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Abstract
Invertebrate biodiversity remains poorly understood although it comprises much of 
the terrestrial animal biomass, most species and supplies many ecosystem services. 
The main obstacle is specimen-rich samples obtained with quantitative sampling tech-
niques (e.g., Malaise trapping). Traditional sorting requires manual handling, while mo-
lecular techniques based on metabarcoding lose the association between individual 
specimens and sequences and thus struggle with obtaining precise abundance infor-
mation. Here we present a sorting robot that prepares specimens from bulk samples 
for barcoding. It detects, images and measures individual specimens from a sample 
and then moves them into the wells of a 96-well microplate. We show that the images 
can be used to train convolutional neural networks (CNNs) that are capable of assign-
ing the specimens to 14 insect taxa (usually families) that are particularly common in 
Malaise trap samples. The average assignment precision for all taxa is 91.4% (75%–
100%). This ability of the robot to identify common taxa then allows for taxon-specific 
subsampling, because the robot can be instructed to only pick a prespecified number 
of specimens for abundant taxa. To obtain biomass information, the images are also 
used to measure specimen length and estimate body volume. We outline how the 
DiversityScanner can be a key component for tackling and monitoring invertebrate 
diversity by combining molecular and morphological tools: the images generated by 
the robot become training images for machine learning once they are labelled with 
taxonomic information from DNA barcodes. We suggest that a combination of auto-
mation, machine learning and DNA barcoding has the potential to tackle invertebrate 
diversity at an unprecedented scale.
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1  |  INTRODUC TION

Biodiversity science is currently at an inflection point. For decades, 
biodiversity loss had been mostly an academic concern, although 
many biologists had already predicted that the decline would even-
tually threaten whole ecosystems (May, 2011). Unfortunately, we 
are now at this stage, which explains why the World Economic 
Forum considers biodiversity loss as one of the top three global 
risks based on likelihood and impact for the next 10 years (World 
Economic Forum‘s Global Risk Initiative 2020). This new urgency 
is also leading to a reassessment of research priorities. Most biolo-
gists had traditionally focused on charismatic taxa (birds, mammals, 
butterflies, etc.) with a preference for endangered or even extinct 
species (Ceballos et al., 2017). However, with regard to quantitative 
arguments, this focus has always been poorly motivated. If one were 
to adopt a quantitative point of view of terrestrial animal diversity, 
invertebrates would receive most attention. They contribute more 
than 45 times the biomass of wild vertebrates (table S23 in Bar-On 
et al., 2018), contain >90% of the estimated species diversity (e.g., 
Groombridge, 1992), and comprise much of the functional and evo-
lutionary diversity. In 2011 Robert May (2011) stated that “[w]e are 
astonishingly ignorant about how many species are alive on earth 
today, and even more ignorant about how many we can lose (and) yet 
still maintain ecosystem services that humanity ultimately depends 
upon.” This situation can only be changed if new and efficient tools 
for assessing and monitoring invertebrate biodiversity are devel-
oped. Such tools need to be particularly suitable for clades that have 
come to be referred to as “dark taxa” and which Hartop et al. (2021) 
defined as those “for which the undescribed fauna is estimated to 
exceed the described fauna by at least one order of magnitude and 
the total diversity exceeds 1000 species.”

Biomonitoring of these taxa with morphological tools or DNA 
barcoding is very time-consuming because it requires processing 
thousands of typically small specimens. This goes some way to ex-
plain why metabarcoding of bulk invertebrate samples has become 
increasingly applied. It allows for fast processing of bulk samples 
and yields information on species composition. However, using this 
method comes at the cost of not being able to obtain precise abun-
dance data (Creedy et al., 2019), although monitoring population 
declines is important (Ceballos et al., 2017). Furthermore, the miss-
ing association between DNA sequences and individual specimens 
constrains follow-up research. For example, species new to science 
will remain undescribed because specimens belonging to the unde-
scribed species cannot be readily located. Similarly, specimen- or 
species-specific studies addressing the role of species in the ecosys-
tem cannot be carried out, although much could be deduced by, for 
example, sequencing the microbiome (e.g., Six, 2013) or gut content 
(e.g., Reeves et al., 2018). Overall, it is therefore desirable to develop 
not only bulk sequencing strategies for mass samples, but also to 
modernize specimen-based processing.

We here argue that three technical developments can help 
with achieving this goal. The first is cost-effective methods for ob-
taining and sequencing specimen-specific barcode amplicons with 

second- and third-generation sequencing technologies (Hebert et al., 
2018; Srivathsan et al., 2019a, 2021; Wang et al., 2018). Indeed, to-
day's consumable cost for barcoding a sample with 1000 specimens 
is <100 USD (Srivathsan et al., 2021) and portable sequencers pro-
duced by Oxford Nanopore Technologies are democratizing access 
to DNA sequences (Buchner et al., 2021; Pomerantz et al., 2018; 
Srivathsan et al., 2021; Watsa et al., 2020). Unfortunately, automa-
tion and data processing with neural networks, which present the 
other two developments, remain underutilized. Currently, auto-
mation mostly exists in the form of pipetting robots in molecular 
laboratories. However, the main challenge posed by bulk samples is 
the imaging and movement of individual specimens into microplates. 
With regard to the use of neural networks, they are currently widely 
used for identifying plant and charismatic vertebrate taxa (Fairbrass 
et al., 2019; Milošević et al., 2020; Stowell et al., 2019; Tabak et al., 
2019), but invertebrates in bulk samples have benefited very little 
(but see Ärje et al., 2020b). Yet, thousands of samples are collected 
every day. They include plankton samples in marine biology, mac-
roinvertebrate samples used for assessing freshwater quality, and 
mass insect samples (Borkent & Brown, 2015; Brown, 2005; Brown 
et al., 2018; Karlsson et al., 2020b). Here, well-trained convolutional 
neural networks (CNNs) would be important because they could use 
images to (a) identify specimens to species, (b) provide specimens 
for follow-up research (e.g., microbiome), (c) yield precise abundance 
information and (d) measure biomass. All this would enable semi-
automated biomonitoring of invertebrates when samples obtained 
from the same place at different times are processed.

Computer-based identification systems for invertebrates are 
starting to yield promising results (Feng et al., 2016; Knyshov et al., 
2021; Perre et al., 2016). For example, a recently developed system 
can size and identify stoneflies (Plecoptera) that are routinely used 
for freshwater quality assessment (Sarpola et al., 2008). Another 
system processes samples consisting of soil mesofauna (Chamblin 
et al., 2011). However, this system is comparatively expensive be-
cause it uses a robotic arm. Other robots have been designed for 
specific, commercial insect sorting purposes. This includes one that 
can separate intact mealworm larvae (Tenebrio molitor) from skins, 
faeces and dead worms (Kim, 2014) and one that sorts mosquitoes 
(Lepek et al., 2020) and is capable of distinguishing males from fe-
males. However, all these machines lack the ability to recognize a 
wide variety of insect specimens in bulk invertebrate samples. The 
machine closest to this capability is the BIODISCOVER by Ärje et al. 
(2020a), which can identify ethanol-preserved specimens, which 
have to be fed into the machine manually one by one. In addition, all 
specimens are returned into the same container after identification.

Most of these systems use deep CNNs with transfer learning 
(Ärje et al., 2020b) and thus require large sets of training images. 
Arguably, the lack of such sets is the main obstacle for applying CNN 
to invertebrates. Here, robotics could have a major impact if auto-
matic imaging were to be combined with DNA barcoding. Robots 
could provide the images, which would then be assigned/labelled 
with taxonomic information obtained with DNA barcodes. Such bar-
codes can be used to sort specimens to putative species (“MOTUs” 
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[molecular operational taxonomic units]) with good overall congru-
ence to morphospecies (e.g., Wang et al., 2018). Comparing the bar-
codes with public databases will then reveal for which specimens 
a preliminary MOTU ID can be replaced with a scientific name. 
Imaging combined with labelling at species-level resolution will thus 
be able to yield training sets for CNNs.

We here describe a new robot (DiversityScanner) that recog-
nizes insect specimens based on an overview image of a sample and 
processes small specimens (<3 mm), which contribute >60% of all 
specimens in Malaise traps. This estimate is based on analyses of 
taxonomic compositions of samples from Sweden (Karlsson et al., 
2020a) and Neotropical countries (Brown, 2005). The analyses re-
vealed that 64%–84% of the specimens belonged to Diptera fam-
ilies that contain predominantly small species (e.g., Chironomidae, 
Sciaridae, Phoridae, Cecidomyiidae, Mycetophilidae). Furthermore, 
another >5% of all specimens in the Swedish samples were small par-
asitoid wasps (<3 mm: Diaprioidea, Chalcidoidea, Platygastroidea). 
After identifying specimens of appropriate size and distance to other 
specimens, the DiversityScanner images each suitable specimen and 
moves it into a microplate. The robot then uses these images to 
assign the specimens into 14 common “classes” of insects (usually 
family-level) using a CNN. Lastly, the images are used to estimate 
biomass based on insect length and an estimated volume.

2  |  CONCEPT AND METHODS

We here present a compact insect sorting robot (Figure 1) that as-
signs objects (mostly insects) to different classes. Note that we here 
use the term in the context of machine learning. Indeed, most of the 
classes in our study are families in the Linnean system (N = 10), two 
contain two families and two are of higher rank (Calyptratae and 
the paraphyletic acalyptrate Diptera). To ensure accessibility, our 
robot relies mostly on standard, commercially available components 
that are connected via parts that can be printed on a commercial 
(Fused Deposition Modeling—FDM) 3D printer. The basic design 
uses a cube-shaped frame (50 × 50 × 50 cm) as well as three linear 
drives with accurately positioning stepper motors and is based on a 
zebrafish embryo handling robot that was developed earlier (Pfriem 
et al., 2012). The robot is equipped with two high-resolution cam-
eras (“overview” and “specimen” camera) with customized lenses, 
LED lighting and image recognition software. Furthermore, a speci-
men transport system using a suction pump is integrated to transfer 
insects into the wells of a standard 96-well microplate. Thus, the 
robotic system can be divided into: (a) the transport system, (b) the 
image acquisition system and (c) the image processing system. All 
are operated by a graphical user interface (GUI) on a touchscreen.

2.1  |  Transport system

The x- and y-axes of the robot are realized by LEZ1 linear drives (Isel 
AG) and connected to the outer frame of the robot at half height. 

Both linear drives are driven by high-precision stepper motors to 
ensure good positioning accuracy. The y-axis is moved by the or-
thogonally connected shaft slide of the x-axis. The shaft slide of the 
y-axis transports the specimen camera and the z-axis with the suc-
tion hose. In order to move the suction hose in the z-direction (=up 
and down), the z-axis is driven by an AR42H50  spindle drive with 
stepper motor (Nanotec Electronic). All three axes are controlled 
by a single TMCM-3110 motor controller (Trinamic) that allows for 
precise, fast and smooth movements. The motor controller and the 
other electronics are protected from water and ethanol droplets by 
a box at the bottom of the robot. The transport system is controlled 
by a Raspberry Pi 4 (Model B, 4 GB) single-board computer that was 
programmed in Python. In order to pick up insects from a Petri dish 
and transfer them into a well of a 96-well microplate, a suction hose 
with a pipette tip is positioned above the target insect by the trans-
portation system. The hose is connected to an LA100 syringe pump 
(Landgraf Laborsysteme) that is also controlled by the Raspberry Pi. 
The sorting process is illustrated in Figure 2.

2.2  |  Image acquisition system

The sorting system includes two cameras with different lenses: 
the overview camera (C1) and the specimen camera (C2). The 
overview camera is a Ximea MQ042CG-CM camera using a 
CK12M1628S11 lens (Lensation) with a focal length of 16 mm and 
an aperture of 2.8. It is positioned directly above the Petri dish to 
take a detailed overview image of the sample. This image is used for 
detecting insects and their position within the Petri dish (Figure 3a). 

F I G U R E  1  DiversityScanner with 1: x-axis; 2: y-axis; 3: z-
axis; 4: Petri dish; 5: microwell plate; 6: overview camera (C1), 7: 
specimen camera (C2). The touch screen provides updates about 
the sorting process (e.g., insect detection, position of pipette tip 
and specimen carmera) and can be used to start and stop the robot. 
The Raspberry Pi, motor control unit and syringe pump are hidden 
behind the display panel
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The specimen camera (C2) is a Ximea MQ013CG-E2 using a telecen-
tric Lensation TCST-10-40 lens with a magnification of 1×. This cam-
era is moved by the x- and y- axes of the robot to a position above 
the insect to take a detailed image for the purpose of classification 
and measuring size (Figures 4 and 7).

2.3  |  Image processing system

Three different software algorithms are used. The first algorithm de-
termines the position of each object within the Petri dish, the second 
estimates the biomass of each insect and the third is an artificial neu-
ral network to classify insects into different classes.

2.3.1  |  Determining position of insects

Most objects in a Malaise trap sample are insects, but bulk samples 
also include insect parts and debris. After the overview image is 
taken, several image processing operations are used to detect only 
insects that are suitable for processing: (i) a median filter removes 
noise from the image, (ii) the RGB image is converted to greyscale, 

(iii) an adaptive threshold filter segregates the objects and (iv) a con-
tour finder identifies the boundaries of all objects. Three conditions 
must be met for an object to be considered for imaging and transfer: 
(i) the size must be within a specified interval, (ii) the object has to be 
>10 mm away from the Petri dish edge (blue line in Figure 3b) and (iii) 
its distance to other objects must exceed a minimum threshold value 
set by the user. For efficient operation, only small specimens (body 
length <3  mm) should be placed into the Petri dish. Size presort-
ing of whole samples can be manual or employ the efficient sieving 
methods described by Buffington and Gates (2013). Furthermore, it 
is desirable to distribute insects more or less evenly in the Petri dish 
because clumping reduces the number of insects that are available 
for sorting.

After detection, the coordinates of the objects are stored in a 
list and used to determine where the pipetting tip and the specimen 
camera should be for processing a specimen. After each insect is 
moved, a new overview image is taken to determine the new co-
ordinates of the remaining objects. The process continues until no 
additional suitable objects remain or all wells of the 96-well micro-
plate are filled. Based on the size of the currently used Petri dish 
(120 × 120 mm), ~150 (±10) can be sorted. Since the work of the 
robot is automatically stopped after a 96-well microplate is filled, 

F I G U R E  2  Eight-point process-chain for the sorting and classification process of the DiversityScanner. All relevant data are stored on a 
Raspberry Pi

Taking overview image with a four megapixel 
Ximea camera

Insect posi�on detec�on with classical image 
processing

Posi�oning detail camera over a detected specimen with three-axis 
kinema�cs controlled with a motor controller 

Taking detailed image of the specimen with a 1.3 
megapixel Ximea camera

Insect classifica�on with a convolu�onal neuronal 
network (CNN)

Object dimensions and volume es�ma�on with 
classical image processing

Moving an insect into one well of a 96-well microplate with a syringe 
pump, hose and pipe�ng �p

Posi�oning detail camera over a detected specimen with three-axis 
kinema�cs controlled with a motor controller 
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new insects can also be added to the Petri dish during this work step. 
Given that only the Petri dish and the suction tube touch specimens, 
only these parts need cleaning between samples. The dish and suc-
tion tube can be cleaned with bleach or replaced.

2.3.2  |  Biomass estimation

Several image processing operations are needed to measure the length 
and volume of each insect. First, the contour is determined using 

F I G U R E  3  Overview of Petri dish 
with evenly distributed insects before (a) 
and after processing (b). (b) A region of 
interest has been defined (blue line 10 mm 
from the edge). Circles represent detected 
objects (green = meet size and distance 
conditions for imaging and movement; 
red = size too large and/or distance too 
small)

(a) (b)

F I G U R E  4  Specimen images obtained with the specimen camera before (a) and after processing (b). (i–iv) Image processing steps used 
to distinguish head, thorax/mesosoma and abdomen/metasoma. (i, ii) Contour determination; (iii) connecting surfaces; (iv) placing random 
points; (v) regression; (vi) defining dividing lines

(a) (b)

(i) (ii) (iii)

(iv) (v) (vi)
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morphological operators. Only those surfaces that have a minimum 
value are selected to avoid mistaking very thin structures (wings or 
debris) as belonging to the body. If more than one surface is found 
(e.g., two body parts of the same specimen separated by a light area), 
they are connected so that there is only one contour. Within this con-
tour, points are placed randomly and then used to create a regres-
sion; therefore, a larger number of points increases the accuracy of 
the regression and the precision of the estimate. To find the dividing 
lines between body parts (i.e. head, thorax/mesosoma, abdomen/

metasoma), straight lines are placed at right angles to and along the 
regression line. Only those points of a line that lie within the contour 
are used. Subsequently, the dividing line between the head and tho-
rax or between the thorax and abdomen is determined by examining 
the changes in length. Note that because not all species have a clear 
dividing line between the body tagmata, some dividing lines are set 
incorrectly and need to be adjusted manually before the total volume 
can be determined (see Results for details). To estimate the volume of a 
specimen, a straight line is drawn through each body part. Afterwards, 

Class (Taxon) Training Validation Testing Total

Acalyptrate Diptera 377 69 148 594

Diptera Calyptratae 57 10 12 79

Diptera Cecidomyiidae 280 70 117 467

Diptera Chironomidae 140 20 32 192

Diptera Dolichopodidae 112 14 14 140

Diptera Empididae & Hybotidae 254 80 112 446

Diptera Mycetophilidae & 
Keroplatidae

251 79 110 440

Diptera Phoridae 461 167 209 837

Diptera Psychodidae 91 19 19 129

Diptera Sciaridae 219 54 90 363

Hemiptera Cicadellidae 102 14 21 137

Hymenoptera Braconidae 74 17 22 113

Hymenoptera Diapriidae 166 38 51 255

Hymenoptera Ichneumonidae 100 13 20 133

Other 498 113 147 758

Total 3182 777 1124 5083

TA B L E  1  Classes and number of images 
available for training, validation and 
testing to train the CNN to distinguish 14 
insect classes and one "other" class

F I G U R E  5  Class activation maps for 
specimens belonging to four different 
insect classes. The warmer the colour, 
the more important is the region for 
classifying the insects (red = very 
important, blue: less important). (a) 
Hymenoptera Diapriidae: important 
areas are antennae, head, mesosoma and 
wing venation; (b) Diptera Calyptratae: 
important areas are head and eye; (c) 
Diptera Keroplatidae and Mycetophilidae: 
important areas are thorax and legs; (d) 
Diptera Psychodidae: important area is 
the wings

(a) (b)(a)

(c) (d)
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additional perpendicular straight lines are drawn which must be within 
the body contour. The distance and length of the straight lines is then 
used to determine the volume, one slice at a time. The lengths and vol-
umes of the individual and its body parts are displayed on the screen 
of the sorting robot and the measurements are stored. Figure 4 shows 
an example of a detailed picture (a) before and (b) after the volume 
estimation, as well as the necessary steps (i–vi). All operations use the 
free opencv program library (version 4.5.1) and Python scripts (version 
3.8.6). Currently, volume estimates perform best for body parts that are 
rotationally symmetrical; that is, the method works better for insects 
with rotationally symmetrical morphology (e.g., many Hymenoptera).

2.3.3  |  Classification with artificial neural network

We apply machine-learning algorithms based on CNNs to assign in-
sects to different classes. In our study, we used 5083 colour images 
split into 3182 for training (~62.5%), 777 for validation (~15%) and 
1124 for testing (22.5%; Table 1). The images were obtained with the 

specimen camera for insects from five Malaise trap samples: three 
from Germany (near Rastatt, Kitzing and Framersbach) and two 
from Italy (Province of L’Aquila: Valle di Teve and Foresta Demaniale 
Chiarano-Sparvera). We used the abundances of the different taxa 
(usually family-level) to decide on how many classes (in the machine 
learning sense) could be covered because they had a sufficiently 
large number of training, validation and test images. We trained the 
CNN for 14 taxa and created a 15th class for the residual specimens 
(N = 758), which also includes images of body parts (mainly legs and 
wings). Data augmentation was performed to increase the number 
of images and the invariance within a class. The following processing 
operations were applied randomly: rotation, width shift, height shift, 
shear, zoom, horizontal flip and fill mode nearest.

We here used the VGG19 architecture as the base model for clas-
sification (Simonyan & Zisserman, 2014). The model is initialized with 
pretrained ImageNet weights and the last layer is removed. For the new 
classification layer, a global average pooling, a dense layer with 1024 
units and a reLU-activation, and a linear layer with a dropout rate during 
training of 0.4 are added. For the final classification, a softmax and an 

F I G U R E  6  Specimen processing times. 
(a) Time per specimen for sorting based 
on two microplates; average times were 
37 s for plate 1 and 38 s for plate 2. (b) 
Time per specimen for classification. Plate 
1: 4.3 s; plate 2: 4.2 s. (c) Time for object 
detection on each overview image. A new 
overview image is needed for each sorted 
object. Average processing time for both 
plates was 1.3 s. (d) Time per specimen 
for volume estimation. Determined 
for 144 specimens of Hymenoptera 
Diapriidae on Raspberry Pi 4 (Model 
B; 4 GB) and notebook with Intel Core 
i7-4510 U with 2.0 GHz. Raspberry Pi 
runtime: 108 s; Notebook: 12 s. Note that 
symbol legend for (a) also applies to (b) 
and (c)
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L2-regularization with a value of 0.02 are applied. The input size of each 
image is 224 × 224 pixels and the model has about 20.5 million param-
eters in total. The number of nodes in the last layer corresponds to the 
number of classes in the experiment. For training, the parameters of 
the original model are frozen and only the classification layer is trained. 
Afterwards, the whole model is optimized, whereby training is applied 
to all layers. Lastly, we use class activation maps to illustrate those fea-
tures used by the neural network for specimen assignment. They were 
obtained by creating a global average pooling layer (Figure 5).

The model was implemented in keras (version 2.4.3) based on 
tensorflow (version 2.2.1) and all experiments were conducted in the 

Python programming language (version 3.8.6). The networks were 
trained using the online tool colabatory using a single board computer 
(Nvidia). The working principles of the robot are illustrated in the fol-
lowing video clip: https://www.youtu​be.com/watch​?v=ElJ5V​SHa4OI.

3  |  RESULTS

To test how fast the DiversityScanner sorts, we used 192 speci-
mens (=two microplates). The average time per specimen was 37 s 
for the first and 38 s for the second plate, with some specimens 
taking much longer (e.g., #1, #8, #35: Figure 6a). The reported 
time consists of the time needed for activating the GUI, the write 
operations on the SD card, the movement time of the axes, the 
runtimes of the algorithms for object detection and classification, 
and the times for using the syringe pump. Faster sorting is feasible, 
but reduces quality because the specimens need to settle before 
high-quality images can be taken. In addition, the specimens have 
to “sink” within the pipette tip before they can be safely expulsed 
into a well of the microplate. In contrast, object recognition and 
classification are fast (Figure 6b,c). The average time for object 
detection is <1.3  s and classification ~4  s. Currently, the robot 
classifies the detected insects into 14 different classes. All other 
insects and noninsect objects are combined in a class labelled 
“other” (Table 2). The best classification results are obtained for 

“Hymenoptera Diapriidae” and “Hemiptera Cicadellidae,” where 
all insects were correctly classified (100%), whereas insects of 
the class “Hymenoptera Ichneumonidae” had the lowest correct 
classification rate (75%). The performance details for the differ-
ent classes are summarized in a “confusion matrix” (Table 3) that 
compares results of the “predicted” (CNN) identification with the 
“true” labels (taxonomists). Note, that the good performance of 
the CNN allowed for the implementation of taxon-specific pro-
cessing. The robot then only sorts insects belonging to a prede-
fined class.

Biomass estimation is the slowest process and performing 

it during sorting adds significantly to processing times because 
the Raspberry Pi requires almost 2  min per specimen (Figure 6d: 
108.06  s). We therefore recommend that the images be exported 
to another computer before the algorithm is applied. On a notebook 
with Intel Core i7-4510 U with 2.0 GHz, the average processing time 
per specimen is ~12  s. Note that total volume is estimated as the 
sum of the volumes for head, thorax and abdomen/metasoma and 
that our tests used only Hymenoptera Diapriidae because they have 
clearly separated body parts.

Currently, the sorting robot handles only insects up to 3 mm in 
length (Figure 7a–o), because larger insects do not fit through the pi-
petting tip. However, solutions for larger insects are in development. 
Lower-bound size limits for specimens do not exist, but very small 
specimens may not be detectable on the overview image.

4  |  DISCUSSION

The use of CNNs for the identification of charismatic species is 
becoming routine (Fairbrass et al., 2019; Milošević et al., 2020; 
Stowell et al., 2019; Tabak et al., 2019). However, these methods 
have been largely unavailable for small invertebrates, even though 
they comprise much of the multicellular animal species diversity 
(Groombridge, 1992; Stork et al., 2015) and contribute many eco-
system services (Wagner, 2020). The main problem is the lack of 

Class (Taxon) Result Class (Taxon) Result

Acalyptrate Diptera 91% Diptera Psychodidae 89%

Diptera Calyptratae 83% Diptera Sciaridae 92%

Diptera Cecidomyiidae 91% Hemiptera Cicadellidae 100%

Diptera Chironomidae 97% Hymenoptera 
Braconidae

82%

Diptera Dolichopodidae 86% Hymenoptera Diapriidae 100%

Diptera Empididae & Hybotidae 87% Hymenoptera 
Ichneumonidae

75%

Diptera Mycetophilidae & Keroplatidae 99% Other 81%

Diptera Phoridae 97% Overall resulta 91.4%

aThe number of images used is included in the calculation of the overall result, which is why it 
differs from the arithmetic mean of all individual results.

TA B L E  2  Classification accuracy 
(predicted label = true label) for each of 
the 15 classes that can be distinguished 
by the DiversityScanner

https://www.youtube.com/watch?v=ElJ5VSHa4OI
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trained CNNs, which cannot be obtained without first producing 
sets of training images for thousands of species. We believe that the 
best strategy for obtaining these sets is combining automated speci-
men imaging with DNA barcoding. Each DiversityScanner can image 
1000 specimens per day so that a laboratory equipped with a few 
DiversityScanners will be able to process several full Malaise trap 
samples per day. Each contains thousands of specimens that can be 
imaged with minimal manual labour. After imaging, the specimens 
are automatically transferred to microplates for DNA barcoding. 
Once barcoded, the images can be relabelled using the taxonomic 
information obtained from DNA barcodes. This can produce image 
training sets that have approximately species-level resolution given 
that specimen sorting with DNA barcodes yields MOTUs that are 
mostly congruent with morphospecies even when rigorously as-
sessed based on barcoding thousands of specimens (90%: Wang 
et al., 2018; Yeo et al., 2018). Some of the MOTUs will represent de-
scribed species so that the training image sets can even be labelled 
with scientific names. This requires that the MOTUs are matched 
to a scientific name via DNA barcodes from a barcode database or 
through identifying specimens. Common species, genera and fami-
lies can rapidly acquire sufficiently large numbers of training images. 
Indeed, for the most common 14 classes of insects in Malaise traps, 
we already had a sufficiently large number of images (5083) for cre-
ating such networks after partially imaging only five Malaise trap 
samples.

An additional useful feature of the DiversityScanner is that it 
can be instructed to only transfer a limited number of specimens 
for particularly abundant taxa. For example, the robot can be pro-
grammed to move only one or two microplates’ worth of nonbiting 
midges (Chironomidae) if this taxon is too abundant for complete 
treatment. This ability to only find and move some taxa helps with 
implementing clade-specific molecular recipes (e.g., different DNA 
extraction or PCR recipes for taxa that are difficult to barcode: e.g., 
Hymenoptera) or restricting barcoding to either males or females 
given that often only one sex has species-specific morphological dif-
ferences (Eberhard, 2010). Overall, we would thus predict that the 
DiversityScanner will prove useful for many studies using the toolkit 
of molecular ecology. The robot can rapidly generate barcodes for 
an unknown fauna, which helps with improving the quality of bar-
code databases and the interpretation of metabarcoding data. The 
robot can also prepare large numbers of specimens for molecular 
work on microbiomes or species interactions that have been sorted 
semi-automatically to the species level. By facilitating the barcoding 
of all specimens, the DiversityScanner furthermore highlights which 
common species belonging to dark taxa should be prioritized for tax-
onomic treatment.

One of the unresolved issues is whether CNNs will be sufficiently 
powerful to yield species-level identifications for closely related 
species (but see Ärje et al., 2020b; Knyshov et al., 2021). It is likely 
that the main limitation will be the number, quality and orientation 
of training images. Figure 7 illustrates the latter problem. Insects 
are imaged from many different angles and each will require enough 
training images before the CNNs will have a realistic chance for 

achieving accuracy at high taxonomic resolution. One solution for 
this problem is imaging specimens in many orientations. Fortunately, 
this is now feasible because modern, high-quality cameras can ac-
quire large numbers of images at different magnifications and ori-
entations. This is particularly straightforward once specimens have 
been presorted to putative species based on DNA barcodes. As illus-
trated by the BIODISCOVER robot, inserting these specimens into a 
cuvette allows imaging from many sides. This is why we predict that 
once large numbers of species have been extensively imaged and 
included in CNNs, robots such as the DiversityScanner should be 
able to identify many specimens to species based on images only. 
Note also that not all would be lost if CNNs were eventually found 
to be incapable of distinguishing closely related species. Specimens 
identified to genus- or species-group level would still be suitable for 
many biomonitoring purposes.

Eventually, DNA barcoding might become restricted to those 
specimens that are not identifiable based on visual information; that 
is, the DiversityScanner would learn how to sort specimen to species, 
but also learn how to identify those specimens that still require bar-
coding. This will make the robot a powerful tool for discovering rare 
or new species in large samples. This ability would be particularly 
important in the 21st century, given that new species continue to 
arrive at well-characterized sampling sites (Parmesan, 2006). These 
new arrivals are due to both distribution shifts in response to climate 
change (Fartmann et al., 2021; Wilson et al., 2007) and anthropo-
genic introductions (Bertelsmeier, 2021). It would be desirable for 
both to have an early-alert system based on automated workflows.

With regard to the classification accuracy rates of our current 
CNN, we observe only a very weak correlation between the num-
ber of training images, morphological heterogeneity and classifica-
tion accuracy (Figure S1). There are classes with large numbers of 
training images that perform better than classes with lower numbers 
(e.g., “Diptera Calyptratae,” 57 training images: 83% vs. “Diptera 
Phoridae,” 64 training images: 97%), but the better performance 
of “Diptera Phoridae” could also be due to higher morphological 
uniformity. However, this is not in line with the observation of a 
comparatively high classification accuracy that was obtained for 
the class “other” that has the highest morphological heterogene-
ity. Indeed, this class performed better (81%) than “Hymenoptera 
Ichneumonidae” (75%, Table 3). Clearly, more data are needed to un-
derstand the training needs of CNNs for insects.

This first version of the DiversityScanner still struggles with 
several aspects of complex Malaise trap samples. Two specimens 
lying on top of each other may be erroneously recognized as one 
insect based on the overview image. This may lead to the transfer 
of several specimens into one well. Future versions of the scanner 
will have improved object detection based on the overview image. 
In addition, object detection can also be applied to detailed speci-
men images in order to detect cases where the image contains more 
than one specimen. The latter would also avoid instances where an 
insect was detected but not picked up by the pipette so that a well 
of the microplate remains empty. Particularly high on the list of de-
velopment needs is also the handling of specimens larger than 3 mm. 
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They can be accommodated by increasing the suction tip diameter 
or introducing a gripper with a sensor-based feedback system. Note 
that these changes could be implemented readily within the existing 
object detection algorithms because only the object detection pa-
rameters would have to be changed.

High-quality imaging of samples containing a mixture of small 
and large specimens requires several lenses with different focal 
lengths. The only alternative is image cropping. This approach is 
favoured by the BIODISCOVER robot (Ärje et al., 2020a) or the 
live moths photographing system of Bjerge et al. (2021). Large im-
ages are taken from which the areas with insects are cropped. This 
causes the resolution of the individual images to be comparatively 
low (BIODISCOVER: 496 × 496 pixels; Moth light trap: average size: 
368 × 353 pixels). Instead, the DiversityScanner moves the speci-
men camera over the insects, which can then be photographed at 
high resolution (1280 × 1024 pixels). For the classification using neu-
ral networks, low resolution would be sufficient, but for determining 

the volume as well as for taxonomic work on the specimens high 
resolution is needed.

Overall, we believe that robots like the DiversityScanner can 
solve many of the problems that Robert May mentioned when he be-
moaned our lack of biodiversity knowledge. Automation can expedite 
biodiversity discovery and monitoring of neglected taxa. However, it 
will be important to keep the design of the DiversityScanner simple, 
low-cost (currently<5000 €) and open access. This will render it fea-
sible to have many robots running in parallel and all around the world. 
Imagine 100 robots processing 1000 specimens a day for 100 days/
year. They would generate 10 million imaged and sorted specimens 
every year. Many new species would be discovered and imaged. The 
data and images would be an important scientific and educational 
resource. Of course, the newly discovered species would still need 
description and we would still know very little about the ecological 
roles that these species play, but molecular approaches to species 
interaction research, diet analysis and life history stage matching can 

F I G U R E  7  Sample images for the 15 classes that can be distinguished by the CNN. (a) Acalyptrate Diptera; (b) Diptera Calyptratae; (c) 
Diptera Cecidomyiidae; (d) Diptera Chironomidae; (e) Diptera Dolichopodidae; (f) Diptera Empididae & Hybotidae; (g) Diptera Keroplatidae & 
Mycetophilidae; (h) Diptera Phoridae; (i) Diptera Psychodidae; (j) Diptera Sciaridae; (k) Hemiptera Cicadellidae; (l) Hymenoptera Braconidae; 
(m) Hymenoptera Diapriidae; (n) Hymenoptera Ichneumonidae; (o) other insects (e.g., Hemiptera Aphididae); (p) other objects

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)
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help fill these gaps (e.g., Reeves et al., 2018; Six, 2013; Srivathsan 
et al., 2019b; Yeo et al., 2018).
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