
Microservice-based Architecture for the
Integration of Data Backends and Dashboard
Applications in the Energy and Environment

Domains

Jannik Sidler, Eric Braun, Christian Schmitt, Thorsten Schlachter, and Veit
Hagenmeyer

Institute for Automation and Applied Informatics (IAI)
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
jannik.sidler@kit.edu

https://www.iai.kit.edu

Abstract. This article presents a software architecture based on the
onion architecture that uses the concept of application microservices in
order to integrate data backends with dashboard applications. Its main
goal is to reduce the complexity in the architecture’s frontend and there-
fore to increase the performance of the application for the user. The
concept of the added application layer as well as its interaction with the
other parts of the architecture is described in detail. Then an evaluation
of its advantages is presented which shows the benefits of the concept
regarding performance and simplicity using a real-world use case in the
energy and environmental domains.

Keywords: environmental information systems, energy dashboards, web
application, software architecture, application microservice, onion archi-
tecture

1 Introduction

Nowadays, climate change is one of the dominating and most difficult challenges
mankind has to face. In this context, many measures are in progress of being
accomplished in order to support the energy transition and the protection of the
environment. During this process, the requirements for software engineers began
to rise steadily, since one of the most important goals on the road to a success-
ful deceleration of climate change is making the world’s population understand
how their behaviour can be relevant in the process of deceleration. To improve
this understanding, there are various possibilities. As the internet has a great
relevance in the process of gathering information, a great potential lies in the
numerous websites that deal with topics such as environment protection. Con-
sequently, an important aspect in the process of the population’s understanding
of the changes our world succumbs is the utility of these websites. Therefore,



2 Jannik Sidler et al.

tools and applications are required which make the usage of renewable energy
sources, the effects of the energy transition and the change of different sectors
of the environment visible for everyone. Additionally, the influences of climate
change on the environment have to be measured and visualised.
In the present article, a software architecture is presented which supports the
formerly mentioned scenarios. The architecture consists of three parts. The first
part is a set of web services which is called Generic Microservice Backend (GMB),
using the microservice design pattern ([5] and [6]). GMB’s competence consists
in the provision of generic master data and timeseries data that are usable in
different contexts and applications. GMB is based on previous work described
in [1] and is used as a foundation in the present article. In general, these web
services used in GMB are derived from a software architecture called onion ar-
chitecture [2]. They fulfill the tasks of the domain services which are described
in Section 2.
The second part is an application layer that also contains a web services which
are located on top of the previously described domain services. These web ser-
vices are called application services in the onion architecture [2]. In contrast to
the domain services, they perform tasks which are more specific to an existing
application, where the domain services perform tasks that are of a more general
nature which can be reused in multiple other scenarios. the application services
also use the microservice design pattern [5][6].
The third part is a flexible and reusable framework [7]. Its main goal is the
visualisation of data by using lightweight web components which provide easy
integration into existing websites and other web frameworks.
The main goals of this article can be summarised into three different aspects:

– Usage of application services to enhance the efficiency of an existing archi-
tecture

– Reusability of components
– Support for applications in the energy- and environment domain

The structure of this article is as follows: In Section 2, foundations and related
work, which are principally connected to the presented work, are described and
compared with the architecture at hand. In the third section, the mentioned ar-
chitecture is described in detail and core concepts are explained. In Section 4, an
evaluation regarding the usefulness of the achieved work is provided. Addition-
ally, improvements of the current architecture are explained and discussed. The
last section summarises the presented concepts and approaches and provides an
outlook on further work that still has to be done in this context.

2 Foundations and Related Work

This section presents foundations of the given software architecture as well as
similar work from different contexts. One important aspect in the scope of the
present article is the term microservice. According to [5] and [6], microservices



MSA for Data Backends and Applications 3

are a design pattern in software engineering enhancing the encapsulation of func-
tionality in distributed logical units and furthermore, the independence of these
logical units of other functionality used in the same context. According to Fowler,
microservices are ”an approach to develop a single application as a suite of small
services, each running in its own process and communicating with lightweight
mechanisms” [5]. This approach has several advantages. First, the reusability
of microservices is high. They provide an API that can be easily reworked, ac-
cording to the context’s requirements. Furthermore, they can be reused easily
in different contexts due to their modular design. Second, the maintainability of
microservices is very good. As they are independent of other microservices, they
can be maintained without creating undesired effects on other components, as
the only point of access to the microservice is its API. Finally, microservices fit
very well in modern software deployment infrastructures. As they encapsulate
only a certain, manageable amount of functionality, they can easily be deployed
”by a fully automated deployment machinery” [5]. For these reasons, the archi-
tecture presented in this paper uses the microservice design pattern.
Moreover, the core concept used in the present article are the application services
given by the onion architecture [2]. The onion architecture is a pattern which
compares the structure of a software architecture with the one of an onion. In
Figure 1, this reference architecture is depicted in detail. The domain model is
located in the middle. It is the core of the architecture, as every behaviour and
state of the architecture depends on the way the domain is organised. The layer
around the domain model are the domain services which are closely related to
the domain model and implement the behaviour of the domain. Further outside,
the application services connect the user interface and infrastructure (which is
the layer on the outer edge) to the domain services. They contain business logic
which defines the functionality of the application that is build using the domain
layer. The outer layers are coupled with the next inner layer in an unidirectional
manner, which means that the user interface is indirectly coupled to the domain
services as well, but not vice versa.
In the present article, the onion architecture and the microservice design pat-
tern are combined. This has already been done in [3]. This is derived by using
domain-driven design (DDD) [4] which strongly encourages using microservice
architectures and can additionally be mapped to the onion architecture. Conse-
quently, the application services will be adressed more specifically as application
microservices in the following sections and in the context of the presented archi-
tecture.

3 Architecture for Applications using Data Backends

In this section, the architecture for applications using generic data backends is
explained. Figure 2 shows that the architecture is grouped into three different
layers.
The domain layer mainly consists of three microservices [5]: The Master Data



4 Jannik Sidler et al.

Fig. 1: The onion architecture [3].

Service (MD) is responsible for managing master data, including functionality to
read and write them from/to a persistent database. To ensure this functionality,
the MD service has an appropriate REST API, providing all the functionality
needed by applications, e.g. providing requested data by using filters for more
specific search queries and by providing the ability to sort and compute aggre-
gations [1]. The Semantic Service’s (SEM) goal is the validation of master data
objects by using predefined schemas as references. These schemas define the
structure of master data objects of a specific category. Therefore, the SEM ser-
vice is required to verify the validity of master data objects [1]. Furthermore, the
SEM service adds semantic information to master data objects, as for instance
additional descriptions, data types and further meta information. The Time-
series Service (TS) is needed for managing timeseries data, e.g. measurements.
Therefore, it uses optimised database tools for this kind of data. Additionally,
its API provides all necessary functionality for aggregating and filtering time
series data according to the application’s requirements [1].
The user interface [7] represents the application that provides the top-level com-
ponents which are responsible for user interactions. It is implemented by using
a flexible framework which has been developed previously. More details can be
obtained from [7].
The application layer is located between the previously described layers. The
concept of the application microservices based on the onion architecture [2] has
been described in Section 2. In the present paper, this concept is used mainly
to increase the performance of the user interface by reducing its complexity and
responsibilities. This extension is described in the following.
In order to improve performance, there are two main aspects which have to be
considered. The first one is data processing. Components requesting data po-



MSA for Data Backends and Applications 5

MD SEM TS

Application 
Microservice

Dashboard ApplicationUser Interface

Domain Layer

Application 
Layer

Fig. 2: Architecture of the given dashboard application.

tentially need specific formats containing particular attributes and/or a fixed
number of values. These special data formats usually cannot be provided by do-
main services, which means that a certain number of processing steps has to be
added to the application layer. This data processing, if executed in the user inter-
face, has to be performed by the end user’s hardware resources, as without these
processing steps, the data cannot be visualised by the user interface components.
Consequently, if the user cannot afford these hardware requirements, the user
interface will be slow and it takes longer until changes are visible, which leads
to the user’s dissatisfaction. Additionally, integrating business logic in the user
interface is not consistent with best practices such as the model-view-controller
pattern (MVC) [8]. The solution for this problem is to shift these data process-
ing tasks from the user interface (and from the user’s hardware) to the backend
side, precisely to the application layer. The application microservice(s) can be
used to accomplish processing tasks and consequently provide the specific data
formats for the applications.
The second aspect that has to be considered in order to improve the user in-
terface’s performance is the network aspect. Without an application layer (or a
similar gateway component), the user interface of the microservice-based archi-
tecture has to make many requests to get the required data from the backend
since the data is distributed across different microservices and resources within
these services. Furthermore, in this case, the overhead from the data retrieving
is much higher compared to retrieving the data with less requests. This leads to
a higher network load, as constantly high numbers of data requests have to be
made in the background. Combined with the previously described aspect of data



6 Jannik Sidler et al.

processing, this leads to a significantly reduced performance. This problem can
be tackled by using an additional application layer, too. The number of requests
the user interface has to make can be reasonably reduced when it does not have
to organise the required data by itself. Alternatively, the application microser-
vice is used to orchestrate the different requests to the domain microservices.
Afterwards, the data is filtered by accomplishing necessary processing tasks and
by generating the required data format. At this point, an improvement regard-
ing performance of the user interface and complexity of the single component
layers is reached. Instead of assigning the mentioned tasks to the user inter-
face, an additional application layer is included being explicitly responsible for
application-specific tasks (e.g. creating particular data formats for the user in-
terface) that are independent of the components used in the user interface.
Figure 3 shows the structure of the application microservice. It consists mainly
of three components. First, there is a REST API which provides endpoints en-
capsulating a certain set of functionality. In the context of this architecture,
one endpoint is used to update the state of the whole application. Within this
REST API which can be called by the user interface, certain other functions and
classes are called containing the particular logic required for data processing. So
on the one hand, there is a functional block which contains all necessary steps
to perform the data processing and to create the appropriate data format. On
the other hand, the data for this tasks is provided by the domain services. The
requests to the domain services are orchestrated in a third part of the application
microservice.

4 Evaluation

In the evaluation section, two different applications are presented and their pur-
pose and functionality are described.
The first application that is shown in Figure 4 is a measurement net application
with the purpose to visualize data from measurement sensors which measure
different air pollution parameters. The application allows the visualisation of
different parameters, such as particular matter, nitrogen dioxide and ozone. Ad-
ditionally, an air quality index can be selected which provides a calculation of
the air quality based on the formerly mentioned air pollutants. These parameters
can be selected by the corresponding dropdown menu (”Luftschadstoffe” → ”air
pollutants”)1. Similarly, the location of a measurement station can be selected
by using another dropdown menu (”Messstellenauswahl” → ”choice of measure-
ment station”). Alternatively, the location can also be selected by clicking a
measurement station on the map component provided by the application. After
choosing parameters for both menus, a legend appears right to the map, provid-
ing particular values that have been measured recently. Furthermore, the legend
explains the colours of the measurement stations on the map, which provide an
evaluation of the recently measured value, leading from very good (”sehr gut”
→ ”very good”, colour deep blue) to very bad (”sehr schlecht” → ”very bad”,

1 Pattern for die translations: ”german term” → ”english term”



MSA for Data Backends and Applications 7

Data 
Processing

Request 
Orchestrating

REST API

User Interface

Application Microservice

MD SEM TS

Domain Layer

Fig. 3: Structure of the application microservice in collaboration with user inter-
face and domain layer.

colour red). Furthermore, there are two different views that can be selected.
On the one hand, the diagram (”Diagramm” → ”diagram”) view provides an
overview over measured values of one measurement station from a certain time
period (e.g., last seven days until today). On the other hand, the table (”Tabelle”
→ ”table”) view displays the measured values of all stations in a table which
makes comparing values from different stations more comfortable.
This application does not use application microservices (further referred to as
AMS), which results in a high network load for clients who use the application.
Additionally, after making all required requests, the user interface (further re-
ferred to as UI) still does data processing tasks which mainly means generating
data formats for the different components. On the one hand, this process vio-
lates the MVC pattern [8], as the view components should not implement any
application logic, nor should they do any processing tasks on the data they vi-
sualise. On the other hand, the high network load combined with the mentioned
processing tasks slow the application and lead to an increased initial loading
time.
The second application presented in this context is a dashboard application
of the EnergyLab 2.0, a research project at Karlsruhe Institute of Technology
(KIT), which is used for the evaluation of the concept presented in Section 3
and which shows the advantages of the concept compared with the formerly
presented environmental application. Figure 5 shows the dashboard application
with its different components. It has several components that visualise data of



8 Jannik Sidler et al.

Fig. 4: Screenshot of the air measurement application [in German].

different energy storage systems and energy plants that make use of renewable
energy technologies, e.g. a solar park, a redox flow battery and a wind park.
They retrieve their data from sensors that are located in the field (in the area of
KIT) which are connected to a backend described in the following. Furthermore,
the user interface contains one or more data source components. Data source
components are located in the background and therefore, they are invisible for
the client. Their purpose is the fetching of data. This dashboard application is
the user interface of the architecture presented in Section 3.
The domain layer (backend) consists of the microservices presented and de-
scribed previously. Additionally, the application uses an AMS that orchestrates
requests to the domain layer and creates a suitable data format for the UI based
on the data collected from the domain microservices.
The main advantage of using an AMS in this architecture lies in the cost re-
duction of requests made by the UI. Requests can have different costs, based on
the physical distance between the corresponding devices and on the data they
contain. For example, a request from one device to another device in the same
network is relatively cheap, while a request from one network to another one is



MSA for Data Backends and Applications 9

Fig. 5: Screenshot of the Energy Lab 2.0 dashboard.

more expensive. In the following, AMSs are always considered to be in the same
network as the corresponding domain layer, which makes requests between UI
and AMS more expensive than requests between AMS and the domain layer.
Moreover, there are different strategies how the UI is updated. As described
previously, the UI consists of components hat can potentially be dependant on
different backend (domain layer) resources in the domain layer. Therefore, there
are various approaches how the data in the components can be updated. To eval-
uate the previously presented concept of using AMSs, two different approaches
are considered. The first one is a synchronous updating strategy. In this case,
the UI components are updated together by using one data source component.
The second strategy is an asynchronous update, where the components can be
updated independently of each other. Each strategy results in a different total
number of requests that is required to accomplish the update. Figure 6 shows the
number of requests in the synchronous case without (a) and with using an AMS
(b). The bold arrows show expensive requests, while the slim arrows show cheap
requests. As an example scenario, an update of the four dashboard components
solar park, lithium ion battery, wind park and weather is considered. While the
solar park and the wind park components show the currently injected electrical
power, the weather component shows local weather data and the lithium ion
battery component shows the current level of power the battery still has, as well
as the maximal capacity, the nominal capacity and general power.
The dashboard depicted in Figure 5 implements the synchronous update strat-
egy and uses an AMS. Compared to the case without a such one, the number
of expensive requests is higher, as the data source has to request all necessary
resources by itself, which results in a potentially higher number of expensive



10 Jannik Sidler et al.

MD SEM TS

User Interface

Domain Layer

Solar 
Park

Lithium 
Ion 

Battery

Wind 
Park Weather

Data Source

(a)

MD SEM TS

User Interface

Domain Layer

Solar 
Park

Lithium 
Ion 

Battery

Wind 
Park Weather

Application 
MicroserviceApplication Layer

Data Source

(b)

Fig. 6: Possible synchronous request orchestration without (a) and with AMS
(b).

requests, depending on the number of resources that has to be requested. In
the case with the AMS, the UI’s data source component has to make only one
expensive request per update.
Figure 7 shows the same scenario by implementing the asynchronous updating
strategy. Although this updating concept is not used in the dashboard appli-
cation shown in Figure 5, it still can be reasonable, especially when there are
components that need more frequent updates then other ones within the same
application. In this case, the components are updated individually, which means
that every component has its own data source, as depending on the update fre-
quency, fewer data sources may become a bottleneck in the updating process.
In this scenario, the number of expensive requests is higher as the data sources
may have to request different resources from the domain layer, depending on the
corresponding requirements of the requesting component.
As previously stated, the expensive requests are much more significant than
cheap requests in terms of network connection. Therefore, the cheap requests
are neglected and the focus of the following description lies in the expensive
requests. To evaluate the presented concept from Section 3, it is assumed that
each UI component accesses different resources from the domain layer which is
the worst-case scenario as it requires the biggest number of expensive requests.
Table 1 shows the number of expensive requests for the different scenarios. For
the asynchronous cases, the usage of an AMS reduces the number of expensive
requests by 50%, since it makes cheaper requests to the domain layer. In the
synchronous case, without an AMS the UI has to make 8 requests, since it is
assumed that each UI component requires different resources. By using an AMS,
the number of expensive requests can be reduced by 87,5%. This is, when con-
sidering only the value, a great reduction of the network load. Still, it has to be



MSA for Data Backends and Applications 11

MD SEM TS

User Interface

Domain Layer

Solar 
Park

Lithium 
Ion 

Battery

Wind 
Park Weather

Data
Source

Data
Source

Data
Source

Data
Source

(a)

MD SEM TS

User Interface

Domain Layer

Application 
MicroserviceApplication Layer

Solar 
Park

Lithium 
Ion 

Battery

Wind 
Park Weather

Data
Source

Data
Source

Data
Source

Data
Source

(b)

Fig. 7: Possible asynchronous request orchestration without (a) and with AMS
(b).

mentioned that the increase of performance is most significant when the UI has
to be updated frequently. When only sporadic updates are required, the saved
costs and the relative increase of performance decrease. Regarding the two pre-
sented use cases from Figure 4 and 5, it can be stated that the usage of the
presented concept leads to an increase of performance, as regular updates are
necessary in both cases. The result is a significant reduction of data transfer
and therefore, a reduced network load for the client using the application. By
achieving this reduction, and consequently by using the proposed architecture,
the power consumption of client devices can be reduced.

Type Number of Requests

asynchronous update without AMS 8

asynchronous update with AMS 4

synchronous update without AMS 8

synchronous update with AMS 1

Table 1: Number of expensive requests for the different updating scenarios.

5 Conclusion and Outlook

The present article describes the usage of application microservices, originally
derived from the application services from the onion architecture [2] within a



12 Jannik Sidler et al.

software architecture that formerly encapsulated application-specific tasks in its
user interface. In this concept, the application microservices perform application-
specific tasks as well as tasks usually executed by a gateway component, which
are the orchestration of requests. By using this design pattern, the number of re-
quests sent simultaneously from the user interface to the backend (domain layer)
is reduced significantly. Additionally, data processing tasks are encapsulated in
the application microservice to a high degree, which results in an improved per-
formance for the the application. However, the processing efforts transferred
from the user interface to the backend have to be made available on the server
infrastructure. Moreover, two real applications (one from the energy domain,
one from the environmental domain) are shown and discussed and the benefit of
the provided concept is stated in their corresponding context.
Future tasks based on the presented concept are the design of a formal engineer-
ing process integrating the modified pattern into a microservice architecture.
Furthermore, the effort required to implement application microservices has to
be examined. There are scenarios where many of them are required while the
tasks they perform are relatively similar, so there can be a certain overhead that
has to be compared with the benefit that is originally created by the usage of
application microservices.

References

1. Braun, Eric et al.: A Generic Microservice Architecture for Environmental
Data Management. International Symposium on Environmental Software Systems
(ISESS) 2017, pp. 383 - 394

2. Palermo, Jeffrey: The Onion Architecture (2008).
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/ (last accessed:
July 16, 2021)

3. Hippchen, Benjamin et al.: Designing Microservice-Based Applications by Using a
Domain-Driven Design Approach. International Journal on Advances in Software
(2017), pp. 432 - 445.

4. Evans, Eric: Domain-Driven Design: Tackling Complexity in the Heart of Software.
Addison-Wesley, 2004.

5. Fowler, Martin and Lewis, James: Microservices – definition of this new architectural
term.
https://martinfowler.com/articles/microservices.html (last accessed: May 25, 2021)

6. Newman, Sam: Building Microservices. O’Reilly Media Inc. (2015)
7. Braun, Eric et al.: A Lightweight Web Components Framework for Accessing

Generic Data Services in Environmental Information Systems.
From Science to Society (2017), pp. 191-201

8. Fowler, Martin: GUI Architectures (2006).
https://martinfowler.com/eaaDev/uiArchs.html (last accessed: June 9, 2021)


	Microservice-based Architecture for the Integration of Data Backends and Dashboard Applications in the Energy and Environment Domains

