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Abstract

While computer systems are ubiquitous and prevalent in our daily lives, they are not free
from bugs and misbehavior. Those can either be existent in hard- or software components
and may thus influence the application and data we use on the systems. Among other, causes
for bugs and misbehavior are increasing design complexity, smaller hardware fabrication
sizes, or expanding software complexity. Furthermore, intentionally inserted backdoors are
a conceivable scenario, too. Eventually, it requires trusting the vendors that their hard- and
software components operate as expected and that they are free from bugs and backdoors.

This work introduces a novel approach for verifying the correctness of an application
execution without being dependent on trusting the vendors. The approach named Securing
Process Execution by Recording and Replaying the Inner Process State (SPERRIPS) verifies
the correctness of application execution across two different systems on the abstraction
level of system calls (syscalls). Therefore, the application is executed and traced on two
different systems to detect possible deviations in their executions. An execution is correct
and verified if it runs identical on both systems and if there are only acceptable differences
in the execution. In the case of unacceptable differences, the application execution will be
aborted. This work introduces acceptable and unacceptable differences on the example
of the syscalls of the cat application while respecting, among others, different system
environments, activated Address Space Layout Randomization, and nested structures.
Potentially detected unacceptable differences indicate misbehavior, rooted in a component
below the considered abstraction level of syscalls in one of the two systems. In particular,
this affects either hardware components or internal operating system kernel procedures.

This thesis proposes both a conception and an implementation of SPERRIPS. The imple-
mentation has been evaluated with four different applications, namely echo, hostname, cat,
and ping. It demonstrates the feasibility of the approach to successfully verify application
executions’ correctness and detect differences in their executions. All side-effects on appli-
cation execution through intentionally inserted malicious Linux kernel modifications have
been detected.





Zusammenfassung

Computersysteme, die wir alltäglich verwenden und von denen wir gewissermaßen von
abhängen, sind nicht frei von Fehlern. Diese können hardware- oder softwareseitig ursächlich
sein und als Konsequenz Einfluss auf die Programme und Daten haben, die wir auf
den Systemen verwenden. Gründe für Fehler sind steigende Designkomplexität, kleinere
Fertigungsbreiten von Hardware oder komplexer werdende Softwaremodule. Darüber
hinaus können auch bewusst eingebrachte Hintertüren dafür sorgen, dass ein System sich
anders verhält als erwartet. Letztendlich bleibt nur übrig den Herstellern zu vertrauen,
dass ihre Soft- und Hardwareprodukte wie versprochen funktionieren und frei von Fehlern
und Hintertüren sind.

Diese Arbeit stellt einen Ansatz vor, um die Korrektheit einer Anwendungsausführung
zu überprüfen, ohne darauf angewiesen zu sein den Herstellern zu vertrauen. Der Ansatz
namens Securing Process Execution by Recording and Replaying the Inner Process State
(SPERRIPS) verifiziert die Korrektheit einer Anwendungsausführung über zwei Systeme
hinweg auf dem Abstraktionslevel von Systemaufrufen (engl. system calls). Dazu wird die zu
verifizierende Anwendung auf zwei unterschiedlichen Systemen ausgeführt und auftretende
Unterschiede in den Programmausführungen inspiziert. Eine Ausführung gilt als korrekt und
verifiziert, wenn sie auf beiden Systemen gleich stattfindet, indem höchstens akzeptierbare
Unterschiede auftreten. Falls unakzeptierbare Unterschiede auftreten, wird die Program-
mausführung abgebrochen. Unter Berücksichtigung von unter anderem unterschiedlichen
Systemumgebungen, Addressraumverwürfelung und verschachtelten Datenstrukturen wer-
den in dieser Arbeit akzeptierbare und unakzeptierbare Unterschiede am Beispiel der
Systemaufrufe der cat Anwendung definiert. Etwaige unakzeptierbare Unterschiede deuten
auf Fehlverhalten einer der beiden Systeme hin, welches in den Komponenten unterhalb des
betrachteten Abstraktionslevel von Systemaufrufen begründet ist. Dies betrifft entweder
Hardwarekomponenten oder interne Abläufe im Betriebssystemkern.

Diese Arbeit liefert eine Konzeption und eine Implementierung für SPERRIPS. Die Imple-
mentierung wurde anhand der vier Anwendungen echo, hostname, cat und ping evaluiert.
Dies demonstriert die Fähigkeit des Ansatzes und der Implementierung die Korrektheit
von Anwendungen zu überprüfen bzw. Abweichungen in ihren Ausführungen festzustellen.
In einen Linuxkern bewusst eingebautes Fehlverhalten, das zur Laufzeit zu Abweichungen
in den Programmausführungen führte, wurde erfolgreich detektiert.





1. Introduction

Nowadays, computer systems are ubiquitous in every part of our lives. Either directly, by,
e.g., using smartphones or desktop systems, or indirectly through web services or systems
for maintaining our infrastructures. Our dependency on them grants great power to the
devices based on their massive impact on our lives. However, due to steadily enhancing
development, both hardware and software design’s complexity increase. Consequently,
one cannot easily validate the correct functioning of each involved component. Instead,
it requires relying on the vendors and the integrity of their supply chains that each
component works and behaves as promised. However, even major hardware components
like the central processing unit (CPU) contain bugs, which may lead to unexpected or
faulty behavior [1], [2]. Furthermore, a security inspection of fabricated motherboards
uncovered that certain manufacturing subcontractors were infiltrated by attackers, such
that the manufactured motherboards are compromised with an additional malicious chip [3].
Analyzing the chip revealed its spying and manipulating mechanisms. Even though the
story’s legitimacy is highly debated, it shows the potential threat of compromised supply
chains and their security implications [4]. Furthermore, crucial software components like
the operating system (OS) kernel might also include bugs, intentionally incorporated or
not.
In short, there is no guarantee that the systems we rely on daily operate exactly as we
expect or if an attacker perhaps compromised them. Our usage relies on trust.

This work researches the feasibility of a new generic approach for verifying the correctness of
two application executions on potentially untrustworthy systems. To do so, an application
is executed on two different systems under identical conditions on both. Our approach
verifies whether both executions behave the same. Deviations in the executions could
indicate a fault in either the hard or software components in one of the systems. We
presume that a fault that might exist in a component of one system does not exist in the
other one. For example, a bug in the CPU of System A is not present in System B, as it
uses the CPU of a different series or vendor.

Different levels of abstraction can be evaluated for detecting deviations in two independent
application executions [5]. Possible levels range from very low-level ones up to high-level
ones. A fine-grained low-level abstraction could be comparing the order and results of
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executed processor instructions by observing execution within an emulator like QEMU. On
the other side, a high-level approach could implement Secure Multi Party Computation
(MPC), which calculates a shared result between mutually untrustworthy parties [6]. In
the context of this work, the mutual result could be the application’s output. Using
MPC, however, must be adapted and implemented to the application’s logic. Thus, it
requires domain-specific knowledge and work and hence does not express a generic approach.
Another possible abstraction level, between the above mentioned, could be analyzing the
instructions of a byte-code interpreted language, like Java or JavaScript [7].
The proposed approach in this work operates on the abstraction level of system calls
(syscalls). Syscalls are the interface between a user-land application and the operating
system (OS) kernel. We assume that syscalls are significant to indicate whether two
program executions behave the same if and only if their order, input arguments, and return
values1 are equal. It originates from the observation that a deterministic algorithm with
the same input leads to the same output. We consider syscalls to be the only possible source
for non-determinism for an application. Hence, two exact copies of an application must
behave the same on two different systems if the order and execution of all syscalls are the
same.

The work is structured as follows. Chapter 2 explains the technical fundamentals on
which it is based. It explains the relevant details of syscalls and Linux-specific OS details.
Further, it points out cases of bugs in the Linux kernel and on the microarchitectural level.
Chapter 3 defines the goal and scope of this work. The succeeding Chapter 4 introduces
our approach on a conceptual level and elaborates on solutions for non-trivial practical
challenges in more depth. Chapter 5 presents and discusses selected aspects of the actual
implementation. In Chapter 6, the proposed approach is evaluated in realistic scenarios. It
is tested against a maliciously manipulated Linux kernel to prove the approach’s feasibility.
Related work is presented in Chapter 7. Finally, Chapter 8 summarizes the results and
suggests aspects for future work.

1Arguments, which are modified by the syscall as the result of an operation, are considered to be a
return value in this context.



2. Background

This chapter introduces the fundamentals of an operating system kernel, which are involved
in executing applications on modern computers and are relevant to this work. Furthermore,
it gives an overview of discovered flaws in the Linux kernel and processors and points out
their relevance in a security context.

2.1 Operating System

The central component of an operating system is its kernel. This software component
manages all relevant operations required for a functional system [8]. It provides an
abstraction to the applications for, e.g., hardware access, memory management, thread
scheduling, and access control. The kernel code is executed on the CPU with higher
privileges than regular applications. This divides code execution in either running in
kernel-mode with high privileges or in user-mode with lower privileges [8]. Hence, to enable
a user application to perform privileged operations or functions, it must interact with the
kernel through a dedicated interface called “system calls”.

2.1.1 System Calls

System calls are the interface between user-mode applications and the kernel for initiating
privileged operations from user-space like file access or network connections [8]. They
abstract implementation details such as file system implementations, hardware access, and
access control. As of now, the Linux kernel version 5.15.1 has more than 350 different syscalls
implemented1 . On x86 64bit architectures (x86-64), a system call is invoked through the
special processor instruction syscall2. It calls the appropriate syscall handler of the
kernel directly with high privileges on the CPU [9]. Compared to previous syscall invocation
methods, this is significantly faster as it does not require “expensive interrupts” [11].
A unique operation code (opcode) identifies each syscall1. On Linux x86-64 systems, it is
passed on invocation of the syscall instruction via the RAX register and thereby tells

1https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/x86/entry/syscalls/
syscall 64.tbl?h=v5.15.1

2The instruction set architecture (ISA) of Intel and AMD slightly differs in this regard [9] [10]. However,
in 64-bit mode, both support the syscall instruction.

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/x86/entry/syscalls/syscall_64.tbl?h=v5.15.1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/x86/entry/syscalls/syscall_64.tbl?h=v5.15.1
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the kernel, which system call operation is requested by the application [12]. Then, the
kernel operates with its kernel privileges to execute the syscall’s functionality, e.g., reading
content from a file. According to the system’s calling convention, the application can pass
up to six arguments to a syscall.
Syscall arguments are of different types, depending on their purpose. The read syscall3,
for example, expects three arguments: A file descriptor (integer type), an address to a
buffer, and the number of bytes, to read4. In this case, the buffer pointed to by the given
address can be interpreted as an indirect return value, as the buffer gets filled by the kernel
as a result of the read operation. However, despite indirect return values, each syscall
returns a programmatically return value via the RAX register. In the case of read, it is the
number of actual read bytes.
Linux syscalls are well documented on their manpage entries, which are available through
the terminal application man5 via man 2 <syscall-name> or online via the online
manpages [13]. A manual page (manpage) entry includes the syscall’s signature, purpose,
return value, and error codes. If not stated otherwise, all syscall signatures given in this
work are referred from the manpages.

Frequent syscall invocations affect the system’s performance, as they cause frequent context
switches and consequently slow down the system’s performance. Linux mitigates this by
providing the Virtual Dynamic Shared Object (VDSO). It is a shared library mapped by
the kernel into a process’ address space [14]. Through the VDSO, certain syscalls can be
executed directly, instead of invoking an actual syscall since the required code is mapped as
read-only into user-space. In particular, on x86-64 systems the syscalls clock_gettime,
getcpu, gettimeofday and time are provided via the VDSO.

2.1.2 Calling Conventions

A calling convention defines how arguments are passed from the caller to the callee. The
term caller refers to a piece of code that calls a function, while the function that has been
called is denoted as the callee. The calling convention applies both to function calls in
user-mode and to syscalls. Hence, compilers have to ensure that the generated code meets
the requirements of the target system.
This work focuses on the System-V calling convention, used by the Linux kernel on x86-64
systems [12]. With System-V, the first six arguments of a called function are passed via
processor registers in the defined order of RDI, RSI, RDX, RCX, R8, R9. Any more
arguments must be stored on the stack, where the callee reads them from. Finally, the
callee writes the return value into the RAX register. However, the System-V specification
restricts the number of arguments for syscalls to at most six arguments.

The convention of passing the syscall’s opcode and its return value via the RAX register on
a syscall instruction is also a definition by the System-V standard. Furthermore, the
convention for calling the kernel interface and thus affecting the syscall instructions
differs from the previous register order as instead of RCX the R10 register is used.

2.1.3 Strace and Ptrace

While debugging and analyzing an application, it can be helpful to track and evaluate the
syscalls which an application called. The command-line utility strace traces and prints all

3ssize_t read(int fd, void *buf, size_t count)
4The size_t type is in fact an integer
5If man-db is installed.
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system calls of a given process or program. It uses the Linux kernel’s interface named ptrace,
which enables tracing and manipulating other processes and is implemented as a syscall
itself. In this context, the observing process is referred to as “tracer” and the observed
process as “tracee”. The ptrace mechanism equips the tracer with primitives for intercepting
process execution on signals or syscalls and reading and writing into the tracee’s virtual
address space or processor registers. Hence, ptrace not only enables passively observing
the tracee’s execution but also actively manipulating data and altering the control flow.
With the aid of ptrace, strace traces each issued syscall of a given application or process
and displays its name, including the arguments and the resulted return value in a human-
readable fashion.

1 # strace echo Hello world!
2 execve("/usr/bin/echo", ["echo", "Hello", "world!"], 0x7fffffffe500) = 0
3 brk(NULL) = 0x55555555f000
4 [..]
5 mmap(0x7ffff7df2000, 1540096, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED|

MAP_DENYWRITE, 3, 0x25000) = 0x7ffff7df2000
6 mmap(0x7ffff7f6a000, 303104, PROT_READ, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3,

0x19d000) = 0x7ffff7f6a000
7 [..]
8 write(1, "Hello world!\n", 13Hello world!) = 13
9 close(1) = 0

10 [..]

Listing 2.1: Examplary output of strace.

Listing 2.1 gives a shortened output of strace echo Hello world! where the names
of some system calls and their arguments and return values are printed. If possible, it prints
the names of argument flags rather than their numerical values for easing understandability,
as in the case of PROT_READ|PROT_EXEC.

2.1.4 Address Space Layout Randomization

Address Space Layout Randomization (ASLR) is one of the various techniques that modern
OSs implement to prevent common exploiting strategies. The purpose of Address Space
Layout Randomization (ASLR) is to randomize the address offsets of memory areas of
shared libraries, file mappings, and necessary data structures6 within an application’s
address space. By doing so, it is harder for an attacker to know or guess the exact position
of specific code or data areas, which he tries to leverage for attacks. ASLR mitigates return
oriented programming (rop) attacks, which make use of the already existing application
or library code within executable memory regions. To successfully run a rop attack, an
attacker chains pieces of an application or library code (called gadgets) such that their
chained execution implements the exploit logic. However, the attacker needs to know the
exact memory addresses to chain the gadgets. Randomizing the address space layout makes
it harder to know or guess these addresses.
With activated ASLR, the Linux kernel randomizes the mapping addresses of the memory
areas mentioned above on each application execution with fresh randomness. ASLR
is enabled by default in the Linux kernel7 and was introduced with Linux 2.6.12 in

6In particular, the global offset table (GOT).
7https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/admin-guide/

kernel-parameters.txt?h=v5.15.1

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/admin-guide/kernel-parameters.txt?h=v5.15.1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/admin-guide/kernel-parameters.txt?h=v5.15.1
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2005 [15]. However, it can be disabled by providing the norandmaps kernel boot parameter
or by writing 0 into /proc/sys/kernel/randomize_va_space with appropriate
permissions.
ASLR does not randomize the base address of an executable’s code section, however. If
this is desired to increase the exploit mitigation level further, executables must explicitly
be compiled to become so-called position independent executables (PIEs).

2.1.5 Kernel Bugs

Like every piece of software, even the most essential part of a system, its kernel, is not free
from bugs. By nature, kernel bugs can have severe consequences, ranging from privilege
escalation to data loss.
Concerning syscall bugs, Bagherzadeh et al. conducted a detailed analysis of the Linux
kernel syscall interface changes by analyzing the code changes [11]. They broke down
the changes into different classifications, grouped by syscall type. Among others, these
include bug fixes for architecture compatibility, concurrency fixes, and, most important
for this work, falsely returned error code fixes and semantic bug fixes. With the term
“semantic fixes”, the authors refer to fixes that correct falsely implemented syscall behavior.
Interestingly, among all syscalls, semantic bug fixes are the most common type, with
58% of all fixes. Unfortunately, the authors do not break down the affected syscalls per
bug type. However, they reveal that the syscalls ptrace, signal, ioctl, futex, ipc,
mmap, perf_event_open, readdir and splice retrieved the most bug fixes. The
author reason the frequent changes to the ptrace syscall with its inherent implementation
complexity because of its extensive tracing capabilities.
This work shows that even the crucial syscall interface is not free from bugs. Further,
semantical bug fixes show that syscalls might even contain semantical bugs.

2.2 C Programming Language

Since the Linux kernel is written in the C programming language [16], this section introduces
the necessary fundamentals of the language and its relations to the Linux kernel. It covers
the relation between syscalls and C-wrapper functions as well as the principle of customizable
data structures, called structs.

2.2.1 C Standard Library (libc)

The C standard library (libc) is the reference implementation of the C programming
language specification for Linux-based OSs [17]. Its application programming interface
(API) provides essential functions and libraries as a base for programming an application
in C. Therefore, it is commonly dynamically loaded for applications running on Linux
systems. The libc library provides wrapper functions for commonly used syscalls, such as
reading and writings files or connecting to network sockets. Syscalls for which no wrapper
is provided can be manually invoked with the special function syscall8. It expects the
syscall’s opcode as the first parameter and its arguments subsequently.
The function signature of a libc wrapper is not always identical with its underlying syscall.
The wrapper function may abstract specific details, for example, in the case of the brk
wrapper function. However, for the sake of better readability, in this work, we mainly
use the syntax of the C-language wrapper function for a syscall’s signature, unless noted
otherwise.

8syscall(long SYS_number, arguments...)
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2.2.2 C Structs

The C language supports defining custom data structure types via the struct language
feature. A structure (struct) stores its content in a contiguous memory area, thus enabling
storing and accessing related data through a single data structure. Therefore, some Linux
syscalls also use pointers to structs as their arguments.

The definition of a struct consists of its name (e.g., example) and its embedded members
and their types. Listing 2.2 shows an exemplary definition of a struct with two members.
Instead of passing both the value and name values as two separate arguments to a fictive
syscall, it is sufficient to give a reference to the initialized struct. Hence, the syscall is able
to access the two members through the given reference (ref->value and ref->name).

1 struct example {
2 int value;
3 char[8] name;
4 }

Listing 2.2: Sample definition of a struct called example with two members value and
name.

Struct members are stored in memory in the same order as they appear in the struct’s
definition [18]. However, depending on the member’s type size, the compiler may add
additional padding for aligning the data in memory. Therefore, the size of a struct is at
least the size of its member’s types, plus possible additional padding. Furthermore, the
layout of a struct depends on the compiler and its target platform.

2.3 Microarchitecture

The term microarchitecture (µarch) refers to the hardware design of a CPU, which imple-
ments a specific instruction set architecture (ISA). For one ISA multiple microarchitectures
can exist. With the x86 platform, this is the case for different generations of a particular
CPU model or CPU products by different vendors (e.g., Intel vs. AMD). To run an OS or
an application on a CPU, it must be compiled for the target ISA and be executed on a
corresponding CPU. Since the µarch of modern processors is a highly complex design, it
is error-prone. This section introduces different kinds of errors that originate from this
overwhelming complexity.

2.3.1 Bugs

The vendor Intel composes a list of known CPU bugs in their products [1]. The document
uses the term “errata” which is described as “[e]rrata are design defects or errors. These
may cause the processor behavior to deviate from published specifications.” [1]. The most
recent entry on the list is from May 2020. However, the authors state that entries are
removed from the list once the product line has been updated: “Errata remain in the
specification update throughout the product’s lifecycle, or until a particular stepping is
no longer commercially available. Under these circumstances, errata removed from the
specification update are archived and available upon request.”
A very popular, although old and historic bug, is the FDIV bug in Intel processors from the
Pentium model series. In some cases, a fault in the floating-point unit caused wrong division
with high-precision numbers involved. After the existence of this bug gained popularity,
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Intel eventually recalled the affected processors. However, this example demonstrates
that even rarely occurring bugs may exist. Depending on the context, the consequences
range from simply wrong calculations to severe problems, e.g., when performing security or
safety-critical operations.

Hochschild et al. published a paper concerning corrupt execution errors (CEE) which they
discovered on some CPU cores through an internal investigation of Google’s misbehaving
production “massive-scale data-analysis pipeline” [2]. CEE are a result of malfunctioning
CPU cores either due to errors in manufacturing processes of the highly complex and
dense architecture designs or because of influences like the operating temperature, voltage,
etc. However, the authors do not fully understand the root cause of CEE yet since not
all cores of a processor model are equally affected. Some might yield incorrect results,
while others work correctly. Indisputably, CEE are a severe problem. The authors give
real-world examples where miscalculations lead to application and kernel crashes and
different causes of data corruption and loss. They aim to create awareness of CEE with
their paper. Furthermore, they call for more research to detect such errors early and to
find solutions for dealing with current hardware affected by CEE.

With SiliFuzz, researchers from Google published an approach to fuzz test9 x86-64 bit CPUs
for electrical defects [19]. Their given title proxy fuzzing originates from their approach
to first fuzz processor simulators to collect interesting test cases. Then, they continue by
running these test cases on real hardware. Other than logical bugs, electrical bugs might or
might not be present in a CPU core. Further, they might appear over time due to hardware
effects like circuit aging. Even though the authors themselves assess their approach to
be still in an early stage, they could find different classes of bugs on multiple CPUs on
Google’s huge hardware fleet. They do not give an exact number of how many bugs they
found, but they state that 45% of the detected bugs are exclusively detected by SiliFuzz
and were not detected by other approaches before. Their research adverts to the danger of
Silent Data Corruption (SDC) and its consequences. Since it results from a faulty CPU
computation, it is hard to detect soon, as it happens without notice to the processor and
application. Furthermore, the authors predict more research in this field in the following
years, uncovering multiple new CPU bugs.

2.3.2 Side-channel Attacks

Side-channel attacks neither exploit logical nor electrical bugs in the CPU, but they
leverage microarchitectural states within the CPU to perform an attack. In the past years,
multiple side-channel attacks have been part of security research. Side-channel attacks
make use of the CPU’s intended features, but in a way that triggers side-effects, e.g.,
for gaining unauthorized information. Meltdown is one of the most prevalent findings or
publications [20]. It had a huge impact, as it affected almost every CPU, independent of
the running operating system.

Meltdown

The Meltdown attack exploits the CPU feature speculative execution in combination with
a cache timing attack to access memory content protected from unauthorized access [20].

9In short, fuzz testing (or fuzzing) feeds sophisticatedly crafted and randomly mutated data into an
application or interface to observe its reaction. It aims to find faults by triggering buggy code paths through
the unusual input. For security research and reliability testing, fuzzing has become an industry-standard in
recent years.
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Modern CPUs use speculative execution to speed up code execution by predicting which
instructions will be executed next and hence execute these speculatively in advance. If the
prediction is wrong or the instruction throws an exception (e.g., cause it is unauthorized),
it will be discarded. Even though the results are discarded and the registers are cleared, the
execution may leave other traces in the microarchitectural state. In the case of Meltdown,
the CPU is trapped to fetch a byte from a protected memory location (e.g., a kernel address)
and use this as an index for a probe array10. Due to speculative execution, this array access
happens before the exception handler notices that this memory access was illegal. After the
exception has been identified, the speculative execution steps are discarded. However, the
array access and hence cache access already happened. The Meltdown implementation now
performs a cache timing attack. It measures the access times to each entry of the probe
array to find indices with fast access times. Fast access times reveal that the corresponding
cache line has been accessed recently. Thereby, the indices of fast accessibly array entries
are the peeked by values, as they have been used as the probe array index during speculative
execution. Repeatedly flushing the cache and accessing memory sequences allows reading
entire memory pages. Meltdown is independent of specific operating systems or software
implementations and works on all affected CPUs.

2.3.3 Backdoors

Until today, no CPU backdoors induced by design are known to be present in actual
hardware products. Therefore, research in this field primarily covers the potential feasibility
of hardware backdoor conceptions and implementations. For example, Duflot presents a
possible hardware backdoor implementation and studies its implications on the system’s
security [21]. However, this discussion is based on a self-designed hypothetical backdoor in
an x86 processor.

Closest to a discovered backdoor is the discovery of an undocumented debugging feature in
the C3 x86 processor model of the vendor VIA [22]. In his work, Domas describes how he
found a mechanism to escalate privileges from ring 3 to ring 0, which offers the highest
permissions. With the help of fuzzing the ISA, he was able to identify an undocumented
x86 instruction. Domas leveraged this instruction to gain access to a particular core, which
enabled to alter kernel memory and gain root permissions on an unprivileged process on
a Debian 6 system. A successful exploit requires having the god mode bit set, which is
commonly the default case. The author claims that this is the first discovered processor
backdoor, as it “constitute[s] what is commonly understood as a backdoor” [22]. However,
he believes that the discovered mechanisms are not maliciously included backdoors but
forgotten leftovers of debugging features.

Related to CPU backdoors is the discovery of malicious chips on server motherboards [3].
Robterson and Riley describe the discovery of malicious chips found on server mother-
boards. An investigation revealed that the rice corn-sized chips had been placed onto the
motherboards during fabrication by infiltrating the supply chain through compromised
Chinese manufacturing subcontractors. These chips are attached to the board’s man-
agement interface. Hence, they have broad access to the running host system and can
thus alter CPU or memory data. Further, they contain memory and network modules

10The probe array has 256 entries, one for each possible byte value. Further, it is properly aligned to
the CPU cache line length by multiplying 256 with the cache line length. Hence, each access of the form
i ∗ cache line length (where i is a byte value) resolves to a different cache line.
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for sending and receiving commands to neighboring spy modules or servers. At least 30
companies from the United States are estimated to be affected by thereby backdoored
servers, including Amazon and Apple. However, Amazon, Apple, and Supermicro later
declined the legitimacy of the story and its validity is highly debated [4]. Nonetheless, it
demonstrates the potential threat of introduced hardware backdoors through supply-chain
compromising.

2.4 Recording/Replaying Systems

Recording/replaying systems refer to approaches that aim to reproduce an application’s
execution deterministically by eliminating non-determinism. This is, e.g., desired in the
field of software testing, debugging, and malware analysis as it eliminates differences in
executions and thus allows recreating the same application state for analysis [23].
A particular recording/replaying system collects (“records”) runtime-dependent data
from the application of a specific abstraction level, commonly those that introduce non-
determinism [23]. Then, the recorded data is used to alter a consecutive execution by
feeding this data back into the application, denoted as “replaying”. The two steps happen
in two phases, namely the recording and replaying phase, in which replaying eliminates
potential non-determinism from the re-executed application. However, as Rittinghaus
states, replaying only guarantees to eliminate non-determinism above the chosen abstraction
level [23]. Hence, depending on the replaying objectives, choosing the right abstraction
level is essential for correctly eliminating non-determinism.
Research covers various recording/replaying systems on different abstraction levels, includ-
ing levels on syscalls [24] [25] [26], Java Virtual Machine to system interaction [7], and CPU
instructions [23]. Differences between this work and the mentioned recording/replaying
systems are denoted in greater detail in Section 7.



3. Analysis

This chapter defines the goal of this work and highlights its contributions. Furthermore, it in-
troduces the underlying trust model that we assume for our approach and the work’s scope.

3.1 Goal and Contributions

This work aims to research the feasibility of a new approach for verifying the correctness
of application execution. The correctness is determined by executing the same application
on two different systems under identical conditions and comparing both executions. If and
only if no differences or only acceptable differences during the executions occurred, we
consider both executions as correct.

The program code of an application itself executes deterministic on a computer [23].
However, different influences introduce non-determinism to the execution. Cornelis et al.
and Ronsse et al. identified four different sources for non-determinism of an application’s
execution, presented in Figure 3.1 [24], [27].
In this work, we primarily focus on non-determinism induced by system calls as they are
essential for application execution. The other three aspects (network connections to shared
memory) are thus beyond the scope of this work.
Therefore, we assume that two executions of the same application must be equal if and
only if the order and semantical behavior of the involved syscalls are equal.

Consequently, our approach operates on the level of syscalls as illustrated in Figure 3.2 on
Page 13. Each syscall invocation and return is compared to the corresponding invocation
and return on the other system. If they are equal, the execution continues; otherwise, it
will be aborted. Differences will be saved for later analysis.

Then, potentially detected differences in both application executions originate from com-
ponents below the syscall level (see Section 2.4). Hence, this indicates either a hardware
or software fault in one of the systems. Consequently, an underlying goal of this work is
finding bugs or backdoors in involved components below the level of syscalls by identifying
deviating results.
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Non-Determinism

System calls Network Interrupts Shared memory

Figure 3.1 Sources of non-determinism in application execution [24] [27].

Thus, our contributions with this work are:

1. Proposing a conception for the goal of verifying application execution across two
different systems on the abstraction level of system calls

2. Identifying practical issues of a conception’s implementation and presenting solutions

3. Proposing an implementation of the conception

4. Evaluating the conception’s feasibility

3.2 Trust Model and Scope

This section describes our trust model and the assumptions which are made within this
work.

We consider two different systems on which we want to verify correct application execution.
However, we expect one of both systems to behave incorrectly, as it might contain unknown
bugs or backdoors in either software or hardware components. Nonetheless, we assume
that a bug that might exist on one system does not exist on the other. Therefore, if our
approach identified a difference between both executions, we are not able to determine
on which of both systems the application was executed incorrectly. Instead, we can only
identify the presence of differences in one of the components.

The scope of this work lies in the contribution to successfully applying our concept to the
cat application. Therefore, supporting the syscalls of the cat application and its underlying
practical challenges are primarily in focus. However, regarding the time frame, additional
aspects for supporting syscalls and challenges beyond the ones of cat are also discussed.

We focus on Linux-based OSs on an x86 ISA with a 64bit architecture.
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Figure 3.2 Overview of the idea of verifying application execution on the level of system
calls.





4. SPERRIPS

This chapter introduces our concept named “Securing Process Execution by Recording
and Replaying the Inner Process State (SPERRIPS)”. Section 4.1 gives an overview of the
general principle and a definition of “inner process state” as considered in this work. Then,
a case study of the involved syscalls of the cat application is followed by a motivating
example. The case study is used for deriving requirements for certain challenging aspects
regarding the conception and implementation. Section 4.3 discusses these recognized issues
in greater detail and presents solutions. However, some of the contemplated aspects in
Section 4.3 go beyond cat’s requirements as they also discuss additional aspects.

4.1 Concept and Overview

The SPERRIPS approach uses the abstraction level of syscalls for the verification of
application executions across two different systems. It is divided into two phases, similar
to common recording/replaying systems (see Section 2.4). The phases are also referred to
as recording and replaying phases.
The recording phase takes place on the first system, while the replaying phase is performed
on the other system. Figure 4.1 on Page 16 illustrates the recording phase on System 1 and
Figure 4.2 on Page 17 the replaying phase on System 2. In both phases, an executor, which
we refer to as “tracer”, executes the target application, e.g., cat. The executed application,
which we refer to as “tracee”, is observed during its execution. In the recording phase, the
tracer records the order of all invoked syscalls, together with their calling and returning
argument values, and saves the data to a file (recording.bin). In the replaying phase, the
tracer executes the tracee a second time and again traces the invoked syscalls. In contrast
to the recording phase, it now uses the recorded argument values from the recording.bin
file to compare them with those appearing in the replaying phase.

Therefore, it requires each system call to be explicitly executed on both systems rather than
simply replaying recorded values. This is a fundamental difference to recording/replaying
systems on the level of syscalls, which replay recorded values instead of re-executing
intercepted operations. Only executing the syscalls on both systems can reveal potential
differences in their execution.
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In the case of an encountered difference, the differing value might be replaced with the
recorded one. We refer to this operation as “replaying”. Replaying forces the tracee to
operate on the recorded data and thus continue execution deterministically and equally as
in the recording phase. However, only acceptable differences are overcome by replaying
the recorded value. In case unacceptable differences occur, the tracer will abort the
tracee’s execution, and all unacceptable differences are saved to a file (differences.bin).
Therefore, replaying or aborting depends on the definitions of acceptable differences. We
give definitions of acceptable and unacceptable differences for the execution of cat in
Section 4.2.
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Figure 4.1 A conceptual overview of SPERRIPS recording phase.

The Inner Process State

This section introduces the term inner process state as used in this work and clarifies which
data are obtained from the tracee in both phases.

The difference between an application and a process is that a process is the running
instance of an application [8]. The OS kernel manages its address space, including the
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Figure 4.2 A conceptual overview of SPERRIPS replaying phase. On (A), the retrieved
arguments are compared to the recorded ones.

application’s code and data sections, loaded libraries and mapped files, the application’s
heap, stack, and process and thread-related controlling data structures. An exemplary
simplified virtual address space of a cat process is illustrated in Figure 4.3 as obtained via
cat /proc/self/maps.

When speaking of saving and restoring the inner process state in this work, the SPERRIPS
approach collects all relevant data on the chosen abstraction level of syscalls which are
necessary for comparing the syscall’s invocation and effect. This includes all data that are
either an argument value or return value of a syscall, including possible return arguments.
Therefore, the data which is to be obtained depends on the syscall’s signature and purpose.
All these data are available from user-space. However, the invocation of a syscall produces
side-effects in internal kernel structures, as pointed out by Cornelis et al. [24]. For example,
internal management data for opened files, mapped memory pages, etc. [8]. We purposely
do not trace and record/replay these internal data stored in kernel-space. By re-executing
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each syscall on both systems, rather than replaying recorded values, we demand both
systems to produce the same side-effects. Consequently, potentially detected differences
originate from differing behavior within the kernel or hardware components and are thus
exactly what our approach aims to detect.

0x00..00

cat
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libc-2.31.so

m
m

a
p
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...
ld-2.31.so

[stack] ↑

[vvar]
[vdso]

0x7f..ff

Figure 4.3 Simplified virtual address space layout of cat with activated ASLR and the
mapped Virtual Dynamic Shared Object. The arrows indicate the address-wise growth
directions.

4.2 Case Study: cat

As defined in Chapter 3, the overall contribution of this work is the verification of the
execution of the cat application across two different systems. Therefore, in this section,
we investigate the involved syscalls of a cat process to determine requirements for the
SPERRIPS conception. Additionally, the two phases of SPERRIPS are illustrated by a
motivating example of the read syscall. Then, in Section 4.2.2, we provide our definitions
for a verified correct execution of cat on two different systems. These definitions later guide
the strived implementation.

4.2.1 Involved System Calls and Motivating Example

The cat command-line tool1 expects one or more arguments as file paths and writes the
contents of these files to stdout. Therefore, cat necessarily leverages syscalls for opening
and reading files and writing content to stdout or a file descriptor. However, even more
syscalls are involved. The following shows a complete list of all involved syscalls determined
by strace of an execution of cat /etc/hostname2 on a Debian 11 system with version
2.31 of libc and disabled VDSO feature. The system calls are listed in the order of their

1An application from Linux coreutils
2cat (GNU coreutils) 9.0.12-f60a3 built from source code, from git tag v9.0
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occurrence but with removed duplicate entries. We refer to its manual page entry for a more
detailed description of a syscall’s purpose and behavior. The syscalls arch_prctl and
exit_group have no libc wrapper equivalent. Therefore, they are listed as an invocation
via the generic system function.

1. brk: int brk(void *addr);
3

2. uname: int uname(struct utsname *buf);

3. access: int access(const char *pathname, int mode);

4. openat: int openat(int dirfd, const char *pathname, int flags);

5. fstat: int fstat(int fd, struct stat *buf);

6. mmap: void *mmap(void *addr, size_t length, int prot, int flags, int fd,

off_t offset);

7. close: int close(int fd);

8. read: ssize_t read(int fd, void *buf, size_t count);

9. mprotect: int mprotect(void *addr, size_t len, int prot);

10. arch prctl: int syscall(SYS_arch_prctl, int code, unsigned long addr);

11. munmap: int munmap(void *addr, size_t length);

12. fadvise64: int posix_fadvise(int fd, off_t offset, off_t len, int advice);

13. write: ssize_t write(int fd, const void *buf, size_t count);

14. exit group: noreturn void syscall(SYS_exit_group, int status);

Table 4.1 summarizes all argument types by their programmatic types. Additionally, we
classified them into two different classes, namely pointers and numerical values. Technically,
all syscall arguments are passed as numerical values via the processor registers. The access
syscall for instance retrieves a const char *pathname pointer as an argument. But in terms
of verifying the inner process state, it is not significant that the buffers’ addresses are equal,
but their content. In fact, with activated ASLR, the buffers’ addresses are different in two
separate executions. Precise conventions for argument comparison, depending on their
different types and the effect of ASLR, are dealt with in Sections 4.2.2 and 4.3.3.

In the following, we illustrate the procedure of both the recording and the replay-
ing phase of SPERRIPS for verifying an intercepted read syscall while tracing cat
/home/example.txt. In this example, the file /home/example.txt exists on both
systems and has the following content.

1 Hello world!

Listing 4.1: Content of the example file located at /home/example.txt

3The wrapper function returns an integer value to indicate an error. However, the original brk syscall
returns a void* pointer as the new program break.
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Data type Classification

void*

pointers
const char*

struct utsname*
struct stat*
const void*

int

numerical values
off_t
size_t
ssize_t

unsigned long

Table 4.1 Overview and classification of the involved argument types of all syscalls of
cat /etc/hostname.

Recording Phase

We assume SPERRIPS encounters the read syscall, executed by cat. The read syscall
takes three arguments and returns a ssize_t value (see syscall No. 8) in the above
enumeration. According to the System-V calling convention (see Section 2.1.2), these
argument values are passed via the processor registers in the order of RDI, RSI and RDX.
When intercepted before the syscall is executed, they possess the following exemplary values:
RDI = 0x3: The file descriptor number for the file to read, RSI = 0x7f8b203dd000: A
pointer to the buffer, where the kernel stores the read bytes, RDX = 131072: The number
of bytes to fill into the allocated buffer.
By definition, read returns the actual number of read bytes as its return value. According
to the considered calling convention System-V, this happens to be in the RAX register.

In terms of preserving the inner process state, it is insufficient to save and restore the
pointer value from RSI since not the pointer value is of relevance, but the buffer’s content.
Therefore, SPERRIPS need to record the content of the buffer, pointed to by the pointer in
RSI, since this holds the actual read data. Hence, the memory content must be retrieved
from the tracee’s virtual address space and then saved together with the argument values.

For this example, we assume that the memory at address 0x7f8b203dd000 is allocated
for 139264 bytes and holds “Hello world!” continued by null-bytes after the syscall’s
execution.

Replaying Phase

Now, in the replaying phase, SPERRIPS again intercepts the read syscall. Due to activated
ASLR, the address of the buffer is different on this execution. The value of RSI is now
0x7f6538e36000. After the read syscall has been executed, SPERRIPS resolves the
buffer content again. But instead of comparing the raw pointer values, it compares the
actual buffer content with the recorded one. We assume both systems operated identical,
and thus, the buffer from the replaying phase also contains “Hello world!” followed by
null-bytes.
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This toy example demonstrates the verification procedure for the buffer of the read syscall.
In contrast to recording/replaying systems, the syscalls are executed on both systems to
compare their results. Differences are only overcome by replaying if they are acceptable.

4.2.2 Verified Correct Execution of cat

In this section, we define how two executions of cat are considered to be equal and thus
correct. It explicitly stretches which differences are acceptable differences and which are
unacceptable differences.

First, we state the three possible scenarios when intercepting a syscall in the replaying
phase.

1. Syscall type is equal to the recorded type, and all argument values (including the
return value) are equal, too.

2. Syscall type is equal to the recorded type, but not all argument values (including the
return value) are equal.

3. Syscall type is different from the recorded type.

Scenario 1 is the desired case, where a syscall invocation in the replaying phase is equivalent
to the one from the recording phase. Since no difference occurred in this case, the tracee’s
execution continues.
For the other two scenarios, we distinguish between acceptable differences and unacceptable
differences.

Acceptable Differences

This section introduces acceptable differences of the identified syscalls of cat. The identified
acceptable differences are caused by differently provided environments. They are eliminated
by replacing the differing value in the replaying phase with the recorded value from the
recording phase. Thereby, we implement a recording/replaying mechanism and thus force
the tracee’s execution to continue the execution deterministically as recorded. The following
shows the acceptable differences, which are assumed not to be significant for cat’s execution.

For the stat struct, we accept differences for values of the members st_dev, st_ino,
st_atime, st_mtime, and st_ctime. For the utsname struct, we accept different
values for all of its members.

To apply the concept to further syscalls or environments, other acceptable differences must
be defined if necessary. Details on environment-specific differences are discussed in greater
detail in Section 4.3.4.

Unacceptable Differences

The following shows a list of explicit unacceptable differences in the execution of cat. We
define aborting the tracee’s execution on any encountered unacceptable difference.

1. Occurrence of aforementioned Scenario 3. It indicates a different execution flow and
thus an obvious difference in program execution.
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2. Difference in any numerical value, as classified in Table 4.1.

3. Difference in any semantical usage of a pointer. This is the case if a pointer does not
point to the equivalent location (with respect to ASLR) as in the recording phase.
Details on this are discussed in Section 4.3.3.

4. Difference in any buffer content, pointed to by a pointer as classified in Table 4.1
with the exception of the aforementioned accepted differences in struct stat and
struct utsname.

Detailed Conventions for Argument Comparison

The following gives detailed conventions for the equality of the data types as presented
in Table 4.1 on Page 20. The comparison happens in the replaying phase between the
recorded value and the one captured in the replaying phase. Therefore, we refer to an
argument value fetched in the recording phase as the first, while we call an argument value
retrieved in the replaying phase as the second.
The conventions are as follows:

1. Numerical values are equal if the first value matches the second one.

2. void* pointers are equal if the second value corresponds to the first value under
consideration of ASLR. This is further elaborated in Section 4.3.3.

3. const char* values are considered to be equal if the memory content, starting from
the first address up to the first appearing null-byte, is equal to the memory content,
starting from the second address up to the first appearing null-byte.

4. struct utsname* values are considered to be equal if all members of the first referenced
struct are equal to all members of the second referenced struct with the exception of
the mentioned acceptable differences.

5. struct stat* values are considered to be equal if all members of the first referenced
struct are equal to all members of the second referenced struct with the exception of
the mentioned acceptable differences.

6. const void* values are considered to be equal if the memory content, starting from
the first address up to the following n bytes, is equal to the memory content, starting
from the second address up to the m next bytes. Where n is the argument value of
the corresponding argument of the first syscall and m is the argument value of the
corresponding argument of the second syscall. Further, n must be equal to m.

For Definition 6, we leverage the fact that the buffer’s size is determined by its corresponding
argument (compare Syscalls 6, 8 and 13 in Section 4.2). Since in contrast to character
buffers (const char*), they do not have an implicit indication of their content length.

Due to the nature of mmap’s behavior, we define that its return value must both be treated
as void* and const void*. For determining the page’s length, mmap’s length argument
is used. For read, buf is treated as a type of const void* after read has been executed.
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4.3 Issues and Practical Challenges

This section deals with issues and practical challenges of recording and replaying the inner
process state. First, we discuss the technical details for an issue. Then we propose the
selected solution for our conception. The addressed issues primarily belong to the syscalls
from the cat binary, however, some also relate to other aspects beyond those of cat. In
particular, theoretical considerations to the previously excluded sources of non-determinism
(see Section 3.1) are also addressed.

4.3.1 Interception and Handling of System Calls

One key principle of the SPERRIPS approach is intercepting all syscalls that are invoked by
the tracee. Then, depending on the intercepted syscall type, different handling is required.

The handling includes the correct parsing of all syscall arguments and verification of the
syscall’s performed action. Due to the calling convention’s design, a syscall can retrieve up
to six different arguments [12].

In Section 4.2 we have seen that numerical argument values can be fetched directly with
access to the processor registers. In contrast, buffer and struct content must be retrieved
from the tracee’s memory by reading from the pointer location as stored in the processor’s
register. Furthermore, some syscalls like fstat use return arguments. These are arguments
that the syscall alters through its execution in favor of returning information. In the case
of fstat, the syscall writes the file information into the struct, whose address is given as
a syscall argument.

From these observations, we can derive the following requirements for an implementation
of SPERRIPS regarding the syscall handlers:

1. Access to an interface for intercepting the tracee’s syscalls for both prior and after
the syscall’ invocation.

2. Primitives for reading and writing to a processor register and the tracee’s virtual
address space.

3. Handlers that define the argument types of a syscall in order to implement appropriate
argument retrieval and syscall behavior.

Requirements 1 and 2 can be resolved by using the ptrace feature of Linux (see Section 2.1.3).
It allows intercepting syscalls and provides mechanisms for reading and writing to the
tracee’s virtual address space and the processor registers. In this work, we refer to an
interception as on entry when it happened before the system retrieved the syscall and on
exit when the interception happened after the system performed the syscall. Regarding the
third requirement, a mapping of a syscall to its list of argument types can be retrieved
from the syscall’s signature. It can either be looked up on Page 2 in the manual pages or
directly in the kernel’s source code.
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Nested Data Structures

The previously described issue of correctly understanding and processing a system calls’
argument might be even more complex. Despite the stat structure, other data structures
may contain pointers as its members that reference additional structures or buffers. An
example for such a nested structure is the msghdr struct, which is an argument of the
recvmsg syscall. It posses the three members msg_name, msg_iov, msg_control,
which are pointers to other structs and data as illustrated in Figure 4.4.

void* msg name

socklen_t msg namelen

struct iovec* msg iov

size_t msg iovlen

void* msg control

size_t msg controllen

int msg flags

Struct msghdr

void* iov base

size_t iov len

mem content

Struct iovec

Memory

mem content

mem content

Figure 4.4 The nested structure of the msghdr struct as defined in sys/socket.h in
the Linux kernel.4

For recording the inner process state, the actual referenced data must also be saved to be
available in the replaying phase. This requires that the implementation is able to parse
encountered structs properly and is adapted to retrieve referenced data from memory.

4.3.2 Potential Memory Corruption

This section deals with potential memory corruptions through replaying recorded values.
We have already seen that replaying struct and buffer contents requires actively altering
the tracee’s memory. One of a struct’s characteristics is its constant size within memory5.
Hence, replaying a struct within the tracee’s memory by overwriting the corresponding
memory content with the recorded struct is not problematic, as their sizes are of equal
length. However, this might not be the case for recorded buffer content of “arbitrary”
size. Therefore, this section deals with the case where there is a discrepancy in the size of
recorded memory content and available space for replaying it. Further, this section specifies
how the SPERRIPS approach deals with this scenario.

An example for replaying buffer content for the read syscall is already demonstrated in
Section 4.2.1. However, in this particular example, the contents of the buffers were of equal
size in both phases (Hello world!\n and Hello world!\n).
In the following, the two scenarios are considered, where the sizes are different:

4https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/include/linux/socket.h?h=v5.
15.1

5This is the case if the recording and replaying phase happen on the same target platform due to the
reason given in Section 2.2.2.

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/include/linux/socket.h?h=v5.15.1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/include/linux/socket.h?h=v5.15.1


4.3. Issues and Practical Challenges 25

1. The size of the value to replay is less than the available memory space.

2. The size of the value to replay is greater than the available memory space.

Replay Fewer Bytes than Allocated Buffer Size

We consider a scenario where we replay fewer bytes into the tracee’s memory than the
buffer in memory was allocated for. From a replaying perspective, this case is trivial to
handle.
We consider the following example: An application has two buffers allocated, as shown in
Listing 4.2. The first buffer begins at 0x7fffe2759020 and holds the content Hello

there!\n.6 and the second is located at 0x7fffe275902e and contains What's up?\n.

Let us assume we recorded Hi there!\n.6 for the first buffer instead and thus need to
replay this content into the first buffer. This content is three bytes shorter than the original
one (Hi vs. Hello). Hence, it is unproblematic to overwrite the memory content, starting
from address 0x7fffe2759020.

1 0x7fffe2759020 48 65 6C 6C 6F 20 74 68 Hello th
2 0x7fffe2759028 65 72 65 21 0A 00 57 68 ere!..Wh
3 0x7fffe2759030 61 74 27 73 20 75 70 3F at's up?
4 0x7fffe2759038 0A 00 00 00 00 00 00 00 ........

Listing 4.2: Exemplary memory layout within the tracee’s process. Displayed in big endian
notation, for readability sake.

Therefore, we define the following for scenarios like this, where more space is available
than required. First, the memory is overwritten with the recorded value, and null-bytes
replace the remaining bytes. In our example, this leads to the memory content illustrated
in Listing 4.3.

1 0x7fffe2759020 48 69 20 74 68 65 72 65 Hi there
2 0x7fffe2759028 21 0A 00 00 00 00 57 68 !.....Wh
3 0x7fffe2759030 61 74 27 73 20 75 70 3F at's up?
4 0x7fffe2759038 0A 00 00 00 00 00 00 00 ........

Listing 4.3: Overwritten memory content as defined in this work. Displayed in big endian
notation, for readability sake.

Replay More Bytes than Allocated Buffer Size

This scenario deals with the case where the content to replay is greater than the actual
buffer in the tracee’s memory. We begin with the same toy example from the previous
section as listed in Listing 4.2. Now we assume that we recorded Hello everyone!\n.6,
instead of Hello there!\n. for buffer one at address 0x7fffe2759020 and have to replay
it. Overwriting the memory with the recorded value would lead to the memory layout as
illustrated in Listing 4.4.

1 0x7fffe2759020 48 65 6C 6C 6F 20 65 76 Hello ev
2 0x7fffe2759028 65 72 79 6F 6E 65 21 0A eryone!.
3 0x7fffe2759030 00 74 27 73 20 75 70 3F .t's up?
4 0x7fffe2759038 0A 00 00 00 00 00 00 00 ........

Listing 4.4: Overwritten memory with corrupted consecutive buffer. Displayed in big
endian notation, for readability sake.

6The trailing dot represents a non-printable null-byte.
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This results in a memory corruption since the replayed content affects the consecutive
memory. The second buffer, which begins at 0x7fffe275902e was formerly holding
What's up?\n. and is now overwritten with three bytes from the replayed content. Memory
corruptions cause severe problems in the process, which most likely result in a crash or
wrong behavior. Hence, replaying too much data into too small buffers is no suitable
solution. Therefore, we evaluated the following two strategies for coping with this scenario.

1. Allocating new memory on behalf of the tracee.

2. Abort the tracee’s execution.

For Strategy 1, the mmap syscall can be leveraged to allocate new memory on behalf of the
tracee. However, this requires control flow manipulation within the tracee processes, such
that the process invokes the mmap syscall. Then, the kernel provides a new memory page
that can be used for storing the recorded value. However, this does not have any effect
on the inner process state, as long as the former buffer address 0x7fffe2759020 is not
replaced with the newly allocated one, for each reference, where the program uses the old
buffer address. However, since we operate on the level of syscalls, we do not trace every
memory access that takes place within the tracee’s process. Intercepting memory access
is out of the work’s scope. Hence, it is no appropriate solution to our conception as we
cannot guarantee that the tracee operates on data of the newly allocated buffer.

Therefore, we define aborting the tracee’s execution if there is not enough memory space
to write a recorded value. However, since we eliminate non-determinism, we assume that
the cases shown in this section will not appear.

4.3.3 Address Space Layout Randomization

Modern OSs implement the exploit mitigation technique ASLR. It increases the system’s
security and hence is recommended to be enabled. Nevertheless, it also increases the
complexity of recording and replaying inner process states. Recorded data cannot simply
be replayed into the child’s memory. Due to the randomized address space layout, two
executions of the same application have two different address layouts, which affect syscalls
argument values and the inner process state. In this section, we describe different effects of
ASLR. After analyzing them, we define SPERRIPS behavior, such that it can record and
replay data on systems with enabled ASLR successfully.
We identified two different types of address usages. In the following, we refer to them as
directly used addresses and indirectly used addresses.

Directly Used Addresses

Using addresses as an argument value or return value of a syscall we refer to as directly used
addresses. An example for such a syscall is mmap7, which maps a file to a given address
location. On success, the kernel returns the actual address of the mapped memory location.
A possibly subsequent call of munmap8 could unmap the file and requires the previously

7void *mmap(void *addr, size_t length, int prot, int flags, int fd, off_t
offset);

8int munmap(void *addr, size_t len);
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mapped address as its argument. With activated ASLR, two separate executions of an
application using mmap result in two differently randomized memory locations and hence
in two different argument and return values.

Concerning our aim of verifying correct application behavior, it is not essential to have the
exact same numerical values for addresses but their semantical usage. If we recorded a
sequence of mmap(..) = 0x123, munmap(0x123) it should be considered equal with
mmap(..) = 0x456, munmap (0x456), since the differing randomized addresses are
used in the same manner.

To realize this, our proposed approach uses a pointer mapper. Figure 4.5 on Page 37
illustrates a flow chart of the mapping logic and provides an example for detecting wrong
pointer usage. This key-value store maps the address from the recording phase (rec addr)
to the address from the replaying phase (repl addr). Additionally, in a second map, the
addresses are mapped vice versa. Whenever a memory address appears as an argument or
return value during the replaying phase, it is first checked whether the recorded address
has an existing entry in its map. If so, it is checked whether the replayed address is
equal to the mapped address, and on success, it is used for SPERRIPS operation. If the
recorded address has no existing mapping, it is checked whether the replayed address has
an existing entry in its map. If not, the addresses are mapped. But if so, it indicates that
an address has falsely been used as an addresses has been used that does not match the
recorded sequence. This procedure allows verifying the same semantical usage of differently
randomized addresses. On a detected difference, we define aborting the tracee’s execution.

Indirectly Used Addresses

Addresses embedded in data, e.g., when using nested data structures (see Section 4.3.1),
are referred to as indirectly used addresses in this work. Indirectly used addresses require
additional effort for the conception and implementation since the affected data structures
must be parsed, such that the addresses are available to SPERRIPS. In case of replaying,
the indirectly used addresses must be updated within the replayed struct such that they
point to the correct randomized addresses of the replaying phase. Moreover, involved
nested data structures require that the data behind the referenced locations must also be
updated with respect to the current randomized address space layout. This procedure
must possibly be executed recursively if a nested data structure also contains a nested data
structure as the msghdr struct, for example, does (see Figure 4.4 on Page 24).

Listing 4.5 illustrates an example of indirectly used addresses in a msghdr struct. We have
seen this struct as an example of nested data structures earlier in Section 4.3.1. We assume
we obtained the data as shown in Listing 4.5 in the recording phase from a recvmsg
syscall9 for its struct msghdr *msg argument from memory address 0x7ffc2a0179f0.

1 struct msghdr { // 0x7ffc2a0179f0
2 void *msg_name = 0x7ffc2a017a30;
3 socklen_t msg_namelen = 0x80;
4 struct iovec *msg_iov = 0x7ffc2a0179d0;
5 size_t msg_iovlen = 0x1;
6 void *msg_control = 0x7ffc2a017ab0;
7 size_t msg_controllen = 0x0;

9ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);
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8 int msg_flags = 0x0;
9 };

Listing 4.5: Pseudo code representation of a msghdr struct in the recording phase.

The three members msg_name, msg_iov, msg_control are pointers to other data or
structs (see Figure 4.4 on Page 24). Hence, when replaying this msghdr struct into memory
with another address space layout randomization, the pointers must be updated, or they
will point to invalid locations.

Now, we assume we have captured the struct in the replaying phase as presented in List-
ing 4.6. For this example we purposely modified the values of msg_namelen, msg_iovlen,
msg_controllen and msg_flags, such that they are different. Due to ASLR, the point-
ers are different anyway.

1 struct msghdr { // 0x7ffeb7e35a90
2 void *msg_name = 0x7ffeb7e35ad0;
3 socklen_t msg_namelen = 0x40;
4 struct iovec *msg_iov = 0x7ffeb7e35a70;
5 size_t msg_iovlen = 0x0;
6 void *msg_control = 0x7ffeb7e35b50;
7 size_t msg_controllen = 0x10;
8 int msg_flags = 0x40;
9 };

Listing 4.6: Pseudo code representation of a msghdr struct in the replaying phase.

We can illustrate our defined behavior for the SPERRIPS approach with these two examples.
In the first step, we replay the recorded struct exactly the same as recorded into the memory
location of the replayed struct. In this example this is at 0x7ffeb7e35a90. Thereby we
ensure that all member fields have the same values as recorded. This is important for all
non-pointer members like msg_namelen, msg_iovlen, msg_controllen, msg_flags.
However, now the address fields msg_name, msg_iov, msg_control must be updated
with the addresses from the struct, as obtained in the replaying phase, such that the
randomized addresses are correct. Additionally, at these locations (0x7ffeb7e35ad0,
0x7ffeb7e35a70, 0x7ffeb7e35b50) the nested data structures’ content must be
replayed. After all, this results in a struct like shown in Listing 4.7.

1 struct msghdr { // 0x7ffeb7e35a90
2 void *msg_name = 0x7ffeb7e35ad0;
3 socklen_t msg_namelen = 0x80;
4 struct iovec *msg_iov = 0x7ffeb7e35a70;
5 size_t msg_iovlen = 0x1;
6 void *msg_control = 0x7ffeb7e35b50;
7 size_t msg_controllen = 0x0;
8 int msg_flags = 0x0;
9 };

Listing 4.7: Pseudo code representation of a replayed msghdr struct with activated ASLR.

Note that all non-pointer members have their recorded values set, while the pointers have
the values of the replayed struct. Moreover, the memory content behind these pointers has
been updated accordingly.
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Handling indirectly used memory addresses is significantly more complex, as it requires
adapting the SPERRIPS implementation precisely to the data structures used by the
kernel. Hence, each nested data structure needs individual code for parsing the structure
and updating the contained pointer members.

4.3.4 Environment State

Comparing two application executions on two different systems with varying environment
setups can lead to differences in syscall return values. Therefore, it is required to identify
environment-specific differences that can influence an application’s verification. Possibly
such differences can be defined as acceptable differences, as seen in Section 4.2.2. However,
this section points out identified dependencies and presents appropriate conceptual solutions
for mitigating them on two systems

Influence of Linked Libraries

Using strace on different systems revealed that running the same version of cat10 on different
systems (Debian 11 vs. Ubuntu 20.04) leads to a different sequence of syscalls.
For example, the arch_prctl syscall is invoked in the beginning when cat is executed
on a Ubuntu 20.04 system, but not on a Debian 11 system. In Listing 4.8 a truncated
output of strace cat /etc/hostname from a Ubuntu 20.04 is shown, which includes
the arch_prctl syscall11.
Debugging the execution revealed that the dynamic linker invokes the syscall. However, both
systems use libc’ linker in version 2.31, with minor adaptions by the distribution maintainers.
Apparently, Debian does not compile the code of libc with the set CET_ENABLED flag12

while Ubuntu does13 and this impacts calling arch_prctl or not.

1 # strace cat /etc/hostname
2 execve("/usr/bin/cat", ["cat", "/etc/hostname"], 0x7fffffffe4a8 [..]) = 0
3 brk(NULL) = 0x555555560000
4 arch_prctl(0x3001 /* ARCH_?? */, 0x7fffffffe3e0) = -1 EINVAL (Invalid argument)
5 access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory)
6 openat(AT_FDCWD, "/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 3
7 [..]

Listing 4.8: Shortened strace output of cat /etc/hostname on Ubuntu 20.04 with libc
2.31.

This shows that depending on libc’s version, the application executes different syscalls. This
effect probably applies to other dynamically linked libraries. Therefore, we must ensure
that the same shared library versions are used on both systems for recording and replaying.
This can be achieved by either having the same shared library files on the systems or
statically linking the required libraries into the tracee during compilation. However, this
requires adaption of the tracee.

10cat (GNU coreutils) 9.0.12-f60a3
11As visible in Listing 4.8, argument 0x3001 is not understood by the system, because it belongs to the

hardware shadow stack security feature, which is not available on this CPU.
12https://buildd.debian.org/status/fetch.php?pkg=glibc&arch=amd64&ver=2.31-13%2Bdeb11u2&

stamp=1633188416&raw=0 Last accessed on 2021-12-09
13https://launchpad.net/ubuntu/+source/glibc/2.31-0ubuntu9.2/+build/20580861/+files/buildlog

ubuntu-focal-amd64.glibc 2.31-0ubuntu9.2 BUILDING.txt.gz Last accessed on 2021-12-09

https://buildd.debian.org/status/fetch.php?pkg=glibc&arch=amd64&ver=2.31-13%2Bdeb11u2&stamp=1633188416&raw=0
https://buildd.debian.org/status/fetch.php?pkg=glibc&arch=amd64&ver=2.31-13%2Bdeb11u2&stamp=1633188416&raw=0
https://launchpad.net/ubuntu/+source/glibc/2.31-0ubuntu9.2/+build/20580861/+files/buildlog_ubuntu-focal-amd64.glibc_2.31-0ubuntu9.2_BUILDING.txt.gz
https://launchpad.net/ubuntu/+source/glibc/2.31-0ubuntu9.2/+build/20580861/+files/buildlog_ubuntu-focal-amd64.glibc_2.31-0ubuntu9.2_BUILDING.txt.gz
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Process Identifiers

On Linux systems, each process is identified by a unique process identifier (PID) [8]. PIDs
are assigned by the kernel to each newly created process, e.g., through the fork or clone
syscall. Each call to fork creates a new process that adds to the system’s process tree.
In Linux, the assigned PID depends on the current PID counter and remaining available
PIDs14. As a consequence, the tracee’s PID will be different on two systems if not all
processes have been executed in the exact same order up to the tracee’s execution, which
is unlikely.

Examples of syscalls that take a PID as an argument are getpid and wait. Replaying a
recorded PID to those syscalls thus either requires to translate the recorded PID to the
actual one of the tracee or to ensure that the PID values are equal on both systems.

Conveniently, the Linux kernel implements the so-called namespaces concept, which we
can leverage to mitigate the described problems of PID numbering [28]. Namespaces
separate different resources from a process, such that the process is isolated from other
processes regarding a particular specified resource type. One of the supported types are
PID namespaces.

On creating a new PID namespace, the kernel separates it from other ones on the system and
starts numbering with one again. Then, the PID numbering is maintained independently
of other namespaces, and processes will only be visible to those in the same namespace.
By using PID namespaces, the tracee will always be the first process in the namespace, as
the tracer executes it. Hence, the tracee’s PID and the ones of its possible children will be
deterministic on each execution. This allows us recording and replaying PIDs.

System Configuration

As seen, the tracee’s execution flow is influenced by the version of the dynamically linked
libc library, which comes as a part of the used Linux distribution. However, other files
might also influence the tracee’s execution flow depending on the traced application. For
example the configuration file ∼/.vimrc influences, which features of the vimeditor are
activated and used. Different configurations thus lead to different behavior, and hence
different potential execution flows of vim. As a consequence, it is required to provide equal
system configurations and file systems to the tracees.

For this purpose, the namespaces concept can also be used. The mount_namespaces
syscall can control which file system mounts are available to a process. In combination with
pivot_root it is possible to exchange the file system’s root (/) with a different directory.

This can be used to exchange the file system’s root with a minimal Debian installation15

on both systems. Thereby, the same Debian environment can be provided for each tracee,
independently of their actual host system. It guarantees that both environments provide
the same shared libraries and file systems.

Inode Numbers

The fstat syscall16 takes a file descriptor as an argument and returns a struct with
information about the corresponding file in its second return argument (see Section 4.3.1).

14https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/kernel/pid.c?h=v5.15.1
15The command-line utility debootstrap installs a Debian distribution into a given directory.
16fstat(int fd, struct stat *buf);

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/kernel/pid.c?h=v5.15.1
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This information includes the birth, access, and modification timestamps of the file and its
inode number. Inodes are the file system’s internal representation of filesystem elements
like directories or files [8]. Each of these elements is identified through a unique inode
number assigned sequentially in ascending order. This means that the same path like, e.g.,
/tmp/example-file can exist on two systems. Still, they have different inode numbers
representing the mentioned file if not all filesystem elements have been created and deleted
in the exact same order.

For this work, two different strategies have been evaluated for dealing with differing inode
numbers during the recording and replaying phase.

1. Using an inode mapper, similar to the pointer mapper as for ASLR.

2. No specific handling and accept differences.

Regarding Strategy 1, each recorded inode number would map to a corresponding one in
the replaying phase, similar to pointer addresses for ASLR. Further, like for the ASLR
mapper, the semantical usage of inodes must be preserved.

We decided to use Strategy 2 for our implementation since inodes are a filesystem-specific
implementation abstraction detail that should not affect cat’s execution. Hence, inode
numbers are treated as acceptable differences and are thus replayed in this work.

However, in general, differences in inode numbers can be avoided by providing identical
file system images on both systems. Then, both kernels must return the same inode and
timestamp information on both systems, and differences are not acceptable anymore.

File Descriptors

In Section 4.2 we have seen that multiple syscalls (e.g., openat, fstat, write) require a
file descriptor number as an argument. In contrast to inode numbers, file descriptor values
do not depend on the system’s environment state. Instead, they depend on the application’s
execution flow, as the kernel holds file descriptors in a table per process [8]. On file opening,
the kernel adds a new entry to the table together with its file descriptor number, which is
assigned in ascending order, starting with zero. Hence, a differing sequence or usage of file
descriptors in the recording and replaying phase indicates different application behavior.
Thereby, file descriptor numbers should not only be equal, but they must be equal during
the recording and replaying phases.

4.3.5 Virtual Dynamic Shared Object

With the activated VDSO feature (see Section 2.1.1), our suggested usage of ptrace (see
Section 4.3.1) needs adaption since function calls to the VDSO are not visible to ptrace as
a syscall. This has to be considered for our conception and implementation of SPERRIPS.
To still trace these calls technically, either the usage of the VDSO can be disabled or calls
to the VDSO functions must be intercepted. However, since function interceptions are out
of the scope of this work, we disable the usage of the VDSO system-wide by setting the
kernel boot parameter vdso=0. Then, this complies with our conception as outlined in
Section 4.3.1.



32 4. SPERRIPS

4.3.6 Other Sources of Non-Determinism

This section deals with the three other sources of non-determinism, despite syscalls them-
selves, as given in Figure 3.1 on Page 12. Namely, these are network responses, received
interrupts, and shared data between multiple threads [5] [27]. In terms of reproducible
application execution, they constitute a more significant challenge to our approach. There-
fore, they require a different design and implementation to work with our concept and
goals. The following sections explain the reason for the introduced non-determinism, the
difficulties they bring, and how an adapted conception of SPERRIPS can treat them
anyhow. However, these adaptions are not currently implemented and are theoretical
considerations, party based on other recording/replaying systems research.
Additionally, special considerations regarding the getrandom syscall are discussed in this
section. It deals with the challenge of using the same secure random on two systems under
the assumed trust model and the two-phases conception.

Network Connections

When an application sends data to a network endpoint, it loses control over the processing
and the received response. A network endpoint’s behavior can change anytime, without
the application’s influence. Hence, a network connection must be treated conceptually as a
blackbox, whose internal behavior we neither control nor fully understand. Even if two
applications send the same requests to the same endpoint, they might receive different
responses. For example, two applications send a request “gettime” to a server. Influenced
by network routing, connection speed, and processing order of the requests, the server will
receive and process one of the two messages first. As the response, it sends its current time,
however, due to the different processing times, the responses are different. This example
demonstrates that executing two applications consecutively on two different systems does
not work for network connections.

Therefore, we suggest the following modifications to the current concept to make it work
with network operations. Figure 4.6 on Page 38 illustrates the procedure described in
the following. Instead of running the tracees consecutively in two phases, we now require
them to run in parallel on the two systems. Further, both SPERRIPS instances must
communicate with a trusted third party that we refer to as “decisioner”. Each time a
syscall is intercepted on a system, both instances send the retrieved argument values and
return types to the decisioner. The decisioner evaluates the equality of the argument values
and returns its result to the instances. Then, it performs network requests on behalf of
the two instances, if and only if the request’s data of both systems are identical. The
corresponding response is sent back to both SPERRIPS instances, which use the data for
continuing the tracee’s executions. Thereby it is ensured that both parties send the same
data and retrieve the same response.

We also propose a new trust- and attacker model with this conception. It is assumed that
an attacker can compromise one of the systems through a placed backdoor that implements
malicious behavior. However, the attacker cannot interact with the compromised system or
leak data from it as the system has no input/output interface other than to the decisioner.
Nonetheless, the decisioner’s output is observable, including issued network requests,
application abortion, and verification results.
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Timers and Signals

The setitimer syscall allows a process to specify a signal type and a time, after which
the OS kernel sends a signal of the given type to the process. When receiving a signal, the
process’s execution is interrupted to handle the received signal through an appropriate
signal handler [8]. Once a setitimer call has been executed, the kernel runs the timer
asynchronously in the background. This means the process’s execution continues indepen-
dently of the timer until it receives the signal.
These timed asynchronous events and all other asynchronously received signals or inter-
rupts challenge the conception of SPERRIPS. From a recording/replaying perspective,
they introduce non-determinism since the signal reception is not deterministic with regard
to the position of the currently interrupted instruction within the instruction stream [23].
On signal reception, the application’s flow changes to the signal handler routine to handle
the signal. If the signal handler itself uses syscalls or if the signal’s handling is influenced
by the currently interrupted position (e.g., depending on a value in memory), then the
differently interrupted executions lead to a differing sequence of recorded syscalls.

Different strategies can be thought of to solve this problem.

1. Replay at exact position: A SPERRIPS implementation counts the amount of
executed CPU instructions until the first signal is received. When replaying, it must
ensure that the second signal occurs at the exact same position by counting the
number of instructions and manually sending the signal to the process at this position.
This relates to the mechanism implemented by SimuBoost for replaying asynchronous
events for full system replay [23].

2. We require an application not to use signal handlers, which either use syscalls
themselves or interact with the process state.

3. Do not support applications with timers or signal handling.

Threading

Applications can use multiple threads for running code concurrently on multiple CPU cores.
So, instead of a single main thread, multiple threads run in parallel. The execution order,
however, of the threads is managed by the operating system’s scheduling mechanism [8].
The application has no control over it, and the thread order will probably vary on two
different systems. The SPERRIPS conception needs considerations for two aspects of
threading. First, being capable of handling different orders of syscall sequences. Second,
respecting data dependencies among multiple threads.

Regarding the first, we require a capability for our intercepting mechanism (see Section 4.3.1)
to assign a captured syscall to the corresponding thread. For the second, we see how other
recording/replaying mechanisms deal with data dependencies among multiple threads and
adapt them to our approach in the following.

Threads can use one of two fundamentally different ways of exchanging data. Either by
using a shared resource (i.e., memory) or leveraging message passing [8].
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Shared Resources

In the case of shared resources, multiple threads work on the same shared resource, i.e.,
shared memory. This leads to the commonly known problem of critical sections [8]. Critical
sections are code passages in which multiple threads work on the same resource. Without
proper synchronization mechanisms, not the application’s logic would manage the accesses
to this resource, but the thread’s scheduling order. This can lead to false application
behavior. Furthermore, threads could operate in the critical section concurrently and
thereby damage the data.

As a mitigation to this problem, OSs supply synchronization techniques such as semaphores.
With semaphores, only one thread at a time can enter the critical section and thus access
the resource. Other threads which want to enter the critical section are enqueued into a
waiting list [8]. The OS permits access to a critical section once another thread leaves it by
signaling it to the OS.

As stated by Rossee et al., for a correct replay, it is sufficient to execute the synchronization
mechanisms (semaphores) in the replaying phase in the same order as in the recording
phase. Thereby, the semaphores guarantee correct access order when assuming a race
conditions free program [27].

On Linux, semaphore primitives are provided through syscalls. Therefore, it is possible for
SPERRIPS to trace the individual calls for entering a critical section (wait) and leaving
it (signal). In conjunction with Rossee’s approach, using Lamport timestamps enables
to keep the strict ordering of recorded syscalls with the syscalls in the replaying phase [27].

Message Passing

The second mechanism for transferring data among threads is message passing. Contrary
to semaphores, now threads do not work on a shared resource. Instead, they explicitly
communicate with each other over a message passing interface. This interface consists of
two primitives for sending and receiving messages [8]. For synchronous message reception,
we can adapt SPERRIPS. In the case of asynchronous messages, the challenges are then
the same as for asynchronous signals, as stated in Section 4.3.6.

On recording synchronous messages, the recorder can assign each message to the corre-
sponding thread [27]. Therefore, it is sufficient to replay the recorded message in the
replaying phase without waiting for the actual thread to send it. This is possible as the
message content is already available through recording. Netzer and Miller even improved
this by only recording the order of racing messages [29].

The getrandom Syscall

This section deals with the particular getrandom syscall. It enables applications to
request securely generated random bytes from the kernel. As defined in Section 3.1, we
assume that one of the systems is not trustworthy and thus might not return secure random
values in either the recording or the replaying phase. Applying the current concept of two
consecutive recording/replaying phases thus grants implicitly more power to the system
from which the value has been recorded, as this is replayed into the other. Since we do not
know which of the two systems is not trustworthy, we might replay insecurely generated
randomness and thus also introduce insecure randomness to the other system. From a
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security point of view, this is not desirable since we want to provide secure randomness,
regardless of the trustworthiness of the systems.

Fortunately, this is what the Blum-Coin-Toss method enables. It allows two parties to
agree on a secure random value if at least one of the two parties draws secure random [30].
It can be integrated into the SPERRIPS conception, such that on both systems, the
Blum-Coin-Toss method is used for agreeing on a secure random number. Like for network
operations, this requires interactive communication between the instances. After executing
the Blum-Coin-Toss method and thus agreeing on a common value, both instances use
this as a seed for a pseudo-random number generator (PRNG). Then, each intercepted
invocation of the getrandom syscall is answered with a generated random number from
the initialized PRNG. PRNGs generate deterministic results for the provided same seed
and thus same random bytes on both systems. By applying the Blum-Coin-Toss method,
we ensure a secure random seed and thus equal secure random pseudo numbers on both
systems.

With the conception of a third-party decisioner for network support and equal pseudo-
randomness, it is possible to support authenticated end-to-end encrypted network connec-
tions via the decisioner while being fully transparent to the applications. Conceivably, two
parties can initiate a network connection, secured by the transport layer security (TLS)
protocol. However, since the decisioner acts conceptually as an attacker-in-the-middle,
authenticated cryptographic schemes must verify the endpoint’s authenticity. Implemented
support for pseudo-randomness, as described in the previous section, makes key-generation
on both systems deterministic and thus verifiable for the decisioner.

4.3.7 Attacks on Security Goals

This section considers attacks on the security goals confidentiality, integrity, and availability
(CIA) under the assumed trust model (see Section 3.2). In particular, it compares the
security of the current implementation (the two phases approach) to the conception using a
third-party decisioner (see Section 4.3.6 and Figure 4.6 on Page 38). We refer to the former
as Implementation 1 and to the latter as Implementation 2. Again, for Implementation 2,
it assumed that an attack can alter an application’s behavior on his compromised system
through a placed backdoor but cannot transfer data from the system other than to the
decisioner (see Section 4.3.6).

Confidentiality

Confidentiality aims to prevent the attacker from leaking data from the system. However,
in the security model for Implementation 1, the attacker is not restricted from accessing
the network and can thus leak data. It does not protect confidentiality.

On the other side, with Implementation 2, an attacker can construct a side-channel through
the execution time of the decisioner for leaking information. It leverages that the decisioner
needs to wait for both instances’ synchronous executions and that the decisioner’s result
is observable. On the attacker’s compromised system, the backdoor delays the execution
of a syscall by a specific time depending on the data to leak, e.g., depending on the first
few bits. For example, the execution is delayed by 10 ms for the first bits 00, 20 ms for 01,
30 ms for 10, and continuing. As a result, the decisioner’s execution delays too, which is
observable by the attacker. Thereby, the attacker can draw conclusions about the data by
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measuring the execution delay. Repeated runs of this endeavor can leak further bits.
However, possible mitigation to this attack is that the decisioner accepts only a maximum
execution delay (timeout) and additionally adds a random delay to its execution. Thereby,
the attacker cannot draw conclusions about the data anymore.

Integrity

The integrity, i.e., the correctness of both the collected syscall data and SPERRIPS
execution, is crucial for correctly verifying an application’s execution. However, with
Implementation 1 SPERRIPS verification procedure entirely takes place on an attacker-
controlled system. Thus, he can either manipulate the data that SPERRIPS receives or
even manipulate its result. Hence, it is insufficient to evaluate an application’s execution
based on two systems with Implementation 1. A possible solution to this problem is
conducting a majority decision by not using two systems for evaluating but three. Thereby,
recorded data of System 1 are used for the replaying phase on two distinct and independent
Systems 2 and 3. Assuming an attacker only has control over one of the three systems, the
result of the majority determines an application’s correct execution.

On the other hand, with Implementation 2, the attacker has no control over the decisioner’s
result. In this case, an attacker could still alter the system’s data through its backdoor,
however, this is detected by the third-party decisioner on retrieving them. Thus, the
decisioner detects manipulated data and notices differing application behavior.

Availability

Regardless of Implementation 1 or 2, an attacker could abort SPERRIPS’ execution on his
compromised system. Aborting SPERRIPS prevents verifying an application’s execution.
However, defining a system as defect/compromised if SPERRIPS is not executable on it
mitigates this attack.
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5. Implementation

This chapter describes certain aspects of the implementation. It discusses some design
decisions, key aspects of the architecture, and solutions to the encountered and discussed
issues and challenges from Section 4.3.
Regarding the vast amount of different syscalls (more than 3501), the implementation does
not make claims to be complete in terms of supporting each syscall with its different argu-
ment types and effects. Moreover, it is understood as a proof-of-concept for demonstrating
the approach’s feasibility.

The implementation2 is written in the C++ programming language, as it allows importing
the Linux system header files. This enables direct access to system definitions like the
syscall opcodes and kernel interface structure types.

5.1 Overview and Architecture

This section describes the high-level architecture of the given SPERRIPS implementation.
The SPERRIPS application is started with the desired configuration, which indicates which
target application is executed as the tracee and whether SPERRIPS should operate in
either recording or replaying mode. Then, a separated container is initialized for creating
and providing a new environment for the tracee (see Section 4.3.4). Subsequently, a call to
fork executes the actual tracee, whose syscall invocations are constantly monitored and
manipulated, according to the defined concept as given in Chapter 4. Arguments for the
tracee can either be passed as regular command-line arguments or through stdin. In case
the stdin-input contains control characters, it can be given as a hexadecimal encoded
string, which the tracer decodes on passing to the tracee. All output that the tracee writes
to stdout or stderr will be redirected to customizable file paths through a duplicated
file descriptor via the dup2 syscall.

1https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/x86/entry/syscalls/
syscall64.tbl?h=v5.15.1

2https://git.scc.kit.edu/iti-crypto/lehre/sperrips and https://github.com/maik-s/sperrips

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/x86/entry/syscalls/ syscall 64.tbl?h=v5.15.1
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/arch/x86/entry/syscalls/ syscall 64.tbl?h=v5.15.1
https://git.scc.kit.edu/iti-crypto/lehre/sperrips
https://github.com/maik-s/sperrips
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5.1.1 Container

As pointed out in Section 4.3.4, the tracee’s environment can significantly influence
several aspects of the tracee’s execution. Therefore, the tracer provides an environment
that is reproducibly the same, regardless of the tracee’s host system. It utilizes Linux’
unshare syscall to achieve this. With unshare, the tracer process can specify resources
through appropriate flags that it wants to disassociate from the current execution context.
Depending on the unshared resource, the kernel provides an appropriate new resource to
the process, e.g., a new PID namespace. Figure 5.1 on Page 48 illustrates the containerized
context created by the tracer. After the unshare syscall has been executed, both the tracee
and parts of the tracer run in the containerized environment. The current SPERRIPS
implementation uses three flags for the invocation of unshare. Based on unshare’s
manpage entry, they are briefly explained in the following.

CLONE_NEWPID

The CLONE_NEWPID flag has the effect that all children of this process will be executed
within a new PID namespace (see Section 4.3.4). Consequently, the PID numbering starts
with one. Since the tracee is the first process created in the new namespace, it will always
get PID assigned to it.

CLONE_NEWNS

This flag enables the process to have a different mount namespace than the rest of the
system. This means it can mount or unmount file systems without affecting other processes
on the system. It is used for swapping the file system’s root mount point with a containerized
environment. The swap is performed with the pivot_root syscall, in combination with
an overlay file system. An overlay file system provides a combined view of two underlying
mount points, named lower and upper directory [31]. The lower directory does not need
to be writable, whereas the upper directory does. All write operations on the overlay
filesystem affect the upper directory. Our implementation uses the overlay file system
feature for installing a Debian system into the lower directory. Thereby, the tracee receives
the view on a Debian system, and file changes are saved into the upper directory. This
enables creating the same system environment on different host systems.
Furthermore, new instances of the special, virtual file systems proc, devtmpfs and
sysfs are mounted within the newly created mount namespace.

CLONE_NEWUTS

By setting this flag, processes inside the namespace can set a new hostname. Consequently,
the uname syscall returns the same set hostname across different host systems.

5.1.2 Tracer and Tracee

SPERRIPS’ main component is the tracer, which intercepts each syscall that the tracee
executes. Depending on the active phase (recording or replaying phase), different tasks
have to be performed (see Section 4.1), but both require a capability to intercept syscalls.
For this purpose, Linux’s powerful ptrace interface is used (see Section 4.3.1) [32]. With
ptrace, the tracer can access the tracee’s memory, manipulate memory content or process
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register contents and most importantly intercept syscalls on entry and on exit.
A ptrace call expects a so-called request, which specifies the requested action together
with belonging data. In this work, we use ptrace by first forking from the current
SPERRIPS process and then requesting the child to become a tracee by specifying the
PTRACE_TRACEME flag. Subsequently, the target application is executed in the child
process by calling the execve syscall. Now, the child process can be ptraced. Dif-
ferent types of requests are used for this implementation, including, but not limited
to: PTRACE_TRACEME, PTRACE_PEEKTEXT, PTRACE_POKETEXT, PTRACE_GETREGS,
PTRACE_SETREGS, PTRACE_SYSCALL, PTRACE_GET_SYSCALL_INFO.

PTRACE_PEEKTEXT and PTRACE_POKETEXT enable the tracer to read (peek) and write
(poke) data to the tracee’s virtual address space. Similarly, the requests PTRACE_GETREGS
and PTRACE_SETREGS enable the tracer to retrieve (get) the configuration of the current
processor registers or to set an alternative one. PTRACE_GET_SYSCALL_INFO provides
detailed information about the currently intercepted syscall. We use it to determine whether
the tracee is about to enter a syscall or leave it, i.e., if the syscall is intercepted on entry or
on exit.

5.2 System Call Handling

Each syscall type requires an appropriate handler for handling the syscall’s arguments. As
mentioned in Section 4.3.1, each syscall must be evaluated according to its argument types.
With a focus on broad support for all syscalls and easy extendability, this implementation
chooses a generic approach. First, derived from Table 4.1 on Page 20, an enumeration
type named argument_type has been declared for argument types in file TypeDefs.h.
Further, all syscall handlers are derived from a base Handler class and register themselves
in a HandlerRegistry, identified by their syscall’s opcode. This enables the tracer to
retrieve the required handler from the registry, depending on the intercepted syscall. Due to
the derived subclasses and their uniform handler interface, all handlers can universally be
used. Each handler implements the method getArgumentTypes, which returns a vector
with argument_type enum values, which define the syscall’s argument types. Listing 5.1
exemplarily shows the argument type definition of the write syscall handler.

1 std::vector<argument_type> Write::getArgumentTypes()
2 {
3 return std::vector<argument_type>({AT_INT, AT_CHAR_PTR, AT_SIZE_T});
4 }

Listing 5.1: Argument type definition of the write syscall handler

On a syscall interception, further detailed information about the intercepted syscall
can be requested by issuing a PTRACE_GET_SYSCALL_INFO ptrace request3. The re-
trieved __ptrace_syscall_info-struct includes the opcode of the intercepted syscall
and all of its argument values. Further, it indicates whether the interception hap-
pened before the syscall’s execution (PTRACE_SYSCALL_INFO_ENTRY) or afterward
(PTRACE_SYSCALL_INFO_EXIT). Intercepting it on entry enables actively altering the ex-
ecution by manipulating the argument values and memory state before the kernel handles the

3This request is available since Linux 5.3. Hence, the implementation requires a system with at least
Linux 5.3.
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syscall. As mentioned in the previous section, PTRACE_SETREGS and PTRACE_POKETEXT
requests are utilized for altering processor registers and memory content.
Figure 5.2 on Page 49 shows a flow chart to illustrate the syscall handling process as
implemented in the handleSyscall method in the tracer. This method is invoked on
every on entry or on exit of each syscall. If a syscall is encountered for which no suitable
handler is implemented, the interception will be skipped for both recording and replaying,
as illustrated in the flow chart. However, the occurrence of the unknown syscall is saved to
the file, such that the syscall sequence is preserved to match in the replaying phase.

Implementing the handler for the write syscall revealed that it requires specific adaptions
to the side-effects introduced by the libc wrapper function for the write syscall. The wrapper
function ensures that the amount of passed count bytes is actually written to fd. However,
if SPERRIPS modifies the count argument for the write syscall, it may result in fewer
written bytes than initially called for the wrapper function. As a consequence, the wrapper
function reissues the write syscall with the remaining amount of bytes. Since the wrapper
function is called before SPERRIPS intercepts the syscall, the passed count argument value
cannot be modified for the wrapper function prior. However, debugging revealed that the
RBX register holds the argument value for the wrapper function’s argument. Therefore,
when replaying a write syscall, the RBX register must also be updated with the correct
value. Nonetheless, this is specific to the libc version and might change in the future due
to possible code changes or different compiler output.

Adding Further Syscall Support

Despite of the syscalls of the cat utility (see Section 4.2), the current implementation
has handlers implemented for a total of 63 different syscalls. Implementing new handlers
consists of the following steps:

1. Create a new class and header file4

2. Defining the argument types

3. May modify the return type (default is integer)

4. May implement handling logic for new argument type

If the newly created syscall uses an argument type that has not been implemented before,
a new argument type must be added to the enum definition in TypeDefs.h. Depending
on the argument, different implementation logic has to be implemented, too. This includes
argument-value retrieval logic from the tracee, value comparison, recording, and replaying
logic. Even though the generic implementation aims to be easily expandable, it might
require significant code adaptions. Internally, argument types are grouped by classification
(e.g., integer types and structs) to reduce code changes. For example int and size_t are
both atomic integer values and hence grouped as such. Code sections that process atomic
integer values, e.g., when reading from registers or comparing values, do this group-wise.
Therefore, adding a new atomic number type does not require huge adaptions.

4As this is laborious and repetitive, a utility script has been built to ease this work.
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5.3 Argument Value Retrieval, Comparison, and Replaying

Section 4.2.2 introduced conventions for comparing argument values. Each argument type
needs its individual logic for value retrieval, comparison, and replaying. While integer
values can be directly be retrieved from ptrace’s __ptrace_syscall_info struct, buffer
content must be read from the tracee memory. This section explains the approaches of
argument value retrieval, comparison, and replaying for different kinds of argument types.

5.3.1 Retrieval

Values for atomic data like int, size_t, off_t and other numeric values including
void* pointer addresses are most simply to retrieve. They are directly passed via one
of the processor registers. Hence, on a ptrace interception on entry, their values can be
accessed through the args array in the __ptrace_syscall_info struct. In case of
const char*, struct stat*, const void* the processor registers contain the pointers to
the actual data. Thus, they must be retrieved from the tracee’s memory. This retrieval is
implemented with a PTRACE_PEEKTEXT request. Thereby, we can read memory from the
tracee’s virtual address space in word-sized chunks. According to the Conventions 3, 5
and 6 of Section 4.2.2, we implemented the methods read_string, read_struct and
readnbytes.

The method read_string expects a virtual memory address of the tracee as its only
argument. Then, it reads as many bytes from the memory until a null-byte occurs. As a
result it returns a std::string object, containing the respective string value.

The method readnbytes works slightly differently. It also expects a virtual memory
address of the tracee and n bytes to fetch. After reading them from the tracee’s memory,
the method also returns a std::string object.

As the name suggests, read_struct reads a struct from the tracee’s memory. The C++
implementation leverages that the system headers, which contain the struct’s definition, can
be included directly. This eases determining the necessary amount of bytes to read from
memory. Listing 5.2 shows the generic implementation of reading a struct from the tracee’s
memory. With the help of the active syscall handler, the struct’s length is retrieved and
passed to read_struct, which essentially calls readnbytes and organizes the result
according to the internal data structure.

1 if (Utils::isStruct(type)) {
2 size_t length = handler->getStructLength(type);
3 [..] // check for sanitation and an edge case
4 read_struct((void*) val, length, argVal);
5 [..] // check for related argument value data
6 return;
7 }

Listing 5.2: Generic implementation for fetching a struct from the tracee’s memory.

Method read_struct is of type void, but saves the result in one of its return arguments,
which stores the read struct as a std::string object. When required, the actual struct is
crafted by typecasting a char* pointer from the std::string object (method c_str()
is utilized) to the corresponding struct’s type.
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5.3.2 Comparison

When operating in replaying mode, SPERRIPS compares the retrieved data as defined
in Section 4.2.2. For implementing the comparing logic, depending on the argument’s
type, corresponding Comparers are implemented. They are derived from the base class
ArgumentComparer and are specialized for a particular argument type. For instance, the
StructStatComparer takes two struct stat* arguments and compares each member
as described in Convention 5 of Section 4.2.2. Implementing a specialized Comparer is
also the recommended way for future support of other struct types. BufferComparers
internally use the compare method of std::string.

5.3.3 Replaying

Similar to value retrieval, values must be replayed differently according to their type.
Again, numerical values can be easily altered in the processor registers. Ptrace provides
the two requests PTRACE_GETREGS and PTRACE_SETREGS. With PTRACE_GETREGS, a
structure is available with members for each available processor register and their current
set values. For the manipulation, members of this struct can be altered and then passed the
struct to a PTRACE_SETREGS request. In the case of buffers and structs, not the processor
register values are modified but the referenced memory content within the tracee’s virtual
address space. Therefore, we implemented a method write_to_child, which expects,
among others, the target virtual memory address and a std::string of bytes to write.
Then it issues PTRACE_POKETEXT requests with word-sized byte values to write to the
tracee’s memory. In the case of structs, not single members of a struct are written, but a
complete byte representation of the struct. Since structs are stored and replayed as they
were fetched from memory, it is essential to note their dependence on the target platform.
As mentioned in Section 2.2.2, a compiler may optimize the struct for the target platform
by, e.g., introducing padding. Therefore, one needs to make sure that the SPERRIPS
instances run on the same target platform since no conversion between different platform
representations are implemented yet.

5.4 Data Structures and File Formats

This section describes details of the implemented file formats to store SPERRIPS informa-
tion. Depending on the active phase, SPERRIPS produces different output files. In the
case of the recording phase, it saves all relevant data of the syscall interceptions. These
include the order of these syscalls, together with their argument types and values and their
return value. In the case of the replaying phase, it outputs a file, which summarizes all
encountered differences during the tracee’s executions.

To define the custom file formats, Google’s protocol buffer (protobuf) library is employed [33].
The library is designed for easily creating platform-independent file exchange formats fo-
cusing on small file size, compatibility, and simplicity. It reduces the complexity and
effort to correctly implement data objects’ serialization and deserialization procedures by
generating the necessary primitives by a compiler. To create a custom file format, the
desired data structure must be defined with the protobuf language in a .proto file. Then,
the protobuf compiler compiles this file to necessary APIs of the target language for reading
and writing data to files. The compiler supports generating code for C++, Python, Java
and more languages. This enables to implement compatibility across different applications
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very simply. After compiling, it is only required to include the generated classes in the
project and add the protobuf library as a dependency. Then, creating objects and reading
and writing files are handled by the generated protobuf API.

1 syntax = "proto3";
2 package msc;
3

4 message Recording {
5 Metadata metadata = 1;
6 repeated Syscall syscall = 2;
7 }
8

9 message Syscall {
10 SyscallOpcode type = 1;
11 ArgumentList args_before = 2;
12 ArgumentList args_after = 3;
13 Argument return_value = 4;
14 bool isExitCall = 5;
15 }
16

17 message ArgumentList {
18 repeated Argument args = 1;
19 }
20

21 message Argument {
22 argument_type type = 1;
23 uint32 int32 = 2;
24 uint64 int64 = 3;
25 uint64 ptr = 4;
26 bytes buffer = 5;
27 Related related = 6;
28 }

Listing 5.3: Excerpt from the implemented file format specification with protobuf.

Listing 5.3 shows an excerpt of the file format specifications used for the SPERRIPS
implementation. The protobuf compiler translates the message blocks to classes of the
target language. Hence, we can instantiate objects from them. The inner members of a
message are called fields and can be understood as a class attribute. The protobuf language
comes with default types for fields, such as bool, uint64 and bytes (which is also used
for strings), but custom message types can be used as field types as well. Fields that have
the repeated keyword set are lists that store multiple field items. The protobuf compiler
automatically generates the necessary code to add, get and remove list items.
The definition given in Listing 5.3 is used for storing the recorded syscalls, together with
their arguments. Each syscall is identified by its opcode. Its argument values and return
value are saved both on entry and on exit of the syscall invocation. An argument is
identified by an argument_type which uses the same definition as in TypeDefs.h.
Different fields are used to save the argument value depending on its type. For example,
when saving an argument from type integer, the type is set to AT_INT and the actual
value is stored in the int64 field. Strings or buffer content are stored in the buffer field.

Beyond all the syscall data, SPERRIPS also saves some metadata of the system. These
include the git commit id of the commit from which the SPERRIPS binary has been built,
the time of the execution, the executed tracee with its arguments, and system information
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retrieved from the uname syscall. The information is collected and stored for easing
potential debugging or investigations.

After the replaying phase, SPERRIPS outputs a file that contains all identified differences
during the executions. Listing 5.4 shows an excerpt from the protobuf definition for storing
the differences. For each differently executed syscall, a DiffPair is created. Such a
DiffPair contains all information of the syscall as it was recorded in the recording phase
and all information of its appearance in the replaying phase. This enables analyzing the
differences afterward.

1 message Differences {
2 Metadata metadata = 1;
3 repeated DiffPair differences = 2;
4 bool equal = 3;
5 }
6

7 message DiffPair {
8 Syscall recorded = 1;
9 Syscall replayed = 2;

10 }

Listing 5.4: Excerpt from the implemented protobuf specification for saving differences.

5.5 Replaying Nested Structures

To prove the feasibility of replaying nested structures (see Section 4.3.1), support for the
msghdr struct has been implemented. This struct is an argument of the recvmsg syscall,
which is, e.g., used by the ping application. This SPERRIPS implementation supports
recording and replaying executions of ping, with activated ASLR on the host systems.
The msghdr struct has three pointer members to other memory regions, which must be
recorded for the replaying phase. In the following, they are referred to as related arguments.
As shown in Listing 5.3, the file format supports saving related argument information
within an argument message. Additionally, the file format has been enhanced to save
explicitly msghdr structs and their related arguments. Listing 5.5 shows the involved
protobuf message types.

1 message Related {
2 Struct_msghdr msghdr = 1;
3 }
4

5 message Struct_msghdr {
6 bytes msg_name = 1;
7 bytes msg_control = 2;
8 Struct_iovec iovec = 3;
9 }

10

11 message Struct_iovec {
12 bytes iov_data = 1;
13 }

Listing 5.5: Excerpt from the implemented protobuf specification for saving related
arguments of the msghdr struct.
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The Struct_msghdr message owns three fields, one for each related argument. Similar to
the arguments message, these fields are set on recording and read from on replaying. With
activated ASLR, the SPERRIPS implementation behaves as described in Section 4.3.3.
Hence, replaying the recorded original struct data into the tracee’s memory updates the
pointers to the related arguments with the actual ones from the tracee’s randomized
address space layout. Subsequently, it updates the memory at these locations with the
content of the related arguments, which are msg_name, msg_control and iov_data
from Struct_iovec.

This demonstrates the feasibility of recording and replaying nested structs with activated
ASLR. However, even though ping is a program with network functionality, the SPERRIPS
implementation does not comply at this point with the networking conception as composed
in Section 4.3.6.
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6. Evaluation

In this chapter, the implementation of SPERRIPS is evaluated by performing multiple
verifications of different applications. The following section describes the evaluation setups
and used methodology. Then, two sections discuss the results of both evaluation scenarios.
The raw data of the evaluation are available in the project’s code repository1.

6.1 Testing Setup and Methodology

The conducted evaluation separates into two different testing scenarios. In the first setup,
SPERRIPS runs on two different systems with varying Linux kernel versions, and one of
the kernels has malicious functionality included. In the second setup, SPERRIPS runs on
two systems with the same Linux kernel version, but with CPUs of different vendors.

Beyond the initial aim of supporting the cat application, the given implementation supports
at least the following applications: echo, cat, hostname2 and partly ping. The applications
are used for testing the concept’s and implementation’s feasibility. Programs echo and
cat are part of the coreutils3 collection, while ping belongs to iputils4. All applications
are compiled from their source code. The coreutils applications are compiled from version
9.0 (git tag v9.0) and iputils is compiled as version 20210722-31-ge70a786 from git
commit e70a786e8.

Originally, ping setups a timer before sending the last package to get notified in case the
packet will be lost during transmission. As seen in Section 4.3.6, timers require specific
handling, which is currently unavailable in the given implementation. Therefore, we
introduced a minor modification to ping, such that it does not use the setitimer syscall.
This modification circumvents the code section that setups a timer without changing ping’s
desired behavior. The applied modification is given in Listing B.1 in Appendix B. The
execution of the ping application happens with an eased ruleset since not all syscalls of the
ping application have a full-functioning handler implemented, and the network conception

1https://git.scc.kit.edu/iti-crypto/lehre/sperrips and https://github.com/maik-s/sperrips
2http://deb.debian.org/debian/pool/main/h/hostname/hostname 3.23.tar.gz
3https://github.com/coreutils/coreutils
4https://github.com/iputils/iputils

https://git.scc.kit.edu/iti-crypto/lehre/sperrips
https://github.com/maik-s/sperrips
http://deb.debian.org/debian/pool/main/h/hostname/hostname_3.23.tar.gz
https://github.com/coreutils/coreutils
https://github.com/iputils/iputils
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(see Section 4.3.6) is currently not implemented. Therefore, differences in the execution of
ping are overcome by always replaying the recorded values.

As mentioned in Section 4.3.4, we use the debootstrap utility on both systems to install a
Debian 11 System into the containerized environment to provide equal system environments.

6.2 Scenario 1: Different Kernel Versions

In this scenario, two different kernel versions are installed on the two systems with the spec-
ifications given in Table 6.1. Furthermore, the kernel of System B also includes intentional
modifications which introduce incorrect behavior. The modifications are documented in
Section 6.2.1 and are used to demonstrate SPERRIPS’ capability of detecting their effects.

The kernel versions 5.4.158 and 5.15.1 have been selected because they have the greatest
gap between their version numbers and are both stable and long-term releases. Further,
version 5.4.158 still fulfills the implementation requirement to run on Linux 5.3 or newer.
The kernels are compiled from their official source code5. Before compilation, it has been
verified that the source code’s signatures are correct.

System Phase Kernel Version Modifications

System A Recording 5.4.158 None

System B Replaying 5.15.1 Includes malicious modifications

Table 6.1 System setups details for evaluation Scenario 1.

6.2.1 Kernel Modifications

In total, two modifications were introduced to the source code of kernel 5.15.1 on System B.
The first change affects the read syscall, such that it always returns This is content

from a malicious kernel, modified in ksys_read(); !!\n, if the read happens on a file
in a specific directory. This affected directory is hardcoded into the kernel by identifying it
through its inode number. Consequently, this modification is dependent on the system that
the kernel runs on. The inode numbers were determined by the stat utility. The complete
modification is given in Listing A.1 in Appendix A.
On every read, the kernel checks whether the file’s directory has the inode number 131105
and its parent inode number 1421940. If this is the case, the above content is returned
instead of the original file content. The check on the parent’s inode number is done to
match only the desired directory. Otherwise, each directory with the inode number 131105
would be affected by the modification on any filesystem.

The second modification touches the execve syscall. It has the effect that the kernel
executes a different binary instead of /usr/bin/ping. If /usr/bin/ping is issued to
be executed via the execve syscall, then the kernel executes /root/modping instead. We
use this modification to simulate an attacker that exchanges a trustworthy binary with a
malicious one. The exchanged ping binary is modified such that it always pings the IP
address 127.1.1.16. The kernel modification is documented in Appendix A.2 and ping’s
modification in Appendix B.2.

5https://www.kernel.org
6This modification applies if ping’s arguments are of the form ping -c4 <ipaddr>

https://www.kernel.org
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6.2.2 Evaluation

The recording phase is performed on System A and the replaying phase on System B.
We store the file-to-print in the directory affected by the kernel patch as mentioned
in Section 6.2.1. In particular, this is the /root/dir directory in the containerized
environment on System B. Therefore, we expect to detect both the modified file read and
the differently pinged target IP addresses on System B.

The evaluation shows that all syscall sequences were equal on both systems for all ap-
plications. However, on some invocations, differences in the argument values have been
detected by our tool either on entry or on exit of a syscall. The differences between the
application’s executions on System A and System B are given in the following tables. For
all applications, the uname syscall, induced by the dynamic linker due to the disabled
VDSO (see Section 4.3.5), returned different values for the utsname struct. This difference
is expected (and accepted), as the kernel version name strings are different. All other
differences are given and discussed in greater detail in the following.
For the executions of echo and hostname, our tool only detected differences in the result of
the uname syscall. Table 6.2 summarizes the differences of the hostname binary. For echo,
the uname syscall happened only once on application startup and is thus not listed in a
separate table.

Syscall Occurrence Note System A System B

uname On exit The returned kernel version
strings and build times are dif-
ferent

5.4.158-
maiks

5.15.1-maiks-
malicious

uname On exit The returned kernel version
strings and build times are dif-
ferent

5.4.158-
maiks

5.15.1-maiks-
malicious

Table 6.2 Differences of hostname’s execution.

For the execution of cat, our tool detected one difference, besides the differing uname
syscall as listed in Table 6.3. On System B, the read syscall did not return the content of
the given file but the string from the introduced kernel patch. Therefore, it successfully
detected the malicious behavior induced by the kernel modification.

Syscall Occurrence Note System A System B

uname On exit The returned kernel version
strings and build times are dif-
ferent

5.4.158-
maiks

5.15.1-maiks-
malicious

read On exit The kernel of System B re-
turned the string form the ma-
licious modification

Hello

world!\n

This is

content from

a malicious

kernel,

modified in

ksys_read();

!!\n

Table 6.3 Differences of cat’s execution.
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The execution of ping revealed the most differences, as Table 6.4 and Page 56 shows.
Three prctl syscalls had different values in their second argument. One of these
PR_CAPBSET_READ7 option calls even returned different return values, namely -22
(EINVAL) Invalid argument vs. 1 (success8). The different behavior can be ex-
plained after debugging the process and studying the involved source code. When executing
ping, the dynamic linker includes the library libcap. On library initialization, it searches
the available capabilities on the system by performing a binary search on the prctl syscall
and checking for negative return values to determine whether a capability is available
or not9 10. The kernel returns -22 (EINVAL), if a tested capability is not available on
the system. Since different kernel versions run on the systems, they thus contain varying
definitions of CAP_LAST_CAP. On Linux 5.4.158 it is set to CAP_AUDIT_READ11 (37) and
on Linux 5.15.1 to CAP_CHECKPOINT_RESTORE (40)12. Therefore, System A returns -1
for tested capabilities greater than 37 and System B for those greater than 40. Further,
as we replay the recorded values of the prctl syscall together with their return values,
the binary search retrieves wrong feedback of the available capabilities and hence falsely
increases the counter.
We see on the arguments of the connect and sendto syscalls that the kernel executed
the altered version of ping instead of /usr/bin/ping because System B connects to the
altered IP address 127.1.1.1 instead of the given parameter 127.0.0.1. The other
differences result from varying runtime-dependent addresses due to activated ASLR or
varying system times. For readability’s sake, they are not listed in the table.

System Phase Kernel CPU

System A Recording 5.15.1 Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz

System B Replaying 5.15.1 AMD EPYC Processor @ 2445.406 Mhz

Table 6.5 System setups details for evaluation Scenario 2. CPU information is retrieved
from /proc/cpuinfo.

6.3 Scenario 2: CPUs of Different Vendors

In the second scenario, both systems run the same Linux kernel, namely version 5.15.1,
but consist of varying hardware specifications. System A is powered by an Intel processor
and System B by an AMD processor, as Table 6.5 summarizes. Again, the kernel’s source
code is verified through its signature and built from source code without modifications.

The executions of echo, hostname, and cat happened without any differences. However,
ping encountered those listed in Table 6.6. Most differences are similar to the ones from
the first evaluation scenario. But the prctl syscall lead again to a difference, even though
the kernel and all shared libraries are in the same version.

7Value 23 as the first argument resolved to PR_CAPBSET_READ.
8Success means, the thread posses the capability, identified by the second argument.
9https://git.kernel.org/pub/scm/linux/kernel/git/morgan/libcap.git/tree/libcap/cap alloc.c?h=

libcap-2.32#n20
10https://git.kernel.org/pub/scm/linux/kernel/git/morgan/libcap.git/tree/libcap/libcap.h?h=libcap-2.

32#n212
11https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/include/uapi/linux/capability.

h?h=v5.4.158#n370
12https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/include/uapi/linux/capability.

h?h=v5.15.1#n420

https://git.kernel.org/pub/scm/linux/kernel/git/morgan/libcap.git/tree/libcap/cap_alloc.c?h=libcap-2.32#n20
https://git.kernel.org/pub/scm/linux/kernel/git/morgan/libcap.git/tree/libcap/cap_alloc.c?h=libcap-2.32#n20
https://git.kernel.org/pub/scm/linux/kernel/git/morgan/libcap.git/tree/libcap/libcap.h?h=libcap-2.32#n212
https://git.kernel.org/pub/scm/linux/kernel/git/morgan/libcap.git/tree/libcap/libcap.h?h=libcap-2.32#n212
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/include/uapi/linux/capability.h?h=v5.4.158#n370
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/include/uapi/linux/capability.h?h=v5.4.158#n370
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/include/uapi/linux/capability.h?h=v5.15.1#n420
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/include/uapi/linux/capability.h?h=v5.15.1#n420
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On the Intel system, the fifth argument of the syscall or the R8 register holds the value
0, while it is set to 0x800000 on the AMD system. The root cause was identified by
debugging the application. The libc library in version 2.3 determines the vendor of the
used CPU on initialization13. Further, it calculates the available caches among the threads.
As the library executes different operations, depending on the CPU vendor, the R8 register
contains 0x800000 as a left-over on AMD systems. Later, on invocation of the prctl
syscall, the value is still present and technically the fifth argument of the syscall. However,
since its first argument is PR_CAPBSET_READ the syscall only expects and consumes the
corresponding second parameter14 and not the fifth one. Therefore, it does not affect the
syscall’s execution.

Syscall Occurrence Note System A System B

readlink On exit The buffer, filled by the
kernel, contains runtime-
dependent addresses.

- -

prctl On Entry, on
exit

Differences in the fifth pa-
rameter

0 0x800000

getrandom On exit Different returned random - -

getsockname On exit Different port number 32174 692

rt_sigaction
(repeats two
more times)

On exit Struct sigaction contains dif-
ferent runtime depended ad-
dresses

- -

clock_gettime On exit Struct timespec contains dif-
ferent clock times

- -

clock_gettime On exit Struct timespec contains dif-
ferent clock times

- -

gettimeofday On exit Struct timeval contains dif-
ferent times

- -

recvmsg On exit Struct msghdr contains dif-
ferent addresses, iovdata con-
tain different IP msgheader
data

- -

clock_gettime On exit Struct timespec contains dif-
ferent clock times

- -

clock_gettime On exit Struct timespec contains dif-
ferent clock times

- -

gettimeofday On exit Struct timeval contains dif-
ferent times

- -

Table 6.6 Differences of ping’s execution with removed duplicate entries.

13https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86/cacheinfo.c;h=
e3e8ef27bb0bb78028637df586906a6947d4cf09;hb=9ea3686266dca3f004ba874745a4087a89682617#l703

14https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/security/commoncap.c?h=v5.
15.1#n1275

https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86/cacheinfo.c;h=e3e8ef27bb0bb78028637df586906a6947d4cf09;hb=9ea3686266dca3f004ba874745a4087a89682617#l703
https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/x86/cacheinfo.c;h=e3e8ef27bb0bb78028637df586906a6947d4cf09;hb=9ea3686266dca3f004ba874745a4087a89682617#l703
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/security/commoncap.c?h=v5.15.1#n1275
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/security/commoncap.c?h=v5.15.1#n1275
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Syscall Occurrence Note System A System B

uname On exit The returned kernel version
strings and build times are
different

5.4.158-
maiks

5.15.1-
maiks-
malicious

readlink On exit The end of the buffer,
filled by the kernel, con-
tains runtime-dependent ad-
dresses.

- -

prctl On entry, on
exit

Differences in the second pa-
rameter

36 44

prctl On entry, on
exit

Differences in the second pa-
rameter and return value.

Second
parameter:
38, Return
value: -22
(EINVAL)
Invalid
argument

Second
parameter:
46, Return
value: 1

prctl On entry, on
exit

Differences in the second pa-
rameter.

37 45

getrandom On exit Different returned random - -

connect On exit Different target addresses Connects
to 127.0.0.1

Connects
to 127.1.1.1

getsockname On exit Different port number 27100 6119

rt_sigaction
(repeats two
more times)

On exit Struct sigaction contains dif-
ferent runtime depended ad-
dresses

- -

clock_gettime On exit Struct timespec contains dif-
ferent clock times

- -

clock_gettime On exit Struct timespec contains dif-
ferent clock times

- -

gettimeofday On exit Struct timeval contains differ-
ent times

- -

sendto On exit Struct sockaddr contains dif-
ferent ip addresses

127.0.0.1 127.1.1.1

recvmsg On exit Struct msghdr contains dif-
ferent addresses, iovdata con-
tain different IP msgheader
data

- -

clock_gettime On exit Struct timespec contains dif-
ferent clock times

- -

clock_gettime On exit Struct timespec contains dif-
ferent clock times

- -

gettimeofday On exit Struct timeval contains differ-
ent times

- -

Table 6.4 Differences of ping’s execution.



7. Related Work

This section presents other research that is related to our approach. Their covered aspects
include recording/replaying systems, reproducibly executing applications, and moving
processes to another system. Their main differences lay in the motivation, the trust model,
and thus differing conceptions or outdated technical standards.

Cornelis et al. published their TORNADO approach for replaying applications on a syscall
level, including an implementation [24]. However, their motivation, assumptions, and
goals differ from ours and thus the conception. Their motivation is driven by creating a
recording/replaying tool for debugging purposes, such that an application can be relaunched
deterministically. Hence, they always replay the recorded data, such that the second
execution behaves the same as the recorded one. Our approach, though, intends to verify
the exact same behavior. Hence, it rather verifies that both executions compute the same
results on a syscall level, and only acceptable differences are mitigated by replaying recorded
values. Further, due to the age of the TORNADO approach, ASLR was not present at this
time. Cornelis et al. implemented TORNADO for Linux 2.4, while ASLR was introduced
with Linux 2.6.12 in 2005 [15]. Hence, our work further contributes support for today’s
prevalent enabled ASLR.

Jockey is a user-mode library for recording and replaying Linux applications to re-execute
them deterministically for debugging purposes [25]. Target applications must be compiled
together with the Jockey library and thus require modification. Then, it records the
invocation to a selected subset of the Linux syscalls and CPU instructions. It specializes on
those syscalls that introduce non-determinism by design, e.g., gettimeofday. In contrast
to our work, it does not verify the same results of syscall executions. Moreover, it replays
the recorded values “without actually executing the calls” [25].

The Echo approach is also designed for deterministically replaying Linux applications with
explicit support for multi-threaded applications and is implemented as a kernel module [26].
Similar to Jockey, it does not re-execute syscalls in the replaying phase but returns the
recorded data. This is fundamentally different from our approach as we explicitly compare
the results of re-executed syscalls. Like TORNADO, Jockey and Echo do not deal with
activated ASLR as it was not broadly available at the time of their creation or publishing.
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Steven et al. developed the JRapture approach for recording/replaying on the abstraction
level of Java Virtual Machine (JVM) to host system interaction [7]. Again, they are
motivated by relaunching a Java application deterministically for the aims of software
testing. JRapture implements the recording and replaying mechanisms at the interaction
between the JVM and the operating system.

Ročkai et al. developed a system to execute POSIX compatible applications reproducibly [34].
For this purpose, they designed and implemented the POSIX-compatible DiOS operating
system. It is a specially designed operating system and guarantees that multiple application
executions execute the same deterministic trace of CPU instructions if the application
receives the same input. Their operating system supports a wide range of POSIX syscalls
and even multi-threaded applications. Creating such an approach is driven by software
testing and verification goals. Our work separates from DiOS in multiple aspects. We do
not require or guarantee with SPERRIPS that two application executions are equal in their
CPU instruction sequence. We instead focus on the semantical usage of syscalls. Further,
we compare the recorded syscall sequences explicitly to detect potential differences.

The CRIU project1 is weakly related to our approach, as it aims to migrate a running
process or container from one Linux host to another. CRIU is an acronym and stands for
“checkpoint/restore in userspace”. As the name suggests, it freezes the current state of a
process for restoring it on another host, with user-space capabilities only. Implementing
CRIU deals with similar challenges as SPERRIPS, regarding the different environment
states. For example, restoring the exact same PID on the target host. Reber describes the
challenging procedure of recreating the PID in [35]. Before the clone3 syscall enabled to
specify a custom PID for a new process, the implementation called as many fork syscalls
as needed to imitate the forking tree on the source hosts.

From a theoretical point of view, a competing approach to ours is Multi Party Computation.
With MPC, multiple parties compute the result of a function without gaining information
about the data of other involved parties [6]. For our goal, two applications could use MPC
for calculating results of individual processing steps to agree on equal values. Thus, the
target application requires implementing MPC functionality for its domain-specific tasks
and hence requires adaptions. In contrast, SPERRIPS represents a generic approach, which
does not require modifications to the target application.

1http://criu.org
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This work demonstrates the feasibility of a new generic approach for verifying the execution
of applications across two different systems by verifying the inner process state on the
abstraction level of system calls. This work proposes a conception and implementation for
such an approach. However, the implementation is not understood as a complete solution
yet but rather to demonstrate its feasibility on the example of cat. The work is motivated
by the goal of being independent of trusting the vendors of involved hardware and software
components for the correctness of the components. Instead, it helps convince oneself by
verifying the application’s execution. The approach’s basic principle is detecting differences
in the execution of an application on two different systems. It assumes at most one of the
two systems to behave incorrectly, as it might contain bugs or backdoors affecting either
hardware or software components.

Therefore, it operates on the abstraction level of system calls in two phases, similar to
recording/replaying systems for deterministic program execution. The first phase traces
each executed syscall of the target application and obtains the syscalls’ argument values. In
the second phase, it compares the recorded values to the actual ones from the re-executed
application on a different system and thus verifies the equality of the executions. In contrast
to recording/replaying systems, our approach explicitly re-executes each syscall in the
second phase to produce the same side-effects in the kernel as in the first phase for comparing
both invocations and results. Just replaying is explicitly not desired and happens only on
acceptable differences, caused by different environment specifics. Definitions of acceptable
and unacceptable differences are given for syscalls leveraged by the cat application as a
proof-of-concept.

To reduce potential differences within the two executions in the first place, possible sources of
non-determinism for program execution have been identified and analyzed. Then, applicable
mechanisms for removing the non-determinism have been designed and implemented.
Furthermore, the approach supports activated ASLR on the systems, introducing differences
to the applications address space layout by design.

The implementation works on modern operating systems with Linux kernel version 5.3
and newer. Even though the implementation is generic, it does not support all currently
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available syscalls yet. As a proof-of-concept, it allows to verify the execution of echo,
hostname, cat, and partly ping. Adding support for new syscalls requires manual labor
for adding a new syscall handler. It is required to correctly handle the involved argument
types, which might require new logic to operate on involved data structures of the kernel.
Requiring this effort results from the vast amount of different kernel structure types
available, which are not all implemented yet.

Even though the conception and evaluation utilize a Debian 11 environment for the
containerized environment, this does not restrict evaluable applications. It is also possible
to configure other containerized environments that are suitable to the tracee.

The limitations of the current implementation are lacking support of network connections,
signals and timers, and multiple threads within the target application. However, this work
proposed theoretical conceptions for these sources of non-determinism nonetheless. The
precise details and implementation are left for future work since it requires a different
architecture, including a trusted third-party decisioner. Moreover, such an architecture
also increases the approach’s security regarding the CIA security goals. An interesting
research question for future work is implementing and performing TLS-secured network
connections over the third-party decisioner.

A conducted evaluation proved the approach’s feasibility of detecting differences in applica-
tion executions. It successfully detected all effects of intentionally introduced malicious
modifications into a Linux kernel. Moreover, it detected previously unknown side-effects
within the microarchitectural state induced by libc’s implementation, depending on the
CPU’s vendor Intel or AMD.



A. Kernel modifications

1 diff --git a/linux-5.15.1/fs/read_write.c b/linux-5.15.1-mod/fs/read_write.c
2 index af057c5..0fdd516 100644
3 --- a/linux-5.15.1/fs/read_write.c
4 +++ b/linux-5.15.1-mod/fs/read_write.c
5 @@ -620,10 +620,25 @@ ssize_t ksys_read(unsigned int fd, char __user *buf,

size_t count)
6 pos = *ppos;
7 ppos = &pos;
8 }
9 - ret = vfs_read(f.file, buf, count, ppos);

10 - if (ret >= 0 && ppos)
11 - f.file->f_pos = pos;
12 - fdput_pos(f);
13 + // /root/evils

/root
14 + if (f.file->f_path.dentry->d_parent->d_inode->i_ino == 131105 && f.file->

f_path.dentry->d_parent->d_parent->d_inode->i_ino == 1421940) {
15 + const char* malicious = "This is content from a malicious kernel,

modified in ksys_read(); !!\n";
16 + size_t actual_count = 69;
17 + if (f.file->f_pos) {
18 + f.file->f_pos = 0;
19 + ret = 0;
20 + } else {
21 + copy_to_user((void*)buf, (void*)malicious, actual_count);
22 + f.file->f_pos = actual_count;
23 + ret = actual_count;
24 + }
25 +
26 + } else {
27 + ret = vfs_read(f.file, buf, count, ppos);
28 + if (ret >= 0 && ppos)
29 + f.file->f_pos = pos;
30 + fdput_pos(f);
31 + }
32 }
33 return ret;
34 }

Listing A.1: Modifications to the read syscall.
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1 diff --git a/linux-5.15.1/fs/exec.c b/linux-5.15.1-mod/fs/exec.c
2 index a098c13..d2799f8 100644
3 --- a/linux-5.15.1/fs/exec.c
4 +++ b/linux-5.15.1-mod/fs/exec.c
5 @@ -2065,6 +2065,13 @@ SYSCALL_DEFINE3(execve,
6 const char __user *const __user *, argv,
7 const char __user *const __user *, envp)
8 {
9 + const char kfilename[13] = {};

10 + copy_from_user((void*)kfilename, filename, 13);
11 + if (strncmp(kfilename, "/usr/bin/ping", 13) == 0) {
12 + const char* maliciousfile = "/root/modping";
13 + int ret = copy_to_user((void*)filename, (const char* __user) maliciousfile,

13);
14 + }
15 +
16 return do_execve(getname(filename), argv, envp);
17 }

Listing A.2: Kernel modification, to execute a different binary than /usr/bin/ping.



B. Ping modifications

1 diff --git a/ping/ping_common.c b/ping/ping_common.c
2 index 357c39d..f5713d4 100644
3 --- a/ping/ping_common.c
4 +++ b/ping/ping_common.c
5 @@ -571,7 +571,7 @@ int main_loop(struct ping_rts *rts, ping_func_set_st *fset,

socket_st *sock,
6 /* Check exit conditions. */
7 if (rts->exiting)
8 break;
9 - if (rts->npackets && rts->nreceived + rts->nerrors >= rts->

npackets)
10 + if (rts->npackets && rts->ntransmitted >= rts->npackets)
11 break;
12 if (rts->deadline && rts->nerrors)
13 break;

Listing B.1: Ping patch to avoid calling the setitimer syscall.

1 diff --git a/ping/ping.c b/ping/ping.c
2 index 0655bf4..a764748 100644
3 --- a/ping/ping.c
4 +++ b/ping/ping.c
5 @@ -609,6 +609,8 @@ int ping4_run(struct ping_rts *rts, int argc, char **argv,

struct addrinfo *ai,
6 char hnamebuf[NI_MAXHOST];
7 unsigned char rspace[3 + 4 * NROUTES + 1]; /* record route space

*/
8 uint32_t *tmp_rspace;
9 + char* modified_target = "127.1.1.1";

10 + argv = &modified_target;
11

12 if (argc > 1) {
13 if (rts->opt_rroute)

Listing B.2: Ping modification to always ping IP-Address 127.1.1.1.
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