Messages Communication (bits)

GC25S([a])  (a) 61 2 I+ (12 +1)/2
SS2GC((a))  [a] 121 2 6k

Table 2.1: Complexity of converting between garbled values and secret shares for /-bit integers as implemented in ABY
[DSZ15a, Table I], where #Operations refers to the number of symmetric cryptographic operations, #Messages
refers to the number of messages in the online phase, and Communication (sent bits) relies on the security
parameter x of the symmetric encryption scheme.

MPC Protocol Output #Gates (2-input non-XOR)
XOR([a], [b]) [a ® b] 0
AND([a], [b]) [a A b] l
OR([a], [b]) [a v b] !
LT ([a], [p]) [a < b] !
Mux([a], [P], [c]) [a]ifbitc =1 else [b] l
Add([a], [b]) [a + b] l
Sub([al., [b]) [a - b] l

Table 2.2: Basic garbled circuits protocols with number of (2-input non-XOR) gates for [-bit integers [KSS09, Table 2]
used in ABY [DSZ15a, Section III.C] with FreeXOR [KS08].

2.1.5 Conversion between Additive Secret Shares & Garbling

Some operations are more efficient with MPC based on secret sharing instead of garbled circuits
and vice versa. For example, addition of /-bit integers requires O(!) gates in a Boolean circuit
but only one gate in an arithmetic circuits with secret sharing. Comparisons, on the other hand,
are more efficient with garbled circuits than secret sharing. To leverage the advantage of both
paradigms in a mixed-protocol execution, one requires conversions between them.

Converting an additive secret sharing to a garbled value is straightforward, i.e., one evaluates
a garbled circuit to add the shares. Similarly, evaluating a subtraction circuit for garbled value
[x] and a random value r € Z,6: (chosen by the garbler) produces [x — r], which the evaluator is
allowed to decode. Thus, the garbler knows r and the evaluator x —r, i.e., an additive (2, 2)-secret
sharing of x. ABY provides a more efficient conversion based on 1-out-of-x OT [DSZ15a, Section
IV.B], and we list the complexity of ABY’s conversions in Table 2.1. We denote a conversion from
secret shares to garbled circuits as SS2GC and the reverse as GC2SS.

2.1.6 Basic MPC protocols

In the following, we list the basic MPC protocols required as building blocks for our protocols as
well as their complexities. If not otherwise noted, all protocols operate on integers.

Garbled Circuit Protocols

Our protocol EM .4 requires the logical operations for garbled circuits listed in Table 2.2 and con-
versions between garbled values and secret shares as listed in Table 2.1 in Section 2.1.5. To make
our protocol descriptions clearer, we list Sub as a separate operation, although it is expressed
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MPC protocol Output / Functionality Rounds Interactive Operations
Rand(b) (r), uniform random b-bit value r 0 0

Add({a), (b)) (a + b) 0 0

Sub({a), (b)) (a - b) 0 0

Rec({a)) a 1 1

Mul({a), (b)) (a - b) 1 2

Mux({a), {b),{c)) (a) ifbit ¢ = 1 else (b) 1 2
Mod2m({a), b) (a mod 2") with public b logh +2 3b-1
Trunc({a), b) (La/2"]) with public b logh +2 3b-1

LT ({a), (b)) (1yifa < b else (0) log(l-1)+2 31-4
LE({a), (b)) (1)ifa < b else (0) log(l-1)+2 31-4
EQ({a), (b)) (1) if a = b else (0) logl+2 21
Int2FL({a)) (a)pL logv +13 logv(2v -3) - 11
AddeL({a)rL, (b)) (a+Db)rL O(logv) O(vlogv +x)
MuleL (@)eL, (bYrL) (@ - b)rL 11 8v+10
LTeL({@)eL, (b)) (1) ifa < b else (0) 6 4v +5x +4logx +13

Table 2.3: Basic MPC protocols and their complexity for /-bit integers, floats with v-bit significand and x-bit exponent
[ABZS13, Table 1] [CDH10, Table 5] [EKM™* 14, Table 6] [Sec09, Table 10]. Per default we operate on integers
and mark secret-shared floats as well as protocols operating on them with subscript FL.

via Add, i.e., addition of negative number. The more complex operations from Table 2.2 con-
sist mainly of XOR gates, which can be evaluated for free [KS08], and AND gates. For example,
OR(a, b) is expressed as NOT(AND(NOT (a), NOT (b)) with NOT(a) = XOR(1, a) and Mux(a, b, ¢)
can be represented as XOR(b, AND(XOR(a, b), ¢)). We refer to the ABY documentation [Eng18,
Section 3.2] and Kolesnikov et al. [KSS09] for details about efficient constructions.

Secret Sharing Protocols

Our protocols EM*, HH, and PEM use MPC protocols based on secret sharing listed in Table 2.3.
We assume pre-computed Beaver triples for multiplication. MPC complexity is typically mea-
sured in the number of interactive operations and rounds [ABZS13, CDH10, EKM*14]. The num-
ber of interactive operations is an abstract measure of computation complexity, and interactive
operations require exchanging messages with other parties. For example, share reconstruction
and multiplication of shares are interactive operations, whereas addition of shares can be com-
puted locally by each party. The number of rounds is a measure of time complexity, around can
consist of multiple interactive operations which are assumed to run in parallel and messages are
sent in a single batch per round. For example, multiplication with pre-computed Beaver triples
requires 2 interactive operations (share reconstructions) in 1 round (shares can be sent in one
batch).

Per default we operate on integers, but a version of EM™* also requires floating-point numbers,
and we use subscript FL to denote protocols operating on floating-point numbers. For example,
Add denotes addition on integers while Addg denotes its floating-point equivalent.

20



2.2 Differential Privacy

As before, we list Sub as a separate operation, based on Add, to make our protocol descriptions
clearer. Note that Mux(a, b, ¢) is implemented with one multiplication as b+ (a — b) - ¢, and in the
offline-online paradigm Rand is an element of a pre-computed Beaver triple. For some protocols
—namely Mod2m, Trunc, LT, LE, EQ — there exist implementations with a constant or a logarith-
mic number of rounds. We present only the complexity for logarithmic round versions, which
provide better performance in practice [AKR*20]. We refer to Catrina and De Hoogh [CDH10,
Table 5] for the complexity of constant-round versions and how pre-computation can reduce
the complexity of logarithmic round versions.

2.2 Differential Privacy

In Section 2.2.1, we briefly discuss privacy notions leading to differential privacy (DP), and de-
scribe its connection to cryptography, before formalizing DP. We describe a notion of DP suited
for MPC in Section 2.2.2. After defining DP, we describe its properties in Section 2.2.3, and how
additive noise and probabilistic selection satisfy DP in Section 2.2.4. In Section 2.2.5, we discuss
noise distributions suitable for distributed deployments of DP mechanisms.

2.2.1 From Syntactic to Semantic Notions of Privacy

Next, we briefly summarize the evolution of privacy notions based on Nissim and Wood [NW18,
Section 2.2]. Initial research for anonymization considered syntactic privacy notions (e.g., k-
anonymity [SS98, Sam01], [-diversity [MKGV07], ¢-closeness [LIV07]), which place requirements
on how the anonymized data should look. Typically, syntactic notions are achieved by sup-
pression of identifiers (e.g., name, government id number), detecting quasi-identifiers (unique
combinations of non-identifiers), and coarsening them (e.g., replace values by ranges). For a
thorough and formal overview of syntactic privacy notions, we refer to Desfontaines [Des20,
Section 2]. Notable privacy incidents are due to incomplete suppression (e.g., “anonymized”
search logs contained identifying search terms [BZJ06]), and neglecting auxiliary information
(e.g., “anonymized” Netflix movie ratings were linked to public IMdB profiles [NS08]), and plenty
of further examples exist [And21, Section 11], [LLSY16, Section 1.1.1], [DKM19, Appendix A],
[DMHVB13, DMRS*15, NSR11, SH12]. Recently, the US census bureau showed that high-level
aggregate statistics (demographic counts in residential areas) suffice to identify millions of indi-
viduals of the 2010 US census by linking it with commercially available data [DKM19, GAM19].
As a consequence of such reconstruction attacks, first formalized by Dinur and Nissim [DNO03],
the US census adopted differential privacy [Abo18].

Differential privacy, introduced by Dwork et al. [Dwo06, DMNSO06], is a semantic notion, which
places a requirement on the anonymization mechanism M itself. Informally, when the input
data set of M changes in a single element?, the effect on the output is bounded. Differential
privacy is inspired by the cryptographic notion of semantic security [GM84], where an adver-
sary seeing the output of an encryption scheme (ciphertext) has at most a negligible change to
infer anything about the input (plaintext)*. However, a semantic privacy notion requires non-
negligible information leakage to allow any meaningful statistic [DMNSO06, Section 1]; if a single

3 As noted by Kifer and Machanavajjhala [KM11], there are two natural ways to interpret “data sets D, D" that differ in
a single entry”. A neighboring data set D’ can be created by either replacing an element in D (e.g., [DMNS06]) or by
adding/removing an element (e.g., [Dwo06]). Throughout this work, we will use the add/remove interpretation in ac-
cordance with Li et al. [LLSY16].

4 Except the length of the plaintext.
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individual cannot (at least slightly) change the outcome of an anonymized statistic, then neither
can a population of millions, and useful insights are impossible. Differential privacy bounds this
information leakage in general, i.e., independent of the computational strength and auxiliary
information an adversary might possess [Dwo08, Section 2]. The formal definition is as follows:

Definition 4 (Differential Privacy (DP)). Data sets D, D’, where D’ is created from D by adding or
removing an element are called neighbors and denoted D ~ D’. A mechanism M satisfies (e, 6)-
differential privacy, wheree > 0,6 > 0, if for all neighboring data sets D, D’, and all sets S C
Range(M)

PriM(D) € S] < exp(e) - PriM(D’) € S] + 6,

where Range(M) denotes the set of all possible outputs of mechanism M.

We abbreviate (¢, 0)-DP as e-DP. The original definition [Dwo06, DMNS06] with § = 0 is also
called pure differential privacy to distinguish it from approximate differential privacy with § > 0.
Privacy parameter ¢, also called privacy budget, is a small constant [DR14], where smaller values
correspond to a decrease in privacy loss. Typically, § is assumed to be negligible in the size n of
the dataset [DR14]. The parameter § has a similar motivation as the statistical security parameter
o in MPC, i.e., permitting a negligible probability to violate DP® to increase accuracy (see also
Section 2.2.3). Privacy parameter ¢, for which there is no equivalent in MPC, allows a finer trade-
off between privacy and accuracy than §. As noted before, some information has to be gained
from the output to allow any meaningful statistic. Roth [McS16] points out that € = 0 provides
perfect privacy, as all outputs are equally likely and inputs D, D’ indistinguishable. But this comes
at the price of zero accuracy as we gain no insights from uniformly random outputs. On the
other hand, € = = corresponds to perfect accuracy, as the raw data is revealed, but provides zero
privacy. Notably, exp(e) ~ 1 + ¢, for small values of €%, i.e., the probability to receive an output
based on D is within multiplicative factor 1 + € of an output based on D’.

Various variations and relaxations of differential privacy exist, see, e.g., [DP20] for an overview,
thatrelax the guarantee (e.g., average-case instead of worst-case) or use different metrics to mea-
sure the privacy loss (e.g., Rényi divergence). Note that Definition 4 (implicitly) assumes that
mechanism M has access to the raw data D. In a distributed setting, where each party locally
randomizes her datum d, the notion of local DP (LDP) [KLN*11] is used. Here, for any inputs
d,d’ € D the output changes are e-bounded, i.e., Pr[M(d) € S| < exp(e) - Pr[M(d’) € S]. Also,
Definition 4 implicitly holds against a computationally unbounded adversary (i.e., no adversary
restriction is defined), and later work considered restrictions on computational power [EKM*14,
HMES17, MPRV09, Vad17]. Due to our use of MPC, we define a computational notion of DP next.

2.2.2 Computational Differential Privacy

We consider semi-honest parties performing a joint secure computation in the presence of a
computationally-bounded adversary A, who tries to distinguish if the original D or a neighboring
data set D’ was used in the computation, and outputs a bit b € {0, 1} accordingly. Adversary A
corrupts a subset C of the parties #, and sees the views of corrupted parties, i.e., all exchanged
messages and internal state. The view is also called the transcript of a protocol. Let VIEwg (D) =
{VIEWﬁ (D)}pec denote the views of corrupted parties C ¢ # during the execution of protocol I
on input D. The following definition is based on Vadhan [Vad17, Section 10].

5Fora thorough discussion of the subtleties in interpreting &, we refer to the technical report from Meiser [Meil8].
6 Fore < 0.138, exp(e) — (1 +¢€) < 0.01.
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Definition 5 (Computational Differential Privacy). Arandomized protocol 11 implemented among
asetofparties P = {Py, ..., P,} achieves computational differential privacy with regard to a coali-
tion C c P of semi-honest parties of size at most t, if for all neighbors D, D’ and probabilistic
polynomial-time adversaries A

Pr[ﬂ(VIEwﬁ(D)) = 1] < exp(€) -Pr[ﬂ(VIEwg(D')) = 1] +6(x),

where §(x) = 6 + negl(x) with security parameter x.

Implicitly, this assumes a datum of a party in C does not change between D and D’, as oth-
erwise the DP guarantee is trivially broken. The definition can be expanded to the malicious
model by replacing the semi-honest parties £ and semi-honestly secure protocol IT with ma-
licious parties and a maliciously secure protocol. Notably, computational indistinguishability
(Definition 1) is equivalent to computational differential privacy for e = 0, § = 0.

2.2.3 Properties of Differential Privacy

Differential privacy exhibits desirable properties. The privacy guarantee of differential privacy
cannot be reduced via post-processing. No adversary can increase the privacy loss of a mecha-
nism M when a data-independent function f is applied on M, denoted as f o M [DR14, Sec-
tion 2.3]. In other words, auxiliary information cannot reduce the privacy guarantee. For com-
putational differential privacy (Definition 5), post-processing is restricted to computationally
bounded adversaries.

Group privacy extends the neighboring definition from changing a single element to k ele-
ments which leads the privacy budget to increase linearly in k, i.e., a standard e-DP mechanism
satisfies ke-DP with group size k > 1 [DR14, Theorem 2.2].

Differential privacy supports the composition of k mechanisms M, ..., My where each M;
satisfies (¢;, 6;)-DP. Parallel composition considers the application of each M; on disjoint sub-
sets of a data set and satisfies (max; <; < €;, max; <;<x 6;)-DP [LLSY16, Section 2.2.2]. Sequential
composition considers sequential execution of mechanisms, i.e., My o My_jo- - -0 M;. Sequential
composition satisfies at least (Z, 1 €i» Z;C:l 6;)-DP [DR14, Theorem 3.16]. For (¢, §)-DP mecha-
nisms M;, i.e., mechanisms with the same privacy parameters, a tighter composition bound is
(\/2klog(1/6")e + ke(exp(e) — 1), k& + 6')-DP where 6, 8’ > 0 [DR14, Theorem 3.20].

Note that approximate DP (§ > 0) requires less privacy budget (¢) than pure DP (6 = 0) when
k is large enough, as we show next.

Lemma 1. Sequentially composingk mechanisms satisfying (e, 6)-DP requires a smaller total pri-

210g(1/8) .
% with 6’ > 0.

vacy budget € than (€, 0)-DP mechanisms when k >
Proof. Running k (¢, §)-DP mechanisms on the same data leads to a total privacy budget of ke
for pure DP mechanisms (6 = 0), and (1/2k log(1/6")e + ke(exp(e) — 1), k6 + §’) for approximate
DP mechanisms (8, 8" > 0) [DR14, Theorem 3.20]. Therefore, /2k log(1/6")e + ke(exp(€) — 1) <

ke & (\/2 log(1/6") + (exp(e) - 1) <1 & k > (Zzloegx(pl(/g))z (See also [MV16, Appendix A]). [

For further details about composition we refer to Murtagh and Vadhan [MV16] and Dong et
al. [DDR20].
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2.2.4 Mechanisms

Differential privacy requires randomized algorithms called mechanisms in the DP literature. So
far, we have detailed what notion of privacy DP offers. After defining a function’s sensitivity, we
can formalize how mechanisms satisfy DP.

The randomization magnitude depends on the privacy parameter € and the sensitivity Af of
the function f evaluated on the data. Sensitivity is an upper bound on any individual’s influence
on the output of f, i.e., the largest possible difference of neighboring data sets evaluated on f.

Definition 6 (Sensitivity). The (global) sensitivity of a function f : D" — R is
Af = max |f(D) - f(D)].

Various specialized or relaxed sensitivity notions exist [ABCP13, BBK17, DR14, NRS07] and
later, in Section 3.6.1, we discuss related work with notions customized for the median.

Having defined the required noise magnitude for a function, we can now present mechanisms
that achieve DP. DP mechanisms can be classified by how they randomize, i.e., with additive
noise or via probabilistic selection.

Mechanisms with Additive Noise

Noise, added to the function output, is one way to achieve differential privacy, e.g., via the
Laplace mechanism [DR14].

Definition 7 (Laplace mechanism LM). Mechanism LM, for function f : D" — R with sensitivity
Af, privacy parameter €, and a data set D, releases

f(D) + Laplace(Af/e),

where Laplace(b) denotes a random variable from the Laplace distribution with scale b and den-

sity
oy L |x|
Laplace(x; b) = b exp( Y )

The Laplace mechanism is e-DP [DR14, Theorem 3.6].

Mechanisms with Probabilistic Selection

The alternative to additive noise is probabilistic selection, which expands the application of dif-
ferential privacy to functions with non-numerical output domain R, or when the output is not
robust to additive noise, e.g., auction bids [MT07] or the median [LLSY16].

The simplest selection mechanism is randomized response introduced by Warner [War65] and
we describe it according to Dwork and Roth [DR14, Section 3.2]:

Definition 8 (Randomized Response). Randomized response handles sensitive survey questions
with yes and no answers, i.e., R = {yes,no}, as follows:

1. Flip a coin.
2. Ifit comes up tails, answer truthfully.

3. Ifit comes up heads, flip again and answer yes if heads and no if tails.
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Randomized response pre-dates differential privacy but was shown to satisfy log, (3)-DP [DR14,
Section 3.2]. It basically provides a form of plausible deniability, i.e., respondents can always
claim that they did not answer truthfully (“my first flip showed heads”). Randomized response
protects each individual respondent and yet allows inference over the population of all respon-
dents as follows. Let f; denote the fraction of reported yes answers, and let f, denote the fraction
of respondents whose actual answer would be yes. The reported fraction of positive answers
can be expressed as fy’ = 1/4 + f,/2, i.e., answers due to heads-heads (occurs with probability
1/2-1/2 = 1/4) plus truthful answers due to fails (actual f, times probability for zails). Thus, the
actual fraction of yes answers, fy, can be estimated as 2f, - 1/2.

Randomized response can be generalized to arbitrary domains R as follows. Respondents re-
port their true value x € R with probability p and any other z € R\{x} with probabilityg =1 - p.

Definition 9 (Generalized Randomized Response GRR). Mechanism GRR : R — R, applied on
x € R with privacy parameter €, outputsr € R with probability

_ exp (€)
PIGRR(x) = r] = {7~ SR VT
9= spoariT Ux#T

ifx=r

GRR is €-DP as the quotient p/q is bounded by exp(e). Again, let f/ denote the fraction of
reports with value x. The actual fraction f; is approximated as f;’ = ];f__;’, which is an unbiased
estimator, i.e., E[f;] = f; [WBLJ17, Theorem 1].

The exponential mechanism, introduced by McSherry and Talwar [MT07], additionally ana-

lyzes the data set to provide instance-specific selection probabilities per domain element. The

mechanism is exponentially more likely to select “good” results quantified via utility function
u(D, r) which takes as input a data set D € D", and a potential output r € R from a fixed set of ar-
bitrary outputs R. Informally, higher utility means the output is more desirable and its selection
probability is increased accordingly.

Definition 10 (Exponential Mechanism EM). The exponential mechanism EM, (D), for any util-
ity functionu : (D" x R) — R and privacy parameter €, outputs r € R with probability propor-
tional to exp(%), ie.

exp ( euz(ADLZr) )

. (2.1)
Zr’eR eXp( Euz(m’,r ) )

PrEMS(D) = 1] =

where

Au= max |u(D,r)—-u(D,r
WEQD:D,I (D, r) —u(D',r)]

is the sensitivity of the utility function.

The exponential mechanism is e-DP [MT07, Theorem 6]” and is universal, i.e., can implement
any DP mechanism M by defining utility function u(D, r) to be the logarithm of the probability
density of M(D) atr [MT07, Section 3]. We write EM, i.e., omit u, €, D, if they can be derived from
the context. In this work, we consider the output domain R to be the data domain D or a partition
ofit, e.g., subranges of .

"The original definition [MT07, Definition 2] omits normalization term 2Au from Definition 10 and is 2Aue-DP, which is
equivalent to e-DP with the normalization.
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2 Preliminaries

The Gumbel mechanism achieves the same output distribution as EM [DR19a, Lemma 4.2] by
adding noise from the Gumbel distribution to the utility scores and selecting the output element
with the largest noisy utility scores. In other words, by taking the arg max over noisy utility scores.

Definition 11 (Gumbel Mechanism GM). Mechanism GM, for utility functionu : (D" x R) - R
with sensitivity Au = maXy,eg p~p|u(D, r) — u(D’,r)|, outputsr € R via

argmax{u(D, r) + Gumbel(2Au/¢€)},
reR

where Gumbel(b) denotes a random variable from the Gumbel distribution with scale b and den-
sity .
x X
Gumbel(x; b) = 3 exp(—(E + exp(—E))).

The Gumbel mechanism is also known as the Gumbel-(soft)max trick [Gum48, MTM14]. It is
originally found in machine learning literature to efficiently compute Equation (2.1) —also called
the softmax function which maps arbitrary inputs to probabilities — and only recently applied in
DP literature [DR19b].

Report One-Sided Noisy Argmax [DR14, Section 3.4] achieves similar guarantees as EM [DR14,
Remark 3.13]® by selecting outputs based on the argmax over utility scores with additive noise
from the exponential distribution®. The exponential distribution with scale b is defined as

Expon(x; b) = %exp(—%)

for x > 0 and 0 elsewhere.

Inverse Transform Sampling

After computing the selection probabilities according to the exponential mechanism EM, we
need to sample an output based on these probabilities, which we realize with inverse transform
sampling. Inverse transform sampling uses the uniform distribution, where all values are equally
likely, to simulate any distribution based on its cumulative distribution function F(x). Specifi-
cally for EM,

ZreR,er exp(%)

D)\
Zr’eR eXp( Euz(Aur ) )

F(x) = Pr[EM§(D) < x| =

Inverse transform sampling, given F and a uniform random s € (0, 1], finds the first output x
such that s < F(x) and outputs it [EKM*14, Section 3], [AMFD12, Section 5.2]. To illustrate why
this works, consider the following example. Let ® = {a, b} with selection probabilities 0.7 for a
and 0.3 for b. Now, we take a large array A and fill 70% of A with a and the rest with b, sample
an index i of A at uniform random, and output A[i]. The output is a with 70% probability and b
otherwise.

8 Some sources state that report one-sided noisy argmax and EM have the same distribution (e.g., [BGG*16, Section 5]
cites older version of [DR14, Theorem 3.13]) however, recent work shows the distributions are different [DKS*21].

9 The name of the mechanism is due to the fact that the exponential distribution is also called one-sided Laplace distri-
bution [BGG*16].
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2.2 Differential Privacy

2.2.5 Distributed Noise Generation

Sampling noise via secure computation is inefficient for distributed semi-honest parties, as
they have to securely evaluate the inverse cumulative density function requiring complex op-
erations such as the logarithm. For example, sampling Laplace(b) is equivalent to computing
(-1)*blog(r) given uniform random numbers r € (0,1],s € {0,1} [JWEG18, Supplementary
Material]. Distributed noise generation is more efficient, i.e., each party locally computes par-
tial noises, which are securely combined. Such noise generation is commonly found in the DP
literature [AC11, DKM*06, HLK*17, GX17]. Distributed noise generation is straightforward for
distributions that are infinitely divisible, i.e., samples can be expressed as the sum of indepen-
dent and identically distributed random variables. Next, we describe distributed noise for the
Laplace, exponential and Gumbel distribution, which are infinitely divisible [BS13, GX17].

Distributed Laplace Noise

Random variable Laplace(b) can be expressed via the gamma distribution [KKP12, Table 2.3],

i.e.,

where the gamma distribution with shape k and scale b has density

1 X
Gamma(x; k, b) = ka 1exp(—5).
To avoid floating-point numbers, which lead to larger overhead for secure computation com-
pared to integers [ABZS13] and can lead to privacy violations with limited machine precision
(see Section 3.4), one can use the discrete Laplace distribution defined over integers. The dis-
crete Laplace distribution is infinitely divisible and samples can be expressed as the difference
of two Pélya random variables [GX17].

Distributed Exponential Noise

10

Random variable Expon(b) can be expressed similarly to distributed Laplace noise"” as

< 1
ZY]-, Yj ~ Gamma(—,b).
i1 "

Distributed Gumbel Noise

Random variable Gumbel(b) can be expressed via the exponential distribution [BS13], i.e.,

n

: Y;
b%l_rgo 27—log(n) , Y; ~ Expon(1).

j=1

10 The Laplace distribution is also called the double exponential distribution. Laplace-distributed random variables can
be written as the difference of two random variables from the exponential distribution [KKP12, Table 2.3]; hence, the
similarity to distributed Laplace noise.
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2 Preliminaries

While the Laplace distribution can be expressed as a finite sum of random variables, the Gum-
bel distribution requires an infinite sum. However, the expected approximation error for the
Gumbel distribution can be made arbitrarily small in the number s of summands:

Theorem 1. For Gumbel;(b) = b 25:1 %

approximation error |Gumbel(b) — Gumbel;(b)| = O(b/s).

— blog(n), whereY; ~ Expon(1), we have expected

Proof. We have E[Gumbel(b)] = ygm - b, where ypq = lim,o (21, 1/i —log,(n)) ~ 0.5772
is the Euler-Mascheroni constant. Furthermore, [E[Gumbel|s(b)] = szzl [E[]—.Yj] — blog(n) <
b(yem +1/(2s) + O(1/s%)), due to E[Y;] = 1 and an inequality for the difference of the n-th har-
monic number and log n [GK07, Eq. (4.30)]. Altogether,

|E[Gumbel(b) — Gumbels(b)]| = |[E[Gumbel(b)] — E[Gumbels(b)]|
< lyemb - b(yem + O(1/s))| = bO(1/s).
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3 Related Work

In Section 3.1, we describe existing privacy models for implementing DP — mainly, the local, cen-
tral, and MPC model — and focus on the MPC model in Section 3.2. We discuss techniques to
prune the data or reduce the domain to improve efficiency in Section 3.3. Finite machine pre-
cision, resulting privacy violations, and mitigations are summarized in Section 3.4. Decompos-
ability in the context of DP is discussed in Section 3.5. Finally, we discuss related work grouped
by privacy models: DP median in Section 3.6 and DP heavy hitters in Section 3.7.

3.1 Privacy Models

Differentially private mechanisms can be implemented in different models, visualized in Fig-
ure 3.1 [BK20b, Boh21]. Next, we describe the models, their trade-offs with regards to accuracy
and privacy, and how MPC simultaneously supports high accuracy with strong privacy.

In the central model (Figure 3.1a) every client sends their unprotected data to a trusted, central
server which runs mechanism M on the clear data. The central model provides the highest ac-
curacy as the randomization inherent to DP algorithms, is only applied once. In the local model
(Figure 3.1b), introduced by Kasiviswanathan et al. [KLN*11], clients apply M locally and send
anonymized values to an untrusted server for aggregation. The accuracy is limited as the ran-
domization is applied multiple times. Hence, it requires a very large number of users to achieve
accuracy comparable to the central model [BEM*17, CSU*19, HKR12, KLN*11, MMP*10]. Specif-
ically, an exponential separation exists between the local and central model regarding the ac-
curacy and sample complexity [KLN*11]. Recently, an intermediate shuffle model (Figure 3.1c)
was introduced by Bittau et al. [BEM*17]!: A trusted party is added between client and server
in the local model, the shuffler, who does not collude with anyone. The shuffler permutes and
forwards the randomized client values. The permutation breaks the mapping between a client
and her value, which reduces randomization requirements. The accuracy of the shuffle model
lies between the local and central model, however, in general it is strictly weaker than the cen-
tral model [BC20, CSU*19]. To illustrate this separation, consider counting queries with n par-
ties: the central model has accuracy O(1), the shuffle model (with a single message per party)
has accuracy O(log n), and the local model suffers error O(\/ﬁ) [WHMM21]. In addition, Cheu
et al. [CU21] showed that in the shuffle model no general analogue exists for the exponential
mechanism, which is the basis for most of our protocols.

As our goal is high accuracy without trusted parties even for a small number of users, we imple-
ment the MPC model (Figure 3.1d). In other words, we simulate the central model in a distributed
setting with cryptographic tools, as commonly found in the DP literature [AMFD12, DKM*06,
EKM*14, GX17, PL15, RN10, TKZ16]. General-purpose MPC incurs high computation and com-
munication overhead, reducing efficiency and scalability [CSU*19]. However, MPC combines

I Bittau et al. [BEM*17] introduced the shuffle model for differentially private software monitoring, and Cheu et
al. [CSU*19] initiated the analytical study of the shuffle model. In the context of cryptography, a similar model was
introduced by Ishai et al. [[KOS06], utilizing anonymous communication as a building block for MPC.
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(d) MPC Model with 3 Computation Parties C;

Figure 3.1: Implementation models for DP mechanism M. Party P; sends a message — raw d; or randomized data r; — to
a server, who combines all messages with function f. In the MPC model, party P; distributes secret shares
Shr(d;) among m computation parties.

the respective benefits of the models, namely, high accuracy and strong privacy, i.e., no disclo-
sure of values to a third party, and we implement efficient and scalable special-purpose MPC
protocols.

3.2 MPC and DP

Dwork et al. [DKM*06] first mentioned that differential privacy combines well with secure com-
putation and many works build upon this observation [DKM*06, TKZ16, RN10, PL15, EKM*14,
NPR19]. Secure DP summation is easily achieved via additive noise, see, e.g., [GX17] for a survey
of such work. Goyal et al. [GKM*16] showed that in general distributed DP protocols can only
achieve optimal accuracy when combined with secure computation.

Recently, cryptographic primitives received more attention in the DP literature to improve the
shuffle model [GKMP20, BBGN20]. Mainly, these improvements build upon the work of Ishai
et al. [IKOS06], which uses anonymous communication as a building block for MPC. Also, DP
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3.3 Data Pruning & Domain Reduction

is used in cryptographic protocols to bound their leakage such as revealing some access pat-
terns to improve overall efficiency [CCMS19]. It is also used, e.g., in private record matching
to securely compute and release exact matches while protecting the number of non-matching
records by adding a certain number of dummy records [HMFS17]. An overview of cryptographic
applications of DP is given by Wagh et al. [WHMM21]. In this work, we focus on efficient secure
computation of DP statistics with high accuracy, especially on small data sets.

MPC of the Exponential Mechanism

Our protocols are mainly realized as secure computations of the exponential mechanism for the
median, decomposable aggregate utility functions, and heavy hitters. Alhadidi et al. [AMFD12]
design a secure two-party protocol for the exponential mechanism restricted to “max utility
functions”, where each party reports their maximum value for a generalized class (e.g., subrange)
which are added together [AMFD12, Section 5.1]. They use garbled circuits to compute the max-
imum and comparisons, and oblivious polynomial evaluation [NP01] as well as secret sharing
like Bunn and Ostrovsky [BO07] to approximate the Taylor series for the exponential function
(i.e., exp(x) = X5, x"/n!). They only estimate the running time of their design [AMFD12, Sec-
tion 7.2], whereas we implement all our protocols and provide evaluations in real-world net-
works (Section 4.4.1). Also, we avoid complex approximations of the exponential function by
leveraging data-independent utility functions (EMy.q), decomposable utility functions (EM*),
and the Gumbel mechanism (GM*, PEM). Furthermore, our protocol EM* is more general as we
support more than two parties and a broader class of utility functions, including but not limited
to max utility functions. Eigner et al. [EKM*14] present and implement a carefully designed se-
cure exponential mechanism in the multi-party setting. While their work is more general than
ours, i.e., supporting arbitrary utility functions and also malicious parties, they are linear in the
size of the domain, and securely compute the exponential function. Our protocols EMeq, EM™,
PEM are sublinear in the domain size without costly secure exponentiation. Secure exponentia-
tion is complex [ABZS13, AS19, DFK*06, Kam15], requiring many interactive rounds. The semi-
honest protocol of Eigner et al. requires 42 seconds in a LAN (on an Intel i5 3.20 GHz, 16 GB RAM
machine) to select an output from a very small domain of only 5 elements whereas EM* handles
atleast 10° domain elements in the same time (on AWS t2.medium instances with 4vCPUs, 2 GB
RAM), i.e., an improvement of at least 5 orders of magnitude (see Section 6.3.1).

3.3 Data Pruning & Domain Reduction

Efficiently sampling the distribution defined by the exponential mechanism is non-trivial [DR14,
Section 3.4], thus, a reduction of the sampling space is considered by related work [BDB16,
GLM™*10, LLSY16, PL15].

Data Pruning for DP Median

Pettai and Laud [PL15] define MPC protocols for differentially private analytics, including the
median (detailed in 3.6.2). In case of filtering (i.e., predicate matching), Pettai and Laud [PL15]
apply a form of input pruning and replace half of the excluded values with a small (resp. large)
constant. They mention that this does not always preserve the median, unlike the pruning ap-
proach by Aggarwal et al. [AMP10] implemented in EM 4.
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Domain Reduction for DP Median

Guptaetal. [GLM*10] suggest reducing the output domain for combinatorial problems from ex-
ponential to polynomial size and sample from the reduced set with the exponential mechanism.
Blocki et al. [BDB16] follow this suggestion and use a relaxed exponential mechanism to sample
a DP password frequency list in the central model. They allow a negligible error §, i.e., they only
sample the exponential mechanism correctly with probability 1 — §, which improves sampling
from (potentially) exponential time to O (|D|'%/¢). However, they require full access to the data D
in clear. Li et al. [LLSY16] suggest to divide domain D into equal-sized ranges, select a range with
the exponential mechanism and sample an element in the range at uniform random. However,
with this approach any element in the selected range is equally likely to be output independent
of its utility. Our two-party protocol EM,.4, on the other hand, samples the median only among
elements with the same utility. Our multi-party protocol EM* splits the domain as suggested by Li
etal. [LLSY16], however, we divide ranges iteratively: We select the best range, divide the selected
range into subranges and repeat the selection until the subrange contains only one element. Our
multi-party protocol PEM iteratively finds frequent bit-prefixes of increasing size. Furthermore,
our protocols provide a parameterized trade-off between accuracy and running time for the ex-
ponential mechanism.

Domain Reduction for DP Heavy Hitters

Domain reduction and efficient encoding (e.g., hashing, sketching) are the main challenges of
heavy hitter discovery, where the domain is either large or unknown, and discussed in detail in
Section 3.7.

3.4 Limited Machine Precision and Privacy Violations

In general, DP mechanisms operate on reals, whereas actual implementations are limited to
the precision of physical machines. However, limited precision can lead to privacy violations.
Mironov [Mirl12] showed that the Laplace mechanism is vulnerable to finite precision, as the set
of possible outcomes can differ between neighboring data sets due to irregularities of floating-
point implementations. The proposed mitigation is to perform “snapping”, roughly, clamping
the noisy result to a fixed range and ensuring evenly spaced outputs. For a detailed implementa-
tion description see [Mic20a]. Gazeau et al. [GMP16] consider general finite precision semantics
and suggest using fixed precision (via rounding, truncation) for bounded privacy degradation.
Recent work by Ilvento [Ilv20] extends this line of study to the exponential mechanism, which
is also vulnerable to finite precision. The suggested mitigation is switching from base e to base
2 to perform precise arithmetic, e.g., for integer-valued utility functions one approximates € as
€’ = —log,(x/2) for integers x, y such that x/2” < 1.

The investigation of privacy violations due to limited machine precision is outside the scope
of this work. However, our protocols do not rely on noise or utility scores represented as floating-
point numbers: Our protocol EM,.4 (Section 5) uses fixed point numbers, i.e., scaled and trun-
cated integers, instead of floating point numbers. Interestingly, the mitigation techniques from
Ilvento [Ilv20] are similar to the optimizations deployed in our protocol EM* (Section 6), i.e., we
utilize base-2 and integer utility functions for efficiency (detailed in Section 6.2.6). Our protocols
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3.5 Decomposability

PEM, HH (Section 7) use scaled, truncated noise from a continuous distribution (PEM) or can be
realized with noise from a discrete distribution defined over the integers (HH).

3.5 Decomposability

Decomposability is often found in the context of MapReduce, which is a programming paradigm
for distributed data aggregation: Roughly, a mapper produces intermediary results (e.g., partial
sums) that a reducer combines into a result (e.g., total sum). Airavat [RSK*10] is a Hadoop-based
MapReduce programming platform for DP statistics based on additive noise (Laplace mecha-
nism) with an untrusted mapper but trusted reducer. We consider decomposable utility func-
tions for probabilistic selection via the exponential mechanism without any trusted parties. Ex-
isting secure exponential mechanisms [AMFD12, EKM*14] use decomposable utility functions
(max and counts), but neither classify nor provide optimizations for such functions. Blocki et
al. [BDB16] minimize cumulative error for DP password frequency lists. They use (decompos-
ability of) frequencies for their dynamic programming, which has access to all the data in the
clear. We, on the other hand, use decomposable aggregate functions to efficiently and securely
combine distributed inputs in EM™.

3.6 DP Median

In the context of the DP median, we first detail different sensitivity notions and their accuracy
in Section 3.6.1. Then, we discuss related work for the DP median grouped by privacy models in
Section 3.6.2.

3.6.1 Sensitivity and Utility Functions for DP Median

Recall Definition 6, i.e., the sensitivity is the maximum difference of a function evaluated on
neighboring data sets. Different sensitivity notions exist, and we discuss those relevant for the
median next.

Sensitivity of the Median

According to Definition 6, the sensitivity of the median is max ® — min D2. Definition 6 is also
called global sensitivity as it considers all possible data sets and their neighbors. Note that con-
sidering only a fixed data set instance and its neighbors, known as local sensitivity, violates dif-
ferential privacy [NRS07, Section 2.1]3.

Smooth sensitivity, developed by Nissim et al. [NRS07], satisfies DP as a smooth upper bound
on the local sensitivities of all neighbors of a fixed data set instance. Smooth sensitivity is not
always computable [NRS07, Section 1] but provides instance-specific randomization, typically

2To illustrate, consider a sorted data set D; = {x,x, y,y} where x,y € D and the median is x. However, y can be the
median after a single change (i.e., remove any x). The difference |x — y| is maximized for x = min ®, y = max ®, hence,
the median sensitivity stated above.

3 For example, consider Dy = {x, y,y} with x = min®D, y = max D and median y = d[,,2. D2 is a neighbor of D; (remove
x from D;), and D3 = {x,y,y,y} (add y to D). The local sensitivity of D, is the same as the global sensitivity as median
y can become x after a single change (add x). However, the local sensitivity of D3 is 0, i.e., y remains the median after
one addition/removal. Recall that sensitivity, alongside the privacy parameter ¢, governs the noise magnitude for DP
mechanisms. Now, Dj is a neighbor of D, but the large difference in the local sensitivity, thus, altered additive noise,
suffices to distinguish if D, or D3 was an input to M which violates differential privacy [NRS07, Section 1.3].
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smaller than global sensitivity. For the median, Nissim et al. [NRS07, Proposition 3.4] define the
smooth sensitivity as follows.

Definition 12 (Smooth Sensitivity of the Median). The smooth sensitivity of the median of sorted
datasetD = {d,,...,d,} € D" is

~ke
e ACTRLR.

whered; = min® fori < 1 andd; = max?® forj > n.

Informally, sensitivity of neighboring data sets “further away” (i.e., increasing k) from fixed
instance D receive exponentially less weight (e7%€). While smooth sensitivity can be smaller than
global sensitivity, computing smooth sensitivity requires access to the entire data set, otherwise
the error increases further?, which prohibits efficient (secure) computation with high accuracy.

Smooth sensitivity is used in DP mechanisms based on additive noise. However, for proba-
bilistic selection via the exponential mechanism a smaller and data-independent sensitivity can
be defined for the median, as described next.

Utility Function for the Median

Lietal. [LLSY16, Section 2.4.3] note that the Laplace mechanism is ineffective for the median, as
(smooth) sensitivity can be high, and present a low-sensitivity utility function for the exponen-
tial mechanism. They quantify an element’s utility via its rank relative to the median. The rank
of x € D in a data set D is the number of values in D smaller than x. More formally, rankp (x) =
{d | d € D : d < x}|. Note that for the median, we have R = D, which means every domain ele-
ment is a potential output.

Definition 13 (Median Utility Function). The median utility function u,, : (9" x D) — Z givesa
utility score for each x € ® with regard to D € D" as

uu(D, x) = -

. n
rankp (x) gjlslgnkp(xﬂ) a 5‘

The sensitivity of u, is only 1/2 since adding an element increases n/2 by 1/2 and j either in-
creases by 1 or remains the same [LLSY16, Section 2.4.3]°. Thus, the denominator 2Au in the
exponents of Equation (2.1) in Definition 10 equals 1, and we will omit it in the definitions of
our DP median protocols. We focus on MPC of the DP median but Definition 13 supports any
k-ranked element by replacing n/2 with k and adapting the sensitivity accordingly [Mic20b].

4 Smooth sensitivity approximations exist that provide a factor of 2 approximation in linear-time, or an additive error of
max(D)/poly(|D[) in sublinear-time [NRS07, Section 3.1.1]. Note that this error e is with regard to smooth sensitivity s,
and the additive noise is even larger as it scales with (s + e) /€.

5 Here, we point out a technicality, which is a moot point for even data sizes or if the median appears multiple times in
the data. Li et al. [LLSY16] approximate the median position as /2 to get low sensitivity 1/2. We defined the median
position as [r/27], which is the same for even data sizes. However, one cannot use a rounded median position in Defi-
nition 13, as it increases the sensitivity to 1, i.e., rounded positions do not change between neighbors but the ranks can
change by +1. Overall, the median (at position [7/27) and an adjacent element might receive the same utility score. In
this case, one outputs either one of those data elements (resp., domain elements in between) with the same probability.
In expectation, one outputs the average of them, similar to the common median definition which returns the average
(dm + dm+1)/2 for m = n/2 and even n. However, this technicality is of little to no consequence when the elements
adjacent to the median are very similar or the same — as is to be expected. Recall, the median represents a “typcial”
element in the data. The median is considered a robust statistic, i.e., few input changes (resp., small positional shifts)
do not lead to large output changes [DL09, Section 1.2].
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Figure 3.2: Absolute errors with 95% confidence intervals, averaged for 100 differentially private median computations
via Laplace mechanism with smooth sensitivity and the exponential mechanism.

Exponential Mechanism is more accurate than Smooth Sensitivity

To illustrate that additive noise can be high for DP median, we empirically evaluate the abso-
lute error of the Laplace mechanism with smooth sensitivity and the exponential mechanism in
Figure 3.2 on real-world data sets [Kag18, ULB18, TLC19]. For low ¢, corresponding to a stronger
privacy protection, the exponential mechanism is more accurate. Note that we evaluated an ide-
alized version of smooth sensitivity by ignoring required constants that further increase the noise
magnitude [NRS07, Lemma 2.9] [MG20, Proposition 2], and still see better accuracy for the ex-
ponential mechanism. Medina and Gillenwater [MG20] also compared the exponential mecha-
nism to smooth sensitivity for DP median and found the former to be superior as well.

Overall, our protocols EM,.4, EM™ achieve better accuracy, i.e., average absolute error, for
DP median than approaches without the exponential mechanism for low € with better scala-
bility than the standard exponential mechanism. We discuss accuracy bounds of EM 4 in Sec-
tion 5.1.6 and provide empirical evaluations in Section 5.3. For EM*, we discuss accuracy in Sec-
tion 6.1.5 and detail empirical evaluations with regard to related work in Section 6.3.5.

3.6.2 DP Median and Privacy Models

In the following, we discuss related work for DP median grouped by privacy models, i.e., non-
private, local DP, central DP, and MPC of DP.

Non-private Median

The exact median can be computed by general MPC, which offers input secrecy but does not
provide any output privacy. Aggarwal et al. [AMP10] present very efficient secure protocols for
finding the median of two (resp., multiple) parties requiring only a logarithmic number of se-
cure comparisons in the size of the data (resp., domain). Their protocols iteratively prune the
data (resp., domain) until only the median remains and operate similar to binary search. In each
iteration, their two-party protocol securely compares local medians and lets each party discard
half of their sorted data that cannot contain their mutual median. We formalize their two-party
protocol in Section 5.1.5 and detail their multi-party protocol in Section 5.2.7. While Aggarwal et
al. compute the exact median we compute the DP median. For large data sets, EM* employs the
pruning from Aggarwal et al. to reduce the input size until it is sublinear in the domain size, so
we can efficiently sample the DP median from the pruned input.
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Local DP Median

Smith et al. [STU17] and Gaboardi et al. [WGSX20] consider the restrictive non-interactive local
model, where at most one message is sent from client to server, and achieve optimal local model
error. However, local DP requires more samples to achieve the same accuracy as central DP for
the same privacy parameter and no non-interactive LDP protocol [STU17, WGSX20] can achieve
asymptotically better sample complexity than O(e?a~?) for error a [DJW13]. We, on the other
hand, are interested in high accuracy as in the central model even for small sample sizes

Central DP Median

Dwork and Lei [DL09] present DP mechanisms for robust statistics where data samples are as-
sumed to be drawn independent and identically distributed. Robust statistics (e.g., median) are
not very sensitive to outliers (unlike, e.g., the mean) and small input changes do not drastically
alter the result [DL09, Section 1.2]. They describe a propose-test-release paradigm, where an ana-
lyst (without data access) first proposes a bound on the local sensitivity to the data owner. Then,
the data owner performs a differentially private test on the data to check if this bound suffices. Fi-
nally, if the test succeeds, the DP statistic is released with the proposed bound. Their DP median
approach is the first that does not require a bounded data domain. However, it aborts if the data
are not from a “nice” distribution, e.g., the local sensitivity is high. Their DP median approach
is based on a private estimation s of the data scale (also called dispersion) via the inter-quartile
range. However, their noise magnitude sn~'/3 for the median can be prohibitively large, espe-
cially for small data sizes n.

Smooth sensitivity, introduced by Nissim et al. [NRS07], is a smooth upper bound on local sen-
sitivity. Smooth sensitivity analyzes the data to provide ideally small instance-specific additive
noise. As discussed in Section 3.6.1, the exponential mechanism provides better accuracy for low
€ and we provide efficient computations over a data subset (EM,.q) or domain subranges (EM*),
whereas computing smooth sensitivity for the median requires access to the entire sorted data.

MPC DP Median

As mentioned before, Pettai and Laud [PL15] securely compute DP statistics, including the DP
median. Their implementation is based on secret sharing with 3 parties and realizes the sample-
and-aggregate mechanism [NRS07, Section 4]. Typically, the sample-and-aggregate mechanism
partitions the data in multiple equal-sized subsets, performs a computation per subset, and
aggregates the results to provide a noisy approximation. For the median, however, Pettai and
Laud [PL15] compute the noisy average of the 100 values closest to the median within a clipping
range. This approach provides limited accuracy, especially, if the data contains outliers or large
gaps (see discussion in Section 6.1.5 and evaluation in Section 6.3.5). The exponential mech-
anism, which we securely implement for the median utility function, selects an actual domain
element and not a noisy approximation.

Crypte [CWH?*20] employs two non-colluding untrusted servers and homomorphic encryp-
tion [Pai99] as well as garbled circuits to compute noisy histograms (Laplace mechanism) for
SQL queries (e.g., count, distinct count, counts grouped by matching attributes) which can be
extended to compute the median. However, computing DP median with probabilistic selection
is more accurate than additive noise for low € (Section 3.6.1 and Section 6.3.5). Crypte has a run-
ning time linear in the data size. For a data set of one million records, Crypte requires around
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DP median methods Error bound a of («, B) -accuracy
Nissim et al. [NRS07] — Additive noise with Smooth Sensitivity: ke

. - - max e max (dﬂﬁ —dgﬁ_k_l)y
reduced, instance-specific noise. k=0,..,n t=0,.,k+1\ 2 2

Dwork and Lei [DL09] - Additive noise with Propose-Test-
Rel ) . . [P dro.7511—A10.25n]

elease: propose bound on sensitivity, privately test if it is suf- — Y
ficient, and release noisy result if test succeeded.

Pettai and Laud [PL15] — Additive noise with Sample-and- '
Aggregate: average j elements closest to the median in clip- uz¢; , Max(®)-min(D)
i i J eexp(Q(eV)))

ping range [c;, ¢, ], release noisy average.

This work (Section 6.1.5) — Probabilistic selection with Expo-
nential Mechanism: iteratively select subranges containing max, In(o1/8) )dﬂﬂ' —dn
the median l€{+1'71}'[ € J : ‘

Table 3.1: DP median methods in the central model with y = In(1/p)/e. Data D € D" is sorted and the error terms are
simplified to ease comparison: omitting small constants (mainly §) [NRS07, DL09], assuming expected sen-
sitivity [DL09], shortened approximation error term [PL15] (see [NRS07, Th. 4.2]), and applying one selection
step for this work.

17 minutes for a count with three conditions, e.g., “count of male employees of Mexico having
age 307, with pre-computed DP index for country using Google Cloud c2-standard-8 instances
with 8vCPUs and 32 GB RAM [CWH*20, Section 9]. The pre-computed DP index, which con-
sumes part of the privacy budget, approximately shows the location where sorted encrypted val-
ues change from one value to another to speed up processing. Without such pre-computation
the runtime increases to hours. Similarly, computing a noisy histogram for the attribute age in
the form of the cummulative density function over integer domain [1, 100] requires around half
an hour for around 32,000 records without pre-computation [CWH?*20, Table 3]. Our protocols,
on the other hand, can process data in real-time, i.e., without large pre-computation overhead
for new data, and our evaluations cover the entire protocol running time. Our DP median pro-
tocol EM, ¢4 is sublinear in the data domain with pruning (linear in the data size without prun-
ing) and runs in less than 7 seconds for one million records in a WAN with 100 ms latency and
100 Mbits/s bandwidth on machines with only 2 GB RAM and 4vCPUs (Figure 5.6 in Section 5.3).
Our protocol EM* is independent of the data size and optimized for decomposable functions.
GM* (a variation of EM”) achieves a running time of less than 90 seconds for millions of domain
elements with the same hardware and real-world WAN (Figure 6.4 in Section 6.3).

Theoretical Accuracy Bounds

Table 3.1 lists theoretical accuracy bounds for related work closest to ours, i.e., computation of
the DP median in the central or MPC model, omitting any dependence on §. The table compares
the (a, B)-accuracy, i.e., the probability that the absolute error is at most a is at least 1 - § (formal-
ized in Definition 15 in Section 4.3). Note that the table entries, except for this work, are the sensi-
tivity of the method multiplied by factor y = In(1/8)/e with an additional error term for Pettai and
Laud [PL15]. Related works draw additive noise r from zero-centered Laplace distribution with
scale s/e for sensitivity s (Laplace mechanism, Definition 7). Since Pr[|r| < ¢ -s/€] = 1 — exp(-t)
[DR14, Fact 3.7], we can bound the absolute error |r| as in Table 3.1 by setting g = exp(-¢),y =
t/e = In(1/P)/e. As the theoretical guarantees show strong data dependence, which hinder
straightforward comparisons (as discussed in Section 6.1.5), we also provide empirical accuracy
comparisons in Section 6.3.5.
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Figure 3.3: Accuracy (NCR) of our MPC protocols PEM and HH compared to LDP protocol PEMorig [WLJ19] for param-
eters k = 8, |D| = 232, e = 2with n € {300, 1000, 3 000,5 000}.

3.7 DP Heavy Hitters

First, we briefly illustrate that our protocols provide better accuracy than existing local model
approaches. Then, we discuss approaches for heavy hitter discovery without privacy protection,
with local DP, central DP, and MPC of DP.

Accuracy for DP Heavy Hitters

We want to illustrate that the MPC model provides better accuracy than the local model for heavy
hitters. For this purpose, we compare our MPC protocols PEM and HH with a state-of-the-art
local model approach from Wang et al. [WL]J19] which we denote PEMorig. We measure top-k ac-
curacy like Wang et al. via non-cumulative rank (NCR), which is similar to the F1 score weighted
by an element’s rank, where the most frequent value has rank k, the second most frequent rank
k -1, etc. (formalized in Definition 16 in Section 4.3). We used synthetic data from the same Zipf
distribution as Wang et al.® as well as a real-world Online retail data set [ULB19]. Figure 3.3 il-
lustrates that our protocols provide higher accuracy than PEMorig which in turn provides better
accuracy compared to other LDP approaches [WLJ19]. The accuracy drop in the real-world data
set for n = 3,000 (Figure 3.3b) is mainly due to an increase in the number of distinct data ele-
ments, which decreases the relative frequency of heavy hitters. We informally describe PEMorig
later in this section and formalize it in Section 7.1.2. A more detailed evaluation (with varying
k, €) is provided in Section 7.3.

Non-private Heavy Hitters

Algorithms for heavy hitter detection are roughly grouped into three classes [CH10, ABL*17]:
Quantile algorithms, which use estimated quantiles of range endpoints to approximate frequen-
cies of range elements; hash-based sketches, which provide a space-efficient frequency estima-
tion, and counter-based sketches, where a set of counters are updated when new data arrives.
Counter-based sketches are the best with regards to space, speed and accuracy [CH10, ABL*17];
thus, we selected one of them, namely, Misra-Gries [MG82], [CH10, Alg. 1] as basis for HH. HH
provides differential privacy unlike related work [MG82, CH10, ABL*17]. While recent improve-
ments achieve better performance [ABL*17] (amortized over the control flow), we cannot lever-
age them in HH due to our use of MPC (which hides the control flow).

6 Zipf(1.5), i.e., the j-th most frequent value appears with probability proportional to 1/
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Local DP Heavy Hitters

LDP heavy hitter approaches [BS15, BNST17, EPK14, FPE16a, WLJ19, ZKM*20] mainly differ in
their client-side encoding and server-side decoding of candidates, for which counts are esti-
mated. Such encoding (in the form of domain reduction, e.g., Bloom filters [EPK14], matrix
projection [BS15]) incurs information loss, which can exceed the loss due to DP randomiza-
tion [WLJ19]. Notably, some encodings already provide some form of DP, e.g., [ZKM*20] (or
[CDSKY20] for distinct counts), but only with large € or for large data sizes.

Wang et al. [WLJ19] carefully analyze related work [BS15, BNST17, EPK14, FPE16a], which
mainly use non-overlapping segments (e.g., report single bits or sets of bits), present a state-
of-the-art protocol by leveraging overlapping prefixes, and show that it provides better accuracy
than other LDP approaches.

We build upon the work of Wang et al. [WLJ19], which we denote PEMorig, as basis for our
central-model protocol PEM. PEMorig, described in detail in Section 7.1.2, splits the clients into
groups which report increasingly larger randomized prefixes. First, the clients encode the pre-
fix of their datum by hashing it to reduce the data domain for generalized randomize response
GRR (Definition 9 in Section 2.2.4). Then, GRR is applied on the hash before sending it to server.
The server approximates the count for each possible prefix candidate by hashing the candidate
and comparing it to all messages. If a hash matches, the candidate count is increased. Roughly,
frequent candidate prefixes of, say, length 7, reported by the first group, are extended by all pos-
sible bit strings of length 7, and are used to find matching candidates from the second group,
who reports prefixes of length 27, etc.

We decode and output heavy hitters as our sketches contain the values or bit representation
of heavy hitters. Related work, on the other hand, requires costly search to find heavy hitters
from their encoded representation (e.g, hash), which has to be mapped to potential candidates
from the domain [EPK14, FPE16a, WLJ19]. Note that searching to find count estimates from per-
turbed reports consumes significant computational resources: PEMorig performs n29 hash com-
putations to match potential heavy hitters with randomized hashes. Even for small data of size
n = 1000 around 1 billion hashes are computed with recommended g = 20. Likewise, RAP-
POR [FPE16a, FPE16b] (follow-up to [EPK14]) detects frequent strings (e.g., browser homepage,
installed software) by estimating joint probabilities of randomized n-grams via the expectation
maximization algorithm, with complexity O(|D||L|"") for r reported n-grams per party for string
alphabet L [FPE16b, Section V.B].

Our MPC protocols have better running time complexity than the above mentioned LDP ap-
proaches (Section 7.2.3), provide better accuracy (Section 7.3.5), and the computation can be
outsourced to a few computation parties independent of the number of users (Section 7.2.4)

Central DP Heavy Hitters

An alternative to approximate DP with thresholding is probabilistic selection with pure DP, e.g.,
via exponential mechanism [MTO07] or report noisy max [DR14] (which outputs the index of the
largest noisy count using Laplace noise). These alternatives can be applied in a peeling fashion
to find the most frequent value from a known domain, remove it from the domain, and repeat
until k values are found. More computationally efficient one-shot methods [DSZ15b, Rog20] re-
lease k values in one go. We choose thresholding as it is preferable, especially for small data, for
two reasons: First, selection requires considering all elements from a known domain and sam-
pling an output from the entire domain with probability proportional to an element’s utility. With
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thresholding, on the other hand, focusing on data elements (from an unknown domain) suffices
—leveraged by our protocol HH. Second, for large domains (e.g., of size 23%) and small data (e.g.,
few hundred elements) the probability mass of elements with count zero (i.e., not in the data but
in the domain) can exceed the selection probability of even the most frequent element, which
destroys accuracy (especially using disjoint groups that split the counts among them).

Durfee and Rogers [DR19b] first compute the actual top-k’, where k’ > k, and use (¢, 0)-DP
noise and §-based thresholding to release at most k (¢, §)-DP heavy hitters. All central DP ap-
proaches assume access to the raw data or a trusted third party. We, on the other hand, securely
discover top-k’ without such assumptions, and apply thresholding on noisy counts [DR19b] to
release at most k DP heavy hitters in PEM. Due to thresholding, we cannot guarantee to find ex-
actly k heavy hitters but only at most k as values with small counts (unlikely to be heavy hitters)
might not exceed the threshold and are dropped. Durfee and Rogers [DR19a, Section 8] note
that in such cases, e.g., flat distributions where all counts are very similar, additional output is
(almost) uniformly random. Then, no output is preferable as it provides more insights about the
data (i.e., flat histogram) than randomness.

MPC DP Heavy Hitters

Melis et al. [MDDC16] consider count-min and count sketches build via secure aggregation, i.e.,
parties evaluate multiple hash functions on their input, set the counters indexed by the hash
functions to 1, and securely aggregate the counters. However, such sketches require search ef-
fortslinear in the domain size to find heavy hitters (as each candidate is mapped to sketch entries
by evaluating multiple hash functions), whereas our protocols are linear in the data size (HH) or
sublinear in the domain size (PEM), and efficiently handle unknown or large domains.

Naor et al. [NPR19] consider DP collection of frequently used passwords with malicious par-
ties. On a very high-level, their hash-then-match approach is similar to PEMorig with n2/ server
operations, albeit more efficient ones (no hashing): Each user j receives a random [-bit value r;
from the server, computes /-bit hash ; of her password and reports one bit, the inner product of
r; and GRR(h;) modulo 2. The server keeps 2/ counters, tries to find a matching x € 2! for every
report and increments the corresponding counters. Hash values are released if their noisy counts
exceed a fixed fraction of the user count. It is almost an LDP protocol, with the same accuracy
limitations, where secure computation is required as malicious users cannot learn r;. Their pro-
tocol is a series of two-party computations between users and server, whereas our protocol is a
multi-party computation, where users can outsource the computation and only need to secret
share their inputs.

Boneh et al. [BBC*21] securely compute heavy hitters in a malicious setting with two compu-
tation servers. They focus on novel cryptographic primitives, i.e., incremental distributed point
functions, allowing secret shares of size O(m) to represent a vector of 2™ values with only one
non-zero element. They consider DP only optionally to bound their protocol’s information leak-
age. In contrast, DP with high accuracy is at the heart of our design. They require large noise
addition from each server, prohibiting any meaningful DP statistics for small number of clients,
and overall provide less accuracy than our DP-focused protocols. They require millions of clients
to achieve an absolute error of 16% for € < 1 [BBC*21, Appendix E] and add noise multiple times
and not per group. While their server communication is more efficient than ours (requiring only
kilobytes), we have similar client communication (kilobytes), however, their computation timeis
linear in the number of parties. PEM, for semi-honest clients (and potentially malicious servers),
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islinear in the domain bit-length and asymptotically faster than Boneh et al. [BBC*21]. Adjusted
for k = 256, b = 256, PEM is faster than their approach for more than 6 million clients’, however,
we mainly focus on small data (corresponding to few clients).

7 Bonehetal. [BBC*21, Table 9] process approximately 120 clients/second with 32 vCPUs, 60 GB RAM, ~62 ms WAN delay,
domain bit-length b = 256 and k as 0.1% of number of clients. PEM runs in less than 12 minutes in total (Figure 7.4b
in Section 7.3.2) on 4 vCPUs, 8 GB RAM with 100 ms delay, b = 64, k = 16 and is independent of client count n, but

linear in k and b. PEM’s time in seconds multiplied by 256/16 (adjusts k), 256/64 (adjusts b), and 120 clients/s, results
in 5,529, 600 clients.
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4 Methodology

In the following, we describe the assessment methodology of the security, privacy, and accuracy
of our protocols, how we measure their efficiency, and describe the used MPC frameworks.

We prove the security of our protocols with a simulation argument as detailed in Section 4.1.
We prove the privacy of our protocols by composing known DP mechanisms as described in Sec-
tion 4.2. We measure accuracy mainly as the average absolute error with 95% confidence inter-
vals as detailed in Section 4.3. The efficiency assessment of our protocols, i.e., average running
time and communication with 95% confidence intervals, is detailed in Section 4.4. The MPC
frameworks employed in this work are described in Section 4.5.

4.1 Security Assessment

To prove the security of a protocol in the presence of a semi-honest adversary A, we show the
existence of a simulator Sim according to Goldreich [Gol09]. The simulator operates in an ideal
world with a trusted third party providing an ideal functionality F, i.e., each party P; sends its
input d; to the trusted party which releases only ¥ (d, ..., d,). A secure protocol 11 realizing ¥
operates in the real world and replaces the trusted third party with MPC. The goal is to show
that distributions of the real-world view and a simulated view constructed in the ideal world are
computationally indistinguishable.

Informally, an adversary in the ideal world learns nothing except protocol inputs of corrupted
parties and their outputs, hence, if he cannot distinguish simulated views (ideal world) from ac-
tual views (real world), he learns nothing in real-world implementations.

Next, we formalize the ideal and real-world executions — denoted ideal and real, respectively
— based on Evans et al. [EKR*18, Section 2.3]. Let VIEW, denote the view of party p during the
execution of protocolIT oninput D, i.e., all exchanged messages and internal state. The adversary
A corrupts a subset C of the parties # and has access to their views.

({VIEwﬁ(di)}iec, {yi}iep) < realn(x,C,{d;}icp), the real-world execution receives as input se-
curity parameter «, the set C c # of corrupted parties, and each parties input d;. Then, the
real-world execution runs protocol I, with each party i € # behaving honestly using its
own input d;, and outputs the view of all corrupted parties as well as the final output y; of
each party i € P.

(S, {yitiep) « idealgsim(x, C,{d;}icp), theideal-world execution with the same inputs, relies on
ideal functionality # to compute {y;};cp < F ({d;}icp). Then, the simulator receives the
set of corrupted parties with their inputs and outputs and creates simulation S, i.e., S «
Sim(C, {(d;, yi) }iec). Finally, simulation S is output along with the protocol outputs of each

party, i.e., {yi}icp.

A protocol is secure if the output distributions of ideal and real are computationally indistin-
guishable [EKR*18, Def. 2.2].
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Definition 14 (Semi-honest Security). A protocolIl securely realizes ¥ in the presence of semi-
honest PPT adversaries if there exists a PPT simulator Sim such that for every subset of corrupted
parties C ¢ P and all possible inputs {d;}icp the distributions of the simulated and real-world
execution are computationally indistinguishable in security parameter x, i.e.,

ideal s sim (K, C, {d;}iep) ~ realn(x, C, {di}icp).

Extension to Malicious Model

Malicious security requires additional considerations as corrupted parties can use arbitrary in-
puts and can alter what output honest parties receive. For further technical details of the mali-
cious model, we refer to Evans et al. [EKR*18, Section 2.3.3] and Goldreich [Gol09, Section 7.5].

We also consider extensions to the malicious model. Note that implementing our protocols
with maliciously secure frameworks is not sufficient to achieve malicious security. As malicious
users might change their inputs, we also have to ensure that inputs remain consistent between
steps (EMmed, EM™) or are valid (PEM expects bit-vectors with at most one set bit). We describe
the consistency checks required for our protocols EM .4, EM*, PEM in Sections 5.2.7,6.2.8, 7.2.4,
respectively.

Composition

Our protocols consists of multiple subroutines realized with basic MPC protocols listed in Sec-
tion 2.1.6. To analyze the security of an entire protocol, we apply the well-known composition
theorem [Gol09, Section 7.3.1]: a protocol calling an ideal functionality (a subroutine provided
by a trusted third party) remains secure if the ideal functionality is replaced with an MPC protocol
implementing the same functionality.

4.2 Privacy Assessment

We prove that our protocols provide differential privacy as well as semi-honest security; overall,
we satisfy computational differential privacy (Definition 5).

To prove privacy, we show that our protocols compose known DP mechanisms and account
for the total privacy budget € of our composite mechanism M. In more detail, we rely on privacy
proofs of existing DP mechanisms, namely, EM [MT07], GM [DR19b], LM [DR14], and sequential
or parallel composition as detailed in Section 2.2.3. To prove security, we show the existence of
a simulator Sim that simulates the view of the real-world protocol execution over data D, where
Sim only knows the final output (and inputs of corrupted parties). As a consequence of these
proofs, we satisfy computational differential privacy: the simulator Sim, given neighbor D’ of D,
computes the protocol output M(D’) and simulates a DP view of the real-world execution over
D.

4.3 Accuracy Assessment

In this section, we overview our accuracy assessment and reference the corresponding evalua-
tion sections for our protocols. We theoretically analyze our protocols and also provide empirical
evaluations.
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We define the median like Aggarwal et al. [AMP10] as the element at position [n/2] in a sorted
data set of size n. If not noted otherwise, we assume the data to be even and omit the ceiling
notation [-] for the median position.

Theoretical Accuracy Analyses

For EM,e4 With pruning, we analyze the selection accuracy, i.e., the probability to select an ele-
ment from the remaining elements (close to the median) instead of the pruned elements (further
away). The formal description is given in Definition 23 in Section 5.1.6 as it requires additional
preliminaries. Later, in Section 6.1.5, we expand the theoretical accuracy analysis to the absolute
error between actual and DP median for EM,,eg and EM*. In more detail, as DP requires random-
ization, we consider (a, §)-accuracy, where the absolute error is bounded by a with probability
atleast 1 — 5.

Definition 15 ((@, B)-Accuracy). Given differentially private mechanism My computing function
f, bound a, and probability . We say My is (a, B)-accurate with regards to f if

Pr[|f(D) - Mg(D)| < a] >1-p.

For heavy hitter discovery, we rely on the accuracy analysis of existing work [CH10, MG82,
WLJ19], on which we base our protocols, as described in Section 7.1.

Empirical Accuracy Evaluation

We always compute the average over multiple runs with 95% confidence intervals as DP mech-
anisms are inherently randomized. We mainly define empirical accuracy as the absolute error
between the actual result p and the DP result i, i.e., |z — u|. In Sections 5.3.5 and 6.3.5, we em-
pirically evaluate accuracy for EM,.q and EM*, respectively.

Protocols for heavy hitter discovery return a set instead of a single value, requiring a different
accuracy notion. For heavy hitters, we define accuracy like Wang et al. [WLJ19] as the normalized
cumulative rank (NCR). In the following, let C;. denote the set of actual top-k values and C the
presumed top-k as returned by our protocols.

Definition 16 (Normalized Cumulative Rank (NCR)). The normalized cumulative rank of C is

2eec T(c)

Yeeg 1(€)

where the frequency rank r(c;) = k + 1 — i for the i-th most frequent element c; € Cy and zero
otherwise.

Basically, detecting the most frequent element increases the cumulative rank by k, the second
most frequent element adds another k — 1, etc., and the sum is normalized to [0, 1] by dividing it
with maximum score ¥, ¢, r(c’) = k(k +1)/2. We also evaluated F1 scores and compared them
to NCR.

Definition 17 (F1 Score). The F1 score

2pr
p+r
is the harmonic mean of precision p = “:2€ and recall r = %€
C Ck
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: 100 ms, 100 Mbits/s :
Ohio Frankfurt

Figure 4.1: Evaluation setup: AWS EC2 instances Cy, ..., C;, split between AWS regions Ohio and Frankfurt with an ap-
proximately 100 ms RTT, 100 Mbits/s WAN.

In other words, precision is the fraction of detected heavy hitters from all presumed heavy hit-
ters, and recall is the fraction of detected heavy hitters from all actual heavy hitters. NCR, unlike
the F1-score, also considers an element’s frequency and gives more weight to more frequent el-
ements. We empirically evaluate accuracy for HH and PEM in Section 7.3.5.

4.4 Efficiency Assessment

First, we describe our evaluation setup in Section 4.4.1. Then, we discuss the theoretically anal-
ysed as well empirically measured running time of our protocols in Section 4.4.2. Finally, we
discuss the communication for clients as well as servers in Section 4.4.3. We always present the
average running time and communication with 95% confidence intervals, however, we omit the
intervals if they are not significant (e.g., barely visible in our graphics).

4.4.1 Evaluation Setup

We consider n input parties (clients) with sensitive inputs, and m computation parties (servers).
The input parties outsource the computation, i.e., they create and send (¢, m)-shares of their in-
puts to the computation parties, which run the secure computation on their behalf. We measure
running time and communication of the computation parties.

Our two-party protocol EM 4 assumes n = m = 2 and can be extended to handle multiple
input parties. Our multi-party protocols EM*, HH, PEM assume an honest majority, i.e., at most
t = [m/2] - 1 corrupted computation parties. Notably, secret-sharing based outsourcing can be
augmented to provide fault tolerance and handle up to 1/3 of parties dropping out during the
protocol [BIK*16].

Our protocols were deployed on Elastic Compute Cloud (EC2) from Amazon Web Services
(AWS). We evaluated all our protocols in real-world wide area networks (WAN) between Ohio
(AWS region us-east2) and Frankfurt (eu-centrall), with approximately 100 ms delay (round-trip
time, RTT) and 100 Mbits/s bandwidth, and split the parties between these locations as shown in
Figure 4.1. For EM,.4, we additionally measured running time for AWS regions with round-trip
times of 12 ms (Ohio-N. Virginia) and 25 ms (Ohio—Canada), with bandwidths of 430 Mbits/s and
160 Mbits/s, respectively. Our evaluation hardware are rather modest t2.medium instances with
4vCPUS and 2 GB RAM, where each vCPU “is a thread of either an Intel Xeon core or an AMD
EPYC core” with clock speeds of “up to 3.3GHz” according to the AWS EC2 website [Ama20a].
For our heavy hitter protocols HH and PEM with our largest evaluation parameters (Section 7.3),

46



4.4 Efficiency Assessment

we used t2.large instances also with 4vCPUs but 8 GB RAM!. Also, a multi-threaded version of HH,
denoted HHqpreads, was evaluated on c4.2xlarge instances with 8vCPUs and 15 GB RAM. Related
work typically provides evaluation on machines with similar clock speeds [BBC*21, EKM*14,
PL15]. While our machines are equipped with mainly 2 GB, related work uses 16 GB [EKM*14],
32 GB [PL15], or even 60 GB [BBC*21].

4.4.2 Running Time

In the following, we describe how we analyse and measure the running time of our protocols.

Theoretical Running Time

We give the running time complexity of our protocols as the number of basic MPC protocols
from Section 2.1.6 called during our protocol execution. We present the theoretical running time
complexity for EMeq, EM*, HH and PEM in Sections 5.2.5, 6.2.7, 7.2.3, respectively. Whereas the
exponential mechanism is linear in the domain size, our protocols are sublinear in the domain
size (EMmed, EM*, PEM) or linear in the data size (EM.q, HH).

Empirical Running Time

We measure the entire protocol execution, i.e., offline and online phase, in a real-world WAN
with approximately 100 ms delay and 100 Mbits/s bandwidth. The evaluation setup is detailed
in Section 4.4.1. Our protocol EM .4 uses m = 2 computation parties, for EM* we evaluate m €
{3, 6,10}, and for HH and PEM we set m = 3. We present the average running time of 20 runs with
95% confidence intervals. In our graphics, we omit the confidence intervals if they are barely
visible (e.g., average deviation below 1% for Section 6.3.1).

Detailed running time measurements are provided in Sections 5.3.1, 6.3.1, 7.3.2. Our proto-
c0ls EMyed / GM* (EM* variation) / HHipreads (HH variation) / PEM run in around 7 seconds (Fig-
ure 5.6b) / 1.5 minutes (Figure 6.4a, m = 3) / 11 minutes (Figure 7.3d) 5.4 minutes (Figure 7.4a)
for millions of data values (EM,,.q) or domain elements (GM*, HH, PEM).

4.4.3 Communication

Next, we distinguish two types of communication. Client communication refers to the commu-
nication required by a client to send its (secret shared) input to the servers executing an MPC pro-
tocol on the client’s behalf. Server communication refers to the communication between servers
during the execution of an MPC protocol.

Client Communication

The client communication is small, at most in the order of kilobytes (Section 7.3.3) as clients only
need to secret share their inputs with the computation servers. Thus, our evaluations focus on
server communication as detailed next.

1 We note that less RAM suffices with the restart feature from SCALE-MAMBA [AKR*20]: Instead of executing a large
program with s loops, unrolled during MPC compilation, we execute s smaller programs consecutively — while still
performing only a single offline phase. However, our exploratory evaluations found no significant improvements of the
running time, and memory management with this feature is considered experimental so we did not further test it.
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Server Communication

Our protocol EM,,,¢q is realized mainly with garbled circuits, requiring secret sharing only in an in-
termediate step. Overall, the garbler is responsible for the bulk of the communication i.e., send-
ing the circuit. As the servers have different communication complexities, we present the total
communication for EM,.4. Our protocols EM*, HH, PEM are based on secret sharing and the
communication is roughly evenly divided among the parties. Hence, we present per-server com-
munication for these protocols.

The detailed communication evaluations are presented in Sections 5.3.6, 6.3.2, 7.3.3. The
server communication is in the order of megabytes. For m = 3 servers (resp., 2 for EM,eq) and
EMmed / GM* / HH / PEM (32-bit domain), the evaluated server communication is at most 60 MB
(Figure 5.9Db, total) / 116 MB (Table 6.3, per server) / 122 MB (Figure 7.5a, per server) / 500 MB
(Figure 7.6a, per server), respectively.

4.5 MPC Frameworks

While there are many MPC frameworks — see, e.g., Hastings et al. [HHNZ19] for an overview —we
focus on mature frameworks (i.e., having gone through years of research and development) that
are still in active development, provide detailed documentation, and support secret sharing.

Our two-party protocol EM,.4 employs both implementation paradigms, namely, secret shar-
ing and garbled circuits, for their respective advantages. We implement our two-party protocol
in the semi-honest mixed-protocol framework ABY [DSZ15a], which supports both paradigms
aswell as efficient conversions between them (see Section 2.1.5). Code in ABY is written in C/C++
and in our evaluation we deployed the version from October 19, 20192,

Our multi-party protocols EM*, PEM, HH employ MPC based on secret sharing for an efficient
implementation in a network with reasonable latency and are implemented in the maliciously
secure SCALE-MAMBA framework [AKR*20]. Furthermore, we provide some comparison to the
MP-SPDZ framework [Kel20] which is a fork of SPDZ2, a predecessor of SCALE-MAMBA, sup-
porting semi-honest as well as malicious security. Code in SCALE-MAMBA and MP-SPDZ is
written in a Python-like language called MAMBA3 and can be largely re-used between the frame-
works. We deployed SCALE-MAMBA [AKR*20] version 1.3 and MP-SPDZ [Kel20] version 0.1.8 in
our evaluation.

2 https://github.com/encryptogroup/ABY/tree/08baa853de76a9070cb8ed8d41e96569776e4773
3 SCALE-MAMBA is in the process of moving from MAMBA to Rust.
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5 EM,,eq: DP Median

In this chapter, we present EM,.4, an efficient MPC protocol for DP rank-based statistics, illus-
trated for the median, of the union of two confidential data sets. This chapter is based on the
following publication:

Jonas Bohler, Florian Kerschbaum. Secure Sublinear Time Differentially Private Median
Computation. In Network and Distributed Systems Security Symposium, NDSS, 2020 [BK20b].

The median is an important robust statistical method useful for enterprise benchmarking, e.g.,
companies compare typical employee salaries and insurance companies can use median life ex-
pectancy to adjust insurance premiums [AMP10, Section 1]. Our protocol EM,.q combines the
benefits of the local model (no trusted third party) and central model (better accuracy), and has
arunning time sublinear in the size of the data domain.

The remainder of this chapter is organized as follows. In Section 5.1, we define building blocks
of our protocol. Our main insight is that the utility score for rank-based statistics can be locally
evaluated on securely sorted data instead of the entire data domain. Thus, the exponentiations
for the selection weights can be computed locally, avoiding costly secure exponentiations. We
provide differential privacy for small data sets (sublinear in the size of the data domain) and
prune large data sets with a relaxed neighboring notion of differential privacy providing limited
group privacy. In Section 5.2, we describe our MPC protocol EM,,eq. We use dynamic program-
ming with a static, i.e., data-independent, access pattern, achieving low complexity of the se-
cure computation circuit. In Section 5.3, we provide a comprehensive evaluation over multiple
AWS regions (from Ohio to N. Virgina, Canada, and Frankfurt) with a large real-world data set
achieving a practical running time of less than 7 seconds for millions of records. We conclude
this chapter in Section 5.4 by summarizing our results.

5.1 Building Blocks for DP Median Selection

In the following, we explain the building blocks of our protocol EMy,eq, a practically efficient sub-
linear time dynamic programming, which overcomes the challenges mentioned in Section 1.4,
namely, running time linear in the domain size and costly secure exponentiations.

Additional notation for this chapter are given in Section 5.1.1. We give an overview of our ap-
proach in Section 5.1.2. To reduce the running time complexity, we simplify the median utility
definition by using D instead of D as input in Section 5.1.3. We detail how to compute selection
probabilities and sample the median in Section 5.1.4. Then, we describe how to prune large data
sets D in Section 5.1.5 to further reduce complexity of the secure computation.

5.1.1 Chapter-specific Notation

We consider a two-party setting, where party A and party B hold data sets D, and Dg, respec-
tively. The data sets D4 and Dg are multisets (also called bags) over domain D and can contain
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duplicates. For our proofs, we apply union under multiset semantics, i.e., the combined data set
D = D4 U Dg is a multiset, containing all elements from D, and Dg (including duplicates). This
interpretation of union is equivalent to the sum function for multisets. We treat the difference of
multisets, denoted D\ Dg, as a set containing only unique elements from D, that are not also in
Dg. Formally, Ds\Dg = {x € D | x € Dy and x ¢ Dg}.

In this chapter, we start counting indices with zero, i.e., D = {dyp, d1, ..., dy-1} € D", as it sim-
plifies some of our notation!, and assume data domain D to be an integer range, i.e., ® = {x €
Z | a < x < b}witha,b € Z. To simplify the description we assume the size n of D to be even
which can be ensured by padding. Then, with zero-indexing and padding, the median is the
value d,;j»_; in sorted D. We denote with Ip = {0, ..., n — 1} the set of indices for D.

5.1.2 Ideal Functionality

For now, we focus on a single data set D as we later prune and merge the data sets from the two
parties into one data set. For data set D with domain D we compute the selection probabilities for
the median for all of D using only D by utilizing dynamic programming. To compute the proba-
bilities efficiently we first define a simplified utility function utility, which computes utility for all
domain elements but only requires D as input, in Section 5.1.3. The simplified utility provides in-
correct utility scores in the presence of duplicates. Thus, we define gap to discard these incorrect
scores and compute the selection probabilities, denoted as weight. The sum of these probabilities
is the basis for the cumulative distribution function, which we denote with mass. Then, we sam-
ple the differentially private median based on mass and gap as detailed in Section 5.1.4. To further
reduce complexity of the secure computation complexity we prune the input D in Section 5.1.5.

A high-level overview of our protocol EM,.4 with ideal functionalities is visualized in Fig-
ure 5.1, and we present our full protocol in Section 5.2. In the first step, the parties prune their
input. Then, they securely merge and secret share their pruned data. In the third step they com-
pute selection probabilities and, in the last step, sample the differentially private median.

Note that in the following we define gap, utility, and weight such that direct access to the data D
—and therefore the need for secure computation — is minimized: Each party can compute utility
and weight without any access to D. Furthermore, gap has a static access pattern, independent
of the elements in (sorted) D, which makes the gap function data-oblivious, i.e., an attacker who
sees the access pattern cannot learn anything about the sensitive data.

5.1.3 Utility with Static Access Pattern

Recall Definition 13, where the median utility function u, : (D" x D) — Z gives a utility score for
eachx € Dwrt. D € D" as uu(D, X) = — MiNranky, (x) <j <rankp (x+1) |j - §| The exponential mecha-
nism evaluates the utility function u, for all elements in the data domain D. However, per defi-
nition of u, certain outputs have the same utility, namely, duplicates and elements in D\D. We
use this observation to simplify the median utility definition and evaluate it only for elements in
data set D instead of the entire domain D.

I The rank of d; becomes i with zero-based indexing of sorted, distinct data.
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‘loop:fori=0tos—1, | '
[

M 7:Compare

1

' ua is the median of D} KA UB

1 —_— e T |
v _ c C=HA<UB c

' Di*l js upper half of Dyif | >
1

1

¢ =1 else lower half

Generate list (D%)4 of mask- (D) FMergeAndShare

ing values D3, (D%)a Dy
(D*)a +(D%)p is s
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Figure 5.1: High-level overview of EMq4 in four steps ()-(IV) where ideal functionalities 7. are later realized
with secure computation. Commented for A where s is the number of pruning steps, Dg is sorted Dy,
and (D%)4, (G)a, (M) are A’s shares for all values d}, gaps gap(i), and masses mass(i) respectively (i €
{0,...,|DS| - 1}).

Definition 18 ((Simplified) Median Utility Function). Let data setD € D" be sorted. The median
utility function utility : Ip — Z scores the utility of an element of D at positioni € Ip as
P-4l ifi<?

utility (i) =
else

B
First, we prove the equivalence of utility function utility and u, only for distinct data (D < D)
then we define gap to help with the utility computation for data sets with duplicates.

Theorem 2 (Utility equivalence). For D € D and indexi € I, we have
u, (D, x) = utility(7)

forx € [d;,diy1) withi < n/2 andx € (d;_, d;]| withi > n/2.

Proof. First, we show that all elements in x € [d;, d;41) fori < n/2 and x € (d;-1, d;] fori > n/2
have the same utility. The utility u, of an element x € D is based on a rank from the set S, = {j |
rankp(x) < j < rankp(x + 1)} according to Definition 13. Fori < n/2,x > d; and x + 1 < d;4; we
have rankp(x + 1) = rankp(d;+1). All elements in the open range (d;, d;;+1) have the same rank set
S = {rankp(x+1)}. The rank set for d;, Sy, is a superset of S that also includes ranks smaller than
rankp(x + 1). However, rankp (x + 1) = Sy, N S minimizes the term |rankp (x + 1) — n/2]| since it is
the value closest to n/2. Thus, all elements in the half-open range [d;, d;.1) have the same utility.

Analogously, for i > n/2 elements in (d;_1, d;] have the same utility.
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utility())  0-2+1  1-241 2.2 n_3
indexi| 0 | 1 ] 2 [ 3 |
S T T T R
gap(i) di-dp 1 dy—d; d3—dy

Figure 5.2: utility and gap computed on sorted D with static access pattern.

Forsorted D € Dandi € Ip, wehaverankp(d;) = iand Sy, = {rankp(d;), rankp(d;+1)} = {i, i+1}.
Thus,

n i+1-4% ifi<3%

uu(D,d;) = - 2 = utility(4).

min "— —|=
je{ii+1} J 2 g —q else
U

Thus, the sensitivity of utility is the same as u,. We stress that utility(i) only depends on the
position i in the sorted data. Basically, we assume all elements in D are distinct, in this case
utility(i) = u,(D, d;). To only retain the correct utility in the presence of duplicates we define
gap next.

Definition 19 (Gap). The gap functiongap : Ip — Ny provides the number of consecutive elements
in® with the same utility as d; with

din—di ifi<g-1
gap(i) =1 ifi=%-1.
d; —d;_, else

Each party can compute utility (Definition 18) without any access to D. Furthermore, gap (Def-
inition 19) has a static access pattern, independent of the elements in (sorted) D, which makes
the gap function data-oblivious, i.e., an attacker who sees the access pattern cannot learn any-
thing about D. Figure 5.2 visualizes how we compute utility and gap with static access pattern
over sorted data D. Note that gap is defined for all n indices although there are only n — 1 gaps
between values in D. We set the median’s gap to 1 as it is the only element not contained in the
union of all half-open ranges. If D contains duplicates, gap is zero for all except the duplicate
closest to the median. Thus, a gap value of zero indicates incorrect utility for a duplicate and we
use this to eliminate such utility values in the following.

First, with the help of utility we define the unnormalized selection probability, which we call
weight.

Definition 20 (Weight). The weight function weight : Ip — R gives the unnormalized selection
probability for an element at index i € Ip as

weight (i) = exp (€ - utility (7))

where € is the privacy parameter from Definition 4.
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index i 0 1 2 - 3 4 5 - 7
sortedD = 1 2 2 345 6 6 7 7 89 10
rankp(-) = 0 1 1 8 3 3 5 5 7 7

uuD,) -8 -1 -1 -1 0 0 -1 -1 -3 -3
utility(i) =3 -2 -1 -1 0 0 -1 -2 -3 -3
gap(i) 1 0 4 - 10 1 0 - 3

[] min(®), max(®) [ | MissingelementsD\D

Table 5.1: Utility function u, compared with u with static access pattern and gap for sorted D = {2,2,6,6,7,7} from
D={1,..., 10}. To cover utility for all of ® we add min(®), max (D) to D.

Then, we use weight and gap to define the probability mass of elements with the same utility,
which we call mass.

Definition 21 (Mass). The probability mass function mass : Ip — R ati € Ip is

mass(i) = Z weight(h) - gap(h).
h=0

To ensure that mass covers all elements in D we append the smallest (resp., largest) domain
element to the beginning (resp., end) of D before computing mass. Now, we show that mass is the
(unnormalized) cumulative density function for the distribution defined by EM¢, (D).

Theorem 3. LetR = {dy,...,d;} €D with D sorted, min(D), max(D) € D andi € Ip, then

mass(i)

— = Z Pr{EMS(D) = 1],

reR
with u = u, and normalization N = ZD PrlEM(D) = r'].
r'e

Proof. Without duplicates utility = u,, (Theorem 2), thus, weight(i) = exp(e - u,(D, d;)) fori € Ip.
With duplicates weight can produce incorrect values, however, weight(7) - gap(i) = 0 as gap is zero
for all duplicates except the one closest to the median. In other words, we eliminate weights
based on incorrect utility values as they do not alter the sum mass[i] = ZZ:O weight(h) - gap(h).

On the other hand, gap > 0 indicates the number of consecutive elements in D with same
utility, and weight(i) - gap(i) is their unnormalized probability mass. Thus, mass[i] equals the
sum of unnormalized probabilities for elements in R = {min(D), ..., d;}, and mass[i]/N equals
normalized probabilities ¥, .g Pr[EM(D) = r|. O

An example for utility and gap can be found in Table 5.1. It illustrates that utility for sorted D
is just a sequence that increases until it reaches the median and decreases afterwards. As men-
tioned above, we add min(®D) to the beginning and max(®D) to the end of D (dark blue columns
in Table 5.1). The utility for “missing elements” in D\D (light gray columns) is the same as for
the preceding or succeeding element in D. Furthermore, gap is zero for the duplicates furthest
away from the median and otherwise indicates the number of consecutive elements in D with
the same utility (e.g., gap(2) = 4 since 2, 3, 4, 5 have the same utility as d» = 2).
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5.1.4 Median Sampling

We use inverse transform sampling (Section 2.2.4) to sample the differentially private median
from the cumulative distribution function mass. Given mass, we first need to find an index j € Ip?
suchthatmass(j—1) < r < mass(j) forauniformrandom r. Then, we select an element at uniform
random among the gap(j) consecutive elements with the same utility as the element at index j.
Overall, with our simplified utility, we only need to iterate over the (small) data set D, instead of
the entire domain D.

5.1.5 Input Pruning & Utility

Our focus is on small data sets whose size is sublinear in the size of their data domain. To also
support larger data sets, one can apply pruning and carefully discard data elements that cannot
be the median. For this purpose, Aggarwal et al. [AMP10, Protocol 1] developed a very efficient,
secure pruning technique which we denote Prune. Informally, Prune compares the local median
of each party, and lets the parties discard the lower (resp., upper) half of their sorted data, which
cannot contain their median of their joint data. This is repeated log n times until only one ele-
ment remains, i.e., their mutual median. For our protocol, it suffices to perform s < log n steps,
until the data is sublinear in the domain size. We will formalize Prune and s shortly, however, first
we have to address an issue: Prune is deterministic and a comparison leaks a single bit (whose
local median is larger). This leakage can potentially allow to distinguish neighboring data sets
and violate differential privacy. A first idea is to randomize the comparison result itself, e.g., via
randomized response (Definition 8). However, the probability that the half of the data containing
the median is never discarded decreases exponentially in the number of comparisons [HLM17].
Hence, accuracy is significantly impacted and we dismiss randomized pruning in favor of a re-
laxation of differential privacy. To eliminate distinguishing events, we restrict the neighboring
definition. He et al. [HMFS17] introduced a suitable restriction called f -neighboring. Informally,
f-neighbors are neighbors that also have the same output w.r.t. a function f. The following def-
inition assumes two parties A, B with data sets Dy, Dg of size ny, ng, respectively.

Definition 22 (f-Neighbor). Given function f : D" x D" — R, ns, ng € N, and Dy € D"4. Data
sets Dg and Dy, are f-neighbors w.r.t. f(Da, -) if

1. they are neighbors, and
2. f(Da, Dg) = f(Da, D).
f -neighboring for Dg is similarly defined.

He et al. apply f-neighboring to record matching, where neighbors differ in at most one non-
matching record. We, on the other hand, set f to be Prune. To verify that Prune-neighboring
is not too restrictive and can be used in real-world applications we evaluated neighbors from
real-world data sets [CMS17, Kagl8, Soo18, ULB18] and found they are all also Prune-neighbors
—albeit with limited group privacy. See Section 5.3 for details of the experiment.

Next, we detail how Aggarwal et al. [AMP10] use pruning to securely find the median of two
parties A, B with respective data sets Dy, Dg. Their algorithm Prune is presented in Algorithm 2.
To indicate that an operation is performed locally by, e.g., party A, we place “Party A:” before

an operation. Initially, Prune calls subroutine Pad described in Algorithm 1. In more detail, A

2 For notational convenience let j — 1 < 0 be 0.
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Algorithm 1 Pad pads the input of party P € {A, B} such that the element with rank k is at the
position of the median [AMP10, Steps 1-3 of Protocol 1] .

Input: Data Dp, rank k, padding p
Output: Input padded to place k"-ranked element at median position of the union of D,, D
1: Sort Dp and retain only the k smallest values
2: Pad Dp with +oco until |Dp| = k
3: Pad Dp with p until | Dp| = 21082(F)]
4: return Dp

Algorithm 2 Prune prunes Dy, Dp to D3, D, via [AMP10, Protocol 1].

Input: Data Dy from A, Dg from B, pruning steps s, median rank k = [(|D| + |Dgl)/2].
Output: A has pruned data D, likewise B has Dj}.

1: Party A: DY « Pad(Dy, k,+e0) //Algorithm 1

2: Party B: D « Pad(Dg, k, —)

3: fori < O0tos—1do

4:  Party A: py < median of D}

Party B: pup < median of D

5:
6:  [pa] < En(pa), [ps] < En(up)
7. ¢« De(LT([ua], [us])) _

8: Party A: D! — upper half of D/, if ¢ = 1 else lower half

9:  Party B: D5 « lower half of D if ¢ = 1 else upper half
10: end for

calls Pad(Dy, k, +o0) and B calls Pad(Dy, k, —0) with k = [(|Da| + |Dg|)/2]. Note that we assume
the data size of each party, i.e., |D4|, |Dg|, to be known, however, it can be hidden via additional
padding [AMP10]. The pre-processing step Pad ensures the parties A, B sort their respective data
sets D4, Dp and only retain the smallest k = [|D4|+|Dg|]/2 values®. Then, they pad the remaining
data with —co, +c0 to be of size 2/1°8:(0)1 in a way that preserves the position of the median. In
each pruning step, i.e., lines 4-9 in Algorithm 2, the parties compute their respective medians,
14, 1, perform a secure comparison us < pg, and use the result to discard the halves of their data
that cannot contain their mutual median, i.e., A retains the upper half of D4 if us < pp and the
lower half otherwise, B does the opposite. After log n iterations only their exact mutual median
remains. As we are interested in the DP median, we perform only s iterations as discussed next.

We denote data sets Dy, Dp after pruning step s as D3, Dy, and their union as D*. The median
u of D is also the median of Df as shown in [AMP10, Lemma 1]. How the data D is distributed
among parties changes the intermediary outcome of the pruning, i.e., what elements remain
in D3, D;,. However, utility depends on an element’s closeness to the median which remains or
increases if elements in between are removed.

Theorem 4. Prune does not decrease utility.

Proof. Let Dy = {a1,...,am}, D = {b1,...,bp}t witha; < ax <--- <apand by < by < -+ < by,
(otherwise we use padding and uniqueness encoding from [AMP10]). Let ai = Dj[i], i.e., the
element at index 7 in the data of A after pruning step s. If some indices i, j, k exist such that

a;”t < by < bt < af where b$~',..., b are notin D} but @} ! is in D} then pruning step

s removed b; ~1,...,bj"! but neither a;~! nor a{;}, one of which is further away from the median

3 If the data contains duplicates, [log, n]+1 bits are added to the element’s binary representation to make it unique, which
is required for the security proof from Aggarwal et al. [AMP10, Section 3.2]. We implement the uniqueness encoding
but omit it in the presented protocol to simplify its description.
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Original D: a; by a» by, a3 by ay by
uyD,): -3 -2 -1 0 0 -1 -2 -3

PrunedD': - by - by a3 - as -
uy(DL,y): -2 -1 -1 0 0 -1 -1 -2

Table 5.2: Utility does not decrease before and after one pruning step for sorted D = D4 U Dg where Dy = {ay,...,a4},
Dg = {by, ..., bs}. Removed elements are indicated with “~” in pruned data D.
than b ~1,...,b{"'. However, the utility of such a removed element either remains the same (it is

a duplicate of a remaining element), or increases, i.e., they have the utility of their predecessor
(resp., successor) in D*. Since one of the elements af‘l, af;ll is closer to the median after pruning
step s than before, its utility increases and so does the utility for all elements between a;~! and
sl If no such indices i, j, k exist, then we only remove the elements furthest away from the
median and the utility for remaining elements is unchanged. The utility for removed element x

a

either remains the same (x is equal to a remaining element) or increases. The latter is due to the
fact that removed elements have the same rank-based distance to the median, either rankps (x) =
0 or rankps (x) = |D*|. Since |D*| < |D*~!| we have u, (D%, x) > uu(Ds‘l,x). O

An example of non-decreasing utility after pruning is shown in Table 5.2 for unique elements.
For example, element a; has utility —3 before pruning, after pruning its utility increases to -2,
whereas the utility for by, a3 remain as before. Removed elements in the pruned data, indicated
with dashes, receive the same utility as the median-closest remaining element next to them. We
empirically show that pruning has only a small impact on utility and the output DP median in
Section 5.3.5.

5.1.6 Accuracy & Maximum Number of Pruning Steps

On small data sets, EM* selects the same output as the exponential mechanism (Theorem 3). On
large data sets, EM* performs s pruning steps where pruned elements receive the lowest selection
probability. If s is too large, however, the selected output might differ as the probability mass of
pruned elements can exceed the mass of remaining elements. In the following, we first define
the selection accuracy, i.e., the probability to select from remaining instead of pruned elements,
and then derive the maximum s based on this definition.

We separate the domain D in two disjunct sets of remaining elements R and pruned elements
P whereR = {x € D | min(D*) < x < max(D*)} € DandP = {x € D | x < min(D*) orx >

max(D*)} = D\R. Note that R contains the domain elements closest to the median.

Definition 23 (Selection Accuracy). Letu = uy, then selection accuracy is

pr=1-pp= ZP”[EMZ(DS)=X]r

xeR
i.e., pg is the probability mass of all remaining elements.

With accuracy pg > 1/2 it is more likely to select the differentially private median among R
than among #. In our evaluation, we use accuracy pg = 0.9999. The number of pruning steps s
enables a trade-off between accuracy pg and computation complexity: smaller s leads to higher
accuracy and larger s translates into smaller input size for the secure computation. We are inter-
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ested in the maximum number of pruning steps such that it is more likely to select an element
from R instead of P.

Theorem 5 (Upper Bound for Pruning Steps). Let D be a data set with domain®, € > 0, and
0 < a < 1. The upper bound for pruning steps s fulfillingpg > a is

Llog, (en)  log, (log, (—— (1D - 1)) ) - 1.

l-«a

Proof. We find the maximum number of pruning steps s by examining what the maximum prob-
ability mass py for pruned elements can be.

First, note that the utility for all x € # is the same independent of the values in D*: Half of the
values in # are smaller (resp., larger) than the median p of D, i.e., rankps(x) = 0if x < p and
rankps (x) = |D*| otherwise. Thus, u,(D*, x) = —‘0— ‘DTsl = —)|DS| - 'DTgl| = —:L since |D*| = =

25+l 25
(Recall that D is padded before pruning such that » is a power of two.)

As the utility, and thus selection probability, is the same for all elements in # the probability
mass pp is maximized if || is maximized. The maximum for |#] is |D| — 1 as R must contain at
least one element, the median p.

Let pg, pyp be the unnormalized probability masses pg, pp respectively, then

pg = exp(euy(D*, p)) =1

since R = {u} and u, (D", p) = 0, and

P = (1] - D exp(-e50 )

with normalization term N = p, + pg. Now accuracy pg of at least a is equivalent to

P 1

a < W =

(1D~ 1) exp(~ 5% ) +1

( €n ) - l1-«a
ANV AT
a(|D]-1) €n
< loge(ﬁ) =
€n
es<lo - L
gz(loge(ﬁ(lfbl - 1>))
Ass e Nweuses = Llogz(m) — 1] which concludes the proof. O

This is a worst-case analysis and a tighter upper bound can be obtained by using |?| instead
of |D| — 1. However, the size of P leaks information about D, hence, we refrain from using the
tighter bound. Furthermore, we guarantee an accuracy of at least «, the actual accuracy can be
even higher.

Lemma 2 (Sublinear Input Size). Ifn < log|®| our input is already sublinear in the size of the
domain. Otherwise, n > log|®|, we perform pruning with s € O(log(n) —loglog|®|) and the
pruned data set’s size is sublinear in the size of the data domain, i.e., |D*| = n/2° € O(log|D]).
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5 EMeq: DP Median

Algorithm 3 MergeAndShare merges D, Dy, into sorted D° via [HEK12] and secret shares it.

Input: Pruned data Dj from A in ascending order, array (D*)4 of 2|D3| random values in Z,e
from A, Dj, from B sorted in descending order.
Output: A has secret shares (D*)4 of sorted union of pruned data, resp. B has (D).
1: [D*] « En(Dj appended with D)
2: Merge(0, |D*| - 1,[D*]) //Algorithm 6 sorts D° in-place
3: (D%) « GC2SS([D?’]) // E.g., set (D%)p « D°—(D®), mod 25
4: return (D°)p to B

5.2 Secure Sublinear Time Differentially Private Median Computation

First, we describe our full protocol in Section 5.2.1. Then, we provide more details, i.e., how to
sort and sample securely, and describe optimizations in Sections 5.2.2-5.2.4. In Section 5.2.5
we present a running time complexity analysis and in Section 5.2.6 we prove the security of our
protocol.

5.2.1 Protocol Description

Our protocol uses pruning developed by Aggarwal et al. [AMP10], which requires padding as a
pre-processing step as described in Section 5.1.5. The selection probabilities are computed on
securely sorted, pruned data realized via oblivious merging from Huang et al. [HEK12], detailed
in Algorithm 6 in Section 5.2.2. The randomness for inverse transform sampling is provided by
the parties as described in Algorithm 7 in Section 5.2.4. We build our protocol EM,.4 from basic
secure protocols for garbled circuits listed in Table 2.2 in Section 2.1.6. Note that our operations
on secret shares — addition, subtraction, and multiplication with public values — require no spe-
cial protocols and can be performed locally (Section 2.1.4).
Our protocol EM,4 has four steps, denoted with (I)—(IV):

(1) Input Pruning (Algorithm 2): Executed if the data size is not sublinear in the size of the
domain. Both parties prune their data sets D4, Dp to D}, D;, based secure comparisons
[AMP10] realized with garbled circuits.

(11) Oblivious Merge & Secret Sharing (Algorithm 3): The parties merge their pruned data D3,
Dj, into sorted Df via bitonic mergers [HEK12] implemented with garbled circuits. Note that
D* ={dg,...,d},._,} is secret shared, i.e., A holds shares (d;)4, B holds (d;)p forall i € Ip:.

(111) Selection Probability (Algorithm 4): The parties compute utility, weight, and gap to pro-
duce shares of mass. Each party P € {A, B} now holds shares (d})p, (gap(i))p and (mass(i))p
foralli € Ips,

(IV) Median Selection (Algorithm 5): The parties reconstruct all shares and select the differ-
entially private median via inverse transform sampling realized with garbled circuits. First,
they sample d; € D* based on mass. Then, they select the differentially private median p at
uniform random among the gap(j) consecutive elements with the same utility as d;.

To optimize the performance of the secure computation we utilize garbled circuits as well as
secret sharing to use their respective advantages. E.g., multiplication of two b-bit values ex-
pressed as a Boolean circuit leads to a large circuit of size O(b?) and is more efficiently done
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5.2 Secure Sublinear Time Differentially Private Median Computation

Algorithm 4 SelectionProbability computes the probabilities for the median utility.

Input: Secretshares (D*), from A, resp. (D*)p from B, of sorted data D*, and number g of nonces.
Output: A holds secret shares (G,) of gaps and (M,) of probability masses, also nonces [[N}L‘]],
[N2]; likewise party B has (Gg), (Mg), [NL], [N2].
1: Party A: (D)4 « (0,(D*)4,0)
2: Party B: (D*)p « (min(D), (D*)p, max(D))
//Local computations without interaction
3: each party P € {A, B} does
4:  Define arrays (M)p, (G)p of size |D*|
5. fori < Oto|D’|-1do

. _ ID°| e _ D
i-5++1 ifi <54

6: tilit . 2

ey % - else

7: weight «— exp (e - utility) ‘
(i, e = (df)p i<

8 (G[i)p « {(L)p ifi=121-1
(di)p —(d;_)p else

9: t — (M[i-1])pifi > 0else0

10: (M[i])p « t +weight - (G[i])p

11: end for

12:  Generate lists N}l), N% each with g nonces from [0, max(®D) — min(D)]
13: [[NH] — En(N}D), [[NJZDH — En(N%)

14: end each

Algorithm 5 MedianSelection selects the median via inverse transform sampling.

Input: Secret shares (G), of gaps, (M), of probability masses, and (D*), of A’s (pruned) data,
also garbled lists of nonces [N} ], [N4] from A; resp., (G)g, (M)g, (D)5, [N}], [N4] from B.
Output: Differentially private median i of D4 U Dg.
10 [N] = SS2GC((M [ID*] = 1)1, (M [ID*] - 11))
2: [r] « RandomDraw([N +1], [N}], [N}]) //Section 5.2.4
//Store first index j, datum d<—d]?, and gap g < G[j] where r < M[j]
Initialize [j] « [0], [d] « SS2GC({dy)a, (dy)B), [g] < SS2GC({G[0])a, (G [0])5)
fori — 0to|D*|-2do
[m] — SS2GC((M[il)a, (M[i1)p)
[dance]  SS2GC((d, ), (dL, )n)
[gsucc] — SS2GC((G[i + 1), (GLi +11)5)
[c] « LT([r], [m])
[71 &< Mux([j], [i + 1], [c]) //Set j,d,g to successors if ¢ is 0
10:  [d] « Mux([d], [dsucc], [c])
11: [g] < Mux([g], [gsuccl, [c])
12: end for
13: [gma] < RandomDraw([g], [N%], [N2])
1 [e] « LT [ 5 -1))

15: [i] < Mux(Add([d], [gmal), Sub([d], [gmal), [c])
16: return De([u]) to A, B

via secret sharing. On the other hand, comparison is more efficient with garbled circuits. Al-
gorithms 3, 4 are implemented with garbled circuits. In Algorithm 2 only line 7 requires garbled
circuits, the rest is either data-independent or executed locally. Secret shares, denoted with (-},
are created in Algorithm 3, used in Algorithm 4, and recombined in Algorithm 5. Furthermore,
we compute the required exponentiations in Algorithm 4 line 7 without any secure computation.
Next, we reiterate portions of Section 5.1.3 but in the new context of secure computation.
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5 EMeq: DP Median

Algorithm 6 Merge sorts bitonic list D* = D§ U D}, [HEK12].

Input: Leftindex /, right index r, bitonic list [D*].
Output: None, [D*] is sorted in-place.
returnif r <!
me— [+ %l
: fori < [to mdo
e — i+ |_r7_l + 1J
[e] « LT([a], [a:])
[t] < AND(XOR([d;], [@:]), [c])
(ID*[i1], [D*[e]]) « (XOR([ds], [¢]), XOR([dS], [t])) //Swap d with dS if dS < dS
end for
: Merge(l, m — 1, [D*])
: Merge(m + 1,1, [D*])

© XN DI R

—
=]

5.2.2 Sorting via Garbled Circuits

Our utility definition requires the data to be sorted which inherently relies on comparisons.
Comparisons are more efficiently implemented in binary circuits than arithmetic circuits, hence,
we use the former. We leverage that D3 and Dy, are already sorted and merge them instead of sort-
ing the union. Oblivious merging of two lists of n sorted b-bit elements only requires 2bn log(n)
binary gates whereas oblivious sorting requires ©(n log(n)) with a large constant factor [HEK12].
We use bitonic mergers from Huang et al. [HEK12], as formalized in Algorithm 6, which requires a
bitonic list as input. A bitonic list monotonically increases and then decreases (or vice versa). We
can generate a bitoniclist by appending Dy, sorted in ascending order with D}, sorted in descend-
ing order (Algorithm 3 line 1). Bitonic merging recursively splits the list in halves and compares
and swaps elements such that every element of one halfis greater than every element of the other
half until the list is sorted.

5.2.3 Exponentiation and Arithmetics

To compute the probabilities for i € Is we require exponentiations of the form exp(e - utility(7)).
Note that none of the arguments are secret, since € is a public parameter and we defined utility to
notrequire data access. Therefore, we are able to compute the required exponentiations without
any secure computation. The computation of the probability mass, weight(i) - gap(i), requires
two arithmetic operations: subtractions over secret data D* to compute gap and multiplication of
public values (weight), with secret values (gap). Both operations are more efficiently implemented
with secret sharing, hence, we implement it that way.

5.2.4 Selection via Garbled Circuits

The median selection is realized with inverse transform sampling which is better suited for gar-
bled circuits as it requires comparisons. First, we provide an overview of the sampling procedure
assuming we have a uniform random number. Then, we describe how to securely draw such a
number. Given an uniform random number r € [0, N], we compute the first index j € Ips such
that the probability mass is larger than r: mass(j) > r (line 4 in Algorithm 5). Note that we do
not sample r from [0, 1] but from [0, N] where N = mass(|D¥| — 1), i.e., the normalization fac-
tor from Equation (2.1). This allows us to use the unnormalized probabilities and eliminates
divisions used in normalization. In the final step, we select the differentially private median at
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5.2 Secure Sublinear Time Differentially Private Median Computation

Algorithm 7 RandomDraw returns uniformly random integer in given range.

Input: Upper bound M and lists of ¢ nonces N4,Np from A, B.
Output: Uniform random integer in [0, M).
//Find most significant 1-bit in M, set following bits to 1 in mask
. Initialize [mask] < [0], [¢] < [O],
: fori « bit-length b to 1 do
[t] < OR([¢], [i™ bit of M])
[i!"h bit of mask] « [¢]
end for
//Rejection sampling with abort, based on [MMO08]
Initialize [success] < [0], define [sample]
fori — 0tog—1do
[¢] — XOR([NA[i1], [Ns[i1])
[r] < AND([t], [mask])
10 [c] « LT([r], [M])
11:  [sample] « Mux([r], [sample], [c])
12:  [success] <« OR([success],[c]) //True (1) if at least one sample was accepted
13: end for
14: abort if De([success])is0
15: return [sample]

S e

uniform random among the gap(j) consecutive elements with the same utility (and thus proba-
bility) as dj? (line 15 in Algorithm 5). Note that the range [0, max(®D) — min(®)] is used for nonces
in Algorithm 4 line 12 as it is the maximum possible normalization and gap value (Algorithm 5
lines 2, 13)%.

A straightforward way for two semi-honest parties to draw a uniform random r is to compute
the sum of two nonces modulo N + 1, where each party provides one nonce. However, this pro-
vides slightly biased results (as modulo does not evenly divide the nonce range, slightly prefer-
encing smaller values). We implemented RandomDraw in Algorithm 7 with rejection sampling
using efficient operations for garbled circuits, namely XOR, OR, AND, and comparison LT.

Rejection sampling is used in, e.g., Apple’s macOS [MMO08] and is unbiased. For a fixed input
size of ¢ nonces rejection sampling might abort. However, the abort probability is at most 277
as we describe next. We consider the worst-case rejection rate, i.e., comparison r < M in line 10
of Algorithm 7. Recall that r is the XOR of uniform random values, thus, each bit in r is uniform
random as well and mask has all bits set after (and including) the most significant set bit in M.
Masking ensures that only those bits of r remain set that are also setin mask, i.e., r < mask. The
rejection rate is maximized if only one bit in M is set: Masking still leaves undesired values in
[M, mask] and range size mask — M + 1 is maximized when mask is at its largest compared to
M, i.e., when only a single bit is set in M, say at position k. Then, r is rejected with probability
1/2 as all r with 0 at position k are accepted (r < M), while the other half is rejected. Increas-
ing the number of set bits in M decreases the rejection rate (as more r can be smaller than M).
Thus, the rejection probability per sample r is at most 1/2, for an overall rejection probability of
274 as stated before. An alternative to rejection sampling is a slightly biased sampling algorithm
without abort requiring only one nonce per party instead of g: If the masked XOR of nonces (r) is
larger than M one uses r — M as the sampled output. However, we use rejection sampling as it is

4 Anupperbound for normalization term N can be obtained by giving all possible unique elements, i.e., max(®D)-min(D)
elements, the highest utility, 0, thus N = (max(®D) — min(D)) exp(e - 0) = max(®D) — min(D). The maximum gap is the
largest possible difference of domain elements in D, which is max(®D) — min(D).
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5 EMeq: DP Median

unbiased, and only has a small impact on the running time and communication (see evaluation
in Section 5.3.4).

We perform alinear scan over the pruned datato obliviously find index j (line 4 in Algorithm 5).
Later, in Chapter 6 where we present our protocol EM*, we use binary search to find j over sub-
ranges of the data domain (Section 6.2.1). However, we cannot apply binary search here as well.
Binary search leaks the search pattern, especially j, which we cannot reveal as it allows inference
about the data®. To avoid such leakage we cannot reveal j and run a linear scan.

5.2.5 Running Time Complexity

We analyse the running time of EM,.4 based on the number of secure protocols listed in Table 2.2
in Section 2.1.6. The secure protocols require at most / operations for integers with bit-length 1.

Theorem 6. The running time complexity Of EMued 1S

O(max{logn —loglog|®|,log|D| - loglog |D|}),

|log|ZD|+1

which is sublinear in n for n > log | D , and sublinear in |D| otherwise.

Proof. Step (I), requires s € O(log n — loglog |D|) comparisons (see Theorem 5). Step (II) requires
2b|D?*|log |D¥| binary gates [HEK12] for |D?| elements with bit length b. Steps (III) and (IV) re-
quire O(|D¥|) operations each. Since |D*| € O(log|®|) (Lemma 2), our overall running time is
O(max{logn —loglog|®|,log|®]| - loglog |D|}). O

5.2.6 Security

We combine different secure computation techniques in the semi-honest model introduced by
[Gol09] where corrupted protocol participants do not deviate from the protocol but gather ev-
erything created during the run of the protocol. Our protocol consists of multiple subroutines
realized with secure computation. To analyze the security of the entire protocol we rely on the
well-known composition theorem [Gol09, Section 7.3.1]. Basically, a secure protocol that uses an
ideal functionality (a subroutine provided by a trusted third party) remains secure if the ideal
functionality is replaced with a secure computation implementing the same functionality. We
consider Prune-neighboring data sets (Definition 22), i.e., neighboring data sets with the same
pruning result.

Theorem 7 (Security). Our protocol EMeq Securely implements the ideal functionality of dif-
ferentially private median selection via the steps Prune, MergeAndShare, SelectionProbability and
MedianSelection in the semi-honest model.

Proof. First, we show thatPruneissecure based on asimulation prooffrom Aggarwal etal. [AMP10,

Section 3.2]. Then, we define and map ideal functionalities to our real-world implementation.
Aggarwal et al. [AMP10] developed the input pruning we utilize and give a simulation-based

security proof only using comparisons as ideal functionality. Note that these comparisons leak

5 Asan example, considersorted D° = {min®, 4, 5, 5, 6, max D } with Dj‘ ={5,6}, D} = {4,5}, and we stop at median index
Jj =2and output g = 5. Then, B can infer that D4 cannot contain only values smaller than 4 via proof by contradiction:
Assume that D, contains only values smaller than 4 with outputs j, i as above. Then, D*[2] < 4 (due to sorting) and i =
Df[2]+gwith g € [0,gap(j)). Perdefinition gap(j) = 1 for the medianindexand so g = 0. Thus, i < 4 which contradicts
i = 5. Note that without knowing j, one cannot rule out, e.g., j = 0 with uniformly random @ € [min D, min(D4 U Dg)),
which prohibits such inference.
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Algorithm 8 SimulatePruning simulates the kth-ranked element computation [AMP10, Algo. 2].

Input: Parameter element rank k, real execution result ¢ and iteration count j. Note that D, is
known to A and all items in D4 U Dg are distinct.
Output: Simulation of running the protocol for finding the k™-ranked element y in D, U Dp.
: Ainitializes D} « Pad(Dy, k,+00) //Section 5.1.5
: fori —0toj—1do
A computes j4 < median(D})
Secure comparison result ¢ is setto 1 if us < u (i.e., pa < pp) otherwise itis 0
Asets D! — upper half of D/ if ¢ = 1 otherwise it is the lower half
end for
: The final secure comparison result c is set to 1 if u4 < p and else itis 0

N gk e

nothing about Prune-neighboring data sets. Prune, a partial execution of the protocol from Ag-
garwal et al., allows the same simulation argument. They prove the security of their computation
of the k"-ranked element in the semi-honest model by showing that A (similarly B) can simulate
the secure protocol given its own input Dy, and the value y of the k"-ranked element. We repro-
duce their simulation in the following as we use the same argument with small modifications.
The simulation executed by A (similarly B) by Aggarwal et al. [AMP10, Algorithm 2] is detailed in
Algorithm 8. If the data D, contains duplicates, [log, |Da|| + 1 bits are added to the binary rep-
resentation of each element to make it unique as required for the simulation. E.g., A adds for
each element the bit 0 followed by the rank of the element in the least significant bit positions.
B follows the same procedure using 1 instead of 0. These bits are removed from the final out-
put. Aggarwal et al. [AMP10] execute the simulation as SimulatePruning(k, y, [log,(k)1), i.e., full
pruning until only one element remains. [AMP10, Lemma 2] states that the transcript of the real
execution and the simulated execution are equivalent. Additionally, the state information, i.e.,
pruned data D}, that A has at each iteration i is the same as well. Our protocol is a partial exe-
cution with s iterations. We do not know the exact value u, however, A knows its state Dj at the
final step and we use the median of D}, denoted median(Dj), instead of u. Altogether, we call the
simulation with SimulatePruning(k, median(D}), s). We now show by contradiction that our sim-
ulation outputs the correct comparison results. Assume ¢ = 1, i.e., us < up, atiteration i in our
real execution but our simulation outputs 0, i.e., g4 > median(D?). Then D%! is the lower half of
D', and only elements smaller than or equal to u4 = median(D’) remain in D! and thus in Dj.
In other words, for x € D! we have x < 4 and due to D5 € Di! we have median(D$) < pa.
However, this contradicts us > median(Dy), i.e., output 0. Analogously, we find a contradiction if
¢ = 01in our real execution but 1 in the simulation.

Next, we use the composition theorem to analyze the security of our protocol: We define re-
quired ideal functionalities, show how they map to our garbled circuit implementation (steps (I),
(IT), (IV)), and how it combines with secret sharing (step (III)). For the interactive computation,
we require the ideal functionalities as shown in Figure 5.1, which we formalize next:

®C— %ompare(ﬂA; ,UB)
In step (I) theideal functionality oninput p4, p3, i.e., median from A, Brespectively, outputs
the result of comparison u4 < ug as bit ¢ to both parties.

* (D*)4,(D*)p ¢ FMergeAndShare (D}; D},).
In step (II) the ideal functionality receives as input the pruned data D}, D}, from A, B re-
spectively, and outputs the sorted, merged data as secret shares, i.e., (D*)4, (D%)p is output
to A, B respectively.
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5 EMeq: DP Median

® 1L < FMedianSelection ({G)a, (M), (D*)4; (G)p, (M), (D*)p).

In step (IV) party A inputs (G)a, (M)a, (D*), party B inputs (G)p, (M )p, (D*)5 and the ideal
functionality outputs the DP median [ to both.

Step (III), SelectionProbability, performs local computations without interaction, and does not
require any ideal functionality. We realize Fcompare With garbled circuits in Algorithm 2 line 7.
The ideal functionality FyergeAndshare, from merging step (II), is implemented as MergeAndShare
in Algorithm 3 with garbled circuits. Note that A provides the randomness for the secret shar-
ing, i.e., (D%),4, as additional input which is generally not required by the ideal functionality.
Garbled circuits are also used in the selection step (IV), where FuyedianSelection 1S implemented as
MedianSelection in Algorithm 5. Additionally, to the input mentioned for the ideal functional-
ity, the parties also provide nonces as a source of randomness. We rely on the established secu-
rity proofs for garbled circuits in the semi-honest model provided by Lindell and Pinkas [LP09].
Outputs of (I), (IlT) are intermediate states of our interactive computation. As noted by Gol-
dreich [Gol09, Section 7.1.2.3] such state can be maintained securely among the computation
parties in a secret sharing manner. For security proofs of secret sharing we refer to Pullonen et
al. [PBS12] and for security proofs for converting between garbled circuits and secret sharing we
refer to Demmler et al. [DSZ15a].

Altogether, the execution of Fprune, FMergeAndshare, SelectionProbability, and Fuedianselection CON-
stitute the ideal functionality for differentially private median. Utilizing the composition theo-
rem and [Gol09, Section 7.1.2.3] we replace the ideal functionality with secure implementations
Prune, MergeAndShare, MedianSelection and secret share the intermediate states. O

5.2.7 Extensions: Outsourcing, Multiple Parties, Malicious Model

Outsourcing. The two input parties, holding data sets D,, Dg, can outsource the protocol evalu-
ation to two non-colluding computation parties, who run the computation on their behalf. Our
protocol can be outsourced as most of the operations are data-independent, i.e., using only in-
dices of the (pre-sorted) data sets or secret-shared values. Instead of secret sharing their sorted
data sets with each other, the input parties now secret share it with the computation parties.
Outsourcing requires small augmentations to Prune and MergeAndShare as follows: Prune selects
intermediate median values based on their position in the sorted, secret-shared data and con-
verts them from secret-shared to garbled values. Then, Prune proceeds as before, i.e., compares
the local medians, and the computation parties discard the upper/lower half of their (secret-
shared) input data. MergeAndShare now also receives shares, converts them, and proceeds as
before. SelectionProbability and MedianSelection already operate on secret-shared input values,
output by the previous step, and require no changes. With outsourcing the input parties do not
learn the Prune-neighborhood if the computation parties only return the differentially private
median and no intermediate computations.

Multi-party extension. Similarly, our two-party protocol can be extended to a multi-party
protocol. Consider the case where the number of input parties is sublinear in the size of the
data domain and each party P; holds a single datum d;. Then, we do not require pruning, as the
total input size is already sublinear in the size of the data domain. In this case, the input par-
ties can outsource the computation by secret sharing their inputs with two computation parties,
who run MergeAndShare (with additional reconstruction step as above), SelectionProbability, and
MedianSelection. If the number of input parties is not sublinear in the domain size (or the parties
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hold large data sets instead of a single datum), we need to adapt Prune to handle multiple inputs.
Prune is a partial execution of a two-party protocol from Aggarwal et al. [AMP10, Section 3], who
also provide a secure pruning protocol for more than two parties [AMP10, Section 4]. Next, we
describe their protocol augmented with secret-sharing and outsourcing. First, the input parties
compute the counts of elements smaller and larger than median candidate p’ = [“Zﬂ], where
a =min®, b = max D, and secret-share these counts with the computation parties. The compu-
tation parties combine these counts (per input party) into lower and upper bounds on the rank of
candidate p’ and compare them against the median’s rank: If the lower bound of p’ is larger than
the median’s rank, the input parties set b = u’ — 1. If the upper bound is smaller, the input parties
seta = p’+ 1. These pruning steps are repeated with updated median candidate p’ = r“T*b], until
the rank fits within the bounds. Note that the two-party protocol for pruning [AMP10, Section 3]
islogarithmicin the size of the data set (as it discards half of the data per step), whereas the multi-
party protocol [AMP10, Section 4] is logarithmic in the size of the data domain (as it discards half
of the domain range [a, b] per step). After pruning, the computation parties run MergeAndShare
(with additional reconstructions), SelectionProbability, and MedianSelection as before. Altogether,
these modifications allow our protocol EM* to support more than two input parties.

From Semi-honest to Malicious. To extend our protocol from semi-honest to malicious par-
ties, we first need to implement our protocol in a maliciously secure framework, i.e., replace
semi-honest sub-protocols (e.g., addition) with maliciously secure ones. Maliciously secure sub-
protocols ensure that malicious behavior is prevented, e.g., changing inputs during computa-
tion. In case of initial pruning, which requires adaptive iterations, we also need to ensure that the
input remains consistent between iterations. Aggarwal et al. [AMP10] define consistency checks
for their adaptive pruning, which we can leverage as well. Informally, the checks ensure that in-
puts from the current iteration fall within bounds from previous iterations. These bounds are
not revealed to the parties, and if a check fails, the computation aborts. For the two-party case,
Aggarwal et al. [AMP10, Protocol 1] initialize bounds as Iy = —o0, Iz = —c0, and uy = oo, ug = c0. In
each pruning step, the local medians u4, up are checked as Iy < pa < ua, lg < up < up. lfus > ugp,
update us = pga, lp = up. Otherwise (us < up), update Iy = pa, ug = pg. The multi-party case is
similar, however, with checks on counts a, b instead of local median values [AMP04, Protocol 3].
As we consider semi-honest parties we omit these checks in our evaluation. However, we discuss
the overhead for consistency checks in Section 5.3.2

5.3 Evaluation

Our implementation is written in C/C++ using the mixed-protocol framework ABY developed
by Demmler et al. [DSZ15a]. We use the default parameters, i.e., security parameter x = 128
and statistical security parameter o = 40. We chose ABY as it supports secure two-party compu-
tation based on arithmetic sharing and Yao’s garbled circuits and provides efficient conversion
between them (Section 2.1.5). We implemented two versions of our protocol — GC, with garbled
circuits, and GC + SS, with garbled circuits as well as secret sharing — to show that using a mixed-
protocol, which requires additional conversion between the schemes, is still more efficient than
only utilizing garbled circuits.
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Setup

We ran the evaluation on AWS t2.medium instances with 2GB RAM and 4 vCPUs (Section 4.4.1).
As garbled circuits and pruning are interactive protocols they are influenced by network de-
lay and bandwidth, therefore, we evaluated our protocol in real networks between different
AWS regions with round trip times (RTT) of none (LAN), 12 ms (Ohio-N. Virginia), 25 ms (Ohio-
Canada), and 100 ms (Ohio-Frankfurt), with bandwidths of 1 Gbits/s, 430 Mbits/s, 160 Mbits/s
and 100 Mbits/s respectively.

Data & Parameterization

We evaluated on the Open Payments 2017 data set from the Centers for Medicare & Medicaid Ser-
vices (CMS) [CMS17]. The CMS collects all payments made to physicians from drug or medical
device manufacturers as required by the Physician Payments Sunshine Act. We evaluated differ-
ent numbers of remaining elements after pruning (i.e., different sizes of D*) which is inversely
proportional to the privacy parameter € as the number of pruning steps depends on it (see The-
orem 5). We used an accuracy value of 0.9999 to determine the number of pruning steps.

Precision

Our implementation uses fixed-point numbers with 64 bits. As probabilities are floating point
numbers we evaluated the loss of decimal precision of our secure implementation compared to
a floating point operation with access to unprotected data [CMS17]. For the maximum evalu-
ated number of remaining elements, i.e., 256 (corresponding to € = 0.25), the difference for all
elements combined was less than 6.5 - 10715,

5.3.1 Running Time

We evaluated the running time of GC and GC + SS, which includes setup time (OT extensions,
garbling) and online time in seconds (or milliseconds in the LAN setting). The evaluations of
running time are presented in Figure 5.3-5.6 with increasing delays and decreasing bandwidths.
In each figure we plotted different data set sizes |Da| = |Dg| = |D|/2 € {103,104, 10°, 10°} to show
thatour protocol scales with increasingly larger data sets. The plotted running time is the average
of 20 runs and brackets indicate the 95% confidence interval. The running time plots for GC and
GC + SS have the same scale (and are grouped side-by-side) to allow for an easier comparison.

The advantage of GC + SS over GC is most obvious in the LAN setting, where the running time
for GC +SS, see Figure 5.3b, is always below that of GC, see Figure 5.3a. The same is true for
modest network delay as can be seen by comparing Figure 5.4b with Figure 5.4a.

For network delay of up to 100 ms with 100 Mbits/s bandwidth GC + SS is still faster than GC
but less so for 32 remaining elements (¢ = 2), as shown in Figure 5.5 and 5.6. The reason for
GC + SS being not much faster is the increased number of interactive pruning steps required to
reach this number of remaining elements. Also, the number of additional garbled circuits to go
from GC + SS to GC is smaller for few remaining elements (see Figure 5.9a), so that the pruning
has more impact. Even for millions of records GC + SS has a running time of less than 2.6 seconds
with 25 ms network delay (Figure 5.5b) and less than 7 seconds for 100 ms delay (Figure 5.6b).
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Figure 5.3: Running time without network delay and 1 Gbits/s bandwidth (LAN).
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Figure 5.4: Running time for ~ 12 ms RTT, ~430 Mbits/s (Ohio and N. Virginia).
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Figure 5.5: Running time for ~25 ms RTT, ~ 160 Mbits/s (Ohio and Canada).
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Index j-1 J j+l
Dg - dj—l d] dj+1
Dp\{x} - dj dj+1 dj+2
Dp U {x} --- [dj73ydj—2] [dj—Z»djfl] dj_l

Figure 5.7: Neighbors of Dp in relation to comparison index j used by Prune (values highlighted in gray). Neighbors are
Dp with avalue x € Dg removed or x € D added, illustrated for x < d;. All data sets are sorted.

5.3.2 Consistency Checking Overhead

Malicious security requires to check input consistency between pruning steps as described in
Section 5.2.7. Next, we roughly approximate the computation overhead for these checks.

The consistency checks for the two-party protocol with s pruning steps require 4s compar-
isons (LT) and 4s Mux to update the bounds. Note that both operations have the same complex-
ity (Table 2.2 in Section 2.1.6). The additional operations per pruning step can be integrated in
the pruning circuit with a small communication overhead in the order of kilobytes. We ignore
this small communication overhead and consider a LAN setup to approximate the computation
overhead. Evaluating a circuit with a single comparison required at most 5 ms in our evaluations
(including its construction in a LAN). Thus, the absolute overhead is at most 640 ms for 8s check
operations and our largest pruning with s = 16, i.e., only 32 remaining elements. Note that this is
not a tight upper bound as our entire protocol requires less than 500 ms for the same setup (Fig-
ure 5.6). With this upper bound, the relative overhead is at most 10% in a WAN (Figure 5.3) with
our largest pruning evaluations. We estimated the overhead in semi-honest ABY, however, for
malicious security an implementation with consistency checks in a maliciously secure frame-
work is required.

5.3.3 Prune-neighboring

Our focus is on small data sets (say, a few hundred values), as they are the most challenging
for differential privacy. Our protocol EM* supports such data sets with accuracy as in the cen-
tral model for standard differential privacy. However, to support also larger data sets, we first
prune the data with Prune which requires a relaxation of differential privacy in the form of Prune-
neighboring (Definition 22), i.e., neighboring data sets also have the same output w.r.t. Prune.
Next, we discuss the influence of Prune on neighboring data sets and how it limits group privacy.

Recall, Prune compares the sorted, padded data D,, Dg at some fixed index j in each pruning
step, and aneighbor is D with an element x removed or added. As Figure 5.7 illustrates, compar-
ing a neighbor at index j is similar to using the original D at an adjacent index. Thus, neighbors
are likely Prune-neighbors when the data contains multiple duplicates or is dense (no large gaps
between values) and less so for sparse, unique data. In more detail, we first consider x < d;
where d; denotes the value of Dy at index j. Let the data be padded to some fixed size. Then,
removing x from Dp “shifts” values larger than x to the left whereas adding x can shift smaller
values to the right in the sorted data. Removing x € Dj leads to a single shift left, i.e., Prune uses
dj;1 instead of d;. For addition at most two right shifts can occur as we now have to consider
x € Dinstead of x € Dg. Adding x € [dj_g,dj_l] places it at index j in the sorted neighbor.
Thus, in the worst-case for addition, Prune uses d;_» instead of d;. Note that adding/removing
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A A
Dy [Sool8]  ryrp1gy  (ULBIS]  opig7 [KagI8)  heiarg)

Wages [Soo18]  >100|18 >100|14 12| 12 22]22 >100]12  46]21

Transactions [ULB18] 65|65 8] 8 >100] 20 37|30 36|36 23|23
Times [ULB18] >100]22 33|18 6] 6 >100/13 >100|21 25|25
Payments [CMS17] 28|28 >100|11 >100]|>100 6] 6 >100]41 >100|13
Weights [Kagl8] >100]43 3433 4] 4 33|33 >100|21 48|19

Quantities [Kagl8] 30130 >100]25 >100] 12 >100| 9 14|14 14|14

Table 5.3: Minimum changes (worst-case) in Dg to sample a neighbor that is not a Prune-neighbor w.r.t. D4. Evaluated
for 52 000 neighbors (all combinations of up to 50 removals and 50 additions with 20 samples per combina-
tion). Each row shows the minimum changes for ¢ = 1| e = 2 and >100 indicates none were found for up to
100 changes.

x > d; affects only positions larger than j, and all such neighbors are Prune-neighbors for this
index. Also, if the original comparison (of Dy, Dp at j) is true, then removing x < d; produces
the same result in Prune (neighbor has an even larger value at j). Likewise if it is false and we
add x. To empirically verify that Prune-neighboring (Definition 22) is not too restrictive we eval-
uated multiple columns from real-world data sets [CMS17, Kag18, Soo18, ULB18], and found
that all neighbors are also Prune-neighbors. To illustrate our evaluation methodology, one can
imagine the neighboring definition in differential privacy (DP) as a graph. Each database is a
vertex and if two data sets are neighbors they are connected by an edge. The common neigh-
boring definition in DP (adding/removing one element) results in a graph. Prune-neighboring is
arestriction on that graph in the sense that it removes certain edges, similar constraints on the
input databases are considered in [BSRW17, HMFS17]. Any neighboring database must be in a
connected component of the neighboring graph where all nodes have the same output of the
Prune-function. The result of the Prune steps in our protocol determines the connected compo-
nent, in which the other party’s database is DP in. In that sense DP with Prune-neighboring can-
not be violated by any adversary. Any choice of inputs by party A will lead to one (but different)
connected component for the DP of B’s database, i.e., B’s database will always remain differen-
tially private. We empirically showed that Prune-neighboring is not too restrictive, i.e., it does not
remove too many edges and make the resulting connected component too small. We sampled
edges from the neighboring graph resulting from the common definition on real-world data sets
[CMS17, Kagl8, Soo18, ULB18] using the following method: Given a real-world database for B,
an element to be added or removed chosen by A (note that A must choose before knowing the
result), and a step in the protocol does there exist any neighbor for B’s database that is excluded
by the Prune-neighboring definition. For up to 16 consecutive pruning steps (the maximum ac-
cording to Theorem 5 for our highest evaluated parameters € = 2, and accuracy of 0.9999), we
found none. Given that the connectivity in the neighboring graph is high, this implies that the
connected component is expected to remain large.

Group privacy extends the neighboring definition from including (or excluding) a single value
to multiple values. Therefore, to quantify group privacy we consider multiple changes and pro-
vide worst-case and average-case evaluation for Prune-neighboring.
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Trans- . . iy
Dp Wages rans Times Payments Weights Quantities

actions
Dy [So018] [ULB18] [ULB18] [CMS17] [Kag18] [Kag18]

Wages [Soo18] 58.6+0.26 50.7+0.25 49.7+0.13 50.0+0.17 53.9+0.26 50.9+0.24
Transactions [ULBI8]  76.6+9.59 50+0.18 50.5+0.26 48.5+0.18 723+0.52 55.6+0.16
Times [ULB18] 63.7+0.22 64.9+0.20 50.3+0.18 50+0.25 61.2+0.20 62.5+0.10
Payments [CMS17] 689+0.35 59.8+0.19 >100 50+0.15 714+1.26 579+0.13
Weights [Kagl8] 55.0+1.77 49.6+0.15 50.9+0.18 50.7+0.14 61.2+0.20 50.5+0.24
Quantities [Kagl8] 68.3+0.63 64.7+0.31 51+0.25 51+0.25 545+0.18 59.6+0.13

Table 5.4: Average changes in Dp to sample a neighbor that is not a Prune-neighbor w.r.t. D,. Evaluated for 52 000
neighbors (all combinations of up to 50 removals and 50 additions with 20 samples per combination). Each
row shows the average changes for € = 2 with 95% confidence interval and >100 indicates none were found
for up to 100 changes.

Worst-case Evaluation

Table 5.3 shows the minimum changes required to produce a neighbor that is not also a Prune-
neighbor®. We evaluated 52 000 neighbors (all combinations of up to 50 removals and 50 addi-
tions with 20 samples per combination) for each of the 36 ways to distribute the data between
two parties (6 data sets [CMS17, Kagl8, Soo18, ULB18] distributed between 2 parties). Prune-
neighboring provides only limited group privacy for the largest number of pruning steps (e = 2).
However, for our strongest privacy guarantee ¢ = 0.25 we found changes leading to violations
in only 2 from 36 data set combinations, requiring at least 12 changes. Furthermore, sequential
composition is still supported as the result of our protocol is the median selected by the exponen-
tial mechanism which can be used as input for another (DP) mechanism. (Parallel composition,
running our protocol on multiple subsets of the data at once, outputs multiple median values of
these subsets.)

Average-case Evaluation

Table 5.4 shows the average number of changes in a data set Dg to create a neighbor that is not
a Prune-neighbor w.r.t. D,. The number of changes corresponds to the average group privacy we
can expect. Each additional pruning step increases the possibility to find a non-Prune-neighbor.
Thus, we use € = 2 as it leads to the most number of pruning steps in our evaluation. Overall,
at least 49 changes were required on average to violate Prune-neighboring on the evaluated data
sets.

Average-case compared to Worst-case

Table 5.5 shows that lower values of € provide higher group privacy. We list the detailed minimum
and average number of changes for € € {0.25,0.5, 1, 2} where D, consists of credit card transac-
tions [ULB18]. Note that we list the minimum over all pruning steps (i.e., the value for minimum
changes can be the same for different pruning steps and their corresponding €). Overall, the min-
imum number of changes are 20 (when Dj consists of transaction times [ULB18]) and for e < 1
we found no group privacy violations for up to 100 changes.

6 Some values are the same for € € {1,2} as we only report the minimum number of changes over all pruning steps.
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Dp € Avg.  Min.

0.25 >100 >100

Open Payments [CMS17] 0.5 >100 >100
(6M payments) 1 50.1+0.26 37

2 48.5+0.18 30

0.25 >100  >100
California public salaries [Soo18] 0.5 >100  >100
(71k wages) 1 76.6+25.38 65

2 76.6 £9.59 65

0.25 >100 >100
Walmart supply chain [Kag18] 0.5 >100  >100
(175k shipment weights) 1 72.3 +0.73 36

2 72.3 £0.52 36

0.25 >100 >100
Walmart supply chain [Kag18] 0.5 >100  >100
(175k shipment quantities) 1 55.6 + 0.23 23

2 55.6 £0.16 23

0.25 >100 >100
Credit card [ULB18] 0.5 >100 >100
(284k transaction times) 1 ~100 >100

2 50.5+0.26 20

Table 5.5: Average & minimum changes in Dp to sample a neighbor that is not a Prune-neighbor w.r.t. D4, where D,y
consits of 284k credit card transactions [ULB18]. Evaluated for 52 000 neighbors (all combinations of up
to 50 removals and 50 additions with 20 samples per combination) Evaluated for e € {0.25,0.5,1,2} (with
95% confidence interval for average), and >100 indicates no violation was found for up to 100 changes.

5.3.4 Sampling

For our evaluation in Section 5.3 we used g = 20 nonces per rejection sampling. An alternative
to rejection sampling is a slightly biased sampling algorithm without abort requiring only one
nonce instead of g per party. Biased sampling uses r — M as the sampled output if the masked
XOR of nonces (r) islarger than M instead of rejecting the biased sample (i.e., replaces loop line 7
in Algorithm 7). The masking and subtraction results in a simplified modulo operation, and the
bias is due to the fact that modulo does not necessarily divide the nonce range evenly.

We compared biased sampling with rejection sampling (g = 20) using the median of 20 runs
for our largest circuit (e = 0.25,|D| = 2 - 10°) with approximately 100 ms delay and 100 Mbits/s
bandwidth. Biased sampling required around 28k fewer gates and sent 400 KB less than rejection
sampling with g = 20, which corresponds to areduction in circuit size and communication ofless
than 1% for GC and around 3-4% for GC + SS. The running time with biased sampling decreased
by 2.2 seconds for GC (18.5% faster) but only by 0.18 seconds for GC + SS (2.6%). (For g = 30 an
additional 44k gates and 600 KB are required compared to biased sampling, leading to similar
running times as for g = 20.) Thus, we use rejection sampling as it is unbiased with only small
impact on the runtime of GC + SS.
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Figure 5.8: Absolute error averaged over 100 runs with and without pruning.

5.3.5 Absolute Error with and without Pruning

Pruning preserves the elements closest to the median and the absolute error compared to the
original data is small. We evaluated the absolute error, i.e., actual median versus DP median,
for the exponential mechanism on original data and pruned data: Figure 5.8 shows the average
over 100 runs, where brackets indicate the 95% confidence interval. Before pruning the data was
randomly split between both parties. Our evaluation shows the absolute error decreases by 3%
on average over all evaluated € € {0.1,0.25, 0.5}. However, this is within the margin of error, since
the confidence intervals for pruned data overlap with original data’s confidence intervals.

5.3.6 Circuit size & Communication

We only report circuit size and communication for 108 records as smaller data sizes (i.e., fewer
pruning steps) do not noticeably reduce the numbers (recall, a pruning step consists of a single
comparison). The number of garbled gates for GC and GC + SS depends on the number of re-
maining elements and is visualized in Figure 5.9a. GC requires an order of magnitude more gates
as GC + SS since GC requires larger circuits for arithmetic operations whereas GC + SS avoids the
need for this additional circuit complexity. The communication cost, measured in megabytes per
number of remaining elements, can be found in Figure 5.9b. We do not distinguish between (pre-
computed) setup and online phase and present the total number of megabytes sent. Whereas GC
sends about 15 megabytes for 64 remaining elements (e = 1), GC + SS requires less than that even
for 256 remaining elements (e = 0.25) as fewer gates have to be garbled and evaluated.

5.3.7 Comparison to Related Work

Next, we compare EM* with Pettai and Laud [PL15], our closest related work for the secure
computation of differentially private median (i.e., without a trusted third party). Later, in Sec-
tion 6.3.5, we expand this comparison to related works in the central model of differential privacy
(i.e., with a trusted third party).

Pettai and Laud [PL15] compute differentially private analytics on distributed data via secret
sharing for three parties, whereas we optimize our protocol for rank-based statistics of two par-
ties and also use garbled circuits.” Both parties learn the Prune-neighborhood (for large data
sets requiring pruning), but the median output can be shared (or output to only a single party)

7 Note that 3-party computation on secret shares are usually faster than cryptographic 2-party computations [ABPP16].
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Figure 5.9: Circuit size and communication for GC vs. GC +SS.
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Figure 5.10: Running time of GC + SS (~25 ms RTT and ~160 Mbits/s, 256 remaining elements, € = 0.25) vs. Pettai and
Laud [PL15] (LAN).

and processed further. Pettai and Laud [PL15] evaluated their median computation with 48GB
RAM and a 12-core 3GHz CPU in a LAN. We, on the other hand, used a comparatively modest
setup (t2.medium instances with 2GB RAM, 4vCPUs) and evaluated in multiple WANs. A com-
parison of our protocol (with ~25 ms delay, ~160 Mbits/s) and [PL15] (in a LAN) is visualized in
Figure 5.10. Their median computation requires 34.5 seconds for 10® elements in a LAN. Our
protocol runs in less than 2.6 seconds with twice as many elements even with network delay and
restricted bandwidth. Pettai and Laud [PL15, Section 11] perform integer comparisons with se-
cret sharing, which requires about 6.5 seconds per million elements which is the entire runtime
of GC + SS with 100 ms delay and 100 Mbits/s bandwidth.

5.4 Summary

We presented a protocol for secure differentially private median computation on private data
sets from two parties with a running time sublinear in the size of the data domain. Our protocol
implements the exponential mechanism as in the local model using a distributed, secure com-
putation protocol to achieve accuracy as in the central model without trusting a third party. For
the median the exponential mechanism provides the best utility vs. privacy trade-off for low €
compared to additive noise (Section 3.6.1). The output is selected with an exponential bias to-
wards elements close to the median while providing differential privacy for the individuals con-
tained in the sensitive data. We note that our protocol can be easily extended to any rank-based
DP statistic, e.g., pth-percentile, by replacing the rank of the median with the desired rank in Def-
inition 13 and adjusting sensitivity Au accordingly. Our experiments evaluate real-world delay
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and bandwidth, unlike related work [PL15], which we still outperform by at least a factor of 13
(with 25 ms delay and less powerful hardware) by utilizing secret sharing as well as garbled cir-
cuits for their respective advantages. We optimize our protocol by computing as little as possible
using cryptographic protocols and by applying dynamic programming with a static, i.e., data-
independent, access pattern, yielding lower complexity of the secure computation circuit. Our
comprehensive evaluation with a large real-world payment data set [CMS17] achieves high ac-
curacy as in the central model and a practical running time of less than 7 seconds for millions of
records in real-world WANs.

74



6 EM™: Decomposable DP Aggregate
Functions

In this chapter, we present the MPC protocol EM™ to efficiently compute the exponential mech-
anism for decomposable utility functions, which supports, e.g., general rank-based statistics
(e.g., median, p"-percentile, interquartile range) and convex optimizations. We illustrate our
approach for the differentially private median. This chapter is based on the following publica-
tion:

Jonas Bohler, Florian Kerschbaum. Secure Multi-party Computation of Differentially Pri-
vate Median. In USENIX Security Symposium, USENIXSec, 2020 [BK20a].

Existing solutions to compute the differentially private median provide good accuracy only
for large amounts of users (local model [STU17, WGSX20]), by using a trusted third party (cen-
tral model [DL09, McS09, NRS07]), or support only small data sizes or domains (MPC [EKM*14,
PL15]). Our approach s efficient (practical running time), scalable (sublinear in the data domain
size) and accurate, i.e., the absolute error is smaller than comparable methods, and is indepen-
dent of the number of users, hence, our protocols can be used even for a small number of users.

The remainder of this chapter is organized as follows. In Section 6.1, we define decomposable
utility functions with examples and present our ideal functionality. Our main insights are two-
fold: First, decomposability, as used in MapReduce-style frameworks for efficient aggregation
over distributed data, can be satisfied by a large class of utility functions (see Section 6.1.1). Sec-
ond, splitting large domains iteratively into subranges and selecting ranges instead of domain
elements allows trading off some accuracy for faster running times. In Section 6.2, we describe
our MPC protocol EM* (based on the exponential mechanism) as well as a variation GM* (based
on the Gumbel mechanism). In Section 6.3, we evaluate our protocols. In our experiments, we
were able to compute the DP median for 1 million users in 3 minutes using 3 semi-honest com-
putation parties distributed over the Internet. We conclude this chapter in Section 6.4.

6.1 EM & Decomposability

We implement a multi-party computation of the exponential mechanism EM for decomposable
aggregate functions as used in MapReduce-style algorithms. We evaluated our protocol for rank-
based statistics to enable distributed parties to learn the differentially private median of their
joint data. Next, we restate the main challenges of securely implementing the exponential mech-
anism from Section 1.4:

(i) large domain: the running time complexity is linear in |D|, i.e., the size of the domain,

(ii) costly exponentiation: standard EM is too inefficient, requiring |D| exponentiations.
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We solve these challenges by (i) recursively dividing the data domain into subranges to achieve
sublinear running time in |®D|, and (ii) focusing on utility functions that are efficiently com-
putable in a distributed setting. We call such utility functions decomposable, which we formalize
in Section 6.1.1, and give example applications.

In the following, we describe an overview of our solution. Our protocol EM* securely im-
plements the exponential mechanism and our protocol GM* securely implements the Gumbel
mechanism, a variation of the exponential mechanism. We achieve running time complexity
sublinear in the size of the data domain D by dividing D into k subranges. We select the best
subrange and also split it into k subranges for the next iteration, until the last subrange is small
enough to directly select the final output from it. After [log, |D|] iterations the selected sub-
range contains only one element. Each subrange selection increases the overall privacy loss e,
and we enable users to select a trade-off between running time, privacy loss and accuracy. For
EM*, we present three different sub-protocols to compute weights (i.e., unnormalized selection
probabilities) of the exponential mechanism w.r.t. e:

* Weights"® fixes e = In(2) to compute exp(ey) as 2,

o Weights™@/2 allows € = 1 for some integer d > 0,

e Weights™ supports arbitrary e.
On a high-level, we have three phases in each iteration of EM*, GM™:
1. Evaluate: Each party locally computes the basis for utility scores for each subrange.
2. Combine: They combine their results into a global result and compute selection weights.
3. Select: Finally, they select an output based on its selection weights.

The results of the evaluation step are computed over sensitive data and might also be sensitive
(e.g., utility functions for median and mode leak exact counts [LLSY16]). Therefore, we combine
them via MPC to preserve privacy. To ensure efficient implementation of the combination step
we require utility functions to have a certain structure as detailed next.

6.1.1 Decomposability & Applications

Recall, each party P; holds a single value d; (we can generalize to data sets D;). To combine local
utility scores per party into a global score for all, we require utility functions to be decomposable:

Definition 24 (Decomposability). Wecalla functionu : (D"xR) — R decomposable with regard
to functionu’ : (DxR) - R if

n

u(D,x) = Z u'(d;, x)

i=1

forx e RandD = {d,,...,d,}.

We use decomposability to easily combine utility scores in Weights™?, Weights™@/2 and to
avoid costly secure evaluation of the exponential function [ABZS13, AS19, DFK*06, Kam15] in
Weights®. If u is decomposable, users can compute weights locally, and securely combine them
via multiplications:

[ [exp @/ (@i, x)€) = exp( > w'(di, x)€) = exp(u(D, x)e).
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Application Utility

Convex optimization: find x that minimizes } 1, I(x, d;) with convexloss
function ! defined over D; e.g., empirical risk minimization in machine
learning [BST14, STU17], and integer partitions (password frequency
lists) [BDB16]

~ 3 1(xdy)

Unlimited supply auction: find price x maximizing revenue x }}; b;(x),
where bidder demand curve b; indicates how many goods bidder i will x ;i bi(x)
buy at price x; e.g., digital goods [MTO07]

Frequency: select x based on its frequency in D; e.g., mode [LLSY16],

n
.. . .. .. . . ASPEN (IS
where indicator variable 1. is 1 if condition c is met and 0 otherwise 2z Tx=a,

Rank-based statistics: select x based on its rank in sorted D; e.g., rthe

ranked element [LLSY16] See Section 6.1.2

Table 6.1: Applications with decomposable utility functions.

Generalization from a single value, d;, to multiple values, i.e., data set D;, per party is straight-
forward with decomposability: the parties compute sum of decomposable utility per value. De-
composability is satisfied by a wide range of selection problems: counts are clearly decompos-
able and so are utility functions that can be expressed as a sum of decomposable utility scores; ex-
amples of which are listed in Table 6.1. Also, many queries can be represented as counts via one-
hot-encoding, i.e., a bit-vector where set bits indicate satisfied predicates [EKM*14, CWH*20].
An additional example for decomposable utility is gradient-compressed federated learning (to
solve non-convex optimization problems with efficient communication), e.g., with signSGD
[BWAA18]: each party only provides the sign of the gradient and the aggregate of all signs is
used to perform the update step. The median, whose decomposable utility function we describe
shortly, is also used in federated learning to allow robust distributed gradient descent with fault
tolerance [YCKB18]. To be sublinear in the size of the domain we consider decomposability
w.r.t. ranges instead of elements: parties only report one utility score per range, instead of one
score per element. Note that decomposability for elements x € D does not imply decomposabil-
ity forranges R c D!. Later, in Chapter 7 where we present our DP heavy hitter protocols HH and
PEM, we use counts of increasingly longer frequent bit-prefixes to address this issue. Next, we
present a decomposable utility function w.r.t. ranges for rank-based statistics.

6.1.2 Decomposable Median Utility Function

First, we extend the median utility function from Definition 13 from elements to ranges. Then,
we present a reformulation more convenient for secure implementation and show that it is de-
composable. Li et al. [LLSY16, Section 2.4.3] quantify an element’s utility via its rank relative to
the median, where the rank of x € D in a data set D is the number of values in D smaller than x.
As D can be large, they divide ® in k equal-sized ranges, and also define utility per range:

Definition 25 (Median Utility Function for Ranges). The median utility functionu, : (D" xD) —
Z gives a utility score for arange R = [r;, 1,) wherer;, 1, € D w.r.t. D € D" as

. n
I=35
! Consider the mode, i.e., the most frequent element in D. Parties cannot simply report the count of their most frequent

element per range as their local mode might not be the global mode. For example, for two parties with data sets D =
{1,1,1,2,2}, D, = {2,2,3,3,3} the mode per data set is 1 resp. 3; however, the mode for the combined data is 2.

u,(D,R) = -

min
rankp (r7) <j <rankp(ry)
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RangeR = [r, 1) before median, i.e.,r, < p
N W B TN

iz |

R contains median: r; < pandr, > u

gIZEEN WESE BN WSS RN S

R after median: r; > p

J WEE W B e h W

Figure 6.1: Possible positions of range R = [r, ;) relative to median p.

To compute u, one needs to find rank j minimizing the distance between the median and all
range elements by iterating over all j where rankp(7;) < j < rankp(r,). However, a naive imple-
mentation of u, leaks information as the iteration count depends on the number of duplicates
in the data. We adapt u, next to remove this leakage. To avoid iterating over range elements ob-
serve that the utility for a range R = [r, r,) is defined by the element in the range closest to the
median p. Thus, it suffices to consider three cases as illustrated in Figure 6.1: The range is either
positioned “before” the median (r, < u), contains it, or comes “after” it (r; > u). This observation
leads to the following definition without iterations?:

Definition 26 (Simplified Median Utility Function). The median utility function uy, : (d" x®D) —
Z gives a utility score for arangeR = [r;, 1) of D w.r.t. D € D" as

rankp(r,) — 5 ifrankp(ry) < 5

u,(D,R) =% —rankp(r;) ifrankp(r;) > % .

0 else
Next, we show equality of Definitions 25 and 26 with proof by cases.
Lemma 3. Definitions 25 and 26 are equal.
Proof. Consider range R = [, 1;,) and its position relative to the median u for Definition 25:
i) forr, < uwehave rankp(r,) < n/2, thus, u,(D, r,) = =|rankp(r,) — n/2| = rankp(r,) — n/2,
ii) for r; > pwe have rankp(r;) > n/2, thus, u,(D, ;) = n/2 — rankp(r7),
iii) otherwise, the range contains the median, i.e., u, equals 0.

Note that it suffices to look at 7; in case i) (resp., r;, in case ii)), as rankp(r7) < rankp(r,) and the
range endpoint closest to p defines the utility for the range. Overall, Definition 26 considers the
same cases and is an alternative way to express Definition 25. O

In the following, we generalize from a single value per (input) party, d;, to multiple values, i.e.,
data set D;, as computation parties operate on data sets later on. Utility function uj, is decom-

posable with regard to
rankp, (ry) — % ifrankp(ry) < 5
u' (D, R) = % —rankp,(r;) ifrankp(r) > %,
0 else

2 Similar to Aggarwal et al. [AMP10], see also Section 5.2.7.
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6.1 EM & Decomposability

FEm*

1. Sets = [log; |D|] and split privacy budget € into €, ... ., €5
2. Initialize S = D and repeat below steps s times:
a) Every party p € ? divides S into k equal-sized subranges {R! = [rli , r,i)}i?zl

i. ife; = In(2) /2% in step j (with integer d > 0) then party p sends the
following input to the functionality

. Sk
{rankDp (r7), rankp, (r,i)}izl andd
ii. else the inputis

. Wk
{esj(rankpp(r,i)f|Dp|/2)yeej(|Dp|/27rankDp(rll))} and ¢;

i=1

b) The functionality combines the inputs (Section 6.1.2) and outputs S = R}
with probability proportional to exp(uj, (D, R")€;)

Figure 6.2: Ideal functionality g+ for EM*.

where rankp(r) = X1, rankp, (r) for range endpoints r. We will use both utility definitions inter-
changeably. Specifically, we use u, to simplify notation in our accuracy proofs (Section 6.1.5),
and ufi in our implementation (Section 6.2).

For implementations Weights™?®, Weights™(?)/ 2 the parties input ranks for lower and upper
range endpoints (as in u” above), which we combine (as uy) to efficiently compute weights. For
Weights™ we let the parties input weights, i.e., exp(eu’), which we can efficiently combine via mul-
tiplication. In more detail, weights for u’ are:

|D; |
ee(rankul.(ru)—7> ifee(rankp(ru)—g)) <1

W (D: 1Dj
o€ (DiR) _ es(T‘—rankDi(n)> if1 > e€(4-rankp(m)

1 else

|D;|

where, e.g., ec(rankn(n=3)) — I, es(rankD" (=" ) for range endpoints r. Given these inputs, we are
ready to describe an idealized version of our protocols next.

6.1.3 Ideal Functionality #¢y-

The ideal functionality Fgy- in Figure 6.2 describes our DP median protocol EM* as executed by
a trusted third party, which we later replace by implementing #gy- with MPC. We iteratively se-
lect subranges of domain ® w.r.t. DP median via the exponential mechanism. After s = [log,. |D][]
steps the last selected subrange contains only the DP median. We split ¢, also called privacy bud-
get, into s parts such that € = 3'7_, €;, and consume ¢; for each subrange selection. We describe
the budget composition in Section 6.1.5 and provide a heuristic in Section 6.3. Overall, ¢\ pro-
vides e-differential privacy:

Theorem 8. F¢\:, with privacy parameter €; in step j € {1,...,s}, is e-differentially private for

€= Z;zl €;.
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Feme

1. Sets = [log; |D|] and split privacy budget e into €y, ... ., €
2. Initialize S = D and repeat below steps s times:
a) Every party p € P divides S into k equal-sized subranges {R’ = [r/, rli)}f:1
b) Party p inputs
{rankDp (rli), rankp, (), p’i,(ﬁj)}f:l,
where p,i,(fj) is distributed Gumbel noise (Section 2.2.5) for subrange i
with €; in step j.

3. The functionality combines the inputs into a utility score (Section 6.1.2) and
outputs S = R', the argmax over the noisy utility scores.

Figure 6.3: Ideal functionality Fgy+ for GM*.

Proof. g+ performs s sequential steps, and each step applies the exponential mechanism

EM¢.. Since EM®. is ;-DP (Section 2.2.4). we have ¢;-DP per step Thus, according to the com-
(4 14

position theorem [DR14], the fotal privacy budget after all steps is Z;zl €. O

6.1.4 Ideal Functionality #¢u-

Asbefore, the ideal functionality F¢y+ in Figure 6.3 assumes the existence of a trusted third party.
We later remove this assumption by implementing %+ with MPC as GM*. Whereas Fg)- realizes
DP median selection via the exponential mechanism EM, protocol ¥y implements selection
via the Gumbel mechanism GM. The main difference between the ideal functionalities is that
Fem+ additionally requires distributed noise generation (as detailed in Section 2.2.5) but does
notrequire to input weights. The same DP proof as for #¢\- applies as GM and EM have the same
output distribution (Section 2.2.4).

6.1.5 Accuracy of DP Median

We recall Definition 15 from Section 4.3, i.e., given DP mechanism M, computing function f,
(a, B)-accuracy is defined as Pr[|f(D) - M;y(D)| < a] > 1 — B. In other words, the absolute error
between actual result and DP result is bounded by « with probability at least 1 — 8. In the fol-
lowing, we discuss how the data distribution influences accuracy. Then, we present worst-case
bounds on the accuracy of the exponential mechanism for median selection.

Data Distribution

Accuracy depends on the data distribution, specifically, on gaps d;.1 — d;, and duplicates d; = d;
with i # j. Recall that a differentially private mechanism bounds the probability that data set
D and its neighbor D’ can be distinguished from the mechanism output. As neighbor D’ may
contain values from the gaps of D, these gap values must be output with a non-zero probability.
This is why bounds for absolute error depend on such gaps between data elements in this and
related work (see Table 3.1 in Section 3.6.2). As a worst-case example, consider a data set with
domain ® = {0,1,...,10%}, and equal number of duplicates for 0 and 10°. Then, smooth sen-
sitivity is extremely large with 10° and the exponential mechanism outputs a value at uniform
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6.1 EM & Decomposability

random. However, for such pathological, worst-case data even the actual median does not pro-
vide much insight. On the other hand, the number of duplicates in the data can increase accuracy
dramatically. For example, consider a data set where the median has 2¢ duplicates: d,/2.; = dy,/2
fori € {1,...,c}. Then, the probability that the exponential mechanism outputs the median is
exp(ce) times higher than for any other element. Such duplicates also fit the intuition that the
median is a “typical” value from the data that represents it well. In general, the probability to
output a “bad” element x decreases exponentially in } ¢;, where ¢; > 1 are duplicate counts of
“good” elements y;, which are closer to the median than x.

Accuracy Bounds

In the following, we show that the output of EM;, (D) over domain R contains an element at most
[MJ positions away from the median in the sorted data. Note that |R| is k if we select among
k subranges or |D| if we output elements directly.

For our accuracy proofs we structure the domain as a tree: we set © as the root of a tree of
height log, |D|, for some base b, with k child nodes per parent. The child nodes are equal-sized
subranges of the parent node and R{ denotes the i subrange in level j.

Theorem 9 (Median Accuracy for Ranges). Fixing a data set D of size n with a set of k subranges
R ={R!,..., Ri} of data domain®. Then, output of EM;,(D) over domain R contains an element

at most {M@J positions away from median position % with probability at least 1 — .
Our proof uses Corollary 3.12 from [DR14], which we restate as the following Lemma:

Lemma 4 (Accuracy of the Exponential Mechanism). Fixing a data set D, and let the maximum
utility score of any elementr € R be denoted OPT = max,cg u(D, r). Then, we have

2Au

Pr|u(D,EM;, (D)) < OPT - T(ln|R| +1)| < exp(-1).

Proof of Theorem 9. First, we bound the utility difference between optimal and selected output.
Then, we translate this to a bound on the output’s rank.
The complementary of Lemma 4 with Au = % is

> 1 —exp(-1).

In|R|+¢
Pr[OPT —u(D,EM;,(D)) < —

Let R{ = [r;, ry) be the output of EM, (D). Recall, that for median utility OPT = 0, then,

OPT — u(D, EM$(D)) = 0 — u(D, R))
N
.] 2 *

min
rankp (r7) <j<rankp (1)

Next, we consider different cases for le to bound the rank difference between the selected
range and the range that contains the median. Assume median u ¢ R{ , as otherwise the bound
holds trivially, and let d denote the utility difference OPT — u(D, EM{,(D)).

For r, < pwehaved = [rankp(ry) — 5| = 5 — rankp(r,) from which we obtain rankp(r,) >

5= IR with probability atleast 1 — exp(-¢). Analog, for r; > u we have d = rankp(r;) - 5, and

€
obtain rankp (r;) < 2 + "X \yith the same probability. Altogether, R/ is at most {WJ rank
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positions away from median rank n/2 with probability at least 1 — exp(—¢). We have k = |R| and
setting 8 = exp(—t) concludes the proof. O

To obtain an absolute error with regards to data elements, consider domain elements instead
of subranges as the output domain of the exponential mechanism.

Corollary 1 (Median Accuracy). Fixing a sorted data set D of size n, let u be the median of D, and
U the output of EMS,(D) over domain®. Then, absolute error|u — 1| is at most

n n
2+ 2

max
ie{+1,-1}-In(|D|/p)/€]
with probability at least 1 — f.

The proof follows directly from Theorem 9 by replacing k with |D|.
The same analysis applies to our protocol EM,.4 (Section 5) on small data, i.e., without prun-
ing. With pruning, we only need to replace D with pruned D* in all statements.

Accuracy for Evenly Spaced Data

Next, we consider a special case, evenly spaced data, to obtain a tighter error bound. Nissim et
al. [NRS07, Section 3.1] illustrate that smooth sensitivity of the median is superior to global sen-
sitivity with evenly spaced data. Likewise, we illustrate that the exponential mechanism is even
better. Note that evenly spaced data has a constant gap d,.1 — d;, which simplifies the accuracy
analysis. First, we bound the accuracy of EM for evenly spaced data in Theorem 10; then, we
compare the accuracy to smooth sensitivity in Theorem 11.

Theorem 10 (Median Accuracy for Evenly Spaced Data). Letthe n elementsin D be evenly spaced
in|0,1], i.e, d; = i let n be even (can be ensured with padding), and R consist of all subranges
i 1 . —~
[+ ’; ) fori € {1,...,n}. Let u be the median of D, and i the output of EM;,(D,R). Then,
= Z _ ,—€(y+])
Pr[|u pl < n] >1-e
fory e N.

Proof. Evenlyspaced D contains only unique elements and Theorem 2 from Section 5.1.3 applies
(we assume even n to conform with Section 5). Thus, we can write the unnormalized probability
mass of EM;, (D), i.e., denominator in Equation (2.1), as

11

N = Z exp(eu(D,0)) =2 Z exp(—ie) =

0eR

e —e_f(%_l)
ec—1

The last equality comes from the fact that N is a geometric series [GKPL94, Eq. (2.25)].
We are interested in the unnormalized probability mass N, for outputs with error at most y/n.
This corresponds to rank difference of at most y for evenly spaced data, and we can write

—ey

i - e
exp(—i€) =2————
—~ ec—1
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Altogether, the (normalized) probability for outputs with error at most X is

— e~ _ p—€(y+])
Ny  ef-e I—e >1—e€rth)

W B e€ — e_f(%_l) - 1- 6_6(%_2)

O

Next, we compare the exponential mechanism to the Laplace mechanism with smooth sensi-
tivity. We use an idealized version of smooth sensitivity asin Section 3.6.1, i.e., ignoring constants
that increase the noise [NRS07, Lemma 2.9] [MG20, Proposition 2]. We consider the probability
that the absolute error is less than 1/n, i.e., the gap between adjacent data elements.

Theorem 11. For evenly spaced data and output domain R as in Theorem 10, absolute error less
than1/n, and e < 2, the exponential mechanism is more likely to provide better accuracy than the
Laplace mechanism with smooth sensitivity for the median.

Proof. For evenly spaced data, smooth sensitivity s of the median is at most % [NRS07, Section
3.1] (whereas global sensitivity is 1). The probability that the Laplace mechanism adds noise less
than 1/nisp = 1 - exp(—€?). Note that for X ~ Laplace(s/e) we have Pr[|X| < ts/€] = 1 —exp(~t)
[DR14, Fact 3.7]. With s = % and ts/e = 1/nwe gett = € and arrive at the stated probability
p. However, the same result with the exponential mechanism occurs with probability at least
q =1 — exp(—2¢) according to Theorem 10 (y = 1 leads to error less than 1/n). Thus, for € < 2 we
have g > p, i.e., the exponential mechanism is more likely to produce higher accuracy. O

Choice of Epsilon

Note that it is more likely to select a “good” subrange as it is to directly select a “good” element
from the entire domain (as k < |D|). However, sequential (subrange) selections consumes €; per
selection step j which adds up to a total privacy budget of € = 3 €; as described in Section 6.1.3.
We now show how to choose ¢; to select the subrange containing the median in each iteration
step with probability at least 1 — .

Theorem 12 (Choice of €). LetR = {Rj ). ..,Ri}, where le = [r, ry) contains the median, and
nij = min{|rankp(p) — rankp (1), [rankp(ry + 1) — rankp(p + 1)|} is the minimum count of data
elements in R! smaller resp. larger than the median. Then, EM{,(D) over domain R selects R} with

probability at least 1 — B if
In(k/p)
€j 2 i .

Proof. Ranges R{l without the median have a rank at least n;; positions away from median rank.
More formally,

i n n
OPT - u(D, R;z) > ‘(E + n,-j) - E‘ = njj.
According to Lemma 4 we have Pr[nij > %] < exp(-t). Thus, for €; > % the proba-

bility that any range R{; is selected is at most exp(—f). We have k = |R]| and setting § = exp(—t)
concludes the proof. O

Parameter ¢; is undefined for n;; = 0, i.e., when the median is a range endpoint. However, an
undefined €; can be avoided by using an additional discretization of the domain, with different
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subrange endpoints, and switching to itif a (differentially private) check suggests n;; = 0 [DL09].
Note that the exact value of n;; is data-dependent. E.g., for the uniform distribution n;; ~ |D|/k/.
A differentially private n;; can be efficiently computed by distributed sum protocols [DKM*06,
GX17, TKZ16, RN10] as it is just a count of data elements. However, a differentially private count
also consumes a portion of the privacy parameter. For low epsilon (e.g., € = 0.1) we want to use
the entire privacy budget on the actual median selection to achieve high accuracy. Thus, we use
a heuristic in our evaluation: larger subranges, that hold exponentially more elements, receive
exponentially smaller portions €; of the privacy budget (see Section 6.3 for details).

6.2 MPC for DP Median

In the following, we describe details of our protocol EM*, which implements ideal functionality
Fem:, analyse its running time and security.

On a high-level, our protocol recursively selects the best subrange until the DP median is
found: First, each party locally evaluates a utility score (or weight) for each subrange. They com-
bine their results into a global result. Then, they select a subrange based on the combined result.
We use upper case letters to denote arrays in our protocol, and A[j] denotes the j™ element in
array A. Our protocol EM* operates on integers as well as floating point numbers whereas GM*
operates only on integers. We briefly recall the number representation described in Section 2: a
floating-point number f is expressed as (1 —2s)(1 — z) - v - 2* with sign bit s set when the value is
negative, zero bit z only set when the value is zero, ,-bit significand v, and I, -bit exponent x. The
sharing (f)r_ of a floating-point number f is a 4-tuple ((v), (x), (s}, (z)) and we use subscripts to
refer to parts of a sharing, e.g., f.v refers to the significand v of f.

The basic MPC protocols used in our protocol are detailed in Table 2.3 in Section 2.1.6. Recall,
as a default we assume integer operations and use subscript FL to highlight basic MPC protocols
operating on floating-point numbers, e.g., Add denotes addition on integers while Addg, denotes
its floating-point equivalent.

6.2.1 Subrange Selection

On a high level, protocol EM*, implemented in Algorithm 9, computes selection weights for
possible outputs (via Algorithm 10) and selects an output according to these weights (via Al-
gorithm 11 or 12). We assume that the domain D and combined data size n are known to all
parties, however, the latter can be hidden via padding [AMP10]. Recall, that efficient weight
computation and selection from a large domain are the main challenges for our secure expo-
nential mechanism. Straightforward selection over all domain elements is linear in the size of
D. To achieve a running time sublinear in the size of D we select subranges instead: Algorithm 9
selects one of k subranges based on their median utility. The selected subrange is recursively
divided into k subranges until the last subrange, after at most [log, |D|] iterations, contains
only one element: the differentially private median3. Alternatively, one can use fewer selection
steps s and select an element from the last subrange at uniform random (line 15 in Algorithm 9).
We discuss the running time vs. accuracy trade-offs of reduced selection steps in Section 6.3.
We implement selection with inverse transform sampling (Section 2.2.4) via binary search in

3 To simplify presentation, assume that log;. |D| is an integer. Otherwise the last subrange might contain less than k
elements, and fewer weight computations are needed in the last step.
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Algorithm 9 EM" iteratively selects smaller subranges containing DP median via EM.

Input: Number of subranges k, size n of combined data D, number of selection steps s €
[1, [log, |D[1], and (e, ..., ). Data domain D is known to all parties.
Output: Differentially private median of D.
1: 7,1y < 0,]|D]
2: forj «— 1tosdo
3: Ty emax{l,L%J}
k «— min{k,r, — r;}
Define array W of size k
if €; = In(2)/2¢ for some integer d then
(W)HpL < Weightsln(z)/zd(rl, Ty, T4, k,n,d) //Algorithm 11
else
(W)HEL « Weights*(rl, Tu, T, k, n, Ej) // Algorithm 12
10:  endif
11: i« Select((W)F.) //Algorithm 10
12: rl<—rl+(i—1)-r#
130 r,e—n+rpifi<k
14: end for
15: return Uniform random element in [D[r;], D[ry,])

Algorithm 10 Select samples range index according to its selection weights.

Input: List (W)r_ of weights with size k.
Output: Indexj € [1, k] sampled according to (W ).
: Define array M of size k //Probability mass
(M[1])rL «— (W[1])rL
forj — 2tokdo
M [jDeL «— AddeL (W [j1eL, (M [J — 1])FL)
end for
(t) « Rand(b) //Bit-length b
(fYeL « Int2FL({z))
(x) < Sub({f.x), (b))
(FIre « ((fo), (x), (fz), (f.5))
(reL < Mulec ((M [k])FL, (f)FL)
: il — 1; iu — k
: while il < iu do
ij+iy

— =

—
@

Iy —
(¢) — LTeL({M [im])Fe, (r)FL)
¢ «— Rec({c))
i —ip+1lifc=1elsei, « i,
end while
return i;

e e

Algorithm 10 similar to Eigner et al. [EKM*14]. Inverse transform sampling (as detailed in Sec-
tion 2.2.4) uses the uniform distribution to realize any distribution based on its cummulative dis-
tribution function. Formally, one draws r € (0, 1] at uniform random and outputs the first R; € R
with Zf;ll Pr[EM{(D,R) =R;| <1 < 25:1 Pr[EM¢, (D) = R;|. Recall, we compute unnormalized
probabilities (weights), which do not require division for normalization, thus, reducing compu-
tation complexity. To use weights instead of probabilities in inverse transform sampling we only
need to multiply r with normalization N = } .z exp(u(D, 0)¢) (lines 6-10 in Algorithm 10).

We use decomposable utility functions to combine local evaluations over each party’s data into
a global utility score for the joint data. Next, we present three solutions to efficiently compute
weights for decomposable utility functions.
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Algorithm 11 Weights™®)/ 2 computes weights based on local ranks.

Input: Range [r, 1), subrange size ry, number k of subranges, data size n, and parameter d €
{0, 1}. Subrange ranks (rankp, (-)) are input by each party p € {1,..., m}.
Output: List of weights.
1: Define array R of size k + 1, array W of size k; initialize R with zeros
2: forp < 1tomdo //Get input from each party
3: forj<— l1tokdo //Divide range into k subranges

4: hen+(-1) -

5: (R[j1) < Add((R[]]), (rankp, (D[i1])}))

6: end for

7. (R[k +1]) < Add({R[k + 1]}, (rankp, (D[r,])}))
8: end for

9

: forj — 1tokdo

10: <uupper> — Sub((R[j +1]), <%>)

11: (Uiower) < Sub((3),(R[j]))

12: (cupper) < LT((R[j +1]),(3))

130 {Clower) < LT((3), (R[j]))

14: (1) « MUX(<uupper>, 0), <Cupper>)
15: (u) — Mux({uiower), (), {Clower))

16: if d = 0 then

17: WIiDre < ((2),(u),(0),€0)) //float (2%)
18: else

19: (t) « Trunc({u), d)

20: ()L — ((2),(t),(0),(0})

21: (c) « Mod2m({u), d)

22: ($)FL — Muxpr ((DeL, (V2)FL, ()
23: WjDeL < MulgL({e)rL, ($)FL)
24:  endif

25: end for

26: return (W)p_

6.2.2 Weights'"®

We implement Weights™ (2 as a special case of our approach Weights?/2* in Algorithm 11 (with
d = 0in line 16). Here, parties locally compute ranks which are combined into global utility
scores. Weights for these scores use a fixed € of In(2) to let us compute 2" instead of exp(e - u).
Solutions for secure exponentiation of 2* exist where u is an integer or a float [DFK*06, AS19,
Kam15, ABZS13]. When u is an integer (resp. a float) the result 2% is an integer (resp. float) as well.
The complexity of the integer-based solution is linear in the bit-length of u, however, this is not
sufficient for us: Recall, that the utility is based on ranks, i.e., counts of data elements, thus u can
be roughly as large as the size of the data. An integer representation of 2% has bit-length u, which
is potentially unbounded. Eigner et al. [EKM™*14] use the float-based solution from [ABZS13] but
we present a more efficient computation in the following. Although our exponent « is an integer,
we do not require the result to be an integer as well. We use the representation of floating point
numbers as a 4-tuple to construct a new float to represent 2* as (2, u, 0, 0), where sign and zero
bit are unset, as 2" cannot be negative or zero. Note that we require no interaction as each party
can construct such a float with their share of u. Also, a naive approach requires 2k total inputs
per party (one per endpoint per k ranges). However, with half-open ranges [/, r}) in each step i,
they overlap for i > 1: ;"' = r/. Thus, the parties only input k + 1 ranks (Algorithm 11 lines 5, 7).
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Algorithm 12 Weights* computes (global) weights based on local weights.

Input: Range [r;, 1), subrange size ry, number k of subranges, data size n, and e. Subrange
weights (e€() are input by each party p € {1,..., m}.
Output: List of weights.
1: Define arrays W!, W¥, W of size k; initialize W', W* with ones
2: forp «— 1tomdo //Get input from each party
3: forj«<— 1tokdo //Divide range into k subranges
4: ilﬁrl+(j—1)-r#
5

iy —nr,ifj=kelser;+j-ry o
Dpl _

WD o Mule (W[ (L% ko @LD)y )

6:
. |Dp|
7 WELTR e Mule (WO [jT)eL, (e RLD=2 0y
8: end for
9: end for

10: forj < 1tok do

1: - (ew) « LT (W [ DrL, (D)

122 {¢) « LTee ((W![jD)rL, (1)FL)

13: (OFL « Muxpc (W [ DL, (DeL, (Cu))
14: (W[jDrL < Muxec (W [DeL (0FL, er))
15: end for

16: return (W)g_

6.2.3 Weightsln(z)/zd

Next, we generalize the weight computation to support € = In(2)/2¢ for integers d > 1. To il-
lustrate our approach, we implement Weights™(?/ 2% in Algorithm 11 for d = 1, and describe the
approach for any integer d: Recall, our goal is to compute the weight exp(eu) with efficient MPC
protocols. As we can efficiently compute 2¢* if eu is an integer, we approximate the weight by
truncating eu to an integer before exponentiation with base 2. To avoid a loss of precision we
correct this approximation with a multiplicative term based on the truncated remainder. More
formally, with € as above the weight for u is

zu/zd _ 2|_u/2f‘j . g(u mod 2d)/2d.
First, we compute 214/2] (lines 19-21 in Algorithm 12). Then, we multiply this with one of 24
constants of the form 2« mod 29/2 'E g for d = 1, we either use 1, if u is even, or V2 otherwise

(line 22). The constants themselves are not secret and can be pre-computed. Which constant
was selected, leaks the last d bits from u, thus, we choose them securely.

6.2.4 Weights*

We implement Weights* in Algorithm 12. To allow arbitrary values for € we avoid costly secure
exponentiation for weight computation altogether: Utility u, decomposable w.r.t. u’, allows for
efficient combination of local weights for D;, input by the parties, into global weights for D via
multiplication as described in Section 6.1.2).

6.2.5 GM*

Algorithm 13, denoted GM*, iteratively calls the Gumbel mechanism GM which outputs the sub-
range index with highest noisy utility score. The subrange iteration code is the same as for EM*
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Algorithm 13 GM™ iteratively selects smaller subranges containing DP median via GM.

Input: Number of subranges k, size n of combined data D, number of selection steps s €
[1, [log, [D[1], and privacy budget (e, ..., €). Subrange ranks (rankp,(-)) and distributed
noises (p,,) are input by each party p € {1,..., m}. Data domain D is known to all parties.

Output: Differentially private median of D.

1: 7,1y < 0,]|D]
2: fori «— 1tosdo //Get ranks and distributed noise from each party
3 T HmaX{I,L%J}

4.  k « min{k,r, -1}

5:  Define arrays: R of size k + 1 and S, N of size k; initialize R, N with zeros

6: forp«— ltomdo //Get ranks and distributed noise from each party
7: forj — 1tokdo //Divide range into k subranges

8: il<—rl+(j—1)~r#

9: (R[j]) < Add({R[]j]), (rankp, (D[i1]))) //Combine local ranks

10: (N[j]) « Add((N[j]), (p{,(ei))) // Combine partial noises

11: end for

12: (R[k +1]) « Add({(R[k +1]), (rankp, (D[r4])))
13:  end for

14: forj <« 1tokdo

15: (uy) < Sub({R[j +11),(3))

16: (ur) < Sub((5), (R[j]))

17: (cu) « LT(R[j +11),(3))

18: (cr) < LT((5) (R[J1))

19: (t) & Mux({uw), 0), {cu))

20: (S[j1) « Mux({ur),{t),{c1)) //Utility score
21:  end for

22:  Initialize (umax) < Add((S[1]), (N[1])) and (jargmax) < (1)
23: forj < 2tokdo

24: (Unoisy) < Add((S[j]1), (N [J]))

25: (c) « LT ({unoisy), (Umax))

26: (Umax) < Mux({Umax), <unoisy>) (c))

27 (jargmax) — MUX((jargmax>r G {e))

28: end for

29: jargmax — Rec(<jargmax>)

30 rnpen+ (jargmax -1)-r

31: 1y 1+ 1y if jargmax < k

32: end for

33: return Uniform random element in [D[r;], D[r,])

implemented in Algorithm 9 (i.e., they share the same first and last four lines), and the utility
scores are computed as in Algorithm 11 (compare lines 10-15 in Algorithm 11 with lines 15-20 in
Algorithm 13). The main difference is that now each party additionally inputs distributed noise
values (Section 2.2.5). We let p,j; (€;) denote the distributed noise of party p for subrange j parame-
terized with ¢; in selection step i. These noise values are scaled, truncated integers and subrange
ranks are scaled with the same scaling factor.

Furthermore, to implement the exponential mechanism EM, we compute selection weights
exp(e - u) per utility score u and sample an output via inverse transform sampling. For the Gum-
bel mechanism GM, on the other hand, we have to find the element whose noisy utility score is
the largest. Computing argmax for GM requires k steps compared to the (at most) [log, k1 steps
to sample from EM (binary search in Algorithm 10). However, the former operations can be im-
plemented with (scaled) integers, whereas the latter always requires floating point numbers (due
to potentially large exponents).
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6.2.6 Precision and Privacy

As mentioned in Section 3.4, Ilvento [IIv20] showed that limited machine precision can lead to
privacy violations when implementing the exponential mechanism. Interestingly, the suggested
mitigations are similar to our efficient secure computation. Our implementation is based on an
integer utility function and Weights™® uses base 2 for efficiency reasons and is not vulnerable to

/2 \ith e = In(2)/24, by using randomized rounding

such attacks. We can strengthen Weights
for non-integer utilities [IIv20, Section 3.2.2] if we omit 1/2¢ from € and include it as a factor in
the utility definition (making the utility non-integers). For Weights*, which supports arbitrary e,
careful choices for € mitigate attacks on limited precision (Section 3.4). Our protocol GM* oper-
ates on integers and does not suffer from privacy issues due to limited precision of floating-point

numbers.

6.2.7 Running Time Complexity

Next, we analyse the running time of EM* w.r.t. MPC protocols from Table 2.3 in Section 2.1.6
(omitting non-interactive addition/subtraction):

Theorem 13. EM* with Weights™? or Weights(2/2* requires O (k[log, |D|1) MPC protocol calls,
with Weights* we require O (mk[log, |D|1). Note that complexity of these MPC protocols is at most
O(l,logl, + 1) for bit-lengths l,, 1, as detailed in Table 2.3 in Section 2.1.6.

Proof. EM* invokes the weight computation and Select at most [log;. |D|] times. An invocation of
Weights™® or Weights(®/2* performs k truncations Trunc, 2k comparisons LT and 2k selections
Mux. Additionally, Weightsln(z)/ 2* also requires one truncation Trunc, modulo Mod2m, float selec-
tion Muxg. and float multiplication Mulg, . Weight computation via Weights* requires 2km float
multiplications Mulg, 2k float comparisons LTg_ and 2k float selections Muxg . Each invoca-
tion of Select requires k — 1 float additions Addg,, only one random draw Rand, conversion Int2FL
and float multiplication Mulf . Also, Select performs at mostlog, (k) comparisons LTr_and share
reconstruction steps during binary search. O

Analogously, we analyse the running time of GM* as the number of (interactive) calls to MPC
protocols.

Theorem 14. GM* requires O (k[log, |D|1) MPC protocol calls, Note that complexity of these MPC
protocols is at most O (1) for I-bit integers as detailed in Table 2.3 in Section 2.1.6.

Proof. The firstloop performs at most [log, |D|] iterations with a single reconstruction (Rec) per
iteration. Nested in the first loop are two sequential loops which perform at most k iterations.
Recall, we omit addition as it is interaction-free. In total, GM* performs O (k[log,. |D|]) iterations.
Each of these iterations requires 3 comparisons LT and 4 selections Mux leading to O (k[log,. |D|1)
operations in total. O

6.2.8 Security

Recall, we consider the semi-honest model introduced by Goldreich [Gol09] where corrupted
protocol participants do not deviate from the protocol but gather everything created during
the run of the protocol. Our protocols EM*, GM* consists of multiple subroutines realized with
MPC protocols listed in Table 2.3. We rely on the well-known composition theorem [Gol09, Sec-
tion 7.3.1] for our security analysis: MPC protocols using an ideal functionality remain secure if
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the ideal functionality is replaced with an MPC protocol implementing the same functionality.
We implement such ideal functionality with the maliciously secure SCALE-MAMBA framework
[AKR*20]. Our protocol performs multiple subrange selections and each selection round is ma-
liciously secure. Overall, we only provide semi-honest security as malicious adversaries can
deviate from inputs provided in previous rounds. We later show how to extend our protocol to
malicious adversaries, but first we proof semi-honest security for EM*:

Theorem 15. Protocol EM* realizes ¥\ in the presence of semi-honest adversaries.

To prove semi-honest security we show the existence of a simulator Sim such that the distri-
butions of the protocol transcript EM* is computationally indistinguishable from a simulated
transcript using Fgy- produced in an “ideal world” with a trusted third party (see Section 4.1).

Proof. Simulator Sim produces a transcript for realgy- as follows: As we operate on secret shares,
denoted with ({-), which look random to the parties [EKR*18], Sim replaces all secret shares with
random values to create VIEW;. Likewise, the secret-shared output of the weight computations
(Algorithm 11 and 12) are replaced with randomness. Sim can simulate Algorithm 10 by recur-
sively splitting D into k subranges, and outputting the subrange containing j in each selection
step. Finally, Sim outputs a uniform random element from the last subrange (Algorithm 9). Al-
together, a semi-honest adversary cannot learn more than the (ideal-world) simulator as this
information is sufficient to produce a transcript of our (real-world) protocol. O

Theorem 16. Protocol GM* realizes Fg- in the presence of semi-honest adversaries.

Proof. As before, Sim replaces all secret shares with random values to create VIEW; and the sim-
ulation proceeds similar to EM* as GM* and EM* share most of their code: GM* and EM* have
the same subrange iteration and same utility scoring. The main difference are the additionally
provided partial noises, the noise aggregation, and finding the maximum noisy score. However,
the in- and outputs of these operations are all secret shared as well, and Sim replaces them with
randomness. O

From Semi-honest to Malicious

For malicious adversaries, we need to ensure consistency between rounds similar to Aggarwal et
al. [AMP10], who securely compute the (non-DP) median via comparison-based pruning rounds
(see Section 5.1.5). Informally, we have two consistency constraints: First, valid rank inputs must
be monotone within a step. Second, for consistency between steps, valid inputs are contained
in the subrange output in the previous step. Formally, let {RI, .. .,R,i} denote the set of sub-
ranges in the i step of EM* and let l]’f , u]’ denote the lower resp. upper range endpoint of R]’
Then, rankp, (1})
i for party p. Consistency between step i and i + 1, if the j™ range was selected, is expressed as

< rankp, (I}) < --- < rankp, (I}) < rankp, (u}) describes monotone input in step

rankp, (I{*!) = rankp, (l]lf) and rankp, (uf*') = rankp, (u]l:). In other words, the subrange outputin the
previous step is used in the current step. Analogously, we can enforce consistency for weights as
they are based on rank values. Note that malicious users have limited influence on a rank-based
statistic: a collection of  malicious parties can change the output’s rank by at most +¢.

6.2.9 Scaling to Many Parties

Recall, we distinguish two sets of parties: Input parties send shares of their input to computa-
tion parties which run the secure computation on their behalf. The computation parties can be
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a subset of the input parties or some AWS instances executing our protocol. This scales nicely
as the number of computation parties is independent of the number of input parties and can be
constant, e.g., 3. In our evaluation in Section 6.3, m € {3, 6, 10} computation parties perform the
computation for 10° input parties, each holding a single datum. Addition suffices for Weights™(®
and Weights™(®)/ 2 to combine local rank values into a global rank. Addition is essentially “free”
as it requires no interaction between the computation parties. For Weights* we require multipli-
cation to combine the local weights, which requires interaction during the preprocessing step.
However, log n rounds suffice to combine the inputs by building a tree of pairwise multiplica-

tions with 27 multiplications at level i [ABZS13].

6.3 Evaluation

We implementation our protocols with SCALE-MAMBA [AKR*20] using Shamir secret sharing
with a 128-bit modulus and honest majority ([m/2] — 1 corrupted parties). SCALE-MAMBA’s
floating point numbers (sfloat) are associated with a statistical security parameter « satisfying
x < b — 2 -1, where b is the bit-length of the modulus and I, is the bit-length of the significand.
Security with « = 40is the defaultfor b = 128 and we use /, = 40in our evaluation, to supportlarge
utility values. Next, we evaluate the running time, privacy budget and accuracy of our solution.

6.3.1 Running Time

For our evaluation we used t2.medium instances from Amazon Web Services (AWS) with 2GB
RAM, 4 vCPUs [Ama20b] and the Open Payments data set from the Centers for Medicare & Med-
icaid Services (CMS) [CMS17] as in Section 5.3. Our evaluation uses 10° records from the Open
Payments data set, however, our approach scales to any data set size as we consider domain sub-
ranges. We used the maximum number of selection steps, i.e., s = [log, |D|], with k = 10 ranges
per step. We evaluated the average running time of 20 runs of the entire protocol EM*, i.e., offline
as well as online phase, and evaluated in a LAN and a WAN.

LAN

We measured running time for 3 parties in a LAN with 1 Gbits/s bandwidth in Table 6.2 to com-
pare our protocols to Eigner et al. [EKM*14] who only report LAN running times. Eigner et
al. [EKM*14] evaluated their protocol with a sum utility function on a machine equipped with
a 3.20 GHz Intel i5 CPU and 16 GB RAM. They are linear in the size of the domain and com-
pute weights for a very small domain of only 5 elements. We, on the other hand, are sublinear
in the size of the domain as we compute weights per subrange and use efficient alternatives to
costly secure exponentiation. We evaluated domain sizes at least 5 order of magnitudes larger
than [EKM*14] with comparable running times: They compute weights per elements and re-
quire around 42 seconds for |D| = 5, whereas our protocol EM* with Weights™(2) / Weights™(®/2"
Weights™ runs in approximately 11 / 33 / 64 seconds and GM" runs in approximately 28 seconds
for |D| = 10°. Overall, our running time for is below the running time of Eigner et al. on rather
modest t2.medium instances (4 vCPUs, 2 GB RAM) for domain size |D| = 10° except for EM*
with Weights*. Even if we also consider weights per element (i.e., subrange size 1) for any de-
composable utility function our protocols compute at least 6 times more weights per second on
t2.medium instances. (E.g., for k = 10, |D| = 10° and Weights* we compute 50 weights in 64.3
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Protocol |D| Running time
Eigner et al. [EKM*14] 5 42.3s
105 283+19s (185+2.15s)
GM* 106 31.6+22s (22.3+2.25)
107 38.4+24s (26.1+2.35s)
10° 11.3+08s (7.7+0.7s)
EM* & Weights?(2) 108 135+22s (92=+1.1s)
107 154 +1.4s (10.7+1.0s)
10° 33.7+3.4s (23.6+1.35)
EM* & Weights™/2 g -2 105 39.8+3.7s (27.8+1.3s)
107 46.8+3.5s (31.4+1.35s)
105 643+3.0s (41.6+1.45s)
EM* & Weights* 108 77.3+3.0s (52.4+1.8s)
107 91.8+42s (61.1+2.7s)

Table 6.2: LAN: running times for 3 parties in a 1 Gbits/s network for this work and Eigner et al. [EKM™*14]. We report

the average of 20 runs with 95% confidence intervals on t2.medium instances with 4 vCPUs, 2 GB RAM (and
r4.2xlarge instances with 8 vCPUs, 61 GB RAM in parenthesis). Eigner et al. [EKM*14] evaluated on a 3.20
GHz (Intel i5), 16 GB RAM machine.

og D] =107 o |D] =107 o |D] =107 e D] =107
oo |D| =108 oo |D|=10° o |D| =108 o |D|=10°
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(@) GM* (b) EM*, Weights(®) (©) EM*, Weights!n(2)/2 (d) EM”, Weights®
In(2)/24

Figure 6.4: WAN: running times of GM* and EM*— with weight computation subroutines Weights™(?), Weights
ford = 2,and Weights"—for 20 runs on t2.medium instances in Ohio and Frankfurt (100 ms delay;,
100 Mbits/s bandwidth).

seconds, i.e., 0.78 weights per second, compared to 0.12 for [EKM*14].) We also evaluated our
protocol on r4.2xlarge instances (8 vCPUs, 61 GB RAM), which we list in parenthesis in Table 6.2.
In a LAN the running time compared to t2.medium instances is reduced by at least 30%, how-
ever, in a WAN setting the latency plays a more important role than powerful hardware and the
running times are much closer. Thus, we only present running times for t2.medium instances in
a WAN next.

WAN

We evaluated GM™ and EM* with all weight computation subroutines in Figure 6.4 for m € {3, 6, 10}
computation parties and |D| € {10°, 10°,107}. We split the m computation parties into two re-
gions, Ohio (us-east-2) and Frankfurt (eu-central-1), and measured an inter-region round time
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Communication
Protocol |D|

m=3 m=6 m =10

10° 95MB 253MB 852 MB
GM* 105 107MB 273MB 949 MB
107 116 MB 286MB 1.07GB

10° 178MB 402MB 1.41GB
EM* & Weights(?) 105 202MB 448MB 1.54GB
107 222MB  497MB 1.75GB

10° 634MB 1.38GB 4.73GB
EM* & Weights"®/2¢ g-2 106 748MB 1.63GB 5.58GB
10’ 866MB 1.88GB 6.39GB

105 664MB 1.56GB 5.59GB
EM* & Weights* 106 785MB 1.83GB 6.57GB
107 907MB 2.11GB 7.59GB

Table 6.3: Communication cost: Data sent per party, average of 20 runsform € {3,6,10} partiesand |D| €
{10°,108,107}.

trip (RTT) of approx. 100 ms with 100 Mbits/s bandwidth. The computation parties already re-
ceived and combined secret-shared inputs from 10° users (Section 6.2.9) and we report the av-
erage running time of our protocol. Note that the results are very stable and the 95% confidence
intervals deviate by less than 1% on average. Thus, we omit all confidence intervals in Figure 6.4
except the largest ones, i.e., for GM* with 3, 6 parties and |D| = 107 in Figure 6.4a.

Our protocol GM* (Figure 6.4a) requires less than 90 seconds for 3 parties and all domain
sizes. GM™* operates only on (scaled, truncated) integers and is always faster than EM*, which
requires some floating-point operations for the weight computation and sampling. Weights™?
(Figure 6.4b) is clearly the fastest weight computation, with running times around 3 minutes
for 3 parties, whereas Weights™®/2" (Figure 6.4c) and Weights* (Figure 6.4d) requires around 13
and 14 minutes respectively. However, we consider large domain sizes (billions of elements) in a
real-world network with large latency and EM*, unlike GM*, requires some floating-point compu-
tations. The choice of weight computation enables a trade-off between faster running times, i.e.,
Weights™? with fixed €, and smaller privacy loss €, i.e, Weights*, with Weights™?/2* positioned
in the middle (faster running time than Weights" with smaller e compared to Weightsln(z)). While
GM* can be used to avoid such trade-offs, the number k of subranges allows similar adjustments,
as discussed next.

6.3.2 Communication

The communication is detailed in Table 6.3. For 3 parties and 10’ domain elements, the com-
munication for GM* is 116 MB per party. For EM* with Weights™® each party sends 222 MB in
the same setting, with Weights™®/2" it is 866 MB, and with Weights" it is 907 MB. We stress that
this communication is required for malicious security in each round as provided by the SCALE-
MAMBA implementation. MP-SPDZ [Kel20], a fork of SCALE-MAMBA's predecessor SPDZ2, also
provides semi-honest security. MP-SPDZ with semi-honest security requires much less com-
munication, e.g., only around 25 MB for 3 parties, |D| = 10°, and Weights*. However, the running

93



6 EM*: Decomposable DP Aggregate Functions
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Figure 6.5: Privacy vs. running time trade-off: For increasing number k of subranges the running time (left axis) in-
creases whereas the consumed privacy budget (right axis) decreases. (Illustrated for EM* with Weights™(?)
and |D| = 10%).

time in a WAN is some minutes slower compared to SCALE-MAMBA (presumably due to SCALE-
MAMBA’s batched communication rounds and integrated online and offline phases, where par-
allel threads create offline data “just-in-time” [AS19, AKR*20]). Thus, regarding our protocol, one
can choose efficiency w.r.t. communication (MP-SPDZ) or running time (SCALE-MAMBA).

6.3.3 Malicious Security

To achieve malicious security, by consistency checks as detailed in Section 6.2.8, we require ad-
ditional running time and communication. For the maximum number of evaluated steps and
domain elements in a WAN (100 Mbits/s with 100 ms latency), GM* and EM* with Weightsln(z) or
Weightsln(z)/ 2! (d = 2) ensure consistency of ranks (integers), which additionally needs around
1.3/1.5/2 minutes and 115/260/825 MB for 3/6/10 parties. EM* with Weights* needs to check
weights (floats) which additionally requires around 10/10/12 minutes and 0.65/1.4/5 GB for
3/6/10 parties.

6.3.4 Privacy Budget vs. Running Time

The privacy budget is the sum of privacy parameters consumed per step, i.e., the overall privacy
loss. Figure 6.5 shows how the privacy budget and the running time are affected by the number k
of subranges. Larger k leads to larger running times, as the number of securely computed opera-
tions depends on the number of ranges times the number of selection steps (i.e., k- [log,. | D[], see
Section 6.2.7), which increases proportionally to k. However, smaller values for k require more
selection steps ([log, |D|1), which lead to an increase in the privacy budget. Overall, as evident
from Figure 6.5, for k = 10 subranges, as used in our evaluation, the consumed privacy budget is
small with an acceptable running time.

For our protocols supporting arbitrary € per step, the trade-off becomes accuracy vs. running
time: Larger k means the overall budget is spread among fewer steps, which improves accuracy,
whereas smaller k corresponds to faster running time.

6.3.5 Accuracy Comparison to Related Work

First, we detail how we choose the privacy parameter per selection step. Then, we compare our
accuracy to related work.
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Figure 6.6: Comparing exponential mechanism (EM) as baseline, this work (EM*), smooth sensitivity (SS) [NRS07],
sample-and-aggregate (SA) [PL15] on different data, 100 averaged runs.

Composition of the Privacy Budget

Our protocols perform multiple selection steps s, each consume a portion ¢; of the overall pri-
vacy budget € = };_, €;. How to optimally split € (optimal composition) is #P-complete [MV16].
Thus, we use the following heuristic to divide e among the selection steps: Initial steps cover ex-
ponentially larger subranges, and require exponentially less of the privacy budget. After a while
an equal split is more advantageous, as the subranges become smaller and contain fewer ele-
ments. Altogether, we use €; = €/2°7*1if i < |s/2] and €; = €'/(s — |s/2]) else, where €’ is the
remaining privacy budget. We used s = [log, |D|] — 1 for our accuracy evaluation. We found in
our experiments that performing one selection step less increases accuracy, as the privacy bud-
get can be better divided among the other remaining steps and the last subrange is already small
enough (at most k elements).

Accuracy Comparison

We list theoretical accuracy bounds for related work in Table 3.1 in Section 3.6. The theoretical
accuracy bounds show that computing DP median exhibits a strong data dependence, which
makes straightforward comparison difficult. Therefore, we empirically evaluated the different
approaches closest to ours, i.e., supporting more than 2 parties, on real-world data sets [Kagl8,
ULB18, So018] as well as the normal distribution in Figure 6.6 for 100 averaged runs with 95%-
confidence intervals. Recall that “small” data is the most challenging regime for DP [NRVW20,
BEM™*17], thus, we use small data sets to better illustrate the accuracy differences. As EM* and
GM* have the same output distribution (Section 2.2.4) we only present the former in the figures.
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6 EM*: Decomposable DP Aggregate Functions

The evaluation for smooth sensitivity [NRS07] and the exponential mechanism for elements as-
sume a trusted party has access to the entire data set in clear. Note that only our approach and
sample-and-aggregate as implemented by [PL15] use MPC instead of a trusted party. Nissim et
al. [NRS07] (SSin Figure 6.6) compute instance-specific additive noise, requiring full data access,
and achieve good accuracy, however, the exponential mechanism can provide better accuracy
for low €. Pettai and Laud [PL15] (SA in Figure 6.6) securely compute the noisy average of the
100 values closest to the median within a clipping range for their running time evaluation. There
are three error sources: approximation error, clipping error, and and additive noise. In our accu-
racy evaluation (using 100 values as well), the approximation error, without any additive noise or
clipping, was already larger than the error for the exponential mechanism for data set [ULB18].
Recall, the median is the 50th-percentile. To minimize the error from clipping range [c;, ¢, ], we
choose ¢; = 49th—percentile, cy = 51th-percentile, i.e., we presume to already know a tight range
for the actual median. Nonetheless, in our experiments the absolute error of SA is the largest.

Overall, no solution is optimal for all € and data sets. However, the exponential mechanism EM,
and our protocols EM* and GM* provide the best accuracy for low ¢, i.e., high privacy, compared
to approaches with additive noise [NRS07, PL15].

6.4 Summary

We presented a novel alternative for differentially private median computation with high accu-
racy (even for small number of users), without a trusted party, that is efficiently computable
(practical running time) and scalable (sublinear in the size of the domain). Our semi-honest
multi-party protocols implement the exponential mechanism (resp., Gumbel mechanism) for
decomposable aggregate functions (e.g., rank-based statistics, convex loss functions) as used in
MapReduce-style algorithms, and can be extended to malicious parties. For the median, the
exponential mechanism provides the best utility vs. privacy trade-off for low € in our evalua-
tions of related work in the central model. We optimize our protocols for decomposable func-
tions (allowing efficient MPC over distributed data), and use efficient alternatives to exponentia-
tions for floating-point numbers. We implemented our protocols in the SCALE-MAMBA frame-
work [AKR*20], and evaluated it for 1 million users using 3 semi-honest computation parties
with a running time of seconds in a LAN, and 3 minutes in a WAN with 100 ms network delay,
100 Mbits/s bandwidth.
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7 HH & PEM: DP Heavy Hitters

The goal of federated heavy hitters discovery, also called top-k, is to learn the k most frequent
values in a distributed data set. We present efficient MPC protocols PEM and HH to discover DP
heavy hitters achieving central-model accuracy without a trusted party. This chapter is based on
the following publication:

Jonas Bohler, Florian Kerschbaum. Secure Multi-party computation of Differentially Pri-
vate Heavy Hitters. In Computer and Communications Security, CCS, 2021 [BK21].

DP is widely deployed in the industry for private heavy hitter discovery over user-generated
data. As detailed in Section 1, heavy hitters are typically collected to detect trends and pat-
terns, e.g., frequently typed new words [App16, App17], common user settings [EPK14, FPE16a],
and often shared articles [RSP*20]. Existing solutions to find DP heavy hitters either require a
large number of parties to achieve meaningful accuracy (local model [App16, DKY17, EPK14,
FPE16a]), require a trusted third party (central model [RSP*20, Rog20]), or use cryptography but
do not achieve high accuracy with efficient protocols (MPC [BBC*21, MDDC16, NPR19]).

The remainder of this chapter is organized as follows. In Section 7.1, we first describe an ideal
version of our protocol with a trusted third party, which we later replace with MPC. The straight-
forward algorithms to accurately detect heavy hitters are inefficient in MPC, and hence we need
to employ clever approximate algorithms called sketches over streams [CH10] or large domains
[WLJ19] to make the secure multi-party computation efficient. Sketches are succinct data struc-
tures which typically store counters indexed by multiple hash functions, e.g., count-min sketch
[CH10, MDDC16] or Bloom filters [EPK14, FPE16a]. Usually, local-model users apply domain
reduction (e.g., hashing) [BS15, BNST17, WLJ19] before randomization. However, hash-based
techniques require costly search efforts, e.g., hashing the entire domain to find matching heavy
hitters. Searching can consume significant computational resources to, e.g., compute and match
billions of hashes [WLJ19] or estimate joint probabilities of perturbed n-grams [FPE16b] (see Sec-
tion 3.7). Our key insight is that adapting suitable sketches that do not require search allows ef-
ficient MPC of DP heavy hitters with high accuracy.

In Section 7.2, we present two MPC protocols to discover the DP heavy hitters on distributed
user data: HH and PEM. Our protocols are based on state-of-the-art solutions for heavy hitter
detection — HH is build upon non-private detection in data streams [CH10], and PEM adapts the
local DP method from Wang et al. [WL]19] —realized as efficient MPC implementations of central
DP randomizations [WZL*20, DR19a, DR19b].

In Section 7.3, we provide a detailed performance evaluation. HH has running time linear in the
size of the data and is applicable for very small data sets (hundreds of values). PEM is sublinear
in the data domain (i.e., linear in the bit-length of domain size) and provides better accuracy
than HH for a large number of users (thousands to millions). In our experiments, we achieved
running times of less than 11 minutes using 3 semi-honest computation parties in a WAN with
100 ms network delay, 100 Mbits/s bandwidth. We conclude this chapter in Section 7.4.
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7 HH & PEM: DP Heavy Hitters

FHH

1. Define map T with maximum size ¢ to associate a datum with a count.
2. For each user reported datum d € D:

a) Ifd € T, then increment counter T[d].

b) Elseif |T| < t,thenadddto T, and set T[d] to 1.

c) Else, decrement all counters T'[i], and remove i from T if T[i] = 0.
3. Foreachitemi € T:

a) Add noise Laplace(A/¢) to count T[i].

b) Remove i from T unless

T[i] =2 Thn,
where Ty = 1 - Alog(z -2(1- 5)1/A)/6.

4. Outputitems in T sorted by their noisy count.

Figure 7.1: Ideal functionality #y combining heavy hitter detection in streams [MG82],[CH10, Alg. 1] with DP
bounded count release [WZL*20, Th. 2].

7.1 Federated Heavy Hitters

The following ideal functionalities ¥y and Fpem describe our protocols as executed by a trusted
third party, which we later replace by implementing them with optimized MPC protocols as HH
and PEM, respectively. The straight-forward algorithms to accurately detect heavy hitters are in-
efficient in MPC. Therefore, we employ clever approximate algorithms that work over streams
with unknown domains [CH10] (non-private) or support large domains [WLJ19] (local model)
to make the secure multi-party computation efficient. The employed sketches do not require
hashing or domain reduction (e.g., Bloom filters [EPK14], or matrix projection [BS15]) and avoid
the additional search efforts associated with these techniques. Clients only send a single mes-
sage — either their value () or a bit vector indicating the bit-prefix of their value (¥pgm) — and
the server updates a map that associates client messages with a count. We utilize central model
thresholds [WZL*20, DR19a, DR19b] and show that F, Fpem are differentially private. In the fol-
lowing, we let A denote the maximum number of counts an individual can influence, e.g.,, A = 1
if we query countries of origin, or A > 1 for current and former employers. Next, we formalize
the top-k problem:

Definition 27 (Top-k or Heavy Hitter). Datumd € D is a top-k element ifits frequency f; in D is
among the k most frequent elements, where f; = |{x | x € D and x = d}|/|D|.

7.1.1 Ideal Functionality ¥yH

Cormode and Hadjieleftheriou [CH10] surveyed algorithms for (non-private) heavy hitter detec-
tion in data streams and found counter-based approaches, to be the best w.r.t. accuracy, speed
and space, which was re-confirmed by more recent work [ABL*17]. Next we describe a non-
private counter-based approach, which we augment to be privacy-preserving.

Non-private Misra-Gries

The counter-based approach Misra-Gries [MG82],[CH10, Alg. 1], is the main part of our ideal
functionality Fny in Figure 7.1: making up all steps, excluding the DP thresholding in step 3.
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7.1 Federated Heavy Hitters

Misra-Gries uses counters to track the frequency of already seen elements in a data stream and
provides the following guarantee [ABL*17, Lemma 1]:

Lemma 5. Misra-Gries run on D of size n with t counters provides a frequency estimate f; for all
d € D satisfying0 < fy — fd <n/(t+1).

For skewed frequencies, i.e., data sets consisting of mainly a few very frequent items, Berinde
et al. [BICS10] show the following tail guarantee:

Lemma 6. Misra-Gries run on D of size n with t counters provides a frequency estimate f; for all
d € D satisfying0 < f; — fa< n_j/(t+1-j), wherek < j and n_; is the data size without the top j
most frequent elements.

Recent improvements [ABL*17] reduce the expected number of times the expensive decre-
ment branch is executed (2c in Figure 7.1), as it requires updating the entire map T. However, as
we later implement #y with MPC, which must hide the control flow to prevent leakage, we can-
not apply them and focus on the original version. Note that #, due to its use of Misra-Gries,
does not require any domain knowledge or distribution assumptions. Also, if the map size is
equal to the size of the (small) data set, Fyy computes an exact histogram over an unknown data
domain.

Differentially private

The ideal functionality ¥ in Figure 7.1 approximates counts for frequent values seen so far via
Misra-Gries [MG82] but only releases noisy counts that exceed the §-based threshold 7y defined
by Wilson et al. [WZL*20, Th. 2].

Theorem 17. The ideal functionality Fuy provides (Ae, 6)-differential privacy.

Proof. Wilson et al. proofin [WZL*20, Th. 2] that the threshold 4y satisfies (A¢, §)-DP for counts
of unique user contributions in SQL. (I.e., non-empty groups with noisy counts of say column 1
grouped by column 2 are released if they exceed the threshold, and the threshold bounds the
probability for releasing differing results between neighbors.) We briefly sketch their proof: A
noisy count will be at least 7 with probability p = %e_me (property of Laplace distribution). The
probability for bad events (e.g., releasing a count for a data set but not its neighbor) is bounded as
p® < & and solving for 7 provides 4. As we assume a single value per user, each count qualifies
as a unique contribution per user, allowing us to use the same threshold 7. O

7.1.2 Ideal Functionality Fpgm

Wang et al. [WLJ19] present a “prefix extension method” (PEM) for LDP heavy hitter detection
and show that it provides higher accuracy than other LDP approaches [FPE16a, BS15, BNST17].
We adapt their local model protocol, which we denote PEMorig, for our central model protocol
Fpem, and describe them next.

Local model PEMorig

PEMorig leverages overlapping segments by iteratively finding frequent prefixes of increasing
lengths. Informally, users are split evenly in disjoint groups. The first group reports perturbed
(y+n)-bit prefixes of their datum to a server, and the server estimates the frequencies of all prefix
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7 HH & PEM: DP Heavy Hitters

FPEM

1. Initialize prefix set S = {0, 1}11°8%1 and split user data D
ing= [%] disjoint groups Dy, ..., Dg.

2. Foreachgroupje{l,...,g}

a) Initialize empty map T to associate a prefix with a count, and candidate

prefixset C = S x {0, 1}7.
b) For each prefixc € C:

i SetT[c] = Zgep; {5, where {f € {0, 1} is a user report indicating if her
value d matches prefix candidate c.
c) SetS ={}and z = min.c¢ T[c] + Laplace(1/e).
d) For the top-k prefixes ¢, € C:
i. Add noise Laplace(1/€) to count T [ci].
ii. Add ¢ toSif
Tlex] = TPEM + 2,
where 1pgp = 1 +1og(A/6) /€.

e) Outputitems in S sorted by their noisy count.

Figure 7.2: Ideal functionality ¥pgm combining distributed heavy hitter detection [WLJ19] with central-DP threshold-
ing [DR19a, DR19b].

candidates (i.e., all binary strings with the same length as the bit prefix). Then, the prefixlength is
extended by 7, the second group reports their perturbed prefixes of length y + 27, and the server
estimates frequencies of prefixes that extend the top-2" prefixes of the previous group. This is
repeated until the prefix length reaches the domain bit-length b.

To create the reports, a user first reduces the domain size via optimal local hashing [WBLJ17],
then applies generalized randomized response (GRR) on the reduced domain. In more detail, a
user in group i selects a hash function H : ® — {1,...,u} from a family of hash functions H,
where u = [exp(e€) + 1]. Then, she computes h = GRR(H(d’)) of the (y + in)-bit prefix d’ of her
datum d. Recall Definition 9 from Section 2.2.4, GRR(x) outputs x with probability p = e)q)ez(f—)(;)_l
and y # x with probability m over domain {1, ..., u} of size u. Finally, she reports (H, h)
to the server. Given the reports, the server creates a candidate set C by extending the previous
top-2Y prefixes with all possible binary strings of length 7. Then, the server estimates the count
of each prefix candidate ¢ € C as % [WLJ19, Eqg. (2)], where s, is the number of reports with
matching hashes, i.e., sc = |{c | ¢ € Cand H(c) = h}|.

The parameter n provides the following trade-off: Smaller values lead to more groups but less
(hash) computations, whereas larger values produces fewer groups but requires more computa-
tional resources. Note that more groups means fewer counts per prefix candidate which can lead
to reduced accuracy. Wang et al. [WLJ19] set y = [log, k] and limit the number of hash compu-
tations per report to 220 (i.e., set ) to the largest integer satisfying g27+7 < 220 for g = [(b — y) /7]

groups). Overall, PEMorig, with these parameters, requires the server to compute 1722 hashes.

Central model Fpem

Our protocol Fpem, shown in Figure 7.2, also leverages extending prefixes to find heavy hitters
over distributed data. Unlike PEMorig, ¥pgm Operates on actual counts instead of estimates from
perturbed reports to increase the accuracy. We later implement Fpgm with MPC to protect the
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7.1 Federated Heavy Hitters

counts and use n € {4,5} in our evaluation as this provides a practical trade-off between com-
putational efficiency and accuracy for a small number of users (Section 7.3).

Fpewm releases intermediate results (set of frequent prefix candidates) to improve the frequency
estimation in multiple rounds, unlike minimal functionality HH, which only releases the final
result. However, this does not violate privacy: Differential privacy is enforced in line 2(d)ii of
Figure 7.2 by only releasing values whose associated (noisy) frequencies exceed a threshold. The
privacy budget of Fpey is given next.

Theorem 18. Theideal functionality Fpem provides (Ae, g(exp(Ae) +1)(3+ log(A/6))) -differential
privacy.

Proof. First, note that the claim holds for a single group, i.e., step 2d, as the thresholding satisfies
(Ae, O (exp(Ae) +1)(3 + log(A/d)))-DP [DR19a, Lemma 6.1]. Now we expand this, without addi-
tional privacy cost, to all groups (step 2): Recall, we compute counts on disjoint subsets (i.e., Dg
of D for group g). Thus, we never count a user contribution more than once. Applying parallel
composition [LLSY16, Section 2.2.2] allows us to use the maximum (instead of the sum) over the
privacy budget for all steps as total budget. As we use the same budget per step the maximum is
equal to that of a single step, which concludes the proof. O

Unrestricted Sensitivity

In the case of unrestricted sensitivity, i.e., A much larger than |C|, Durfee and Rogers [DR19a]
use Gumbel noise instead of Laplace noise. With Gumbel noise Fpgp is (» Vke, 6)-DP [DR19a,
Th. 1] (i.e., with a dependence on k instead of A). To support unrestricted sensitivity in Frgm the
Laplace noise in lines 2c¢, 2(d)i of Figure 7.2 changes to Gumbel noise with the same scale with
new threshold 7pem = 1 + log(|C|/d)/€ (i.e., A replaced by |C|). In the following, we focus on
the setting with restricted sensitivity, i.e., Laplace noise, but our protocol can be extended to the
unrestricted case by using distributed Gumbel noise (Section 7.1.4).

7.1.3 When to use Fn or Fpem
In the following, we discuss the accuracy of ¥y and Fpeym in relation to each other.

Theorem 19. For data set D of size n, Fyn with fixed map size t provides better accuracy in expec-
tation than Fpewm if

n
THH+ 7 < fi-th < & - (tPEM *+ fic|-th)

where fi..;, is the frequency of the k-th most frequent element in D, g is the number of groups in
Frem, |C| is the size of the candidate set in Fpem, and Ty, TPem as in Figures 7.1, 7.2 respectively.

Proof. We consider the cases where Fyy releases a candidate and #rem does not. Fyy releases
candidate c if T[c] + Laplace(1/€) > mqn. Frun uses estimated frequency T'[c| = ﬁ, which is at
most n/(t+1) below actual frequency f. (Lemma5). Thus, T'[c] > f. — n/(t +1) using the fact that
Laplace noise is 0 in expectation and replacing f, with f;_y,, we have tyy + n/(t + 1) < fin-
Analogously, PEM doesn't release candidate ¢ if T[c] + Laplace(1/¢) < tpgm+Laplace(1/€). As-
suming data is distributed uniformly between groups, we have T[c]| = f./g. Assuming expected
noise and z = fi¢|.tm, replacing f. by fi.i as before, we arrive at fi.1m/g < fic|-th + TPEM, Which is
the right side of the inequality when multiplied with g. O
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7 HH & PEM: DP Heavy Hitters

For fixed 7, larger domain bit-length leads to larger group size g in Fpem. Since Fyn is indepen-
dent of the domain size, it provides better accuracy in such cases, as the counts per value are not
split among multiple groups. However, we want to keep ¢ small and fixed for our MPC protocol,
as Fy requires t operations per datum in the worst case (decrement step). Fixed ¢ reduces accu-
racy for increasing data sizes (Lemma 5); therefore, 1 is better suited for small data sets (small
n). Also, the candidate set in #pgm can be empty if the counts are lower than the threshold, i.e., for
very small data sets (a few dozen or hundred values), which provides another argument in favor
of Fiyn for small data sets. Our empirical analysis in Section 7.3 confirms these observations.

7.1.4 Distributed Noise Generation

In our ideal functionalities, the noise comes from the trusted parties. In our MPC protocols, the
noise is provided by the input parties (resp., computation parties). Distributed noise generation
ismore efficient than securely sampling from a noise distribution as discussed in Section 2.2.5. In
our MPC protocols, we combine partial noise values p, from each party p € #, to sample from the
Laplace and Gumbel distribution as detailed in Section 2.2.5. Recent works consider alternative
Laplace noise representations on finite machines, e.g., [BV19, GKMP20, BBGN20], which we can
leverage as well. The distributed noise representation does not affect our MPC efficiency as they
are based on (integer) addition. Recall, the Gumbel distribution can be expressed as an infinite
sum of random variables from the exponential distribution. Note that the input parties can pre-
compute an arbitrary number of such sum terms, and add them to their prefix counts, thus, they
only need to provide one input per count for our MPC of Fpgm: a (partially) noisy count ‘V:Cz .
Alternatively, the computation parties can provide the noise.

7.2 MPC for DP Heavy Hitters

We describe details of our MPC protocols HH, PEM which realize the ideal functionalities F1y,
Fpem without a trusted party, and analyse their running time and security.

We use upper case letters to denote arrays in our protocol, and A[j] denotes the j-th element
in array A. We indicate Boolean values (in the form of a bit) with bgtate (€.8., bmatch = 1 indicates
amatch). The MPC sub-protocols used in our protocol are listed in Table 2.3. While most of our
computation can be represented with integers, our protocol uses fixed-point numbers (scaled,
truncated floats) to handle DP noise. Limited machine precision of floating-point numbers can
lead to privacy violations in the implementation of the Laplace mechanism [Mir12]. These viola-
tions can be mitigated by careful truncation and rounding of floating-point numbers. We do not
release noisy counts and do not use floating-point numbers, nonetheless, similar attacks might
exist without careful selection of fixed-point numbers.

Secure Sort

We want to release the ordered top-k, i.e., the most frequent values sorted by their counts. Note
that we cannot release the noisy counts with their corresponding values to let the parties sort the
values locally. While Laplace noise is differentially private, allowing the release of noisy counts,
the same is not true for Gumbel noise [DR19a] as used by PEM with unrestricted sensitivity. Fur-
thermore, we consider distributed noise generation, where each party provides partial noise val-
ues. Here, each party can remove its partial noise from the noisy count, requiring additional
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7.2 MPC for DP Heavy Hitters

noise or secure noise sampling to prevent a privacy violation or degradation (briefly discussed
in Section 7.2.4). Thus, we securely sort the values by their corresponding counts and onlyrelease
the values like the ideal functionalities Fyn and Fpem.

We use the existing secure sorting implemented in SCALE-MAMBA and MP-SPDZin line 11 of
Algorithm 15. The implementations' are based on merge sort and conditional swaps. Whenever
an array value A[i] is smaller than A[i + 1], i.e.,, ¢ = LE(A[i + 1], A[{]) is 1, they are swapped.
However, we slightly adapt it, and re-use the comparison result c to sort a second array B in the
same way, i.e., for each swap with A we simply perform the same swap with B. A conditional swap
of two inputs a, b with a selection bit ¢ can be efficiently realized as (a + d, b — d) with a single
multiplication d = c¢- (b—a). Then, for ¢ = 1 the elements are swapped as (a+(b-a),b—(b—a)) =
(b,a), and for ¢ = 0 they remain as (a + 0,b — 0) = (a, b). We suggested this approach with a
single multiplication (as used by, e.g., Pettai and Laud [PL15]) to the SCALE-MAMBA team?, and
it replaced their previous approach with two multiplications in version 1.9.

7.2.1 HH: MPC of Fun

Instead ofamap T, as in ¥y, we use two arrays V and C which store a value and its corresponding
count at the same index. Note that AND and NOT in lines 12, 14 of Algorithm 14 are just aliases
for Mul and Sub(1, -), respectively. We use aliases to improve the readability of our protocol and
to highlight that their inputs and outputs are “bits”, which we represent as integers 0 and 1 in
the following. We ensure that the inputs to AND, NOT are in {0, 1}, thus, their outputs can only
bein {0, 1} as well. HH implements the different if-else branches of #y via bits, i.e., bgyynq is set
if a value is already in V; bempty,j is set if we had no match (NOT (bgoung)) but index j is empty;
and Dgecrement 1S et if we did not find a match and have no empty spots left. We employ the
following optimizations to reduce the number of MPC protocols: Instead of using arithmetic
OR(a,b) = a+b—a- b, to combine bits b ,cp, into bit bg,unqg we add each bit by, (Which can be
set, i.e., 1, at most once) to form by, g (Which is 1 only if any match occurred) in line 7. Note that
only unique values are in array V. Thus, bp,ch is 1 at most once in the loop and by g is either
0 or 1 and can be input to NOT and AND. Replacing OR by Add is beneficial, since Add can be
evaluated locally in secret sharing, i.e., without interaction, whereas arithmetic expression of OR
requires multiplication and thus interaction. Similarly, we reduce the number of Mux operations
by directly using bgecrement @S @ decrement value. Furthermore, we do not need to remove values
associated with empty counts, saving additional Mux operations. We only use counts to check if
avalue is empty and if the value is matched (even with empty count), we set the new count to 1
(line 16), i.e., same as if we had not matched and found an empty spot.

We also implement a version more suited for parallelization, denoted as HH;pyeads in our eval-
uation (Section 7.3). The loop bodies in HH can be run in parallel, if we do not set iempty in the
first loop (as this requires locking). Thus, the main difference between HH and HHqpeads is that
we use an additional (non-parallelized) loop to set iempty.

7.2.2 PEM: MPC of Fpem

PEM implements Fpgnm by using array C to count candidate prefixes. The users themselves can
track which indices correspond to candidate prefixes, simplifying the secure computation com-

I https://github.com/KULeuven-COSIC/SCALE-MAMBA/blob/862ecf547a01883cfbaf81a07c444c0c7cb53010/Compil
er/library.py#L424 and https://github.com/data61/MP-SPDZ/blob/v0.1.8/Compiler/library.py#L464
2https: //groups.google.com/g/spdz/c/urM4Xy46H61/m/CWIL0jqtAAAT
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7 HH & PEM: DP Heavy Hitters

Algorithm 14 HH: MPC of Fyn

Input: User data (D), distributed noises (p,,) per party p € #, output size k, map size ¢, and DP
threshold TyH.

Output: DP top-k.

1: Initialize arrays (V'), {C) of size ¢ with (L}, (0), resp.

2: for user datum (d) € (D) do //Update counts C for values V

Initialize (brouna) < (0) and (iempry) « (1)
forindexj « 1tot do

(Bmatch) — EQ({d), (V[j]))

(bempty) < LE((C[]1), (0))

(bfound> — Add(<bf0und>» <bmatch>)

(Tempty) < Mux({j}, (Zempty), (Pempty))

(C[j]) < Add({C[j1}, (bmatch))
10: end for
11: (b-empty) < EQ({iempty), (~1))
12: (bgecrement) <= AND({b-empty), (NOT ({bfound)))) // AND,NOT are Mul,Sub(1,-), resp.
13:  forindexj < 1totdo //Conditional decrement
14: (Dempty,j) <= AND((NOT ((bmatch)))> (EQ({iempty), (j))))
15: (c) « Sub({C[j]), (bdecrement))
16: (CLj]) < Mux({1), (c), (bempty,;))
17: VIj1) « Mux({d), (V[j]}, (bempty,j))
18:  end for
19: end for
20: forindexj <« 1totdo //DP thresholding on noisy C
21:  forpartyp € P do
22: (C[j1) « Add((C[]), (op))
23:  end for
24: (bdiscard) < LE(C[j1), (1))
250 (V[j]) & Mux({L), (V[j]), (bdiscard))
26: end for
27: Sort values (V') by corresponding counts (C) descendingly //Section 7.2
28: return Rec({(V))

@

plexity. For group i € {1,..., g}, the prefix bit-length in + y varies, however, each group reports
the same fixed number of counts, i.e., 2 Mog, k141 Hence, the size of array C is fixed. As a toy exam-
ple, consider k = 2,17 = 1, y = 1. First, each user j from group 1 reports 4 (noisy) counts {Zgj beex
for prefix candidates X = {00, 01, 10, 11}. The counts are aggregated in array C, where C[1] maps
to the first prefix 00 in X, C[2] to the second prefix 01, etc. Let the top-2 prefixes be Z = {00, 01},
i.e., Algorithm 15 outputs {1, 2} for i = 1, which corresponds to the first two prefixes in X. Then,
group 2 also reports 4 counts but for X = Z x {0, 1}" = {000, 001,010, 011}. Note that the number
of prefixes is the same but their bit-length is extended by n = 1. Let the set of top-2 prefixes be
Z ={001,011}, i.e., Algorithm 15 outputs {2, 4} for i = 2. And so on. Note that outputting indices
of an ordered list of prefix candidates suffices to reconstruct prefixes as above.

In the last round of PEM, less than 2M°8¥1+7 jterations are required if (b — [log k1)/7 is not an
integer. We use this optimization in our implementation but omit it here for readability. If we are
not interested in the order, i.e., which value is the i-th most frequent, the sorting step can be re-
placed by linear scan (to find the minimum count for the threshold), improving the complexity of
this step from O(clog ¢) to ¢ for ¢ = 2M1°8%1+7 (leading to ¢ instead of k iterations for thresholding
in line 16 of Algorithm 15).
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7.2 MPC for DP Heavy Hitters

Algorithm 15 PEM: MPC of Frepm

Input: Noisy user reports (CA;) indicating if their d € D has prefix ¢ (with distributed noise, Sec-
tion 7.1.4), distributed noises (p,,) per party p € ¥, output size k, domain bit-length b, prefix
extension bit-length n, and DP threshold 7pgy.

Output: DP top-k.

1: Splitusersin g = [%]

disjoint groups where D = %, D;
2: for group i <« 1to g do
Initialize arrays (S), (C) of sizes k, 2/1°8%1+7 with zeros
Initialize array (I} « {(1),..., (2/logkT+ny}
Initialize (p;) « (0) and (7) « (0)
for candidate ¢ « 1 to 2°8¥1+1 do
for user datumd € D; do_// Gather candidate counts
(Clel]) « Add((C[c]), (¢3))
end for
10:  end for
11:  Sort candidate indices (I) by corresponding counts (C) descendingly //Section 7.2
12: forpartyp € £ do
13: (pr) — Add({pr), (p,))
14: end for
15: (1) « Add((Add((zpEm), (p:))), (C[2M08KT#1]))
16: for candidatec «— 1tokdo //DP thresholding on noisy C
17: (bdiscard) < LE({C[c]), (1))
18: (Slel) « Mux({L), (I[c]), (bdiscard))
19:  end for
20:  return Rec((S))
21: end for

@

© XN TR

7.2.3 Running Time Complexity

We analyse the running time of our protocols HH, PEM w.r.t. the number of basic MPC protocols
—namely, EQ, LE, Mul, Mux, Rec — as detailed in Table 2.3 in Section 2.1.6. Interaction-free proto-
cols, e.g., addition, are omitted, as the parties can compute them locally on secret shares. The
complexity for the required basic protocols is at most O(/) for /-bit integers.

Theorem 20. HH has complexity O(nt).

Proof. For each of the n values in D protocol HH requires: First, ¢ equality checks (EQ), compar-
isons (LE), and selections (Mux), to find matching values and look for an empty index. Then, one
EQ, AND, and NOT operation to set bit bgecrement- FOr the DP threshold, ¢ LE and Mux operations
are used. Finally, we sort the small map, i.e., O(tlog¢), and reconstruct the ¢ counts. Note that n
is the dominating factor as t < n, i.e., nt > rlogt. Overall, HH performs O (nt) operations. O

Theorem 21. PEM with sorting has complexity O(gclogc), and PEM without sorting has com-
plexityO(gc), where g = [%1 and c = 2Mogkl+n

Proof. First, we consider PEM with sorting. For each group PEM sorts all ¢ candidates which
requires O(c log ¢) operations, and performs k comparisons (LE) and oblivious selections (Mux).
Finally, k (sorted) indices are returned. Overall, PEM with sorting requires O(c log c¢) operations
per group.

PEM, without sorting, requires ¢ comparisons per group to find the lowest candidate count
(used in the threshold). Then, PEM iterates over ¢ elements per group (instead of k elements as
with sorting). Finally, ¢ indices and counts are returned and the parties can sort them themselves.
Altogether, PEM without sorting requires O(c) operations per group. O
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7 HH & PEM: DP Heavy Hitters

Note that the summation of user reports per prefix candidates (line 8 in Algorithm 15) does not
require any interaction between the computation parties, as addition can be computed locally.

7.2.4 Security

Recall, we consider the semi-honest model introduced by Goldreich [Gol09] where corrupted
protocol participants do not deviate from the protocol but gather everything created during the
run of the protocol. Our protocols HH and PEM consists of multiple subroutines realized with
MPC protocols listed in Table 2.3 and we apply the composition theorem [Gol09, Section 7.3.1]
to analyze the overall security. Basically, protocols based on an ideal functionality remain secure
if the ideal functionality is realized with a secure protocol providing the same functionality. We
implement the ideal functionalities F, Fpem as HH, PEM with secure computation frameworks
MP-SPDZ [Kel20] and SCALE-MAMBA [AKR*20] (and compare their performance in Section 7.3).
Now, we show the existence of simulators as defined in Section 4.1 for our protocols.

Theorem 22. Protocol HH realizes 1y in the presence of semi-honest adversaries.

Proof. Simulator Sim, given final outputs V, C (i.e., {y;}iep) can produce a transcript for realyy
by replacing all secret shared values with randomness. Note that all values in our protocols
are secret shared (marked with (-)) and computationally indistinguishable from randomness
(except with negligible probability in the security parameter for some operations, e.g., integer
comparisons [AKR*20]). The only values that are not secret shared are publicly known iteration
counts (i.e., data size and map size ¢t for HH, and number of groups and number of candidates
in PEM). Finally, the simulator ensures the expected reconstruction, i.e, V, C, is produced by
Rec(V), Rec(C). Here, the corrupted parties, cannot distinguish actual from simulated recon-
struction as they cannot see the actual randomness (secret shares) from the other parties. O

Theorem 23. Protocol PEM realizes Fpem in the presence of semi-honest adversaries.

Proof. We focus on a transcript for one group of PEM, which can be extended to all groups. Sim-
ulator Sim, given S, produces a transcript of realpgy as follows: As before, Sim replaces all secret
shared values with randomness. Then, in the thresholding step, the index for each candidate c,
i.e., S[c] is set such that the reconstruction of S provides the expected result. O

From Semi-honest to Malicious

We consider semi-honest computation parties and design our protocol accordingly. However,
SCALE-MAMBA provides malicious security, i.e., consistency within the computation is ensured
and malicious tampering can be detected. We employ (¢, m)-secret sharing, which prevents up to
t—1malicious parties to reconstruct the secret. Still, malicious parties (input parties or computa-
tion servers) can provide incorrect initial inputs to skew the results, also known as a data poison-
ing attack. Next, we discuss the affect of poisoning attacks on our protocol as well as potential
(but not implemented) mitigations. In general, LDP protocols are vulnerable to data poison-
ing attacks [CSU21, CJG21]. Cryptographic tools, however, can prevent data poisoning attacks
and such attacks have limited impact on our protocols HH and PEM: For HH, each input party
provides a single value, which can change a count by at most 1; thus, a coalition of r malicious
parties, can alter the count by at most . For PEM, assuming noise is added by the computation
parties, each input party provides a count per prefix, i.e., a single bitindicating if a prefix matches
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7.2 MPC for DP Heavy Hitters

their value’s prefix (1) or not (0). Thus, r malicious parties can skew the total count per prefix by
at most r when inputting bits. Ensuring that only one bit is set per input reduces the skew to r
over all prefixes. This is the best we can hope for as malicious parties are not required to provide
the actual inputs from their corrupted parties and can send any bit-vector with a single set bit.

In more detail, the following consistency checks are required for PEM. First, each prefix count
¢ must be in {0, 1}, which we check as we operate on integers and not bits®. Second, exactly a
single count is 1 and the others 0 per user. As PEM might drop rare prefixes between rounds a
user might report only zeros. To ensure that always exactly a single 1 is reported, an additional
count can be introduced indicating that a user’s datum matches none of the considered prefix
candidates. The additional count simplifies checking as it allows to reveal the sum s of counts
per user which is always 1 for valid inputs. Without the additional count s cannot be revealed as
s = 0 leaks that none of the prefixes matched and one must, e.g., securely compare s < 1 which
is less efficient. As straightforward comparisons (e.g., 0 < ¢ < 1) are expensive for MPC based
on secret sharing, we consider alternatives next. First, for each prefix countp = ¢ fi,— of prefix
candidate ¢ from user j, we compute p’ = p?> — p and reveal p’ to check p’ = 0. Note that p’ = 0
onlyif p € {0,1}, thus, p’ # 0 identifies cheaters. Second, for each user j, we reveal the sum
over all prefix candidates, i.e., s = Y .c¢ ¢ 2]_, and check s = 1*. Combined with the first check,
this tells us that only a single count was 1 and the others 0. For PEM, we evaluated the overhead
of consistency checks to detect malicious inputs in Section 7.3.4. Similar checks for HH are not
possible, as each party inputs a single value from an unknown domain.

Distributed Noise Generation

Distributed noise generation in the presence of malicious parties is not possible without addi-
tional noise or computation overhead. For example, honest parties have to provide more noise
as the malicious parties might not provide any noise; see, e.g., Acs et al. [AC12, Section 8.3] for
a detailed analysis of the required noise increase. To achieve optimal noise magnitudes in the
presence of malicious parties the noise can be sampled securely by evaluating the inverse cumu-
lative density function. Thus, Laplace noise Laplace(b) can be computed as (-1)*blog(r) given
uniform random s € {0,1},7 € (0,1]°. Similarly, Gumbel noise Gumbel(b) can be computed
as —b log(-log(r)) for uniform random r € (0, 1]. However, securely computing logarithms in-
curs additional computation costs [AS19], which we do not consider, as we assume semi-honest
parties like most LDP protocols [EPK14, FPE16a, BS15, BNST17].

Outsourcing

To outsource the computation the n input parties send shares of their input to m computation
parties which run the secure computation on their behalf. The latter can be a subset of the input
parties or non-colluding untrusted servers (e.g., multiple cloud service providers). After sending
their secret shared value for HH or candidate counts for PEM the input parties can go offline.

3 An alternative is to require secret-shared bits as inputs. However, to compute the count per prefix these bits must be
converted to secret-shared integers, which was slower than checking if integers are in {0, 1} in our evaluation.

4 Alternatively, one can compute and reveal sum s’ over all p’ and check s’ = 0, which requires less reconstructions (a
single reconstruction for s’ instead of one per p’) if it is sufficient to learn if there was cheating, i.e., s’ # 0, but not
who cheated. Here, identifying cheaters requires, e.g., binary search over reconstructed partial sums to find users with
p’ # 0, which requires interaction for the sequential search steps.

5 Uniform random numbers can be generated in a distributed manner even in a malicious setting, e.g., by XOR-ing ran-
dom inputs from each parties (which is random as long as a single party provides actual randomness) [JWEG18, Sup-
plementary Material], see also Section 5.2.4, or by using the randomness generated in the offline phase [AKR*20].
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7 HH & PEM: DP Heavy Hitters

7.3 Evaluation

We implement our protocols with SCALE-MAMBA [AKR*20] (malicious security) as well as MP-
SPDZ [Kel20] (semi-honest security) using Shamir secret sharing with honest majority, and de-
fault settings, i.e., 128-bit modulus and statistical security parameter x = 40. Code can be largely
re-used between these frameworks as MP-SPDZ [Kel20] is a fork of SCALE-MAMBA’s predecessor
SPDZ2.

Setup

We briefly recall the evaluation setup from Section 4.4.1. We evaluated the running time and
communication of the entire protocol, i.e., offline as well as online phase, in a real-world WAN
for m = 3 parties. We split the computation parties into two AWS regions, Ohio (us-east-2) and
Frankfurt (eu-central-1), and measured an inter-region round time trip (RTT) of approx. 100 ms
with 100 Mbits/s bandwidth. The computation parties already received and combined secret-
shared inputs from the input users. We present the average of 10 runs for running time and
communication (except MP-SPDZ for HH;pyeads With 3 runs) and 20 runs for accuracy with 95%
confidence intervals, but omit the intervals in most cases, as the results are very stable. We used
modest hardware, t2.medium AWS instances (2 GB RAM, 4vCPUs) [Ama20b], to show that the
computational overhead of modern MPC is acceptable. More powerful hardware did not pro-
vide significant improvements. Recall, HHpeads is @ parallelized version of HH (Section 7.2.1),
which required c4.2xlarge instances (15 GB RAM, 8vCPUs) to leverage 8 threads. Also, t2.large
(8 GB RAM, 4vCPUs) instances were used for PEM in two settings - MP-SPDZ with n = 5, k = 16,
and SCALE-MAMBA with n = 4,k = 16 — as more memory was required for these larger pro-
grams. To evaluate running time and communication of HH, we set map size ¢ = k, and fix it to
16 in our accuracy evaluation (Section 7.3.5). We stress that we evaluated a worst-case scenario
for PEM: Each round assumes that the maximum of k prefix candidates are output after thresh-
olding. Fewer outputs decrease computation and communication due to smaller candidate sets
for the next round. Sensitivity A > k requires less privacy budget if realized with Gumbel noise,
which is not differentially private by itself [DR19a], thus, we cannot release noisy counts and re-
quire sorting.

Next, we describe how we compare approaches using different notions of differential privacy.
Then, we evaluate the accuracy, running time and communication of our protocols in a real-
world WAN.

7.3.1 Comparing different DP notions

In our evaluation, we use the same value for € to compare our approach to state-of-the-art
PEMorig for heavy hitter detection in the local model. Our protocols, however, operate in the
central model realized with MPC and approximate differential privacy (6 > 0), whereas PEMorig
is a local model protocol with pure differential privacy (6§ = 0). The main benefit of approxi-
mate DP is improved composition [DR14, Section 3.5], i.e., running g mechanisms on the same
data requires a smaller privacy budget of ~ /ge instead of ge for large enough g. However, we
run PEM once per disjoint subsets of the data and not multiple times on the same data. Thus,
we gain no significant advantage over PEMorig from using approximate DP. Furthermore, for an
advantage to become noticeable one requires large values of g (see Lemma 1 in Section 2.2.3.)
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Figure 7.4: Running time of PEM.

7.3.2 Running Time

Figures 7.3, 7.4 show the running times for HH, PEM implemented with MP-SPDZ as well as
SCALE-MAMBA with datasizes n, € {10, 30, 100} per computation partypi.e., |D| € {30, 90, 300}.

To show the difference between HH and HHqpeads, We used the same scale for MP-SPDZ (Fig-
ures 7.3a, 7.3b) and SCALE-MAMBA (Figures 7.3c, 7.3d). For MP-SPDZ, the running time with
8 threads increases, whereas it decreases with SCALE-MAMBA. Overall, for HH, and especially
HH:hreads, SCALE-MAMBA is faster than MP-SPDZ, requiring at most 11 minutes for HHpreads,
and less than 16 for HH.

The opposite is the case for PEM: MP-SPDZ is much faster, taking less than 6 minutes for n =
5, whereas SCALE-MAMBA requires almost half an hour for n = 4. Note that we used smaller
values of n for SCALE-MAMBA (i.e., n € {2,3,4}) since the differences to MP-SPDZ are already
sufficiently pronounced here.
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Figure 7.6: Communication per party for PEM.

7.3.3 Communication

Figure 7.5 shows the communication per computation party for HH and HHqpeads and Figure 7.5

shows the communication for PEM.

Client Communication

For HH, a client (input party) sends her secret-shared value to each of the m servers (computation
parties). In total, a client sends m - 128 bits (our evaluated share size is 128 bits). For PEM, a client
sends 2M1°8%1+n gecret-shared counts, i.e., at most m - 8 K B (our largest evaluation with ) = 5, k =

16).

Server Communication

As is to be expected, semi-honest MP-SPDZ always sends less than maliciously secure SCALE-
MAMBA. We briefly evaluated MP-SPDZ with malicious security (Section 7.3.6), and found it to

110



7.3 Evaluation

be still more communication-efficient, albeit slower, than SCALE-MAMBA. Next, we discuss the
average communication of HH and PEM per party for k = 16. For HH the communication in-
creases linearly with the data size. We consider data size n, per computation party p € {1, 2,3},
and MP-SPDZ requires ~13/38/122 MB for n,, 10/30/100. While SCALE-MAMBA provides better
running times than MP-SPDZ for HHipeads, MP-SPDZ requires much less communication, e.g.,
roughly 45 times less for HHihreaqs With k = 16, n,, = 100 (125 MB vs 5.6 GB), suggesting superior
communication batching and parallelization from SCALE-MAMBA compared to MP-SPDZ. For
PEM and b = 32, MP-SPDZ sends ~130/258 MB and SCALE-MAMBA sends ~989/1884 MB for n
3/4. Doubling the domain bit-length to 64 also roughly doubles the communication. Note that
PEM, unlike HH, is independent of the data size, as we now consider aggregated candidate counts
and not single values.

7.3.4 Malicious Security

HH is maliciously secure when its implementation is maliciously secure. Unlike PEM, there is
no additional check on client inputs for HH. Each HH client inputs a single value from an un-
known domain and malicious clients are not required to input their actual value. However, r
malicious clients can skew the count of a value by at most r. To prevent malicious client inputs
for PEM, however, one can additionally check each input count p by computing p’ = p? — p as
detailed in Section 7.2.4. For 10,000 operations® p? — p, we give the average of 10 runs as be-
fore with 95% confidence intervals (omitted if close to zero) on 3 t2.medium instances in a WAN.
SCALE-MAMBA with malicious servers requires 32.4 + 3.9 seconds and 43.5 + 2.9 MB/party. MP-
SPDZ with semi-honest / malicious servers requires only 1.01 / 3.44 + 0.3 seconds and 0.32 / 2.88
MB/party (mainly due to a leaner offline phase than SCALE-MAMBA). For n = 1, 000 clients and
our largest evaluation with 256 counts per client (i.e., k = 16,7 = 5), the checking overhead is
approximately 30 seconds / 90 seconds for MP-SPDZ with semi-honest / malicious servers.

7.3.5 Accuracy

We measure accuracy of k heavy hitters like Wang et al. [WLJ19] via normalized cumulative rank
(NCR) as in Definition 16 in Section 4.3. Basically, the most frequent element has score k, the
next most frequent one k — 1, etc., and NCR is computed as the sum of scores for our (at most k)
detected heavy hitters divided by the optimal score (Zle i).

For the accuracy evaluation, we set A = 1,6 = 1077, assume domain bit-length b = 32, and
report the average of 20 runs with 95% confidence intervals. Like Wang et al. [WLJ19], we use a
synthetic data set sampled from the Zipf distribution with parameter 1.5, i.e., the j-th most fre-
quent value appears with probability proportional to 1/j°. We also used prices from an Online
retail data set [ULB19]. Note that we use small data sizes of only a few thousand on purpose, as
this is the most challenging regime for DP as the ratio of “signal” (i.e., actual counts) to noise
is small. We compare PEM and PEMorig for different values of n € {4,5}, where 7 is given in
brackets (e.g., “PEM(n = 4)”), as well as with PEMorig with query limit count of 220 (denoted as
“PEMorig”), where 7 is set to the largest integer satisfying g27*7 < 220 for g = [(b — y)/n] groups
and y = [log, k] as suggested [WLJ19]. Figures 7.7, 7.9, show NCR for PEM with data size 1 000

6 Implemented in a loop with annotation @for_range_parallel() (provided by MP-SPDZ and SCALE-MAMBA) to pro-
cess the loop bodies in parallel as they are independent, i.e., result from loop i is not used in loop i + 1.

111



7 HH & PEM: DP Heavy Hitters

1

HH 0.8 0.8
PEM(7=5) oo 506 & 06
PEM(n=4) -o-®- Z 0.4 Z 0.4 S—
PEMorig(n=>5) 0.2 Rl = L N e i— a
PEMorig(n=4) 0 i . 0 ‘maa—
PEMorig -u 01 05 1 2 0105 1 2 0105 1 2
0.25 0.25 0.25
€ € €
@k=4 (b) k=8 (© k=16

Figure 7.7: NCR of PEM variants and HH for Zipf with fixed n = 1000, and varying k € {4,8,16}, € € {0.1,0.25,0.5,1,2}.
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Figure 7.8: NCR of PEM variants and HH for Zipf with fixed n = 5000, and varying k € {4,8,16}, € € {0.1,0.25,0.5,1,2}.

1 1

HH 0.8 0.8
PEM(n=5) «-*- K506 £ 06
PEM(n=4) oo & 04 S 04
PEMorig(n=5) 0.2 ‘ 0.2 et
PEMorig(n=4) 0 beome B . 0 b=
PEMorig -u— 0105 1 2 0105 1 2 0105 1 2
0.25 0.25 0.25
€ € e
@k=4 (b) k=8 (c) k=16

Figure 7.9: NCR of PEM variants and HH for retail data [ULB19] with fixed n = 1000, varyingk € {4,8,16},
€ €{0.1,0.25,0.5,1,2}.
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€ €{0.1,0.25,0.5,1,2}.

for € € {0.1,0.25,0.5, 1,2}, where we vary k € {4, 8, 16}. Likewise for Figures 7.8, 7.10, however,
with larger data size 5000.

First, we focus on comparing PEM with PEMorig. Figure 7.7c shows that for large k (16) and
small Zipf data size (1 000), the difference between all approaches is not too strong, still HH, PEM
provide better results. However, when we increase the data size (5000) in Figure 7.8c the accu-
racy of PEM rises much faster than PEMorig (and its variations with fixed n). We make the same
observation, with the real-world data set in Figures 7.9¢, 7.10c, i.e., PEM is more accurate and its
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Figure 7.11: NCR of PEM variants and HH for fixed € = 2, k = 16, varying n € {300, 1 000, 3000, 5000}.
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Figure 7.12: NCR of PEM variants and HH for fixed € = 2, n = 1000, varying k € {4,8,16}.
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Figure 7.13: NCR of PEM variants and HH for fixed € = 0.25, k = 16, varying n € {10°,2 - 10°,5 - 10°}.

accuracy improves faster when the data size increases. Overall, PEM provides higher accuracy
than PEMorig.

Next, we fix = 16 and compare HH to PEM. The choice of map size ¢ provides the following
trade-off: keeping  fixed (to a small value) while increasing k decreases accuracy; however, small
values for ¢ provide better efficiency for our MPC protocol. With data size 1 000 (Figures 7.7, 7.9)
HH provides the best accuracy. For data size 5000 (Figures 7.8, 7.10) and k = 4, HH still provides
the best accuracy, however, PEM improves upon HH for k > 4. Altogether, the empirical evalua-
tion confirms our analysis in Section 7.1.3: HH provides better accuracy for small data sizes with
modest values for .

In Figure 7.12 we fix e = 2, n = 1000 and vary k € {4,8,16}. As expected, when we increase
k while keeping n fixed (and small), the accuracy decreases for all evaluated approaches. How-
ever, as shown in Figure 7.11 — where we fix k = 16, = 2 and vary n € {300, 1000, 3000, 5000}
—increasing the data size improves accuracy, as the candidates receive more counts, which can
more easily surpass the DP thresholds.

Our protocols, especially PEM, also provide higher accuracy than local-model equivalents for
large data sizes, e.g., 10°, as visualized in Figure 7.13. We omitted the comparison to PEMorig
with n > 5 as the evaluation did not finish after 12 hours on our modest hardware. While HH
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Daa &k HH CEN CEN PEMorig  Dam &k HH o PEN PET pEMorig
4 26% 16% 2.0%  14.8% 4 09% 2.0% 14%  25.0%

Zipf 8 4.7% 1.4% 2.3% 16.7% Zipf 8 7.0% 3.4% 5.6% @ 25.1%
16 4.0% 06% 2.0%  20.0% 16 57% 52% 50%  47.1%

1.1% -21% -0.5% 6.1% 4 15% 53% 10.9% 3.6%

Retail 8 3.6% -06% 1.5% 9.2% Retail 8 4.9% 35% 1.0%  15.8%
16 4.1% 0.0% 12%  48.0% 16 50% 72% 5.4% 8.1%

(a) n =1,000. (b) n =5, 000.

Table 7.1: (NCR-F1)/NCR for fixed n, varying k € {4, 8,16} averaged over € € {0.1,0.25,0.5,1,2}.

Data e HH PEM PEM PEMoig  Dam e HH PEM PEM pEMorig
0.1 00% 00% 00%  0.0% 01 3.0% 00% 00%  00%

025 43% 0.0% 0.0%  0.0% 025 7.0% 43% 3.8%  100.0%

zZipf 05 3.0% 00% 00%  00%  Zipf 05 7.0% 57% 53%  455%
1 5.9% 0.0% 43%  50.0% 1 5.9% 82% 87%  46.7%

2 70% 30% 59%  50.0% 2 59% 75% 74%  433%

01 00% 00% 00%  0.0% 01 0.0% 0.0% 00%  0.0%

025 0.0% 00% 00%  0.0% 025 3.0% 63% 36%  0.0%
Retail 0.5 2.9% 0.0% 00% 100.0%  Retail 05 54% 81% 72%  0.0%
1 9.0% 00% 0.0% 100.0% 1 83% 71% 7.6%  0.0%

2 86% 0.0% 60%  40.0% 2 82% 14.8% 8.3%  40.6%

(a) n =1,000. (b) n =5,000.

Table 7.2: (NCR-F1)/NCR for fixed n with k = 16 and varying € € {0.1,0.25,0.5,1,2}.

(with fixed ¢ = 16) is outperformed by PEMorig for large enough data sets, i.e., around n =5 - 10°,
PEM already finds almost all k heavy hitters for n = 10°.

F1-Score

We also evaluated accuracy via F1 score, i.e., the harmonic mean of precision and recall (Defini-
tion 17in Section 4.3). Next, we compare the relative difference of NCR to F1, i.e., NCR-F1)/NCR.
If NCR is 0, F1 is 0 as well, and we set the relative difference to 0. A positive value means NCR
is larger than F1, which is to be expected. Recall, unlike F1, NCR gives more weight to elements
that appear more frequently. However, negative values are possible (e.g., mode was not found).

Table 7.1a presents the relative difference of NCR to F1 averaged over € € {0.1,0.25,0.5,1, 2}
for Zipf and retail data with n = 1, 000. Table 7.1b presents the same for n = 5,000. Overall, the
averaged scores for F1 and NCR are very close for our protocols (mostly the difference is below
6%) and further apart for PEMorig (mostly above 6% and up to 48% difference), i.e., our protocols
provide superior F1 scores.

Table 7.2a gives the detailed comparisons for each € on Zipf and retail data with n = 1, 000 for
fixed k = 16. Likewise, Table 7.2b presents the comparison for n = 5,000. Large relative differ-
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ences for PEMorig result from its comparatively low scores. For example, PEMorig has NCR=0.1,
F1=0.06 for k = 16, n = 1,000, € = 2 on retail data with a small absolute differences NCR-F1=0.04
leading to a large relative difference of 40% (last row in Table 7.2a).

7.3.6 MPC Frameworks

We deployed SCALE-MAMBA [AKR*20] version 1.3 and MP-SPDZ [Kel20] version 0.1.8 in our
evaluation. Here, we evaluated HH, HHypeads Without the final sorting step.

SCALE-MAMBA: Version 1.3 vs. 1.9

Out-of-the-box, i.e., without adjusting options and runtime switches, SCALE-MAMBA version
1.3 was faster than version 1.97 for our protocols. Versions 1.4 to 1.9 mainly added features which
our protocols do not rely on (e.g., support for garbled circuits, authenticated bits). We used run-
time switch -d0T from version 1.9, to reduce offline data creation (for features we are not using),
for afairer comparison with 1.3. Still, in our brief evaluation, we found 1.9 to be somewhat slower:

e For PEM with k = 8,7 = 2, b = 32 runtime increased by around 20% from 1.3 to 1.9 (~206
vs. 248 s). Without -d0T communication almost doubled (=237 vs. 460 MB), with -d0T it
remained about the same.

* For HH¢preads With k = 16 runtime increased by around 10% from 1.3 to 1.9 (=600 vs. 667 s).
Without -d0T communication increased by around 30% (~5.5 vs. 7.2 GB) with -d0T it re-
mained about the same.

MP-SPDZ: Semi-honest vs. Malicious

MP-SPDZ supports semi-honest as well as malicious security for multiple secure computation
paradigms (e.g,. Shamir secret sharing, BMR) [Kel20], whereas SCALE-MAMBA only supports
malicious security. In Section 7.3 we evaluated semi-honest MP-SPDZ. Next, we briefly compare
SCALE-MAMBA and MP-SPDZ for maliciously secure Shamir:

e For PEM with k = 16,7 = 4,b = 32, MP-SPDZ is more than twice as fast than SCALE-
MAMBA (x14 vs. 30 minutes) with around 400 MB less communication (~1.47 vs. 1.88 GB).

* For HHwith k = 16 and n,, = 30 per party p € {1, 2,3}, MP-SPDZis roughly 27% slower than
SCALE-MAMBA (~6 vs. 4.7 minutes), but requires around 60% less communication (~192
vs. 313 MB).

This suggests that, for malicious security and considering only running time, PEM is more effi-
cient with MP-SPDZ, whereas HH is more efficient with SCALE-MAMBA.

7.3.7 AWS Costs

AWS t2.medium instances cost less than 5 Cents per hour, and communication of 1 GB costs
around 2 Cents (per month) [Ama20b]. If one wants to optimize for cost, we suggest to use an MP-
SPDZimplementation: All our MP-SPDZ evaluations for HH, PEM run in less than 30 minutes and
require less than 1 GB of communication, hence, even our largest MP-SPDZ evaluation cost less

7Version 1.9 was the most recent version at the time of our evaluation; version 1.10 was released in October 2020.
https://github.com/KULeuven-COSIC/SCALE-MAMBA/commit/9eda34e6c6205279efa320c7be9e3d615cd6d2da
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than 5 Cents per computation party. (Except for k = 16, 7 = 5 which uses t2.large instances that
costs less than 10 Cents per hour.) As a comparison, recall that LDP approach PEMorig requires
up to 229 hash computations for each user input. Our evaluation of PEMorig — also on t2.medium
instances, without parallelization as this requires additional computational resources — showed
running times of hours compared to the minutes required for PEM.

7.4 Summary

We presented protocols for federated, differentially private top-k discovery with secure multi-
party computation. Our central DP approaches, HH and PEM, provide higher accuracy thanlocal
DP methods for small number of users, without a trusted third party due to our use of cryptogra-
phy. HH, based on non-private heavy hitter discovery in data streams [CH10], has a running time
linear in the data size but supports unknown domains, and provides better accuracy than PEM
for very small data sizes, where local DP methods cannot provide meaningful accuracy. PEM,
based on Wang et al. [WLJ19], iteratively finds and extends frequent prefixes, is linear in the bit-
length of the data domain, and provides better accuracy than HH for larger data sizes. We imple-
mented our protocols with two MPC frameworks [AKR*20, Kel20], compared them, and achieved
practical running times of less than 11 minutes in a real-world WAN.
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8 Conclusion

First, we summarize the chapters of this thesis in Section 8.1. Then, we briefly discuss directions
for future research in Section 8.2.

8.1 Summary

In Chapter 1, we first motivated and introduced the research question of this thesis:

Can distributed parties efficiently and accurately compute statistics over their small data sets
without revealing secret inputs and ensuring strong privacy guarantees for the output?

Then, we listed our scientific contributions, i.e., efficient protocols securely computing differen-
tially private statistics with high accuracy. Namely, EM.4 for rank-based statistics (e.g., median),
EM* for decomposable aggregate functions (e.g., ranks, convex loss functions), HH for heavy hit-
ters (e.g., mode) from unknown domains and PEM for heavy hitters from known domains.

In Chapter 2, we provided basic notations and preliminaries used in the following chapters.
First, cryptographic tools, i.e., garbled circuits and secret sharing; then, anonymization mecha-
nisms, mainly, the Laplace, exponential, and Gumbel mechanism.

In Chapter 3, we described privacy models for DB, mainly, the local, central, and MPC model,
and detailed related work, grouped by the privacy models.

In Chapter 4, we detailed our assessment methodology. We ensured semi-honest security of
our protocols by combining existing, basic MPC protocols via the MPC composition theorem
[Gol09, Section 7.3.1]. Furthermore, we ensured differential privacy of our protocols as they are
composed of existing DP mechanisms, and we bounded the total privacyloss via DP composition
theorems [LLSY16, Section 2.2.2], [DR14, Theorem 3.20]. We assessed the accuracy of our proto-
cols by comparing them to non-private evaluations. We assessed efficiency of our protocols by
measuring their running time and communication in a real-world WAN (Frankfurt-Ohio).

In Chapter 5, we presented our secure two-party protocol EM,.q4 for rank-based DP statistics.
EMnmed is implemented with garbled circuits as well as secret sharing to leverage their respective
benefits, i.e., efficient comparisons and arithmetic operations. Our key insight was that sort-
ing simplifies the utility function for rank-based statistics making it almost data independent.
Thus, allowing local computation of exponentiations for selection weights, and selection over
small data sets instead of the entire data domain. To also support large data sets, we pruned
the data. However, pruning required a privacy relaxation as neighboring data sets might be dis-
tinguishable, which violates differential privacy. Thus, we employed f-neighboring, a relaxed
neighboring notion [HMFS17].

In Chapter 6, we expanded from rank-based statistics to a larger class of functions based on
decomposable aggregates without any relaxations. Here, we described our secure multi-party
protocol EM* for decomposable aggregate functions. Our main insight was that decomposabil-
ity allows local, partial evaluations of utility scores, which can be efficiently combined. We pre-
sented multiple alternatives for secure exponentiation used in the exponential mechanism. To
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handle large domains, we divided the domain in subranges and iteratively selected increasingly
smaller subranges with highest utility score.

In Chapter 7, we presented our secure multi-party protocols HH and PEM for DP heavy hit-
ters. Decomposability over subranges is not applicable for heavy hitters (see Section 6.1.1), re-
quiring a new approach. Our main insight was that suitable sketches, i.e., space-efficient data
structures, allow efficient MPC for heavy hitters. Related work used sketches which first encode
a datum (e.g., by hashing) and then increase an associated counter. However, mapping datums
(or prefixes) directly to counters avoids searching for matches (e.g., hashing entire domain). Our
protocol HH maps up to r values to their (approximate) frequency in the data and supports un-
known domains. Our protocol PEM maps increasingly longer bit-prefixes to their frequency over
disjoint subsets of the data, until the bit-prefixes reach the bit-length of the known domain.

In conclusion, we answered the research question in the affirmative by providing efficient MPC
protocols for accurate DP statistics ensuring input secrecy as well as output privacy. Our proto-
cols provide high accuracy with efficient running times (seconds to minutes) for distributed par-
ties in real-world networks (100 ms RTT, 100 Mbits/s bandwidth) on modest hardware (mainly,
4 CPU cores at 3.3 GHz and 2 GB RAM per party).

8.2 Directions for Future Research

Recently, MPC has seen more practical applications and the founding of start-ups with MPC as
their core business enabler!' and differential privacy is already widely applied in the industry.
However, general-purpose combinations of MPC and DP, especially for the exponential mecha-
nism, are too inefficient for real-world deployments despite their desirable security and privacy
guarantees. This thesis presented solutions towards the combined application of MPC and DP
in real-world deployments with acceptable overhead.

A general direction for future research is to further increase the efficiency of MPC protocols.
Our protocols require basic MPC protocols, listed in Section 2.1.6, as building blocks. Improve-
ments of such building blocks directly improves the efficiency of the MPC protocols relying on
them. Alternatively, specialized secure hardware (such as Intel’s SGX and AMD’s SEV) reduces
computational overhead but is vulnerable to various side channel attacks (and, technically, as-
sumes the manufacturer to be a trusted third party). To alleviate side channels based on timing
attacks, one can implement constant-time algorithms, which evaluate all conditional branches
and prevent leakage of data-dependent information, like our MPC protocols.

Amore specific direction is to improve the efficiency of sampling from the distribution induced
by the exponential mechanism. To handle large domains, we iteratively applied the exponential
mechanism to select domain subranges of decreasing size or bit-prefixes of increasing length.
An alternative is to find and discard large parts of the domain with negligible probability mass &
and sample from the remaining domain elements with approximate DP. However, this requires
a certain problem structure, e.g., combinatorial problems [BDB16, GLM*10]. So far, no efficient,
general-purpose equivalent of the exponential mechanism exists for MPC. Hence, specialized
MPC protocols are required for efficient solutions, leveraging insights about the problem struc-
ture to simplify the required computations.

1 For example, https://unboundsecurity.com/ (co-founded by Prof. Y. Lindell and Prof. N. Smart), https://partis
ia.com/ (co-founded by Prof. I. Damgard), https://dualitytech.com/ (co-founded by Prof. S. Goldwasser), https:
//zama.ai/ (CTO Dr. P, Paillier).
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