
1.  Introduction
Ice-nucleating particles (INPs) are central to the hydrological cycle through their facilitation of the formation of 
ice and mixed-phase clouds at temperatures above approximately −38°C, the threshold for homogeneous freezing 
of micron-sized cloud droplets. The actual homogeneous freezing temperature can vary with cloud cooling rate 

Abstract  Here, we present a multi-season study of ice-nucleating particles (INPs) active via the immersion 
freezing mechanism, which took place in north-central Argentina, a worldwide hotspot for mesoscale 
convective storms. INPs were measured untreated, after heating to 95°C, and after hydrogen peroxide digestion. 
No seasonal cycle of INP concentrations was observed. Heat labile INPs, which we define as “biological” 
herein, dominated the population active at −5 to −20°C, while non-heat-labile organic INPs (decomposed 
by peroxide) dominated at lower temperatures, from −20 to −28°C. Inorganic INPs (remaining after 
peroxide digestion), were minor contributors to the overall INP activity. Biological INP concentration active 
around −12°C peaked during rain events and under high relative humidity, reflecting emission mechanisms 
independent of the background aerosol concentration. The ratio of non-heat-labile organic and inorganic INPs 
was generally constant, suggesting they originated from the same source, presumably from regional arable 
topsoil based on air mass histories. Single particle mass spectrometry showed that soil particles aerosolized 
from a regionally common agricultural topsoil contained known mineral INP sources (K-feldspar and illite) 
as well as a significant organic component. The INP activity observed in this study correlates well with 
agricultural soil INP activities from this and other regions of the world, suggesting that the observed INP 
spectra might be typical of many arable landscapes. These results demonstrate the strong influence of regional 
continental landscapes, emitting INPs of types that are not yet well represented in global models.

Plain Language Summary  The Cloud, Aerosol, and Complex Terrain Interactions campaign 
studied how extreme thunderstorms above the Sierras de Córdoba range of Argentina form in dependence on 
meteorology, local terrain, and particles that feed cloud formation. We studied rare ice nucleating particles, 
which act as seeds for snow crystals (without them, water droplets supercool to above approximately −38°C—
the threshold for homogeneous freezing of micron-sized cloud droplets—before spontaneously freezing). 
This freezing begins the process of rain (starting as snow) and hail precipitation. To measure the numbers 
of atmospheric ice nucleating particles, we filtered air, suspended all collected particles in water and cooled 
aliquots of suspensions until they froze. To characterize their origin, we heated suspensions to deactivate 
biological particles (proteins, fungi, bacteria) and retested freezing. Then we digested with hydrogen peroxide 
to remove all organic molecules (e.g., from windblown soil organic matter) and retested freezing. What 
remained were inorganic ice nucleating particles (e.g., mineral dust). Biological types froze first at −5°C, and 
accounted for most ice nucleating particles down to −20°C. Their concentrations were enhanced by rainfall and 
high humidity. Other organic particles predominated below −20°C, always exceeding the contribution from 
inorganics. These composition and freezing properties suggested most came from regional agricultural soils, 
thus connecting human land activities to regional weather.
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and cloud droplet sizes. The onset of freezing triggers ice phase processes that are responsible for formation of 
the largest proportion of precipitation on Earth, especially over land (Mülmenstädt et al., 2015). They also impact 
radiative forcing by modifying cloud optical properties (DeMott et al., 2010).

In this study, we report on a 7-month survey, from austral spring to mid-fall, of INP measurements at a surface 
site during the Department of Energy, Atmospheric Radiation Measurement user facility's Cloud, Aerosol, and 
Complex Terrain Interactions (CACTI) experiment (Varble et al., 2021). This study took place in 2018/2019 in 
the region over and to the east of the Sierras de Córdoba, part of the Sierra Pampeanas mountain chain that runs 
parallel to the Andes in Northwest Argentina. The Córdoba province lies in one of the hotspots in the world for 
mesoscale convective storms and severe storms (Rasmussen et al., 2014; Zipser et al., 2006). Being surrounded 
by grass and herbaceous plant communities, shrubland, pasture, pine plantation, low forest, arable lands, as well 
as salt flats and one large city to the north, there are many potential sources of particle emissions to be ingested 
by and interact with storms. Winker et al. (2013) identified the region as a consistent source of dust, peaking in 
September to November. Few INP studies have been reported from South America (M. L. López et al., 2018), 
and to our knowledge, only three within this region, specifically within the city of Córdoba (López & Bürgess-
er, 2021; López & Ávila, 2013; López & Ávila, 2016). Since the mix of arable and natural ecotypes represents 
a South American analogy to the United States High Plains region, with higher terrain to the west that plays a 
role in storm generation over a wide region, the study provided the opportunity to examine in detail the sources 
and activation properties of INPs for comparison to other such continental interior regions where warm season 
convective storms occur.

Aerosols of all types can impact deep convective cloud properties, both microphysically as cloud condensation 
nuclei (CCN) and INPs, but also via feedbacks on cloud dynamics. Quantifying these impacts has proven diffi-
cult. Even if restricted to examining single storm systems, aerosol-cloud-precipitation interactions can depend 
on a host of thermodynamic and dynamical factors that include the environmental humidity, vertical wind shear, 
and convective available potential energy (Fan et al., 2009; Khain et al., 2008; Storer et al., 2010; Yu et al., 2007). 
Specific aerosol factors include the vertical location and concentration of total aerosols (Fan et al., 2018; Fridlind 
et al., 2004; Marinescu et al., 2017) and the type of INPs present (van den Heever et al., 2006). Aerosol influences 
on cold pools left from passing storms exert further complex dynamic feedbacks on the organization of mesoscale 
convective systems (Lee et al., 2008a, 2008b; Storer et al., 2010; Storer & Van den Heever, 2013; van den Heever 
& Cotton 2007).

Both the more numerous CCN and the rare INPs impact convective storm cloud microphysics by controlling 
ice evolution in supercooled cloud regions and modifying subsequent precipitation. This occurs via the direct 
impacts of INPs upon primary ice formation, but also via the impact of CCN on droplet size distributions, which 
affects ice crystal riming and the secondary ice formation mechanisms of rime-splintering and droplet shatter-
ing upon freezing (e.g., Field et al., 2017; Keinert et al., 2020; Lauber et al., 2018). Ice crystal numbers and the 
growth of large ice and liquid hydrometeors can further drive ice-ice collisions and secondary breakup (Phillips 
et al., 2017; Sotiripoulou et al., 2021), ice crystal aggregation, and collisions between ice and supercooled rain-
drops. While INPs may represent only 1 in 105 or less of all particles (e.g., typically 1 L−1 at −20°C, out of a total 
of ∼106 particles L−1 in continental regions) they are usually vital in initiating ice as the first step in this complex 
chain of events leading to precipitation.

A variety of aerosols show a range of efficacies as INPs. Commonly acknowledged INPs are certain minerals 
emitted as dust, many of which have been studied in the laboratory (Hoose & Möhler, 2012; Kanji et al., 2017; 
Murray et al., 2012; Ullrich et al., 2017). The general action of mineral INPs as a single class has also been 
examined using field data (DeMott, Hill, et al., 2015; DeMott, Prenni, et al., 2015). Prominent amongst atmos-
pherically relevant minerals is microcline, a specific type of alkali feldspar (K-feldspar), a minor mineral by mass, 
but deemed to be the most efficient for ice nucleation, and the basis for a specific parameterization (Atkinson 
et al., 2013; Harrison et al., 2019) used within global models (Vergara-Temprado et al., 2017). While mineral 
INPs are typically discussed as important contributors only at temperatures below −15°C, few have been quan-
tified over a sufficient range of temperatures and expected atmospheric sizes to be ruled out at any supercooled 
temperature. It is clear from recent studies that occurred in proximity to major desert regions, that dusts emanat-
ing from these regions possess activities as INPs that are greatly enhanced compared to background conditions, 
even at temperatures higher than −15°C (Chen et al., 2021; Price et al., 2018).
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The least well-defined sources, ones that may equal or exceed the combined contributions of mineral and other 
inorganic INPs, are organic INPs that may be intact organisms or their products (e.g., cell-free ice-nucleating 
proteins), or the stable products of decomposition or humification. We will refer to these, respectively, as “bi-
ological” and “other organic” INPs. Biological INPs are often noted as predominating at temperatures above 
−15°C (DeMott & Prenni, 2010; Kanji et al., 2017). Certain species of bacteria and fungi are well known to 
be efficient ice nucleators (see Després et al., 2012; Fröhlich-Nowoisky et al., 2016; Huang et al., 2021), as are 
pollens from a range of tree and grass species (Diehl et al., 2002; Gute & Abbatt, 2020; Pummer et al., 2012). 
However, there are many other potential organic sources, such as from cellular exudates (Hill et al., 2016; Ladino 
et al., 2016; Wilson et al., 2015), biomass burning (McCluskey et al., 2014; Schill et al., 2020), plant tissues (Hill 
et al., 2016; Hiranuma et al., 2019; Suski et al., 2018), sea spray (DeMott et al., 2016; McCluskey et al., 2018), 
and as yet unresolved components within the soil organic matter (Conen et al., 2011; Hill et al., 2016; O’Sullivan 
et al., 2014; Tobo et al., 2014). Air masses arriving from the surrounding diverse rural ecotypes could introduce 
biological and other organic INPs into the CACTI region. Arable lands are expected to be a major source (Garcia 
et al., 2012; Hill et al., 2016, 2018; Suski et al., 2018; Tomlin et al., 2020). Urban aerosols may also be a source 
of organic INPs, though their efficacy as ice nucleators is presently unresolved. Episodic fluxes would be expect-
ed from thunderstorm outflows (Langer et al., 1979) and from the stimulation of INP emissions by precipitation 
and/or high relative humidity (Huffman et al., 2013; López & Ávila, 2016; Prenni et al., 2013; Tobo et al., 2013; 
Wright et al., 2014).

While several mechanisms cause the formation of ice crystals in clouds, immersion freezing of INPs appears to 
be the most relevant process for the mixed-phase region of clouds (de Boer et al., 2011; Kanji et al., 2017; Murray 
et al., 2012), and is especially expected within the updrafts of convective storms that typically have cloud base 
temperatures well exceeding 0°C. For this reason, INP measurements in CACTI focused on immersion freezing. 
Bulk particle samples were collected with filters, and particle resuspensions were processed to determine immer-
sion freezing INP concentrations (DeMott et al., 2018; Suski et al., 2018). Suspensions were measured untreated, 
and also following exposure to physico-chemical treatments to differentiate between the biological, other organic, 
and total inorganic INPs (see Section 2). Measurements of aerosol distributions and meteorology were used to 
investigate the relation between INPs and environment. In particular, laboratory studies of soil dust aerosols 
generated from topsoil from the same soil unit that underlies extensive croplands to the east of the site (DeMott 
et al., 2018; Steinke et al., 2016) have been extended by using single-particle mass spectrometry to characterize 
particle composition and mixing state, to explore the potential relationships to observed INPs.

These analyses were used to evaluate the hypothesis that INPs feeding convective cloud systems over the central 
Argentinian region are dominated by biological particles and other organic ice-nucleating entities that emanate 
from surrounding regions. We also investigate seasonal cycles, the impact of rain upon emissions, what the data 
indicate about the organic and mineral sources of INPs in this region, and relations between INPs and other aer-
osol properties that can inform the development of parameterizations.

2.  Site Description and Methods
2.1.  Regional Landscape and Climate of the CACTI Study Area as Relevant to INP Emissions

The Sierras Pampeanas comprises uplifted basement rocks of the South American continental crust (Steenken 
et al., 2006, 2010), and as such contains igneous and metamorphic rocks of felsic composition, that are enriched 
in the lighter elements such as silicon, oxygen, aluminum, sodium, and potassium. The rocks of the Sierra de 
Córdoba and neighboring Sierra de San Luis consist of large granitoid blocks and schists that had been uplifted 
during the Cretaceous period (145–66 mya) and have eroded into the surrounding lowlands since at least the Ne-
ogene period (23–2.6 mya), but probably much earlier (Bense et al., 2017). Surface sediment in the modern-day 
lowlands consists of Holocene loessical sediments with variable volcanic ash contents (Teruggi, 1957), where 
argillized lithic and feldspar silt-sized fragments from the crystalline basement and detrital illite derived from 
weathered acidic volcanic material have been transported by wind and fluvial action (Bonorino, 1966). A wide-
spread layer of volcanic ash was deposited on the lowlands after the 1932 Quizapu volcano eruption which was 
subsequently tilled into the agricultural soils (Hepper et al., 2006).

The province of Córdoba includes a large diversity of natural landforms and lands modified by human activities. 
Its northwest side is bounded by the eroded Sierras de Córdoba mountain range, while the eastern two-thirds 
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is mostly an intensively farmed plain planted predominantly with corn (Zea mays) and soybean (de Abelleyra 
et  al.,  2019; “Mapa Nacional de Cultivos campaña 2018/2019, INTA”). Roughly 200 km north of the meas-
urement site are the extensive Salinas Grandes salt flats, while to the northeast lies Argentina's largest natural 
salt lake, Laguna Mar Chiquita. Córdoba, Argentina's second-largest city (population ∼1.5 million), lies 90 km 
northeast of the measurement site, and Villa Yacanto, a small town of only ∼1,000 people, is 3 km to its northwest 
(Figure 1).

Córdoba belongs within the Chaco Phytogeographical Province, a large tropical region of central South Amer-
ica that includes semi-arid forest and woodlands, savannas, and shrub/grassland steppes. In the general region 
surrounding the CACTI study, there is mainly Mountain Chaco to the north, and Espinal units to the east (Cabre-
ra, 1976); the natural Espinal forest is now almost entirely lost to agriculture. To the immediate north, west, 
and south of the measurement site, tussock grass and herbaceous plant communities, which can also occur with 
shrubs, predominate (types A and B in Giorgis et al., 2017), as well as mountain Chaco open and low-tall to 
medium-tall shrubland (Cabido et al., 2018). Interspersed between these natural plant communities are areas of 
low-input pasture (Figure S1b in Supporting Information S1) and pine plantation. To the immediate east of the 
site, pasture and open remnants of fire-ravaged pine plantations grade into a mix of mountain Chaco shrubland 
and mountain Chaco low forest overlying an open shrub layer (Cabido et al., 2018). A wildfire in the Calamuchita 
Department in September 2013, with Villa Yacanto at the center, burnt almost all the land surface for 20 km north 
and west of the site, and extended roughly 5 km to the east and south.

The Córdoba province possesses a humid subtropical climate. There are modest differences in temperature and 
humidity between seasons, and rain falls mainly in summer between October and March. The average tempera-
ture in spring is around 17°C, descending to 10°C at night and up to 30°C in the day. In summer, the temperature 
is slightly higher, that is, 20°C on average, while in fall, the average is 15°C. As already mentioned, the region 
is one of the world's hotspots for mesoscale convective storms and severe storms. During the campaign, several 
thunderstorms were recorded, generally accompanied by strong winds, up to 72 km h−1. Precipitation was fre-
quent in the region with both strong (e.g., 110 mm in 1 hr) and persistent (e.g., 80 mm over 17 hr) events. Rain 
events were associated with persistently high relative humidity (RH), which averaged 69% during spring, 78% in 
summer, and 76% in fall.

Figure 1.  Residence-time-weighted 5-day back-trajectories for the period of the campaign. The coefficients of the grid 
cells encompass, and are weighted by, the time the air mass spent in the cells before arriving at AMF1 (red star on the map) 
and the distance between the cells and AMF1. Cells with the strongest coefficients indicate likely principal sources of the 
particles observed at AMF1. The sampling location of the SDAr01 sample is indicated by the black star and the city of 
Córdoba by the gray square.
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2.2.  Sampling Site and Instrumentation

INP measurements at the Department of Energy's Atmospheric Radiation Measurement Mobile Facility 1 
(AMF1) captured an extended seasonal cycle of INPs over Austral Spring to mid-Fall. The AMF1 site was lo-
cated near Villa Yacanto, Argentina, approximately 20 km east of the highest ridge top in the Sierras de Córdoba 
range at an elevation of approximately 1,150 m. The filter sampler was mounted atop the Aerosol Observing 
System trailer (32.126306°S, 64.728514°W, 4.2 m above ground) (Figure S1a in Supporting Information S1). 
Single-use, open-faced, sterile plastic filter units (Nalgene, cat. no. 130-4045) fitted with 0.2 μm pore, 47-mm 
Nuclepore polycarbonate filters (Whatman, GE Healthcare) were mounted beneath a stainless steel rain shield. 
Before the study, the filters were pre-cleaned and pre-sterilized in a laminar flow cabinet to remove all biological 
and other organic particles. They were soaked in 10% H2O2 for 10 min, followed by three rinses in deionized 
water (DI), with the final rinse filtered through a 0.1 μm pore syringe filter (Whatman Puradsic, GE Healthcare). 
After filter loading, the units were packed in plastic slider bags within the laminar flow cabinet for cleanliness 
during transport. Filters were typically drawn for an 8-hr period, totaling 6,000 L sampled on average, and meas-
ured with a mass flow meter (TSI model 4043). Filters were removed using cleaned plastic forceps (Fine Science 
Tools) and stored in sterile petri dishes (Pall). Eighty-three sample filters were collected over 7 months, including 
six blanks (installed with no flow) at intervals throughout the project. Filters were stored temporarily in a −20°C 
freezer at the site before their return to Colorado State University (CSU) in a dry nitrogen shipper (Cryoport) and 
stored frozen until subsequent analyses.

The Aerosol Observing System (AOS) at AMF1 included various aerosol instruments. Of special relevance 
to this study were an aerodynamic particle sizer (APS, 3321, TSI, Inc.) measuring concentrations of particles 
with aerodynamic diameters from 0.5 to 20 μm; an ultra-high-sensitivity aerosol spectrometer (UHSAS, Droplet 
Measurement Technologies) which is an optical-scattering, laser-based, aerosol particle spectrometer detecting 
particles with optical diameters from 0.06 to 1 μm; an SMPS (classifier model: 3080 and DMA model: 3081, 
TSI, Inc.) measuring particles with mobility diameters from 0.013 to 0.5 μm; and a nephelometer (Model 3563 
Nephelometer, TSI, Inc.) measuring scattering signal from bulk particles at three wavelengths (450, 550, and 
700 nm) and mounted with alternating 1 and 10 μm impactors at the aerosol inlet (Uin et al., 2019). Aerosols were 
dried upstream from the SMPS and UHSAS while the APS measured particles at the humidity within the aerosol 
inlet in the AOS trailer (see Uin & Smith, 2021 for a description of the AMF1 AOS). The nephelometer system 
in AMF1 is a humidigraph, with two nephelometers in series. The first nephelometer sampled at ambient RH in 
the trailer, while the second measured at elevated RHs imposed by a drying/humidification system immediately 
upstream; this study used data from the first, ambient-RH nephelometer. No correlations were found between the 
scattering signal from particles larger than 1 μm and ambient relative humidity, suggesting that the overall coarse 
particles sampled at the AMF1 site (e.g., by the APS) were fairly hydrophobic, with sizes close to their dry diam-
eter. Meteorological measurements associated with the AOS are ambient temperature, pressure, relative humidity, 
wind speed and direction, and precipitation (measured by a piezoelectric precipitation sensor; Kyrouac, 2019).

The aerosol size distribution was merged (i.e., leading to a continuous size distribution that encompasses all size 
distribution measurements) following Hand and Kreidenweis (2002) and Khlystov et al. (2004). The method is 
described in Supporting Information S1. Hereafter, we assume the resulting size distribution represents dry parti-
cles. Since APS data were only available from 23 to 31 December 2018, nephelometer measurements were used 
outside of this period to derive supermicron aerosol surface areas, as described in Supporting Information S1.

Complementing ground-based observations, the Department of Energy Atmospheric Radiation Measurement 
Program Aerial Facility G-1 (Gulfstream-I) aircraft measurements provided the unique ability to capture INPs 
above the surface layer at the AMF1 site. Research flights were conducted from 4 November to 8 December 2018. 
During this period, INP measurements were done during every flight at the AMF1 site. Some results from the 
aircraft measurements are presented in Varble et al. (2021) but have not been investigated in this study.

2.3.  Measurement of Ice Nucleating Particles

All INP temperature spectra were obtained from suspensions of the filter-collected particles in DI water using the 
CSU Ice Spectrometer (IS). The IS is constructed using two aluminum blocks, machined to fit polymerase chain 
reaction (PCR) plates, encased by cold plates through which coolant is circulated. The IS produced immersion 
freezing spectra reaching to a lower limit of −27 to −30°C (±0.2°C) with a detection limit of ∼0.001 INPs L−1 
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and is supported with well-established experimental protocols applied in diverse scenarios (Barry, Hill, Jentzsch, 
et al., 2021; Barry, Hill, Levin, et al., 2021; Beall et al., 2017; DeMott et al., 2017; Hill et al., 2016; Hiranuma 
et al., 2015).

To re-suspend particles, sample filters were placed into sterile 50 ml polypropylene centrifuge tubes (Corning), 7 
or 8 ml of 0.1 μm-filtered (Whatman Puradisc) DI water was added, and the tubes were tumbled end-over-end for 
20 min. Perfectly efficient particle removal is assumed based on unpublished (comparison of tumbling end-over-
end with tumbling followed by high-speed vortexing) and published investigations. In particular, we may note 
indistinguishable results for INP concentrations measured from Argentinian soil dust samples collected on filters 
(equivalent to the present study) and impinged into liquid (DeMott et al., 2018, cf. Figure 4) for a liquid sampler 
with high collection efficiencies for the sizes collected in that study (Hader et al., 2014). Thirty-two aliquots of 
50 μl of each sample, plus several serial dilutions, were dispensed into PCR trays (OPTIMUM® ULTRA, Life 
Science Products) in a laminar flow hood and placed into the cooling blocks. The headspace was purged with 
HEPA-filtered N2 (750 ml min−1). The IS, and headspace N2, were cooled at 0.33°C min−1 using a recirculating 
low-temperature bath, and the freezing of wells was recorded through a LabVIEW interface with a charge-cou-
pled device camera system. Freezing fraction results were corrected for INPs in the 0.1 μm-filtered DI using a 
sample blank array. The number of wells and thus volume available for freezing were adjusted for the DI wells 
frozen as temperature was lowered.

Background contamination on filters was determined using the average INP spectra from field blanks (lids were 
removed from Nalgene units on site before being replaced, then the filter was removed and stored). The average 
number of INPs per filter on blanks was then subtracted from the calculated number of INPs per sample filter be-
fore conversion to concentration. Immersion freezing temperature spectra were obtained by converting the num-
ber of frozen wells at each temperature to the number of INPs ml−1 suspension using Equation 13 in Vali (1971), 
and then converted to concentration per standard liter of air (0°C and 1,013.25 mb) from the volume collected. 
Ninety-five percent confidence intervals for binomial sampling were obtained from Equation 2 in Agresti and 
Coull (1998).

Tests were performed on selected suspensions to estimate the contributions of heat-labile INPs (e.g., protein). 
Two milliliters of suspension were heated to 95°C for 20 min and the sample was re-analyzed in the IS to gauge 
the reduction in INP concentrations (Hill et al., 2016; O’Sullivan et al., 2018). Tests were also performed to 
quantify INPs that were organic but heat stable, such as most INPs in soil organic matter (Hill et al., 2016). Their 
abundance was assessed by digesting 2 ml of suspension after the addition of hydrogen peroxide to a final con-
centration of 10%, at 95°C for 20 min under UV-B. This procedure, and the neutralization of remnant H2O2 to 
prevent freezing point depression, are detailed in Suski et al. (2018). The sample was then re-analyzed to assess 
the reduction caused by the decomposition of all organic INPs. The difference between INPs remaining after 
the heat treatment and this measure of all organic INPs provided an estimate of the heat resistant organic INPs.

Heat labile organics are likely microbial and proteinaceous in origin while the heat resistant INPs might comprise 
non-proteinaceous biological particles, for example, pollen and other macromolecular organic particles. There-
fore, the labile INPs likely represent a lower bound of the biological INPs population. While it is possible for 
selective and highly active inorganic materials to show degradation under liquid immersion at long immersion 
times at very modest supercooling (Harrison et al., 2016), such interference with attribution of heat-lability to 
biogenic materials has never been shown for the short immersion times used in this study. For the sake of clarity, 
heat labile INPs will be termed “biological INPs” in the following. While also biogenic in origin, the heat resist-
ant INPs will be referred to as “other organic INPs.”

INPs remaining after peroxide digestion were deemed to be inorganics. Atypically, after H2O2 treatment, a few 
INP spectra showed a persistent minor “hump” of activity above −20°C. An extended digestion for 40 min only 
modestly reduced the size of the residual hump (Figure S4 in Supporting Information S1). Mikutta et al. (2005) 
noted that peroxide digestions of soil were typically incomplete due to the protection of organic matter within 
aggregates and their adsorption on mineral surfaces, and the inability to oxidize organo-mineral complexes and 
chemically resistant compounds such as pyrogenic materials (black carbon) and aliphatic hydrocarbons. The 
INPs remaining after H2O2 treatment were considered as entirely “inorganic,” although especially for INPs active 
above −20°C, the compositions could include organo-mineral complexes.
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Negative impacts of heat on certain mineral INP activities have been noted by Daily et al. (2021), although this 
is primarily a potential influence only at the highest temperatures assessed in this study, primarily for much 
longer immersion periods, and primarily for mineral types that are not highlighted later in this study as being 
present in our air samples. The balance of prior work (e.g., Hill et al., 2016; Suski et al., 2018; Tobo et al., 2014) 
demonstrating equivalent impacts (or lack thereof) of heated peroxide digestion on the INP activity of bulk arable 
soils (minerals), dry thermal treatment of bulk soils at 300°C, and dry thermal treatment of free-flowing single 
particles suggests that this is a reasonable assumption, and that the changes seen in INP spectra after treatments 
are due to impacts on organic INP components. Concentration differences between the three INP classes were 
computed only if they were statistically significant (p < 0.05), tested using Fisher's Exact Test (Sprent, 2011) on 
the number of frozen and unfrozen wells in IS tests.

Measurements of INPs were also performed on an Argentinian soil sample. An aerosolized suspension of Ar-
gentinian soil dust collected from the Pampas region (hereafter “SDAr01”), was previously analyzed in two 
laboratory studies, by Steinke et al. (2016) and by DeMott et al. (2018) during the ice nucleation measurement 
inter-comparison campaign FIN-02 (Fifth international workshop on Ice Nucleation – Phase 2). The soil sample 
was collected from the Anguil Experimental Station (INTA) in a cornfield (36.57675°S, 63.98795°W) under 
continuous agricultural use (Siegmund et al., 2018). While the soil samples were taken 499 km SSE of the AMF1 
site (Figure 1), the soil unit to which they belonged, a loamy sand/sandy loam, classified as a coarse haplic kas-
tanozem (Kh1-1a; FAO, 1971), also underlies most of the cropped plains that start ∼35 km east of AMF1. A 
100–300-km wide band of haplic kastanozem soils extends ∼1,500 km to the NNE. A stored (at −20°C) suspen-
sion from the FIN-02 studies in DeMott et al. (2018) was heat and peroxide treated, as described above, as those 
tests had not been performed during FIN-02.

2.4.  Single-Particle Mass Spectrometry

The Fifth international workshop on Ice Nucleation – Phase 1 (FIN-01) was conducted as an intercomparison 
of the performance of single-particle mass spectrometers for online size resolved composition measurements of 
single aerosol particles (DeMott et al., 2018). Dry particle suspensions in air were created at the Aerosol Inter-
actions and Dynamics in the Atmosphere (AIDA) chamber facility, Karlsruhe Institute of Technology (KIT), as 
was also done for FIN-02. The SDAr01 sample was also analyzed during FIN-01. These data are considered of 
special relevance to regional soil emissions in the CACTI region.

The data presented were obtained by the University of Manchester version of the laser ablation aerosol particle 
time-of-flight (LAAPTOF) mass spectrometer (Gemayel et al., 2016) whilst in the early stages of development. 
Single-particle mass spectrometry is an analytical technique in which single particles are directly entrained into 
a vacuum, isolated by optical detection, vaporized into an ion cloud by laser desorption ionization (LDI), and 
analyzed by time-of-flight mass spectrometry (TOFMS) (Murphy, 2007). The technique is generally non-quanti-
tative due to matrix effects during LDI (Reinard & Johnston, 2008), but can be considered semi-quantitative with 
careful calibration against well-defined proxies.

Argentinian soil particles were suspended in the APC (Aerosol Particle Chamber) facility at KIT using a rotat-
ing brush generator (RBG 1000), producing distributions as documented in prior studies (DeMott et al., 2018; 
Steinke et al., 2016). Aerosol was sampled by the LAAPTOF (and other instruments) via a pumped stainless steel 
sampling line. At the time of the FIN-01 campaign, the instrument was capable of sampling single aerosol par-
ticles 0.5–2.5 μm in diameter and had a partially developed optical detection system which resulted in an overall 
detection efficiency of less than 1% (Marsden et al., 2016). Despite this, the instrument provides representative 
single-particle composition information of the fine fraction of suspended soil and dust samples.

Single-particle mass spectrometry is particularly good at detecting aluminosilicate due to the sensitivity of the 
technique to silicon, aluminum, alkali metals, and earth-alkali metals in the positive ion spectra (Dall’Osto 
et al., 2010; Gallarvardin et al., 2008). In fact, the mineral phase is strongly influenced by the requirements to 
achieve charge balance between the negatively charged aluminosilicate network and positively charged interstitial 
cations such as K+, Na+, and Ca+. For example, pure K-feldspar has the formula KAlSi3O8 to achieve charge bal-
ance in a framework crystal lattice. In circumstances where the elemental ratios can be measured quantitatively, 
pure crystalline mineral phase can be inferred directly from the measurement by calculating the chemical formu-
la, but this is not possible with single-particle mass spectrometry because the required level of quantification is 
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not achievable. However, an assessment of the cation balance relative to pure mineral proxies is an informative 
assessment of the composition of the aluminosilicate particles in soil, somewhat analogous to cation exchange 
capacity.






K Na
Cation Balance

Al Si
� (1)

In addition to sub-compositional analysis of cations in mineral dust particles, the U. Manchester LAAPTOF in-
strument is capable of a single-particle crystal structure analysis using a novel technique that exploits differences 
in ion formation processes during the ablation of crystalline material (Marsden et al., 2018). This technique ex-
ploits a matrix effect that causes a shift in the time of flight of the O- elemental ion (ΔTO) and the SiO3- fragment 
ion ( SiO3ΔE T  ) on the negative ion mass scale. Careful examination of mass spectra obtained from nominally pure 
mineral dust reveals a reproducible peak shift, particularly in potassium- and sodium-bearing phases such as 
illite, smectite, and feldspar, providing a valuable differentiation of minerals that are similar in composition but 
different in crystal structure.
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These analytical techniques were previously applied to nominally pure mineral phases and soil/desert dust from 
North Africa that were obtained from laboratory-suspended samples during the FIN-01 and INUIT09 (Ice-Nuclei 
Research Unit program) campaigns at AIDA (Marsden et al., 2019). These data provide references with which to 
compare the composition of the aerosolized suspension of the pampas agricultural soil sample SDAr01. While 
the technique presented is not capable of detecting every mineral phase present, it offers a framework by which 
complex mineral assemblages can be compared with reference to geologically relevant pure feldspar and clay 
mineral phases.

3.  Results and Discussion
3.1.  Air Mass Trajectories as Indications of Aerosol Source Regions

Five-day air mass back-trajectories were generated with the National Oceanic and Atmospheric Administration 
Air Resources Laboratory's Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT, Rolph 
et al., 2017; Stein et al., 2015), using the 1° × 1° GDAS data set. Trajectories were initiated every 3 hr, starting 
50 m above ground level at the coordinates of the AOS trailer. The area covered by all back-trajectories was 
meshed into grid cells of 1° longitude/1° latitude. For each back-trajectory, its occurrence in each grid cell was 
normalized according to the time that the air-mass spent traversing it, and further normalized according to the 
distance between the grid cell and the AMF1 site (start point), giving a lower weight to grid cells closer to the 
AMF1 site to remove the “peak” that naturally occurs at the trajectory initiation site (Ashbaugh et al., 1985). The 
resulting map reveals both where the air mass passed in the 5 days before reaching AMF1 as well as where it spent 
the most “effective” time. The analysis was performed for the entire period over which filter samples were taken, 
and then averaged to produce a composite residence-time-weighted trajectory map, shown in Figure 1. Similar 
maps were produced separately for spring, summer and fall but showed only minor differences (not shown here).

Under the assumption that the particles arriving at AMF1 were more likely emitted from regions where the 
air masses spent more time, the grid cells showing the highest coefficients in the back-trajectory analysis were 
considered as the principal particle sources. The regions with the strongest coefficients (orange and yellow in 
Figure 1) are located generally east of AMF1, extending approximately 800 km to the northeast and southeast, 
and 300–500 km to the south, with slightly higher coefficients in the northeast.

For the grid cells with coefficients >5 within 100 km of AMF1, the landscape is comprised of an initial 30–50 km 
band of mixed vegetation (native grass and herbaceous plant communities, shrublands and low forest, and low-in-
put pasture and pine plantation), which then gives way to corn and soybean cropland. At the northeast perimeter 
lies Córdoba city. The nearby zone of diverse plant communities will likely emit more biological and other organ-
ic INPs from various plants and litter layers than soil dusts from exposed patches and cultivated fields, while the 
intensively farmed plain may be a principal source of soil dusts from after harvesting to late spring with a mixed 
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source of bio-particles released by plants and soil dusts once the crops emerge. The city will have a complex 
mixture of transportation, industrial and energy production emissions.

The array of landscape cells with coefficients >5 lying between 100 and 300 km away from AMF1 is again 
dominated by corn and soybean croplands, as well as some pasture used for raising cattle. To the northeast is the 
large salt lake, Laguna Mar Chiquita. From 300 to 500 km, the regions of high coefficients are dominated to the 
northeast by cattle raising pasture, and to the east and southeast a mix of pasture with corn/soybean cropland. To 
the east there are also extensive wetlands on the floodplain of the Paraná River Delta (de Abelleyra et al., 2019, 
“Mapa Nacional de Cultivos campaña 2018/2019, INTA”).

Similar normalized residence time analyses were performed for longitude/height and latitude/height (not shown). 
Both showed that air masses arriving at AMF1 remained below 300 m above ground level (in the planetary 
boundary layer) during their 3-day back-trajectories. This emphasizes that the surface sources detailed above 
likely contributed the bulk of the particle burden observed at the site.

3.2.  INP Temperature Spectra and Evolution With Time

A time series of total INP concentrations at −25°C, −20°C, −15°C, and −10°C is shown in Figure 2a. As expect-
ed, the higher temperature INPs (above −20°C) have relatively low concentrations (minimum of ∼6 × 10−4 L−1 at 
−10°C on 20 October 2018) while the lower temperature INPs are almost 7 orders of magnitude more abundant 
(maximum of ∼325 L−1 at −25°C on 24 November 2018). The INP concentrations at −20 and −15°C clearly co-
vary, with a mean ratio of about 7, while the INP active at −10 and −25°C shows less similarity with INP active 
at warmer and colder temperatures. This suggests different INP populations predominate in each group. The INP 
concentrations at −20 and −15°C clearly co-vary, with a mean ratio of about 7. The ratio between INPs at −15 
and −10°C, and between −25 and −20°C are both about 60, indicating two regions in the spectrum where the 
INP concentration increases steeply. Both INP classes undergo significant variations over short periods (e.g., in 
November, during intensive sampling corresponding to the ARM Aerial Facility campaign) reflecting dynamic 
responses of the INP populations to environmental conditions, or changes in particle sources.

The variations in temperature dependence of the ice nucleation ability of the particles are more visible when 
plotted as ice nucleation activation temperature spectra (Figure 2b). The range of INP concentrations at each 
temperature likely reflects the variability of the background aerosol concentration, the diversity of sources, and 
the impact of local weather upon emissions. The spectral band lies within the range of concentrations measured 
in many past studies from other parts of the world, as summarized in Kanji et al. (2017), although tending toward 
the high end of previously reported values below −25°C. The CACTI spectra also fit centrally between the upper 

Figure 2.  (a) Ice nucleating particle concentrations at the AMF1 site during the campaign, at four processing temperatures. The shaded area enclosing each represents 
the 95% confidence intervals. (b) INP spectra of all samples (error bars omitted for clarity). The light green shaded area represents upper and lower limits of global 
field INP concentration measurements summarized in Kanji et al. (2017, Figures 1–10), while the yellow shaded area represents atmospheric INP concentration ranges 
estimated from precipitation samples collected in North America, Europe and Antarctica (Petters & Wright, 2015).
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and lower sigmoidal curves of atmospheric INPs predicted from INP concentrations in precipitation sampled in 
North America, Europe and Antarctica (Petters & Wright, 2015).

The effect of heating the particle suspensions at 95°C (Figures 3a and 3b) to remove contributions of biological 
INPs (e.g., proteins), is remarkable at higher temperatures. It eliminated all detectable INPs above −10°C in all 
samples while reducing the concentration at −15°C by more than an order of magnitude in ∼60% of the treated 
samples. Such reductions in this temperature regime are similar to those found in prior studies conducted in ag-
ricultural regions (e.g., Garcia et al., 2012; O’Sullivan et al., 2018; Schiebel, 2017; Suski et al., 2018). At lower 
temperatures, heat had no statistically discernable impact. Removal of all organic INPs with peroxide (Figures 3a 
and  3b) produced typically 1 order of magnitude additional reduction below −20°C but had little additional 
impact at higher temperatures. Therefore, the contribution of organic INPs was substantial at all temperatures, 
even below −25°C, revealing that inorganic INPs were a minor proportion of the total. Summarizing the heat and 
peroxide treatment effects, we can distinguish between three INP populations: above around −22°C, the INPs are 
primarily biological; below this temperature, they are predominantly other organics; below around −12°C, there 
are relatively minor contributions from inorganic INPs. We note that in particular, below around −22°C, other 
organic INPs are up to 25 times more abundant than inorganic INPs.

The profile of each total INP spectrum is the sum of a “hump” of biological INPs and the mostly log-linear dis-
tributions of the other organic and inorganic INPs. The inflection point, which lies on average at around −21°C 
(Figures 2b and 3a), identifies the temperature where the concentration of biological INPs equals the combined 
other organic + inorganic INP contributions for the employed 8-h sampling periods. Above this temperature, the 
INPs are increasingly biological, while below it they are predominantly other organic + inorganic.

Very similar spectra, with inflection points ranging from −18°C to −24°C, can be seen in other studies sam-
pling terrestrial boundary layer air (Creamean et al., 2019; DeMott et al., 2017; Gong et al., 2019; McCluskey 
et al., 2018; Schiebel, 2017; Suski et al., 2018). Furthermore, a remarkably similar sigmoidal shape, with a 2 
order of magnitude increase between −8°C and −20°C, a 3 order increase between −20°C and −28°C, and a 
change in slope at ∼−19°C, is also evident in the INP spectrum of aerosol generated with Argentinian topsoil 
sample SDAr01 during the FIN-02 inter-comparison (cf., Figure 4 of DeMott et al., 2018). This result will be 
explored further in Section 3.4.3.

Figure 3.  Ice nucleation activation temperature spectra of processed INP samples. (a) INP spectra of untreated samples 
superimposed over INP spectra following heat and H2O2 treatments. (b) Spectra of computed biological, other organic and 
inorganic INP contributions derived from statistically significant differences between the untreated and heated spectra, 
significant differences between the heat-treated and the H2O2-digested spectra, and the residual activity remaining after H2O2 
oxidation (see Section 2.3). Uncertainties are omitted here for clarity, but are shown in Figure 2a.
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3.3.  Relation With Meteorology and Aerosol Properties

3.3.1.  INPs and Meteorology

During CACTI, the INP concentration did not show any apparent seasonal cycle (Figure 2a). This goes along 
with the similarity in the seasonal normalized residence time analyses as well as the modest differences in tem-
perature, rainfall, and humidity under the region's humid subtropical climate. Alternatively, it may indicate INP 
populations correlated with factors other than climate. This consistency contrasts with a recent study of INPs in 
the Finnish boreal forest, where INP concentrations showed a pronounced seasonal cycle reflecting changes in the 
strength of biogenic sources (Schneider et al., 2021). In CACTI, where the surrounding ecotypes are very heter-
ogeneous and vary according to wind sector, the INP populations may be influenced by a range of factors. These 
could include current and recent weather, such as precipitation intensity, RH, wind direction, and speed. They 
could also be influenced by agricultural practices, such as topsoil dust generation from plowing, by biological 
seasonal cycles, such as tree and grass pollen release in spring and summer, and by mushroom growth and spore 
release in autumn, triggered by rain. From mid-November to mid-December, the concentrations of the higher 
temperature INPs varied greatly (Figure 2a) over the short term. Such temporal variability may have been missed 
in other months when the measurement frequency was lower.

To assess the influence of weather upon INP concentrations, correlation analyses were performed. Figure 4 shows 
linear correlations (i.e., Pearson correlation coefficients, hereafter “pears”) between the log10 of INP concentra-
tion and four key meteorological parameters: wind speed, temperature (2 or 3°C steps), RH, and precipitation. 
While the INPs were only moderately correlated with the meteorological variables, there were consistent trends 
of the linear correlation coefficients when progressing from higher to lower temperature INPs. The lower temper-
ature INPs were weakly positively correlated with wind speed, while the higher temperature INPs showed no such 
correlation. When winds exceed a certain threshold, dust and soil particles (including plant litter) will be lofted, 
depending on their dryness and friability. This was observed on 17 November 2018 (Figure 5a), east of the sam-
pling site, when strong SE winds raised dusts from the predominantly bare, recently seeded fields on the farmed 
plain. Significant anti-correlation of high temperature INPs with temperature, but their positive correlation with 
RH, indicates that these more-active INPs were more abundant during colder and wetter conditions. By contrast, 
INPs active at lower temperatures were positively correlated with warmer and drier conditions.

Rain occurring during the period of sampling was significantly negatively correlated with lower temperature 
INPs, suggesting their effective removal from the boundary layer due to scrubbing and/or the quenching of dust 
lofting from wetted soils. When considering rain occurring up to 24 h before the sampling period, this cold INP 
anti-correlation trend was accentuated, but was also joined by a significant positive correlation between recent 

Figure 4.  Linear correlation coefficients between the logarithm of the untreated INP concentration and meteorological 
variables at various processing temperatures. “Rain during” refers to rain occurring during the period of filter sampling, while 
“rain 24H before and during” refers to rain occurring up to 24 hr before filter sampling as well as during. Pale histogram bars 
represent non-significant coefficients (p > 0.05).
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moisture and higher temperature INPs. Unsurprisingly, the trends of correlations for RH were similar to those 
for rainfall. We may note here both consistencies and differences of these results with the findings of López and 
Ávila (2016) for their studies in Córdoba city. They also found increases in INP concentrations at higher ambient 
RH and with rainfall, although for ice nucleation in the deposition regime (ice nucleation from supersaturated 
vapor, where no liquid water is involved; Vali et al., 2015) at −25°C and below water saturation. The different 
populations active in the deposition regime, in comparison to immersion freezing (Holden et al., 2021), may 
partly explain the discrepancy with our results at −25°C, as may the much longer sample integration times and 
volumes in our studies. Finally, the relatively high correlation between RH and INPs at −12°C may indicate re-
lease mechanisms beyond those induced directly by rainfall, as we will discuss further.

3.3.2.  The Special Effect of Rain on the INPs in the CACTI Region

When rain occurs, atmospheric particles can be scavenged by Brownian diffusion, phoretic processes, and im-
paction (Pruppacher & Klett, 1997), depending on their size and on the concentration of rain drops. At the same 
time, although wet soils are less likely to loft dust, rain drop impacts can aerosolize other particle types from 
surfaces. For example, organic particles or bioaerosols can be generated by the bursting of air bubbles entrained 
by raindrops impacting the soil (Joung et al., 2017; Wang et al., 2016). The efficiencies of these mechanisms 
are known to be driven by several factors such as soil wetness, soil temperature and drop impact speed. Rain 
impaction on plants is also a likely source of biological INP emissions (Constantinidou et al., 1990; Huffman 
et al., 2013; Prenni et al., 2013; Tobo et al., 2013). Moreover, during rain and at high RH, pollen can rupture and 
release several hundred particles per pollen grain, ranging in size from 0.25 to 1 μm which, depending on the 
plant species, can act as INPs (Diehl et al., 2002; Gute & Abbatt, 2020; Hughes et al., 2020). Relative humidity 
is also known to affect INP populations (Huffman et al., 2013; Wright et al., 2014), such as by stimulating the 
growth of ice-nucleating bacteria on leaves (Hirano et al., 1996) or by inducing wet discharge of fungal spores 
(Elbert et al., 2007; Hasset et al., 2015).

The intense rainfall and dynamic weather in the Córdoba province drove different responses of immersion freez-
ing INPs active at lower versus higher temperatures, as was evident from their opposite linear correlation coef-
ficients for all meteorological variables, including rain (Figure 4). Here we investigate the effect of rain on the 
different INP populations in more detail.

Figures 5a and 5b show typical INP spectra under “dry” and “wet” conditions, respectively. Under dry condi-
tions (Figure 5a), which we defined as RH <80% and with no precipitation 24 hr before and during the period 
of sampling, biological INPs dominated between −5 and −20°C, with a concentration around 10−3 L−1 at −5°C. 
Their concentrations increased with decreasing temperature up to 1 L−1 at −20°C. Some samples showed high 

Figure 5.  INP spectra for (a) A “dry” day (17 November 2018), that is, with no rain occurring 24 h before and during the 
period of sampling, and (b) A “wet” day (12 November 2018) with RH > 80% and precipitation occurring within 24 h before 
and/or during sampling (on this day, rain occurred 6 h before and during sampling). The effect of rain upon INP populations 
is generalized by the arrows. Error bars indicate 95% confidence intervals.
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temperature "humps" in the INP spectra indicative of the preponderance of biological particles. The inorganic 
and other organic INPs showed quasi log-linear spectra for most of the cases (e.g., Figure 5a), with concentrations 
up to 102 L−1 and 103 L−1 at −28°C, respectively. The wet day (i.e., with RH >80% and precipitation occurring 
within 24 hr before and/or during sampling) (Figure 5b) corresponded to RH ∼100% and 38 mm cumulative rain-
fall occurring 6 hr before and continuing during sampling, which markedly lowered concentrations of particles 
>0.1 μm diameter due to wet deposition (see insert in Figure S5a in Supporting Information S1). Biological INPs 
increased greatly at temperatures between −10°C and −15°C, including a 2 order of magnitude increase from 
−10°C to −12.5°C, followed by a plateau between −15°C and −20°C. In this case, there is also a suggestion of 
enhanced emissions of other organic and inorganic INPs > −22°C, although the latter may be an artifact caused 
by incomplete H2O2 digestion, as previously discussed. Concurrently, the concentration of other organic and 
inorganic INPs at lower temperatures decreased markedly, from 1,000 to 5 L−1, and from 100 to 1 L−1 at −28°C, 
respectively. The blue and red arrows show the generalized rain impact on the INP populations. These results are 
in agreement with the linear correlation coefficients shown in Figure 4, and exemplify the opposing responses 
of the lower temperature immersion freezing INPs compared to the higher temperature INPs in response to rain. 
Nevertheless, the INP spectra were still consistently dominated by biological INPs from −5°C to −20°C on both 
dry and wet days.

Such changes in the concentrations of the low and high temperature INPs may be visualized for the entire cam-
paign by computing the ratio of their concentrations at −12°C ([INP] −12°C) and at −25°C ([INP] −25°C) (Figure 6). 
The ratio consistently increased during or after precipitation. By including cumulative precipitation occurring 
both before as well as during the period of sampling, we found that precipitation occurring as much as 24 hr 
before sampling might explain the increase of [INP]-12°C/[INP]-25°C. The slope of the INP concentration between 
−10°C and −12.5°C (i.e., slope = {ln([INP] −12.5°C) − ln([INP] −10°C)}/2.5, in K−1) computed for each sample 
modestly correlated with cumulative precipitation occurring 24 hr before and/or during sampling (pears = 0.58 
with p = 8 × 10−6). This moderate but significant correlation suggests that the enhancement of the biological 
INP concentration during rain events also contributes to the increase of the ratio shown in Figure 6. Hence, due 
to the combined enhancement of biological INPs and the reduction of other organic + inorganic INPs active at 
lower temperatures, the ratio increased by up to 250-fold above the baseline recorded for dry days. When no pre-
cipitation occurred before or during INP sampling, the ratio oscillated around a fairly constant value of 0.0002, 
suggesting there is a typical ratio for “dry” days. During February (mid-summer), precipitation did occur, but not 

Figure 6.  Time series of the ratio of [INP]−12°C/[INP]−25°C (i.e., ratio of concentrations of INPs active at −12°C with INPs 
active at −25°C). Each point represents one INP sample (the dashed gray lines linked the dots for guiding the eye). Total 
precipitation within 24 h before and during filter sampling is given by the bars, while the proportions of rain occurring within 
different timespans are shown by the pie charts. The baseline for dry sampling days is indicated by the dotted line.
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preceding or during INP sampling days. Hence, in that month the recorded ratio of [INP] −12°C/[INP] −25°C stayed 
at ∼0.0002. Moreover, directly after the rain events, in all months, the ratio returned to the pre-rain value within 
one (the minimum sampling frequency) to 7 days (the period from 26 October to 2 November 2018). On several 
occasions, a return to the standard dry day ratio of 0.0002 occurred within a day of heavy rainfall (>60 mm). Bigg 
et al. (2015) recorded higher INP concentrations at −15°C and −20°C the day after heavy rain at several sites in 
Australia, but observed that they remained raised while exponentially declining for up to 20 days afterward. Such 
extended effects were not evident in this study.

3.3.3.  Relations Between INP Types and With Aerosol Distributions

In this study, the increase in INPs induced by rain occurred almost exclusively between −10 and −15°C, with 
a midpoint at −12°C. This suggests that the populations of biological INPs active at around −12°C originated 
from different sources than biological INPs active at colder temperatures, such as at −20°C. Figure 7a shows the 
concentrations of biological INPs active at −20°C versus aerosol particles with inferred dry diameters greater 
than 1 μm (Nsup), and similarly for INPs active at −12°C (Figure 7b). For Figure 7b, all samples at −12°C were 
included, not only those that were heat-treated, because in all processed samples (28 samples) the biological INPs 
accounted for an average of 98.5% of the total; thus, we assumed that in the non-heat-treated samples (60 sam-
ples) the INPs were also essentially all biological. The shape of the points indicates whether sampling occurred 
during rain or not, while the color shows mean RH.

As biological INPs are more likely to be larger particles when intact (e.g., bacteria, fungal spores, and pollen), 
one would expect their concentrations to be positively correlated with the concentrations of supermicron aerosols. 
This was observed at −20°C (Figure 7a) both during rainy and non-rainy days (pears = 0.87 with p = 0.0048, 
and 0.73 with p = 0.062, respectively) where ∼1,000 ambient supermicron aerosols aligned with one biological 
INP (the overall correlation with particles <1 μm was weaker but still significant at −20°C: pears = 0.57 with 
p = 0.004). By contrast, at −12°C (Figure 7b), the correlation with Nsup was less pronounced but still significant 
for days without rain (pears = 0.48 with p = 0.023), but not significant and weaker for rainy days (pears = 0.36 
with p = 0.38) (and no overall correlation with particles <1 μm at −12°C: pears = 0.14 with p = 0.49). This 
suggests, as hypothesized above, that a small number and unique population of ice-active biological particles 
were aerosolized during and/or after rain events. Higher concentrations of biological INPs at −12°C following 
rain qualitatively mimic increases in total INPs at −15°C (in relation to supermicron particles) observed follow-
ing precipitation by Mignani et al. (2021) at a Swiss alpine site. These observations counter expected increased 
scavenging and showed no relation to other aerosols in the expected size range of intact biological particles. High 
relative humidity may partially explain the highest biological INP concentrations at −12°C on non-rainy days. 
Enhancements of high temperature INPs in general during wet conditions were in agreement with other past 

Figure 7.  The concentration of biological INPs active at (a) −20°C and (b) The concentrations of all INPs (likely all 
biological) active at −12°C, versus the concentrations of aerosol particles with a diameter >1 μm (Nsup). Circles correspond 
to filters sampled during rainy days (rain up to 12 h before sampling), while squares indicate non-rainy days. The average 
relative humidity during sampling is given by the color. Error bars indicate 95% confidence intervals. Lines show 1:1 
relationships.
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studies (Bigg et al., 2015; Elbert et al., 2007; Huffman et al., 2013; Wright et al., 2014), yet the mechanisms of 
emission of these particles remain unresolved.

The other organic INPs were noted as trending with the inorganic INPs (Figure 3b), whether it rained or not (Fig-
ures 5a and 5b). To investigate this, the correlation between other organic and inorganic INP concentrations at 
−25°C, is presented in Figure 8a. Days with rain (before and during sampling) and days without rain showed sim-
ilar behaviors: other organic INPs were remarkably well correlated with the inorganic INPs (overall pears = 0.92 
with p = 6 × 10−11). The ratio was also fairly constant during the campaign. While the lowest concentrations of 
INPs tended to occur during rain events for these two populations, this did not affect the other organic/inorganic 
INP ratio which was about 5.5 in average (σ = 3.4), while during days without rain it was 5.9 (σ = 4.3) at −25°C. 
This suggests that other organic and inorganic INPs had the same general source and similar removal processes. 
By looking at their relations with aerosol number concentration, we found that inorganic INPs were well correlat-
ed with supermicron particles (Figure 8b) (pears for rainy days = 0.99 with p = 3 × 10−6, and for dry days = 0.90 
with p = 2 × 10−3

, and 0.92 with p = 5 × 10−7 overall). By contrast, the correlation of inorganic INPs with 
submicron particles was weaker overall (Figure 8c, pears = 0.53 with p = 0.004). Similar correlations occurred 
between other organic INPs and total aerosol number concentration. In general, the other organic and inorganic 
INPs appeared to be a linked population and primarily part of the supermicron aerosol population, probably from 
a single source such as soils.

While the other organic and inorganic INPs tend to act as a single population, they also modestly correlate with 
biological INPs (Figures S6a–S6f in Supporting Information S1). During rainy days, the correlation is maintained 
with biological INPs active at temperature around −15°C, but not with biological INPs active at warmer tem-
peratures, the latter showing enhanced concentrations. Hence, there may be two biological INP populations, one 
active at T > ∼−15°C, enhanced following rain events and under high RH (Figure 7b), and one mostly active at 
lower temperatures (∼−20°C), trending with other organic and inorganic INPs (Figures S6a and S6d in Support-
ing Information S1), potentially coming from similar sources, for example, soil sources, as hypothesized above. 
The sizes of the most active biological INPs depend on their sources, for example, wet discharged spores will like-
ly be supermicron (Elbert et al., 2007). Further analysis (e.g., DNA analysis) would be required to confirm this.

Figure 8.  (a) Concentration of other organic INPs vs. inorganic INPs active at −25°C during days with and without rain. (b) 
Concentration of inorganic INPs active at −25°C versus concentration of supermicron particles (Nsup), and (c) Concentration 
of submicron particles (Nsub). Panel (a) shares its legend with panels (b) and (c). Lines show 1:1 relationships.
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3.4.  INP Relationships to Regional Soil Particle Composition and Aerosol Surface Area

3.4.1.  Single-Particle Composition and Mixing State

Given the frequency with which the air masses intercepted at AMF1 passed over the arable lands to the east 
(Figure 1), it is plausible that topsoil from cultivated fields was a principal source of some INPs. Soil sample 
SDAr01, previously studied by Steinke et al. (2016) and by DeMott et al. (2018), belongs to a unit that underlies 
the cultivated plain east of AMF1, where it forms a north-south oriented, 100-300 km-wide band of haplic kas-
tanozem soils. Below, we investigate the single-particle composition of this soil to assess whether this informs 
the observed activity and the other organic/inorganic INP linkage described above. We revisit the ice nucleation 
results for this sample for comparison to overall CACTI INPs in Section 3.4.3.

Soil is a mixture of organic matter and mineral residues derived from the weathering of the local basement rock, 
transported sediments, and in-situ evaporite deposits. The LAAPTOF single-particle mass spectrometer can de-
tect these materials from certain marker ions in the mass spectra created after laser desorption ionization (LDI) of 
individual particles. Since the intensity of these marker peaks is not quantitatively related to the mass of material 
in the particle due to matrix effects and the incomplete nature of the LDI process, compositional analysis is re-
stricted to the identification of particle composition types by comparing the mass spectra with well-characterized 
proxies.

A suitable method for describing the soil dust properties of the pampas soil sample SDAr01 is to compare the 
cation balance with defined proxies. A histogram of the cation balance from single aerosolized particles of 
SDAr01 (Figure 9) had a broad mode that was centered with a cation balance lower than that of a pure K-feldspar 
(orthoclase Ca0.01Na0.25K0.85Si2.95Al1.02O8), but much higher than that of pure kaolinite (Al2Si2O5(OH)4), the prod-
uct of its weathering, which should theoretically not contain alkali metals. The histogram for the SDAr01 sample 
suggested the partial leaching of cations during weathering of alkali-rich precursor minerals, such as feldspar, but 
also that the weathering process had not progressed to the formation of kaolinite phase, such as observed in soils 
from the Sahel (Figure 9). This indicated that SDAr01 had a composition which was consistent with an inter-con-
tinental setting for a source area rich in felsic minerals.

In addition to the cation balance, we also applied crystal structure analysis of SDAr01 alongside similar analyses 
for illite, K-feldspar, Kaolinite, and Sahel agricultural soils (Figure 10). A number of this Pampas soil's particles 
plotted close to illite and K-feldspar, but 63% of particles had crystal structure τ > 1 (Equation 2), which we 
interpreted as being somewhat amorphous, that is, non-crystalline material, as it is not possible for crystalline 
kaolinite to accommodate such a high cations balance (see Figure 2 from Marsden et al., 2019), and may be recent 
deposition of volcanic ash or an amorphous matrix of clay with a felsic composition.

Figure 9.  Cation balance (K + Na/Al + Si) of 325 single soil particles of SDAr01 by LAAPTOF single-particle mass 
spectrometry reveals it was somewhat higher than pure kaolinite, but lower than pure K-feldspar.
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Single-particle mass spectrometry is also particularly useful for the investi-
gation of the internal-mixing state of aerosol by using fragment ions in the 
negative ion spectra that are generated in tandem with the cations in each 
single-particle measurement. Commonly observed fragment ions in mineral 
dust particles are SO4- and the organic/biological markers CN- and CNO-, 
none of which are derived from the silicate mineral, but are additional materi-
als internally mixed into the single particle. As with the silicate composition, 
the fragment ion measurement is not quantitative with respect to primary 
compounds and is therefore best investigated with sub-composition analy-
ses. For the analyses of the internally mixed organic/biological content, we 
used the organic mixing fraction CNO/(CNO + SO4 + Cl), which effectively 
normalized the organic marker to the majority of the mixing state markers 
in each negative ion mass spectrum. The histogram of the organic mixing 
fraction indicated that all silicate particles contained some organic/biological 
material (Figure 11) and that the amount of this material was relatively high 
compared to an agricultural soil from the Sahel, or a regosol (a weakly devel-
oped mineral soil) sampled from exposed rock in Morocco.

Overall, our online mass spectrometry analysis of the fine fraction of lab-
oratory dispersed soil is consistent with previous offline studies of highly 
erodible agricultural soil rich in organic content (Lopez et al., 2007), with 
mineralogy of the clay fraction dominated by amorphous minerals (Hepper 
et al., 2006), along with argillized lithic and feldspar fragments from the crys-
talline basement, and detrital illite (Bonorino, 1966).

3.4.2.  Normalization by Aerosol Surface Area and Consideration of the 
Nature of Inorganic INPs

The global mineral dust burden is composed of both primary minerals, 
mainly quartz and feldspar, and secondary minerals, such as clays (e.g., il-
lite, kaolinite, chlorite, and montmorillonite) (Murray et al., 2012, and ref-
erences therein). Numerous studies have explored the immersion freezing 

Figure 10.  Cation balance versus crystal structure analysis ratio (τ) of 286 particles in pampas agricultural soil sample 
SDAr01 (larger diamonds, with black outlines) by LAAPTOF single-particle mass spectrometry. The color scale is our 
interpretation of particle mineralogy based on comparison with pure mineral proxies (colored dots), illite (IMt-2) and 
Kaolinite (KGa1b) from the clay mineral society, and K-feldspar from a crushed crystal of orthoclase.

Figure 11.  Internal mixing state of aerosolized soil samples analyzed by 
single-particle mass spectrometry. Organic mixing fraction is calculated from 
the CNO/(CNO + SO4 + Cl) sub-composition analysis of negative ion marker 
peaks.
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ice nucleation abilities of mineral dusts from various regions, as well as characterizing single mineral types (see 
Kanji et al., 2017; Murray et al., 2012), such as quartz, illite, and felsic materials (Atkinson et al., 2013; Harrison 
et al., 2019; Hiranuma et al., 2015).

Since the single-particle mass spectrometry of the regionally common SDAr01 soil sample found modest contri-
butions from particles aligning with illite and K-feldspar, here we attempt to explain the ice nucleation activity of 
the inorganic INP spectra observed at AMF1 by comparing them with parameterizations for these two minerals. 
A widely used metric for describing the ice nucleation activity of particles is the surface site density (hereafter 
ns(T)), representing the number of ice nucleation active sites per unit of particle surface area at the process-
ing temperature T (DeMott, Hill, et al., 2015; DeMott, Prenni, et al., 2015; Hoose & Möhler, 2012; Niemand 
et al., 2012). These active sites are conceptualized as specific locations on the INP surface that facilitate the for-
mation of ice embryos by decreasing the activation energy necessary for the phase transition; their nature is still 
poorly understood but they may occur preferentially at surface defects (Holden et al., 2021; Kiselev et al., 2021).

If one assumes that surface area alone controls the distribution of ice nucleation active sites, then ns(T) is derived 
from nINP(T), the total INP number concentration at the processing temperature T, with units of particles per unit 
of standard volume air, and the total aerosol surface area, Saer, with units of m2 per unit of standard volume air, 
according to:

   
 INP

aer
s

n T
n T

S
� (3)

This normalization is most appropriately applied to single INP types, with the assumption that at a given temper-
ature, the number of active sites per unit of area does not change with particle size (Niemand et al., 2012). Other 
assumptions of this relation are that the INP type prevails in importance, while nucleation time-dependence plays 
a minor role. Here we applied this relationship to the inorganic portion of the CACTI INP spectra (Figure 3b), 
assuming that they were representative of a common and relatively uniform mineralogical source. Because the 
soil particles appear to be internally mixed minerals and organics, it is possible that the peroxide treatments may 
uncover additional nucleation sites that would not be accessible in the atmospheric samples (Augustin-Bauditz 
et al., 2016). Hence, the reported concentrations of inorganic INPs likely represent upper limits. Since additional 
surface area may be exposed, the impact on ns is uncertain. Further, we assumed that inorganic particles domi-
nated the supermicron aerosol surface areas and that these surface areas were not significantly altered by the heat 
and peroxide treatments.

The aerosol number size distributions observed during the campaign had three typical size modes, reflecting 
different sources and physical processes (Figures S5b and S5c in Supporting Information S1). The smallest mode 
was centered around 50 nm (Aitken mode) and was observed in 80% of the measurements (size distributions 
measured every 5 min during the campaign). A second and less frequent mode, observed in 20% of the meas-
urements, was centered around 200 nm (accumulation mode). The third, a coarse mode observed in all samples, 
started at approximately 0.7 μm (e.g., Figure S5c in Supporting Information S1) and was centered around 2 μm. 
A fourth mode, localized between 4 and 10 μm, was present in less than 1% of the measurements for both dry and 
rainy days. Assuming that inorganic INPs were entirely minerals, they would more likely belong to the coarse 
modes (Dentener et al., 2006; Glaccum & Prospero, 1980; Perlwitz et al., 2015), which contributed significantly 
to the aerosol surface area and volume (Figures S5a and S5c in Supporting Information S1). Moreover, corre-
lation analyses indicate that the total inorganic INP concentration trended with the supermicron aerosol surface 
area, while no correlation is evident with the surface area attributed to submicron particles (Figures S7a and S7b 
in Supporting Information S1).

The aerosol surface area distributions derived from the merged aerosol number size distributions (e.g., Figure S5a 
in Supporting Information S1) were integrated for particles above 1 μm in diameter to determine the supermicron 
surface areas used for normalization. After 31 December 2018, no APS data were available and we used nephelo-
meter data to retrieve aerosol surface area for particles larger than 1 μm in aerodynamic diameter, as described in 
Supporting Information S1. This aerodynamic diameter corresponds to a physical diameter ∼0.75 μm. However, 
the surface area distributions generally had minima in the 0.7–1 μm size range (Figure S5a in Supporting Infor-
mation S1). Therefore, the inclusion of some smaller particles in the nephelometer-derived estimates of surface 
area is not expected to significantly increase the uncertainty of those estimates. Active site densities of inorganic 
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INPs were then computed according to Equation 3, where Saer was set equal 
to the supermicron aerosol surface areas. Comparison of the results with im-
mersion freezing INP parameterizations is shown in Figure 12.

At lower temperatures, that is, from −20°C to −30°C, the activity of the ob-
served inorganic INPs most closely matched the illite NX parameterization 
from Hiranuma et al. (2015). Illite NX is actually an illite-rich proxy, contain-
ing >60% illite and a few percent of other atmospherically relevant minerals, 
such as ∼7% kaolinite and ∼8% K-feldspar (see Murray et al., 2012). Above 
−20°C, the number of active sites per m2 positively diverged from the illite 
NX parameterization and approached the K-feldspar curve from Harrison 
et al. (2019).

As shown in Figure  10, the single-particle crystal structure analysis of 
SDAr01 revealed it to be a continuum, with particles ranging in similarity 
from illite to K-feldspar to amorphous. Particles with the signature of illite 
were present and roughly equal in relative abundance to K-feldspar. This ob-
servation may underlie the agreement between the activity of the observed 
inorganic INPs and the illite NX parameterization. Crystal structure analysis 
also showed K-feldspar was present, but as a minor component, consistent 
with the surface site densities being significantly lower than INP parame-
terizations for pure K-feldspar (Atkinson et al., 2013; Harrison et al., 2019). 
Indeed, the observed relative abundance of K-feldspar in the aerosolized 
SDAr01 particles supported the weighting of the total surface area of the 
supermicron aerosol by 0.2 (i.e., a K-feldspar surface fraction of 20%), as 
suggested by Harrison et  al.  (2019, cf., Figure 9). According to Atkinson 
et al. (2013) and Vergara-Temprado et al. (2017), a 0.2 weighting factor may 
better represent the K-feldspar fraction in the region. If applied to the results 
shown in Figure  12, the reduced K-feldspar parameterization of Harrison 
et  al. (2019) would align better with the derived inorganic ns values from 
CACTI. However, the weighting would not modify the slope of the ns, which 
would remain flatter than the Harrison et al.  (2019) K-feldspar parameter-
ization, perhaps due to the amorphous structure and mixed composition of 
many of the K-feldspar-like particles. These discrepancies might also arise 
from different particle aging pathways. Although K-feldspar has been shown 
to be insensitive to aging in air and water (Harrison et al., 2016), aging in 
aqueous solution might change the nature of the active sites and reduce their 

ice nucleation activities (Kumar et al., 2018). Moreover, short-range transport of K-feldspar particles (as hypoth-
esized from the back-trajectories analysis) might limit the aeolian milling of the particles, resulting in less surface 
defects (Harrison et al., 2019, and references therein). Differences in densities and nature of such surface defects 
might also explain the less steeply sloped relationship for the inorganic INP spectra, compared to the K-feldspar 
parameterization.

3.4.3.  General Surface Area-Based Comparison of CACTI Results and SDAr01

Analysis of the internal mixing states of aerosolized particles from SDAr01 showed a consistent and high frac-
tion of organic material, in clear contrast to Morrocan regosol and Sahel agricultural soil (Figure 11). Following 
Equation 3, and again using the geometric surface areas of the supermicron aerosols, we derived ns values for 
the untreated and heat treated INPs measured in CACTI. In Figure 13, we superimposed these with the ns values 
derived from SDAr01 during FIN-02 (DeMott et al., 2018). Also included are results of new measurements fol-
lowing heating one of the SDAr01 samples from DeMott et al. (2018).

The agreement between the untreated INP spectra and SDAr01 was remarkably good (Figure 13a), especially 
below −22°C where the other organic and inorganic INPs dominated the composition, strongly supporting the 
hypothesis that these linked populations (Figure 8a) came mostly from the soil. Above −22°C, the untreated 
spectra from CACTI showed a convex shape, positively diverging from the SDAr01 sample. This divergence 
was mostly due to the activity of the biological INPs. When these were removed from the comparison by using 

Figure 12.  Ice-active surface site density of inorganic INPs measured in 
this study (brown open circles). Here, nINP have been normalized using the 
total surface area of aerosols having a diameter >1.0 μm (see Equation 3). 
INP parameterizations from Atkinson et al. (2013) and Harrison et al. (2019) 
were derived from Brunauer-Emmett-Teller (BET) gas adsorption surface 
measurements while aerosol surface areas in this study were derived by 
assuming spherical particles (geometric surface), likely underestimating the 
real surface area of the particles. Hence, the K-feldspar parameterizations were 
converted to estimated geometric surface area parameterizations, applying the 
conversion factor 2.6/0.89 used in DeMott et al. (2018) and derived from the 
K-feldspar sample used in their study. For clarity, the uncertainties in ns are 
shown for one sample (11 November 2018) only. On that day, surface areas 
were derived from nephelometer measurements, hence resulting in higher 
uncertainties in ns compared to surface areas derived from SMPS-UHSAS-
APS (see Supporting Information S1).
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results post-heat treatment (Figure 13b), the concordance between the CACTI and SDAr01 ns spectra improved 
further. Treatment of the SDAr01 sample with heat revealed a dominance of biological INPs >−19°C, but also a 
dominance of other organic/inorganic INPs below that, comparable to many spectra in Figure 3a.

4.  Conclusions
Our observations in central Argentina demonstrated that the local INP population active at temperatures from 
−5°C to around −20°C was largely dominated by biological INPs while below −22°C, other organic (non-heat-
labile organics) and inorganic INPs comprised the bulk of the population, although inorganic INPs were only a 
minor fraction of the total concentration. The population of biological INPs correlated with supermicron particle 
concentrations during days without rain and this correlation was strongest at lower temperatures. During rain 
events and under high relative humidity, the emission mechanisms appeared to be completely different from those 
dominating during dry days, and independent of the aerosol background concentration, particularly for biological 
INPs active at higher temperatures (i.e., −12°C). Recent rainfall greatly increased the relative abundance of INPs 
active at high temperatures (the [INP] −12°C/[INP] −25°C ratio) due to the simultaneous enhanced concentrations of 
the biological INPs and removal of the other INP classes from the boundary layer air, and/or a reduction of soil 
dust contributions due to the wet soil. After the rain, the ratio returned to the pre-rain value within one to 7 days.

Other organic and inorganic INPs were correlated with supermicron particle number concentrations during both 
rainy and non-rainy days, and were also strongly correlated with each other, suggesting they originated from the 
same source. The close agreement in ns spectra between the CACTI field results and the DeMott et al. (2018) lab-
oratory study of aerosolized particles from the regionally common SDAr01 soil, supported by the findings from 
single-particle composition and mixing state that this soil contains K-feldspar, illite, and a significant organic 
component (Figures 10 and 11), builds a strong case that many INPs occurring in the boundary layer in CACTI 
were topsoil particles coming from the cultivated lands to the east. This accords with the general air flow patterns 
shown in the residence-time-weighted back-trajectories (Figure 1). As an additional note, the results argue for 
the strong relevance of laboratory experiments for quantifying the behavior of soil-derived particles from a given 
region. We were only able to compare with a single aggregate soil sample in this work, but it would be of interest 
in future studies to obtain and test multiple samples that represent the heterogeneity of the surrounding region. In 

Figure 13.  Surface site density of SDAr01 samples from the FIN-02 campaign (DeMott et al., 2018) plotted alongside the 
surface site density of (a) The untreated INP spectra from this study, and (b) The heat treated INPs from this study. The black 
outlined blue and red dots represent values of the untreated and heated SDAr01 sample.



Journal of Geophysical Research: Atmospheres

TESTA ET AL.

10.1029/2021JD035186

21 of 26

addition, other analytical techniques, for example, Raman spectroscopy could give further information on com-
positions, such as directly identifying mineral phases.

Of note, the derived ice-active site density also agrees with other soil INP parameterizations derived from very 
different agricultural regions, namely with Wyoming soil dust and English fertile soil dust (Tobo et al., 2014 and 
O’Sullivan et al., 2014, respectively, see Figure 10b in DeMott et al., 2018). Therefore, the spectral signature 
derived from this study, as shown in Figure 13a, may in fact represent a typical agricultural soil signature, and 
not one specific to the Córdoba region. The predominance of biological INPs at temperatures above −20°C em-
phasizes the need for parameterization of this INP class, which should include their short-term variation caused 
by precipitation (e.g., fit parameterization derived by Mignani et al., 2021) and high relative humidity. Work to 
investigate whether the concentrations, characteristics and dynamics of the surface-level INPs are also applicable 
to observations at the altitude of clouds is ongoing (DeMott & Hill, 2020; Varble et al., 2021).

This study is the most comprehensive characterization of INPs in the boundary layer in Argentina, specifically 
to the east of the Sierras de Córdoba, to date. It is also a necessary first step toward improving understanding of 
aerosol impacts on convective clouds and precipitation formation in the province of Córdoba. We anticipate that 
this work will also inform a more general model of INPs found above continental agricultural landscapes through 
parameterization developments using similar data sets.
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