
A Guide for Publishing, Using, and Licensing Research
Software in Germany

Alexander Struck1, Axel Loewe2, Elke Achhammer3, Fabian Rack4, Felix Bach2, Frank
Löffler5,6, Gunnar Seemann7,2, Hartwig Anzt2, Maximilian Funk8, Stefan Unger9, Stephan
Druskat10,1, and Sven Friedl11

1Humboldt-Universität zu Berlin, Berlin, Germany
2Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
3Technische Universität München, München, Germany
4FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Karlsruhe, Germany
5Friedrich Schiller University, Jena, Germany
6Louisiana State University, Baton Rouge, LA, USA
7University Heart Centre Freiburg Bad Krozingen, Freiburg, Germany
8Max-Planck-Gesellschaft e.V., München, Germany
9Julius Kühn-Institut (JKI), Quedlinburg, Germany
10German Aerospace Center (DLR), Berlin, Germany
11Berlin Institute of Health, Berlin, Germany

Abstract. Research software has become a central asset in academic research.
In Germany, the German Research Foundation (DFG, Deutsche Forschungsge-
meinschaft) recently updated the Guidelines for Safeguarding Good Research
Practice. Research software is now valued similarly to classic publications and
data with implications for research software sustainability and legal aspects.
In this document, we present four decision trees and corresponding legal docu-
mentation tables to aid researchers. The decision trees should ease to identify i)
the software policy of your institution, ii) restrictions imposed by contributors
and the environment, iii) licensing collisions if 3rd party software is included,
and iv) problems in licensing (existing) research software.

1 Introduction

In research, many results are based on some kind of software. In some cases, commercial
or freely available software is not suitable to fulfill the desired needs and third-party code
may introduce additional challenges. In these cases, new software is being implemented by
scientists and/or research software engineers (RSE). When starting to do so, it is rare that
the developer thinks beyond his or her intended temporary use-case or project. Research
is often project-based with strict deadlines and need for scientific output (e.g. Master or
PhD but also other third-party funded projects). There is often no time or awareness for
anything else. If the software becomes useful for a wider community, indicated by, e.g.,
recognition in publications or further funding, two main problems arise often: The code was
not developed under consideration of sustainability (discussed in our accompanying white
paper [1]) and the developer had no knowledge or awareness of legal aspects and thus did
not consider them early enough. Additionally, in Germany, the German Research Foundation



Figure 1. Policy. This tree asks to check closely any policies implemented in the software developers
organization. The corresponding documentation can be found in Table 1.

(Deutsche Forschungsgemeinschaft, DFG) recently updated the Guidelines for Safeguarding
Good Research Practice [2] including research software as part of the scientific outcome.
This may lead to the need to comply with certain standards, e.g. legal aspects.

In this paper, we present decision trees and corresponding documentation tables that can
help to clarify and document legal aspects for research software development in Germany. A
white paper on research software sustainability was developed in parallel [1].

2 Decision trees

The decision trees presented here shall help developers (in our and similar jurisdictions) to
identify risks regarding the mandate of the software. In a perfect world, one would address
the legal aspects at the start of a project. It is crucial to know about these to create sustainable
software. We strongly recommend writing documentation of the answers and outcomes. The
corresponding documentation tables are referenced in each decision tree. Please keep in mind
that only restrictions from copyright law are addressed. In some projects, you might also have
to consider patents, trademarks etc.

If you need to be entitled to publish, use, and/or license a software you have to check:

• The policy of the institution (Fig. 1)

• The rights restriction imposed by the persons who “create” the software (Fig. 2)

• The rights restriction imposed by the environment (Fig. 2)

Table 1. The policy of the institution. Does your organisation have a policy regarding intellectual
property created in the organisation?

Name File location Does it contain
restrictions on
publication?

Does it contain restrictions on
the development (infrastructure,
people commiting, coding)

Yes / No y/n infra / people / code / none
...



Figure 2. Contributors. This tree helps to find out, if the academic institution where the software
development is located is the owner of the intellectual property (copyright). The documentation of
contributors can be found in Table 2. The documentation of further obligations is suggested in Table 3.

Table 2. The rights restriction imposed by the persons who “create” the software. Who has or
will be contributing to the software development? Entries are exemplary.

Name Internal (kind of con-
tract, time) OR External
(where?)

Code
con-
tributed

Status
of em-
ploy-
ment

Other
employ-
ments
(where?)

3rd-party
funding
(link to
Tab. 3)

Signed
CLA?

Int, TV-ÖD, 10/20-09/23 PhD
External Student
Int, internship Postdoc
External, guest Prof.

• If third-party code is incorporated (Fig. 3)

We also built a tree for the scenario that you have to check on an already existing software
(Fig. 4).



Table 3. Rights and restriction imposed by the environment. What is the legal setup and which
other obligations does it give?

Is there a third party funding? Yes/No

Is there a third party involved (cooperation, etc.)? Yes/No

Funding body Contact name File location

...

Figure 3. Code history. The code history tree points out tasks for projects that incorporate existing
code. The documentation of incorporated code can be found in Table 4

In case of a negative outcome (a red forbidden sign), we believe there is no other solution
than to rewrite conflicting code. In a positive outcome (a green check-mark), you have the
rights you need to proceed. The other outcomes are self-explaining (e.g. consult your legal
department).

Table 4. 3rd-party code. Is third-party code incorporated?

SW name License
type

License
name

Purchase
date

Allowance
to modify
code?

How/where
incorpo-
rated?

download
location

Kind
of
SW

...



Figure 4. Licensing. Depending on the distribution model, open access (OA) or open source software
can be selected. If you have already distributed the code, document distribution using Table 5

Table 5. Distributions of the code to the present day.

SW Name License
type

License
name

Download
location

Receiving party (closed/open)

...

3 Acknowledgments

The paper is the result of a community effort, with work undertaken during two workshops
and subsequent collaborative work across the larger RSE community in Germany. It has
been initiated during a half-day workshop at the first International Conference for Research
Software Engineers in Germany (deRSE19) in Potsdam, Germany on June 5th, 2019, and
continued during a dedicated two-day workshop in Berlin, Germany on November 7th and
8th, 2019, which was funded by the DFG. We thank Bernhard Renard for his contribution in



organizing the workshops in Berlin and his contribution to this manuscript. We decided to
use the alphabetical order of first names as sequence.

References

[1] H Anzt, F Bach, S Druskat, F Löffler, A Loewe, BY Renard, G Seemann, A Struck et al.
"An environment for sustainable research software in Germany and beyond: current state,
open challenges, and call for action", F1000Research, 2020, 9:295

[2] https://www.dfg.de/download/pdf/foerderung/rechtliche_rahmenbedingungen/

gute_wissenschaftliche_praxis/kodex_gwp_en.pdf


