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On the influence of surface roughness on friction-induced oscillations
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The influence of surface roughness on friction-induced oscillations due to non-conservative coupling is investigated. The
classical non-conservative coupling model is extended by a stochastic friction coefficient which is modeled as colored noise.
Two coupled and parametrically excited stochastic differential equations are obtained. The almost sure stability is analyzed
by means of the top Lyapunov exponent Λ1 which indicates instability in the case of Λ1 > 0 and asymptotic stability in the
case of Λ1 < 0. An influence of the stochastic friction coefficient on stability is found which manifests in the occurrence of
parametrically excited fundamental and combination resonances.
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1 Introduction

Possibly occurring but undesired friction-induced oscillations in engineering systems have already been extensively investi-
gated and are mainly explained by two mechanisms in the literature. The first one relies on the negative slope of a velocity
dependent friction force, for which oscillations occur in the case of a small structural damping. The second one can be de-
scribed by a non-conservative coupling model as depicted in figure 1(a) and explains in particular friction-induced oscillations
in the case of velocity independent friction forces [4]. Surprisingly, the vast majority of investigations in the literature rely
on deterministic friction laws in contrast to experiments and detailed contact simulations which rather suggest a stochastic
modeling. Consequently, the non-conservative coupling model is further extended with a stochastic friction coefficient.

2 Mechanical Model

(a) Mechanical Model

(b) Real-parts of EV for µτ = µ

(c) Natural eigenfrequencies for µτ = µ

Fig. 1: Non-conservative coupling model

The mechanical model depicted in figure 1 is extended by an additional time depen-
dent stochastic friction coefficient motivated from experiments and simulations.

The friction coefficient is modeled as colored noise µτ ∼ N
(
µ, σ2/4DΩ3

)
by

using a second order filter with Gaussian white noise χτ as input

µ′′
τ + 2DΩµ′

τ +Ω2µτ = Ω2µ+ σχτ , µτ (0) = µ, µ′
τ (0) = 0, (1)

in which Ω represents any system specific excitation frequency, e.g. the rpm of a brake
disk or any asperity caused excitation frequency, which means that Ω is connected to
the belt velocity v. D and σ represent additional filter coefficients which are used to
fit any prescribed auto-correlation function or power spectral density and µ represents
the mean friction coefficient. Note that a harmonic excitation µτ = µ+∆µ cos (Ωτ)
is obtained with slightly changed initial conditions µτ (0) = µ+∆µ and σ = D = 0.

Two coupled stochastic differential equations for the horizontal and vertical degree
of freedom ξ and ζ are obtained in dimensionless form

ξ′′τ + 2δξ′τ + c11ξτ+ [c12 + µτ sign (ξ
′
τ − ν)] ζτ = 0

ζ ′′τ + 2δζ ′τ + c21ξτ+ [1 + c22] ζτ = 1
(2)

in which the friction coefficient acts as a parametric excitation and δ as well as cij
denote dimensionless damping and stiffness coefficients respectively.

Following Arnold [1], the top Lyapunov exponent is calculated for the perturbed
system (2) assuming ξ′ < ν

Λ1 = lim
τ→∞

1

τ
ln
Aτ

A0
= lim

τ→∞
1

τ

τ∫

0

f1 (φs, ψs, ϑs, µs) ds (3)

in which Aτ denotes the transient Euclidean norm of the disturbances. A transforma-
tion to new coordinates allows the reformulation as stochastic differential equation in
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2 of 3 Section 15: Uncertainty quantification

the sense of Itô

Aτ =
√
∆ξ2τ +∆ζ2τ +∆ξ′2τ +∆ζ ′2τ

tanφτ = ∆ξ′τ/∆ξτ
tanψτ = ∆ζ ′τ/∆ζτ
tan θτ =

√
∆ζ2τ +∆ζ ′2τ /

√
∆ξτ +∆ξ′2τ

⇒




d lnAτ

dφτ

dψτ

dϑτ
dµ1

dµ2




=




f1 (φτ ,ψτ ,ϑτ ,µ1)
f2 (φτ ,ψτ ,ϑτ ,µ1)
f3 (φτ ,ψτ ,ϑτ ,µ1)
f4 (φτ ,ψτ ,ϑτ ,µ1)

µ2

−2DΩµ2 − Ω2µ1




dτ +




0
0
0
0
0
σ




dWτ . (4)

The final system of equations (4) is decoupled from the amplitude Aτ and consequently the top Lyapunov exponent from
equation (3) only depends on the stationary angle processes. The numerical integration is performed with a stochastic Runge-
Kutta integration scheme following a publication of Rössler [3] and using random initial conditions for the first four states.
Each simulation lasted for 1e7 time steps and time increments of ∆τ = π/1024 are used. The evaluation of equations (3) was
verified by comparison to Floquet multiplier λ as Λ1 = ℜ [ln(λ)Ω/2π] in a pureley harmonic excitation case.

3 Simulation Results

Some results are shown for a constant, a harmonic and a stochastic friction coefficient respectively in order to distinguish
between the different sources of instability.

In the case of a constant friction coefficient the stability can easily be evaluated by an eigenvalue analysis from which
two conjugated complex pairs of eigenvalues are obtained. Their real parts are shown in figure 1(b) and coincide up to a
critical value µc where they split up and shortly after instability occurs due to one real part who crosses the zero axis at µs.
Furthermore, at the same critical friction coefficient µc, the natural eigenfrequencies collide as depicted in figure 1(c).

In the case of a harmonic friction coefficient, the stability map is complemented by the occurrence of additional parametric
resonances as shown in figure 2. Grey areas indicate a positive Lyapunov exponent and consequently instability. Fundamental
and difference combination resonances according to Ω/ω1 = 2/n, Ω/ω2 = 2/n and Ω/(ω1 − ω2) = 1/n for n = 1, 2, . . .
are found which are typical for parametric excited systems. Summation combination resonances are not found which is in
accordance with [2]. Furthermore, figure 3 shows the dependence of the unstable tongues on the excitation amplitude ∆µ.

Fig. 2: Stability map for harmonic excitation
and ∆µ = 0.05

√
2, δ = 0

Fig. 3: Stability map for harmonic excitation
and µ1 < µs, δ = 0

Fig. 4: Stability map for stochastic excitation
and µ1 < µs, δ = 0, D = 0.01

In case of a stochastic friction coefficient µτ ∼ N
(
µ, σ2/4DΩ3

)
, a qualitatively similar stability map is obtained as

depicted in figure 4 despite the fact that the borders to unstable tongues seem blurred. This can be attributed to the fact that
the spectral density of µτ still has a peak near Ω. It is noted that a stabilizing effect in the region µ > µs could be found as
well.

4 Conclusions

The extension of a classical non-conservative coupling model with a stochastic friction coefficient leads to stochastic differ-
ential equations with parametric excitation. A stability analysis by means of calculating the top Lyapunov exponent shows
the occurrence of a combined self- and parametric excited dynamic system behavior. The consideration of noisy friction
coefficients may therefore contribute to explain dynamic phenomena occurring in systems with friction.
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