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Abstract

The electrocardiogram (ECG) in general, and the 12-lead ECG in particular, is one of the
most common and widely available digital device that can be found in clinical facilities to
measure the electrical activity of the heart. Therefore, it is considered the gold standard tool
for this purpose. It is an inexpensive and non-invasive monitoring device that allows for
rapid diagnosis of cardiovascular diseases (CVD). Among the most common CVDs there
are atrial fibrillation (AFib or AF) and atrial flutter (AFlut or AFl). These two arrhythmias
play a central role in the world’s healthcare systems, being among the main reasons for
hospitalization, and responsible for very high costs in all countries. Moreover, even if they
are not a direct cause of death, they can lead to multiple complications up to heart failure. For
the reasons mentioned above, AFib, and AFlut are the focus of this thesis. The content of this
thesis is divided into two projects. The overall goal is to develop methods with the help of
biosignal processing, electrophysiological simulations, and machine learning to characterize
the arrhythmia, support diagnosis, and predict complications or therapy outcomes.

In the first project, in silico 12-lead ECGs produced from simulations at multiscale level
are used to develop two signal processing algorithms for several AFlut mechanisms char-
acterization: individual component, and spatial reduced recurrence quantification analysis
(icRQA, and srRQA, respectively). Moreover, an analysis of the influence that the atrial
and torso models have on the cardiac simulation results, thus on the resulting ECGs, is
described. The findings from these two previous analyses are incorporated into the final
study of the project: hybrid (in silico plus clinical data) and feature-based machine learning
discrimination of three main AFlut categories (cavotricuspid isthmus-dependent, peri-mitral,
and other left atrium AFlut classes). The two RQA algorithms allowed us to extract relevant
features for AFlut differentiation. Analysis of models’ influence suggested that many atrial
geometries should be used in the computational framework to avoid overfitting and thus
leading to the incapacity of such in silico data in the clinical practice use. The final hybrid
classifier demonstrated how an automatic and non-invasive discrimination of different AFlut
mechanisms is possible using appropriate features, computational simulations, and taking
into account the findings of the previous studies.

The second project aims at estimating the location of AFib drivers with the surface ECG.
Rotors and focal sources are simulated and considered as AFib drivers. A machine learning
approach only trained on in silico 12-lead ECGs is implemented to discriminate between
AFib drivers located near the pulmonary veins (PVs) vs. extra-PVs atrial areas. Moreover,
the success of acute AFib termination by ablation procedure is studied and linked to the
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clinical relevance that such classifier may have in clinical practice. The last study of this
second project aims at the prediction of one of the AFib complications (i.e., heart failure)
using clinical single-lead ECG signals.

Machine learning enabled the identification of AFib drivers located near PVs, also
suggesting that PV isolation (PVI) is the most suitable therapy to terminate the arrhythmia in
such cases. On the contrary, when proceeding with PVI for AFib drivers located outside the
PV areas, the arrhythmia did not terminate. In these cases, physicians should plan further
ablation procedures. Moreover, the use of a classifier trained only on simulated data and
demonstrating to be effective on clinical test data may open the door to the use of in silico data
for machine learning. To conclude, the successful prediction of AFib-induced heart failure
has proven the existence of a link between some AFib cases and this serious complication,
thus providing physicians with a tool to recognize when urgent action is needed to reduce
patient safety risks.

In all studies in which in silico ECGs are used to develop and tune the machine learning
algorithms, tests on clinical data are performed to demonstrate the real applicability of these
methods in healthcare. Advantages compared to existing approaches are discussed and
all the studies have been published, or are under review, in peer-reviewed journals or in
a conference proceeding. The results from the two projects demonstrate how simulated
data can be used to develop, and improve adequate ECG signal processing methods, and
how diagnosis, and therapy planning can be supported. Furthermore, the potential of the
combination of simulations and machine learning for overcoming the problem of clinical
data not available in large scale is demonstrated. The proposed methods can be used to
support ablation procedure planning, arrhythmia diagnosis, complication prediction, and
invasive procedure time reduction, and it is therefore likely to improve the outcome of the
patients.



Zusammenfassung

Das Elektrokardiogramm (EKG) im Allgemeinen und das 12-Kanal-EKG im Besonderen
gilt als gebräuchlichste Standardmethode zur Messung der elektrischen Aktivität des Herzens
und ist in klinischen Einrichtungen weit verbreitet. Es ist ein kostengünstiges und nicht-
invasives Überwachungsgerät, das eine schnelle Diagnose von Herz-Kreislauf-Erkrankungen
(CVD) ermöglicht. Zu den häufigsten Herz-Kreislauf-Erkrankungen gehören das Vorhof-
flimmern (AFib oder AF) und das Vorhofflattern (AFlut oder AFl). Diese beiden Herzrhyth-
musstörungen spielen eine zentrale Rolle für die Gesundheitssysteme der Welt, da sie zu
den Hauptgründen für Krankenhausaufenthalte gehören und daher in allen Ländern sehr
hohe Kosten verursachen. Auch wenn sie keine direkte Todesursache sind, können sie zu
zahlreichen Komplikationen bis hin zum Herzversagen führen. Aus diesem Grund stehen
Vorhofflimmern und AFlut im Mittelpunkt dieser Arbeit. Das übergeordnete Ziel dieser
Arbeit ist es, mit Hilfe von Biosignalverarbeitung, Computersimulationen und maschinellem
Lernen Methoden zu entwickeln, um die Arrhythmie zu charakterisieren, die Diagnose zu
unterstützen und Komplikationen oder Therapieergebnisse vorherzusagen.

Im ersten Projekt wurden mit Hilfe von simulierten in-silico 12-Kanal-EKGs zwei Sig-
nalverarbeitungsalgorithmen für die Charakterisierung verschiedener AFlut-Mechanismen
entwickelt: die individual component und die spatial reduced recurrence quantification anal-
ysis (icRQA bzw. srRQA). Außerdem wurde eine Analyse des Einflusses der Vorhof- und
Torsomodelle auf die Herzsimulation und damit auf die resultierenden EKGs beschrieben.
Die Ergebnisse dieser beiden vorangegangenen Analysen flossen in die abschließende Studie
ein: eine hybride (in-silico plus klinische Daten) und merkmalsbasierte Unterscheidung von
drei Hauptkategorien von AFlut (Klassen mit Abhängigkeit vom cavotricuspidalen Isthmus,
peri-mitrale und andere AFlut-Klassen des linken Vorhofs). Die beiden RQA-Algorithmen
ermöglichten es, relevante Merkmale für die AFlut-Differenzierung zu extrahieren. Die
Analyse des Einflusses der Modelle legte nahe, dass viele Vorhofgeometrien in die Simula-
tionsstudien einbezogen werden sollten, um Overfitting zu vermeiden. Letzteres würde dazu
führen, dass die Methode in der klinischen Praxis auf Grund fehlender Anpassungsfähigkeit
nicht verwendet werden kann. Der abschließende hybride Klassifikator zeigte, wie eine
automatische und nicht-invasive Unterscheidung verschiedener AFlut-Mechanismen unter
Verwendung geeigneter Merkmale, elektrophysiologischer Simulationen und unter Berück-
sichtigung der Erkenntnisse aus früheren Studien möglich ist. Das zweite Projekt zielte
darauf ab, den Ort des Vorhofflimmerns anhand des Oberflächen-EKGs zu bestimmen. Es
wurden Rotoren und fokale Quellen simuliert, die als Treiber von Vorhofflimmern in Frage
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kommen. Ein maschineller Lernansatz, beiden nur mit in-silico 12-Kanal-EKGs trainiert
wurde, wurde implementiert, um zwischen Vorhofflimmern in der Nähe der Pulmonalvenen
(PVs) und außerhalb der PVs liegenden Vorhofbereichen zu unterscheiden. Darüber hinaus
wurde der Erfolg der Terminierung des akuten Vorhofflimmerns durch Ablation untersucht
sowie die klinische Relevanz eines solchen Klassifikators untersucht. Die letzte Studie dieses
zweiten Projekts zielte auf die Vorhersage von Vorhofflimmer-Komplikationen bei Herzin-
suffizienz unter Verwendung klinischer 1-Kanal-EKG-Signale ab. Mithilfe maschinellen
Lernens konnten Vorhofflimmern-Treiber identifiziert werden, die sich in der Nähe von
PVs befanden, was darauf hindeutete, dass die PV-Isolation (PVI) in solchen Fällen die
geeignetste Therapiemethode zur Beendigung der Arrhythmie ist. Im Gegensatz dazu würde
bei Vorhofflimmern außerhalb der PVs eine PVI nicht zur Terminierung der Arrhythmie
führen, sodass die Ärzte weitere Ablationsverfahren planen sollten. Darüber hinaus kön-
nte die Verwendung eines Klassifikators, der nur auf Simulationen trainiert wurde, aber
auf klinischen Testdaten wirksam ist, die Tür zur Verwendung von in-silico Daten in der
täglichen klinischen Praxis öffnen. Zusammenfassend lässt sich sagen, dass die erfolgre-
iche Vorhersage der durch Vorhofflimmern ausgelösten Herzinsuffizienz die Existenz eines
Zusammenhangs zwischen einigen Fällen von Vorhofflimmern und dieser schwerwiegenden
Komplikation bewiesen hat. Den Ärzten wurde somit ein Instrument an die Hand gegeben,
das dringenden Handlungsbedarf erkennt, um die Risiken für die Patienten zu verringern.

In allen Studien, in denen in-silico EKGs zur Entwicklung und Optimierung der Al-
gorithmen verwendet werden, wurden Tests mit klinischen Daten durchgeführt, um die
tatsächliche Anwendbarkeit dieser Methoden in der klinischen Praxis zu demonstrieren.
Die Vorteile gegenüber bestehenden Ansätzen wurden ausführlich erörtert, und alle Studien
wurden in Fachzeitschriften mit Peer Review oder im Rahmen von Konferenzbeiträgen
veröffentlicht bzw befinden sich derzeit unter Revision. Die Ergebnisse der beiden Pro-
jekte zeigen, wie simulierte Daten zur Entwicklung und Verbesserung geeigneter EKG-
Signalverarbeitungsmethoden verwendet werden können und wie Diagnose und Operations-
planung unterstützt werden können. Darüber hinaus wird das Potenzial der Kombination von
Simulationen und maschinellem Lernen zur Überwindung des Mangels an in großer Zahl
verfügbaren klinischen Datensätze aufgezeigt. Die vorgeschlagenen Methoden können bei
der Planung von Ablationsverfahren, der Arrhythmiediagnose, der Vorhersage von Komp-
likationen und der Verringerung der Prozedurzeit für invasive Eingriffe eingesetzt werden
und sind daher geeignet, die Ergebnisse für die Patienten zu verbessern.
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Chapter 1
Introduction

1.1 Motivation

Cardiovascular diseases (CVDs) cause today more than 4.1 million deaths per year in Europe
alone. About 43% of total deaths (47% in women, 39% in men) are caused by CVDs within
European Society of Cardiology member countries, bringing them to be one of the major
problems of the world health system [1]. In contrast, cancer accounts for only under 1.3
million deaths per year in Europe [2]. Moreover, CVD costs the European Union over
210 billion EUR per year due to healthcare costs, productivity loss, and informal care by
caregivers. The exact cause of CVD can vary, but it is known that secondary prevention, i.e.,
treatment of other underlying diseases, just as early prevention in the life course, reduces
the risk of CVD events [3, 4]. Among CVDs, atrial arrhythmias that can lead to several
complications (i.e., atrial fibrillation - AFib) are increasing, especially among younger
adults [4], and patients with atrial arrhythmias have a fourfold increased risk of mortality
compared to the general population [5]. Focusing on two life-threatening arrhythmias, AFib
and atrial flutter (AFlut), they mostly shared the same risk factors like diabetes, smoking,
history of myocardial infarction, and history of heart failure [6–9]. Regarding these two
atrial arrhythmias, but generally for all CVDs, an early diagnosis and therapy can help to
improve the outcome of the patients [10, 11].

Drug therapy is one of the first procedures to terminate arrhythmias such as AFib and
AFlut. However, in case the medicines are either not tolerated or not effective, catheter
ablation is performed. Catheter ablation is an invasive but low-risk procedure that scars small
areas of heart tissue with the aim of stopping the rapid and irregular heartbeats. Destroying
this tissue helps restore the heart’s regular rhythm (i.e., sinus rhythm) [12]. The most
common, but few, risk factors of ablation procedures are related to the catheters that may
damage blood vessels, cause bleeding, or infections. Furthermore, it is still unclear which
ablation techniques are the most efficient and which are the best targets to be ablated (e.g.,
arrhythmic drivers, low voltage areas, etc.) [13–15].

The electrocardiogram (ECG) is the major monitoring tool of the electrical activity
of the heart over time. The gold standard ECG acquisition and diagnosis modality is the
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2 Chapter 1. Introduction

12-lead ECG due to its availability and usability in nearly every clinical setting, and due to
its capability to capture activity from different positions and planes (see section 2.2). This
allows for a quick, inexpensive and non-invasive measurement of the electrical heart activity.
Indeed, there are multiple different configurations to acquire ECG signals, these range from
single-lead ECG (2 electrodes) to methods with over 100-lead ECG also called body surface
potential mapping (BSPM) [16, 17]. BSPM has been used in both experimental and clinical
settings for the detection and diagnosis of various pathological conditions. Many studies
have demonstrated higher diagnostic and prognostic value of BSPM as compared to the
12-lead ECG. Nonetheless, BSPM has not become a routinely used clinical method [18].
The clinical effectiveness of this procedure has not been established and the added value of
BSPM over traditional 12-lead ECG has not justified the additional procedural complexity
and expense [19].

The ECG is the first device applied to derive an initial diagnosis in CVD patients.
Using information obtained from ECG data (i.e., rhythmic, and morphological features),
physicians attempt to identify the optimal treatment for each patient. Unfortunately, the use
of only visual information from ECGs is often no longer sufficient for today’s diagnostic
ambition. Moreover, outside the clinical setting, ECG measurement devices become more
and more included into disposable and wearable devices [20, 21]. The automatic detection
and evaluation of heart diseases using not only clearly interpretable clinical features but
also more complex ones (e.g., non-linear features) has the potential to support physicians
in planning and decision making before and during treatment. The algorithms created to
perform this automated analysis must be very accurate since they directly affect the treatment
of the patient and therefore the patient outcome. All types of data bias must be eliminated by
trying to create algorithms with a strong ability to generalize to unseen data, so that they work
on every patient despite the possibility of large inter-patient variability. This requires a large
amount of data, which is usually not available due to accessibility, privacy, and technological
limitations that are very common in healthcare facilities. in silico ECG might avoid or
reduce these problems, being self-produced and with a reliable ground truth. Computational
modeling of the heart offers the possibility to generate as much data as required to monitor
all influences independently. Furthermore, arrhythmia and their basic mechanisms can
be studied and characterized without the risk of secondary and unknown activities (e.g.,
ventricular far field, noise, unknown and secondary mechanisms). Despite these qualities,
until now computational modeling alone has only proven to be useful to understand the
physiology of the heart, and has mostly been used as a support towards clinical applications
without succeeding in gaining an active role in clinical practice. Moreover, experimental and
clinical data have always been needed to optimize the tuning of methods and certainly to test
such approaches.

In this thesis, two important atrial arrhythmias were focused on: AFib, and AFlut. In
both projects, simulations were utilized to develop methods applied to patient data, and
support the detection, characterization, and treatment of the diseases. in silico data were
used both as support for clinical data, but also as a unique tool for the training of machine
learning algorithms that can, in turn, be employed for clinical applications. In addition,
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non-invasive 12-lead ECGs were used instead of BSPM due to the potential applicability of
the algorithms implemented in this work within every hospital worldwide, without the need
for large investments by healthcare facilities to buy new, uncommon acquisition systems.
Specifically, the P-wave component of the ECGs was mostly used in this thesis.

1.2 Objectives of the Thesis

The general aim of this thesis is to develop ECG- and machine learning-based tools to
support physicians in the characterization, diagnoses, ablation procedure planning, and
complication prediction for patients with AFib and AFlut. These can be used to reduce
the invasive procedure time and, therefore, the related costs by supporting the physicians
in finding diagnoses, personalizing treatment, and improving the patient outcomes. As
already stated, two major topics will be incorporated into this thesis: The characterization
and discrimination of different AFlut mechanisms, and the localization of AFib drivers with
acute ablation success prediction, and AFib complications’ risk analysis. The leading aims
of the first project are:
◦ Improve AFlut mechanism characterization implementing novel biosignal approaches

to extract valuable features;
◦ Evaluate the influence of atrial and torso geometries on ECG and therefore on feature

extraction and classification;
◦ Discriminate several AFlut mechanisms using both in silico and clinical ECG data

with a machine learning-based approach and using findings from the first two studies.

The second topic described in this thesis covers the following aspects regarding AFib driver
localization and complication prediction:
◦ Implement an in silico-based machine learning algorithm to identify the AFib drivers

located near the pulmonary veins (PVs), predict the success rate of PV isolation to
terminate the arrhythmia, and test it on a clinical cohort of ECGs;
◦ Identify likely connections between AFib and heart failure using beat-to-beat variation

signals extracted from 1-lead ECG.

1.3 Structure of the Thesis

This is a cumulative thesis motivated by the large number of studies that have been published
(or submitted)in high impact peer-reviewed journals, patent, and conferences and their high
impact on the scientific community during the course of the PhD program. This cumulative
thesis wants to show the actual contribution that has been reviewed and accepted by the
scientific community both from the technical and clinical aspects of biomedical engineering.
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Chapter 2 and 3 present selected fundamentals for understanding the methods, results,
and discussion provided in this thesis:
◦ Chapter 2 contains the medical background being relevant for this work. Human

heart anatomy, physiology, and basic knowledge regarding the ECG are explained as
well as the AFlut, AFib, and ablation procedure that are the main clinical topics of this
work;
◦ Chapter 3 presents an overview of the technical fundamentals. A basic introduction

to computational modeling of the heart is given, focusing on the atria. Moreover,
biosignal processing, statistics, and machine learning techniques pertinent to this
project are presented.

Chapter 4 and 5 comprise the main body of the thesis. Here, introductions to the two
major topics are given. The link between various manuscripts that are part of the same main
topic is explained, followed by the related papers submitted, and published:
◦ Chapter 4 contains the projects related to AFlut. The main goals were to characterize

AFlut signals with novel features (journal paper 1 [22]), estimate the ability of our
simulations to generalize (conference paper [23]), and the implementation of a hybrid
classifier to discriminate several AFlut mechanisms (journal paper 2 [24]);
◦ Chapter 5 outlines the studies related to AFib. The objectives were the implementation

of an in silico trained classifier to discriminate clinical AFib drivers located near the
PVs and to assess the acute PVI success in our AFib dataset (journal paper 3 [25]),
and the realization of a machine learning algorithm able to predict the risk of AFib
complication for heart failure (journal paper 4 [26]).

Chapter 6 summarizes the findings from all the studies from a general perspective. It
gives insights into topics that would be interesting to work on as a follow-up to this thesis.
Finally, it draws conclusions on this project in respect to the objectives set.

Appendix contains the supplementary material of each paper attached to this thesis, thus
still having valid references in the manuscript texts.

During the three and a half years of research leading to this thesis, I published two
journal papers and nine conference contributions as first author, and two additional journal
publications are under review. As a co-author, four journal papers and three conference
contributions were published, and one journal paper and one book contribution are under
review. Moreover, I got invited to two international conferences as speaker, and I won an
award for patient safety in biomedical engineering with one of the papers shown in this
thesis [25]. To conclude, I supervised five student theses/projects that partly form the basis
of the work presented here (cf. List of Publications and Supervised Thesis at the end of this
thesis).



Chapter 2
Medical fundamentals

In this chapter, the medical fundamentals essential to understand the studies presented in this
thesis and to put them into context are described. Following a brief overview of the human
heart anatomy and physiology focusing on the atrial anatomy, the electrocardiography is
summarized. Then, atrial flutter, atrial fibrillation, and tachycardiomyopathy are introduced
and the state of the art regarding ablation therapy is presented. The interested reader is
referred to the cited references for a more in-depth introduction to the different topics.

2.1 Human heart anatomy and physiology

The human heart is a muscular hollow organ, which is centrally located in the thoracic cavity.
The pericardium, a fibrous sac, encloses the heart in order to ensure several physiological
functions, e.g., smooth movements during contraction or relaxation. The heart consists of
four chambers: two atria and two ventricles. The septum separates the heart into a right and
a left half, each comprising of an atrium and a ventricle. Both chambers are connected via
atrioventricular valves (right: tricuspid valve, left: mitral valve), allowing a directed blood
flow from the atrium to the ventricle (Figure 2.1) [27].

The heart supplies blood containing oxygen and nutrients to the organs and other body
systems while carrying away carbon dioxide and metabolic waste from the organs in order to
excrete them. Deoxygenated blood returns from the body to the right atrium via the superior
and inferior vena cava. Due to the contraction of the right atrium, blood is injected into the
right ventricle through the tricuspid valve. Subsequently, a ventricular contraction pushes the
blood volume into the pulmonary system. After oxygenating the blood in the capillary lung
bed, the blood enters the left atrium via three-to-five pulmonary veins (PVs), also described
as left and right PVs. The blood then flows through the mitral valve into the left ventricle.
Through a contraction of the left ventricle, the blood is pushed via the aortic valve in the
systemic circulation [29].

5
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Figure 2.1: Anatomy of the human heart. Adapted from [28] and licensed under Creative Commons
Attribution-Share Alike 3.0 Unported.

2.1.1 Atrial anatomy

The atria are divided into the right and the left chamber, and they are characterized by
prominent muscular bundles and regions with distinct conduction properties (Figure 2.2).
The right atrium (RA) can be divided into four regions: the smooth and rough parts of
the posterior wall, the septum, and the right auricle or right atrial appendage (RAA). The
ostia of superior and inferior venae cavae and the coronary sinus are located on the smooth
posterior wall of the right atrium. Furthermore, it contains the fossa ovalis, the sinoatrial
node (SA node) and the atrioventricular node (AV node). The smooth and rough regions are
separated by a ridge called crista terminalis, which runs inferior and parallel to the openings
of superior and inferior venae cavae [27]. The rough part of the RA posterior wall consists
of 15 to 20 pectinate muscles [30]. Finally, the RA is connected to the ventricle through the
atrioventricular opening (tricuspid valve annulus). The left atrium (LA) is located posteriorly
in the thorax, with its posterior wall being adjacent to the oesophagus. As the endocardial
surface of the LA is smooth [31], it exhibits a simpler structure than the RA. The ear-shaped
left auricle or left atrial appendage (LAA) being located superior-anterior of the left superior
pulmonary vein (LSPV) is an exception with its rough endocardial surface [32].
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Figure 2.2: Anatomy of the atria. Left: Section of the right atrium (RA). Right: Section of the left
atrium (LA). Adapted from [33, 34] and licensed under Creative Commons Attribution-Share Alike 3.0
Unported.

2.1.2 Conduction system of the heart

The stimulus to ensure the concurrent contraction of the heart is initiated by the sinus node.
Specialized pacemaker cells of the atria are the source of regular electrical impulses. From
the sinoatrial (SA) node (primary pacemaker of the heart), the electric impulse spreads via
the walls of the atria to the second pacemaker, the atrioventricular (AV) node. In Figure 2.3,
the excitation process is illustrated.

The AV node enables the contraction synchronization of the atria and the ventricles by
delaying the stimulus conduction. Only after the blood from the atria is forwarded into the
ventricles, the main chambers of the heart can contract. Moreover, the AV node prevents
ventricular arrhythmias by blocking the signal transmission of irregular impulses. From the
AV node, the signal is distributed through the so-called "Bundle of His" (third pacemaker) to
three major channels. Two of these fascicles lead into the left ventricle and only one into the
right. Branching off in the Purkinje fibers, the individual myocardium (heart muscle) fibers
are eventually activated, causing the contraction. The cells forming all the pacemakers are
self-depolarizing, i.e., after a certain time, they can provoke a new excitation of the heart.

Typically, in sinus rhythm, the heart of a healthy adult human contracts with a frequency
between 60-80 beats per minute (bpm) in rest. The physiological rhythm of a healthy heart
is created by the sinus node, while any other rhythm not regulated by the sinus node is
considered an arrhythmia. If the SA node fails to trigger the excitation, the AV node can
compensate for the primary dysfunction, delivering a heart rate of 40-50 bpm. Ultimately,
the "Bundle of His" can initiate the heart electrical activity delivering a heart rate of 30-40
bpm [27].
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Figure 2.3: Anatomy and conduction system of the heart. Adapted from [35] and licensed under Cre-
ative Commons Attribution-Share Alike 3.0 Unported.

2.1.3 Electrophysiology

The excitation of a heart cell is determined by the change of the transmembrane voltage
(TMV). Without external electrical stimulation, cardiomyocytes build a steady membrane
resting potential of around -90 mV between the inner cellular potential and the outside of
the cell. When a neighboring cell is depolarized, a small charge transfer is induced, which
triggers the cell to change its TMV. This typical course is referred to as action potential (AP).
An AP can be differentiated into four phases which can be observed in Figure 2.4. First,
when a cell is getting excited, it induces a charge difference in the adjacent cells through
the gap junction. This leads to a depolarization which culminates in a potential upstroke
when it exceeds the threshold potential (-70 mV). The upstroke is caused by the opening of
the sodium (Na+) channels which close gradually after surpassing -40 mV, resulting in the
overshoot of +20 mV (upstroke phase 0 and overshot phase 1 in Figure 2.4). Afterward, the
cell partially repolarizes due to potassium (K+) outward and chloride (Cl−) inward currents.
Next, the potential stagnates at about 0 mV leading to the long plateau phase during which
calcium (Ca2+) ions flow into the cell, balancing the repolarization currents (phase 2 in
Figure 2.4). Dependent on the heart rate and the cell location, the Ca2+ inward currents last
for 200-400 ms, also determining the length of the plateau. With the decay of these Ca2+

currents, the cell activation enters the repolarization phase (phase 3 in Figure 2.4). Mainly
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Figure 2.4: AP from a ventricular cardiomyocyte with the respective phases. Phase 0: Upstroke/De-
polarization, fast Na+ influx; Phase 1: Overshoot, Na+ channels close; Phase 2: Plateau, Ca2+ influx;
Phase 3: Repolarization, K+ outflux; Phase 4: Resting membrane potential. Adapted from [37] and
licensed under the Creative Commons Attribution-Share Alike 4.0 International License.

slow and rapid K+ outward currents drive the TMV back to the resting potential of -90 mV.
There, the rapid and slow K+ outward channels close and certain inward K+ channels open
again that are enabled during the resting phase (phase 4 in Figure 2.4). Here, the cell can
be activated again, whereas, during the plateau phase, the cell is in the absolute refractory
period, i.e., a new activation is not possible. During the repolarization phase, the cell is in
the relative refractory period allowing the cell to respond to an activation impulse but with
an attenuated response due to partial repolarization [36].

2.2 Electrocardiography

Electrocardiography is one of the most common non-invasive diagnostic tools for heart
diseases. As a basis for all electrophysiological investigations, it yields information about
the individual excitation phases, gives insights into the activity and functional performance
of the heart, and is capable of indicating both normal and abnormal heart electrical function.
The main components of an ECG are illustrated in Figure 2.5.

The P-wave outlines the atrial depolarization or the atrial systole. In contrast, the QRS-
complex refers to the ventricular systole, and the T-wave considers the ventricular diastole.
The repolarization of the atria cannot be observed directly since this happens simultaneously
as the ventricle contracts. Therefore, the lower amplitude of the atrial diastole is overlaid by
the signal of the QRS-complex.

In Figure 2.6 the different stages of the blood exchange of the cardiac cycle and its
correlations to the ECG are displayed. A different number of adhesive electrodes are required
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Figure 2.5: Illustration of normal sinus rhythm for a human heart as seen on ECG. Description of the
ECG components (P-wave, QRS complex, and T-wave) is provided in Figure 2.6. The length of PR in-
terval, PR segment, QRS complex, QT interval, and ST segment are common clinical metrics for cardiac
activity characterization. Adapted from [38].

Figure 2.6: Cardiac cycle and its correlations with the ECG. Adapted from [39] and licensed under the
Creative Commons Attribution License v4.0.
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to record ECG signals, and the resulting potential difference between two electrodes is
referred to as leads. With an increasing number of leads, the amount of information the
ECG provides rises as well, even if this information might be redundant. The typical
placement of the electrodes for a standard 12-lead ECG on the torso is shown in Figure 2.7,
with six electrodes placed on the chest and four positioned on the limbs of the patient.
The 12-lead ECG is calculated according to Einthoven (bipolar limb lead I, II, and III),
Goldberger (augmented unipolar limb lead aVR, aVL, and aVF), and Wilson (precordial
leads V1-V6) [39]. Although there are 12 voltages depicted, only nine electrodes suffice for
an exact measurement. In total, the ECG provides information about the cardiac function
from multiple views [40]:
◦ Inferior view: II, III and aVF;
◦ Anterior view: V1 to V4;
◦ Lateral view: I, aVL, V5, V6;
◦ Left ventricle cavity and right atrium: aVR and V1.

The three bipolar limb leads are obtained by measuring the voltage difference between the
left arm, right arm, and left leg (electrodes 1-3 in Figure 2.7) in the following combinations:

I =VLA−VRA, (2.1)

II =VLL−VRA, (2.2)

III =VLL−VLA, (2.3)

where VLA, VRA, and VLL denote the voltage recorded on the left arm, right arm, and left leg,
respectively. The augmented unipolar limb leads are defined as follows:

aV R =VRA−
VLA +VLL

2
, (2.4)

aV L =VLA−
VRA +VLL

2
, (2.5)

aV F =VLL−
VLA +VRA

2
. (2.6)

The precordial leads are positioned in succession on the front and left side of the chest
(electrodes 4-9 in Figure 2.7). The six precordial leads are unipolar and related to a central
terminal (VWCT ) which is defined by the average of the voltages measured on the right and
left arms and the left leg,

VWCT =
VLA +VRA +VLL

3
. (2.7)

The abbreviation WCT stands for Wilson central terminal to honor the physician who
introduced the definition given in Eq. 2.7 [41].

The vectorcardiogram (VCG) is the spatial representation of electromotive forces gener-
ated during cardiac activity and is analyzed in three spatial planes (horizontal, frontal, and
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Figure 2.7: Standard 12-lead ECG electrodes placement. Electrodes 1-3 are used to measure the
Einthoven and Goldberger leads, as well as to calculate Wilson central terminal. Electrodes 4-9 are
used to measure the Wilson leads together with Wilson central terminal. Adapted from [44] and li-
censed under the Creative Commons Attribution-Share Alike 3.0 Unported license.

sagittal) [42]. The VCG can be estimated from a subset SECG of the 12-lead ECG (V1-V6, I,
II) using the inverse Dower matrix D [43]:

SVCG = D SECG, (2.8)

with

D =



−0.172 −0.074 0.122 0.231 0.239 0.194 0.156 −0.010
0.057 −0.019 −0.106 −0.022 0.041 0.048 −0.227 0.887
−0.229 −0.310 −0.246 −0.063 0.055 0.108 0.022 0.102


 (2.9)

2.2.1 Body surface potential map

The body surface potential map (BSPM) extends the conventional ECG. The cardiac electrical
fields, including the voltage distribution and current flow patterns arising from cardiac
currents, exist within the entire body. Thus, the ECG can be measured from any surface site
of the body.

More extensive sampling of ECG potentials is directly related to the selective spatial
information obtained with additional leads. This automatically leads to the recording of
BSPMs, which includes the definition of sites of activation in the ventricle, localization of
accessory pathways in pre-excitation syndromes, localization of late potentials or pacing
sites within the ventricular cavities as well as evidence of acute recognizable myocardial
ischaemia not identifiable using standard criteria and the 12-lead ECG [45]. Colorized torso
models as depicted in Figure 2.8 illustrate the computed torso potentials throughout the body
surface (anterior and posterior view).
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Figure 2.8: Example of an anterior and posterior view of the BSPM at a specific time instant under
a condition of atrial flutter, respectively. The atrial activation was projected onto a torso model (see
section 4).

2.3 Atrial flutter

Atrial Flutter (AFlut or AFl) is a common supraventricular arrhythmia with a consistent
excitation pattern. It is defined as organized, macro-reentrant atrial tachycardia. It is
perpetuated around a large central obstacle, which can be an anatomical structure, unexcitable
scar tissue, or a functional line of block. As the ventricles cannot sustain this fast rhythm,
2:1 or 3:1 conduction block at the AV node is frequently observed.

AFlut is categorized into two major types: typical AFlut (also termed type I or cavotricuspid-
isthmus (CTI) dependent form) and atypical AFlut (type II). Typical AFlut is characterized
by mostly counterclockwise rotational activation around the tricuspid annulus. In ≈15%
of the cases, the excitation rotates in a clockwise direction [46]. On the contrary, atypical
AFlut originates in several atrial regions, such as the mitral annulus, the superior vena cava,
or the PVs. Atypical AFlut often develops after corrective atrial surgery (congenital and
valvular heart disease) or atrial fibrillation (AFib) ablation [47–51] with the driving reentry
circuit determined by the lesions. As a consequence of the widespread use of PV isolation
(PVI) and other left atrial ablation procedures for the treatment of AFib, the prevalence of
atypical left AFlut and of CTI-dependent flutter with atypical ECG patterns post ablation
procedures increased in the recent years [52, 53]. However, atypical AFlut can also occur
without previous surgery, driven by various reentry circuits.

Although AFlut is not directly a cause of death, it is associated with a significantly
increased risk for stroke and other complications similar to those of AFib [54], described in
more detail below. Antiarrhythmic drugs are used to treat AFlut. However, pharmacological
therapy is often ineffective and more than half of the patients are treated with rate-control
strategies due to the failure to maintain sinus rhythm [55]. Moreover, catheter ablation (see
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section 2.5) is mainly recommended for patients with a first episode of typical AFlut and
flutter appearing after antiarrhythmic treatment of AFib [46, 56].

2.4 Atrial fibrillation

Atrial fibrillation is the most common arrhythmia encountered in clinical practice affecting
over 8 million people in the European Union [57]. AFib has a prevalence of 2% to 3% in the
general western countries population [58] and is associated with significantly higher mortality
accounting for 25% of all strokes [59]. AFib can cause several complications, e.g., severe
and reversible left ventricle (LV) dysfunction in patients without structural heart disease
(AF-induced cardiomyopathy and heart failure). Cardiomyopathy is a general term for heart
muscle diseases, where the heart’s ability to pump blood through the circulatory system is
affected. Cardiomyopathy is one of many causes of heart failure. In patients with underlying
structural heart disease and LV dysfunction, AFib is a harbinger of increased hemodynamic
deterioration and increased mortality [60]. However, the mechanisms responsible for AFib-
induced cardiomyopathy, and heart failure are not clearly understood yet.

AFib describes a chaotic and irregular excitation of the atrium, disturbing the sinus
rhythm, and therefore, leading to heavy limitations in patients suffering from it [61]. Clini-
cally, AFib is categorized as:
◦ Paroxysmal, if episodes are self-terminating within a maximum of 7 days (typically

within 48 hours);
◦ Persistent, if the arrhythmia does not terminate within 7 days without pharmaceutical

or electrical cardioversion;
◦ Long-lasting persistent, if AFib lasts longer than one year;
◦ Permanent, if no rhythm control strategy is pursued but only the rate is controlled [54].
Despite considerable research efforts, the mechanisms initiating and perpetuating AFib

are far from being completely understood. The role of calcium handling, atrial fibrosis,
and the drivers of AFib are under discussion [62, 63]. Regarding the AFib drivers, two
separate mechanisms are suspected in current literature to be the main cause for AFib,
namely focal sources and rotational re-entrant circuits called rotors [64]. Other mechanisms
were also identified as likely AFib drivers, e.g., circus movement reentry, leading circle
concept, and multiple wavelet hypothesis [56]. However, in this thesis, we only considered
stable rotors and focal sources as AFib driver mechanisms. Rotors describe a spiral-shaped
wave consisting of a wavefront and a wave tail that meet at a center point and continuously
propagate in clockwise or counterclockwise direction. A focal source is a simple circular
wave periodically propagating from a single cardiac tissue spot. While focal sources have a
fixed point from where they start and propagate, rotors tend to meander around in a small
area, typically following a star pattern. These mechanisms underlying AFib come with rapid
basic cycle lengths (BCL) of around 120-200 ms. The rotor cycle is defined as one full
circulation around the base point [65].
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Diagnosis of AFib is made using either intracardiac catheters to map the atrial activity or
non-invasive methods like the ECG. Even though intracardiac mapping is more precise and
reliable, the usage of ECG is very attractive since it reveals valuable information without
any invasive intervention for the patient. Nowadays, therapy of AFib can follow different
approaches, which are chosen based on the age, the overall health of the patient, the type of
fibrillation, the symptoms, and whether there is an underlying cause for the arrhythmia. The
first option is to medicate the illness. This can be done either with drugs that just reduce the
risk of stroke but do not reduce the fibrillation, or control the rate at which the heart beats
and will therefore restore a normal heart frequency. However, medications come with side
effects, for example, tiredness, nausea, constipation, and low blood pressure depending on
the drug. Alternatively, cardioversion can be used to restore the normal rhythm of the heart.
Cardioversion is an electrical shock given to the heart that instantly stops the arrhythmia by
restoring the atrial electrical activity to sinus rhythm. Unfortunately, AFib might reoccur in
some cases after cardioversion. Lastly, AFib can be treated by substrate modification using
catheter ablation (see section 2.5).

2.5 Ablation therapy

In patients with recurrent AFib that are resistant to antiarrhythmic drugs, catheter ablation
of atrial tissue is the recommended therapy [54]. This is the only therapy that shows
effectiveness when all other methods fail in terminating AFib [12]. Ablation therapy destroys
the diseased areas of the heart or introduces arbitrary lines of block with the aim to interrupt
abnormal electrical circuits or pacing. To set an ablation line, the tissue is heated via
radio-frequency currents (RF ablation) or cooled (cryo ablation). As a consequence, the
tissue gets non-excitable with comparable success rates between the two methods [66]. The
strategy for placing ablation lesions depends on the mechanism driving AFib and has to be
selected individually for each patient. However, in the majority of patients, the AFib drivers
are located close to the PVs, which is why pulmonary vein isolation (PVI) is the standard
approach since the pioneering work of Haïssaguerre et al. [67]. PVI showed to be effective on
persistent and long-standing persistent AFib patients, and in particular, on paroxysmal AFib
patients (AFib recurrence rate up to 60%, and 45%, for persistent, and paroxysmal patients,
respectively) [68, 69]. To improve the success of this therapy, several other strategies aiming
at a modification of the atrial substrates have been proposed [13]: Roofline (RL) and mitral
isthmus (MI) isolations; ablation of sites exhibiting complex fractionated atrial electrograms
(CFAEs); ablation of sites exhibiting a high dominant frequency; and several others. However,
a big randomized multi-center study demonstrated that the success rate of PVI in persistent
AFib could not be increased by additional CFAE ablation as well as extra-linear lesions [70].
On the contrary, recent studies that remain to be reproduced reported remarkable success
rates of focal sources and rotor ablation [14, 15]. Therefore, a controversial discussion
regarding the optimal ablation strategy in different patient populations is still ongoing.





Chapter 3
Technical fundamentals

In this chapter, the basic technical concepts of computational models of cardiac electro-
physiology are introduced. Then, a brief description of the biosignal processing, statistical
methods, and machine learning algorithms utilized in this thesis are summarized.

3.1 Cardiac electrophysiological modeling

Cardiac electrophysiological modeling, through either detailed biophysical or phenomeno-
logical modeling, aims at mathematically describing the electrical behavior of the heart cells
and tissue. In this section, selected approaches used in this thesis ranging from simulating
the electrical activity of atrial cells to the electrical activity of the heart that can be detected
on the surface of the torso will be presented.

3.1.1 Courtemanche model

The ionic membrane currents were firstly described by Hodgkin and Huxley as a mathemati-
cal model in their work from 1952 [71]. The transmembrane voltage Vm is defined as the
difference between the intracellular potential Φi and the extracellular potential Φe. The cell
membrane is represented by an electric circuit with a capacitor and the different ion channels
in parallel. The ion channels are expressed by variable resistors in line with the respective
Nernst voltages represented by voltage sources. Thus, the membrane current is given as
the sum of the ionic currents plus the capacitive current resulting in the following ordinary
differential equation for Vm:

dVm

dt
=− Iion + Istim

Cm
, (3.1)

where Vm is the transmembrane voltage (TMV), Cm is the capacity of the cell membrane,
Istim is the stimulation current and Iion is the ion current through the membrane. Later on,
a specific model of human atrial myocytes was proposed by Courtemanche et al. in 1998.
This model has a different composition than the previously presented basic Hodgkin-Huxley

17
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Figure 3.1: AP from an atrial myocyte under AFib remodeling conditions [56].

model. The model considers more different ionic currents corresponding to ion channels,
exchangers, and pumps. Thus, the results of this model are better suited for the simulation
of atrial activity [72]. Moreover, to leverage in silico methods to gain mechanistic insight
into AFib patho-physiology and to evaluate therapeutic strategies, it is important to consider
the remodeling processes that the atria undergoes when exposed to fibrillation for long time.
Maximum conductivities of the ion currents were altered based on a rigorous literature
research [56]. For this reason, a modification of the Courtemanche et al. model of human
atrial myocytes was used in this thesis (Figure 3.1). The remodeled Courtemanche et al.
model provides mechanistic descriptions of how remodeling increases susceptibility to
reentry through shortened wavelength facilitating the initiation and maintenance of atrial
arrhythmias.

3.1.2 Excitation propagation in the tissue

Moving from a microscopic single cell to macroscopic tissue simulations, a mathematical
formulation of the coupling between cells is required. A detailed biophysical model is
shown in section 3.1.2.1, in opposition to a more phenomenological approach shown in
section 3.1.2.2.

3.1.2.1 Monodomain model

The monodomain model is introduced to incorporate the effect of coupled intracellular space
with gap junctions by resistors or conductivity tensors. For each time step, the intracellular
current source density is calculated and the status of the electrophysiological cell domain is
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updated. The summarized intracellular current source density can be calculated based on a
simplified version of the Poisson’s equation:

1
1+ k

∇ · (σi∇Vm) = β (Cm
dVm

dt
+ Iion + Istim), (3.2)

where σi/e are the conductivity tensors for intracellular (i) and extracellular (e) space, k
is the ratio of the tensor components (σi = kσe), Vm is the TMV, β is the cell surface to
volume ratio, Cm is the membrane capacitance, Iion is the ionic transmembrane current density
(per surface), and Istim is the optional external stimulus current density. The calculation of
the monodomain solution is computationally less expensive than the standard excitation
propagation model for cardiac tissue (e.g., bidomain models) [73].

3.1.2.2 Eikonal equation and Fast Marching algorithm

An established approach to phenomenologically describe the excitation spread over the heart
tissue consists of solving the Eikonal equation [56, 74].

c
√

∇taG∇ta = 1, (3.3)

with the speed c(n) for each node n in the anatomical heart mesh, the node-wise activation
time ta(n), and the tensor G introducing anisotropy in the conduction.

The fast marching simulation (FaMaS), introduced by James Sethian [75], is a numerical
algorithm for solving the Eikonal equation. To solve Equation 3.3, i.e. calculating the
activation times ta(n), the FaMaS is associated with lower computational costs compared to
other methods (e.g., Newton’s method) [76]. Moreover, FaMaS is also less computationally
expensive than the monodomain method.

3.1.3 Forward problem of electrocardiography

For the extraction of ECGs in simulation environments, a Poisson’s equation need to be
solved to project epicardial potentials onto the torso. This is known as the forward problem
of electrocardiology and can be formulated as:

∇ ·σ∇Φ = 0 in Ω (3.4)

Φ = Φ0 on ∑⊆ ΓT and σ∇Φ ·n = 0 on ΓT , (3.5)

where Φ is the quasi-electrostatic potential, σ is the conductivity tensor, ΓT and Ω represent
the surface and volume of the thorax. To evaluate the surface potentials, a surface-based
approach using the boundary element method (BEM) algorithm can be used [77]. The
BEM is a numerical computational method for solving linear partial differential equations,
formulated as integral equations. Moreover, it is an edge-based discretization method that
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only needs the grid values of the bounding area to compute the solution. Utilizing the Green
second identity, the boundary integral equation is

∫

S
(A∇B−B∇A) ·ndS =

∫

V
(A∇

2B−B∇
2A) ·dΩ, (3.6)

and taking the fundamental solution u∗ which satisfies

∇
2u∗+δ = 0, (3.7)

where δ denotes Dirac’s delta function, it follows:

c(p)Φ(p)−
∫

S
(u∗∇Φ−Φq∗) ·dS = 0, (3.8)

where p is an arbitrary field point, q∗ denotes ∇
1
r , while r is the distance between the source

point and field point p, and c(p) depends on the location of p: c(p) = π when p is inside
Ω; c(p) = 0 when p is outside Ω; c(p) = 2π when p is on the smooth boundary [78]. This
method is used to construct the transfer matrix A linking epicardial potentials x and body
surface potentials (BSP) b as:

Ax = b. (3.9)

3.2 Biosignal processing

Biosignals contain useful information that can be exploited to understand the underlying
physiological mechanisms of a specific biological event or system, and which may be useful
for medical diagnosis. They can be space, time, or space–time records of a biological
event. Biological signals can be classified according to various characteristics of the signal,
including the waveform shape, statistical structure, and temporal properties. Digital signal
processing techniques are applied to the biosignals to reduce noise and extract additional
information that can improve the understanding of the physiological meaning of the original
parameter [79]. In this section, the signal processing methods that have been used to analyze,
and extract features from the biosignals (i.e., 12-lead ECGs) will be presented. The features
extracted with these biosignal techniques in the context of this thesis, and their meaning are
described in the chapters 4-5, and in the appendix A.1.

3.2.1 Fast Fourier transform

Fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier transformation
(DFT) of a time discrete signal. The DFT is defined by:

Xk =
N−1

∑
n=0

xne− j 2π

N kn, k = 0,1,2, ...,N−1, (3.10)
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where N is the number of samples in the signal. The FFT algorithm speeds up the computation
of the DFT from a runtime of O(N2) to O(Nlog(N)), and it is therefore commonly used in
computational frequency analysis. This is achieved by using certain periodicity properties in
the calculation of the DFT to obtain a more efficient implementation [80].

3.2.2 Wavelet decomposition

The wavelet transformation is the projection of the signal x(t) on the scaled and temporal
shifted analytical wavelet Ψa;b(t):

W Ψ
X (a,b) = 〈x(t),Ψa,b(t)〉=

1√
|a|

∫
∞

−∞

x(t)Ψ(
t−b

a
)dt, (3.11)

with scale value a and time shift b. Ψ is the selected wavelet for the transformation. There
are numerous possibilities for wavelets to use in the transformation, thus the wavelet function
should be selected case sensitive [81].

3.2.3 Principal component analysis

Principal component analysis (PCA) is an orthogonal linear transformation that transforms
the data to a new coordinate system so that the variance by a scalar projection of the data is
maximized. The first principal component (PC) depicts the maximum variance of the input
data, the second PC corresponds to the second coordinate, etc.. For M signals with each
having N entries the row vectors xM are assembled in the matrix X.

X = [x1 ... xM] =




x11 ... x1M
...

. . .
xN1 ... xNM


 (3.12)

For each signal the mean over the whole dataset is being subtracted leading to a zero-mean
signal matrix Z. Now the covariance matrix CZZ can be calculated:

CZZ = E[ZZT ]≈ 1
N

ZZT . (3.13)

The eigenvalue matrix ΛZZ and the eigenvector matrix Φ are calculated, and through permu-
tation the rows and columns are sorted according to the respective eigenvalues λn. With the
help of the eigenvector matrix Φ, the covariance matrix CZZ is mapped to a diagonal matrix
ΛZZ with eigenvalues λn.

ΛZZ = Φ
T CZZΦ≈Φ

T 1
N

ZZT
Φ. (3.14)

Γ being the normalized eigenvector matrix resulting from the eigenvector matrix Φ and the
eigenvalue matrix ΛZZ enable the calculation of:

Y = Γ ·X, (3.15)
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where Y represents the resulting matrix of PCs. Therefore, the first element of Y holds the
largest share of the total variance of the data X, the second element the second largest share
etc. [81].

3.2.4 Area under the power spectral density

Power spectral density for a signal sampled at discrete times xn = x(n∆t), and considering a
window of 1≤ n≤ N with N tending to infinity, is defined as:

Sxx(ω) =
(∆t)2

T
|

N

∑
n=1

xne−iωn∆t |2, (3.16)

with T being the total duration of the signal, ω = 2π f representing the frequency, and ∆t
the sampling time interval. The area for a specific frequency interval can be calculated by
summarizing the values corresponding to the desired frequency interval and dividing by the
number of samples.

3.2.5 Shannon entropy and spectral entropy

The Shannon entropy of a variable is the average level of uncertainty, or information inherent
in the variable’s possible outcomes. Shannon entropy H is given by the formula:

H =−∑
i

si logb si, (3.17)

where si is the probability of symbol number i appearing in the stream of symbols of
the signal, and b is the base of the logarithm used. Common value of b is 2 when the
corresponding unit of entropy are the bits [82, 83].

The spectral power entropy is a measure for spectral power distribution. It treats the
signal’s normalized power distribution in the frequency domain as a probability distribution
and calculates the Shannon entropy of it [84, 85]. For a signal x(n) the power spectrum is
S(m) = |X(m)|2 with X(m) being the DFT of x(n). The probability distribution is expressed
as:

P(m) =
S(m)

∑i S(i)
. (3.18)

Therein, the Shannon entropy H is defined as expressed in equation 3.17 replacing s with P.

3.2.6 Recurrence Quantification Analysis

The recurrence quantification analysis (RQA) is a method of nonlinear data analysis that
quantifies the number and duration of recurrences of a dynamical system presented by its
state space trajectory. To quantify these factors, the RQA makes use of the recurrence plot
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(RP). A RP is an advanced technique of nonlinear data analysis. It is a visualization (or a
graph) of a square matrix, in which the matrix elements correspond to those times at which
a state of a dynamic system recurs (columns and rows correspond then to a certain pair of
times). Technically, the RP reveals all time stamps when the phase space trajectory of the
dynamic system visits roughly the same area in the phase space [86, 87]. Measures based on
RP’s diagonal structures are able to find chaos-order transitions [88], measures based on RP’s
vertical (horizontal) structures are able to find chaos-chaos transitions (laminar phases) [89].
In chapter 4 a detailed description of the RQA method and its implementation is provided.

3.2.7 Hjort descriptors

In 1970, Bo Hjorth introduced indicators of statistical properties used in signal processing in
the time domain called Hjorth descriptors after him [90]. The Hjorth descriptors are closely
related to the spectral moments. The parameters are activity, mobility, and complexity
(see A.1). They are commonly used in the analysis of biosignals (e.g., electroencephalogram)
for feature extraction [41].

3.3 Statistics

The role of statistics in biomedical research starts at the planning stage of a clinical trial or
laboratory experiment to establish the design and size of an experiment that will ensure a
good prospect of detecting effects of clinical or scientific interest. Statistics is again used
during the analysis of data to make conclusions valid in a wider population. Computation
of simple quantities such as P-values, confidence intervals, standard deviations, standard
errors or application of some standard parametric or non-parametric tests are needed to
make relevant inferences from observed data [91]. The parametric and non-parametric tests
are also called hypothesis tests in general. Hypothesis tests can be used for the statistical
significance of differences between data [92]. In this section, the statistical analysis methods
and parameters that have been implemented to infer and evaluate the results of this thesis
will be presented.

3.3.1 Parametric tests

Parametric statistics is a branch of statistics that assumes a normal distribution of the sample
data (fixed set of parameters to model the probability distribution of the data) [93]. A
common parametric hypothesis test is the t-test. This test evaluates whether the expected
values of Gaussian distributed observations are statistically equivalent by looking at the
difference of the expected value of two distributions. We can identify two different cases for
two sample data: paired data, in which there are one-to-one correspondences between the
measurements in each sample, and unpaired data, in which there are no such correspondences.
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The data are paired if we know which measurements correspond between the two samples
(e.g., they were taken from the same patient) [92]. The test statistic of the t-test is known as
the t-value. It is based on the standard error of the mean and is of the general form

t =
difference to be tested

standard error of the mean
. (3.19)

Next, there is the definition of the test’s hypothesis: Null hypothesis H0 states that there
is no difference between the two populations. Alternative hypothesis H1 states that there
is such difference. The selection of a degree of confidence is also needed. Usually, the
degree of confidence is set to 95% or 99% depending on how robust the analysis should
be. These degrees of confidence correspond to a significance level of α = 0.05 or α = 0.01,
respectively. The lower the α , the more robust the analysis, but the more difficult it will
be to obtain significance. The rejection of the null hypothesis is the aim of the test. It
infers that the observations have statistically significant differences. In order to reject the
null hypothesis, the t-value will have to turn out smaller than a critical value that can be
obtained using statistical tables [92]. In the following chapters, the p-value will be used. The
p-value represents the probability that the null hypothesis is true. If p-value < α , then the
null hypothesis is rejected.

Regarding statistical hypothesis tests where multiple (more than two) groups of data are
given, the analysis of variance (ANOVA) is the most common parametric statistical test. The
multiple groups of data must represent the same variable of interest (univariate analysis).
ANOVA attempts to answer the specific question of whether all groups have the same mean
or at least one pair of group means is significantly different [94]. Instead, if measures or
records of different variables for each patient are given, then a multivariate analysis is needed.
Multivariate analysis is important if we want to verify which are the links between the several
variables extracted to analyze a phenomenon and which of the variables can best describe
the phenomenon itself.

3.3.2 Non-parametric tests

Non-parametric statistics does not assume an explicit (finite-parametric) mathematical form
of the distribution when modeling the data (non-normal distribution of the sample data).
However, it may make some assumptions about that distribution, such as continuity or
symmetry. Non-parametric tests tend to be less powerful than their parametric equivalents.
Therefore, more data will typically be required to achieve statistical significance for the same
degree of confidence. The procedure for the non-parametric hypothesis tests is similar to
that shown in section 3.3.1 for the parametric tests. The difference between the two is that
instead of using the mean of the data distributions, non-parametric tests use the median of the
population. The Wilcoxon signed-rank test is the test used to analyze two paired distributions
of data, while the Wilcoxon rank-sum test is used for unpaired distributions [95]. Regarding
statistical hypothesis tests where multiple groups of data are given, the non-parametric
Kruskal-Wallis test is the most common as opposed to the ANOVA for the parametric tests.
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Figure 3.2: Example of an overfitted model (green line) and a regularized model (black line). The green
line follows the training data best, however it is too dependent on that data loosing the capability of
generalization, compared to the black line. Adapted from [98] and licensed under the Creative Com-
mons Attribution-Share Alike 3.0 Unported license.

3.4 Machine learning

Machine learning is based on advanced algorithms operating on heterogeneous, large-scale
datasets to reveal useful patterns that would be difficult or impossible for the human being to
identify [96]. In this section, fundamental concepts in data science and selected machine
learning approaches and algorithms used in this work will be described. They all belong to
the class of supervised learning techniques, i.e., model fitting is based on given inputs (data,
or features extracted from the data) and the corresponding known outputs which are often
called labels. The pairs of known inputs and outputs is often referred to as training data.

3.4.1 Overfitting

A machine learning algorithm should be able to generalize (perform well on new and unseen
inputs). The process of a learning method only memorizing the training data and loosing its
generalization capability is called overfitting. Overfitting describes the phenomenon that a
machine performs well on the given inputs but fails to work well on new inputs [97]. This
can be caused by an over-complex model or an unbalanced training set. An example for
overfitting is given in Figure 3.2. The dataset is divided in two classes, i.e., red and blue.
The green line is a too complex model that follows the training data in a too exact way. On
the contrary, the black line represents a simpler model that has reduced performance on the
training set, but will most likely be more successful in generalizing to new data.
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Figure 3.3: Example of ROC curve analysis. Three ROC curves are shown. The red curve represents a
random classifier with AUC = 0.5; The green curve represents an ideal classifier with AUC = 1; And
the black curve represents a common classifier with 0 < AUC < 1.

3.4.2 Greedy forward feature selection

The greedy forward selection technique is an iterative approach and problem-solving heuristic
that attempts to identify the best combination of features by optimizing a given user-selected
performance parameter. The algorithm starts with an empty feature set. In the first loop,
the feature that leads to the best classifier performance is identified and added to the feature
set. In subsequent loops, features that in combination with those already selected lead to
the maximum performance increase are found and added to the feature set. The algorithm
stops when performance based on the validation set can not be further increased. This type
of algorithm produces a locally optimal solution but not the global optimum. When moving
iteratively towards the optimum, the choice is always motivated by local observations, which
can cause the algorithm to get stuck in a local optimum.

3.4.3 Receiver operating characteristic curve

The receiver operating characteristic (ROC) curve is an illustration of the classification
performance of a binary classifier at various threshold settings. The ROC curve visualizes
sensitivity against specificity-1, where sensitivity is on the y-axis and 1-specificity is on the
x-axis. This graphical plot for binary classification is used for supervised learning. The
algorithm operates as an optimization problem for sensitivity and specificity-1. From this
optimization, the optimal threshold leading to the best sensitivity+specificity-1 value can
be estimated. One of the most common classification model’s evaluation parameter is the
area under the curve (AUC). ROC is a probability curve and AUC represents the degree or
measure of separability between classes. AUC ranges from 0 to 1, where 1 indicates the
total ability to identify both classes without making any errors. In contrast, an AUC of 0.5
indicates no ability to find differences between classes, reducing the classifier to a random
decision (Figure 3.3).
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3.4.4 Decision tree

Decision tree is one of the most widely used tools for decision making due to its simplicity
and explainability. It is a tree whose internal nodes can be considered as tests (on input data
features) and whose leaf nodes can be considered as classes (of these data). These tests are
filtered down through the tree to get the right output to the input pattern [99]. Therefore, a
decision tree classifier is a supervised machine learning algorithm. It continuously splits the
data according to some parameters (i.e., features). Classification trees have a categorical or
discrete decision variable. This type of tree iteratively splits the data into binary partitions and
then divides it further for each of the branches. Starting at the root, the decision tree classifier
is built by splitting the data based on the feature that results in the largest information gain.
A major risk of this method is overfitting by going too deep into the data splitting. For this
reason, a depth-limit of the decision tree can be selected.

3.4.5 K-nearest-neighbor

Another very common classification method is the K-nearest-neighbor (KNN). Although
the KNN classifier belongs to the simplest implementations, yet its performance is able to
compete with most of the complex classifiers. This non-parametric classifier measures the
similarity, or distance, between training, and test examples. It requires predefined K values
and training data, to find the K-nearest-neighbor in reference to the distance metric. K is
the number of training set neighbors that are used by the algorithm to classify each new test
sample. The algorithm predicts the unknown class depending on the majority class of the
included neighbors [100]. In the example in Figure 3.4, by setting K = 3, the test sample
would have been classified as class 1 (red class). On the contrary, by setting K = 5, the test
sample would have been classified as class 0 (blue class). Thus, the amount of neighbors
to be considered and the distance metric are the most important hyper-parameters. In the
context of this work, the Euclidean distance and several numbers of neighbors are used to
discriminate the different test examples.

3.4.6 Artificial neural networks

Artificial neural networks (ANNs), also known as neural networks (NNs), are a subset of
machine learning and form the core of deep learning algorithms. As the name may suggest,
this method takes inspiration from the human brain, mimicking the way that biological
neurons signal to one another. ANN is a more powerful method for classification than those
previously described in this section, but also much more complicated and therefore less
explainable. The smallest element of an ANN is the neuron. Each artificial neuron has an
associated weight and threshold. If the output of a neuron is above the specific threshold, that
node is activated. Threshold function (or activation function) can be chosen dependent on
the network. If a node is activated, it sends data to the next neuron of the network. Neurons
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Figure 3.4: Example of a KNN binary classification approach with K = 3 neighbors (solid line circle)
and K = 5 neighbors (dashed line circle). The blue squares represent the class 0 training samples, and
the red triangles represent the class 1 training samples. The Euclidean distance is used to measure the
similarity between the test sample (green circle) and the training samples. Adapted from [101], and
licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.

are organized in layers. An ANN contains an input layer, one or more hidden layers, and an
output layer. Each layer consists of a predefined number of neurons. The number of neurons
in the output layer is fixed by the number of output variables (i.e., classes) [102]. In this
thesis, radial basis neural networks (rbNN) were implemented. An rbNN uses Euclidean
distances (between inputs and weights, which can be considered as centers) and (usually)
Gaussian activation functions, which makes neurons more locally sensitive [103].

3.4.7 Deep learning

The machine learning approaches explained so far for classification purposes are all feature-
based. Patient-acquired signals, i.e., ECGs, are not used directly as input to the algorithms.
Instead, features describing a certain change that is expected to be visible are calculated in
advance and these are used as inputs for the learning methods. The use of features requires
very high background knowledge of the phenomenon under analysis. Moreover, the extracted
features are many times fitted on the training data leading to overfitting issues. To avoid
this, deep learning was designed. Deep learning describes neural networks with many layers
(hence the name "deep") and directly accepts signals as input, performing an automatic
feature extraction task. In this way, the machine can freely identify and extract any feature
it considers relevant to pattern recognition, perhaps finding also something invisible to the
human eye and therefore not exploitable for any feature-based approach. Unfortunately, this
leads to a reduction in the explainability of these algorithms compared to the feature-based
classifiers. In fact, it is not always possible (and never easy) to understand which are the
characteristics in the input signals that led to the final classification.

Convolutional neural networks (CNNs) form a class of neural networks that are usually
designed as deep neural networks. Commonly, a series of stages structure the architecture of
a CNN. Thereby, the first few stages mainly consist of convolutional and pooling layers. The
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main purpose of including convolutional layers lies in an automatic feature extraction. These
convolutional layers apply different convolutional kernels on a given input yielding so-called
feature maps. The input can be a two-dimensional signal, e.g., multi-lead ECG signals
visualized as an image with its amplitude color- or greyvalue coded. Next, the pooling layers
semantically merge similar features and downsample the size of the input. This cycle is
repeated until the information is reduced to a set of images of a set size. The single values
are then fed into a fully connected layer which calculates the output of the network. The
weights of the final fully connected layer, as well as all the convolutional kernel coefficients,
are considered the parameters to be optimized during training [104].

3.4.8 Performance metrics

Multiple metrics were used to evaluate the performance achieved by the machine learning
algorithms in this thesis:
◦ Accuracy: the fraction of predictions a model estimated right. It is defined as follows

Accuracy =
Number of correct predictions
Total number of predictions

=
T P+T N

T P+T N +FP+FN
, (3.20)

with T P = True Positives, T N = True Negatives, FP = False Positives, and FN =

False Negatives. The right side of the expression is only meant for binary classification;
◦ Sensitivity (or True Positive Rate): the proportion of cases that are positive and were

predicted as positive out of all cases that are actually positive. Sensitivity is defined as
follows

Sensitivity =
T P

T P+FN
; (3.21)

◦ Specificity (or True Negative Rate): the proportion of cases that are negative and were
predicted as negative out of all cases that are actually negative. Specificity is defined
as follows

Specificity =
T N

T N +FP
; (3.22)

◦ Positive Predictive Value (PPV): the proportion of cases that are positive and were
predicted as positive out of all cases that were predicted as positive. PPV is defined as
follows

PPV =
T P

T P+FP
; (3.23)

◦ Geometric-mean (G-mean), it is the central value in a set of numbers. G-mean is
useful in machine learning applications because it can normalize numerical ranges of
the dataset so that each item in the dataset can be directly compared. In this thesis,
the G-mean was calculated between the sensitivity and the specificity. For binary
classification the G-mean is defined as follows

G-mean =
√

Sensitivity ·Speci f icity. (3.24)





Chapter 4
Atrial flutter characterization and

discrimination

Atrial flutter (AFlut) is an atrial arrhythmia that occurs when a reentrant circuit (short and
circular electrical pathway) allows the electrical impulse to move rapidly through the atria in
a self-sustaining way. AFlut may cause unpleasant symptoms such as shortness of breath,
but also lead to stroke or heart failure [105, 106]. Usually, AFlut is diagnosed using the
electrocardiogram (ECG), but the exact AFlut mechanism can only be identified during an
invasive mapping procedure [107]. The invasive mapping can help to find the reentrant circuit
using a narrow and flexible catheter that is manually guided through a vein into the chambers
of the heart by a cardiologist. Once the mechanism supporting the flutter is identified,
the clinician proceeds with an ablation procedure. The procedure aims to terminate the
arrhythmia and restore sinus rhythm. For this reason, clinicians apply ablation lines or points
at specific locations on the atria. The areas to ablate may differ for each type of AFlut and/or
patient. During this procedure, the heart cells are destroyed by extreme heat or extreme cold.
Manually locating the target areas for ablation using sequential catheter mapping can be very
time consuming and does not allow real pre-operative planning by the doctor. This is why
several manual rule-based methods for identifying the AFlut mechanism based on the 12-lead
ECG have been proposed, with equivocal results. They usually rely on P-wave morphologies
in the 12-lead ECG [108, 109]. A possible automatic solution is the utilization of the ECG
signals in a machine learning framework. Indeed, machine learning-based algorithms are
already extensively used for the detection of different cardiac arrhythmias [110, 111], but
never until now to identify the exact mechanism that sustained the arrhythmia. The use
of machine learning-based approaches could aid in the characterization of different AFlut
mechanisms by identifying patterns among signals not visible by manual inspection. In
addition, the algorithms would be less human operator dependent and thus more standardized
leading to better performance outcome.

In the studies presented in this chapter, firstly, we sought to characterize 20 AFlut
mechanisms developing two novel recurrence quantification analysis (RQA) approaches on
a computational cohort of data and testing them on a clinical case: individual component
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RQA and spatial reduced RQA [22]. The dynamic structures produced by the different
mechanisms of AFlut led us to consider RQA as an interesting solution to characterize this
arrhythmia. Moreover, RQA has already been widely used in cardiac signal analysis [112,
113]. We found that RQA-based features were sensitive and effective in characterizing the
several AFlut mechanisms, proving to be potential features for subsequent machine learning
approaches [22]. We computed in silico data to solve the common problem in clinical data
analysis of shortage of properly labeled datasets. Our simulated AFlut cases provided an
ideal and controlled environment, establishing a solid ground truth. Nevertheless, a major
issue produced by the use of in silico data was the risk of overfitting on the atrial and torso
models used to produce the dataset itself. Therefore, secondly, we wanted to focus on
the influence that torso and atria models had on the 12-lead ECGs. To achieve this aim,
we implemented basic machine learning classifiers to discriminate 20 different simulated
AFlut mechanisms with a leave-one-atrium-out (LOAO) and a leave-one-torso-out (LOTO)
algorithm, respectively. The paper showing the results thereof was published in a conference
proceeding [23]. From the study, we observed that the atria models strongly influence the
features selected for the classification, thus on the ECG signals. On the contrary, torso models
do not affect the classification too much, not bringing any relevant change to the features and
to the ECGs. These findings were also confirmed in a later work by Nagel et al. [114]. In
conclusion, to solve the overfitting problem on the atrial models in use, we implemented a
hybrid final classifier to discriminate 3 different types of AFlut mechanisms. The manuscript
is at the moment under review [24]. The learning algorithm used both clinical and simulated
data in the training dataset. In addition, in silico data were re-simulated on a larger amount
of atrial models using a statistical atrial shape model [115], and the number of classes to be
discriminated was reduced from 20 to three main AFlut categories. The algorithm tested on
a full-clinical dataset showed ability to distinguish between the three selected AFlut classes,
potentially leading to a non-invasive ablation target prediction [24].
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Abstract—Objective: Atrial flutter (AFl) is a common
arrhythmia that can be categorized according to differ-
ent self-sustained electrophysiological mechanisms. The
non-invasive discrimination of such mechanisms would
greatly benefit ablative methods for AFl therapy as the
driving mechanisms would be described prior to the inva-
sive procedure, helping to guide ablation. In the present
work, we sought to implement recurrence quantification
analysis (RQA) on 12-lead ECG signals from a computa-
tional framework to discriminate different electrophysiolog-
ical mechanisms sustaining AFl. Methods: 20 different AFl
mechanisms were generated in 8 atrial models and were
propagated into 8 torso models via forward solution, result-
ing in 1,256 sets of 12-lead ECG signals. Principal com-
ponent analysis was applied on the 12-lead ECGs, and
six RQA-based features were extracted from the most sig-
nificant principal component scores in two different ap-
proaches: individual component RQA and spatial reduced
RQA. Results: In both approaches, RQA-based features

Manuscript received April 7, 2020; revised April 20, 2020; accepted
April 23, 2020. Date of publication May 28, 2020; date of current ver-
sion February 19, 2021. The work of Giorgio Luongo was supported
by the Research Fellowship from the European Union’s Horizon 2020
Research and Innovation Programme under the Marie Sklodowska-
Curie Grant Agreement 766082 (MY-ATRIA project). The work of Stef-
fen Schuler was supported by the Research Grant from the German
Research Foundation (DFG) under the Grant DO 637/21-1. The work
of Tiago P. Almeida was supported by the Received Research Grants
from São Paulo Research Foundation (FAPESP; n. 2018/02251-4; n.
2017/00319- 8), the KIT Research Alumni Reunion, and the British
Heart Foundation (BHF Project Grant PG/18/33/33780 and Research
Accelerator for Early Career Researcher). The work of Diogo C. So-
rian was supported by Received Research Grants from FAPESP (n.
2019/09512-0) and CNPq (305616/2016-1). (Corresponding author:
Giorgio Luongo.)

Giorgio Luongo is with the Institute of Biomedical Engineering,
Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany (e-mail:
giorgioluongo@gmail.com).

Steffen Schuler, Olaf Dössel, and Axel Loewe are with the Institute of
Biomedical Engineering, Karlsruhe Institute of Technology.

Armin Luik is with the Medizinische Klinik IV, Stdtisches Klinikum
Karlsruhe.

Tiago P. Almeida was with the Electronic Engineering Division, In-
stituto Tecnológico de Aeronáutica. He is now with the Department of
Cardiovascular Sciences and the School of Engineering, University of
Leicester.

Diogo C. Soriano is with the Engineering, Modelling and Applied
Social Sciences Centre, ABC Federal University.

This article has supplementary downloadable material available at
https://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TBME.2020.2990655

were significantly sensitive to the dynamic structures un-
derlying different AFl mechanisms. Hit rate as high as
67.7% was achieved when discriminating the 20 AFl mech-
anisms. RQA-based features estimated for a clinical sam-
ple suggested high agreement with the results found in
the computational framework. Conclusion: RQA has been
shown an effective method to distinguish different AFl elec-
trophysiological mechanisms in a non-invasive computa-
tional framework. A clinical 12-lead ECG used as proof of
concept showed the value of both the simulations and the
methods. Significance: The non-invasive discrimination of
AFl mechanisms helps to delineate the ablation strategy,
reducing time and resources required to conduct invasive
cardiac mapping and ablation procedures.

Index Terms—Atrial flutter, 12-lead ECG, non-invasive,
biosignal processing, spatio-temporal, recurrence, RQA,
nonlinear dynamic, PCA, cardiac modeling.

I. INTRODUCTION

A TRIAL flutter (AFl) is a common reentrant arrhythmia
with 200,000 new annual cases estimated for the U.S. pop-

ulation [1]. This arrhythmia is characterized by self-sustained
mechanisms and electrical signals that regularly propagate along
various physiological pathways [2]–[4]. Although AFl is not a
direct cause of death, it can cause significant symptoms and
complications - e.g., palpitations, dyspnea, stroke and heart
attacks.

Among the cardiac arrhythmias, the mechanisms perpetuating
AFl have been extensively investigated and are relatively well
known. This includes right atrial (RA) tachycardia [5]–[7] and
left atrial (LA) AFl forms [8]–[10], occurrences after abla-
tion for atrial fibrillation (AFib) [11]–[13] and macro reentrant
mechanisms [14]. However, the characterization of the dynami-
cal structures underlying electrophysiological (EP) phenomena
from the perspective of non-linear and non-invasive time series
analysis is still lacking. In fact, AFl mechanisms are usually dis-
criminated from invasive intracardiac signals [3], [15], whereas
non-invasive methods - using traditional 12-leads ECGs, for
instance - are mostly used for the clinical detection of AFl
with respect to AFib [16]. The non-invasive discrimination of
AFl mechanisms would help to delineate the ablation strategy,
reducing time and resources required to conduct invasive cardiac
mapping and ablation procedures. Different AFl mechanisms

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
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might culminate in different dynamic structures that could be
captured by non-invasive data. The nature of this problem sug-
gest that recurrence quantification analysis (RQA) might offer
an interesting solution for the investigation of the underlying
cardiac dynamic.

Interestingly, the development of RQA itself is intrinsically
related to the analysis of cardiac signals. For instance, the
work by Trulla et al. highlighted the promising applications
of RQA on biomedical signals [17], describing the advantages
of using RQA on investigating nonstationary and short-time
cardiac datasets [18], [19]. Since then, RQA has been extensively
used for characterizing the dynamics of heart rate variabil-
ity [20], [21], cardiac restitution [22], or even combined with
machine learning techniques for sudden cardiac death stratifi-
cation [23] and ECG-based arrhythmia classification [24], [25],
among other applications. RQA has been used to specifically
characterize the dynamics of intracardiac signals during cardiac
disorders [26], [27], [28], [29]. These investigations have shown
that RQA-based features represent a promising set of tools to
identify phase transitions and discriminate different EP charac-
teristics related to the atrial tissue. Finally, Yang has proposed
using recurrence plots (RPs) and RQA to analyze the spatial
vectocardiogram for identifying cardiac disorders, being able
to detect myocardial infarction with an average sensitivity of
96.5% and an average specificity of 75% [30].

In the present work, we sought to characterize different
AFl mechanisms from the perspective of multivariate surface
potentials and nonlinear time series. The present methodology
stands out from previous investigations for considering an in
silico ground truth followed by a clinical case application. The
study was divided in two arms considering simulated 12-lead
ECG signals: individual component RQA (icRQA) and (a novel)
spatial reduced RQA (srRQA). The results suggest that RQA
is effective in characterizing and discriminating the dynamic
structures from distinct AFl mechanisms, and might help to
define novel protocols for clinical planning and ablation strategy.

II. METHODS

A. Simulated AFl Scenarios

A database with computational AFl scenarios was organized
based on: AFl mechanisms commonly described in the liter-
ature [31], [32]; documented clinical AFl cases [5]–[13]; and
computational studies conducted in a previous work by Oester-
lein et al. [33].

Cardiac excitation was modelled using the fast marching
approach to solve the Eikonal equation [34], [35]. Propagation
was simulated on the triangulated volumetric meshes of 8 bi-
atrial anatomies, generated from segmented magnetic resonance
imaging (MRI) data of healthy male and female subjects [36].
Interatrial connections were generated by a rule-based algo-
rithm [37], [38]. Scars were added circumferentially around
ipsilateral pulmonary veins (PVs), representing ablation scars
from previous PV isolations.

In total, 20 mechanisms/scenarios of AFl were implemented,
including right atrial (RA) flutter as well as left atrial (LA) forms
like macroreentry around the valves (sc1-4), across the roof

TABLE I
DATABASE OF MANUALLY PARAMETERIZED AFL MECHANISMS

Right atrium (RA), left atrium (LA), left pulmonary vein (LPV), right pulmonary vein
(RPV), pulmonary veins (PVs), right superior pulmonary vein (RSPV), left superior
pulmonary vein (LSPV), mitral valve (MV), left atrial appendage (LAA), clockwise
(cw), counterclockwise (ccw), anterior (ant), posterior (post), scenario (sc).

(sc9-11), focal ectopy (sc12–15), and microreentries mediated
by scars (sc5-8) or slow conduction areas (sc16-20). A complete
list of scenarios is provided in Table I. For scar-related mi-
croreentry mechanisms, revitalized atrial tissue was introduced
representing the critical isthmus. The 20 different AFl scenarios
were constructed by changing the conduction velocity (CV) and
refractory period, introducing heterogeneities in the atrial tissue.
The simulations were initiated by manually placed triggers and
refractory areas. They were continued for at least 5 s to confirm
a stable excitation pattern.

The simulated excitation resulted in local activation times
(LAT) for each anatomical node that was not isolated. The
LATs were extracted in an interval of the simulation in which
the specific AFl was formed. These LATs were projected on a
new geometry (identical to the previous one), containing only
the surface endo-\epicardial layers [37] in order to obtain a
vector of LATs only from the surfaces. The transmembrane
voltage (TMV) was calculated from the LATs using the Courte-
manche et al. mathematical remodelled model of the human
atrial action potential [39]. The TMV was used to estimate the
body surface potential map (BSPM) onto 8 different triangulated
surface models of torsos (9,951 nodes and 19,898 triangles on
average). The torsos were generated by segmented MRI data
of healthy male and female subjects [36], [40]. The boundary
element method (BEM) was used to solve the forward problem
of electrophysiology [41]. Finally, traditional bipolar ECGs were
extracted from the BSPM, including the 12-lead ECGs [42].

Every 12-lead ECG signal has a length of 5 AFl loops and
sampling frequency of 1 kHz. Since the ventricles were not
included in the simulations, the resulting ECG signals contain
only atrial activity represented by the P-waves (also called
flutter waves or F-waves), without the QRS complex and T-wave
(representing ventricular activity), since the ventricles are not
included in the simulations (Fig. 1A-C).
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Fig. 1. (A). Illustration of a simulated atrial flutter around the tricuspid valve with ccw direction on one of the atrial models generated from MRI.
(B). Example of a BSPM on one of the torso models generated from MRI. The torso potential has been obtained solving the forward problem of
electrophysiology from the simulated TMV on the atria. (C). Example of three of the 12-lead ECG signals extracted from the BSPM. Five complete
loops of the AFl were taken into consideration. Principal component analysis (PCA) has been applied on the 12-lead ECGs. (D). Illustration
of the state space reconstruction following Takens’ theorem, with the corresponding time-delay embedding (τ ) and embedding dimension (d).
(E). The resulting distance plot based on the state space map and the subsequent recurrence plot (RP) after applying an adaptive threshold ε on
the distance plot.

A total of 1,256 sets of 12-lead ECG were calculated from
the 20 AFl simulated scenarios on 8 atria models and 8 torso
models. Due to the proximity of the left inferior pulmonary vein
to the mitral valve on one of the atrial models, the left pulmonary
vein isolation blocked the signal propagation between these two
anatomical points, hindering the implementation of scenarios
sc12, sc13, and sc30 on this atria geometry.

B. Non-Redundant Spatial Information of ECGs

The 12-lead ECG signals were organized in a N ×M matrix
- where M is the number of leads and N is the number of

samples on the leads - and principal component analysis (PCA)
was applied. PCA is a linear transformation of a set of variables
X = (X1, X2,.., Xn)T [43]. This technique transforms the data
with respect to an orthogonal basis Φ, such that the projections
of X in this new coordinate system have maximum variance. The
orthogonal vectors ϕi conforming Φ are ordered by decreasing
variances. The variance of a variable is an important measure of
its amount of information. Every component of the orthogonal
basisΦ is called principal component (PC) and the projections of
X with respect to that basis are called principal component scores
- PCS, first PCS (PCS 1), second PCS (PCS 2), third PCS (PCS
3). PCA is primarily used for reduction of dimensionality of a
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dataset while retaining the most relevant information contained
in it [44], [45].

In the present work, PCA was used to reduce the size of
each simulated 12-leads ECGs to the PCs that represent a
cumulative variance greater than 95% of the total variance. This
transformation aims to provide a new set of observations that
considers the representative information of the electrical atrial
dynamics collected from different sensors (i.e., non-redundant
spatial diversity) [42]. PCA also allows to reduce the RQA
computational cost, since we can proceed with a reduced space,
as explained in II-D.

C. Embedding Parameters and RQA Features

A RP is a two-dimensional graphical technique introduced
by Eckmann et al. [46], aiming to analyse the structure of
multidimensional dynamical system’s attractors [21]. It captures
the reappearance of multidimensional states by means of a binary
matrixRi,j, associating the value 1 - represented by a black pixel
- whenever states xi and xj are close to each other by ε, and 0
otherwise. The binary pattern exhibited in the RP is related to the
underlying generative dynamics of the observation and can be
used to assess different oscillatory properties characterized by
diagonal lines - which capture the co-evolution of states in the
phase space - and vertical lines - which capture the tendency of
remaining in a given state [21]. The systematic quantification of
the binary patterns in the RP defines the roots of RQA [18], and,
currently, engenders a wide set of metrics that characterize the
oscillatory behavior and also allow access to nonlinear invariants
- e.g., correlation dimension, Kolmogorov entropy [21], [47] -
and information theory [21].

When a single observation is available, the state space can be
reconstructed using Takens’ theorem [21], which aims to reveal
a possible hidden low dimensional trajectory underlying the ob-
servation and, consequently, laminar RP structures - diagonals,
verticals etc - as shown in Fig. 1D, [28]. In this case, auxiliary
axes are defined as delayed samples of the uni-dimensional
observation x(k), such as

x(k) = {x(k), x(k − τ), . . ., x[k − (de − 1)τ ]}, (1)

in which de is the embedding dimension - number of coordinates
used for the x(k) representation - and τ represents the time-
delay embedding among samples. These parameters are usually
estimated by means of the false nearest neighbor test and the
first local minimum of the self-mutual information [21], [48]. In
this case, the recurrence matrix (Ri,j) can be defined in terms of
the distance between the respective reconstructed states xi and
xj and a chosen distance threshold ε, which can be expressed as:

Ri,j(ε) = θ{ε− ‖xi − xj‖}, (2)

being θ the Heaviside function (Fig. 1E).
For a RP obtained from a time series of N samples, with

frequency distribution P (l) of diagonal line length, frequency
distribution P (v) of vertical line length, probability p(l) of
finding a diagonal of length l, and probability p(v) of finding a

vertical line of length v, the RQA is associated with represen-
tative statistical measures of the matrix Ri,j [21], used in the
present work:� The recurrence rate (RR), which represents the density of

points in a RP:

RR =
1

N2

N∑

i,j=1

Ri,j . (3)

� The ratio between recurrence points that form diagonal
structures (with length l ≥ lmin), referred to as determin-
ism (DET):

DET =

∑N
l=lmin

lP (l)
∑N

l=1 lP (l)
. (4)� The Shannon entropy of diagonal lines in a RP

(ENTR_diag), which can be considered as a measure of
RPs complexity or organization in terms of the distribution
of the diagonal lines:

ENTR_diag = −
N∑

l=lmin

p(l) ln p(l). (5)

� The ratio between recurrence points that form vertical
structures (with length v ≥ vmin), referred to as lami-
narity (LAM):

LAM =

∑N
v=vmin

vP (v)
∑N

v=1 vP (v)
. (6)� The trapping time (TT), which represents the average

length of the vertical lines:

TT =

∑N
v=vmin

vP (v)
∑N

v=vmin
P (v)

. (7)� The Shannon entropy of vertical lines in a RP
(ENTR_vert), which can be considered as a measure of the
RPs complexity or organization in terms of the distribution
of the vertical lines:

ENTR_vert = −
N∑

v=vmin

p(v) ln p(v). (8)

D. icRQA and srRQA

Two different RQA paradigms based on different premises
were implemented to investigate the underlying dynamics and
spatio-temporal structures of the AFl mechanisms. Therefore,
the hyper-parameters for each paradigm (icRQA and srRQA)
are expected to differ. Both paradigms were implemented con-
sidering the PCSs extracted from the simulated 12-lead ECGs.

1) icRQA: The first RQA paradigm (individual component
RQA, icRQA) reconstructed the attractors following Takens’
Theorem - same procedure as described in Section II-C - for
each PCS considered relevant on the basis of their variance.
In this case, each PCS had its own time delay and dimension
embedding.
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2) srRQA: The second - and novel - RQA paradigm (spatial
reduced RQA, srRQA) defined the “embedding dimension”
based on the number of selected PCSs and, therefore, did not
consider Takens’ Theorem for attractor reconstruction. Indeed,
srRQA considers the first PCS1 as the first coordinate of the
observed trajectory, PCS 2 as second coordinate, and so forth
- i.e., it defines the AFl trajectory in the domain of PCSs. This
leads to a space-time “embedding space” based on the uncor-
related PCSs to obtain minimal redundant spatial information.
Consequently, no time embedding procedure was needed for the
srRQA since the PCSs are already uncorrelated. The number of
PCSs used to reconstruct the state space was chosen based on the
best compromise between: the RR value; the maximum phase
space diameter portion (maximum distance found in the distance
plot); and the discrimination between the 20 AFl scenarios
as explained in the following [48]. Once the state space was
estimated, the procedure for calculating the RP was the same as
described in Section II-C.

E. Defining Hyper-Parameters for RQA

After obtaining the respective state vectors for both
paradigms, ε was determined. Previous works have suggested
that ε should be chosen such that the resulting RR is approxi-
mately 1%, or ε should not exceed 10% of the maximum phase
space diameter [21], [49]. Therefore, 12 and 10 different values
for εwere tested for the icRQA and srRQA, varying from 0.5% to
11%, and from 1% to 10% of the maximum phase space diame-
ter, respectively. Some preliminary results on the icRQA showed
no need to test values lower and higher than the 10 selected for
srRQA. For each ε, RR was calculated and the discrimination
between the 20 different AFl scenarios was evaluated using the
MATLAB function rankfeatures (”CriterionValue” set to “roc”).
Hence, ε was defined looking for a suitable compromise among
the resulting RR (not too high compared to the recommended
1%), the portion of the maximum phase space diameter (not
exceeding 10%), and the discrimination between the 20 AFl
scenarios.

Similarly, the minimum line lengths for the calculation of
DET and LAM were defined considering the discrimination
between the 20 different AFl scenarios. Using ε as defined above,
both DET and LAM were calculated for 20 values of minimum
line length, varying from 2 to 21 for both icRQA and srRQA.
The minimum line lengths were also defined as a compromise
between the resulting values for DET and LAM and the 20 AFl
scenarios discrimination.

A more detailed description of the selection of optimal values
for the hyper-parameters can be found in Almeida et al. [28].

F. Clinical Data Sample

A sample of clinical 12-lead ECG was used to evaluate
the recurrence plots and RQA-based features obtained in the
computational framework. The ECGs were collected during
an episode of microreentrant AFl in the LA (1 kHz sampling
frequency), representing sc17 (ant LAA, Table I). The AFl
mechanism was identified and labelled by inspecting the LAT
map recorded with a high density 3D electroanatomical mapping

system (Rhythmia HDx, Boston Scientific). The signals were
notch filtered at 50 Hz, band-pass filtered between 0.05 Hz -
100 Hz. The portion of signals between two QRS-T complexes
was manually extracted from the 12-lead ECGs in order to
extract the F-wave component related to the AFl activity. More
precisely, all P-waves enclosed between the end of a T-wave
until the following QRS complex were extracted.

Both icRQA and srRQA paradigms were tested on the clinical
sample. The respective RQA-based features were extracted and
compared with those obtained in silico to verify agreement
between the clinical and synthetic scenarios.

All the experimental procedures were in accordance with the
ethical standards of the responsible committee on human ex-
perimentation (institutional and national) and with the Helsinki
Declaration of 1975, as revised in 2000. All patients provided
written informed consent.

G. Statistical Analysis

All continuous normally distributed variables are expressed as
mean ± SD. All continuous non-normally distributed variables
are expressed as median ± interquartile range.

Non-parametric data were analyzed using the Kolmogorov-
Smirnov test. The comparison between the 20 AFl scenarios was
done using the Kruskal-Wallis non-parametric one-way analysis
of variance [50], [51].

An iterative binary classification - AFl scenario vs. all other
AFl scenarios - was computed to create receiver operating char-
acteristic (ROC) curves. The ROC curves were computed using
the MATLAB function perfcurve and the single RQA-based fea-
tures as discriminators. The optimum sensitivity and specificity
on the ROC curve was defined as the point on the curve with the
shortest distance to the top left corner of the graph. Validation
of the optimum point of operation for the classification was per-
formed with leave-one-out cross-validation (LOOCV). p-values
of less than 0.01 were considered statistically significant.

III. RESULTS

A. PCA on the 12-Lead ECGs

Twelve PCs were estimated from the 12-lead ECGs us-
ing PCA, and only the main five were considered, explaining
99.97± 0.03% of the total variance. The icRQA paradigm
was implemented on the first three PCSs since they explained
99.10± 0.94% of all variance. For the srRQA, however, differ-
ent numbers of PCSs were tested to define the optimal number
of dimensions. Up to five PCs were tested in descending order
of total variance explanation, in which a PCS was added as
a new dimension at each iteration, starting with the two main
dimensions - PCS 1 and 2.

B. icRQA on Different AFl Mechanisms

1) Hyper-Parameters: The ε was tested for PCSs 1, 2, and
3. The area under the ROC curves (AUCROCs) for these PCSs
suggest that 5% of the maximum phase diameter represents a
suitable compromise among the resulting RR, the portion of the
maximum phase space diameter, and the discrimination between
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Fig. 2. The effect of different AFl scenarios in the icRQA-based features. The RPs created for the PCS 1 calculated from the 12-lead ECGs
extracted from the same atria and torso combination for three different AFl mechanisms. These examples show how different AFl mechanisms
produced different icRQA RPs, highlighting the usefulness of the proposed method for discriminating these different mechanisms.

Fig. 3. Effects of the 20 different AFl scenarios on the icRQA features calculated from PCS 3. (A). RR attribute. (B). Features related to diagonal
lines. (C). Features related to vertical lines.

the 20 AFl scenarios. Similarly, the AUCROC values suggest
that a minimal diagonal line length of 13, 16, 13 should be
considered for the calculation of DET using the PCSs 1, 2, and
3, respectively, and a minimal vertical line length of 10, 11, 8
should be considered for the calculation of LAM. Other values
of the maximum phase space diameter and minimal vertical
or diagonal line length lead to higher AUCROC and maxi-
mal/minimal DET or LAM. However, this may be associated
with an undesirable saturation behavior. Further details on these
results are provided in the Supplementary Materials.

These hyper-parameters were used for the construction of the
RPs and the evaluation of icRQA-based features for PCS 1, 2,
and 3 in the subsequent parts of the study.

2) Discrimination of AFl Mechanisms: The RPs high-
lighted visual differences in dynamic structures peculiar to each
AFl mechanism (Fig. 2). The icRQA-based features extracted
from the PCS 3 between the 20 AFl scenarios are shown in Fig. 3.

All the icRQA features extracted from the individual PCSs
(1, 2 and 3) showed significant differences (p < 0.001) between
the AFl mechanisms. The RPs from all AFl scenarios and the

comparisons of the icRQA features within individual PCSs 1
and 2 are shown in the Supplementary Materials.

Sc18 resulted in the lowest values for all 6 icRQA features
extracted from the three PCSs, whereas sc12, 13, 14, and 15
showed highest median values. Sc12, 13, 14, and 15 were always
significantly different from all other cases for all icRQA features
across the 3 PCSs. As exceptions, it can be noticed that: 1) PCS
1 DET and RR have shown no significant differences between
sc12 vs. all other AFl scenarios; 2) PCS 2 ENTR_diag and PCS
1 TT for sc13 did not differ from all other AFl scenarios; 3) Sc5
has shown no significant differences from sc12, 13, 14, and 15
for any icRQA-based features for PCS 1.

Finally, the icRQA features were effective in discriminating
the 20 AFl scenarios, with LOOCV hit rate as high as 67.7%
(Table II).

C. srRQA on Different AFl Mechanisms

1) Hyper-Parameters: A similar protocol was followed for
defining ε to the srRQA paradigm, the number of dimensions,
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TABLE II
ROC CURVES FOR THE DISCRIMINATION OF 20 AFL SCENARIOS USING THE ICRQA-BASED FEATURES (MEAN±SD)

Fig. 4. The effect of different AFl scenarios in the srRQA. The RPs created using two different PCS as dimensions for three different AFl mech-
anisms. These examples showed how different AFl mechanisms produced different srRQA RPs, making the method promising in characterizing
these several mechanisms.

and the minimal vertical/diagonal line length. The AUCROC
values suggest that 5% of the maximum phase diameter and 3
as the number of dimensions with a good compromise among
the resulting RR, the portion of the maximum phase space
diameter, the discrimination between the 20 AFl scenarios and
the computational complexity. Similarly, the AUCROC values
suggest that a minimum diagonal line length of 6 should be
considered for the calculation of DET, and a minimum vertical
line length of 7 for the calculation of LAM to obtain a high class
discrimination and also minimal and maximal bounds to the at-
tributed estimates. Note that other values of the maximum phase
space diameter and minimal vertical or diagonal length lead to
higher AUCROC and maximal DET or LAM. These, however,
may be associated to an undesirable saturation behavior. Fur-
ther details on these results are provided in the Supplementary
Materials.

The obtained srRQA hyper-parameters were used for the
construction of the RPs and the evaluation of the RQA-based
features in the subsequent parts of this work.

2) Discrimination of AFls: The RPs estimated following
the srRQA paradigm also helped to highlight the differences
in the dynamic structures peculiar to each AFl scenario (Fig. 4).

Comparisons of the srRQA-based features within the 20 AFl
scenarios are shown in Fig. 5.

All the srRQA features exhibited significant differences
(p < 0.001) between the AFl mechanisms. The RPs for all AFl
scenarios are shown in the Supplementary Materials.

Sc12, 14, and 15 exhibited highest values for all the srRQA
features, whereas sc18 showed lowest values for all the features
except for RR, where sc20 had the lowest distribution values.
Sc12, 14, and 15 were significantly different from all other cases
and features. Sc5 and sc13 have shown no significant differences
from sc12, 14, and 15 for any srRQA features.

Finally, the srRQA-based features were effective in discrim-
inating the 20 AFl scenarios with LOOCV hit rate as high as
65.4% (Table III).

D. AFl Characterization Using RQA-Based Features

Diagonal lines - related to deterministic structures - were
found in all RPs calculated with the icRQA, Fig. 2, whereas
deteriorated diagonal lines were found with the srRQA - blocks
of recurrence, Fig. 4. Opposite situation for vertical lines - related
to laminar structures that were found principally with the srRQA,
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Fig. 5. Effects of the 20 different AFl scenarios on the srRQA features evaluated from the PCS 3. (A). RR attribute. (B). Features related to
diagonal lines. (C). Features related to vertical lines.

TABLE III
ROC CURVES FOR THE DISCRIMINATION OF 20 AFL SCENARIOS USING THE SRRQA-BASED FEATURES (MEAN±SD)

due to the presence of blocks of recurrence in the calculated RPs
Fig. 4.

The icRQA and srRQA-based features extracted from the
clinical ECG fit perfectly into the interquartile range of the
distribution curves of the parameters extracted from the synthetic
data. The similarity between the results obtained from clinical
and synthetic data could also be seen from the RPs, as shown in
Fig. 6.

IV. DISCUSSION

The 12-lead ECGs are broadly used for cardiac diagnostic and
to discriminate AFl from AFib [16]. However, they are rarely
applied - if ever - to distinguish among macro-groups of AFl
mechanisms - e.g., right-sided AFl vs. left-sided AFl [52].

In the present work, we implemented two RQA frameworks
to characterize different AFl mechanisms from the perspective
of multivariate surface potentials and nonlinear time series. An
inside-out computational simulation generated 12-leads ECGs
from 20 AFl mechanisms and different combinations of atrial
and torso geometries. This provided an ideal and controlled
environment, establishing a consistent ground truth for AFl
perpetuation mechanisms without the influence of secondary
- or unknown - interfering phenomena, e.g., other simultaneous
AFls. Spatio-temporal analysis was achieved by combining PCA
and RQA, allowing access to the dynamic structure of the heart
activity from the non-invasive perspective.

A specific and representative clinical case of study - a mi-
croreentrant AFl in the LA, located at the ant LAA (sc17) - was
also analyzed, highlighting the robustness and reliability of the

Fig. 6. RPs calculated from the clinical and the corresponding simu-
lated case (left column, and right column, respectively), using icRQA
on PCS 1 and srRQA (top line, and bottom line, respectively). The
RPs showed how similar the results obtained from the clinical data
are in comparison with the simulated ones, using the RQA methods
optimized just with synthetic signals. This demonstrates the reliability of
the simulated scenarios and the correct implementation of the methods
for future clinical application.

proposal. Moreover, having obtained similar results from clin-
ical and synthetic data also demonstrates how these simulated
data could really be used in clinical practice. In fact, due to the

40 Chapter 4. Atrial flutter characterization and discrimination



922 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 68, NO. 3, MARCH 2021

limited access to clinical data with a precise description of the
ground truth for AFl perpetuation, these simulations could be
used as clinical data substitutes to optimize and train RQA and
classification algorithms in clinical practice.

Our results suggest that RQA is effective in characterizing and
discriminating the dynamic structures from distinct AFl mech-
anisms, and might help to define novel protocols for clinical
planning and ablation strategy.

A. RQA-Based Features Extracted From
Simulated AFl 12-Lead ECGs

In the present study, rigorous steps for a proper reconstruction
of the RPs and well-defined representative RPs structures (e.g.,
laminar diagonals, laminar verticals, well-defined blocks etc).
Moreover, the introduction of PCA has been shown effective
for building a minimal, non-redundant base for the represen-
tation of non-invasive multivariate AFl mechanisms. This is
corroborated by the variance explained by the selected PCSs and
the well-defined RPs structures observed after such coordinate
transformation. The need for low dimensional (informative)
state space is also justified by the underlying challenges con-
cerning embedding definitions, in which redundant dimensions
- as introduced by the spatial oversampling of cardiac activity
by multi-lead recording - can contribute to a topological degen-
erated “attractor”. In fact, the addition of non-informative em-
bedding dimensions can introduce spurious RQA structures, as
shown by [21], in which a higher dimensional space introduced
spurious diagonal lines and inflated the determinism obtained
from (uncorrelated) stochastic observations.

It also worth to mention that PCA allows to easily sort PCS
according to their information content - explanation of the total
variance. In the srRQA case, this allows to implement the state
space starting from the two most relevant components - i.e., PCS
1 and PCS 2 -, and then adding new PCS/dimensions following
the order of relevance - PCS 3, PCS 4, etc. This would not be
possible by using the ECG directly, as there is no natural way to
order the leads according to relevance. The 3 main PCSs were
taken into account for the icRQA, whereas for the srRQA the
embedding dimension used up to the first 5 PCSs. However,
the best srRQA embedding dimension was the one using the
first 3 PCS (see Supplementary Materials), confirming that the
following PCS do not contain useful information for the analysis
- the main 3 PCSs already explained99± 0.94%of all variability
of the phenomena.

A thorough investigation was then conducted to better define ε
for each simulation. The determination of ε took into account the
fact that 12-lead ECGs of AFl are usually quite regular - as shown
in Fig. 1C - and exhibit high DET as an intrinsic behavior, which
would contribute to a high RR and far from the suggested 1%
recommendation [21]. The proposed approach aimed to choose
an adaptive ε as a percentage of maximal phase space difference,
leading to a relatively low RR and distinguishable between the
20 different AFl scenarios in the DET and LAM features.

The minimum diagonal/vertical line length for the calcu-
lation of both DET and LAM has also been assessed. The
results suggest that DET and LAM are preserved even for

different minimum line diagonal/vertical lengths. Undesirable
saturation behavior was avoided and AFl discrimination was
improved selecting the following minimum diagonal/vertical
line lengths for DET and LAM determination: regarding the
icRQA, a minimum diagonal length of 13, 16, and 13, and a
minimum vertical length of 10, 11, and 18 were selected on
PCS1, 2, and 3 respectively; regarding the srRQA, a minimum
diagonal length of 6, and a minimum vertical length of 7 were
selected.

B. Characterization of Simulated AFl Signals Using RQA

In this work we attempted to (i) assess changes in RQA-based
features between different AFl mechanisms; (ii) implement a
novel RQA paradigm that also considers spatial information
and; (iii) evaluate 12-lead ECG classification using RQA-based
features.

The RPs for both methods (icRQA and srRQA) highlighted
the highly periodic behaviour of the AFl mechanisms Fig. 2,
Fig. 4. These results are corroborated by the ground truth from
the simulated AFl episodes, known to be periodic and stable
phenomena.

Previous work have shown underlying deterministic struc-
tures present on activation sequences on AFib intra-cardiac
electrograms [26], [53]. On the one hand, our results from the
icRQA paradigm Fig. 2 - also highlights diagonal structures
associated with deterministic behavior in the RPs. This may
suggest the presence of stable periodic orbits that commonly
drive AFl as a localized self-perpetuating loop. However, this
deterministic behavior is clearly presented in the RPs obtained
in the srRQA paradigm (Fig. 4), which is probably justified by
the use of a completely different embedding space defined by the
PCS. In this case, the introduction of spatial information seems
to contribute to enhancing the laminar behavior - blocks in the
RPs - instead of the diagonal lines associated with co-evolution
of states. In fact, the AFl scenarios with evident blocks of recur-
rence are also the ones with the highest values of ENTR_vert,
LAM, and TT - sc12, 13, 14, and 15 - for both methods Fig. 2,
Fig. 4.

The only scenarios having an iso-line in their 12-lead ECGs
are the four focal sources mechanism. These are the only
mechanisms in which there is a clear phase of depolarization,
repolarization, and rest of the atrial tissue. This might explain
the so dominant laminar structure in comparison with all the
other mechanisms.

Considering all the features calculated with both RQA meth-
ods, the focal source scenarios are the only ones presenting
up-regulated RQA-features compared to the other mechanisms.
Interestingly, despite representing a scar-related reentry mech-
anism, sc5 is the only scenario not statistically different from
the focal sources episodes considering all srRQA and icRQA
features extracted from PCS 1. More specifically, the focal
sources on sc12 to sc15 are located nearby the PVs and, since sc5
represents a scar-related reentry within the LPV, the macroscopic
behavior of these seemingly different EP are perceived as similar.

Finally, scenarios sc18 and sc20 have shown down-regulated
RQA-features, suggesting that microreentries result in lower
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deterministic and laminar phenomena in comparison with the
other mechanisms.

C. RQA-Based Features Discrimination of Different AFl

Almeida et al. showed that RQA-based features are sensitive
to EP characteristics of the atrial tissue [28]. Our results support
this perspective, suggesting that the RQA-based features ex-
tracted from simulated 12-lead ECGs are sensitive to different
AFl mechanisms.

Considering that a single feature classification of 20 classes,
sometimes very similar between each other, is not trivial, an
averaged LOOCV hit rate higher than 60% for all the features
with both the methods confirm the hypothesis of using these
features as discriminatory features.

Previous works have considered RQA features to classify
AFib atrial substrate and use these features as complementary
tools to help guide ablation [54]. RQA has also been used
to distinguish atrial regions hosting spiral wave reentry from
regions with multiple wavelet breakup [55]. Other works com-
bined RQA with PCA on electrograms to discriminate persistent
AFib from paroxysmal AFib [27] and non-linear features to
discriminate AFib, AFl, VT, and VF [56], [16]. Finally, Yang
combined RQA with spatial cardiac vectocardiogram signals
to identify cardiovascular disorders [30]. To the best of our
knowledge, ours represents the first study to use RQA in the
discrimination of different AFl mechanisms from simulated
12-lead ECGs.

The icRQA-based variables Fig. 3 - related to the diagonal
lines have shown a higher hit rate on the PCS 3, suggesting that
small but important changes in the deterministic behavior of
these different types of AFl are present. This can be explained
considering that PCS 3 is a signal with a low explanation of
the variability, and meaning that it contains only the details
of the deterministic behavior of the AFls. By contrast, PCS 1,
and 2 have a lower hit rate, likely because there are no major
changes regarding the deterministic behavior between the 20 AFl
scenarios. Substantially because being PCS 1, and 2 signals with
most of the explanation of the variability, they capture the more
general deterministic behavior of the mechanisms. The opposite
was found for LAM and ENTR_vert, meaning that these AFl
mechanisms have shown macro changes on the laminar behavior
rather than micro changes.

The findings described here motivate further investigation re-
garding the use of RQA-based features as biological markers that
can potentially be used as features for classification structures
to inversely predict the mechanism driving AFl using RQA-
features as a basis for a more complex multi-feature classifier
with the perspective of guiding ablation procedures in the future.

V. LIMITATIONS

The current study is limited to simulated data and tested on
only one clinical ECG.

Although 20 AFl mechanisms inspired by clinical situations
have been implemented, they are just a general representation of
the mechanisms that are most commonly found in the literature.
More scenarios should be included in the dataset, considering

the heterogeneity found in the clinical practice - e.g., different
locations of scar-related AFl or slow conduction areas.

Further investigations should be conducted on more clinical
data to extend the value of the methods. Although the manual
segmentation of the clinical ECG is not time consuming, in
view of a future clinical application, automated segmentation
of clinical ECG should be implemented to extract the F-wave.

The embedding for the estimation of RPs and, consequently,
RQA parameters has been done considering the ability of the
variables in discriminating the different types of AFl scenarios.
The fact that 20 different classes have been used could have
led to a biased parameters setting. Accordingly, while it could
have increased the differences between some classes, it might
have decreased the differences between others, leading to a
non-optimal discrimination among them. Therefore, a reduction
of the number of classes - e.g., by merging some cases in the
same class - should be investigated. The merging could also
lead to an increase in the hit rates, making the classification
problem easier. The grouping could be done by gathering classes
belonging to the same macro-areas - e.g. macroreentry, mi-
croreentry, scar-related reentry, figure-8, and focal sources - or
in AFl classes that requires similar ablation procedures to be
terminated.

The AFl mechanisms were simulated with atrial models with-
out ventricles. Thus, the QRS-T complex was absent from our
signals. This must be taken into account when applying the
RQA methods to clinical data. In addition, the CV set in the
simulations is constant and only 8 atria models were used. A
change in the CV and the addition of other atria models could
lead to a change in the results.

A single feature classification was performed to evaluate
the potential of these variables to discriminate different AFl
mechanisms. To implement a valid classifier able to inversely
predict the AFl mechanism from the ECG signals and increase
the hit rate with both the methods, a multi feature classification
and different classification algorithms should be tested.

Despite of that, this work presents an important contribution
for characterizing the dynamics of AFl mechanisms, which
deserves a careful attention for setting the RQA general ap-
proach and parameters before class clustering and classification
evaluation.

VI. CONCLUSION

In the present work, different AFl mechanisms were character-
ized from the perspective of multivariate surface potentials and
nonlinear time series. Two methods for RQA were implemented
to investigate different AFl scenarios. An inside-out computa-
tional simulation generated 12-leads ECGs from 20 AFl mecha-
nisms and different combinations of atrial and torso geometries,
in which the ground truth for AFl perpetuation were known.
RQA was combined with PCA creating a spatial-temporal do-
main analysis, allowing access to the dynamic structure of the
heart activity from the non-invasive perspective.

Our results suggest that RQA-based features are sensitive to
the underlying EP phenomena, and are effective in characteriz-
ing the dynamic structures from distinct AFl mechanisms.
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The focal source scenarios showed the highest RQA feature
values using both paradigms, demonstrating how these cases
have a significant deterministic and laminar behavior in the dy-
namic structure. In contrast, microreentries are less deterministic
and laminar phenomena.

The use of the PCSs 1, 2, and 3 for the icRQA showed how
there can be relevant small or major changes in the dynamic
behaviors between these different AFl mechanisms, based on
the ability to better or worse discriminate the AFl along the
three PCSs.

RQA-based features could potentially be used to implement a
multi-feature classifier able to inversely predict different mech-
anisms driving AFl from non-invasive signals in future works.
This non-invasive RQA-based classifier could aid in planning
and tailoring the ablation strategy, reducing time and resources
required to conduct invasive cardiac mapping and ablation pro-
cedures.

To conclude, a clinical 12-lead ECG was used as a proof of
concept to show the efficacy on using simulations in that cases
in which to obtain reliable clinical data would be difficult, and
to prove the validity of these two RQA methods to characterize
and to classify these different AFl mechanisms.
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Abstract

Atrial flutter (AFl) is a common heart rhythm disor-
der driven by different self-sustaining electrophysiological
atrial mechanisms. In the present work, we sought to dis-
criminate which mechanism is sustaining the arrhythmia
in an individual patient using non-invasive 12-lead elec-
trocardiogram (ECG) signals. Specifically, we analyse the
influence of atrial and torso geometries for the success
of such discrimination. 2,512 ECG were simulated and
151 features were extracted from the signals. Three clas-
sification scenarios were investigated: random set clas-
sification; leave-one-atrium-out (LOAO); and leave-one-
torso-out (LOTO). A radial basis neural network classifier
achieved test accuracies of 89.84%, 88.98%, and 59.82%
for the random set classification, LOTO, and LOAO, re-
spectively. The most discriminative single feature was the
F-wave duration (74% test accuracy). Our results show
that a machine learning approach can potentially identify
a high number of different AFl mechanisms using the 12-
lead ECG. More than the 8 atrial models used in this work
should be included during training due to the significant
influence that the atrial geometry has on the ECG signals
and thus on the resulting classification. This non-invasive
classification can help to identify the optimal ablation
strategy, reducing time and resources required to conduct
invasive cardiac mapping and ablation procedures.

1. Introduction

Atrial flutter (AFl) is an atrial tachycardia charac-
terized by electrical signals that repeatedly propagate
along various physiological pathways different from sinus
rhythm [1]. This arrhythmia is driven by different self-
sustaining reentrant mechanisms. Although AFl is not a di-
rect cause of death, it can cause significant symptoms and
complications - e.g., stroke and heart attacks. The most
commonly used treatment to restore sinus rhythm from
AFl conditions is ablation therapy. The problem of abla-
tion therapy consists in identifying the type of AFl, as each

mechanism requires a different ablation procedure. There-
fore, the doctor needs to know clearly the type of AFl in
progress before performing the ablation. To identify the
AFl mechanism, an invasive mapping of the electrical ac-
tivity of the atria is carried out using intracardiac catheters.

Using the 12-lead ECG to discriminate the type of AFl
with which the patient is affected would give doctors the
opportunity to plan the intervention in advance. Thus, re-
ducing the procedure time for invasive mapping and ab-
lation therapy. Multiple algorithms have been proposed
to discriminate AFl from other types of cardiac arrhyth-
mias, such as atrial fibrillation [2, 3]. Nevertheless, auto-
matic discrimination of different AFl mechanisms has not
yet been carried out.

In this preliminary study, we sought to discriminate
20 different simulated AFl mechanisms by using 12-lead
ECG signals. Moreover, we focused on the role of the ge-
ometries of the atria and torso for the success of this auto-
matic discrimination.

2. Methods

2.1. Simulated AFl scenarios

Based on the AFl mechanisms commonly differentiated
in literature [4, 5], precisely resembling documented clini-
cal AFl cases [6–8], and the simulations implemented in a
previous work by Oesterlein et al. [9], a database of com-
putational AFl scenarios was set up.

Cardiac excitation was modelled using the fast march-
ing approach to solve the Eikonal equation [10, 11].

The atrial electrophysiological activity was simulated on
the tetrahedral volume meshes of 8 bi-atrial anatomies,
generated from segmented magnetic resonance imaging
(MRI) data of healthy male and female subjects [12].

In total, 20 mechanisms/scenarios of AFl were imple-
mented, including right atrial (RA) flutter as well as left
atrial (LA) forms like macroreentry around the valves (sc1-
4), across the roof (sc9-11), focal ectopy (sc12-15), and
microreentries mediated by scars (sc5-8), and slow con-
duction areas (sc16-20). A complete list of scenarios is
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Table 1. Database of clinically informed manually param-
eterized AFl mechanisms

Mechanism Atrium Position Direction ID
Macroreentry RA Tricuspid Valve ccw sc1
Macroreentry RA Tricuspid Valve cw sc2
Macroreentry LA Mitral Valve ccw sc3
Macroreentry LA Mitral Valve cw sc4
Scar-related Reentry LA LPV post sc5
Scar-related Reentry LA LPV ant sc6
Scar-related Reentry LA RPV post sc7
Scar-related Reentry LA RPV ant sc8
Figure-8 Macroreentry LA Both PVs ant sc9
Figure-8 Macroreentry LA Both PVs post sc10
Figure-8 Macroreentry LA RPVs ant sc11
Focal Source LA RSPV anterior sc12
Focal Source LA RSPV posterior sc13
Focal Source LA LSPV anterior sc14
Focal Source LA LSPV posterior sc15
Microreentry LA ant MV annulus sc16
Microreentry LA ant LAA sc17
Microreentry LA ant RSPV sc18
Figure-8 Microreentry LA ant sc19
Microreentry LA post wall sc20

Right atrium (RA), left atrium (LA), left pulmonary vein (LPV), right
pulmonary vein (RPV), pulmonary veins (PVs), right superior pulmonary
vein (RSPV), left superior pulmonary vein (LSPV), mitral valve (MV),
left atrial appendage (LAA), clockwise (cw), counterclockwise (ccw),
anterior (ant), posterior (post), scenario (sc).

provided in Table 1.
Transmembrane voltages (TMV) were obtained by

aligning a template of their time course with activation
times. This TMV was calculated using the Courtemanche
et al.’s mathematical model of the human atrial action po-
tential including chronic atrial fibrillation remodeling [13].
From the TMV, the body surface potential map (BSPM)
was calculated on 8 different triangulated torso surface
models generated from segmented MRI data of healthy
male and female subjects [12, 14]. The boundary element
method was used to solve the forward problem of electro-
physiology [15]. From the BSPM, the 12-lead ECG was
extracted, including the 12-lead ECGs. A detailed descrip-
tion of the simulation procedure can be found in [16].

Each 12-lead ECG signal has a length of a single AFl
loop and a sample frequency of 1 kHz. The 12-lead ECG
signals are formed only by F-waves (flutter waves, P-
waves during AFl) without the QRS complex and T-wave
(representing ventricular activity) since the ventricles were
not included in the simulations (Fig. 1A-C).

A total of 2,512 12-lead ECGs were calculated from 20
simulated AFl scenarios on 8 atrial models with two orien-
tational variants each and 8 torso models. One of the atrial
models was not able to sustain sc12, sc13, and sc30 for ge-
ometric reasons. Therefore, these AFl scenarios were not
computed with this geometry.

2.2. Correlation analysis

The influence of atrial and torso geometry was assessed
by circular cross-correlation analysis. Correlation anal-
ysis was performed between ECG signals with different
atrial models, keeping AFl mechanisms and torso models
fixed. The same procedure was applied between ECG sig-
nals with different torso models while keeping AFl mecha-
nisms and atrial models fixed. The correlation coefficients
obtained were merged by averaging along the 12 leads.

2.3. Feature extraction

151 features were extracted from the 12-lead ECGs us-
ing several biosignal processing methods from different
domains, i.e., time, frequency, wavelet, entropy, and non-
linear recurrence analysis.

Among these features, and looking at the results, the F-
wave duration feature proved to be particularly relevant.
The F-wave duration was the duration time of a complete
cycle of atrial electrical activation of each specific AFl
mechanism, i.e., the length of the F-wave in the ECG sig-
nal. This feature was manually derived.

2.4. Feature selection

Greedy forward selection algorithm was implemented to
select a feature set. This algorithm started with an empty
feature set and added the feature leading to the highest ac-
curacy increase to the set at each iteration. The algorithm
was stopped when performance based on the validation set
could not be further increased. In order to handle possi-
ble correlations among features, the candidate feature to
be added to the set was only added if the correlation coef-
ficient with any of the already included features was <0.6.

2.5. Classification

Three classifiers were implemented for a 20 classes
discrimination: decision tree (DT), k-nearest neighbours
(KNN), and radial basis neural network (rbNN).

First, we wanted to simulate the scenario of having sim-
ilar geometries in each data subset. Therefore, the data
were randomly divided in training set, validation set, and
test set with ratios of 70%, 15%, and 15%, respectively.
Second, classifications were performed with leave-one-
atrium-out (LOAO) and leave-one-torso-out torso (LOTO)
algorithms. In the LOAO algorithm, 7 atrial geometries
were used in the training set and the remaining atrial ge-
ometry was used both in the validation and test set (50%
of the ECGs from this geometry in each set). This proce-
dure was cyclically repeated 8 times always changing the
validation/test atrial geometry. The average accuracy of
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Figure 1. A. Simulated scar-related reentry AFl located on the LPV with anterior direction of rotation (sc6 - white arrows)
on an atrial model generated from MRI. B. BSPM on torso model generated from MRI. The torso potential was obtained
by solving the forward problem of electrophysiology from the simulated TMV on the atria. C. Example of the F-wave
single loop of the 12-lead ECG signals extracted from the BSPM.

the 8 loops was used as performance parameter. The same
procedure was applied for the LOTO.

3. Results

3.1. Torsos and atrial models influence on
the ECG

The correlation distribution obtained from the correla-
tion analysis between ECG signals of the same AFl types
computed in the same torsos but on different atria showed
a median of 0.44 and an interquartile range (IQR) of 0.13.
On the contrary, a median of 0.78 and IQR of 0.11 was
found from the correlation analysis between ECG signals
of the same AFl types with the same atria but different tor-
sos. Fig. 2 shows an example of the effect that different
torso geometries and atrial geometries have on the 12-lead
ECGs (Fig. 2A. and B. respectively).

3.2. Random set classification

The rbNN achieved the highest performance with
89.84% accuracy on the test set using 10 features. The
KNN and DT classifiers achieved 83.25% and 81.02% ac-
curacy on the test set using 12 and 5 features, respectively.

F-wave duration was the most discriminative feature for
all classification algorithms. This single feature classified
the AFl mechanisms with a test accuracy of 74%, while the
entire feature set without F-wave duration reduced the test
set accuracy to 33% (rbNN).

Figure 2. Example of simulated ECG (lead I) of the AFl
scenario sc1 with different torso and atrial models. A. Lead
I simulated on the same atria model with 8 different torso
geometries. B. Lead I simulated on 8 different atria models
with the same torso geometry.

3.3. LOTO & LOAO

The LOTO and LOAO classifications with rbNN yielded
a test accuracy of 88.98% and 59.82% using 7 and 6 fea-
tures, respectively. In both cases, the F-wave duration was
selected as the first feature in the feature set.

4. Discussion and Conclusions

Simulations provide ideal and controlled scenarios
where the ground truth for AFl perpetuation is known in
all cases, allowing the analysis of each mechanism with-
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out the influence of secondary - or unknown - mechanisms,
e.g., other simultaneous AFls.

The results obtained with the random set classification
show that an automatic classifier can potentially identify
a high number of different AFl mechanisms using the 12-
lead ECG, or more precisely a single F-wave loop, when
similar geometries are present in each data subset. This
non-invasive method can help physicians to plan the most
appropriate treatment for the patients without the need of
prior invasive mapping.

The F-wave duration is a key feature for this classifica-
tion. The LOTO accuracy shows that the classifier is gen-
eralizing well to unseen torso geometries. The LOAO ac-
curacy shows a lack of ability to generalize with new atrial
geometries. These last three considerations can be linked
since atrial geometries have an influence on the F-wave du-
ration and on the ECG signals (Fig. 2B.). On the contrary,
an additional torso to the set of 7 used for training does not
yield much benefit, because different torso geometries do
not bring relevant changes on the F-wave duration and on
the ECG signals in general (Fig. 2A.), as also confirmed by
the correlation analysis. Therefore, more than the currently
used 8 atrial models should be included during training to
cover the relevant anatomical variability.

Further tests on clinical data are necessary to effectively
assess the proposed approach. Changes in conduction ve-
locity would also change the F-wave duration irrespective
of the geometry and should therefore also be varied.
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Abstract 

Aims: Atrial flutter (AFlut) is a common reentrant atrial tachycardia driven by self-sustainable 

mechanisms that cause excitations to propagate along pathways different from sinus rhythm. 

Intracardiac electrophysiological mapping and catheter ablation are often performed without 

detailed prior knowledge of the mechanism perpetuating AFlut, likely prolonging the procedure 

time of these invasive interventions. We sought to discriminate the AFlut location 

(cavotricuspid isthmus-dependent, peri-mitral, and other left atrium AFlut classes) with a 

machine learning-based algorithm using only the non-invasive signals from the 12-lead 

electrocardiogram (ECG).  

Methods: A hybrid 12-lead ECG dataset of 1,703 signals was used (1,424 in-silico ECGs, and 

279 clinical ECGs from 93 patients – 3 different ECG segments over time were extracted from 

each patient). For each ECG, 77 features were extracted. A decision tree classifier with a hold-

out classification approach was trained, validated, and tested on the dataset randomly split after 

selecting the most informative features. The clinical test set comprised 15 patients (45 clinical 

ECGs). 

Results: The classifier yielded 82.2% accuracy on the clinical test set with a sensitivity of 

90.9%, 66.7%, and 50.0% and a positive predictive value of 85.7%, 66.7%, and 75.0% for each 

class, respectively. Considering majority vote of the three segments taken from each patient, 

the cavotricuspid isthmus-dependent class was always classified correctly. 

Conclusion: Our results show that a machine learning classifier relying only on non-invasive 

signals can potentially identify the location of AFlut mechanisms. This method could aid in 

planning and tailoring patient specific AFlut treatments. 

Keywords 

Atrial flutter; Electrocardiography; Machine learning; Cardiac modeling; Personalized 

medicine. 
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What’s New?  

- Non-invasive diagnostic algorithm for atrial flutter location discrimination; 

- Identification of atrial flutter mechanisms using short F-wave segments (atrial activity in the 

12-lead ECG); 

- Hybrid machine learning classifier (training dataset: in-silico + clinical ECGs) for atrial flutter 

location discrimination; 

- Machine learning algorithm based on selected features; 

- Patient-specific ablation therapy. 
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1 Introduction 

Atrial Flutter (AFlut) represents one of the most common supraventricular arrhythmias 

[1], [2]. They are defined as organized, macro-reentrant atrial tachycardias. The reentry could 

either revolve around the tricuspid annulus (so called typical forms or cavotricuspid-isthmus 

(CTI) dependent forms), or originating in other atrial regions, such as the mitral annulus, the 

superior vena cava, or the pulmonary veins (PV), mostly facilitated by previous atrial ablations 

[3], [4]. The widespread use of PV isolation and other left atrial ablation procedures for the 

treatment of atrial fibrillation may alter the normal activation patterns in the left atrium as well 

[5], [6]. As a consequence, the prevalence of atypical left AFlut and of CTI-dependent flutter 

with atypical ECG-patterns post ablation procedures increased in the recent years. These 

complex arrhythmias pose new diagnostic and classification challenges [7]–[9]. 

Clinical diagnosis of AFlut currently relies on the interpretation of a non-invasive 12-

lead surface electrocardiogram (ECG). Although distinctive features for identifying typical 

CTI-dependent flutter have long been identified and often enable an easy diagnosis, atypical 

non-CTI-dependent flutter forms are more difficult to recognize [9]. Catheter ablation 

represents a curative therapy for all forms of AFlut. CTI-dependent flutter requires relatively 

straightforward, right-sided procedures with an anatomically well-characterized target: the CTI. 

Conversely, non-CTI-dependent flutter requires longer and technically more challenging 

procedures. In those procedures, transseptal puncture and electroanatomical mapping require 

additional preparation and additional diagnostic examinations such as transesophageal 

echocardiography, adding further possible complications for the patient [10]. Pre-procedural 

identification of the AFlut location to identify the most likely target prior to time-consuming 

and potentially riskier electroanatomic mapping is appealing for optimal planning of procedures 

and utilization of hospital resources. 
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Several clinical algorithms based on visual, non-computational, inspection of P-wave 

morphology of the surface 12-lead ECGs have been proposed, with equivocal results [11], [12]. 

Machine learning-based algorithms are an emerging tool in classifying many diseases and have 

shown promising results in the field of cardiac arrhythmia detection [13], [14]. Compared to 

clinical algorithms, machine learning classifiers have a larger flexibility to fit the data, and are 

less operator-dependent resulting in better performance and more standardized approaches. 

Moreover, a feature selected-based machine learning algorithm can lead to a clear interpretation 

of the results  as clinical algorithms do. As opposed to a deep learning approach that is referred 

to as a black box model (data goes in, decisions come out, but the processes between input and 

output are not evident). 

In a previous work, we developed a machine learning classifier that provides an accurate 

and reliable classification for AFlut location for in-silico signals [15]. After further training 

with in-silico and clinical ECGs (hybrid approach) to discriminate CTI-dependent AFlut vs. 

peri-mitral AFlut vs. other non-CTI-dependent flutter classes, we tested the performance of the 

classifier on clinical ECGs. In the present work, we offer a proof of concept for a clinical tool 

able to non-invasively predict the target location for therapeutic catheter ablation, fostering the 

enablement of a more personalized therapy and better allocation of medical resources.  

2 Methods 

2.1 Study population 

Clinical data was retrospectively collected, including standard 12-lead surface ECGs and 

electrophysiological data of 93 consecutive patients who presented with AFlut on baseline 

ECGs between 2018 and 2020 and underwent an electrophysiological study and catheter 

ablation in Städtisches Klinikum Karlsruhe. Inclusion criteria were atrial arrhythmia ECG 

characteristics and subsequent invasively confirmed diagnosis of AFlut. Exclusion criteria were 
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the absence of complete and clinically evaluable 12-lead ECG documentation of atrial 

arrhythmia. 

Exact arrhythmic mechanisms were confirmed invasively during the electrophysiological 

examination by termination of the arrhythmias after successful catheter ablation of the target 

site or non-inducibility of the arrhythmia by pacing or pharmaceutical challenge after catheter 

ablation. Seventy-two patients were diagnosed with CTI-dependent AFlut, 10 peri-mitral 

flutter, and 11 other non-CTI-dependent flutter with a critical isthmus in the left atrium (“other 

LA AFlut”). Patients with right atrial flutter with non-CTI-dependent mechanism (such as 

reentry in the superior vena cava) were not present in the study population. The clinical 

characteristics of the patient cohort are shown in Table 1.  

From each patient, three different single AFlut segments were extracted from the standard 

12-lead ECG (10 s length) to run the analysis, resulting in a total of 279 clinical signals (216 

CTI-dependent AFlut, 30 peri-mitral AFlut, and 33 other LA AFlut). An AFlut segment is a 

single flutter cycle in-between two consecutive QRS-T complexes (red segments in Figure 1). 

The AFlut segments were manually derived from the ECGs, and then the three clearest and 

least compromised by QRS-T complexes AFlut segments were selected for the analysis. The 

12-lead ECGs (1 kHz sampling frequency) were notch filtered at 50 Hz and band-pass 

Butterworth filtered between 0.05 Hz and 100 Hz (Figure 1).  

2.2 In-silico population 

A database with computational AFlut scenarios was setup based on computational studies 

conducted in previous work [16]. Cardiac excitation was modelled using the fast marching 

approach to solve the Eikonal equation on 100 bi-atrial anatomies generated from a statistical 

shape model [17]. Scars were added circumferentially around ipsilateral PVs representing 

previous PV isolation.  
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In total, 15 mechanisms of AFlut were implemented and merged into the three classes 

under analysis in this study: CTI-dependent, peri-mitral, and other LA AFlut mechanisms (a 

complete list of the in-silico mechanisms and their classification is shown in Table 2). The 

simulated cardiac excitation was used to compute the body surface potential map (BSPM) on 

the mean geometry derived from a statistical shape model of the torso [17]. Finally, 

conventional 12-lead ECGs were extracted from the BSPM (1 kHz sampling frequency). From 

the in-silico ECGs, the AFlut single cycle segments were extracted. A total of 1,424 sets of 

signals were obtained (198 CTI-dependent, 186 peri-mitral, and 1040 other LA AFlut 

mechanisms). Due to anatomical reasons, the implementation and/or sustainment of some 

scenarios was not possible on some atrial geometries. 

2.3 Feature extraction & selection 

Seventy-seven features were extracted from the signals using several biosignal 

processing methods from different domains, i.e., time, frequency, wavelet, entropy, and non-

linear recurrence analysis. A table summarizing the features and more information regarding 

the feature extraction methods are provided in the Supplementary Material. 

Among these features some proved to be particularly relevant in pilot analysis: The F-

wave (flutter wave, P-wave during AFlut) duration, the duration of a complete cycle of atrial 

electrical activation of each specific AFlut mechanism, i.e., the length of the F-wave in the 

ECGs (the feature was manually derived), wavelet features which are able to extract spectral 

and temporal information simultaneously from the signals, recurrence quantification analysis 

features to analyse the regularity and stability of time domain signals [16], morphological 

features such as the fragmented conduction index, the optimal model order (number of gaussian 

functions needed to model the signals) [18], and symbolic dynamic features. 

The optimal set of features was selected with a greedy forward selection technique. This 

algorithm starts with an empty feature set and adds the feature which leads to the highest 
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increase of classification accuracy in each iteration. The algorithm was stopped when the 

performance, based on the validation set, could not be further increased. In order to handle 

possible correlations among features, the candidate feature was only added to the set if the 

correlation coefficient with any of the already included features was <0.6. 

Shapley calculation was implemented to analyse a posteriori the importance of the 

features selected for classification once the model was trained. Shapley calculation was run 

1000 times with random samples (Bootstrap approach) to calculate the standard deviation (SD). 

2.4 Machine learning classification 

A decision tree was implemented for 3-class classification: CTI-dependent AFlut, peri-

mitral AFlut, and other LA AFlut. The classifier was trained and applied using the MATLAB 

(The MathWorks, Inc) functions fitctree and predict, respectively. The dataset used to train, 

validate, and test the classifier was a hybrid of the in-silico and clinical datasets with a total of 

1,703 signals. First, a multi-feature classification was performed with the feature set selected 

as described in the previous section. Hold-out classification was performed randomly, dividing 

the dataset into a training set, validation set, and test set with a ratio of 70%, 15%, and 15%, 

respectively. Signal segments from the same patient were always used solely in one the sets to 

avoid overfitting. The training set was used to tune the classifier parameters, while the 

validation set was used for the greedy feature selection optimization. During training, class 

imbalance was addressed by assigning a weight to each sample in a given class (by setting the 

weights parameter and the Prior model parameter to uniform in the MATLAB fitctree function). 

The weight was inversely proportional to the number of samples in the class and extra weights 

was added for clinical cases to give them more importance during the training phase. Lastly, 

the trained classifier was tested on the clinical test set (45 segments data from 15 patients – 33, 

6, and 6 ECG segments for each class, respectively). 
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2.5 Statistical analysis 

Classifier performance was evaluated using the accuracy (ACC), sensitivity, and positive 

predictive value (PPV). Sensitivity and PPV were calculated for each class, considering the 

specific class as positive and the remaining classes as negative. The clinical characteristics of 

our patient cohort and the extracted features were evaluated with the ANOVA test between the 

classes (p-values <0.05 considered significant; Table 1, Univariate column). Next, multivariate 

regression analysis was performed on variables that differed between groups with a p-value 

<0.1 (from the previous ANOVA test) and the machine learning classifier (Table 1, 

Multivariate column). Age and sex were included in the multivariate model for their clinical 

relevance. 

3 Results 

Patient characteristics with associated univariate and multivariate analysis are provided 

in Table 1. The multivariate regression analysis between the variables age, sex, body mass, left 

ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), 

previous catheter ablation, and our classifier showed that the classifier was the only significant 

variable (p = 0.02). As such, it adds value beyond the routine clinical parameters. 

The decision tree for 3-class classification (CTI-dependent AFlut, peri-mitral AFlut, and 

other LA AFlut) achieved an accuracy of 82.2% on the clinical test set with a sensitivity of 

90.9%, 66.7%, and 50.0% and a PPV of 85.7%, 66.7%, and 75.0% for each class, respectively. 

Table 3 shows the confusion matrix obtained from the decision tree classifier on the clinical 

test set. The 3 AFlut segments misclassified for the CTI-dependent AFlut classes belong to 3 

different patients, this means that two out of three segments in the same 10 s ECG of these 3 

given patients were correctly classified. Whereas the 2 segments misclassified for the peri-

mitral AFlut class and the 3 segments misclassified for the other LA AFlut class belong to the 

same patient.  
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The greedy forward selection technique reached the maximum accuracy with 18 features. 

The 18 selected features were: F-wave duration, 8 features from the dynamic symbolic analysis 

(the number of high valued segments, low valued segments, bottom valued segments, isolines, 

sequence of top-top, low-zero, low-low, and bottom-low segments in the signals), the minimum 

and mean optimal model orders to model each ECG lead with Gaussian functions, the 7th, 8th, 

and 9th coefficients from the discrete cosine transformation, the mean prominence of the 5th and 

6th order wavelets, the minimum fragmented conduction index, and the vertical entropy 

calculated with the individual component recurrence quantification analysis on the 3rd principal 

component (icRQAPC3).  

The Shapley calculation to analyse a posteriori the importance of the 18 selected features 

showed that the most relevant features for the implemented classification were the F-wave 

duration, the mean prominence on the 5th order wavelet, the icRQAPC3 vertical entropy, and the 

mean optimal model order. 

The definition of all extracted features, the feature set, and the detailed feature importance 

analysis can be found in the Supplementary Material. 

4 Discussion 

Our results suggest that a non-invasive machine learning approach based on surface ECG 

analysis can aid in the discrimination of the location of the substrate which is sustaining AFlut. 

This could improve protocols for clinical therapeutic decision-making and ablation procedure 

planning.  

The 12-lead ECG is broadly used for cardiac diagnostics, including diagnosis and 

classification of AFlut from other cardiac rhythms [11], [12], [13], [14]. Many ECG-based 

clinical algorithms have been proposed, with mixed results. Due to novel and widespread left 

atrial ablation procedures in the last decades, rare clinical entities with diagnostic challenges 
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(i.e. left AFlut or right AFlut with atypical ECG-features) are increasing in prevalence and 

entering the routine of electrophysiology labs [7]–[9]. 

To the best of our knowledge, ours represent the first work to implement a decision tree 

classifier to discriminate the location of AFlut mechanisms by using in-silico and clinical non-

invasive ECG signals. The computational 12-lead ECG simulations provided an ideal and 

controlled environment to generate a consistent ground truth dataset of AFlut mechanisms. This 

in-silico dataset served as a reinforcement to the clinical dataset to solve the problematic 

availability of clinical data where ground truth was ascertained by invasive electrophysiological 

analysis. The clinical data used during training helped to bridge the domain gap between 

simulated and measured ECGs. In addition, the machine learning algorithm implemented in 

this project uses carefully selected features. As a result, clinical knowledge is used to optimize 

the algorithm, rendering also the interpretation of the results easier than a deep learning 

approach. 

This study builds on our previous work [15] and presents a first application of the 

resulting classifier on clinical data. Of note, no other clinical characteristics were statistically 

relevant in correctly classifying the AFlut (Table 1).  

4.1 Feature analysis 

The Shapley calculation showed that, of the 18 features in the feature set needed for 

classification, 4 were most relevant: The F-wave duration, the mean prominence on the 5th order 

wavelet, the icRQAPC3 vertical entropy, and the mean optimal model order. The F-wave 

duration already proved to be a fundamental feature in the AFlut characterization in our 

previous works [15], [19] together with the vertical entropy icRQAPC3. In fact, several previous 

results have reported how RQA approaches can be useful in the characterization and 

discrimination of different cardiac arrhythmias [16], [20]. These two features showed to be 

significantly higher in values in the “other LA AFlut” class in comparison with the other 
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classes. In contrast, there was no significant difference between the CTI-dependent and the peri-

mitral AFlut classes, probably due to the similarity in the size and shape of the two valves. On 

the other hand, regarding the mean prominence on the 5th order wavelet and the mean optimal 

model order, there was no significant difference between the 3 classes. Therefore, the 

importance identified by the Shapley evaluation for these two last features, but not observed by 

the significance analysis among the classes, must be solely due to their use in the algorithm to 

better define the classification. The feature importance analysis, and the distribution of the 

values of the 4 most important features is shown in the Supplementary Material. 

4.2 Classification 

Many studies have sought to find consistent and reliable non-invasive predictors of 

location for AFlut. The most investigated and promising features have been the morphology of 

the atrial waves in 12-lead ECGs [11], [12]. Many algorithms based on such features have been 

proposed with mixed results and there is currently no consensus on how to classify AFlut based 

on the surface ECG. Nevertheless, as different AFlut types require different ablation procedures 

with more challenging preparations for left atrial types, a pre-procedural diagnosis and 

characterization of the location of ablation targets would increase the efficacy of the procedure 

by permitting direct targeting of the region of interest. Moreover, it would also allow tailoring 

the procedure in a time- and resource-saving fashion, avoiding potential unnecessary 

complications or delays.  

Our decision tree classifier based on the surface 12-lead ECGs achieved an accuracy of 

82.2% on the clinical test set, demonstrating the ability to correctly classify most of the AFlut 

segments extracted from the 12-lead ECGs. In particular, the high sensitivity and PPV for the 

CTI-dependent AFlut (90.9%, and 85.7%, respectively) show that most of the segments 

belonging and classified into this group were correct, making our classifier robust in the 

identification of these patients. Regarding the peri-mitral and other LA AFlut classes, the results 
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indicate a good classification ability, negatively influenced by the lower number of cases for 

these two classes in our dataset. 

As Table 3 shows, 3 segments got misclassified for the CTI-dependent AFlut class. These 

segments belong to different patients, thus indicating that the classifier correctly identified 

100% of the patients in this group when considering the majority prediction from the three 

segments of each patient.  

As the therapy spectrum for atrial ablation broadens, the prevalence of AFlut with 

atypical characteristics increases leading to new diagnostic challenges. For example, CTI-

dependent flutters, which occurs after left atrial procedures tends to present atrial waves with 

unusual morphologies. Such cases can easily be misinterpreted as left AFlut and lead to 

unnecessary, lengthier and potentially more dangerous workup and procedures. Our classifier 

was able to correctly identify the nature of the AFlut also for such challenging cases. 

In Figure 2, we present the case of a patient who developed, after a pulmonary vein 

isolation ablation and a further ablation of a peri-mitral AFlut, a CTI-dependent AFlut. Despite 

the unusual characteristics in the surface ECGs (positive atrial waves in leads II, III, aVF and 

V1 through V6), our classifier correctly identified its location. 

Limitations 

The current study is limited to a small clinical test set. As a next step, the algorithm should 

be tested on a more extensive patient cohort. In particular, more patients for the peri-mitral and 

other LA AFlut classes should be collected and added to the training set to improve the classifier 

performance. Even though the manual segmentation of the clinical ECG is not time-consuming, 

in view of future clinical applications, automated segmentation of clinical ECG should be 

implemented to extract the F-wave. 

Although 15 AFlut mechanisms related to clinical situations have been implemented, 

they are just a general representation of the mechanisms that are most commonly found in the 
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literature. More mechanisms could be included in the dataset, considering the heterogeneity 

seen in the clinical practice, e.g., slow conduction areas. 

Conclusions 

The results presented in this study show that a machine learning feature-based classifier 

can distinguish between CTI-dependent AFlut vs. peri-mitral AFlut vs. other LA AFlut using 

single AFlut loop segments. Additionally, a hybrid approach (in-silico data + clinical data) to 

train the classifier can be successful when it is difficult to get enough clinical data for purely 

clinical machine learning. As such, a machine learning-based classifier leveraging the routinely 

available non-invasive ECG signal can be valuable for clinical decision-making and increase 

the personalization of therapy. Our machine learning classifier can correctly non-invasively 

predict ablation targets avoiding the need for transseptal catheterization and LA mapping and 

consequently even pre-procedural transesophageal echocardiography in some cases.  
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Tables 

Table 1: Patient characteristics mean values with univariate ANOVA test between groups (p-values 

<0.05). Multivariate regression analysis performed between the variables with a univariate p-value 

<0.1 and our classifier. 

 
All 

patients 

 

n=93 

CTI-

dependent 

AFlut 

n=72 

Peri-

mitral 

AFlut 

n=10 

Other 

LA 

AFlut 

n=11 

Univariate 

(p-value) 

Multivariate 

(p-value) 

Age (years) 69 (11.5) 60 (10.0) 57 

(12.6) 

68 (4.3) 0.54 0.32 

Female  16 (17.2) 10 (13.9) 3 (30) 4 (36.4) 0.48 0.43 

Body mass 

index (kg/m2) 

28 (4.0) 28 (4.0) 27 (4.4) 28 (3.8) 0.06 0.07 

Coronary 

artery disease 

27 (29.0) 22 (30.6) 2 (20) 2 (18.2) 0.56 - 

LVEF (%) 53 (9) 52 (7) 60 (8) 56 (9) 0.10 0.09 

LVEDD (mm) 48 (5.1) 49 (6.2) 47 (4.8) 44 (7.2) 0.06 0.06 

LAD (mm) 43 (5) 43 (5) 43 (5) 46 (6) 0.37 - 

Previous 

catheter 

ablation 

20 (21.5) 6 (8.3) 7 (70) 7 (63.6) <0.01 0.07 

Machine 

learning 

classifier 

- - - - - 0.02 

Left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), 

left atrial diameter (LAD). Values are given as mean ( standard deviation) or number (%). 
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Table 2: In-silico AFlut mechanisms and attribution to the 3 classes under analysis. 

Mechanism Atrium Position Direction Class 

Macro-reentry RA Tricuspid Valve ccw CTI-dependent 

Macro-reentry RA Tricuspid Valve cw CTI-dependent 

Macro-reentry LA Mitral Valve ccw Peri-mitral 

Macro-reentry LA Mitral Valve cw Peri-mitral 

Scar-related reentry LA LPV post Other LA 

Scar-related reentry LA LPV ant Other LA 

Scar-related reentry LA RPV post Other LA 

Scar-related reentry LA RPV ant Other LA 

Figure-8 macro-reentry LA Both PVs ant Other LA 

Figure-8 macro-reentry LA Both PVs post Other LA 

Figure-8 macro-reentry LA RPVs ant Other LA 

Focal source LA RSPV anterior  Other LA 

Focal source LA RSPV posterior  Other LA 

Focal source LA LSPV anterior  Other LA 

Focal source LA LSPV posterior  Other LA 

Right atrium (RA), left atrium (LA), left pulmonary vein (LPV), right pulmonary vein 

(RPV), pulmonary veins (PVs), right superior pulmonary vein (RSPV), left superior 

pulmonary vein (LSPV), clockwise (cw), counterclockwise (ccw), anterior (ant), posterior 

(post). 

 

 

Table 3: Clinical test set confusion matrix for 3-class classification per ECG-segment. 

   True class  

  CTI-dependent Peri-mitral Others 

 CTI-dependent 30 2 3 

Predicted class Peri-mitral 2 4 0 

 Others 1 0 3 
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Figures 

 

Figure 1: Example of clinical CTI-dependent, peri-mitral, and other LA AFlut 12-lead ECGs, 

respectively. The red segments represent one of the three AFlut single cycles extracted and used in this 

work for this specific patient. 
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Figure 2: Clinical CTI-dependent case with atypical ECG-features (positive atrial waves in lead II, III, 

aVF and V1 to V6) correctly classified by the classifier. The red segments represent one of the three 

AFlut single cycles extracted and used in this work for this specific patient. 
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Chapter 5
Atrial fibrillation driver

localization and complication
prediction

Atrial fibrillation (also called AFib or AF) is a quivering or irregular arrhythmia that can
lead to blood clots, stroke, heart failure and other heart-related complications. It is estimated
that 12.1 million people in the United States will have AFib in 2030 [116, 117]. AFib
happens when abnormal electrical impulses suddenly start firing in the atria. These impulses
overrule the heart’s natural pacemaker, which can no longer control the rhythm of the
heart. This causes a highly irregular pulse rate. In AFib, the heart’s upper chambers (atria)
contract randomly and sometimes so fast that the heart muscle cannot relax properly between
contractions. This reduces the heart’s efficiency and performance. The cause of AFib is
not fully understood, but it tends to affect certain groups of people, such as older people
and people living with long-term (chronic) conditions such as heart disease, high blood
pressure or obesity [118]. Moreover, the link between AFib and other cardiac diseases, such
as cardiomyopathy, and heart failure, are not well understood yet. Indeed, sometimes AFib
can occur concomitantly with heart failure, and sinus rhythm restoration leads to drastic
improvements or normalization of left ventricular systolic dysfunction (LVSD) within days
to weeks [119–121]. However, it is currently not fully understood why certain patients
develop severe heart failure symptoms and LVSD in AFib (AF-induced heart failure and
cardiomyopathy). As for atrial flutter, the most common non-pharmacological therapy
for AFib is catheter ablation with the aim to terminate the arrhythmia and to restore the
sinus rhythm [122]. One of the major problems with catheter ablation for treating AFib
is deciding what to ablate. Indeed, there is no common rule about which targets are most
suitable to terminate the arrhythmia and avoid future recurrences. Typically, AFib drivers
that trigger and support the arrhythmia perpetuation are targeted during ablation [123].
Diagnosis of AFib is made by using either intracardiac catheters or with non-invasive
methods like the electrocardiogram (ECG). A major limitation of AFib catheters mapping
and ablation is that the mechanisms that sustain AFib are not easy to be identified [124].
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This leads to a significantly long invasive procedure duration with no possibility of pre-
operative planning. For this reason the usage of ECG is very attractive since it gives valuable
prior information without any invasive intervention on the patient. The application of the
ECG signals in a machine learning framework might be an automated solution to get prior
information regarding the position of the drivers sustaining AFib in the atria and the possible
complications that AFib might ensue (i.e., heart failure). The application of machine learning
algorithms based on ECG signals to diagnose AFib in comparison to other heart rhythms
has been widely investigated [110, 125]. In contrast, the use of such systems to identify
targets for ablation and for the prediction of possible complications or recurrence is a novel
and innovative approach. The combination of noninvasive signals and machine learning
techniques could lead to a prediction of ablation procedure success, pre-operative planning,
reduction of invasive procedure duration, and rendering the clinical follow-up more cost-
effective. In the studies presented in this chapter, firstly, we sought to discriminate the
location of the AFib drivers (pulmonary veins (PVs) vs. extra-PV regions) using the 12-
lead ECG, and to predict the acute success of pulmonary vein isolation (PVI) [25]. The
implemented classifier showed to be able to localize the AFib driver positions also suggesting
whether the PVI procedure alone would have been enough to terminate the arrhythmia. In
addition, the clinical applications of the in silico data were demonstrated by having trained
the algorithm on simulated data only and then having successfully tested it on clinical data.
Using in silico data where the ground truth is precisely known could really lead to solving
the problem of the small amount of correctly labeled clinical data in biomedical engineering.
To conclude, we investigated possible connections between AFib and heart failure using
beat-to-beat variation signals (i.e., RR-intervals) extracted from 24h Holter 1-lead ECG
signals. This manuscript is at the moment under review [26]. The identification of patterns
and characteristics between AFib and heart failure could assist the physicians in deciding
on the cases of AFib in which arrhythmia termination could lead to a reduced risk of heart
failure and complications. The implemented algorithm was able to recognize AFib cases
that were linked to heart failure, also suggesting which time of the day is the best to perform
such an analysis [26]. The algorithm is currently under patenting process.
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BACKGROUND Atrial fibrillation (AF) is the most common supra-
ventricular arrhythmia, characterized by disorganized atrial electri-
cal activity, maintained by localized arrhythmogenic atrial drivers.
Pulmonary vein isolation (PVI) allows to exclude PV-related drivers.
However, PVI is less effective in patients with additional extra-PV
arrhythmogenic drivers.

OBJECTIVES To discriminate whether AF drivers are located near
the PVs vs extra-PV regions using the noninvasive 12-lead electro-
cardiogram (ECG) in a computational and clinical framework, and to
computationally predict the acute success of PVI in these cohorts of
data.

METHODS AF drivers were induced in 2 computerized atrial models
and combined with 8 torso models, resulting in 1128 12-lead ECGs
(80 ECGs with AF drivers located in the PVs and 1048 in extra-PV
areas). A total of 103 features were extracted from the signals. Bi-
nary decision tree classifier was trained on the simulated data and
evaluated using hold-out cross-validation. The PVs were subse-
quently isolated in the models to assess PVI success. Finally, the

classifier was tested on a clinical dataset (46 patients: 23 PV-
dependent AF and 23 with additional extra-PV sources).

RESULTS The classifier yielded 82.6% specificity and 73.9% sensi-
tivity for detecting PV drivers on the clinical data. Consistency analysis
on the46patients resulted in93.5%resultsmatch.ApplyingPVIon the
simulated AF cases terminated AF in 100% of the cases in the PV class.

CONCLUSION Machine learning–based classification of 12-lead-
ECG allows discrimination between patients with PV drivers vs those
with extra-PV drivers of AF. The novel algorithm may aid to identify
patients with high acute success rates to PVI.

KEYWORDS Atrial fibrillation; Atrial ablation; Machine learning;
Noninvasive; 12-lead electrocardiogram; Pulmonary vein isolation;
Cardiac simulations

(Cardiovascular Digital Health Journal 2021;2:126–136) © 2021
Heart Rhythm Society. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).

Introduction
Atrial fibrillation (AF) is the most common sustained
arrhythmia in clinical practice and a leading cause of hospi-
talization and death.1,2 Recent evidence from experimental
and clinical studies suggests that AF may be maintained by
localized AF drivers,3–5 which are organized reentrant
circuits (rotors)6,7 or focal sources8 that disorganize into AF.

Catheter ablation is a common nonpharmacological ther-
apy that aims to terminate AF, restoring sinus rhythm.9,10,1

Typically, “triggers” that start AF and the “substrate” that
supports perpetuation are targeted during ablation. Moreover,
Narayan and colleagues11 showed the importance of local-
izing and ablating rotors, focal source drivers, or organized
fibrillation sources to terminate the arrhythmia.11 However,
one of the major limitations of AF ablation is that the mech-
anisms that sustain AF are not easy to identify,1,12,13 in
contrast to many other arrhythmias in which the perpetuating
mechanism is the primary target for ablation. The seminal
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observations by Haissaguerre and colleagues10 revealed that
AF triggers and sustaining mechanisms are often localized
around the pulmonary veins (PVs).10 Thus, pulmonary vein
isolation (PVI) is established as the cornerstone of AF abla-
tion,1 being highly effective in patients with triggers confined
to the PVs.10,9 Nevertheless, PVI results remain suboptimal
in the presence of extra-PV sources maintaining AF.1,14 Pre-
procedural information regarding the confinement of the
driving mechanism to the PVs would be valuable for
decision-making pro/contra ablation and procedure planning.
To date, the best available proxy to plan the ablation proced-
ure is the classification of the arrhythmia into paroxysmal/
persistent AF.15 This classification, however, is based on
observed AF episodes, and it might correlate poorly with
the actual AF burden—and, consequently, with the extension
of substrate remodeling—in many patients.16 Moreover, in
the case of extra-PV drivers, a subsequent classification
whether the left atrium (LA) or right atrium (RA) is respon-
sible could lead to prior planning regarding the need for trans-
septal access or not.

Traditionally, invasive mapping approaches have been
applied to identify the location of AF drivers as targets for
catheter ablation.17,18 In contrast, noninvasive methods (ie,
the 12-lead electrocardiogram [ECG]) are mostly used for
the clinical and automatic detection of AF vs sinus rhythm19

or other arrhythmia.20 The use of a noninvasive technique,
such as the ECG, could help to guide ablation procedures
by identifying the location of the AF drivers pre-procedure,
and hence target more specific affected atrial regions for abla-
tion.

In the present work, we sought to discriminate AF drivers
located near the PVs compared to extra-PV atrial sites based
solely on the 12-lead ECG. Towards this end, we trained an
automatic machine learning classifier on data from computer
simulations and evaluated its performance on clinical ECGs.
Moreover, we assessed the acute success of PVI in the in sil-
ico cases to predict whether PVI in cases of AF drivers
located near the PVs would be sufficient to terminate AF
(ie, restoration of sinus rhythm, or AF conversion into atrial
flutter). In this case, AF drivers identified in the PVs could be
directly targeted for ablation without prior time-consuming
electroanatomic mapping.

Methods
Simulation setup
A database of simulated AF scenarios driven by localized ro-
tors and focal sources was computed on 2 volumetric biatrial
anatomies generated from segmented magnetic resonance
imaging data of healthy subjects (#3 and #5 from ref 21).
The atrial geometries were modeled with z11 million tetra-
hedral elements with fiber direction computed by a semiauto-
matic rule-based algorithm.22 Cellular atrial
electrophysiology was represented by the Courtemanche-
Ramirez-Nattel model, including AF-induced remodeling23

in 5 regions with different conduction velocities21 to take
into account heterogeneity and anisotropy in the atria. The

atrial geometries were considered with and without fibrotic
tissue. Transmural fibrotic tissue was modeled as 2 circular
patches with a radius of 14 mm in which 50% of the elements
were almost nonconductive (conductivity of 1027 S/m) to
model the presence of scar tissue, and the other 50% included
ionic changes to represent the effect of cytokines (TGF-b1)
as described by Roney and colleagues.24

AF rotor episodes were induced using the phase singular-
ity distribution method,25 which consists of placing phase
singularities in the atria, estimating an activation time map
by solving the Eikonal equation, and using this as an initial
state for a monodomain simulation with openCARP.26,27 In
addition, localized focal source episodes were induced by
30 mA

cm2 current applied for 2 ms to a cubic region with edge
length of 3 mm centered around the stimulation point in
monodomain simulations. The focal source pacing cycle
lengths were chosen in the 130–200 ms range following the
same distribution observed from the rotor cycle lengths.
The phase singularities and the focal stimulation points
were placed in 300 uniformly distributed points in the atria,
and 3 seconds of activation was computed (Figure 1A.1
and 1B.1). The following cases were excluded for further
analysis: (1) the single rotors were not maintained for the
whole simulation time; and (2) the focal source episodes
induced reentry that led to the termination of the focal activ-
ity. This led to a dataset of 141 biatrial simulations (10 sim-
ulations with the AF drivers located in the PVs; 131
simulations located in extra-PV areas, of which 106 were
in the RA and 25 in the LA). PV areas were defined as deter-
mined by the semiautomatic algorithm used to compute the
fiber directions and anatomical labels22 (Figure 2A).

The monodomain simulations resulted in spatiotemporal
transmembrane voltage distributions. The transmembrane
voltage distributions were subsequently interpolated on a
coarser surface mesh with sufficient resolution for the calcu-
lation of body surface potentials28 (z75,000 triangular ele-
ments). Body surface potential maps (BSPMs) were
calculated for each AF episode using the boundary element
method.29 For each AF episode BSPMswere computed using
8 different torso models (19,898 triangles on average) gener-
ated from segmented magnetic resonance imaging data of
healthy male and female subjects (Figure 1A.2 and B.2).21

From the BSPM, the 12-lead ECG was extracted with 3-
second duration (Figure 1A.3 and 1B.3). The simulated
12-lead ECG signals contain only f-waves and no QRS-T
complexes, since the ventricles were not included in the sim-
ulations. A total of 1128 12-lead ECGs composed the final
dataset (80 ECGs with the AF drivers located in the PVs;
1048 ECGs located in extra-PV areas, of which 848 were
in the RA and 200 in the LA).

Simulated ablation procedures
To assess the effect of PVI procedure on the mechanisms
driving AF, nonconducting scars were added circumferen-
tially around ipsilateral PVs in the simulations (Figure 3A).
PVI was applied after the initial 3 seconds of simulation.
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After PVI, simulations were continued for another 1 second
to check for arrhythmia termination or a change on the
driving mechanisms (eg, conversion to atrial flutter). In the
cases where PVI did not terminate AF, a roofline (RL) was
applied (Figure 3B). If the RL did not terminate the AF either,
an additional ablation scar was applied between the mitral
valve and the left PVI line (mitral isthmus [MI],
Figure 3C). Prior to applying subsequent ablation lines, the
simulations were always computed for 1 second to capture
any change of the arrhythmia dynamics.

Feature extraction
One hundred and three features were extracted from the sig-
nals using several biosignal processing methods, such as
Hjorth descriptors to analyze the spectral moments from
the time-domain signals30,31; recurrence quantification anal-
ysis (RQA) on the vectorcardiogram,32 spatial reduced
RQA, and individual component RQA33 to analyze the topo-
logical structure of multidimensional dynamical systems;
principal component analysis (PCA) eigenvalues to observe
the variability shown by the principal components (PCs)

Figure 1 A.1: Example of simulated atrial fibrillation (AF) driver located near the pulmonary veins (PVs). B.1: Example of simulated AF driver located in an
extra-PV region (right atrial appendage in this case). The red arrows show the AF driver position and propagation direction.A.2, B.2:Body surface potential maps
(BSPMs) on 1 magnetic resonance imaging–derived torso model. The torso potentials were obtained by solving the forward problem of electrocardiography from
the simulated transmembrane voltages on the atria.A.3, B.3: f-waves for leads I, II, and V1 from the 12-lead electrocardiogram signals extracted from the BSPMs.

Figure 2 Example of the atrial regions used to define the classes in which the atrial fibrillation drivers are located. A: Pulmonary veins (PVs) (pink) and extra-
PV areas (blue) for binary classification. B: PVs (pink), extra-PV left atrium areas (blue), and right atrium (green) for 3-class classification.
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over time and between them; ratio of the PCA eigenvalues to
increase and highlight the differences between the PCA ei-
genvalues; and organization index and spectral entropy to
study the variability and stability of these mechanisms in
time and frequency domains.30,34,35 No features were derived
for any single ECG leads to avoid an undesirable influence of
atria orientation on the resulting calculated ECGs.36 Hence,
all features were averaged over the 12 leads or calculated
over the PCs. A summary of the features and more informa-
tion regarding the feature extraction methods are provided in
the Supplemental Material.

Feature selection
Features were selected with a greedy forward selection tech-
nique to implement a feature set. This algorithm started with
an empty feature set and added, in each iteration, the feature
that led to the highest classification performance increase as-
sessed using the geometric mean (G-mean) between sensi-
tivity and specificity of a decision tree classifier (more
details about the implemented classifier are discussed in the
following section). The algorithm stopped when performance
based on the validation set could not be further increased.
Candidate features with a correlation coefficient .0.6 with
any of the features already included in the set were not
considered. This correlation threshold was chosen as a
compromise between avoiding redundant information and al-
lowing physiological explanation.

Machine learning classification
In this study, a decision tree classifier was implemented for
binary classification (AF drivers located at the PVs vs
extra-PV drivers) owing to its simplicity and explainability
(similar results obtained with other machine learning algo-
rithms for the binary classification are provided in the
Supplemental Material). The decision tree was trained and
applied using the MATLAB functions fitctree and predict,
respectively.

First, a multifeature classification was performed with the
feature set selected as described in the paragraph on feature
selection. Hold-out cross-validation was performed
randomly, dividing the simulated dataset into a training set,
validation set, and test set with a ratio of 70%, 15%, and
15%, respectively. The training set was used to tune classifier

parameters, while the validation set was used for the greedy
feature selection optimization. To reduce the random divi-
sion’s influence, the process was repeated 100 times (training
and validation sets were recalculated at each loop, while the
test set was saved and kept the same for all experiments). The
classes have been balanced by setting the Prior model param-
eter in the MATLAB fitctree function to uniform. Sensitivity,
specificity, and positive predictive value (PPV) were calcu-
lated considering the PV class as positive and the extra-PV
class as negative. Lastly, the classifier trained again with all
the simulated data and the resulting feature set from the pre-
vious analysis was tested on the clinical dataset, which was
not used during algorithm development.

Second, binary classification using the same feature set
extracted from the first approach was performed with
different cross-validation strategies: leave-one-atrium-out
(LOAO) and leave-one-torso-out (LOTO). These strategies
were applied to verify that the atrial geometries did not
have a significant influence on the features extracted from
the simulated signals.36 For LOAO, 1 atrial geometry was
used in the training set and the other atrial geometry was
used in both the validation and the test set (50% of the
ECGs from this geometry in each set). This procedure was
repeated twice to cover all permutations of validation and
test atrial geometry. The average G-mean of the 2 iterations
was used as performance parameter. The same process was
applied for LOTOwith 8 repetitions, since 8 torso geometries
were used in this study.

Finally, thanks to the ground truth given by the simula-
tions, and to estimate how feasibly a machine learning
approach can discriminate the position of AF drivers, a clas-
sifier was implemented for a 3-class classification. The 3 clas-
ses were defined as AF drivers located in the PVs, extra-PV
LA areas, and RA areas. A new feature set was selected with
the greedy technique similar to the first approach described in
this section, and hold-out cross-validation was used on the
simulated dataset. The classes have been balanced in a similar
manner to the binary classification.

Statistical analysis
Classifier performance was evaluated using the G-mean be-
tween sensitivity and specificity metric:

Figure 3 Scar lines were applied on the atrial models to simulate several ablation procedures. In the atrial model, the right endocardium is shown in white, the
left endocardium in red, both epicardia in blue, and the scar lines in cyan.A: Pulmonary vein isolation (PVI): Scars added circumferentially around ipsilateral PVs.
B: PVI1RL: Roofline scar added between the left PVI and the right PVI.C: PVI1RL1MI: Scar added between the left PVI and the mitral valve (mitral isthmus
ablation).
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G2Mean5OSensitivity,Specificity (1)

The G-mean metric strikes a balance for binary classifica-
tion performance on both the majority and minority classes.37

A low G-mean indicates a poor performance in the classifica-
tion of the positive cases even if the negative cases are
correctly classified as such. As such, it can avoid overfitting
the negative class and underfitting the positive class and vice
versa.

For the third classification approach, the G-mean metric
was modified to make it suitable for 3-class classification:

G2Mean5
2

K,ðK21Þ
XK

isj

OSensitivityij,Specificityij (2)

with K being the number of classes, and i and j the classes
considered as positive and negative, respectively.38

Patient characteristics were evaluated with the t test be-
tween case and control groups (P values , .01 considered
significant; Table 1). Multivariate regression analysis was
performed on variables that differed between groups with a
P value , .1 (Table 1) and our classifier. Age and sex were
included in the multivariate model for their clinical relevance.

Clinical data
We retrospectively included a total of 46 consecutive patients
(72% persistent AF, 70% male; Table 1) who presented be-
tween 2019 and 2020 with spontaneous AF (as baseline
rhythm) on admission day and during electrophysiology
study and who met the following criteria: first ablation for
AF without any prior LA ablations (eg, Wolff-Parkinson-
White patients, etc were excluded) and AF termination (sinus

rhythm restoration or conversion to atrial flutter) during or
within 1 minute after completion of PVI (case group/PV
class, n5 23). Patients meeting the above-mentioned criteria
but without termination of AF during/immediately following
PVI were included as controls (control group/extra-PV class,
n 5 23).

A dataset of 46 clinical AF 12-lead ECGs was used to vali-
date the classifier, which was trained solely on synthetic data
generated using the computational framework described
above. Three-second clinical ECGs were collected intrapro-
cedurally prior to PVI during ongoing AF. The signals
were notch filtered at 50 Hz and bandpass-filtered between
0.05 Hz and 100 Hz (examples of the 12-lead ECGs can be
found in the Supplemental Material). The QRS-T complexes
were automatically removed and replaced by a sigmoid func-
tion to connect the remaining f-wave segments using an inter-
polation method explained in Pilia and colleagues.39 All the
features extracted and selected from the simulated signals by
the feature selection algorithm were extracted from the clin-
ical signals too. A second set of 3-second clinical 12-lead
ECGs was collected from the same 46 patients during the
same procedure prior to PVI during ongoing AF. This ECG
set was also provided to the classifier to check the consis-
tency of the classification.

Patient information was de-identified and the study was
exempt from Institutional Review Board approval.

Results
Patient characteristics
Patient characteristics with associated P values between case
and control groups are provided in Table 1.

Table 1 Patient characteristics with univariate t test analysis between groups

All patients n546 Acute AF termination by PVI n523 No acute AF termination by PVI n523 P

Age (years) 64 (10.5) 64 (10.5) 64 (10.8) .966
Female sex 29 (63.0) 14 (60.9) 15 (65.2) .680
Body mass index (kg/m2) 28.1 (3.8) 28.1 (4.2) 28.3 (3.5) .907
Arterial hypertension 25 (54.3) 11 (47.8) 14 (60.9) .475
Prior stroke or TIA 7 (15.2) 5 (21.7) 2 (8.7) .203
Structural CMP 10 (21.7) 5 (21.7) 5 (21.7) .938
Coronary artery disease 9 (19.6) 3 (13.0) 6 (26.0) .307
Persistent atrial fibrillation 33 (71.7) 15 (65.2) 18 (78.3) .456
CHADS2-VASc score 2.0 (1.6) 2.3 (1.7) 1.7 (1.4) .217
Prior AA therapy 19 (41.3) 11 (47.83) 8 (34.8) .312
AA therapy on admission 23 (50.0) 11 (47.8) 12 (52.2) .887
Amiodarone 19 (41.3) 9 (39.1) 10 (43.5) .843
Flecainide 2 (4.3) 1 (4.3) 1 (4.3) .952
Sotalol 0 (0.0) 0 (0.0) 0 (0.0) -
Dronedarione 1 (2.2) 0 (0.0) 1 (4.3) .334
Propafenone 1 (2.2) 0 (0.0) 1 (4.3) .334
LVEF (%) 57 (9) 59 (6) 54 (10) .062
LVEDD (mm) 50.1 (4.7) 49.2 (4.4) 52.7 (5.1) .127
LAD (mm) 44 (6) 52 (5) 46 (6) .052
Renal dysfunction 20 (43.5) 13 (59.1) 7 (30.4) .062

Values are given as mean (6 standard deviation) or number (%).
Multivariate analysis is detailed in Supplemental Material.
AA5 antiarrhythmic; CMP5 cardiomyopathies; LAD5 left atrium dilatation; LVEDD5 left ventricular end-diastolic diameter; LVEF5 left ventricular ejec-

tion fraction; TIA 5 transient ischemic attack.
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The multivariate regression analysis performed between
the variables left ventricular ejection fraction, LA dilatation,
renal dysfunction, sex, age, and our classifier showed that the
classifier is the only significant variable (P5 .049, hazard ra-
tio 5 11.8), indicating that the classifier has added value
beyond the routine clinical parameters for detecting patients
who require more than a “PVI-only” approach (the whole
multivariate regression analysis table is provided in the
Supplemental Material).

Acute ablation outcome
The following results are summarized in Table 2. Virtual PVI
was applied in all 141 atrial simulated scenarios (Figure 3A).
In 13 cases, PVI had a consequence on the ongoing
arrhythmia; in 6 cases, the arrhythmia was terminated and si-
nus rhythm restored, whereas the remaining 7 cases con-
verted to different types of atrial flutter. These 13 cases
consisted of 10 simulations belonging to the PV class
(100% of all scenarios in the PV class, including all 6 simu-
lations where PVI restored sinus rhythm) and 3 simulations
belonging to the extra-PV class LA (12.5% of the total
extra-PV LA simulations).

RL ablation was applied to the 135 simulations where PVI
did not lead to sinus rhythm restoration (Figure 3B). The
additional RL terminated the arrhythmia in 2 cases that had
converted to atrial flutter after PVI (1 case in PV class and
1 case in extra-PV LA). MI ablation was then applied to
the 133 simulations where PVI1RL did not restore sinus
rhythm (Figure 3C). PVI1RL1MI terminated the
arrhythmia in another 3 cases, all of which had become atrial
flutter after PVI (1 case in PV class, 2 cases in extra-PV LA).

Binary classification on synthetic data
The decision tree for binary classification (AF drivers located
in the PVs vs extra-PV drivers) was repeated 100 times to
reduce the random division’s influence on the classifier per-
formance. Eleven is the number of features to which the
greedy forward selection technique has reached the
maximum G-mean, and therefore, it was used as the number
of features in the feature set. The 11 most frequently selected
features in the 100 iterations were as follows: the recurrence
rate extracted with individual component RQA from the sec-
ond and third PC of the 12-lead ECGs; the variance of the
mobility; l7, l5, l12, sl5, and sl6; RPC; the recurrence rate
extracted from the vectorcardiogram, and the organization in-
dex averaged over the 12-lead ECG. The selected features

can be seen in Figure 4A. All the selected features showed
a significant difference between the 2 classes. Extra informa-
tion regarding the extracted features and a feature importance
analysis are provided in the Supplemental Material.

The binary classifier achieved a G-mean of 85.3%6 9.4%
on the in silico test set with a sensitivity of 95.5%6 1.4% and
a specificity of 76.3%6 13.1% on the simulated dataset (PV
considered as the positive class). Classifiers trained using
the LOAO and LOTO strategies yielded test G-means of
84.3% 6 2.9% and 85.3% 6 3.7%, respectively.

Three class localization: PV vs extra-PV LA vs RA
The 3-class decision tree achieved 75.1% 6 9.9% test G-
mean with a feature set comprising, on average, 13 features.
The most often selected features are shown in Figure 4B.

Performance on clinical ECGs
The 11 features shown in Figure 4A were used to train the bi-
nary classifier solely on the simulated data. The resulting
classifier was subsequently evaluated on the 46 clinical
ECGs acquired from 46 patients. On this unseen clinical data-
set, the classifier achieved 78.1% G-mean with a sensitivity
of 73.9%, a specificity of 82.6%, and PPV of 80.9%. On
the clinical dataset extracted for the consistency analysis,
the classifier achieved 71.7% G-mean with a sensitivity of
69.6%, a specificity of 73.9%, and PPV of 72.7%. Only 3
cases were classified differently compared to the test per-
formed with the first set, reaching a matching rate of
93.5%. Table 3 shows the confusion matrix obtained from
the decision tree classifier on the clinical ECGs (the confu-
sion matrix obtained on the “consistency” ECG dataset is
provided in the Supplemental Material).

Discussion
Our results suggest that a noninvasive machine learning
approach can discriminate the source area of the mechanisms
sustaining AF, which could improve protocols for clinical
therapeutic decision-making and ablation procedure plan-
ning.

The 12-lead ECG is broadly used for cardiac diagnostics
and to discriminate AF from other cardiac rhythms.20 How-
ever, to the best of our knowledge, they have never been
used so far to infer AF driver positions, as opposed to inva-
sive intracardiac mapping, which is the most commonly
used approach.17,18

In the present work, we implemented a decision tree clas-
sifier to discriminate the location of AF drivers by using only
the noninvasive ECG signals (similar results obtained with
other machine learning algorithms are provided in the
Supplemental Material). An inside-out computational simu-
lation generated 12-lead ECGs from spatially distributed ro-
tors and focal sources sustaining AF with different
combinations of atrial and torso geometries. This provided
an ideal and controlled environment to generate a consistent
ground truth dataset of AF perpetuation mechanisms without

Table 2 Simulated atrial fibrillation episodes converted to sinus
rhythm or atrial flutter after stepwise ablation

Sinus rhythm/atrial flutter PVs Extra-PV LA RA

PVI 6/4 -/3 -
PVI success (%) 100% 12.5% 0%
RL 1/- 1/- -
MI 1/- 2/- -

LA5 left atrium; MI5mitral isthmus; PV5 pulmonary vein; PVI5 pul-
monary vein isolation; RA 5 right atrium; RL 5 roofline.
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the influence of secondary, or unknown, interfering phenom-
ena.

This study builds on our previous work30,40 and expands
to different atrial geometries and different AF driving mech-
anisms adding focal sources, and presents a first application
of the resulting classifier on clinical data. Moreover, an acute
ablation procedure outcome analysis was implemented in the
in silico cases.

Acute PVI success prediction
PVI is the most common AF ablation therapy1 owing to the
often localized AF drivers in the PVs.10 Hence, we aimed
to identify the PV driving mechanisms using the 12-lead
ECG. We also wanted to verify whether AF would be termi-
nated following PVI, or at least converted into more orga-
nized rhythms that are often easier to treat, such as atrial
flutter.

The results of applying PVI in silico (Table 2) help to
illustrate the efficacy of this ablation procedure in cases
where AF is driven by mechanisms located in the PVs.
Accordingly, 100% of the cases labeled as PV showed AF or-
ganization: 6 terminated and 4 converted to atrial flutter.
Interestingly, the extra-PV cases were not affected by the
PVI, as expected: only 3 arrhythmias driven by extra-PV
LA areas converted into atrial flutter, probably owing to the

proximity of the AF driving mechanisms to the PVs even if
not labeled as belonging to the PV class. Therefore, the pro-
posed classifier could assist on clinical decision-making for
the delineation of the optimummapping and ablation strategy
according to patient-specific characteristics. For instance, if a
new case is identified as belonging to the PV class by our
classifier, the suggested procedure to treat the fibrillation
would be PVI. It could also be considered to use cryoabla-
tion, skipping the use of the time-consuming and costly elec-
troanatomical mapping step prior to PVI in these cases, as
identified by our novel ECG-based machine learning classi-
fier. On the contrary, for the cases identified as extra-PV
class, PVI showed to be not effective to acute sinus rhythm
restoration or to atrial flutter conversion. Nevertheless, there
are many studies that have certified the benevolent effects of
performing PVI,41,42 even if it does not lead to an acute AF
termination. However, based on the indications of our classi-
fier, electrophysiologists would know a priori the need for
subsequent ablation procedures in addition to PVI (thus a
patient-specific preparation of surgical instrumentation) to
achieve acute AF termination.

Finally, the clinical dataset was labeled using the acute
PVI success as decision parameter (ie, PVI-terminated AF
leads to PV class). The results regarding the PVI procedure
on our simulations support the perspective that the labeling
on the clinical dataset was properly performed, owing to
the obvious link between PV mechanisms and the success
of PVI.

Acute RL and MI outcome prediction
In addition to PVI, 2 common post-PVI ablation lines were
investigated: RL and MI (Figure 3B and 3C and Table 2).
RL and MI led to the termination of atrial flutter resulting
from PVI. However, the additional ablation created during
RL and MI had no influence on acute AF mechanism termi-
nation by PVI considered in this study, as suggested in

Figure 4 A: Histogram of the 11 most selected features in the 100 iterations of the binary hold-out cross-validation classification for atrial fibrillation (AF)
driver localization (pulmonary vein [PV] vs extra-PV). These 11 features were used as a feature set for the clinical test. B: Histogram of the 13 most selected
features in the 100 iterations of the 3-class hold-out cross-validation classification: PV vs extra-PV left atrial vs right atrial AF drivers.

Table 3 Clinical test set confusion matrix for pulmonary vein vs
extra-pulmonary vein atrial fibrillation driver location classification

True class

PV Extra-PV

Predicted class
PV 17 4
Extra-PV 6 19

PV 5 pulmonary vein.
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previous work.43 Nevertheless, it is recognized that these
linear ablations can be effective to prevent some postablation
atrial flutter (eg, perimitral atrial flutter) segmenting the atria
into isolated regions.44

Feature sets
Compelling results were reported previously for RQA ap-
proaches and PCA eigenvalue ratios regarding the character-
ization and discrimination of different
arrhythmias.32,45,33,40,46 Indeed, RQA and the ratio of PCA
eigenvalues were also key features for the binary classifica-
tion implemented in this study. Nine of the 11 most selected
features were obtained with RQA or ratios of PCA eigen-
values (Figure 4A), probably owing to their sensitivity in de-
tecting changes in the dynamic behavior over time.47 We
observed that AF drivers located in the PVs produced a
more regular activity than the extra-PV cases (Figure 1A–
1B.3). In fact, in the simulated episodes, the irregular activity
driven by PV cases was limited to a small portion of tissue
owing to the presence of anatomical obstacles (eg, the PV
sleeves) that prevented the driving mechanisms from
meandering to the remaining parts of the atria. Therefore,
in the remaining atrial areas, the signal was propagated as
an organized single wavefront. Contrarily, AF driving mech-
anisms located in extra-PV areas were free to meander
throughout the tissue owing to the fewer anatomical con-
straints, which yielded more irregular ECGs. The selected
features succeeded in detecting these irregularities and differ-
ences between classes. This information was also quantified
by the selected RQA and PCA eigenvalue ratio parameters,
resulting in significantly higher values for the PV and
extra-PV classes, respectively.

Regarding the 3-class classification, 7 out of the 13 most
selected features (Figure 4B) were the same features selected
for the binary classification (Figure 4A). This supports the
considerations about the higher regularity of the signals pro-
duced by the PV cases compared to the extra-PV cases. The
PV cases have been shown more regular than the extra-PV
LA, and even more regular than the RA cases owing to fewer
anatomical constraints starting from the PV cases and ending
with the RA cases. These observations corroborate our previ-
ous studies.30,40 Some of the features are different between
the 2 sets, and more features are required to solve the 3-
class classification, since this represents a consecutive
approach more complex than the binary one. Therefore,
different information may be required to perform this
discrimination task. Accordingly, more features were needed
to characterize the increasingly irregular activity generated
by the 3 classes, starting from the PVs class up to the RA
class. This was the case with sOI and SE, which showed
significantly lower and higher values from class PVs to class
RA, respectively. However, some features differing between
the 2 classification approaches did indeed measure similar
characteristics of the signal (and were very correlated), so
they could be interchangeable, ie, the average eigenvalue
l7 and the average ratio R7 from the 3-class and binary

classification, respectively. Both these parameters analyze
the variability of PC 7 over time, but R7 emphasizes this vari-
ability more than l7.

AF driver localization
Previous works have considered ECGs to classify AF from
sinus rhythm,19,48 or to automatically diagnose multiple
types of abnormal heart beats.20,49 To the best of our knowl-
edge, ours represents the first study to use the 12-lead ECG
directly for automatic and noninvasive discrimination of
the location of AF drivers to guide clinical decision-making
and procedure planning (electroanatomical mapping
required? LA access required?).

The high performance on the simulated dataset achieved
for PV vs extra-PV AF driver classification with old-out
cross-validation indicates the potential of using the features
extracted in this work to identify the location of the sustaining
AF mechanism using only the noninvasive 12-lead ECG sig-
nals. The classifier trained in the computational framework
was subsequently tested on a clinical dataset, each consisting
of 12-lead ECGs acquired from 46 patients (23 labeled as PV
class, and 23 as extra-PV class). The G-mean of 78.1%
reached on the clinical test set suggests that such a noninva-
sive classification might provide valuable complementary in-
formation in clinical practice. The specificity of 82.6% and
PPV of 80.9% indicate the algorithm’s robustness in identi-
fying the extra-PV cases, suggesting that a PVI-only
approach (eg, using a cryoballoon) might not be sufficient
in these patients to treat AF. Instead, physicians may choose
an ablation technology that is able to detect non-PV trigger
(eg, electroanatomic mapping and additional extra-PVI ra-
diofrequency ablation). Also, the sensitivity of the classifier
is comparably high (73.9%), indicating robustness of the
classifier in identifying the cases where PVI is sufficient to
terminate or convert the arrhythmia (PV class). In these cases,
direct cryoablation without prior mapping might suffice to
treat the patient. In addition, the consistency test performed
on the ECG set of clinical data extracted from the same pa-
tients confirmed the nonrandomness of the classification im-
plemented in this project, matching 93.5% of the results
between the 2 sets (only 3 more cases were misclassified in
the second analysis than in the first one, 2 belonging to the
PV class and 1 to the extra-PV class).

The 3-class classifier demonstrated the potential of this
machine learning approach to identify the atrial position of
the mechanisms sustaining AF even more deeply. The G-
mean metric was only slightly lower than the binary classifi-
cation G-mean (75.1% vs 85.3%). The 3-class approach
could provide important information regarding the need to
perform a transseptal access to the LA during the electro-
physiologic study or whether catheter access to the RA
should suffice.

Influence of torso and atrial geometries
From the literature, it is known that the atrial models used to
generate ECG signals can have a strong influence on the
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signals themselves, likely introducing a bias in machine
learning approaches based on simulated training data.36

Such anatomical bias can lead to a misclassification of the
signals generated from unseen atrial geometries. Therefore,
in the present study, we focused on features that are not prone
to be affected by the specific torso and atria models used to
simulate the AF mechanisms. We used a multi-lead feature-
extraction approach to avoid focusing on a single lead, ie, a
specific projection of cardiac activity, which could be
strongly influenced by atrial geometry and orientation. As
such, it is easier for the multi-lead approach to generalize
well. The LOAO and LOTO analyses confirmed the good
generalization properties of our classifier regarding unseen
atrial and torso models.

Limitations
The simulated AF drivers used to train the machine learning
classifiers in this study are limited to stable long-standing ro-
tors and focal sources. Thus, the classifier was not specif-
ically trained to localize other drivers such as multi-wavelet
reentry,50,51 meandering rotors,52 or intramural reentry.53

Moreover, in silico analysis of acute PVI success in this study
may not lead to the same results in clinical practice because of
the presence of remodeled tissue. Nevertheless, the perfor-
mance on the clinical data containing in vivo AF drivers
was not markedly lower as on the synthetic dataset.

The AF episodes were simulated with atria-only models
without the ventricles. Thus, the QRS-T complex was absent
from our simulated signals. Nevertheless, the removal of
QRS-T complex and its replacement with a sigmoid function,
as done here, or other forms of QRS-T cancellation54 has
proven to robustly extract the f-wave component from the
clinical 12-lead ECG, so that the signals can be analyzed
by our classifier without relevant disturbance from ventricle
activity. Further refinements of the synthetic dataset could
focus on including heterogeneous atrial wall thickness55,56

or extending the dataset to cover even more anatomical torso,
atrial,57 and conduction velocity variability.

Three-second-long signals were simulated and used to
train the classifier implemented in this study for computa-
tional limitations. As an outlook, a test of the classifier with
clinical signals of a longer length could be performed to
verify the robustness of the classifier.

A decision tree was chosen as a machine learning classi-
fier for its simplicity. However, other classification algo-
rithms could be optimized and tested to investigate more
robust methods (eg, support vector machines or artificial neu-
ral networks; Supplemental Material).

To strengthen the statistical power, the classifier could be
prospectively applied on further clinical data. Clinical signal
labeling (PV and extra-PV classes) was done retrospectively
at acute PVI success (termination of AF or conversion to
atrial flutter). Nevertheless, there is no exact information
about the AF driver mechanisms and their positions. There-
fore, the ground truth of the clinical dataset between the
extra-PV LA and RA classes could not be labeled. In a

follow-up study, the predictive power of the classifier should
be tested regarding recurrence of AF after PVI (long-term
PVI outcome).

Conclusion
The results presented in this study show that (1) a machine
learning classifier to distinguish between AF drivers located
in the PVs vs in other atrial regions is feasible (82.6% spec-
ificity, 73.9% sensitivity on a clinical dataset using 12-lead
ECG; 93.5% of results matching on a set of different ECG
segments extracted from the same 46 patients for a consis-
tency analysis); (2) classifiers trained on simulated data for
which the ground truth is known can generalize well to un-
seen clinical data; (3) AF drivers identified in the PVs could
be considered to be treated with cryoballoon PVI without
prior time-consuming and costly electroanatomic mapping;
(4) AF drivers identified in extra-PV areas using the ECG
are unlikely to terminate or convert upon PVI. Prospective
studies are needed to confirm points 3 and 4.

As such, a machine learning–based classifier leveraging
the routinely available noninvasive ECG signal could prove
to be valuable for clinical decision-making and increase
personalization of therapy.
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Abstract 26 

Aims: Atrial fibrillation (AF) and heart failure often co-exist. Early identification of AF 27 

patients at risk for AF-induced heart failure (AF-HF) is desirable to reduce both morbidity and 28 

mortality as well as health care costs. We aimed to leverage the characteristics of beat-to-beat-29 

patterns in AF to prospectively discriminate AF patients with and without AF-HF. 30 

Methods: A dataset of 10,234 5-minute length RR-interval time series derived from 26 AF-31 

HF patients and 26 control patients was extracted from single-lead Holter-ECGs. A total of 14 32 

features were extracted, and the most informative features were selected. Then, a decision tree 33 

classifier with 5-fold cross-validation was trained, validated, and tested on the dataset randomly 34 

split. The derived algorithm was then tested on 2,261 5-min segments from six AF-HF and six 35 

control patients and validated for various time segments. 36 

Results: The algorithm based on the spectral entropy of the RR-intervals, the mean value 37 

of the relative RR-interval,	and	the	root mean square of successive differences of the relative 38 

RR-interval yielded an accuracy of 73.5%, specificity of 91.4%, sensitivity of 64.7%, and PPV 39 

of 87.0% to correctly stratify segments to AF-HF. Considering the majority vote of the 40 

segments of each patient, 10/12 patients (83.33%) were correctly classified. 41 

Conclusion: Beat-to-beat-analysis using a machine learning classifier identifies patients 42 

with AF-induced heart failure with clinically relevant diagnostic properties. Application of this 43 

algorithm in routine care may improve early identification of patients at risk for AF-induced 44 

cardiomyopathy and heart failure. 45 

 46 

Keywords 47 

Atrial fibrillation; Heart failure; Machine learning; ECG; RR intervals; Diagnostic tool.  48 
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What’s New?  49 

- Novel diagnostic algorithm for atrial fibrillation-induced cardiomyopathy and AF-50 

mediated heart failure with reduced ejection fraction (HFrEF); 51 

- Feature identification to predict atrial fibrillation complication; 52 

- Machine learning algorithm using non-invasive and short single-lead ECG signals 53 

- Determination of daytime as best circadian time for signal acquisition and diagnosis of 54 

atrial fibrillation-induced heart failure 55 

- Personalized patient care treatment for early diagnosis and management of heart failure 56 

in patients with atrial fibrillation with potential reduction of cardiovascular mortality 57 

- Potential application to a variety of wearables and pocket ECG monitors  58 
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1 Introduction 59 

Atrial fibrillation (AF), and heart failure share many common risk factors, predispose to 60 

each other, and often coexist (1). AF can occur concomitantly with heart failure without 61 

causative relation, and restoration of sinus rhythm in these patients results in only modest 62 

improvements of left ventricular systolic dysfunction (LVSD). In a potentially large subset of 63 

patients with AF, and heart failure however, sinus rhythm restoration leads to drastic 64 

improvements or normalization of LVSD (2–5) within days to weeks.  65 

It is currently not fully understood why certain patients develop severe heart failure 66 

symptoms, and LVSD during AF (AF-induced heart failure; AF-HF). Current guidelines 67 

emphasize the importance of AF in this context, and recommend routine clinical follow-up in 68 

AF patients to recognize cardiac deterioration early (6). Given the ever-increasing prevalence 69 

of AF in the European population, easily applicable screening tools to identify patients at risk 70 

are desirable to tailor patient care, and reduce costs for health care systems. 71 

We hypothesize that specific patterns of ventricular beat-to-beat variations, and arrhythmia 72 

characteristics in AF are associated with the clinical phenotype of AF-HF, potentially enabling 73 

early identification of susceptible patients.   74 

 75 

2 Methods 76 

This prospective observational study was approved by the local institutional review board, 77 

and patients gave informed consent. Inclusion criteria were persistent or longstanding persistent 78 

AF with left ventricular ejection fraction in AF ≤40% determined using biplane Simpson 79 

method averaged over three consecutive beats, absence of left- or right-sided significant 80 

valvulopathies (moderate or severe), and absence of relevant coronary artery disease as 81 

evidenced using coronary angiography or non-invasive imaging within 12 months of screening. 82 
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Patients younger than 18 years, and those with a history of ischemic heart disease requiring 83 

revascularization with or without myocardial infarction were excluded.  84 

 85 

2.1 Study protocol 86 

All study participants underwent standard 12-lead ECG, 24h Holter single-lead ECG, and 87 

transthoracic echocardiography within 24h from study inclusion. Patients with LVEF ≤40% 88 

were scheduled for electro-cardioversion on the next working day, and underwent additional 89 

follow-up including echocardiography at day 40. Those patients who experienced an absolute 90 

improvement of LVEF of 15% or more within 40 days in sinus rhythm were considered to have 91 

AF-HF, and remained in the study for further analysis. Patients who either experienced AF-92 

recurrence within 40 days from cardioversion or who experienced an improvement in LVEF of 93 

<15% despite sinus rhythm were excluded from this study. Patients with LVEF >50% in AF 94 

were considered as control group (CTR). A total of 52 patients were included in the final 95 

analysis: 26 patients with AF-HF, and 26 CTR. The primary endpoint was the determination, 96 

and validation of an algorithm to identify AF-HF patients from 5-minute Holter ECG segments 97 

recorded during daytime (8 AM to 10 PM). Secondary endpoints were the performance of the 98 

feature set for nighttime (10 PM to 8 AM), and full-day times (8 AM to 8 AM). 99 

 100 

2.2 ECG data extraction 101 

Consecutive RR-intervals (RR) were extracted from the single-lead 24h Holter ECG raw 102 

data set using the Cardioday software (Getemed Medizintechnik, Teltow, Germany). Relative 103 

RR-intervals (relRR) were calculated as a percentage of the current RR-interval N with respect 104 

to the previous RR-interval N-1. Based on the conventional short-term recording standards (7), 105 

intervals were grouped in segments of 5 minutes each, resulting in a total of 10,234 segments. 106 

2,104 AF-HF and 2,301 CTR daytime segments (recorded between 8 AM to 10 PM) were 107 
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analyzed. Moreover, a full-day set, and a night set (from 10 PM to 8 AM) were analyzed to 108 

check the circadian differences in performance. The full-day set comprised 5,266 segments in 109 

the AF-HF group, and 4,968 segments in the CTR group, whereas the night set comprised 3,162 110 

AF-HF, and 2,667 CTR segments.  111 

 112 

2.3 Feature extraction 113 

Fourteen features were extracted from the signals (8 from RR, and 6 from relRR series) 114 

using several clinical heart rate variability (HRV), and advanced biosignal processing 115 

parameters to derive information regarding the regularity, and complexity of the time series: 116 

the mean RR, and mean relRR intervals (𝑅𝑅****, and 𝑟𝑒𝑙𝑅𝑅********), time between all adjacent heartbeats; 117 

the standard deviation of the RR, and relRR intervals (𝑆𝐷𝑅𝑅, and 𝑆𝐷𝑅𝑅012) to measure how 118 

these intervals vary over time; the root mean square of successive differences between 119 

heartbeats (𝑅𝑀𝑆𝑆𝐷44 , and 𝑅𝑀𝑆𝑆𝐷01244) reflecting the beat-to-beat variance in heart rate (HR) 120 

(8); the deceleration capacity (𝐷𝐶) providing a measure of cardiac vagal modulation; the 121 

deceleration reserve (𝐷𝑅) to measure the balance between deceleration, and acceleration 122 

capacity emphasizing asymmetric growing, and decaying HR trends, and non-stationarity (9); 123 

the Shannon entropy of the RR, and relRR series (𝑆ℎ𝑎𝑛𝐸𝑛44, and 𝑆ℎ𝑎𝑛𝐸𝑛01244) to assess the 124 

complexity of the signals based on information theory; the sample entropy (𝑆𝑎𝑚𝑝𝐸𝑛44 , and 125 

𝑆𝑎𝑚𝑝𝐸𝑛01244) measuring the complexity of the time series (8); and spectral entropy 126 

(𝑆𝑝𝑒𝑐𝐸𝑛44 , and 𝑆𝑝𝑒𝑐𝐸𝑛01244) indicating the spectral complexity of these time series (10). 127 

More information regarding the feature extraction methods are provided in the Supplementary 128 

Material. 129 

 130 
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2.4 Feature selection & evaluation 131 

A greedy forward selection technique was implemented to select the optimal feature set 132 

out of the 14. This algorithm started with an empty feature set and added, in each iteration, the 133 

feature which led to the highest classification performance increase assessed using the accuracy 134 

of a decision tree classifier (see section 2.4 for details about the classifier). The algorithm 135 

stopped when performance based on the validation set (subset of data utilized to tune the 136 

algorithm’s parameters) could not be further increased. Candidate features to be added to the 137 

set were only added if the correlation coefficient with any of the already included features was 138 

< 0.6. The correlation threshold was optimized looking for the best compromise between 139 

redundant information, and physiological explanation. 140 

Shapley calculation was implemented to analyze a posteriori the importance of the 141 

features selected for classification once the model was trained (11). The Shapley calculation 142 

was run 1000 times with random samples to calculate the standard deviation (SD). 143 

 144 

2.5 Machine-learning classification 145 

A decision tree classifier was implemented for binary classification (AF-HF vs. CTR) for 146 

the daytime set. The decision tree algorithm was selected due to its simplicity and 147 

explainability. The decision tree was trained, and applied using the MATLAB functions 148 

fitctree, and predict, respectively. 149 

The multi-feature classification was performed with the feature set selected as described 150 

in section 2.4. 5-fold cross-validation was performed by randomly dividing the dataset into a 151 

training set, validation set, and test set with 32, 8, and 12 patients in each set, respectively 152 

(Figure 1). Training, and validation sets were recalculated at each iteration while the test set 153 

was excluded, and used only once on the final classifier. The final classifier was obtained by 154 

re-training it with all the data (training + validation sets). This approach allowed us not to 155 
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include RR series from the same patient in different sets, and not to use the test set during 156 

algorithm development, thus avoiding overfitting on the data. The classes were always balanced 157 

between the two groups, however for shrewdness the Prior model parameter in the MATLAB 158 

fitctree function was set to uniform. Sensitivity, specificity, and positive predictive value (PPV) 159 

were calculated considering the AF-HF group as positive, and the CTR group as negative. 160 

Moreover, a decision tree single-feature classification was implemented with each 161 

individual feature of the set to compare their individual classification power against that of the 162 

multi-feature classifier. 163 

Regarding the full-day set, and the nighttime set, we first computed classifiers using the 164 

feature set extracted for the daytime set. Then, we implemented two new classifiers where the 165 

feature sets were optimized for the full-day, and nighttime set by greedy selection (see Section 166 

2.4), respectively.  167 

 168 

2.6 Statistical analysis 169 

Statistical analysis was performed using SPSS version 25.0 for macOS (IBM Corporation, 170 

Armonk, New York), or GraphPad Prism version 8 for macOS (GraphPad Software, La Jolla, 171 

California). Normally distributed data are expressed as mean±SD, skewed data are expressed 172 

as median (interquartile range). Intergroup comparisons were performed using student’s t-test, 173 

or Mann-Whitney-test depending on normality.  174 

Classifier performance was evaluated using accuracy (ACC), sensitivity, specificity, and 175 

PPV. Accuracy was also calculated for each individual patient in the test set (ACCi, with i as 176 

test set patient ID, Table 2) by counting how many segments belonging to the same patient were 177 

correctly classified with respect to their total number. 178 

The comparison between the feature distributions, and AF-HF, and CTR groups was done 179 

using the Wilcoxon rank sum test (one-tailed, p-values <0.05 considered significant). 180 
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 181 

3 Results 182 

3.1 Patient characteristics 183 

A total of 52 patients (26 with AF-HF and 26 CTR) were included in the study. 184 

Descriptive data of study participants are given in Table 1. Patients with AF-HF had higher 185 

NYHA stages, higher average heart rates, and were more often on ACE inhibitors and 186 

aldosterone antagonists, as well as on antiarrhythmics.  187 

 188 

3.2 Feature selection and algorithm performance to detect atrial fibrillation-induced heart 189 

failure 190 

Splitting the longitudinal Holter ECG data into intervals of five minutes each, and 191 

selecting only segments recorded during daytime (8AM to 10 PM) resulted in a total of 4,405 192 

segments (2,104 segments for AF-HF and 2,301 segments for CTR). Greedy forward selection 193 

on these data led to a feature set composed of three out of the 14 features extracted in total: 194 

𝑆𝑝𝑒𝑐𝐸𝑛44, 𝑟𝑒𝑙𝑅𝑅********,	and	𝑅𝑀𝑆𝑆𝐷01244. Evaluation of the relative contribution of each feature to 195 

the overall classification demonstrated the highest contribution for 𝑆𝑝𝑒𝑐𝐸𝑛44,	 followed	by	196 

𝑟𝑒𝑙𝑅𝑅********	and	𝑅𝑀𝑆𝑆𝐷01244	(Figure 2).  197 

Application of the decision tree classifier with this feature set on the patients in the test 198 

set (475 AF-HF, and 525 CTR 5-minute segments from six AF-HF, and six CTR patients, 199 

respectively) yielded an overall accuracy to correctly assign a given 5-minute segment to AF-200 

HF or CTR of 73.5%, with a specificity of 91.4%, sensitivity of 64.7%, and PPV of 87.0% 201 

(Figure 3). When applying a 50% threshold on the fraction of segments correctly classified for 202 

a given patient, 10 out 12 patients (83.3%) were correctly assigned to AF-HF or CTR (6/6 203 

patients in the CTR group and 4/6 in the AF-HF group; Figure 3). The accuracy achieved for 204 

each individual patient in the daytime test set is given in Table 2.  205 
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 206 

3.3 Circadian performance differences on the classification 207 

The decision tree classifiers derived from Holter recordings during daytime as described 208 

above (𝑟𝑒𝑙𝑅𝑅********, 𝑅𝑀𝑆𝑆𝐷01244 , and 𝑆𝑝𝑒𝑐𝐸𝑛44) yielded an accuracy of only 56.5% when applied 209 

on all available 5-minute-segments (recorded between 8 AM, and 8 AM the next day, n=2,261), 210 

and 49.3% for segments recorded during nighttime (10 PM to 8 AM, n=1,261).  211 

An optimized feature set for all segments (recorded between 8 AM, and 8 AM the next 212 

day) based on the greedy forward selection was composed of 10 features out of the 14 extracted 213 

(𝑆ℎ𝑎𝑛𝐸𝑛44, 𝑅𝑀𝑆𝑆𝐷01244, 𝑆ℎ𝑎𝑛𝐸𝑛01244,	𝑅𝑅****,	𝐷𝑅,	𝑆𝑎𝑚𝑝𝐸𝑛44,	𝑆𝑝𝑒𝑐𝐸𝑛44,	𝐷𝐶,	𝑆𝑝𝑒𝑐𝐸𝑛01244,	214 

and	𝑆𝐷𝑅𝑅). The classifier retrained on this optimized feature set yielded an improved accuracy 215 

on all segments of the test set of 60.5%, specificity, and sensitivity of 64.2%, and 57.3%, 216 

respectively, and a PPV of 62.2%. With respect to the total number of segments for each patient, 217 

10/12 patients (83.3%) were classified correctly (5/6 CTR patients, and 5/6 AF-HF patients, 218 

table in the Supplementary Material). 219 

Optimization for segments recorded during nighttime (10 PM to 8 AM) led to a feature 220 

set that comprised four features out of the 14 extracted features (𝐷𝐶,	𝑆𝐷𝑅𝑅,	𝑆𝑝𝑒𝑐𝐸𝑛01244,	and	221 

𝑅𝑀𝑆𝑆𝐷01244). The classifier retrained on this optimized feature set yielded a nighttime test set 222 

accuracy	of	50.4%, specificity of 47.6%, sensitivity of 53.2%, and PPV of 50.7%, and 7/12 223 

patients (58.3%) were classified correctly (3/6 CTR patients, and 4/6 AF-HF patients). The 224 

difference in accuracy between the three different classifiers is visually shown in the 225 

Supplementary Material, whereas an overview of the performance that the decision tree 226 

classifier achieved in the different datasets using the respective feature sets is shown in Figure 227 

4. 228 

 229 
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4 Discussion 230 

 The current study reports three main findings: First, patients with AF-HF differ from 231 

CTR patients without heart failure with regard to heart beat entropy (𝑆𝑝𝑒𝑐𝐸𝑛44) and beat-to-232 

beat variation (𝑟𝑒𝑙𝑅𝑅********, and 𝑅𝑀𝑆𝑆𝐷01244) during AF. Second, incorporation of these individual 233 

features in a machine learning algorithm correctly stratifies a majority of test patients to AF-234 

HF or CTR. Third, circadian analysis of algorithm performance demonstrates superior 235 

discriminative properties during daytime.  236 

 237 

4.1 Heart rate in AF and development of LVSD – the fast and the furious? 238 

Epidemiological studies demonstrate that heart failure and atrial fibrillation predispose to 239 

each other, and often co-exist (12). AF may worsen heart failure symptoms in patients with 240 

various underlying cardiomyopathies such as ischemic or valvular heart disease (“AF-241 

associated” cardiomyopathy), or serve as the only causative reason for LVSD (AF-HF). The 242 

pathophysiology of AF-HF is not entirely understood, and proposed mechanisms include 243 

immunological alterations (13) as well as abnormalities in energy metabolism or calcium 244 

handling (14).  245 

Rapid ventricular heart rates during AF are often being associated with AF-HF. As such, 246 

rapid atrial pacing is a common model to induce LVSD in animals, and heart rate control was 247 

shown to be non-inferior to rhythm control in older heart failure trials (15). However, average 248 

heart rates below 100 bpm in AF may equally lead to severe forms of AF-HF (2), demonstrating 249 

that heart rate alone is likely not a suitable discriminator for AF-HF in clinical practice.  250 

In the current study, we investigated various features that describe entropy, variability 251 

but also beat-to-beat heart rate in patients with AF-HF. The most important features for 252 

discrimination of patients with AF-HF from CTR patients were all related to entropy and 253 

variability (𝑆𝑝𝑒𝑐𝐸𝑛44 , 𝑅𝑀𝑆𝑆𝐷01244 , and 𝑟𝑒𝑙𝑅𝑅********), while the mean heart rate (𝑅𝑅****) did not differ 254 
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between groups. This finding is in line with the clinical observation that arrhythmia-induced 255 

heart failure occurs not only in the context of chronic tachycardia but also with frequent 256 

premature atrial or ventricular contractions (14).  257 

 258 

4.2 Machine-learning for patient stratification 259 

For the current study, fourteen features commonly used for the analysis of heart rate 260 

variability and regularity were extracted from 5-minute RR-series segments. The 5-minute 261 

intervals were chosen following the recommendation given by the European Society of 262 

Cardiology and the North American Society of Pacing and Electrophysiology regarding the 263 

standardization of physiological and clinical studies (7). The decision tree classifiers for binary 264 

classification of AF-HF vs. CTR achieved a clinically useful specificity and positive predictive 265 

value of 91.4% and 87.0%, respectively, using only three features (𝑆𝑝𝑒𝑐𝐸𝑛44 , 𝑟𝑒𝑙𝑅𝑅********, and 266 

𝑅𝑀𝑆𝑆𝐷01244). The most important contribution to the algorithm’s performance was given by 267 

𝑆𝑝𝑒𝑐𝐸𝑛44  (Figure 2), with lower 𝑆𝑝𝑒𝑐𝐸𝑛44  values corresponding to decreased spectral 268 

complexity (the number of frequencies of which the signal is composed) in patients with AF-269 

HF.  270 

Remarkably, the abovementioned features that were automatically selected for the 271 

classifier are relatively novel, and the scientific literature reporting on their application in 272 

patients with AF is scarce. In this context, spectral entropy was previously shown to predict 273 

outcomes in AF patients, and to discriminate between persistent, and long-standing AF (16). In 274 

patients with sinus rhythm, analysis of spectral entropy was successfully used to discriminate 275 

healthy patients from patients with heart failure (17). In line with our findings, heart failure in 276 

this study was associated with lower a spectral entropy.  277 

𝑟𝑒𝑙𝑅𝑅******** has been proposed as a robust, simple, and reliable measure of heart rate 278 

variability, aiming to overcome the shortcomings of conventional measures of HRV, with 279 
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𝑅𝑀𝑆𝑆𝐷01244  being a direct derivative (18). 𝑟𝑒𝑙𝑅𝑅******** was successfully applied in machine learning 280 

algorithms to differentiate atrial fibrillation from sinus rhythm (19). To our knowledge, the 281 

current study is the first clinical evaluation of the performance of these parameters for 282 

stratification of AF-induced heart failure.  283 

In contrast to the good performance of the algorithm when derived from, and applied to 284 

RR-intervals recorded during the day, application of the algorithm to data recorded at nighttime 285 

performed significantly worse even after optimization of the feature set. It is possible that 286 

influences of for example physical activity, or autonomic nervous tone, and the concentration 287 

of catecholamines in serum are pronounced during the day and blunted at night, although the 288 

current study does not allow to draw causative relations in this context. 289 

 290 

5 Future Perspective 291 

Current clinical guidelines (6) emphasize the association of heart failure, and AF both 292 

during the initial diagnostic workup for new-onset AF, as well as during follow-up: they request 293 

a baseline echocardiogram in patients with new-onset AF, and they recommend regular clinical 294 

follow-up for the development of heart failure in patients with known AF. The algorithm 295 

reported in the current study may be particularly useful for the latter part, i.e., detection of 296 

LVSD in patients with AF. Due to its high specificity, and positive predictive value, it can act 297 

as an indicator, and trigger for prompt clinical follow-up to detect, and manage heart failure 298 

early, and potentially reduce mortality (20). In this context, the general applicability of the 299 

algorithm to all kinds of 5-minute samples of RR intervals without the need for more than one 300 

lead (such as data derived from pulse wave analysis, oximetry derived heart rate or single-lead 301 

smart watch recordings) might enable the translation to a variety of wearables, and pocket ECG 302 

monitors.  303 

 304 
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6 Limitations 305 

The current study was restricted to the analysis of beat-to-beat intervals that were extracted 306 

from a single-lead ECG. This approach is however potentially also applicable to any device 307 

offering beat-to-beat annotations of the cardiac cycle, which may include widely applicable 308 

devices such as e.g. photo-plethysmography in smart phones although this will require 309 

additional validation.  310 

 311 

7 Conclusion 312 

The current work demonstrates that machine learning with the simple input of beat-to-beat 313 

intervals from a single-lead ECG allows discriminating AF patients with, and without AF-314 

induced heart failure with diagnostic properties that are immediately clinically applicable. 315 

Given the ever-increasing prevalence of AF, the algorithm described in this study may allow in 316 

the future to identify patients who require cardiological care earlier, and render the clinical 317 

follow-up more cost-effective. 318 
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Tables 407 

Table 1: Descriptive patient characteristics 408 
 

All AF-HF CTR 
 

 
n=52 n=26 n=26 p-value 

Age (years) 68.3 (11.7) 70.48 (11.83) 66.3 (11.54) 0.204 
Male sex 26 (50) 18 (69.2) 17 (65.5) 1.000 
BMI (kg/m2) 29.1 (4.9) 29.59 (5.84) 28.74 (4.03) 0.416 
Systolic blood pressure (mmHg)  135.7 (21.1) 132.4 (22.66) 139 (19.25) 0.264 
Diastolic blood pressure 
(mmHg) 

87.42 (13.1) 85.81 (13.77) 89.04 (12.49) 0.380 

NYHA stages 
   

<0.001 
NYHA I 8 (15) 1 (3.8) 7 (26.9) 

 

NYHA II 10 (19) 2 (7.7) 8 (30.8) 
 

NYHA III 19 (36.5) 9 (34.6) 10 (38.5) 
 

NYHA IV 15 (28.8) 14 (53.8) 1 (3.8) 
 

Diabetes  7 (13.5) 0 (0) 7 (26.9) 0.01 
Hypertension  35 (67) 17 (65.4) 18 (69.2) 1.000 
Hyperlipidemia  26 (50) 12 (46.2) 14 (53.8) 0.782 
Medications 

    

ß Blocker  37 (71) 19 (73.1) 18 (69.2) 1.000 
ACE Inhibitors 22 (42.3) 16 (61.5) 6 (23.1) 0.011 
ATRA 10 (19.2) 4 (84.6) 6 (76.9) 0.726 
Aldosteron 14 (26.9) 12 (46.2) 2 (7.7) 0.004 
Diuretics  21 (40.4) 13 (50) 8 (30.8) 0.160 
Digoxin 2 (3.8) 0 (0) 2 (7.7) 0.490 
Antiarrhythmics (class 1c and   
class 3 cumulative) 

19 (36.5) 16 (61.5) 3 (11.5) <0.001     

Echocardiography 
    

LVEF 44.8 (15.9) 29.25 (6.78) 59.15 (2.64) <0.001 
LVESD (mm) 39 (9.9) 45.67 (8.78) 31.9 (4.75) 0.004 
LVEDD (mm) 52 (7.0) 55.48 (7.80) 49.92 (5.03) <0.001 
LAD (mm) 45 (6.4) 48.54 (4.86) 42.38 (6.4) <0.001 
LAV (mm) 96.4 (27.4) 106.84 (18.13) 75.6 (31.17) 0.002 
LAVI (ml/kg/BW)  49 (9.6) 51.94 (7.35) 42.38 (11.47) 0.017 

Body mass index (BMI), New York Heart Association (NYHA), angiotensin converting enzyme (ACE), 409 
all-trans retinoic acid (ATRA), left ventricular ejection fraction (LVEF), left ventricular end-systolic 410 
diameter (LVESD), left ventricular end-diastolic diameter (LVEDD), left atrial diameter (LAD), left 411 
atrial volume (LAV), left atrial volume index (LAVI). Values are given as mean (± standard deviation) 412 
or number (%). 413 
 414 
 415 
 416 
 417 
 418 
 419 
 420 
 421 
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Table 2: Number of segments and accuracy for each individual patient in the test set (%) for the 422 
daytime dataset. Patients who were correctly classified over all segments (ACC_Pi > 50%) are 423 

highlighted in green. Patients who got misclassified over all segments (ACC_Pi < 50%) are 424 
highlighted in red. 425 

Test set patient ID No. of segments Class ACC_Pi 

1 72 AF-HF 76.19 
2 77 AF-HF 56.10 

3 85 AF-HF 57.14 
4 64 AF-HF 81.43 
5 78 AF-HF 43.80 

6 99 AF-HF 17.81 
7 85 CTR 85.39 
8 88 CTR 92.13 

9 112 CTR 96.34 
10 78 CTR 97.06 
11 96 CTR 93.59 
12 66 CTR 85.19 

  426 
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Figures 427 

 428 

 429 

Figure 1: Flow chart showing the dataset division of the 52 patients’ signals into training, validation, 430 
and test sets, respectively. The number of all 5-min segments acquired from the patients is reported as 431 

well. 432 

 433 

Figure 2: Shapley feature importance calculation on the three features selected for the daytime binary 434 
classification AF- HF vs. CTR. The Shapley calculation was run 1000 times with random samples to 435 

calculate the SD (error bars in the plot). 436 

 437 
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 438 

 439 

  440 

Figure 3: A. Visual representation of the number of segments in the test set that were correctly classified 
for both CTR and AF-HF groups (91.4%, and 64.7% of the segments correctly classified for each group, 
respectively). B. Visual representation of the number of individual patients in the test set that were 
correctly classified for both CTR and AF-HF groups (100%, and 83.3% of the patients correctly 
classified for each group, respectively). The red dots represent segments/patients misclassified; the 
green dots represent segments/patients correctly classified. 
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 441 

Figure 4: Overview of the decision tree classifier performance on the optimal feature sets selected 442 
from the different datasets utilized in this work. 443 
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Chapter 6
Summary, outlook, and

conclusion

In this thesis, two major studies were presented. In both, simulated electrocardiogram (ECG)
signals were computed to extend a clinical dataset, or substitute it, for the implementation
of novel methods applicable in clinical practice. These methods enabled the extraction
of information related to atrial flutter (AFlut) and atrial fibrillation (AFib) activities. The
underlying algorithms, and the results obtained by using them, were discussed and compared
to existing approaches in detail in Chapter 4 and 5. In the first presented project, two new
recurrence quantification analysis (RQA) methods have been implemented to derive useful
features for discriminating different AFlut mechanisms: individual component RQA, and
spatial reduced RQA. These two methods were implemented and tuned on simulated data
and tested on clinical data. The results obtained showed that some of the RQA features
have the potential to discriminate between AFlut mechanisms. In particular, the focal source
mechanisms showed to be significantly deterministic and laminar in contrast to microreentries.
The first three principal components derived from the 12-lead ECG demonstrated the presence
of relevant small or major changes in the dynamic structure of these AFlut phenomena. The
proof of concept of the methods on simulated data also matched the clinical data results [22].
However, a thorough analysis of the influence of the atrial and torso geometries used for the
simulations needed to be performed, thus to avoid the algorithm’s failure on clinical data due
to overfitting to simulated data. Poor performance in analyzing the influence of atrial models
(classification accuracy of 59.8% with leave-one-atrium-out approach) demonstrated how
fundamental it is to build in silico studies on a large number of atrial geometries in order to
produce a faithful representation of atrial ECG variability as the one seen in clinical practice.
In contrast, high performance achieved for the torso models’ influence analysis (classification
accuracy of 89.0% with leave-one-torso-out approach) showed that a large number of torso
models is not necessarily required in the simulation framework. The torso models do not
have a significant influence on the resulting ECG during AFlut in contrast to atrial models,
indeed [23]. Considering the findings obtained from the previous two studies, the final AFlut
study was then conducted. A machine learning algorithm capable of discriminating three
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different macro categories of AFlut has been implemented (cavotricuspid isthmus-dependent,
peri-mitral, and other left atrium AFlut mechanisms). New simulations were performed
using a large number of atrial geometries (100). In addition, the classifier was trained using
a hybrid approach (simulated plus clinical data). Thus, overfitting on the simulated data and
on the atrial geometries used was drastically reduced. The final accuracy of 82.2% obtained
on a small clinical database demonstrated how this approach is capable of identifying the
location of AFlut mechanisms relying only on non-invasive signals (i.e., 12-lead ECG) [24].
The final results obtained from the latter two works also confirmed that F-wave duration is a
key feature for AFlut discrimination.

In the second project, the identification of the AFib drivers located near the pulmonary
veins (PVs) has been performed using the 12-lead ECGs. An automated learning algorithm
trained only on in silico ECGs was successful in the underlying discrimination on a clinical
dataset yielding a test set specificity of 82.6%, and sensitivity of 73.9%. Moreover, 93.5%
of the predictions matched between two different sets of ECG segments extracted from the
same patient for a consistency analysis. The successful use of computational simulations
in support of clinical data, or in total replacement of them, proved the true potential of
simulations in clinical practice. Moreover, analysis of the success of some common ablation
procedures (i.e., PV isolation (PVI), roof line, and mitral isthmus ablation) to terminate AFib
conferred more value to the implemented classification. 100% of PVI ablations on AFib
drivers located near PVs resulted in acute termination of the arrhythmia. In contrast, the
combination of all three ablation procedures almost never terminated the arrhythmia for AFib
drivers located in other areas than the PVs (12.5% of the cases). Thus, the algorithm, besides
localizing the location of the AFib drivers, can also predict the acute success of PVI in
terminating the arrhythmia [25]. Another key, but still unresolved, issue with AFib is its link
to some even more serious cardiovascular diseases such as heart failure, and cardiomyopathy,
which led us to the last study in this thesis. A decision tree classifier using RR-interval
series extracted from 1-lead ECG Holter signals showed that there are patterns allowing the
discrimination of AFib cases inducing heart failure in respect to AFib cases without this
induction (classification accuracy, and specificity of 73.5%, and 91.4%, respectively). In
AFib-induced heart failure cases predicted by the algorithm, the physicians are advised to
proceed with cardiological care as soon as possible (e.g., applying cardioversion) to reduce
the risk of such complication [26]. The implemented algorithm is currently under patenting
process.

Future projects could be developed from this thesis and its limitations. Recurring themes
in almost all the works presented in this thesis are the synergy between machine learning and
computer simulations. Both aspects hold great potential for future development. Simulated
12-lead ECG signals were used in 4 out of 5 studies described in this thesis [22–25]. These
in silico ECGs were composed by only P-waves (F-wave and f-wave for AFlut and AFib,
respectively). The QRS-T complexes were missing due to the absence of the ventricles in the
implemented simulations. Each algorithm was tested on clinical data for providing a proof of
their effectiveness and clinical applicability. However, the use of ventricles and therefore the
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creation of an ECG covering one full heartcycle would make the pre-processing of clinical
data easier, being able to directly use the raw signals for feature extraction. In addition, other
relevant information could be extracted from QRS-T complexes.

The simulations produced in this thesis were generated from a limited number of atrial
and torso geometries. Initially, for modeling reasons: Our institute was provided of a limited
number of anatomical models due to the complexity and time these models require to be
developed. Then, after the creation of an atrial statistical shape model [115], time constraints
limited the implementation of a bigger cohort of data. In the future, new simulations are
expected to be generated from an increasing number of atrial and thoracic geometries derived
from their respective shape models, so that an increasingly large and variable dataset of
AFlut/AFib scenarios can be created. The anisotropy ratios is another parameter that could
be additionally modified to increase size of the datasets. Moreover, concerning both AFlut
and AFib scenarios, different types of mechanisms could be included in the work. Regarding
AFlut, other mechanisms besides the 20 that were implemented in the studies presented in
this thesis could be added, following the clinical prevalence indications and statistics. As
well, stable long-standing rotors and focal sources have been simulated for AFib, therefore
other drivers such as multi-wavelet reentry [126, 127], meandering rotors [128], or intramural
reentry [129] could be included in the analysis.

In general, the problem of lack of properly labeled clinical data, and thus without verified
ground truth, is the biggest issue in signal processing and machine learning applied to
biomedical engineering. For this reason, more detailed data acquisition protocols should be
planned. Any signal acquisition in conjunction with an invasive cardiac activity mapping
system should be succeeded by accurate labeling by the physicians.

Feature-based machine learning methods were used in this thesis. Convolutional neural
networks (CNNs) are becoming more and more popular in ECG processing, e.g., for arrhyth-
mia classification [130]. The obtained results often outperform classical approaches. The
classification of several AFlut mechanisms using CNN on body surface potential (BSPM)
map videos was tested during Linder’s master thesis (see section 6) performed in the course
of this project. Although the results were not superior to the performance obtained with the
algorithms described in this thesis, new future tests with deep learning approaches and ECG
or BSPM could be implemented.

Discrimination of AFlut, and AFib drivers could be implemented with finer localization.
Regarding AFlut more classes to discriminate could be tested. Regarding AFib, other AF
driver areas could be differentiated instead of a general extra-PV AFib driver class (e.g., left
atrial appendage area). In addition, a discrimination of which AFib driver was localized
(whether a rotor, or a focal source) could be implemented (preliminary analyses in this regard
have been investigated in Bernhart’s and Nitzke’s bachelor’s theses during this project - see
section 6).

In a follow-up study of the AFib drivers localization, the predictive power of the classifier
should be tested regarding long-term recurrence of AFib after PVI (PVI outcome).
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The general aims of this thesis were to support and accelerate diagnosis and therapy plan-
ning to improve the patient outcome by using knowledge from real data and simulations. In
this thesis, important aspects of human atrial patho-electrophysiology have been investigated
using computational models and clinical data. This work investigated the ECG signals on
the body surface. The studies presented in this thesis advanced the state of the art in machine
learning using in silico and clinical data of atrial patho-electrophysiology in several aspects.
Novel methods to extract features from the signals, to quantify the influence of the models
on the ECGs, to discriminate the location of the arrhythmia driving mechanisms, to predict
the risk of AFib complication, and to foresee the success of ablation/cardioversion therapy to
terminate the arrhythmia were presented. Summing up, this thesis presents methods paving
the way to tailor AFib and AFlut therapy. By translating the methods and insights into
clinical practice, appropriate and more efficient therapy can be applied in a shorter time. In
this way, the socio-economical costs of AFib/AFlut, the individual patient’s burden, and
the invasive procedure time to terminate the arrhythmia can be reduced eventually, whereas
better planning of the therapies, and a personalized treatment might improve the patient’s
outcome.
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Non-Invasive Characterization of Atrial Flutter
Mechanisms Using Recurrence Quantification
Analysis on the ECG: a Computational Study
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Fig. S1. Definition of ε for icRQA on PCS 1. A. RR for varying choices of ε.
B. Different scenarios’ RR with the selected threshold of 0.05 as highlighted
in A. The threshold highlighted in A is the selected value. It is the value with
the best compromise between: the resulting RR - not too high compared to
the recommended 1%; the portion of maximum phase space diameter - not
exceed 10%; and the discrimination between the 20 AFl scenarios shown in
B and in Table S1.

Fig. S2. Definition of the minimum diagonal line length for icRQA determin-
ism on PCS 1. A. DET for varying choices of minimum diagonal line length.
B. Different scenarios’ DET with the selected minimum diagonal line length
of 13, as highlighted in A. The minimum diagonal line length highlighted in
A is the selected one. It is the value with the best compromise between: the
resulting values - not too high to avoid undesirable saturation behavior; and
the discrimination between the 20 AFl scenarios shown in B and in Table S2.
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TABLE S1
AUCROC FOR THE DISCRIMINATION BETWEEN 20 AFL SCENARIOS CONSIDERING ICRQA-RR AS DISCRIMINATOR (MEAN±SD)

% of max phase
space distance 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

PCS1 0.609±0.068 0.606±0.071 0.607±0.071 0.608±0.069 0.609±0.067 0.609±0.066 0.610±0.065 0.609±0.064 0.608±0.063 0.605±0.062
PCS2 0.615±0.091 0.613±0.096 0.611±0.094 0.610±0.090 0.668±0.102 0.664±0.097 0.660±0.092 0.658±0.089 0.655±0.086 0.653±0.083
PCS3 0.660±0.123 0.659±0.119 0.659±0.117 0.658±0.116 0.658±0.114 0.656±0.112 0.655±0.111 0.653±0.110 0.652±0.109 0.650±0.108

TABLE S2
AUCROC FOR THE DISCRIMINATION BETWEEN 20 AFL SCENARIOS CONSIDERING ICRQA-DET AND ICRQA-LAM AS DISCRIMINATOR (MEAN±SD)

Min line PCS 1
length 7 8 9 10 11 12 13 14 15 16

DET 0.622±0.076 0.622±0.076 0.623±0.078 0.624±0.080 0.625±0.081 0.623±0.082 0.624±0.083 0.622±0.084 0.621±0.085 0.620±0.085
LAM 0.658±0.101 0.662±0.105 0.665±0.106 0.667±0.106 0.665±0.107 0.664±0.107 0.663±0.107 0.661±0.106 0.659±0.106 0.655±0.108

Min line PCS 2
length 7 8 9 10 11 12 13 14 15 16

DET 0.617±0.104 0.619±0.106 0.620±0.106 0.620±0.107 0.622±0.107 0.622±0.106 0.624±0.106 0.624±0.106 0.624±0.107 0.625±0.107
LAM 0.646±0.121 0.652±0.121 0.654±0.121 0.656±0.121 0.657±0.123 0.658±0.124 0.659±0.125 0.659±0.125 0.660±0.126 0.660±0.124

Min line PCS 3
length 7 8 9 10 11 12 13 14 15 16

DET 0.646±0.122 0.647±0.120 0.649±0.119 0.650±0.117 0.651±0.115 0.651±0.113 0.652±0.112 0.651±0.111 0.651±0.111 0.649±0.111
LAM 0.663±0.139 0.666±0.140 0.668±0.141 0.670±0.140 0.674±0.140 0.676±0.140 0.680±0.139 0.686±0.139 0.694±0.137 0.698±0.136

TABLE S3
AUCROC FOR THE DISCRIMINATION BETWEEN 20 AFL SCENARIOS CONSIDERING SRRQA-RR AS DISCRIMINATOR (MEAN±SD)

% of max phase
space distance 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

2 dim 0.599±0.080 0.599±0.080 0.599±0.081 0.600±0.083 0.601±0.080 0.601±0.080 0.602±0.082 0.603±0.083 0.604±0.080 0.605±0.081
3 dim 0.622±0.086 0.624±0.087 0.625±0.086 0.626±0.086 0.627±0.086 0.627±0085 0.627±0.086 0.627±0.087 0.627±0.086 0.627±0.086
4 dim 0.621±0.088 0.624±0.087 0.625±0.087 0.625±0.087 0.626±0.086 0.627±0.086 0.627±0.085 0.628±0.085 0.628±0.085 0.627±0.085
5 dim 0.620±0.088 0.622±0.087 0.624±0.087 0.625±0.086 0.626±0.086 0.627±0.085 0.628±0.085 0628.±0.085 0.627±0.084 0.627±0.084

TABLE S4
AUCROC FOR THE DISCRIMINATION BETWEEN 20 AFL SCENARIOS CONSIDERING SRRQA-DET AND SRRQA-LAM AS DISCRIMINATOR(MEAN±SD)

Min line
length 2 3 4 5 6 7 8 9 10

DET 0.637±0.106 0.635±0.104 0.638±0.107 0.639±0.110 0.640±0.109 0.638±0.111 0.639±0.111 0.639±0.109 0.640±0.106
LAM 0.614±0.096 0.624±0.107 0.626±0.104 0.629±0.107 0.631±0.106 0.631±0.107 0.630±0.105 0.628±0.104 0.628±0.103
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Fig. S3. Definition of the minimum vertical line length for icRQA laminarity
on PCS 1. A. LAM for varying choices of minimum vertical line length. B.
Different scenarios’ LAM with the selected minimum vertical line length of
10, as highlighted in A. The minimum vertical line length highlighted in A
is the selected one. It is the value with the best compromise between: the
resulting values - not too high to avoid undesirable saturation behavior; and
the discrimination between the 20 AFl scenarios shown in B and in Table S2.

Fig. S4. Definition of ε for icRQA on PCS 2. A. RR for varying choices of ε.
B. Different scenarios’ RR with the selected threshold of 0.05 as highlighted
on A. The threshold highlighted in A is the selected value. It is the value with
the best compromise between: the resulting RR - not too high compared to
the recommended 1%; the portion of maximum phase space diameter - not
exceed 10%; and the discrimination between the 20 AFl scenarios shown in
B and in Table S1.

Fig. S5. Definition of the minimum diagonal line length for icRQA determin-
ism on PCS 2. A. DET for varying choices of minimum diagonal line length.
B. Different scenarios’ DET with the selected minimum diagonal line length
of 16 as highlighted on A. The minimum diagonal line length highlighted in
A is the selected one. It is the value with the best compromise between: the
resulting values - not too high to avoid undesirable saturation behavior; and
the discrimination between the 20 AFl scenarios shown in B and in Table S2.

Fig. S6. Definition of the minimum vertical line length for icRQA laminarity
on PCS 2. A. LAM for varying choices of minimum vertical line length. B.
Different scenarios’ LAM with the selected minimum vertical line length of
11 as highlighted on A. The minimum vertical line length highlighted in A
is the selected one. It is the value with the best compromise between: the
resulting values - not too high to avoid undesirable saturation behavior; and
the discrimination between the 20 AFl scenarios shown in B and in Table S2.
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Fig. S7. Definition of ε for icRQA on PCS 3. A. RR for varying choices of ε.
B. Different scenarios’ RR with the selected threshold of 0.05 as highlighted
on A. The threshold highlighted in A is the selected value. It is the value with
the best compromise between: the resulting RR - not too high compared to
the recommended 1%; the portion of maximum phase space diameter - not
exceed 10%; and the discrimination between the 20 AFl scenarios shown in
B and in Table S1.

Fig. S8. Definition of the minimum diagonal line length for icRQA determin-
ism on PCS 3. A. DET for varying choices of minimum diagonal line length.
B. Different scenarios’ DET with the selected minimum diagonal line length
of 13 as highlighted on A. The minimum diagonal line length highlighted in
A is the selected one. It is the value with the best compromise between: the
resulting values - not too high to avoid undesirable saturation behavior; and
the discrimination between the 20 AFl scenarios shown in B and in Table S2.

Fig. S9. Definition of the minimum vertical line length for icRQA laminarity
on PCS 3. A. LAM for varying choices of minimum vertical line length. B.
Different scenarios’ LAM with the selected minimum vertical line length of
8 as highlighted on A. The minimum vertical line length highlighted in A
is the selected one. It is the value with the best compromise between: the
resulting values - not too high to avoid undesirable saturation behavior; and
the discrimination between the 20 AFl scenarios shown in B and in Table S2.
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Fig. S10. The effect of different AFl scenarios in the icRQA. The RPs created for the PCS 1 calculated from the 12-lead ECGs extracted from the same
atria and torso combination for the all AFl mechanisms - from sc1 to sc12.
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Fig. S11. The effect of different AFl scenarios in the icRQA. The RPs created for the PCS 1 calculated from the 12-lead ECGs extracted from the same
atria and torso combination for the all AFl mechanisms - from sc13 to sc20.
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Fig. S12. The effect of different AFl scenarios in the icRQA. The RPs created for the PCS 2 calculated from the 12-lead ECGs extracted from the same
atria and torso combination for the all AFl mechanisms - from sc1 to sc12.
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Fig. S13. The effect of different AFl scenarios in the icRQA. The RPs created for the PCS 2 calculated from the 12-lead ECGs extracted from the same
atria and torso combination for the all AFl mechanisms - from sc13 to sc20.
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Fig. S14. The effect of different AFl scenarios in the icRQA. The RPs created for the PCS 3 calculated from the 12-lead ECGs extracted from the same
atria and torso combination for the all AFl mechanisms - from sc1 to sc12.
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Fig. S15. The effect of different AFl scenarios in the icRQA. The RPs created for the PCS 3 calculated from the 12-lead ECGs extracted from the same
atria and torso combination for the all AFl mechanisms - from sc13 to sc20.
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Fig. S16. icRQA variables calculated from the PCS 1 for the 20 different AFl scenarios. A. RR variable. B. Variables related to diagonal lines. C. Variables
related to vertical lines.

Fig. S17. icRQA variables calculated from the PCS 2 for the 20 different AFl scenarios. A. RR variable. B. Variables related to diagonal lines. C. Variables
related to vertical lines.
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Fig. S18. Definition of ε for srRQA with several embedding dimension
numbers. A. RR for varying choices of threshold for ε definition with an
embedding dimension d=2. B. RR for varying choices of threshold for ε
definition with an embedding dimension d=4. C. RR for varying choices of
threshold for ε definition with an embedding dimension d=5.

Fig. S19. Definition of ε for srRQA with an embedding dimension d=3. A.
RR for varying choices of threshold for ε definition. B. Different scenarios’
RR with the selected threshold of 0.05, as highlighted in A. The threshold
highlighted in A is the selected value. It is the value with the best compromise
between: the resulting RR - not too high compared to the recommended 1%;
the portion of maximum phase space diameter - not exceed 10%; and the
discrimination between the 20 AFl scenarios shown in B and in Table S3

Fig. S20. Definition of the minimum diagonal line length for srRQA
determinism. A. DET for varying choices of minimum diagonal line length.
B. Different scenarios’ DET with the selected minimum diagonal line length
of 6, as highlighted in A. The minimum diagonal line length highlighted in
A is the selected one. It is the value with the best compromise between: the
resulting values - not too high to avoid undesirable saturation behavior; and
the discrimination between the 20 AFl scenarios shown in B and in Table S4.
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Fig. S21. Definition of the minimum vertical line length for srRQA laminarity.
A. LAM for varying choices of minimum vertical line length. B. Different
scenarios’ LAM with the selected minimum vertical line length of 7, as
highlighted in A. The minimum vertical line length highlighted in A is
the selected one. It is the value with the best compromise between: the
resulting values - not too high to avoid undesirable saturation behavior; and
the discrimination between the 20 AFl scenarios shown in B and in Table S4.

126 Appendix A. Appendix



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. , NO. , MONTH 2019 14

Fig. S22. The effect of different AFl scenarios in the srRQA. The RPs created using two different PCS (PCS 1 above, PCS 2 on the left) as dimensions for
the all AFl mechanisms - from sc1 to sc12.
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Fig. S23. The effect of different AFl scenarios in the srRQA. The RPs created using two different PCS (PCS 1 above, PCS 2 on the left) as dimensions for
the all AFl mechanisms - from sc13 to sc20.
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1 Feature extraction methods 

Table 1: List of extracted features. 

1.𝐴𝑈𝑃𝑆𝐷𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 2. 𝐴𝑈𝑃𝑆𝐷𝑟𝑉1 3. 𝐹𝐶𝐼̅̅ ̅̅ ̅ 4.  𝐹𝐶𝐼𝑚𝑖𝑛 5. 𝐹𝐶𝐼𝑚𝑎𝑥 6. 𝑂𝑀𝑂̅̅ ̅̅ ̅̅ ̅ 

7.𝑂𝑀𝑂𝑚𝑖𝑛  8-16.𝑊𝐿𝑋
𝑖̅̅ ̅̅ ̅̅  17-19. 𝑅𝑅

𝑖𝑐𝑅𝑄𝐴𝑃𝐶𝑖
 20-22. 𝐷𝑖𝑐𝑅𝑄𝐴𝑃𝐶𝑖

 23-25. 𝐿𝑖𝑐𝑅𝑄𝐴𝑃𝐶𝑖
 26-28. 𝑇𝑖𝑐𝑅𝑄𝐴𝑃𝐶𝑖

 

29-31. 𝐸𝑉𝐿
𝑖𝑐𝑅𝑄𝐴𝑃𝐶𝑖

 32-34. 𝐸𝐷𝐿
𝑖𝑐𝑅𝑄𝐴𝑃𝐶𝑖

 35. 𝑅𝑠𝑟𝑅𝑄𝐴
𝑅  36. 𝐷𝑠𝑟𝑅𝑄𝐴 37. 𝐿𝑠𝑟𝑅𝑄𝐴 38. 𝑇𝑠𝑟𝑅𝑄𝐴 

39. 𝐸𝑠𝑟𝑅𝑄𝐴
𝑉𝐿  40. 𝐸𝑠𝑟𝑅𝑄𝐴

𝐷𝐿  41. 𝑃𝑙 42-44. 𝑅𝑛𝑖 45-54. 𝑆𝑦𝐷𝑦𝑖  55-59. 𝑆𝑦𝐷𝑦𝑋 

60-65. 𝑆𝑦𝐷𝑦XY 66. 𝑆𝑦𝐷𝑦𝑆𝐸  67-76.  𝐷𝐶𝑇𝑖  77. 𝐹𝑤𝐷   
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1.1 Area under power spectrum density ratio 

The area under the power spectrum density ratio describes the portion of power into 

frequency components composing the signal around the dominant frequency compared to the 

totality of the spectrum. The power spectrum density was calculated for each of the 12-lead 

ECGs by Fourier transform, and the respective dominant frequency was derived. The area under 

the power spectrum density ratio (𝐴𝑈𝑃𝑆𝐷𝑟) was calculated by making the ratio between the 

𝐴𝑈𝑃𝑆𝐷 in the range 0Hz - 2 times the dominant frequency (𝐷𝐹) and the 𝐴𝑈𝑃𝑆𝐷𝑟 of the total 

spectrum for each lead. The extracted 𝐴𝑈𝑃𝑆𝐷𝑟̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝐴𝑈𝑃𝑆𝐷𝑟𝑉1  features are the mean 𝐴𝑈𝑃𝑆𝐷𝑟 

over the leads, and the 𝐴𝑈𝑃𝑆𝐷𝑟 of lead V1, respectively (feat. 1-2 in Table 1). 

1.2 Fragmented conduction index 

The fragmented conduction index (𝐹𝐶𝐼) is the sum of the number of relative maxima and 

minima of the signals. The 𝐹𝐶𝐼 was calculated for each of the 12-lead ECGs. The extracted 

𝐹𝐶𝐼̅̅ ̅̅ ̅, 𝐹𝐶𝐼𝑚𝑖𝑛, and 𝐹𝐶𝐼𝑚𝑎𝑥 features are the mean, the minimum, and the maximum 𝐹𝐶𝐼 values 

over the leads, respectively (feat. 3-5 in Table 1) [1]. 

1.3 Optimal model order 

The optimal model order (𝑂𝑀𝑂) represents the number of Gaussian functions needed to 

fit the signals. The 𝑂𝑀𝑂 was extracted for each of the 12-lead ECGs following the description 

in Censi et al. [1]. The extracted 𝑂𝑀𝑂̅̅ ̅̅ ̅̅ ̅ and 𝑂𝑀𝑂𝑚𝑖𝑛 features are the mean, and the minimum 

𝑂𝑀𝑂 values over the leads, respectively (feat. 6-7 in Table 1). 

1.4 Wavelet analysis 

Multilevel stationary wavelet decomposition was applied on each of the 12-lead ECGs 

[2]. The 5th, 6th, and 7th decomposition levels were used as signals to extract the following 

features: Mean over the leads of the sum of the number of relative maxima and minima of the 

wavelet signals (𝑊𝐿1
𝑖̅̅ ̅̅ ̅̅ ); Standard deviation over the leads of the sum of the number of relative 
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maxima and minima of the wavelet signals (𝑊𝐿2
𝑖̅̅ ̅̅ ̅̅ ); Mean over the leads of the prominence of 

the wavelet signals (𝑊𝐿3
𝑖̅̅ ̅̅ ̅̅ ). The prominence was calculated using the output parameter peak 

prominences of the findpeaks MATLAB function. Features 𝑊𝐿𝑋
𝑖̅̅ ̅̅ ̅̅ , with i being the number of 

decomposition level and X being one of the three features previously described (feat. 8-16 in 

Table 1). 

1.5 Individual component recurrence quantification analysis 

From the 12-lead ECGs, the first three principal components (PCs) were extracted 

(representing more than 99% of the total variability of the ECGs). An individual component 

recurrence quantification analysis (𝑖𝑐𝑅𝑄𝐴) was applied on each of the first three PCs. 

Following a previous work from Luongo et al., the extracted parameters were: determinism 

(𝐷𝑖𝑐𝑅𝑄𝐴𝑃𝐶𝑖
), entropy of the diagonal lines (𝐸𝐷𝐿

𝑖𝑐𝑅𝑄𝐴𝑃𝐶𝑖
), recurrence rate (𝑅𝑅

𝑖𝑐𝑅𝑄𝐴𝑃𝐶𝑖
), laminarity 

(𝐿𝑖𝑐𝑅𝑄𝐴𝑃𝐶𝑖
), trapping time (𝑇𝑖𝑐𝑅𝑄𝐴𝑃𝐶𝑖

), and entropy of the vertical lines (𝐸𝑉𝐿
𝑖𝑐𝑅𝑄𝐴𝑃𝐶𝑖

), with i 

being the number of PC (feat. 17-34 in Table 1) [3]. 

1.6 Spatial reduced RQA 

A spatial reduced RQA (𝑠𝑟𝑅𝑄𝐴) was applied on a state space reconstructed with the first 

three PCs that were used as dimensions. The extracted parameters were: determinism (𝐷𝑠𝑟𝑅𝑄𝐴𝑑
), 

entropy of the diagonal lines (𝐸𝑠𝑟𝑅𝑄𝐴
𝐷𝐿 ), recurrence rate (𝑅𝑠𝑟𝑅𝑄𝐴

𝑅 ), laminarity (𝐿𝑠𝑟𝑅𝑄𝐴), trapping 

time (𝑇𝑠𝑟𝑅𝑄𝐴), and entropy of the vertical lines (𝐸𝑠𝑟𝑅𝑄𝐴
𝑉𝐿 ) (feat. 35-40 in Table 1) [3]. 

1.7 Planarity & roundness 

The vectocardiogram (VCG) was calculated from the 12-lead ECGs using the Dower’s 

inverse transformation, and the 3-D VCG vector loops were used as state space plots for 

planarity and roundness features extraction. From the VCG loops, the optimal plane that best 

interpolates the VCG representation was derived. Next, the distance from the plane that 

interpolates each VCG loop with the optimal plane was calculated. These distances were 
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averaged across the loops to derive the feature 𝑃𝑙 (feat. 41 in Table 1). 𝑃𝑙  equal to 0 means 

that the VCG activity was perfectly planar. In addition, from the 3-D VCG, 1-D VCGs on the 

XY, YZ, and ZX planes were used to extract roundness features respectively. For each of the 

three Cartesian planes, the feature roundness was calculated by deriving the optimal 

circumference that interpolates the VCG representation on all loops. Then the correlation 

between each VCG loop and the optimal circumference was calculated. These correlations were 

averaged across loops to derive the feature  𝑅𝑛𝑖, with i being referring to the XY, YZ, and ZX 

Cartesian planes, respectively (feat. 42-44 in Table 1). 𝑅𝑛𝑖 is a 0-1 values, where 𝑅𝑛𝑖 equal to 

1 means that the VCG activity was perfectly rounded. 

1.8 Symbolic dynamic 

The VCG was calculated from the 12-lead ECGs using the Dower’s inverse 

transformation, and the three VCG signals were aligned in a single signal 

(VCGXY+VCGYZ+VCGZX) used for symbolic dynamic features extraction. The new VCG 

signal was cut into 10 segments over time of equal length. For each segment the mean value 

was extracted obtaining the  𝑆𝑦𝐷𝑦𝑖  features, with i being the segment number (feat. 45-54 in 

Table 1).  Each of the 10 segments was then divided into 5 equal-sized amplitude sections. 

Based on the section in amplitude where the mean value of each segment was located over time, 

a symbol was assigned to the respective segment (T, H, Z, L, and B if the mean value was 

located in the first, second, third, fourth, or fifth section in descending order of amplitude). The 

number of T, H, Z, L, and B symbols present along the segments were counted, leading to the 

features 𝑆𝑦𝐷𝑦𝑋, with X being the assigned symbol (feat. 55-59 in Table 1). The number of TT, 

LZ, LL, LB, BL, and BB symbol sequences present were also derived and extracted as 𝑆𝑦𝐷𝑦XY 

features, with XY being the symbol sequence (feat. 60-65 in Table 1). In addition, the Shannon 

entropy of the symbol sequences was computed and used as a  𝑆𝑦𝐷𝑦𝑆𝐸 feature (feat. 66 in Table 

1). 
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1.9 Discrete cosine transform 

The VCG was calculated from the 12-lead ECGs using the Dower’s inverse 

transformation, and the three VCG signals were aligned in a single signal 

(VCGXY+VCGYZ+VCGZX) used for discrete cosine transform (DCT) [4]. The first 10 DCT 

coefficients were used as   𝐷𝐶𝑇𝑖 features, with i being the number of coefficients (feat. 67-76 

in Table 1). 

1.10 F-wave duration 

The F-wave (flutter wave, P-wave during the atrial flutter - AFlut) duration (𝐹𝑤𝐷) is the 

duration time of a complete cycle of atrial electrical activation of each specific AFlut 

mechanism, i.e., the length of the F-wave in the ECG signal (the feature was manually derived; 

feat. 77 in Table 1). 

2 Feature set 

The 18 features selected with the greedy forward selection technique were: 𝐹𝑤𝐷,  𝑆𝑦𝐷𝑦𝐻, 

 𝑆𝑦𝐷𝑦𝐿,  𝑆𝑦𝐷𝑦𝐵,  𝑆𝑦𝐷𝑦𝑍,  𝑆𝑦𝐷𝑦𝑇𝑇 ,  𝑆𝑦𝐷𝑦𝐿𝑍,  𝑆𝑦𝐷𝑦𝐿𝐿,  𝑆𝑦𝐷𝑦𝐵𝐿, 𝑂𝑀𝑂𝑚𝑖𝑛, 𝑂𝑀𝑂̅̅ ̅̅ ̅̅ ̅, 𝐷𝐶𝑇7, 𝐷𝐶𝑇8, 

𝐷𝐶𝑇9, 𝑊𝐿3
5̅̅ ̅̅ ̅̅ , 𝑊𝐿3

6̅̅ ̅̅ ̅̅ , 𝐹𝐶𝐼𝑚𝑖𝑛, and 𝐸𝑉𝐿
𝑖𝑐𝑅𝑄𝐴𝑃𝐶3

. 

3 Feature importance analysis 

Shapley calculation was implemented to analyze a posteriori the importance of the 18 

features selected for the 3-class classification (CTI-dependent AFlut vs. peri-mitral AFlut vs. 

others LA AFlut) once the model has been trained [5]. The Shapley calculation has been run 

1000 times with random samples to calculate the standard deviation (SD). In Figure 1 we can 

see the Shapley values (the contribution that each feature gives to the classification). We can 

observe that 10 features gave a positive contribution to the classification, 5 features gave an 

average null contribution, and 3 features gave a slightly negative contribution (it was expected, 

being all good features). However, the negative features have not been removed from the 
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feature set since the removal of such features a posteriori could have brought to overfitting on 

the model.  

In Figure 2 the distribution of the values of the 4 most important features is shown. 

 

Figure 1: Shapley feature importance calculation on the 18 features selected for the 3-class 

classification CTI-dependent AFlut vs. peri-mitral AFlut vs. others LA AFlut. The Shapley calculation 

has been run 1000 times with random samples to calculate the SD (error bars in the plot). 
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Figure 2: Boxplots of the 4 features identified as most important ones by the Shapley evaluation. The 

brackets with the asterisk indicate the significantly different features. 
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Table 1: List of extracted features.
1. H0 2. σ2

H0
3. H1 4. σ2

H1
5. H2 6. σ2

H2
7. DVCG

8. EDL
VCG 9. RR

VCG 10. LVCG 11. TVCG 12. EVL
VCG 13-14. DsrRQAd 15-16. EDL

srRQAd

17-18. RR
srRQAd

19-20. LsrRQAd 21-22. TsrRQAd 23-24. EVL
srRQAd

25-28. RR
idRQAPCi

29-32. DidRQAPCi 33-36. LidQAPCi

37-40. TidRQAPCi 41-44. EVL
idRQAPCi

45-48. EDL
idRQAPCi

49-60. λi 61-72. σλi 73. λPC 74. σλPC

75-86. Ri 87-98. σRi 99. RPC 100. σRPC 101. OI 102. σOI 103. S E
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1. Feature extraction methods1

1.1. Hjort descriptors2

The Hjort descriptors are closely related to the spectral moments. The first3

descriptor, H0, called activity, is defined by the total signal power. The second4

descriptor,H1, called mobility, reflects the dominant frequency of the signal under5

analysis. The third descriptor, H2, is used to define a measure related to half6

of the bandwidth of the signal and is termed complexity [1]. These descriptors7

were evaluated for each ECG lead. The mean values and the variances of these8

parameters over all 12 leads were calculated and used as features (feat. 1-6 in9

Table 1).10

1.2. Recurrence quantification analysis on vectocardiogram11

The vectocardiogram (VCG) was calculated from the 12-lead ECG using the12

Dower’s inverse transformation, and the 3-D VCG vector loops were used as state13

space plots for a further recurrence quantification analysis (RQA) [2]. RQA al-14

lowed to analyse the topological structure of multidimensional dynamical sys-15

tems, giving access to a signal’s intermittency, regularity, and predictability [3]. A16

detailed explanation of the RQA and the respective extractable parameters can be17

found in the work of Marwan et al., [3]. The extracted parameters were: determin-18

ism (DVCG), entropy of the diagonal lines (EDL
VCG), recurrence rate (RR

VCG), laminar-19

ity (LVCG), trapping time (TVCG), and entropy of the vertical lines (EVL
VCG), (feat.20

7-12 in Table 1).21

1.3. spatial reduced RQA22

From the 12-lead ECGs, the first four principal components (PCs) were ex-23

tracted (representing more than 99% of the total variability). The first three PCs,24

2

138 Appendix A. Appendix



and the first four PCs, were used as dimensions (d) of a state space in which a25

spatial reduced RQA (srRQA3 and srRQA4) was applied, respectively [4]. The26

extracted parameters were: determinism (DsrRQAd ), entropy of the diagonal lines27

(EDL
srRQAd

), recurrence rate (RR
srRQAd

), laminarity (LsrRQAd ), trapping time (TsrRQAd ),28

and entropy of the vertical lines (EVL
srRQAd

), (feat. 13-24 in Table 1).29

1.4. individual component RQA30

An individual component RQA (icRQA) was also applied on each of the first31

four PCs calculated from the 12-lead ECGs [4]. The extracted parameters were:32

determinism (DicRQAPCi), entropy of the diagonal lines (EDL
icRQAPCi

), recurrence rate33

(RR
icRQAPCi

), laminarity (LicRQAPCi), trapping time (TicRQAPCi), and entropy of the ver-34

tical lines (EVL
icRQAPCi

), with i being the number of PC, (feat. 25-48 in Table 1).35

1.5. Ratio PCA eigenvalues36

The 12-lead ECGs were divided in 3 segments of the same length (i.e., 1 s con-37

sidering the total length of each ECG of 3 s). For each segment j, the eigenvalues38

(λi, j) corresponding to the spatial principal component analysis (PCA) compo-39

nents over the 12 leads were extracted. From the λi, j, also the ratio was calculated:40

Ri, j =
λi, j∑

k,i λk, j
, (1)

with k being the number of PC.41

The features extracted were: the mean λ values and the respective standard de-42

viations for each PC over all segments (λi and σλi); from λi, the mean over the43

12 PCs and the respective standard deviation (λPC and σλPC ); the mean R val-44

ues and the respective standard deviations for each PC over all segments (Ri and45

σRi); from Ri, the mean over the 12 PCs and the respective standard deviation46

3
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(RPC and σRPC ), (feat. 49-100 in Table 1). The idea behind the Ri, j parameter and47

the extracted features was to increase the differences between the eigenvalues to48

achieve a better discrimination due to the variability shown by the PCs over time49

and between them.50

1.6. Organization index51

The organization index (OI) was used as a measure of atrial fibrillation spatio-52

temporal organization, and it was computed as follows. The spectrum of each53

12-lead ECGs was calculated. The areas under the five largest peaks of each54

spectrum were computed using a 1 Hz frequency interval centred on each peak.55

The OI was then defined as the ratio of the area under these five peaks to the total56

spectrum area [5] for each lead. The feature extracted were: the mean OI and57

the respective standard deviation over the leads (OI and σOI), (feat. 101-102 in58

Table 1).59

1.7. Spectral entropy60

The spectral entropy (SE) of a signal is a measure of its spectral power dis-61

tribution. The concept is based on the Shannon entropy, or information entropy,62

in information theory. The SE treats the signal’s normalized power distribution63

in the frequency domain as a probability distribution, and calculates the Shannon64

entropy of it. The Shannon entropy in this context is the spectral entropy of the65

signal [6]. The SE was calculated for each of the 12-leads with the MATLAB pen-66

tropy function and consecutively averaged along and between leads. The feature67

extracted was the mean SE over the leads (S E), (feat. 103 in Table 1).68

4
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2. Clinical 12-lead ECG69

Figure 1: Examples of 12-lead ECGs from four representative clinical patients for the 2 classes

(extra-PV class, left; PV class, right).

3. Alternative machine learning algorithm approaches70

In this work, we focused on the implementation of a decision tree classifier for71

binary classification (AF drivers located at the PVs vs. extra-PV drivers) due to72

its simplicity and explainability. However, several machine learning approaches73

have been trained and tested (i.e., linear discriminant analysis - LDA, and radial74

5
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basis neural network - rbNN). The implementation and optimization of the clas-75

sifiers followed the same procedure as described in the main text of this work for76

the decision tree (Section 2.5).77

The binary LDA classifier achieved a G-Mean of 76.4±12.8% on the in silico78

test set with a sensitivity of 88.3±3.7%, a specificity of 66.1±17.1% on the sim-79

ulated dataset (PV considered as the positive class). On the first unseen clinical80

dataset, the classifier achieved 71.7% G-Mean with a sensitivity of 69.6%, a speci-81

ficity of 73.9%, and PPV of 72.7%. On the second clinical dataset the classifier82

achieved 68.4% G-Mean with a sensitivity of 69.6%, a specificity of 65.2%, and83

PPV of 66.6%.84

The binary rbNN classifier achieved a G-Mean of 86.8±10.1% on the in sil-85

ico test set with a sensitivity of 96.2±4.5%, a specificity of 78.4±16.3% on the86

simulated dataset (PV considered as the positive class). On the first unseen clin-87

ical dataset, the classifier achieved 78.1% G-Mean with a sensitivity of 69.6%, a88

specificity of 86.9%, and PPV of 84.2%. On the second clinical dataset the clas-89

sifier achieved 69.6% G-Mean with a sensitivity of 69.6%, a specificity of 69.6%,90

and PPV of 69.6%.91

4. Feature importance analysis92

Shapley calculation was implemented to analyze a posteriori the importance93

of the 11 features selected for the binary PV vs. extra-PV classification once the94

model has been trained. In Fig. 2 we can see the Shapley values (the contribution95

that each feature gives to the classification). We can observe that the features gave96

all a positive contribution to the classification apart from two features that gave a97

slightly negative contribution (it was expected, being all good features). However,98

6
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the negative features have not been removed from the feature set since the removal99

of such features a posteriori could have brought to overfitting on the model.100

Figure 2: Shapley feature importance calculation on the 11 features selected for the binary classi-

fication PV vs. extra-PV AF drivers location.

5. Multivariate regression analysis101

Multivariate regression analysis performed between the variables LVEF, LAD,102

renal dysfunction, sex, age, and our classifier (Table 2).103

7
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Table 2: Multivariate regression analysis.

Regression coefficient B Standard error Wald df Significance Hazard ratio

Age -0.069 0.055 1.575 1 0.210 0.934

Sex 0.557 1.114 0.251 1 0.617 1.746

LAD -0.090 0.106 0.720 1 0.396 0.914

LVEF -3.104 7.444 0.174 1 0.677 0.045

Renal dysfunction 1.982 1.216 2.655 1 0.103 7.256

Classifier 2.468 1.252 3.887 1 0.049 11.795

Constant 7.929 8.415 0.888 1 0.346 2777.043

6. Consistency analysis104

A consistency analysis was implemented by running the classifier on a new105

ECG set composed of the same 46 patients but different ECG segments than those106

used in the clinical dataset showed in the main manuscript. In Table 3, the confu-107

sion matrix obtained on the "consistency" ECG set.108

Table 3: Confusion matrix of the clinical set of different ECG segments extracted from the same

46 patients for a consistency analysis for PV vs. extra-PV AF driver location classification.

True class

PV extra-PV

Predicted class
PV 16 6

extra-PV 7 17

8
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1 Feature extraction 

Table 1: List of extracted features. 

1.	𝑅𝑅#### 2. 𝑟𝑒𝑙𝑅𝑅######## 3. 𝑆𝐷𝑅𝑅 4.	𝑆𝐷𝑅𝑅)*+ 5.	𝑅𝑀𝑆𝑆𝐷-- 

6. 𝑅𝑀𝑆𝑆𝐷)*+-- 7. 𝐷𝐶 8.	𝐷𝑅 9.	𝑆ℎ𝑎𝑛𝐸𝑛-- 10.	𝑆ℎ𝑎𝑛𝐸𝑛)*+-- 

11. 𝑆𝑎𝑚𝑝𝐸𝑛-- 12. 𝑆𝑎𝑚𝑝𝐸𝑛)*+-- 13. 𝑆𝑝𝑒𝑐𝐸𝑛-- 14.	𝑆𝑝𝑒𝑐𝐸𝑛)*+--  

 

1.1 Beat-to-beat variability metrics 

The mean value, the standard deviation, and the root mean square successive difference 

(𝑅𝑀𝑆𝑆𝐷) of RR and relRR signals are very common clinical metrics that can easily represent 

the beat-to-beat variance in heart rhythm (1-2). The 𝑅𝑀𝑆𝑆𝐷 is a time domain measure of heart 

period variability in heart period series. All these features were calculated for both RR and 

relRR signals (feat. 1-6 in Table 1). 

1.2 Deceleration capacity and reserve 

Deceleration capacity (𝐷𝐶) is computed through the Phase-Rectified Signal Averaging 

technique (PRSA) introduced by Bauer et al. (3), it detects and quantifies quasi-periodic 

oscillations masked by non-periodic components, and artifacts. 𝐷𝐶 aims to provide a measure 

of cardiac vagal modulations. Following Bauer’s approach, the hyperparameters of the methods 

T and s have been set to 1 and 2, respectively. 

Deceleration reserve (𝐷𝑅) emphasizes asymmetric growing and decaying heart rate trends 

and non-stationarity. This parameter is calculated as the sum of the deceleration capacity and 

the acceleration capacity (parameter similar to the 𝐷𝐶, and it is calculated with the PRSA as 

well). 𝐷𝐶 and 𝐷𝑅 were calculated on the RR signals according to Rivolta et al. (4) (feat. 7-8 in 

Table 1). 
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1.3 Entropy features 

The Shannon entropy (𝑆ℎ𝑎𝑛𝐸𝑛) is the measure of the uncertainty of occurrence of certain 

event, or information inherent in the signals’ possible outcomes (5). The 𝑆ℎ𝑎𝑛𝐸𝑛 was 

calculated for the RR and the relRR signals, and the features extracted were the 𝑆ℎ𝑎𝑛𝐸𝑛--, 

and 𝑆ℎ𝑎𝑛𝐸𝑛)*+--  (feat. 9-10 in Table 1). 

Sample entropy (𝑆𝑎𝑚𝑝𝐸𝑛) is a measure of complexity that can be easily applied to any 

type of time series data, including heart rate variability. 𝑆𝑎𝑚𝑝𝐸𝑛 is conceptually similar to 

approximate entropy, but it does not count self-matching, and it depends less on the data size. 

The comparison is shown in the graph above. This property makes it amenable to applications 

with relatively short data size (6). The 𝑆𝑎𝑚𝑝𝐸𝑛 was calculated for the RR and the relRR 

signals, and the features extracted were the 𝑆𝑎𝑚𝑝𝐸𝑛-- , and 𝑆𝑎𝑚𝑝𝐸𝑛)*+--  (feat. 11-12 in Table 

1). The embedding dimension parameter, m, was set to 1, and the tolerance parameter, r, was 

set to 0.2 (percentage applied to the SD). 

The spectral entropy (𝑆𝑝𝑒𝑐𝐸𝑛) of a signal is a measure of its spectral power distribution. 

The concept is based on the Shannon entropy, or information entropy, in information theory. 

The 𝑆𝑝𝑒𝑐𝐸𝑛 treats the signal’s normalized power distribution in the frequency domain as a 

probability distribution, and calculates the Shannon entropy of it. The Shannon entropy in this 

context is the spectral entropy of the signal (7). The 𝑆𝑝𝑒𝑐𝐸𝑛 was calculated for the RR and the 

relRR signals with the MATLAB pentropy. The features extracted were the 𝑆𝑝𝑒𝑐𝐸𝑛-- , and 

𝑆𝑝𝑒𝑐𝐸𝑛)*+--  (feat. 13-14 in Table 1). 
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2 Patient’s test set accuracy 

Table 2: Number of segments and accuracy for each individual patient in the test set (%) for the full-
day/night datasets, respectively. The last column shows which patients got correctly classified over the 

segments (+) and which were misclassified (-). 

Test set patient ID No. segments 
(full-day/night) 

Class ACC_Pi 

(full-day/night) 
Correct 

classification 
(full-day/night) 

1 186/114 AF-HF 54.64/72.73 +/+ 
2 181/104 AF-HF 63.39/54.46 +/+ 

3 190/105 AF-HF 58.03/41.28 +/- 
4 170/106 AF-HF 68.00/52.38 +/+ 
5 188/110 AF-HF 66.23/59.81 +/+ 

6 206/107 AF-HF 30.46/37.62 -/- 
7 177/92 CTR 65.82/60.75 +/+ 
8 188/100 CTR 53.89/38.46 +/- 

9 213/101 CTR 66.30/51.96 +/+ 
10 184/106 CTR 71.75/55.05 +/+ 
11 205/109 CTR 78.70/40.57 +/- 
12 173/107 CTR 48.90/39.60 -/- 
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3 Circadian classifiers’ accuracy 

 

Figure 1: Accuracy of the proposed classifiers for the Full-day, Day, and Night sets, respectively. 
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