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ABSTRACT Grid structures are common in high-throughput assays to parallelize experiments in biochemi-
cal or biological experiments. Manual analysis of grid images is laborious, time-consuming, expensive, and
critical in terms of reproducibility. However, it is still common to do such analysis manually, as there is no
standardized software for automated analysis. In this paper, we introduce a generic method to automatically
detect grid structures in images and to perform flexible spot-wise analysis after successful grid detection.
The deep learning-based approach of the grid structure detection allows being flexible concerning different
grid types. The combination with a robust parameter estimation algorithm lowers the requirements of the
detection quality and thus enhances robustness. Further, the method conducts semi-automated grid detection
if a fully automated processing fails. An open-source software tool Grid Screener that implements the
proposed methods is provided as a ready-for-use tool for researchers. The usability is demonstrated by taking
different criteria into account, which are important for a successful application.We present the benefits of our
proposed tool Grid Screener utilizing three different grid types in the context of high-throughput screening to
show our contribution towards further lab automation. Our tool performs much faster than manual analysis,
while maintaining or even enhancing accuracy.

INDEX TERMS Application software, artificial neural networks, automation, biological systems, chemical
technology, machine learning, parameter estimation, image processing.

I. INTRODUCTION
High-throughput assays have become an indispensable tool
for modern biotechnology and biology [1]–[3] since they
enable generating, analysis, and processing of a large amount
of data. Using assays, overall experimental run times can
be significantly reduced while improving data reliability and
reproducibility by eliminating human error. One of the major
tools in today’s biology and chemistry to enhance high-
throughput is miniaturization and parallelization of assays.
By reducing working volumes up to a million-fold, a superior
level of spatiotemporal control [4] is provided which allows
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to work with a wider range of samples and experimental
conditions whilst reducing operational costs [2].

Assays on miniaturized platforms such as drug screen-
ing [5], bacterial drug colorimetric assays [6], analysis of
blood vessels [7], and embryoid body screening [8] rely
primarily on visualization of the phenomenon bymicroscopy.
Due to the design of these platforms, the images often have
grid-like structures composed of hundreds to thousands of
spots, from which the information relevant to the experiment
needs to be analyzed.

Often, the experiment’s outcome is given as fluores-
cent and bright-field microscope images [9] or color dig-
ital images [10]. Examples are presented in Figure 1.
For instance, the segmentation of spheroids on fluorescent
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FIGURE 1. Overview of different spot-wise processing: Exemplary tasks can be the segmentation (a, right) and cell detection (b, right) in fluorescent
images or the colorimetric analysis (c, left) of digital images. Segment contours (a, right) and regions of interest (b, right) are marked in green. Further,
median RGB color values are extracted and given (c, right). In addition, bright-field microscopy images (left) are presented in the case of (a) and (b).

images (cf. Figure 1a), counting cells per spot in fluorescent
images (cf. Figure 1b), or analysis of color digital images
(cf. Figure 1c) are possible tasks within the high-throughput
image screening.

Thereby, grid structures of different spots are a common
setup within high-throughput screening such as microtiter
wellplates [11], Micropillar Microwell Array Chips (MIM-
ICs) [12], or Droplet Microarrays (DMAs) [13], [14].
Besides, grid structures can occur in other research areas such
as the analysis of parking lots using satellite images [15] or
transmission electron microscopy [16].

Following the arguments of Klimaj et al. [17], manually
analyzing a large number of spots within images is laborious,
time-consuming, expensive, and critical in terms of repro-
ducibility. Thus, fully automated image processing pipelines
are an important goal in high-throughput screenings. How-
ever, the automatic detection and spot-wise analysis of these
structures are hampered by: (i) the individual characteris-
tics of the miniaturized platforms (shape, size, and distance
between spots), (ii) different data acquisition processes from
the images (e.g. rotation of the grid, different illumination
conditions), (iii) the presence of artifacts in the images,
or (iv) sub-grid structures meaning interruptions between grid
groups.

ImageJ/Fiji [18] is the commonly used open-source tool
for image analysis in biochemistry and biology. Spots can
be cropped manually and processing functions such as cal-
culating a median value are available for the image analysis
of a selected crop. However, the automated detection of grid
structures is not possible. The tools PlantCV [19] and Cell-
Profiler [20] enable the definition of a grid via the specifi-
cation of parameters like rows or columns. Though, neither
the rotation of the grid is considered nor a complete and
generic automated detection pipeline is provided. Pre-defined
functions can be used to do spot-wise processing. Especially
in complex scenarios, Deep Neural Networks (DNNs) can
outperform traditional pre-defined image processing func-
tions [21], e.g. presented in [22]–[26]. Hence, a pre-defined
image processing function may not be sufficient for specific
use-cases since, for instance, the quality requirements of the
analysis are not met. In the case of PlantCV, a Graphical User
Interface (GUI) is missing, which can impede the usage of
the tool by researchers.

The authors in [27] define the grid location manually.
Taking grid information into account, automated spot-wise
processing can be executed. In the work of Klimaj et al. [17],
a complete estimation of grids is avoided. First, coarse spot
locations are selected manually. Subsequently, an object
detection algorithm designed to obtain large objects is used
to determine the true location of a spot. However, in the case
of non-circular shapes, rotation can not be considered in this
detection approach. Moreover, the required processing time
of 15 minutes to detect 96 is comparatively large.

Having already extracted features of spots in the image, i.e.
cells per spot or color information, the authors of [28] offer
HTS-Corrector, a software package for statistical analysis
of high-throughput screenings. Further, Chan et al. [29]
present a tool for visualizing high-throughput experiment
data. Though, there is no image processing integration in
both tools.

Themain challenges in relatedwork can be summarized as:
(i) there is no generic method for fully automated grid detec-
tion in high-throughput image analysis, (ii) available image
processing tools often impede the design of custom pro-
cessing functions or the integration of Deep Learning (DL)
approaches, and (iii) there is no software tool including a GUI
to perform automated grid detection combinedwith spot-wise
processing enabling direct evaluation for biologist, chemists,
or medical doctors.

In this paper, we introduce a novel generic tool referred
to as Grid Screener to estimate grid parameters and extract
grid elements. Taking this grid information into account,
spot-wise processing can be done accordingly. A max-
imum level of flexibility is enabled through customiza-
tion. Our proposed deep learning-based approach to obtain
spot locations is flexible with regard to various grid struc-
tures in different assay setups. A designed robust parame-
ter estimation algorithm reduces the requirements in terms
of the accuracy of the DNN. Furthermore, semi-automatic
grid structure detection is possible, if automated process-
ing is not applicable, e.g. in case of no available data for
training the deep neural network or variability of imaging
parameters.

Our key contributions are the following:
• proposal of novel methods for the robust and flexible
estimation of grid structures enabling high-throughput
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FIGURE 2. Notation: The centroid locations of spots i, j denoted by pi,j =

[
pu

i,j ,pv
i,j

]>
, their shape yshape,

the corresponding expansion d , the number of rows (N), and the number of columns (M) should be
determined through an automated processing. Image coordinates are denoted in the (u, v ) coordinate
system. The rotation of grid elements is described by a rotation angle α. Quantitative values of the
illustrated exemplary parameter set are presented on the right.

screening in the context of biochemical or biological
experiments,

• introduction of the ready-for-use software tool Grid
Screener, including a GUI, to boost the application by
researchers in different scenarios, and

• demonstration of the performance benefits in the case
of using our software Grid Screener considering three
different datasets.

II. METHODS
A. PRELIMINARIES AND OBJECTIVES
An input image should be denoted as x ∈ NH×W whereas
H the image pixel height and W the image pixel width
characterize (Figure 2). Image coordinates are represented in
the (u, v) coordinate system. Binary pixel-wise information,
whether a pixel is part of a spot or not, should be denoted
by y ∈ NH×W . In the case of segmentation tasks, this is
also often referred to as a mask. In general, estimations or
predictions are represented by ˆ( ). A DNN focusing on image
segmentation is introduced as an approximate function fθ set
with parameters θ obtained during the training process of
the machine learning model. Predictions of a DNN given
the image x are noted as ŷ = fθ (x) ∈ NH×W . It applies
that pixel-wise information of ŷ(u, v) ∈ {0, 1} due to the
usage of the sigmoid function and subsequent binarization
considering a threshold of 1

2 . Grid rotation angles are denoted
by α ∈

(
−

π
4 ,

π
4

)
. On the one hand, the locations of

spots i, j denoted by pi,j =
[
pui,j, p

v
i,j

]>
can be summarized

comfortably in the grid tensor P ∈ NN×M×2 composed of
N ∈ Z+ rows and M ∈ Z+ columns, respectively. Both are
target parameters of the grid estimation. An orthogonal grid
is assumed, skewed grids are out of the scope in this article.
On the other hand, the shape yshape of a spot is of relevance
w.r.t. automated processing to select the area of interest for
each spot. Hence, a crop of the spot can be extracted for

all elements of the grid. In the following, we restrict our
methods to the shapes of yshape ∈ {circular,square}.
Moreover, the expansion of a spot denoted as d ∈ N needs
to be determined. The parameter describes the edge length in
the case of square shape or the diameter for circular shape,
respectively. As depicted in Figure 2, groups of spots can
occur. Hence, distances between elements do not necessarily
have to be equal. The case of non-equal distances between all
spots is referred to as sub-grid structures.

B. IMAGE PROCESSING PIPELINE GRID SCREENER
Figure 3 presents the novel image processing pipeline of
Grid Screener. Considering the entire processing pipeline of
high-throughput screenings, obtaining grid parameters is a
necessary previous processing step when coping with grid-
shaped images. The subsequent spot-wise processing can be
various depending on the underlying experiment as already
presented in Figure 1. All given modules of Grid Screener
are discussed in detail below.

1) PRE-PROCESSING
First, the input image x0 is pre-processed to obtain x. The
image is transformed to gray-level space to enable both, pro-
cessing of color and gray-level images. An image normaliza-
tion (mean value equals zero, standard deviation equals one)
is done to ensure a proper input for the following spot detec-
tion via the DNN fθ . Dealing with high-resolution images
(e.g.≥100 megapixels), down-sampling boosts the computa-
tion. Moreover, there are options of using overlapping sliding
windows in the case of limitations w.r.t. Graphics Processing
Unit (GPU) memory. Thus, less powerful GPUs concerning
the available memory can be used in our approach without
any problems. The overlapping sliding window predictions
are merged, subsequently. In addition, less accelerated pro-
cessing by using CPU is possible, which yields flexibility for
users of Grid Screener.
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FIGURE 3. Image processing pipeline Grid Screener: An input image x0 is pre-processed yielding x to perform spot detection that results a prediction ŷ.
The post-processed predictions ỹ are used to obtain the rotation-corrected predictions ỹα̂ . Hence, all grid parameters can be obtained using the ỹα̂ . The
input image x can be rotated analogously to ỹ enabling a spot-wise processing in the same coordinate system in order to obtain final results of
grid-shaped high-throughput experiments. In addition, elements of semi-automated grid estimation are presented (dashed).

2) SPOT DETECTION
The DNN fθ serves as a spot detector calculating a predic-
tion of spot pixels ŷ = fθ (x) given image x. Compared
to traditional computer vision approaches such as hough
circle/line detection, the consideration of DNNs is a more
generic approach. Though, this prediction is not correct
in general. For instance, damaged slides, corrupted spots,
or low-expressing spots are issues where partly wrong pre-
dictions arise. Hence, post-processing is needed to enhance
robustness.

3) POST-PROCESSING
The post-processing cleans the prediction ŷ. First, morpho-
logical operators suppress small noisy segments and smooth
shapes within the prediction. Then, all segments are filtered
based on their corresponding areas. The filter limits are
obtained via analyzing histogram w.r.t. the area of found
objects to ensure robustness. Filtering means that segments
outside the filter limits are deleted. The post-processed and
filtered prediction is denoted by ỹ.

4) ROTATION ESTIMATION AND CORRECTION
A straightforward estimation of the grid rotation in the
given image is not feasible. Hence, we propose an algo-
rithm for a robust estimate of the rotation angle α̂. Fur-
ther, we obtain the distance between two neighboring spots
denoted as r̂ . A detailed description of our algorithm in pseu-
docode is given in the Supporting Information. Hough-based
approaches to estimate rotation angle are not considered.
Reasons are the required high computing time to achieve the
necessary accurate angular discretization in high-resolution
images and susceptibility to errors.

We assume that the number of neighboring elements in an
equal-distanced sub-grid dominates the number of sub-grids.
Thus, a center spot is arrangedwith roughly equal distances to
neighboring spots as well as perpendicularity. An illustration
of this assumption is given in Figure 4a. This assumption
holds regarding common biochemical or biological assay
platforms.

The pixel-wise spot information of predicted segments
in terms of ỹ is interpreted and centroid locations of all
detected spots are obtained. Index i is used in this case for a
general detection, whereas index j corresponds to neighbors
of detection i. We determine the four nearest neighbors per
alleged detection (ui, vi) using the k-nearest neighbors algo-
rithm. These neighbors are transferred to a polar coordinate
system using the alleged detection as an origin which yields
magnitudes rj and arguments ϕj to specify the neighborhood.
The polar representation can be used to execute feasibility

checks. Thereby, two criteria have to be fulfilled: (i) simi-
larity w.r.t. magnitudes of all neighbors and (ii) an angular
difference between neighbors of approximately π

2 which can
be interpreted as perpendicularity. The tolerances of accepted
spread in magnitudes or arguments are selectable parameters.
Figure 4b presents a non-feasible neighborhood regarding
angular criterion (ii). In comparison, a violation of similar
distances (i) is given in Figure 4c.

Only feasible neighborhoods are considered for further
calculations. The rotation angle α̂ and spot distance r̂ are
obtained robustly according to the given intermediate steps
(cf. pseudocode in the Supporting Information).

To simplify the following grid estimation, all detections
are compensated by the estimated angle α̂ to obtain ỹα̂ .
Compensation means a rotation by the inverted rotation angle
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FIGURE 4. Rotation estimation: The center detection (ui , vi ) is depicted in a relative polar coordinate system including magnitudes rj and
arguments ϕj of neighbors. Case (a) represents a feasible neighborhood. In contrast, infeasible neighborhoods due to violations (marked
with red) w.r.t. arguments (b) and magnitude (c) are opposed. In particular, the tolerance of accepted spread in magnitudes (b) or
arguments (c) are selectable parameters of the algorithm.

α̂. Consequently, this compensation yields a parallel oriented
grid to the height and width dimension of the image.

5) GRID AND SHAPE ESTIMATION
The objective of grid estimation is to obtain the number of
rows N̂ , columns M̂ , and all locations of spots summarized in
P̂. A comprehensive presentation of our algorithm in the form
of pseudocode can be found in the Supporting Information.
The pixel-wise and rotation-corrected spot information in
terms of ỹα̂ is transformed to a centroid detection list L.
Moreover, the lists Lu and Lv are subsets of L that only
include u or v centroid coordinates of the detections.

All detections are clustered regarding the introduced loca-
tion feature listsLu andLv by a clustering algorithm. Though,
the clustering approach needs to be able to determine the
number of clusters since this parameter is initially unknown.
The number of clusters should be equal to the number of rows
N̂ or the number of columns M̂ . However, the detection list
L may include noisy or wrong detections due to remaining
errors in the segmentation ỹα . Thus, the clustering algorithm
needs to be robust w.r.t. noise and outliers. Thereby, the
previously calculated median spot distance r̂ helps to decide
whether a new cluster for separation is required or not. The
obtained cluster assignments are denoted by lists Cu and Cv.
Processing the information represented in Cu and Cv, each

detection (ui, vi) is assigned to a row and to a column cluster
or marked as an outlier, respectively. Hence, wrong detections
can be filtered using the results of the clustering. Further, the
number of clusters is assigned to the previously unknown
grid parameters N̂ and M̂ . Thereafter, a line estimate is
done for each horizontal and vertical cluster separately using

a parameter estimation approach. All detections that are
marked as outliers by the clustering algorithm are not taken
into account. The estimated line parameters, which are the
offset and the slope, are stored in the lists Fu (vertical lines)
and Fv (horizontal lines). A subsequent intersection calcu-
lation considers all combinations of vertical and horizontal
lines. The corresponding linear equation system is solved for
all N̂ · M̂ combinations of elements in Fu and Fv. Thus, the
locations of all spot centroids P̂ are determined. Thereby,
the coordinates of centroid spots are rounded to integers in
order to obtain pixel coordinates. Using the proposed inter-
section approach enables sub-grid detection directly since no
assumption of equal spot distances is necessary.

The expansion of spots d̂ is calculated robustly in
terms of the median expansion of all remaining detections
in ỹα .
Further, shape estimation is proceeded considering the area

as a feature for discrimination. The area of each detection Ai
is compared to a corresponding squared Asquare,i or circular
Acircle,i area. The used expansion for area calculation is the
average value of horizontal and vertical expansion of each
detection. To summarize the proceeding, our used classifier
can be described by

yshape,i =

{
circle,

∥∥Ai − Acircle,i∥∥ < ∥∥Ai − Asquare,i∥∥
square, else

(1)

and predicts the shape for each detection i. The final shape
ŷshape is the most frequent element of all predictions ŷshape,i.
To estimate further or more complex shapes, the classifier can
be replaced with a more elaborate approach.
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6) SEMI-AUTOMATED GRID ESTIMATION
In the case of failure regarding fully automated grid detection,
i.e., being faced with no available training data or problematic
imaging conditions, we enable semi-automated grid estima-
tion, additionally. First, a user can define the number of rows
and columns as well as the spot shape. Subsequently, select-
ing the corners of the grid allows obtaining rotation angle α̂
and the locations of centroids P̂. Thereby, basic trigonometric
and geometric relationships are taken into account.

7) SPOT-WISE PROCESSING
Taking the obtained grid parameter into account, spot-wise
processing is enabled. As already motivated, the processing
depends on the underlying problems and thus can be cus-
tomized.

C. ROBUSTNESS AND LIMITATIONS
To further examine the robustness and limitations of the
Grid Screener, we consider an additional test procedure.
The quality of the DNN prediction is the main influencing
factor regarding a successful estimation of grids. Thereby,
we change or corrupt the DNN predictions ŷ. We distinguish
between the synthesized corruptions or changes:
• Noise - adding random salt and pepper noise to the
predicted segmentation mask,

• Missing segments - segments are deleted randomly in
total,

• Additional segments - segments are added randomly,
• Rotation - the entire segmentation mask is rotated, and
• Sub-grid structure - entire rows or columns are deleted
to generate a segmentation mask composed of sub-grids.

Subsequently, the grid detection performance is analyzed in
the case of changed input predictions.

D. EVALUATION
1) QUANTITATIVE METRICS
To evaluate Grid Screener, we compare the time needed for
users tuser to obtain elements of the grid. In addition, tprocess
describes the processing time including computational effort.

Further, we consider the quality of grid estimation. Consid-
ering a ground truth grid composed of detections pi,j and the
estimated grid centroids p̂ ∈ P̂, the grid centroid estimation
error score

1p =
1

N ·M · r

N∑
i=1

M∑
j=1

argmin
p̂∈P̂

∥∥pi,j − p̂
∥∥
2 (2)

describes a metric of the error during grid estimation. The
metric 1p depicted in Equation (2) is normalized by the
present spot distance r > 0 between centroids of two
neighboring spots within a (sub-) grid. In contrast, the grid
expansion error

1d =

∣∣∣d − d̂∣∣∣
d

(3)

FIGURE 5. Criteria usability study: To evaluate the usability of the tool
Grid Screener, the criteria of accessibility, software
requirements/installation, available GUI, available user manual,
hardware requirements, and extendability are considered.

characterizes the relative error of the estimated expansion d̂
of spots compared to ground truth expansion d > 0.

2) USABILITY
In preparation for a usability study concerning Grid Screener,
we conduct evaluation criteria denoted in Figure 5. On the
one hand, hurdle-free access to a tool plays an important
role in terms of usability. On the other hand, a GUI and
a user manual enhances the usage of tools. Software and
hardware requirements affect how a software tool can be used
in practical projects. Moreover, the opportunity to extend an
available tool can be beneficial to apply it on neighboring
problem areas.

III. RESULTS
A. IMPLEMENTATION
The proposed tool Grid Screener is implemented in python.
We deploy a pip package to enable comfortable cross-
platform usage. Further, a provided user manual enables
the easy and smart usage of the software for researchers.
We tested the software package on Windows 10 and Ubuntu
20.04 in combination with python 3.8.5. The tool is available
as public repository under https://git.scc.kit.edu/sc1357/grid-
screener.

1) DEEP LEARNING
We use the state-of-the-art convolutional neural network
U-Net presented in [26] for the DNN fθ in our pro-
posal. It is composed of a traditional autoencoder (encoder-
decoder) architecture which is extended by skip connections
to enhance location information. Each encoder or decoder
consists of convolution, batch normalization, and rectified
linear unit blocks. Dice loss [30] serves as objective function
to optimize the network parameters. The architecture is able
to handle small-scale data scenarios. We implement the U-
Net in PyTorch Lightning [31] and use data augmentation
such as image flipping, shifting, rotating, rescaling, crop-
ping, Gaussian noise superposition, contrast adjustment, and
adaptation of brightness provided by Albumentations [32].
To reduce DNN training duration, the proposed hybrid high-
performance computing/high-throughput computing concept
in [33] is considered. DNN training is performed on cluster
nodes equipped with Intel Xeon Platinum 8368 CPU (2 sock-
ets, 76 cores per socket) respectively NVIDIA A100 Tensor
Core GPUs. Logging for interpretation of results is performed
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FIGURE 6. Flow chart Grid Screener: A single image or overlaying images must be selected. It can be chosen to do spot detection either in an automated
or semi-automated manner. The semi-automated grid detection requires the grid properties as user input. In contrast, an automated detection needs a
selection of the DNN used to detect spots. On the one hand, pre-trained models can be utilized. On the other hand, a custom model can be trained using
an annotated training dataset. Afterwards, the detection algorithm can be started. A check of the detection result is possible before the spot-wise
processing starts. Previously, the required spot-wise processing function needs to be selected. Hence, final results can be obtained.

by Weights&Biases [34]. Details w.r.t. data augmentation,
DNN architecture, or training are given in the Supporting
Information.

2) IMAGE PROCESSING
Besides the DL part in the Grid Screener proposal, the image
processing libraries OpenCV [35] and scikit-image [36] are
used for pre-processing, post-processing, and spot-wise pro-
cessing. Using a python-based implementation allows the
seamless integration of other open-source python libraries.
In particular, this can be useful for spot-wise processing. For
instance, processing algorithms implemented in state-of-the-
art DL frameworks such as PyTorch [37] can be easily used.

3) ROBUST PARAMETER ESTIMATION
We propose to use the Density-based spatial clustering of
applications with noise (DBSCAN) [38] as the clustering
algorithm. Reasons for DBSCAN are robustness regarding
noise as well as the non-parametric approachmeaning that the
number of clusters is not required as a parameter. Line esti-
mation can be done by minimizing the sum of least squares to
obtain a polynomial of order one. However, this method tends
to be vulnerable regarding outliers. Thus, we propose using
Random sample consensus (RANSAC) [39] to gain more
robustness in our proposed algorithm. Coping with a large
number of outliers represented in the dataset, RANSAC is
still able to estimate model parameters accurately comparing
the number of inliers and outliers of an estimated model.
We use the implementation of both algorithms and k-nearest
neighbors given in the library scikit-learn [40]. The library
NumPy [41] is used for general calculations such as solving
linear equation systems.

4) FLOW CHART AND GUI
To present the whole process of our proposal, a flow chart
is given in Figure 6. The selection of a single image or
overlaying images form the initial step in the procedure.

The user can choose between automated or semi-automated
spot detection. The automated detection requires a selection
of the DNN used for spot detection. Thereby, considering
pre-trained DNNs or training a new DNN is possible. In the
case of semi-automated grid detection, grid properties need
to be defined by user input. After starting and finishing
the detection, the results of spot detection can be checked.
Final results are obtained when the spot-wise processing has
finished. However, a spot-wise processing function needs to
be chosen previously.

AGUI given in Figure 7 is developed to enhance the usabil-
ity for researchers. The GUI is developed using Qt5 which
allows easy customization. Figure 7a presents the GUI in
the case of standard fully automated processing. In contrast,
Figure 7b visualizes the introduced case of semi-automated
processing including input selection by users (cf. Figure 7c).
The GUI integrates both, grid detection and subsequent spot-
wise processing. The configuration and parameters of the
trained DNN need to be selected when using the fully auto-
mated approach. In the case of semi-automated grid detec-
tion, as presented in the method section, a part of the grid
parameters needs to be set by the user. An option to use dif-
ferent but overlaying images for the detection and spot-wise
processing is provided. For instance, the bright-field image
can be used for grid estimation and the associated fluorescent
image may be considered for spot-wise processing.

B. DATASETS
To investigate general applicability, we consider three types
of biological or biochemical image data. Exemplary crops of
input image x and associated mask y are given in Figure 8.
DMA data [42] represented in square (cf. Figure 8a) and
circular (cf. Figure 8b) shape are presented. Since the two
types of DMA image data differ only regarding the shape,
the datasets are aggregated to one dataset that is composed
of 411 training and 103 test samples with an image size of
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FIGURE 7. GUI: The user can select between the fully automated (a) or the semi-automated (b) grid detection approach using Grid Screener.
An exemplary image concerning the interface for semi-automated grid detection is presented in (c). Grid detection can be done by using a crosshair (red
intersection of lines) for user input. In the case of fully automated processing, the configuration and parameters of the DNN are required. In contrast,
a few grid parameters need to be set by the user considering semi-automated grid detection. Different shapes per sub-grid are supported. In addition,
spot-wise processing can be done by selecting the corresponding function using a dropdown widget ‘‘Process.’’ Using different but overlaying images for
the estimation of grid parameters and spot-wise processing is possible. A bright-field image can serve for grid detection whereas spot-wise processing is
based on the associated fluorescent image. Videos of exemplary usage are given in the Supporting Information.

256px × 256px. Crops of the high-resolution original image
are created to cope with GPU memory restrictions.

Further, we investigate our proposed Grid Screener w.r.t.
common wellplates in a square shape. In contrast, the
wellplate dataset presented in Figure 8c has a lower amount
of training examples compared to DMA dataset. Using this
small-scale dataset, we examine functionality in scenarios
with less available data. The dataset includes 51 training
and 13 test samples with the image size of 256px × 256px.
We annotated both datasets using an in-house developed
annotation tool.

C. SPOT SEGMENTATION
We evaluate the spot segmentation using the Dice-Sørensen
coefficient DSC [30]. Taking the test datasets into account,
average performance DSCtest = 97.63% in the case of DMA
and DSCtest = 96.59% for the wellplate dataset show the
capability of DNNs for spot detection. The lower perfor-
mance score in the case of wellplate can be explained due
to a smaller dataset as well as a more complex image pro-
cessing problem. For example, shadows are present within
the wellplate images (cf. Figure 8c) and may impede image
recognition. Though, the DNN is capable to serve as a generic
detector indicated byDSCtest > 90%. It can be used to predict

FIGURE 8. Datasets: Exemplary crops of images x and associated masks y
are presented for the DMA data of different shapes (a) or (b) as well as
wellplate data (c).

spots of different shapes only by annotating a small dataset.
The small-scale data scenario (wellplate dataset) is solved
with sufficient performance. In contrast, traditional computer
vision techniques like hough circle detection or hough line
detection [35], [36] are designed for special shapes and thus
less generic. Moreover, the manual parametrization of these
methods is often burdensome.
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TABLE 1. Quantitative benchmark analysis: The needed user time effort
tuser, processing time tprocess, and accuracy metrics (1p, 1d ) are
compared in the case of a DMA slide composed of 672 spots. Thereby,
manual grid detection is opposed to Grid Screener in semi-automated
and automated detection mode.

Inference time of the DNN scales with the corresponding
image size. For instance, inference time using a consumer
CPU (Intel Core i7-10750H) is 34.52 s, whereas utilizing
a consumer GPU (NVIDIA Quadro RTX 3000) yields an
inference time of 2.41 s in the case of a DMA slide composed
of 672 spots (6379px × 18992px). Hence, the application
does not require a GPU.However, the usage of GPU hardware
accelerates the processing by more than a factor of 10 which
makes it more comfortable in the application.

D. GRID ESTIMATION
1) QUANTITATIVE BENCHMARK ANALYSIS TO
STATE OF THE ART
To examine Grid Screener, we compare the time tuser needed
by a user, total processing time tprocess, and accuracy metrics
1p presented in Equation (2) or 1d given in Equation (3).
We oppose the methods of manual grid detection, semi-
automated grid detection, and fully automated detection.
We take n = 10 samples of user selections to provide a
robust metric. Users are instructed by a supplied user manual.
A DMA slide with 672 spots is taken under consideration to
do the benchmark. To keep the experiment feasible in the case
of manual detection, we measured the average time needed
to mark and extract ten single spots and extrapolated them
to 672 detections. Further, the accuracy of grid estimation in
terms of 1p and 1d is calculated using a subset of those ten
spots.

The results are presented in Table 1. In the case of manual
grid detection, tuser = 835 s is needed for obtaining the
grid spots. Due to no additional computing in this case, the
total processing time tprocess is equal to tuser. In contrast,
a semi-automated processing achieves tuser = 61 s and is
superior to the manual grid detection approach regarding
needed time tuser/tprocess. Comparing tuser and tprocess in this
case, the computational effort (0.01 s) is negligibly small.
However, our fully automated approach requires no user input
to estimate the grid (tuser < 0.01s). The processing time of
Grid Screener is composed of DNN inference time to gen-
erate an image segmentation and grid estimation computing
time, respectively. As previously mentioned, DNN inference
time differs depending on the used hardware device. Total
processing time for grid estimation in the case of an available

GPU (NVIDIA Quadro RTX 3000) of tuser = 3.88 s is
superior to CPU processing time of tuser = 35.99 s. Though,
taking quantitative metrics tuser/tprocess into consideration,
Grid Screener is superior in all cases to manual processing.

Taking the accuracy metrics 1p and 1d into account, all
methods show no outstanding differences (cf. Table 1).

Hence, Grid Screener is the overall most performing
approach. The reduction of needed user time whilst keep-
ing accuracy on a high level (1p � 0.1,1d � 0.1)
is a major advantage within practical experiments and
makes an important contribution to improve high-throughput
screening.

2) ACCURACY EVALUATION ON TEST ASSAYS
To avoid overfitting in our proposed grid estimation algo-
rithms, we test Grid Screener on two complete slides
per dataset in contrast to the previously considered crops
of slides. Thereby, we consider the introduced normal-
ized metrics in Equation (2) and Equation (3). The intro-
duced grid parameters could be estimated with sufficient
accuracy in all test cases indicated by resulting metrics
1p ≤ 0.053 and 1d ≤ 0.037. Further, yshape is classified
in all test slides with 100% accuracy. For more detailed
results such as the obtained metrics per test image or the
resulting grid estimation per test case refer to the Supporting
Information.

3) ROBUSTNESS AND LIMITATIONS
An excerpt of the results is depicted in Figure 9. A failure
case is defined by 1p ≥ 0.1 or 1d ≥ 0.1. Figure 9a shows
cases Grid Screener is able to copewith. In contrast, Figure 9b
presents instances in which the limitations of Grid Screener
are visualized. A salt and pepper noise level of 30% leads
to failure. However, such a large noise level is unlikely when
dealing with convolutional neural networks since convolution
kernels smooth predictions. Further, 70% of missing seg-
ments or a sub-grid in combinations with missed detections
lead to problems since only a single representative of row and
columns will be classified as noise by DBSCAN. Besides,
80% of additional segments leads to a merging of segments.
Consequently, rows and columns cannot be discriminated
using Grid Screener which leads to a failure. Though, rota-
tions of the initial segmentationmask lead to no failure during
the processing.

To sum up the analysis in general, Grid Screener is robust
to an amount of corruption in which the overall grid structure
remains visible. A detailed overview concerning the results
of the robustness and limitations analysis is given in the
Supporting Information.

4) SPOT-WISE PROCESSING
Exemplary spot-wise processing is depicted in Figure 10. The
results of Grid Screener are used to perform spot extraction
and save each spot in separate images utilizing the ‘‘crop
spot’’ function.
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FIGURE 9. Robustness and limitations to imperfect spot predictions: Robustness (a) and limitations (b) are compared concerning different corruptions.

FIGURE 10. Spot-wise processing: All spots given in the input image x0 are detected by Grid Screener.
Subsequently, each spot is extracted and saved using the implemented ‘‘crop spot‘’ function.

TABLE 2. Usability study: The introduced criteria are evaluated using X to
indicate full, (X) for partial, and an empty cell for no target achievement.

E. USABILITY STUDY
The results of the usability study are presented in Table 2.
By providing a public code repository including a user man-
ual in form of a README file, accessibility and user manual
can be marked as full target achievement. Grid Screener
can be used via the provided GUI. Further, deploying the
software in python as pip package, software requirements
are low and installation can be done by users comfortably.
However, to generate results in less computing time, a GPU
is beneficial. Though, Grid Screener offers a CPU mode

leading to increased computing time. Hence, the aspect of
low hardware requirements is not fulfilled completely. Grid
Screener can be extended by other spot detectors or additional
spot-wise processing functions. The user needs to be able to
write a custom python function. Thus, there is only partial
target achievement in terms of extendability.

Therefore, we can demonstrate the usability of Grid
Screener for researchers by fully satisfying four criteria and
partially satisfying two criteria.

IV. CONCLUSION
High-throughput assays of biochemical or biological experi-
ments often consider grid structures of spot arrays. Thereby,
image processing is a common method to perform analysis
referred to as high-throughput screening. However, there are
no generic methods coupled with software packages for the
automated analysis of grid-shaped images available. Hence,
the often considered manual processing leads to additional
time effort, high costs, and low reproducibility of the process-
ing for researchers during image analysis.

166036 VOLUME 9, 2021



M. P. Schilling et al.: Grid Screener: Tool for Automated High-Throughput Screening

We introduce Grid Screener which is a generic tool
for detecting grid structures and subsequent spot-wise pro-
cessing in biochemical or biological images. To enable
user-friendly operation for researchers such as biologists,
chemists, or medical doctors, we provide a developed soft-
ware package including graphical user interface with a corre-
sponding manual. The novel tool combines a deep learning-
based approach and a robust parameter estimation algorithm
to obtain generic grid structures. The automated processing
guarantees a reproducible experiment evaluation, which helps
researchers when comparing different settings. Custom spot-
wise processing allows the usage of Grid Screener in a wide
range of applications such as colorimetric analysis, cell detec-
tion, or segmentation of spheroids.

Three different grid structures with different shapes are
considered to evaluate the tool in practical applications. First,
Grid Screener demonstrates the benefits regarding the needed
time for users to do image analysis. On the one hand, the
processing time is reduced. On the other hand, the effort is
transferred from researchers to computers. Second, we show
the robustness of our proposal w.r.t. synthesized changes
or inserted corruptions into predictions of the deep neural
network. Hence, this results in lower accuracy requirements
in terms of estimating grid segments using deep learning.

Grid Screener is not only suitable for high-throughput
screening, an analysis of grid structures is relevant during the
manufacturing of slides for automated quality control or can
be integrated into experimental robot systems dealing with
grid structures.

Part of future work is the extension and integration of fur-
ther commonly used spot-wise image processing functions.
In particular, individual spot-wise processing algorithms can
be made available for the community using the established
code repository. Moreover, investigations to reduce the com-
puting time of the deep neural network, especially in the case
of no available GPU, for further improvement are pending.
Further, we are investigating neighboring problems such as
the analysis of parking lots by means of satellite images and
are undertaking proof-of-concept experiments. For instance,
the initial working package here is the creation of datasets
corresponding to other research domains. In addition, object
detection in other domains brings further challenges such as
coping with low-resolution satellite images.

Grid Screener as an open-source tool can contribute con-
siderably to the research community and can help to make a
further step concerning lab automation in the context of high-
throughput screening.
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