KIT | KIT-Bibliothek | Impressum | Datenschutz

Reference-guided Pseudo-Label Generation for Medical Semantic Segmentation

Seibold, Constantin ORCID iD icon; Reiß, Simon ORCID iD icon; Kleesiek, Jens; Stiefelhagen, Rainer ORCID iD icon

Abstract:

Producing densely annotated data is a difficult and tedious
task for medical imaging applications. To address this prob-
lem, we propose a novel approach to generate supervision for
semi-supervised semantic segmentation. We argue that visu-
ally similar regions between labeled and unlabeled images
likely contain the same semantics and therefore should share
their label. Following this thought, we use a small number of
labeled images as reference material and match pixels in an
unlabeled image to the semantics of the best fitting pixel in
a reference set. This way, we avoid pitfalls such as confirma-
tion bias, common in purely prediction-based pseudo-labeling.
Since our method does not require any architectural changes or
accompanying networks, one can easily insert it into existing
frameworks. We achieve the same performance as a standard
fully supervised model on X-ray anatomy segmentation, albeit
95% fewer labeled images. Aside from an in-depth analy-
sis of different aspects of our proposed method, we further
demonstrate the effectiveness of our reference-guided learning
paradigm by comparing our approach against existing methods
... mehr


Preprint §
DOI: 10.5445/IR/1000141160
Veröffentlicht am 15.12.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Anthropomatik und Robotik (IAR)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2022
Sprache Englisch
Identifikator KITopen-ID: 1000141160
Erschienen in Thirty-sixth AAAI conference on artificial intelligence. Online, 22.02.2022 - 01.03.2022
Veranstaltung 36th Annual Conference on Innovative Applications of Artificial Intelligence (IAAI 2022), Online, 22.02.2022 – 01.03.2022
Verlag Association for the Advancement of Artificial Intelligence (AAAI)
Seiten 2171-2179
Schlagwörter semi-supervised learning, semantic segmentation
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page