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Abstract

A new kind of intelligent control for industrial microwave heating system for drying
applications is under implementation in the TOMOCON [1] project network. The idea is to
control the amount of total microwave power inside the applicator based on available
volumetric moisture distribution inside the material. To achieve this goal a microwave
tomography (MWT) imaging module is integrated with the industrial heating system. The
MWT is applied to reconstruct the moisture content distribution (in terms of complex
permittivity) in a polymer foam of large cross-section during its continuous processing. For
the reconstruction algorithm, we use a statistical inversion framework. Generally, in this
framework, the real and imaginary parts are treated as statistically independent quantities in
the prior formulation. Thus, often it is found that the reconstructed real and imaginary parts
are spatially imbalanced. As a result, when mapping the respective reconstructed parts of
complex-permittivity to the available dielectric charaterization of the foam, conflicting and
incorrect moisture distributions can be obtained. Therefore, we present a sample-based prior
model in the statistical inversion framework to improve overall reconstruction accuracy and
spatially balance the real and imaginary parts. The method is demonstrated with 2-D
numerical MWT data at 8.2 GHz for different moisture scenarios.

1. Introduction

Controlled/localized heating in industrial microwave oven [2, 3] is paramount to address
hot-spot formation and thermal runaway issues . Therefore, system efficiency and processed
product quality may improve. Presently, we are working on a microwave oven technology
called HEPHAISTOS. The system is characterized by hexagonal geometry for the cavity
that supports a very high electromagnetic field homogeneity. Specifically, during drying of
a porous polymer foam, thermal runaway and hot-spot formation occur [4]. Such situations
lead to low-quality processing and may even damage the industrial unit. Therefore,
automatic online control of power sources (magnetrons) to obtain a selective heating rate at
each stage of the drying process is one option to eliminate these problems. To apply such
precise control of power sources, non-invasive in-situ measurement of the unknown
distribution of moisture, especially dominant wet-spots, inside the material is required. Thus,
integration of microwave tomography (MWT) imaging modality operating in X-band range
[5] (from 8 GHz to 12 GHz) with the drying system is proposed to estimate the moisture
content distribution in a polymer foam. Based on the MWT tomographic output, an
intelligent control strategy for power sources can be derived.

Microwave tomography (MWT) applications in the industry are mostly for inspection and
monitoring purposes, as reported in [6]. In the X-band frequency range, performing
quantitative MWT imaging is challenging especially when detecting the moisture levels in
a porous material with a large cross-sectional dimension. Some prior information on the
moisture levels and corresponding dielectric behavior of the foam is available. To integrate
this prior information in the imaging algorithm, a statistical inversion approach based on the

42



Bayesian framework is applied in this work. In this framework, the real and imaginary parts
are treated as statistically independent quantities in the prior formulation. Thus, often it is
found that the reconstructed real and imaginary parts are spatially imbalanced. As a result,
when mapping the respective reconstructed parts of complex-permittivity to the available
dielectric charaterization of the foam, conflicting and incorrect moisture distributions can be
obtained.

We present a sample-based prior model in the statistical inversion framework to improve
overall reconstruction accuracy and spatially balance the real and imaginary parts. In our
case, dielectric characterization of foam for wet-basis moisture level is available. Based on
this information first we form a database of moisture distribution samples with different
spatial variations. In these samples, dielectric values are chosen based on the dielectric
characterization of the foam. In the second step, to get the prior covariance structure, we
use the dataset to estimate the second-order statistics. The proposed sampled-based prior
approach is tested with the 2-D numerical scattered field data for three different cases of
moisture content distribution.

2. Microwave tomography setup and forward model

We consider a two-dimensional (2-D) foam domain Q¢y,,, = [—15, 15] X [-1.5, 1.5] cm
with an inhomogeneous moisture distrubution represented by relative permittivity €, = €, —
j€' as shown in Fig. 1. The foam is surrounded by background domain ( consisting of air
with €, = 1 — jO. For this 2-D numerical study, the antennas are modelled as Z-oriented
electric line source; 6 such line sources are placed in a transceiver mode at 5 cm from the
top and bottom surface of the foam, respectively. Thus, a total of N = 12 antennas is used
for the measurements. In general, the scattered electric field Eg.; under the illumination of
time-harmonic transverse magnetic (TM) incident field is governed by the following scalar
volume integral equation [7]

Evr(r) = K f G(r, ") (er () — ep)E(r)dr. )

Qfoam

The term is E the total electric field inside the foam. The wavenumber of the background
medium is denoted by k. The term G(r,7") is the free-space Green's function. The source
and the observation points are denoted by the position vectors r and 7', respectively. The
total field inside the foam is given as

E(r) = Einc(r) + k? f G(r,r) (e (') — &)E(@ )dr'. (2)

Qfoam

where Einc is the incident field from the line source. As the total electric field depends on
the dielectric constant of the foam, its mapping with the scattered electric field is non-linear.

In MWT, we seek to retrieve the dielectric distribution of the foam (in terms of m x n
pixels) given the scattered electric field data. The nature of our inverse problem is ill-posed
due to properties of the integral operator defined in (5) \cite{Colton98}. Also, part of this
ill-posed nature comes from the fact that many parameters may result the same scattering
data. Proper regularization terms in the quantitative inversion algorithms can alleviate this
problem to some level. We have some prior information available on the dielectric behavior
of the foam with respect to its moisture content level. Also, we expect and assume the
moisture content distribution to have smooth distribution in the foam. To encode this prior
information in a natural way in the regularization term we pursue a Bayesian inversion
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framework. With the Bayesian estimate, it can be quantified which parameters are more
favorable/likely to generate this scattering data rather than fixed estimates which are given
in classical, deterministic, inversion techniques.
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Fig. 1 : Schematic of the microwave tomography setup used in this study.
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3. 2D reconstruction algorithm: Bayesian inversion framework
Consider an inverse problem of identifying an unknown complex parameter €, € C™"
given noisy measurement scattering data E,, € CV*N according to the observation model

Ese = F(er) + 1, ()

where 7 denotes the additive measurement noise component. The term F(€,) denotes the
integral operator defined in (1) and (2). The unknown parameter and noise terms are
considered mutually independent. Note that the measurement data and unknown terms are
complex quantities. In the present study, the real and imaginary parts are treated separately
as real-valued random variables for the real-valued optimization problem.

In the Bayesian framework, the unknown parameters are treated as random variables, and
information about them is expressed in terms of probability densities. The inverse problem
is then expressed as given the measured scattering data; the task is to find the conditional
probability density (€, | E¢ ) for the unknown parameter €,.. The conditional probability
is constructed using Bayes’ theorem as

(e | Esee) X T( Esee | €7 )m(er), (4)

where (€, | Eq) is the posterior density, m( E, | €,) is the likelihood density which
represents the distribution of the measured data if complex permittivity is known, and 1(€,.)
is the prior density which contains the prior information available for the unknown €,.. Here,
the dielectric characterization data, often available in most of the application of MWT,
becomes useful. The posterior density contains the complete solution of the inverse problem
in the Bayesian framework. The solution can be expressed by point estimates. One of the
most common point estimates in tomographic imaging problems is the maximum a posteriori
(MAP) [8]. The MAP estimate can be computed from the posterior as
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€rump = ArgMaxm (&, | Eser) - (5)

Under the assumption of Gaussian density for the likelihood term and prior term, this
problem is equivalent of minimizing a logarithmic function which can be solved using non-
linear least-square optimization problem.

3.1 Prior modelling
As prior information, it is first assumed that the moisture variation is smooth inside the foam.
Such an assumption can be encoded using a Gaussian density [8] as

T[(Er) X exp {_%(Er - ner)TFe_rl(er - T]er)}- (6)

Here, 1, is the mean value of the prior density and I is the covariance structure which

defines the spatial smoothness inside the domain. The covariance structure in general is
defined as

Ffrl Ffrlfrn
e = o),

Errr€rr Errnr

(™)

Since the permittivity is a complex number, the prior density is independently derived for
the real part and imaginary part, respectively. Here, if we treat the real and imaginary parts
to be uncorrelated then the cross-covariances I ., = I, = 0. This type of prior
model will be called as smoothness prior model. And its effect on the MAP estimates will
be shown in the next section. However, to define the covariance structure in more accurate
sense the correlation factor between the real and imaginary part should be well known. In
this work to establish the correlation and to form the covariance structure we use sample-
based prior densities.
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In sample-based prior, we make use of a large set of previously obtained samples of the
random variable in question. These datasets are known as samples. And then from this
dataset, the mean and covariance structure can be straightforwardly calculated. The
dielectric values used in the sample-based mean and covariance calculations are generated
numerically, based on the dielectric characterization of the polymer foam in laboratory
environment. In the characterization, a small cylindrical shape volume of the foam is
characterized using a cavity perturbation technique at room temperature to obtain the
complex permittivity value for different levels of wet-basis moisture content level. The
developed dielectric measurement system is shown in Fig. 2. Extensive details on the
moisture samples generation for generating the dataset and use of dielectric charaterization
are given in [10][11].

4. Numerical study

In this section, we evaluate the performance of the MAP estimates with the smoothness prior
and sample-based prior for smoothly distributed moisture scenario. To generate the synthetic
measurement data from the MWT setup shown in Fig. 2 a 2-D finite element method (FEM)
based COMSOL simulation tool is chosen. The scattered field data is generated at a
frequency of 8.2 GHz and stored in terms of the scattering matrix of size 12 x 12.
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Fig. 3 : High moisture case : true distribution and MAP estimates with smoothness prior
and sample-based prior with real (left) and imaginary part (right) of the complex-
permittivity.

In the first set of experiments numerical scattered electric field measurement data for a high
moisture scenario between 35% to 50% is considered. The moisture values correspond to
permittivity values of 1.35 to 2.2 for the real part and 0.03 to 0.15 for the imaginary part.
The MAP reconstruction with smoothness prior model and sample-based prior model is
shown in Fig. 3. Though the real part is estimated well with both priors the imaginary part
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1s much more accurate with the sample-based prior model. Notice that the certain moisture
regions are much more clearly indicated in the estimated imaginary part with the sample-
based prior model.

S. Conclusion

In this work, we used a microwave tomography to estimate the moisture distribution (in
terms of complex permittivity) in a polymer foam using the Bayesian inversion framework.
The imaging modality will be integrated with an industrial microwave drying system to
derive approaches for the intelligent control. It is shown that when real and imaginary parts
are treated uncorrelated in the smoothness-based prior model, reconstructed values are
conflicting and incorrect. Thus, we proposed a sample-based prior model to preserve the
spatial correlation in the reconstructed real and imaginary parts of the complex permittivity.
The results presented show the efficacy of the sample-based prior model in spatially
correlating the real and imaginary parts. A significant improvement in the reconstruction
accuracy is achieved with sample-based prior in comparison to the smoothness prior model.
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