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Abstract
Throughout science and technology, receiver operating characteristic (ROC) curves and 
associated area under the curve ( AUC ) measures constitute powerful tools for assessing the 
predictive abilities of features, markers and tests in binary classification problems. Despite 
its immense popularity, ROC analysis has been subject to a fundamental restriction, in that 
it applies to dichotomous (yes or no) outcomes only. Here we introduce ROC movies and 
universal ROC (UROC) curves that apply to just any linearly ordered outcome, along with 
an associated coefficient of predictive ability ( CPA ) measure. CPA equals the area under 
the UROC curve, and admits appealing interpretations in terms of probabilities and rank 
based covariances. For binary outcomes CPA equals AUC , and for pairwise distinct out-
comes CPA relates linearly to Spearman’s coefficient, in the same way that the C index 
relates linearly to Kendall’s coefficient. ROC movies, UROC curves, and CPA nest and 
generalize the tools of classical ROC analysis, and are bound to supersede them in a wealth 
of applications. Their usage is illustrated in data examples from biomedicine and meteorol-
ogy, where rank based measures yield new insights in the WeatherBench comparison of the 
predictive performance of convolutional neural networks and physical-numerical models 
for weather prediction.

Keywords  C index · Classification and regression · Evaluation metric · Rank correlation 
coefficient · ROC analysis

Editor: Eyke Hüllermeier.

 *	 Tilmann Gneiting 
	 tilmann.gneiting@h-its.org

	 Eva‑Maria Walz 
	 eva-maria.walz@kit.edu

1	 Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
2	 Present Address: Institute for Stochastics, Karlsruhe Institute of Technology (KIT), Karlsruhe, 

Germany

http://orcid.org/0000-0001-9397-3271
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06114-3&domain=pdf


	 Machine Learning

1 3

1  Introduction

Originating from signal processing and psychology, popularized in the 1980s (Hanley 
and McNeil, 1982; Swets, 1988), and witnessing a surge of usage in machine learning 
(Bradley, 1997; Huang and Ling, 2005; Fawcett, 2006; Flach, 2016), receiver operating 
characteristic or relative operating characteristic (ROC) curves and area under the ROC 
curve ( AUC ) measures belong to the most widely used quantitative tools in science and 
technology. Strikingly, a Web of Science topic search for the terms “receiver operating 
characteristic” or “ROC” yields well over 15,000 scientific papers published in calendar 
year 2019 alone. In a nutshell, the ROC curve quantifies the potential value of a real-
valued classifier score, feature, marker, or test as a predictor of a binary outcome. To 
give a classical example, Fig. 1 illustrates the initial levels of two biomedical markers, 
serum albumin and serum bilirubin, in a Mayo Clinic trial on primary biliary cirrhosis 
(PBC), a chronic fatal disease of the liver (Dickson et al., 1989). While patient records 
specify the duration of survival in days, traditional ROC analysis mandates the reduc-
tion of the outcome to a binary event, which here we take as survival beyond four years. 
Assuming that higher marker values are more indicative of survival, we can take any 
threshold value to predict survival if the marker exceeds the threshold, and non-survival 
otherwise. This type of binary classifier yields true positives, false positives (erroneous 
predictions of survival), true negatives, and false negatives (erroneous predictions of 
non-survival). The ROC curve is the piecewise linear curve that plots the true positive 
rate, or sensitivity, versus the false positive rate, or one minus the specificity, as the 
threshold for the classifier moves through all possible values.

Despite its popularity, ROC analysis has been subject to a fundamental shortcom-
ing, namely, the restriction to binary outcomes. Real-valued outcomes are ubiquitous in 
scientific practice, and investigators have been forced to artificially make them binary if 
the tools of ROC analysis are to be applied. In this light, researchers have been seeking 
generalizations of ROC analysis that apply to just any type of ordinal or real-valued out-
comes in natural ways (Etzioni et al., 1999; Heagerty et al., 2000; Bi and Bennett, 2003; 
Pencina and D’Agostino, 2004; Heagerty and Zheng, 2005; Rosset et al., 2005; Mason 
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Fig. 1   Traditional ROC curves for two biomedical markers, serum albumin and serum bilirubin, as predic-
tors of patient survival beyond a threshold value of 1462 days (4 years) in a Mayo Clinic trial. a, c Bar plots 
of marker levels conditional on survival or non-survival. The stronger shading results from overlap. For bil-
irubin, we reverse orientation, as is customary in the biomedical literature. b ROC curves and AUC values. 
The crosses correspond to binary classifiers at the feature thresholds indicated in the bar plots
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and Weigel, 2009; Hernández-Orallo, 2013). Still, notwithstanding decades of scientific 
endeavor, a fully satisfactory generalization has been elusive.

In this paper, we propose a powerful generalization of ROC analysis, which overcomes 
extant shortcomings, and introduce data science tools in the form of the ROC movie, the 
universal ROC (UROC) curve, and an associated, rank based coefficient of (potential) 
predictive ability ( CPA ) measure - tools that apply to just any linearly ordered outcome, 
including both binary, ordinal, mixed discrete-continuous, and continuous variables. The 
ROC movie comprises the sequence of the traditional, static ROC curves as the linearly 
ordered outcome is converted to a binary variable at successively higher thresholds. The 
UROC curve is a weighted average of the individual ROC curves that constitute the ROC 
movie, with weights that depend on the class configuration, as induced by the unique val-
ues of the outcome, in judiciously predicated, well-defined ways. CPA is a weighted aver-
age of the individual AUC values in the very same way that the UROC curve is a weighted 
average of the individual ROC curves that constitute the ROC movie. Hence, CPA equals 
the area under the UROC curve. This set of generalized tools reduces to the standard ROC 
curve and AUC when applied to binary outcomes. Moreover, key properties and relations 
from conventional ROC theory extend to ROC movies, UROC curves, and CPA in mean-
ingful ways, to result in a coherent toolbox that properly extends the standard ROC con-
cept. For a graphical preview, we return to the survival data example from Fig. 1, where 
the outcome was artificially made binary. Equipped with the new set of tools we no longer 
need to transform survival time into a specific dichotomous outcome. Figure 2 shows ROC 
movies, UROC curves, and CPA for the survival dataset.

The remainder of the paper is organized as follows. Section 2 provides a brief review of 
conventional ROC analysis for dichotomous outcomes. The key technical development is 
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Fig. 2   UROC curves and CPA for two biomedical markers, serum albumin and serum bilirubin, as predic-
tors of patient survival (in days) in a Mayo Clinic trial. For ROC movies, see the arXiv version of the paper 
at https://​arxiv.​org/​abs/​1912.​01956. The ROC movies show the traditional ROC curves for binary events 
that correspond to patient survival beyond successively higher thresholds. The numbers at upper left show 
the current value of the threshold in days, at upper middle the respective relative weight, and at bottom right 
the AUC values. The threshold value of 1462 days recovers the traditional ROC curves in Fig. 1. The video 
ends in a static screen with the UROC curves and CPA values for the two markers

https://arxiv.org/abs/1912.01956
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in Sects. 3 and 4, where we introduce and study ROC movies, UROC curves, and the rank 
based CPA measure. To illustrate practical usage and relevance, real data examples from sur-
vival analysis and weather prediction are presented in Sect. 5. We monitor recent progress in 
numerical weather prediction (NWP) and shed new light on a recent comparison of the pre-
dictive abilities of convolutional neural networks (CNNs) versus traditional NWP models. The 
paper closes with a discussion in Sect. 6.

2 � Receiver operating characteristic (ROC) curves and area 
under the curve ( AUC ) for binary outcomes

Before we introduce ROC movies, UROC curves, and CPA , it is essential that we establish 
notation and review the classical case of ROC analysis for binary outcomes, as described 
in review articles and monographs by Hanley and McNeil (1982), Swets (1988), Bradley 
(1997), Pepe (2003), Fawcett (2006), and Flach (2016), among others.

2.1 � Binary setting

Throughout this section we consider bivariate data of the form

where xi ∈ ℝ is a real-valued classifier score, feature, marker, or covariate value, and 
yi ∈ {0, 1} is a binary outcome, for i = 1,… , n . Following the extant literature, we refer 
to y = 1 as the positive outcome and to y = 0 as the negative outcome, and we assume that 
higher values of the feature are indicative of stronger support for the positive outcome. 
Throughout we assume that there is at least one index i ∈ {1,… , n} with yi = 0 , and a fur-
ther index j ∈ {1,… , n} with yj = 1.

2.2 � Receiver operating characteristic (ROC) curves

We can use any threshold value x ∈ ℝ to obtain a hard classifier, by predicting a positive 
outcome for a feature value > x , and predicting a negative outcome for a feature value ≤ x . 
If we compare to the actual outcome, four possibilities arise. True positive and true nega-
tive cases correspond to correctly classified instances from class 1 and class 0, respectively. 
Similarly, false positive and false negative cases are misclassified instances from class 1 
and class 0, respectively.

Considering the data (1), we obtain the respective true positive rate, hit rate or sensitiv-
ity (se),

and the false negative rate, false alarm rate or one minus the specificity (sp),

(1)(x1, y1),… , (xn, yn) ∈ ℝ × {0, 1},

se(x) =

1

n

∑n

i=1
1{xi > x, yi = 1}

1

n

∑n

i=1
1{yi = 1}

,

1 − sp(x) =

1

n

∑n

i=1
1{xi > x, yi = 0}

1

n

∑n

i=1
1{yi = 0}

,
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at the threshold value x ∈ ℝ , where the indicator 1{A} equals one if the event A is true and 
zero otherwise.

Evidently, it suffices to consider threshold values x equal to any of the unique values of 
x1,… , xn or some x0 < x1 . For every x of this form, we obtain a point

in the unit square. Linear interpolation of the respective discrete point set results in a piece-
wise linear curve from (0, 0) to (1, 1) that is called the receiver operating characteristic 
(ROC) curve. For a mathematically oriented, detailed discussion of the construction see 
Section 2 of Gneiting and Vogel (2021).

2.3 � Area under the curve ( AUC)

The area under the ROC curve is a widely used measure of the predictive potential of a feature 
and generally referred to as the area under the curve ( AUC).

In what follows, a well-known interpretation of AUC in terms of probabilities will be use-
ful. To this end, we define the function

where x, x� ∈ ℝ . For subsequent use, note that if x and x′ are ranked within a list, and ties 
are resolved by assigning equal ranks within tied groups, then s(x, x�) = s(rk(x), rk(x�)) , 
where rk(x) and rk(x�) are the ranks of x and x′.

We now change notation and refer to the feature values in class i ∈ {0, 1} as xik for 
k = 1,… , ni , where n0 =

∑n

i=1
1{yi = 0} and n1 =

∑n

i=1
1{yi = 1} , respectively. Thus, we 

have rewritten (1) as

Using the new notation, Result 4.10 of Pepe (2003) states that

In words, AUC equals the probability that under random sampling a feature value from 
a positive instance is greater than a feature value from a negative instance, with any ties 
resolved at random. Expressed differently, AUC equals the tie-adjusted probability of con-
cordance in feature–outcome pairs, where we define instances (x, y) ∈ ℝ

2 and (x�, y�) ∈ ℝ
2 

with y ≠ y′ to be concordant if either x > x′ and y > y′ , or x < x′ and y < y′ . Similarly, 
instances (x, y) and (x�, y�) with y ≠ y′ are discordant if either x > x′ and y < y′ , or x < x′ 
and y > y′.

Further investigation reveals a close connection to Somers’ D, a classical measure of ordi-
nal association (Somers, 1962). This measure is defined as

where n0n1 is the total number of pairs with distinct outcomes that arise from the data in 
(3), nc is the number of concordant pairs, and nd is the number of discordant pairs. Finally, 

(1 − sp(x), se(x))

(2)s(x, x�) = 1{x < x�} +
1

2
1{x = x�},

(3)(x01, 0),… , (x0n0 , 0), (x11, 1),… , (x1n1 , 1) ∈ ℝ × {0, 1}.

(4)AUC =
1

n0n1

n0∑
i=1

n1∑
j=1

s(x0i, x1j).

D =
nc − nd

n0n1
,
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let ne be the number of pairs for which the feature values are equal. The relationship (4) 
yields

and as n0n1 = nc + nd + ne , it follows that

relates linearly to Somers’ D.
To give an example, suppose that the real-valued outcome Y and the features X, X′ and 

X′′ are jointly Gaussian. Specifically, we assume that the joint distribution of (Y ,X,X�,X��) 
is multivariate normal with covariance matrix

In order to apply classical ROC analysis, the real-valued outcome Y needs to be converted 
to a binary variable, namely, an event of the type Y� = 1{Y ≥ �} of Y being greater than or 
equal to a threshold value � . Figure 3 shows ROC curves for the features X, X′ and X′′ as a 
predictor of the binary variable Y1 , based on a sample of size n = 400 . The AUC values for 
X, X′ and X′′ as a predictor of Y1 are .91, .72 and .61, respectively.

2.4 � Key properties

A key requirement for a persuasive generalization of classical ROC analysis is the reduction 
to ROC curves and AUC if the outcomes are binary. Furthermore, well established desir-
able properties from ROC analysis ought to be retained. To facilitate judging whether the 

AUC =
nc

n0n1
+

1

2

ne

n0n1
,

(5)AUC =
1

2
(D + 1)

(6)
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Fig. 3   Traditional ROC curves 
and AUC values for the features 
X, X′ and X′′ as predictors of the 
binary outcome Y1 = 1{Y ≥ 1} 
in the simulation example of 
Sect. 2.3, based on a sample of 
size n = 400
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generalization in Sects.  3 and 4 satisfies these desiderata, we summarize key properties of 
ROC curves and AUC in the following (slightly informal) listing. 

(1)	 The ROC curve and AUC are straightforward to compute and interpret, in the (rough) 
sense of the larger the better.

(2)	 AUC attains values between 0 and 1 and relates linearly to Somers’ D. For a perfect 
feature, AUC = 1 and D = 1 ; for a feature that is independent of the binary outcome, 
AUC =

1

2
 und D = 0.

(3)	 The numerical value of AUC admits an interpretation as the probability of concordance 
for feature–outcome pairs.

(4)	 The ROC curve and AUC are purely rank based and, therefore, invariant under strictly 
increasing transformations. Specifically, if � ∶ ℝ → ℝ is a strictly increasing function, 
then the ROC curve and AUC computed from 

 are the same as the ROC curve and AUC computed from (1).
As an immediate consequence of the latter property, ROC curves and AUC assess the dis-
crimination ability or potential predictive ability of a classifier, feature, marker, or test (Wilks, 
2019). Distinctly different methods are called for if one seeks to evaluate a classifier’s actual 
value in any given applied setting (Adams and Hands, 1999; Hernández-Orallo et al., 2012; 
Ehm et al., 2016).

3 � ROC movies and universal ROC (UROC) curves for real‑valued 
outcomes

As noted, traditional ROC analysis applies to binary outcomes only. Thus, researchers work-
ing with real-valued outcomes, and desiring to apply ROC analysis, need to convert and 
reduce to binary outcomes, by thresholding artificially at a cut-off value. Here we propose a 
powerful generalization of ROC analysis, which overcomes extant shortcomings, and intro-
duce data analytic tools in the form of the ROC movie, the universal ROC (UROC) curve, and 
an associated rank based coefficient of (potential) predictive ability ( CPA ) measure — tools 
that apply to just any linearly ordered outcome, including both binary, ordinal, mixed discrete-
continuous, and continuous variables.

3.1 � General real‑valued setting

Generalizing the binary setting in (1), we now consider bivariate data of the form

where xi is a real-valued point forecast, regression output, feature, marker, or covariate 
value, and yi is a real-valued outcome, for i = 1,… , n . Throughout we assume that there 
are at least two unique values among the outcomes y1,… , yn.

The crux of the subsequent development lies in a conversion to a sequence of binary prob-
lems. To this end, we let

(7)(�(x1), y1),… , (�(xn), yn) ∈ ℝ × {0, 1}

(8)(x1, y1),… , (xn, yn) ∈ ℝ ×ℝ,

z1 < ⋯ < zm
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denote the m ≤ n unique values of y1,… , yn , and we define

as the number of instances among the outcomes y1,… , yn that equal zc , for c = 1,… ,m , so 
that n1 +⋯ + nm = n . We refer to the respective groups of instances as classes.

Next we transform the real-valued outcomes y1,… , yn into binary outcomes 
1{y1 ≥ �},… ,1{yn ≥ �} relative to a threshold value � ∈ ℝ . Thus, instead of analysing 
the original problem in (8), we consider a series of binary problems. By construction, only 
values of � equal to z2,… , zm result in nontrivial, unique sets of binary outcomes. There-
fore, we consider m − 1 derived classification problems with binary data of the form

where c = 1,… ,m − 1 . As the derived problems are binary, all the tools of traditional ROC 
analysis apply.

In the remainder of the section we describe our generalization of ROC curves for binary 
data to ROC movies and universal ROC (UROC) curves for real-valued data. First, we 
argue that the m − 1 classical ROC curves for the derived data in (9) can be merged into a 
single dynamical display, to which we refer as a ROC movie (Definition 1). Then we define 
the UROC curve as a judiciously weighted average of the classical ROC curves of which 
the ROC movie is composed (Definition 2).

Finally, we introduce a general measure of potential predictive ability for features, termed 
the coefficient of predictive ability (CPA). CPA is a weighted average of the AUC values for 
the derived binary problems in the very same way that the UROC curve is a weighted aver-
age of the (classical) ROC curves that constitute the ROC movie. Hence, CPA equals the area 
under the UROC curve (Definition 3). Alternatively, CPA can be interpreted as a weighted 
probability of concordance (Theorem 1) or in terms of rank based covariances (Theorem 2). 
CPA reduces to AUC if the outcomes are binary, and relates linearly to Spearman’s rank cor-
relation coefficient if the outcomes are continuous (Theorems 3 and 4).

3.2 � ROC movies

We consider the sequence of m − 1 classification problems for the derived binary data in 
(9). For c = 1,… ,m − 1 , we let ROCc denote the associated ROC curve, and we let AUCc 
be the respective AUC value.

Definition 1  For data of the form (8), the ROC movie is the sequence (ROCc)c=1,…,m−1 of 
the ROC curves for the induced binary data in (9).

If the original problem is binary there are m = 2 classes only, and the ROC movie reduces 
to the classical ROC curve. In case the outcome attains m ≥ 3 distinct values the ROC movie 
can be visualized by displaying the associated sequence of m − 1 ROC curves. In medical sur-
vival analysis, the outcomes y1,… , yn in data of the form (8) are survival times, and the analy-
sis is frequently hampered by censoring, as patients drop out of studies. In this setting, Etzioni 
et al. (1999) and Heagerty et al. (2000) introduced the notion of time-dependent ROC curves, 
which are classical ROC curves for the binary indicator 1{yi ≥ t} of survival through (follow-
up) time t, with censoring being handled efficiently. For an example see Fig. 2 of Heagerty 

nc =

n∑
i=1

1{yi = zc}

(9)(x1,1{y1 ≥ zc+1}),… , (xn,1{yn ≥ zc+1}) ∈ ℝ × {0, 1},
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et al. (2000), where the ROC curves concern survival beyond follow-up times of 40, 60, and 
100 months, respectively. If the thresholds considered correspond to the unique values of the 
outcomes, the sequence of time-dependent ROC curves becomes a ROC movie in the sense 
of Definition 1, save for the handling of censored data. When the number m ≤ n of classes is 
small or modest, the generation of the ROC movie is straightforward. Adaptations might be 
required as m grows, and we tend to this question in Sect. 5.2.

We have implemented ROC movies, UROC curves, and CPA within the uroc package for 
the statistical programming language R (R Core Team, 2021) where the animation pack-
age of Xie (2013) provides functionality for converting R images into a GIF animation, based 
on the external software ImageMagick. The uroc package can be downloaded from https://​
github.​com/​evwalz/​uroc. In addition, a Python (Python, 2021) implementation is available at 
https://​github.​com/​evwalz/​urocc. Returning to the example of Sect. 2.3, Fig. 4 compares the 
features X, X′ and X′′ as predictors of the real-valued outcome Y in a joint display of the three 
ROC movies and UROC curves, based on the same sample of size n = 400 as in Fig. 3. In the 
ROC movies, the threshold z = 1.00 recovers the traditional ROC curves in Fig. 3.

3.3 � Universal ROC (UROC) curves

Next we propose a simple and efficient way of subsuming a ROC movie for data of the 
form (8) into a single, static graphical display. As before, let z1 < ⋯ < zm denote the 
unique values of y1,… , yn , let nc =

∑n

i=1
1{yi = zc} , and let ROCc denote the (classical) 

ROC curve associated with the binary problem in (9), for c = 1,… ,m − 1.
By Theorem 4 of Gneiting and Vogel (2021), there is a natural bijection between the 

class of the ROC curves and the class of the cumulative distribution functions (CDFs) of 

Fig. 4   UROC curves for the 
features X, X′ and X′′ as predic-
tors of the real-valued outcome 
Y in the simulation example of 
Sect. 2.3, based on the same 
sample as in Fig. 3. For ROC 
movies, see the arXiv version 
of the paper at https://​arxiv.​org/​
abs/​1912.​01956. In the ROC 
movies, the number at upper 
left shows the threshold under 
consideration, the number at 
upper center the relative weight 
w
c
∕max

l=1,…,m−1 wl
 from (11), 

and the numbers at bottom right 
the respective AUC values
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Borel probability measures on the unit interval. In particular, any ROC curve can be associ-
ated with a non-decreasing, right-continuous function R ∶ [0, 1] → [0, 1] such that R(0) = 0 
and R(1) = 1 . Hence, any convex combination of the ROC curves ROC1,… , ROCm−1 can 
also be associated with a non-decreasing, right-continuous function on the unit interval. It 
is in this sense that we define the following; in a nutshell, the UROC curve averages the 
traditional ROC curves of which the ROC movie is composed.

Definition 2  For data of the form (8), the universal receiver operating characteristic 
(UROC) curve is the curve associated with the function

on the unit interval, with weights

for c = 1,… ,m − 1.

Importantly, the weights in (11) depend on the data in (8) via the outcomes y1,… , yn only. 
Thus, they are independent of the feature values and can be used meaningfully in order to com-
pare and rank features. Their specific choice is justified in Theorems 1 and 2 below. Clearly, the 
weights are nonnegative and sum to one. If m = n then n1 = ⋯ = nm = 1 , and (11) reduces to

so the weights are quadratic in the rank c and symmetric about the inner most rank(s), at 
which they attain a maximum. As we will see, our choice of weights has the effect that in 
this setting the area under the UROC curve, to which we refer as a general coefficient of 
predictive ability ( CPA ), relates linearly to Spearman’s rank correlation coefficient, in the 
same way that AUC relates linearly to Somers’ D.

In Fig.  4 the UROC curves appear in the final static screen, subsequent to the ROC 
movies. Within each ROC movie, the individual frames show the ROC curve ROCc for the 
feature considered. Furthermore, we display the threshold zc , the relative weight from (11) 
(the actual weight normalized to the unit interval, i.e., we show wc∕maxl=1,…,m−1 wl ), and 
AUCc , respectively, for c = 1,… ,m − 1 . Once more we emphasize that the use of ROC 
movies, UROC curves, and CPA frees researchers from the need to select—typically, arbi-
trary—threshold values and binarize, as mandated by classical ROC analysis.

Of course, if specific threshold values are of particular substantive interest, the respec-
tive ROC curves can be extracted from the ROC movie, and it can be useful to plot AUCc 

(10)
m−1∑
c=1

wc ROCc

(11)wc =

(
c∑

i=1

ni

m∑
i=c+1

ni

)/(
m−1∑
i=1

m∑
j=i+1

(j − i)ninj

)

(12)wc = 6
c(n − c)

n(n2 − 1)
for c = 1,… , n − 1;
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versus the associated threshold value zc . Displays of this type have been introduced and 
studied by Rosset et al. (2005).

4 � Coefficient of predictive ability ( CPA)

We proceed to define the coefficient of predictive ability ( CPA ) as a general measure of 
potential predictive ability, based on notation introduced in Sects. 3.2 and 3.3.

Definition 3  For data of the form (8) and weights w1,… ,wm−1 as in (11), the coefficient 
of predictive ability ( CPA ) is defined as

In words, CPA equals the area under the UROC curve.

Importantly, ROC movies, UROC curves, and CPA satisfy a fundamental requirement 
on any generalization of ROC curves and AUC , in that they reduce to the classical notions 
when applied to a binary problem, whence m = 2 in (10) and (13), respectively. Another 
requirement that we consider essential is that, when both the feature values x1,… , xn and 
the outcomes y1,… , yn are pairwise distinct, the value of a performance measure remains 
unchanged if we transpose the roles of the feature and the outcome. As we will see, this is 
true under our specific choice (11) of the weights wc in the defining formula (13) for CPA , 
but is not true under other choices, such as in the case of equal weights.

4.1 � Interpretation as a weighted probability

We now express CPA in terms of pairwise comparisons via the function s in (2). To this 
end, we usefully change notation for the data in (8) and refer to the feature values in class 
c ∈ {1,… ,m} as xck , for k = 1,… , nc . Thus, we rewrite (8) as

where z1 < ⋯ < zm are the unique values of y1,… , yn and nc =
∑n

i=1
1{yi = zc} , for 

c = 1,… ,m.

Theorem 1  For data of the form (14),

(13)CPA =

m−1∑
c=1

wc AUCc.

(14)(x11, z1),… , (x1n1 , z1), … , (xm1, zm),… , (xmnm , zm) ∈ ℝ ×ℝ,

(15)CPA =

∑m−1

i=1

∑m

j=i+1

∑ni
k=1

∑nj

l=1
(j − i) s(xik, xjl)

∑m−1

i=1

∑m

j=i+1
(j − i) ninj

.
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Proof  By (4), the individual AUC values satisfy

for c = 1,… ,m − 1 . In view of (11) and (13), summation yields

as claimed. 	�  ◻

Thus, CPA is based on pairwise comparisons of feature values, counting the number 
of concordant pairs in (14), adjusting to a count of 1

2
 if feature values are tied, and weight-

ing a pair’s contribution by a class based distance, j − i , between the respective outcomes, 
zj > zi . In other words, CPA equals a weighted probability of concordance, with weights 
that grow linearly in the class based distance between outcomes.

The specific form of CPA in (15) invites comparison to a widely used measure of dis-
crimination in biomedical applications, namely, the C index (Harrell et al., 1996; Pencina 
and D’Agostino, 2004)

If the outcomes are binary, both the C index and CPA reduce to AUC . While CPA can 
be interpreted as a weighted probability of concordance, C admits an interpretation as an 
unweighted probability, whence Mason and Weigel (2009) recommend its use for adminis-
trative purposes. However, the weighting in (15) may be more meaningful, as concordance 
between feature–outcome pairs with outcomes that differ substantially in rank tends to be 
of greater practical relevance than concordance between pairs with alike outcomes. While 
CPA admits the appealing, equivalent interpretation (13) in terms of binary AUC values 
and the area under the UROC curve, relationships of this type are unavailable for the C 
index.

Subject to conditions, the C index relates linearly to Kendall’s rank correlation coeffi-
cient (Somers, 1962; Pencina and D’Agostino, 2004; Mason and Weigel, 2009). In Sect. 4.3 
we demonstrate the same type of relationship for CPA and Spearman’s rank correlation 

AUCc =
1∑c

i=1
ni
∑m

i=c+1
ni

c�
i=1

m�
j=c+1

ni�
k=1

nj�
l=1

s(xik, xjl)

CPA =

m−1�
c=1

wc AUCc

=

∑m−1

c=1

∑c

i=1

∑m

j=c+1

∑ni
k=1

∑nj

l=1
s(xik, xjl)

∑m−1

i=1

∑m

j=i+1
(j − i) ninj

=

∑m−1

i=1

∑m

j=i+1

∑ni
k=1

∑nj

l=1
(j − i) s(xik, xjl)

∑m−1

i=1

∑m

j=i+1
(j − i) ninj

,

(16)C =

∑m−1

i=1

∑m

j=i+1

∑ni
k=1

∑nj

l=1
s(xik, xjl)

∑m−1

i=1

∑m

j=i+1
ninj

.
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coefficient, thereby resolving a problem raised by Heagerty and Zheng (2005, p. 95). Just 
as the C index bridges and generalizes AUC and Kendall’s coefficient, CPA bridges and 
nests AUC and Spearman’s coefficient, with the added benefit of appealing interpretations 
in terms of the area under the UROC curve and rank based covariances.

4.2 � Representation in terms of covariances

The key result in this section represents CPA in terms of the covariance between the class 
of the outcome and the mid rank of the feature, relative to the covariance between the class 
of the outcome and the mid rank of the outcome itself.

The mid rank method handles ties by assigning the arithmetic average of the ranks 
involved (Woodbury, 1940; Kruskal, 1958). For instance, if the third to seventh positions 
in a list are tied, their shared mid rank  is 1

5
(3 + 4 + 5 + 6 + 7) = 5 . This approach treats 

equal values alike and guarantees that the sum of the ranks in any tied group is unchanged 
from the case of no ties. As before, if yi = zj , where z1 < ⋯ < zm are the unique values of 
y1,… , yn in (8), we say that the class of yi is j. In brief, we express this as cl(yi) = j . Simi-
larly, we refer to the mid rank of xi within x1,… , xn as rk(xi).

Theorem 2  Let the random vector (X, Y) be drawn from the empirical distribution of the 
data in (8) or (14). Then

Proof  Suppose that the law of the random vector (X, Y) is the empirical distribution of the 
data in (8). Based on the equivalent representation in (14), we find that

where n0 = 0 . Consequently, we can rewrite (17) as

We proceed to demonstrate that the numerator and denominator in (15) equal the numer-
ator and denominator in (18), respectively. To this end, we first compare feature values 
within classes and note that

for if the feature values in class i are all distinct, the largest one exceeds ni − 1 others, the 
second largest exceeds ni − 2 others, and so on, and analogously in case of ties. We now 
show the equality of the numerators in (15) and (18), in that

(17)CPA =
1

2

(
cov(cl(Y), rk(X))

cov(cl(Y), rk(Y))
+ 1

)
.

cov(cl(Y), rk(X))

cov(cl(Y), rk(Y))
=

∑m

i=1

∑ni
k=1

irk(xik) −
1

2
(n + 1)

∑m

i=1
ini

∑m

i=1
ini

�∑i−1

j=0
nj +

1

2
(ni + 1)

�
−

1

2
(n + 1)

∑m

i=1
ini

,

(18)CPA =

∑m

i=1

∑ni
k=1

irk(xik) +
∑m

i=1
ini

�∑i−1

j=0
nj +

1

2
ni − n −

1

2

�

∑m

i=1
ini

�
2
∑i−1

j=0
nj + ni − n

� .

m∑
i=1

ni∑
k=1

ni∑
l=1

is(xil, xik) =

m∑
i=1

i

ni∑
k=1

(
ni − k +

1

2

)
=

1

2

m∑
i=1

in2
i
;
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As for the denominators,

whence the proof is complete. 	�  ◻

m−1∑
i=1

m∑
j=i+1

ni∑
k=1

nj∑
l=1

(j − i) s(xik, xjl)

=

m−1∑
i=1

m∑
j=i+1

ni∑
k=1

nj∑
l=1

js(xik, xjl) −

m−1∑
i=1

m∑
j=i+1

ni∑
k=1

nj∑
l=1

is(xik, xjl)

+

m−1∑
j=1

m∑
i=j+1

nj∑
k=1

ni∑
l=1

js(xik, xjl) −

m−1∑
j=1

m∑
i=j+1

nj∑
k=1

ni∑
l=1

js(xik, xjl)

=

m∑
i=1

m∑
j = 1

j ≠ i

ni∑
k=1

nj∑
l=1

js(xik, xjl) −

m−1∑
i=1

m∑
j=i+1

ni∑
k=1

nj∑
l=1

i
(
s(xjl, xik) + s(xik, xjl)

)

=

m∑
j=1

nj∑
l=1

j
(
rk(xjl) −

1

2

)
−

m∑
i=1

ni∑
k=1

ni∑
l=1

is(xil, xik) −

m−1∑
i=1

m∑
j=i+1

ininj

=

m∑
i=1

ni∑
k=1

irk(xik) −
1

2

m∑
i=1

ini −
1

2

m∑
i=1

in2
i
− n

m−1∑
i=1

ini +

m−1∑
i=1

ini

i∑
j=0

nj

=

m∑
i=1

ni∑
k=1

irk(xik) −
1

2

m∑
i=1

ini −
1

2

m∑
i=1

in2
i
− n

m∑
i=1

ini +

m∑
i=1

ini

i∑
j=0

nj

=

m∑
i=1

ni∑
k=1

irk(xik) +

m∑
i=1

ini

(
i−1∑
j=0

nj +
1

2
ni − n −

1

2

)
.

m−1∑
i=1

m∑
j=i+1

(j − i) ninj =

m−1∑
i=1

m∑
j=i+1

jninj −

m−1∑
i=1

m∑
j=i+1

ininj

=

m∑
i=1

ini

i−1∑
k=0

nk − n

m−1∑
i=1

ini +

m−1∑
i=1

ini

i∑
k=1

nk

= 2

m∑
i=1

ini

i−1∑
k=0

nk − n

m−1∑
i=1

ini +

m−1∑
i=1

in2
i
+

m−1∑
i=1

ini

i−1∑
k=0

nk −

m∑
i=1

ini

i−1∑
k=0

nk

= 2

m∑
i=1

ini

i−1∑
k=0

nk − n

m−1∑
i=1

ini +

m−1∑
i=1

in2
i
− nmnm + mn2

m

= 2

m∑
i=1

ini

i−1∑
k=0

nk − n

m∑
i=1

ini +

m∑
i=1

in2
i

=

m∑
i=1

ini

(
2

i−1∑
j=0

nj + ni − n

)
,
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Interestingly, the representation (17) in terms of rank and class based covariances 
appears to be new even in the special case when the outcomes are binary, so that CPA 
reduces to AUC . The representation also sheds new light on the asymmetry of CPA , in 
that, in general, the value of CPA changes if we transpose the roles of the feature and the 
outcome. In contrast to customarily used measures of bivariate association and depend-
ence, which are necessarily symmetric (Nešlehová, 2007; Reshef et al., 2011; Weihs et al., 
2018), CPA is directed when the outcome is binary or ordinal. Thus, CPA avoids a techni-
cal issue with the use of rank-based correlation coefficients in discrete settings, namely, 
that perfect classifiers do not reach the optimal values of the respective performance meas-
ures (Nešlehová, 2007, p. 565). However, in the case of no ties at all, to which we tend 
now, CPA becomes symmetric, as one would expect, given that the feature and the out-
come are on equal footing then.

4.3 � Relationship to Spearman’s rank correlation coefficient

Spearman’s rank correlation coefficient �S for data of the form (8) is generally understood 
as Pearson’s correlation coefficient applied to the respective ranks (Spearman, 1904). In 
case there are no ties in either x1,… , xn nor y1,… , yn , the concept is unambiguous, and 
Spearman’s coefficient can be computed as

where rk(xi) denotes the rank of xi within x1,… , xn , and rk(yi) the rank of yi within 
y1,… , yn,

In this setting CPA relates linearly to Spearman’s rank correlation coefficient �S , in the 
very same way that AUC relates to Somers’ D in (5).

Theorem 3  In the case of no ties,

Indeed, in case there are no ties, both mid ranks and classes reduce to ranks proper, 
and then (20) is readily identified as a special case of (17). For an alternative proof, in the 
absence of ties the weights wc in (11) are of the form (12). The stated result then follows 
upon combining the defining equation (10), the equality stated at the bottom of the left col-
umn of page 4 in Rosset et al. (2005), and equation (5) in the same reference.

Note that CPA becomes symmetric in this case, as its value remains unchanged if we 
transpose the roles of the feature and the outcome. Furthermore, if the joint distribution of 
a bivariate random vector (X, Y) is continuous, and we think of the data in (8) as a sample 
from the respective population, then, by applying Definition 3 and Theorem 3 in the large 
sample limit, and taking (12) into account, we (informally) obtain a population version of 
CPA , namely,

(19)�S = 1 −
6

n(n2 − 1)

n∑
i=1

(
rk(xi) − rk(yi)

)2
,

(20)CPA =
1

2

(
�S + 1

)
.

(21)CPA = 6∫
1

0

�(1 − �)AUC� d� =
1

2

(
�S + 1

)
,
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where AUC� is the population version of AUC for (X,1{Y ≥ q�}) , with q� denoting the �
-quantile of the marginal law of Y. We defer a rigorous derivation of (21) to future work 
and stress that, as both X and Y are continuous here, their roles can be interchanged.

Under the assumption of multivariate normality, the population version of Spearman’s 
�S relates to Pearson’s correlation coefficient r as

see, e.g., Kruskal (1958). Returning to the example in Sect.  2.3, where (Y ,X,X�,X��) is 
jointly Gaussian with covariance matrix (6), Table 1 states, for each feature, the popula-
tion values of Pearson’s correlation coefficient r, CPA , and the C index relative to the real-
valued outcome Y, as derived from (21) and (22) and the respective relationships for the C 
index and Kendall’s rank correlation coefficient �K , namely

and

These results imply that for a bivariate Gaussian population with Pearson correlation 
coefficient r ∈ (0, 1) it is true that 𝜏K > 𝜌S > 0 and CPA > C > 1∕2 . In fact, under posi-
tive dependence it always holds that �K ≥ �S ≥ 0 , as demonstrated by Capéraà and Genest 
(1993), whence CPA ≥ C ≥ 1∕2 . However, there are also settings where these inequalities 
get violated (Schreyer et al., 2017). In Fig. 4 the CPA values for the features appear along 
with the UROC curves in the final static screen, subsequent to the ROC movie. The empiri-
cal values show the expected approximate agreement with the population quantities in the 
table.

Suppose now that the values y1,… , yn of the outcomes are unique, whereas the feature 
values x1,… , xn might involve ties. Let p ≥ 0 denote the number of tied groups within 
x1,… , xn . If p = 0 let V = 0 . If p ≥ 1 , let vj be the number of equal values in the jth group, 
for j = 1,… , p , and let

Then Spearman’s mid rank adjusted coefficient �M is defined as

(22)�S =
6

�
arcsin

r

2
;

(23)C =
1

2

(
�K + 1

)

(24)�K =
2

�
arcsin r.

V =
1

12

p∑
j=1

(
v3
j
− vj

)
.

Table 1   Population values of Pearson’s correlation coefficient r, CPA , and the C index for the features X, 
X
′ , and X′′ relative to the real-valued outcome Y, where (Y ,X,X�

,X
��) is Gaussian with covariance matrix 

(6)

Feature r CPA C

X 0.800 0.893 0.795
X
′ 0.500 0.741 0.667

X
′′ 0.200 0.596 0.564
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where rk is the aforementioned mid rank. As shown by Woodbury (1940), if one assigns all 
possible combinations of integer ranks within tied sets, computes Spearman’s �S in (19) on 
every such combination and averages over the respective values, one obtains the formula 
for �M in (25).

The following result reduces to the statement of Theorem 3 in the case p = 0 when there 
are no ties in x1,… , xn either.

Theorem 4  In case there are no ties within y1,… , yn,

Proof  As noted, �M arises from �S if one assigns all possible combinations of integer ranks 
within tied sets, computes �S on every such combination and averages over the respective 
values. In view of (18), if there are no ties in y1,… , yn , averaging 1

2

(
�S + 1

)
 over the com-

binations yields 1
2

(
�M + 1

)
 , which equals CPA by (17). 	�  ◻

The relationships (5), (20) and (26) constitute but special cases of the general, covari-
ance based representation (17). In this light, CPA provides a unified way of quantifying 
potential predictive ability for the full gamut of dichotomous, categorical, mixed discrete-
continuous and continuous types of outcomes. In particular, CPA bridges and general-
izes AUC , Somers’ D and Spearman’s rank correlation coefficient, up to a common linear 
relationship.

4.4 � Comparison of CPA to the C index and related measures

We proceed to a more detailed comparison of the CPA measure (13) to the C index (16) 
and measures studied by Waegeman et al. (2008).1 As noted, both CPA and the C index 
are rank-based, reduce to AUC when the outcome is binary, and become symmetric when 
both the features and the outcomes are pairwise distinct. We relax these conditions slightly 
and restrict attention to measures that use ranks only, reduce to AUC when the outcome is 
binary and there are no ties in the feature values, and become symmetric when there are 
no ties at all. This excludes measures based on the receiver error characteristic (REC, Bi 
and Bennett 2003) and the regression receiver operating characteristic (RROC, Hernández-
Orallo, 2013) curve, which are neither rank based nor reduce to AUC . The Ucons measure 
of Waegeman et al. (2008) averages consecutive AUC values in the same fashion as CPA 
in (13), but uses constant weights, as opposed to the class dependent weights (11) for CPA , 
and does not become symmetric when there are no ties at all.2 The Upairs and Uovo measures 

(25)�M = 1 −
6

n(n2 − 1)

(
n∑
i=1

(
rk(xi) − rk(yi)

)2

+ V

)
,

(26)CPA =
1

2

(
�M + 1

)
.

1  We denote the measures Û , Û
pairs

 , Û
ovo

 , and Û
cons

 in equations (8), (16), (17), and (18) of Waegeman et al. 
(2008) by U, Upairs , Uovo , and Ucons , respectively.
2  To see that Ucons does not become symmetric when there are no ties in x1,… , x

n
 nor y1,… , y

n
 , consider a 

dataset of size n ≥ 4 , where y1 < ⋯ < y
n
 and x3 < x1 < x2 < x4 < ⋯ < x

n
 . Then AUC1 = (n − 3)∕(n − 1) , 

AUC2 = (2n − 5)∕(2n − 4) , and AUC
c
= 1 for c = 3,… , n − 1 , whereas if we interchange the roles of the 

feature and the outcome, then AUC1 = (n − 2)∕(n − 1) , AUC2 = (2n − 6)∕(2n − 4) , and AUC
c
= 1 for 

c = 3,… , n − 1 , resulting in distinct unweighted sums.
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of Waegeman et  al. (2008) satisfy our criteria, relate closely to the C index, and in the 
simulation setting of Fig. 5 it holds that Uovo = Upairs = C.3

In view of the above requirements and properties, we restrict the subsequent compari-
son to CPA , the C index, and the U measure introduced by Waegeman et al. (2008). For a 
dataset with m classes U equals the proportion of sequences of m instances, one of each 
class, that align correctly with the feature values. As noted, these measures are rank based 
and reduce to AUC when the outcome is binary and there are no ties in the feature val-
ues. In the continuous case with no ties in the feature values nor in the outcomes, they 
become symmetric, U attains the value 1 under a perfect ranking and the value 0 otherwise, 
C =

1

2

(
1 − �K

)
 , and CPA =

1

2

(
1 − �S

)
.

In Fig. 5 we report on a simulation experiment where we draw samples of 220 instances 
from the joint Gaussian distribution of the random vector (Y ,X,X�,X��) with covariance 
matrix (6), so that the features have Pearson correlation coefficient r = 0.8 , 0.5, and 0.2 
with the continuous outcome Y. By discretizing the outcome into 2k consecutive blocks of 
size 220−k each, where k = 1,… , 20 , and computing CPA , the C index and the U measure 
as a function of k, all discretization levels are considered, ranging from a binary variable 

a b
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Fig. 5   Rank based performance measures for the features X, X′ and X′′ as predictors of the real-valued out-
come Y in the simulation example of Sect. 2.3, with Pearson correlation coefficient r = 0.8 , 0.5 and 0.2, 
respectively, based on a sample of size n = 220 . We discretize the continuous outcome into 2k consecutive 
blocks of size 220−k each, and plot a U, and b CPA and the C index as functions of the discretization level 
k = 1,… , 20 . Note that k = 1 yields a binary outcome and k = 20 a continuous outcome

3  The Upairs measure corresponds to a performance criterion proposed by Herbrich (2000, equation (7.11)) 
and equals the proportion of correctly ranked pairs of instances. Except for the treatment of ties in the fea-
ture, Upairs equals the C index. In particular, if the feature values are pairwise distinct then Upairs = C . The 
measure Uovo represents the Hand and Till (2001) approach of averaging the 

(
m

2

)
 one-versus-one AUC val-

ues in an m-class problem. It has been compared to Upairs by Waegeman et al. (2008) and relates to the C 
index as well. In particular, if the feature values are pairwise distinct and the dataset furthermore is bal-
anced with class memberships n1 = ⋯ = n

m
 , as in the simulation setting that we report on in Fig. 5, then 

Uovo = Upairs = C.
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for k = 1 to continuous outcomes for k = 20 . When k = 1 the three measures coincide and 
equal AUC , essentially at the population value of

in the sense stated subsequent to (21). The U measure is tailored to ordinal outcomes with 
a few classes only and degenerates rapidly with k. When k = 20 , CPA and the C index are 
rescaled versions of Spearman’s �S and Kendall’s �K , essentially at the population values in 
Table 1.

Throughout, the measures lie in between their common value for k = 1 , which equals 
AUC , and the respective values for k = 20 . For all features and all k > 1 , the C index is 
smaller than CPA , and CPA varies considerably less with the discretization level than the 
C index. To supplement these experiments with an analytic demonstration, suppose that 
X and Y are bivariate Gaussian with nonnegative Pearson correlation r. If we convert Y 
to a balanced binary outcome, then both CPA and the C index reduce to a common value, 
namely, AUC1∕2 in (27). As a function of r, the ratio of the C index for the continuous 
vs. the balanced binary outcome attains values between 0.8996 and 1, whereas for CPA the 
respective ratio remains between 1 and 1.0156, as illustrated in Fig. 6. These findings along 
with results in Capéraà and Genest (1993) and Schreyer et  al. (2017) suggest that, quite 
generally, CPA and the C index yield qualitatively similar results in practice, with CPA 
being less sensitive to quantization effects, and the value of CPA typically being larger than 
for the C index.

4.5 � Computational issues

We turn to a discussion of the computational costs of generalized ROC analysis for a data-
set of the form (8) or (14) with n instances and m ≤ n classes.

It is well known that a traditional ROC curve can be generated from a dataset 
with n instances in O(n log n) operations (Fawcett, 2006, Algorithm 1). A ROC movie 
comprises m − 1 traditional ROC curves, so in a naïve approach, ROC movies can be 

(27)AUC1∕2 =
2

�
arcsin

r√
2
+

1

2
,

0.89960

0.93000

0.96000
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Fig. 6   Ratio of CPA (blue curve) respectively the C index (green curve) for the feature X as a predictor of 
the continuous outcome Y over AUC for X and the balanced binary outcome 1{Y ≥ 0} , where X and Y are 
bivariate Gaussian with Pearson correlation r ∈ [0, 1] . The solid horizontal line is at a ratio of 1, which is 
attained when r = 0 and r = 1
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computed in O(mn log n) operations. However, our implementation takes advantage of 
recursive relations between consecutive component curves ROCi−1 and ROC i  . While a 
formal analysis will need to be left to future work, we believe that our algorithm has 
computational costs of O(n log n) operations only. If the number m of unique values of 
the outcome is large, then for all practical purposes the ROC movie can be shown at a 
modest number m0 of distinct values only, at a computational cost of O(m0n log n) oper-
ations. For example, in the setting of the meteorological case study in Sect. 5.2 there 
are m = 35, 993 unique values of the outcome, whereas the ROC movie uses m0 = 401 
frames only. For the vertical averaging of the component curves in the construction of 
UROC curves, we partition the unit interval into 1,000 equally sized subintervals.

Importantly, CPA can be computed in O(n log n) operations, without any need to 
invoke ROC analysis, by sorting x1,… , xn and y1,… , yn , computing the respective 
mid ranks and classes, and plugging into the rank based representation (18). Simi-
larly, there are algorithms for the computation of the C index in O(n log n) operations 
(Knight, 1966; Christensen, 2005).

4.6 � Key properties: comparison to traditional ROC analysis

We are now in a position to judge whether the proposed toolbox of ROC movies, UROC 
curves, and CPA constitutes a proper generalization of traditional ROC analysis. To facili-
tate the assessment, the subsequent statements admit immediate comparison with the key 
insights of classical ROC analysis, as summarized in Sect. 2.4.

We start with the trivial but important observation that the new tools nest the notions of 
traditional ROC analysis. This is not to be taken for granted, as extant generalizations do 
not necessarily share this property. 

(0)	 In the case of a binary outcome, both the ROC movie and the UROC curve reduce to 
the ROC curve, and CPA reduces to AUC.

(1)	 ROC movies, the UROC curve and CPA are straightforward to compute and interpret, 
in the (rough) sense of the larger the better.

(2)	 CPA attains values between 0 and 1 and relates linearly to the covariance between 
the class of the outcome and the mid rank of the feature, relative to the covariance 
between the class and the mid rank of the outcome. In particular, if the outcomes are 
pairwise distinct, then CPA =

1

2

(
�M + 1

)
 , where �M is Spearman’s mid rank adjusted 

coefficient (25). If the outcomes are binary, then CPA =
1

2
(D + 1) in terms of Somers’ 

D. For a perfect feature, CPA = 1 , �M = 1 under pairwise distinct and D = 1 under 
binary outcomes. For a feature that is independent of the outcome, CPA =

1

2
 , �M = 0 

under pairwise distinct and D = 0 under binary outcomes.
(3)	 The numerical value of CPA admits an interpretation as a weighted probability of 

concordance for feature–outcome pairs, with weights that grow linearly in the class 
based distance between outcomes.

(4)	 ROC movies, UROC curves, and CPA are purely rank based and, therefore, invariant 
under strictly increasing transformations. Specifically, if � ∶ ℝ → ℝ and � ∶ ℝ → ℝ 
are strictly increasing, then the ROC movie, UROC curve, and CPA computed from 

 are the same as the ROC movie, UROC curve, and CPA computed from the data in 
(8).

(28)(�(x1),�(y1)),… , (�(xn),�(yn)) ∈ ℝ ×ℝ
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We iterate and emphasize that, as an immediate consequence of the final property, ROC 
movies, UROC curves, and CPA assess the discrimination ability or potential predictive 
ability of a point forecast, regression output, feature, marker, or test. Markedly different 
techniques are called for if one seeks to assess a forecast’s actual value in any given applied 
problem (Ben Bouallègue et al., 2015; Ehm et al., 2016).

5 � Real data examples

In the following examples from survival analysis and numerical weather prediction the 
usage of ROC movies, UROC curves, and CPA is demonstrated. We start by returning to 
the survival example from Sect. 1, where the new set of tools frees researchers form the 
need to artificially binarize the outcome. Then the use of CPA is highlighted in a study of 
recent progress in numerical weather prediction (NWP), and in a comparison of the predic-
tive performance of NWP models and convolutional neural networks.

5.1 � Survival data from Mayo Clinic trial

In the introduction, Figs. 1 and 2 serve to illustrate and contrast traditional ROC curves, 
ROC movies and UROC curves. They are based on a classical dataset from a Mayo Clinic 
trial on primary biliary cirrhosis (PBC), a chronic fatal disease of the liver, that was con-
ducted between 1974 and 1984 (Dickson et al., 1989). The data are provided by various R 
packages, such as SMPracticals and survival, and have been analyzed in textbooks 
(Fleming and Harrington, 1991; Davison, 2003). The outcome of interest is survival time 
past entry into the study. Patients were randomly assigned to either a placebo or treatment 
with the drug D-penicillamine. However, extant analyses do not show treatment effects 
(Dickson et al., 1989), and so we follow previous practice and study treatment and placebo 
groups jointly.

We consider two biochemical markers, namely, serum albumin and serum bilirubin con-
centration in mg/dl, for which higher and lower levels, respectively, are known to be indic-
ative of earlier disease stages, thus supporting survival. Hence, for the purposes of ROC 
analysis we reverse the orientation of the serum bilirubin values. Given our goal of illus-
tration, we avoid complications and remove patient records with censored survival times, 
to obtain a dataset with n = 161 patient records and m = 156 unique survival times. The 
proper handling of censoring is beyond the scope of our study, and we leave this task to 
subsequent work. For a discussion and comparison of extant approaches to handling cen-
sored data in the context of time-dependent ROC curves see Blanche et al. (2013).

The traditional ROC curves in Fig.  1 are obtained by binarizing survival time at a 
threshold of 1462 days, which is the survival time in the data record that gets closest to 
four years. The ROC movies and UROC curves in Fig. 2 are generated directly from the 
survival times, without any need to artificially pick a threshold. The CPA values for serum 
albumin and serum bilirubin are 0.73 and 0.77, respectively, and contrary to the ranking 
in Fig. 1, where bilirubin was deemed superior, based on outcomes that were artificially 
made binary. Our tools free researchers from the need to binarize, and still they allow for 
an assessment at the binary level, if desired. For example, the ROC curves and AUC values 
from Fig. 1 appear in the ROC movie at a threshold value of 1462 days. In line with cur-
rent uses of AUC in a gamut of applied settings, CPA is particularly well suited to the pur-
poses of feature screening and variable selection in statistical and machine learning models 
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(Guyon and Elisseeff, 2003). Here, AUC and CPA demonstrate that both albumin and bili-
rubin contribute to prognostic models for survival (Dickson et al., 1989; Fleming and Har-
rington, 1991).

5.2 � Monitoring progress in numerical weather prediction (NWP)

Here we illustrate the usage of CPA in the assessment of recent progress in numeri-
cal weather prediction (NWP), which has experienced tremendous advance over the past 
few decades (Bauer et al., 2015; Alley et al., 2019; Ben Bouallègue et al., 2019). Specifi-
cally, we consider forecasts of surface (2-m) temperature, surface (10-meter) wind speed 
and 24-hour precipitation accumulation initialized at 00:00 UTC at lead times from a sin-
gle day (24 hours) to 5 days (120 h) ahead from the high-resolution model operated by 
the European Centre for Medium-Range Weather Forecasts (ECMWF Directorate 2012), 
which is generally considered the leading global NWP model. The forecast data are availa-
ble at https://​confl​uence.​ecmwf.​int/​displ​ay/​TIGGE. As observational reference we take the 
ERA5 reanalysis product (Hersbach et al., 2018). We use forecasts and observations from 
279 × 199 = 55, 521 model grid boxes of size 0.25◦ × 0.25

◦ each in a geographic region 
that covers Europe from 25.0◦ W to 44.5◦ E in latitude and 25.0◦ N to 74.5◦ N in longitude. 
The time period considered ranges from January 2007 to December 2018.
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Fig. 7   Temporal evolution of CPA and the C index for forecasts from the ECMWF high-resolution model at 
lead times of one to 5 days in comparison to the simplistic persistence forecast in terms of CPA a–c and the 
C index (d–f). The weather variables considered are a, d surface (2-m) temperature, b, e surface wind speed 
and c, f 24-h precipitation accumulation. The measures refer to a domain that covers Europe and 12-month 
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ber–September (dotted lines only), based on gridded forecast and observational data from January 2007 
through December 2018
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In Fig. 7 we apply CPA and the C index to compare forecasts from the ECMWF high-
resolution run to a reference technique, namely, the persistence forecast. The persistence 
forecast is simply the most recent available observation for the weather quantity of interest; 
as such, the forecast value does not depend on the lead time. CPA and the C index are com-
puted on rolling twelve-month periods that correspond to January–December, April–March, 
July–June or October–September, typically comprising n = 365 × 55, 521 = 20, 265, 165 
individual forecast cases. The ECMWF forecast has considerably higher CPA and C index 
than the persistence forecast for all lead times and variables considered. For the persis-
tence forecast the measures fluctuate around a constant level; for the ECMWF forecast they 
improve steadily, attesting to continuing progress in NWP (Bauer et al., 2015; Alley et al., 
2019; Ben Bouallègue et al., 2019; Haiden et al., 2021).

To place these findings further into context, recall that CPA is a weighted average of 
AUC values for binarized outcomes at individual threshold values, as have been used for 
performance monitoring by weather centers (Ben Bouallègue et  al., 2019; Haiden et  al., 
2021). The CPA measure preserves the spirit and power of classical ROC analysis, and 
frees researchers from the need to binarize real-valued outcomes. Results in terms of the C 
index are qualitatively similar, with the numerical value of CPA being higher than for the 
C index.

The ROC movies, UROC curves, and CPA values in Fig. 8 compare the ECMWF high-
resolution forecast to the persistence forecast for 24-hour precipitation accumulation at a 
lead time of five days in calendar year 2018. As noted, this record comprises more than 20 
million individual forecast cases, and there are m = 35, 993 unique values of the outcome. 
We certainly lack the patience to watch the full sequence of m − 1 screens in the ROC 
movie. A pragmatic solution is to consider a subset C ⊆ {1,… ,m − 1} of indices, so that 
ROCc is included in the ROC movie (if and) only if c ∈ C . Specifically, we set positive 
integer parameters a ≤ m − 1 and b such that the ROC movie comprises at least a and at 
most a + b curves. Let the integer s be defined such that 1 + (a − 1)s ≤ m − 1 < 1 + as , and 
let Ca = {1, 1 + s,… , 1 + (a − 1)s} , so that |Ca| = a . Let Cb = {c ∶ nc ≥ n∕b} ; evidently, 
|Cb| ≤ b . Finally, let C = Ca ∪ Cb so that a ≤ |C| ≤ a + b . We have made good experiences 
with choices of a = 400 and b = 100 , which in Fig. 8 yield a ROC movie with 401 screens.

Fig. 8   UROC curves and CPA 
for ECMWF high-resolution 
(HRES) and persistence forecasts 
of 24-h precipitation accumula-
tion over Europe at a lead time of 
five days in calendar year 2018. 
For ROC movies, see the arXiv 
version of the paper at https://​
arxiv.​org/​abs/​1912.​01956. In 
the ROC movies, the number at 
upper left shows the threshold at 
hand in the unit of millimeter, the 
number at upper center the rela-
tive weight w

c
∕max

l=1,…,m−1 wl
 

from (11), and the numbers at 
bottom right the respective AUC 
values
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5.3 � WeatherBench: convolutional neural networks (CNNs) versus NWP models

As noted, operational weather forecasts are based on the output of global NWP models 
that represent the physics of the atmosphere. However, the grid resolution of NWP models 
remains limited due to finite computing resources (Bauer et al., 2015). Spurred by the ever 
increasing popularity and successes of machine learning models, alternative, data-driven 
approaches are in vigorous development, with convolutional neural networks (CNNs; 
LeCun et al., 2015) being a particularly attractive starting point, due to their ease of adap-
tation to spatio-temporal data. Rasp et al. (2020) introduce WeatherBench, a ready-to use 
benchmark dataset for the comparison of data-driven approaches, such as CNNs and a clas-
sical linear regression (LR) based technique, to NWP models, such as the aforementioned 
HRES model and simplified versions thereof, T63 and T42, which run at successively 
coarser resolutions. Furthermore, WeatherBench supplies baseline methods, including both 
the persistence forecast and climatological forecasts.

As evaluation measure for the various types of point forecasts, WeatherBench uses 
the root mean squared error (RMSE). In related studies, the RMSE is accompanied by 
the anomaly correlation coefficient (ACC), i.e., the normalized product moment between 
the difference of the forecast at hand and the climatological forecast, and the difference 
between the outcome and the climatological forecast (Weyn et  al., 2020). However, as 
noted by Rasp et al. (2020), results in terms of RMSE and ACC tend to be very similar. 
Here we argue that a rank based measure, such as CPA or the C index, would be a more 
suitable companion measure to RMSE than ACC.

Figure 9 compares WeatherBench forecasts three days ahead for temperature at 850 hPa 
pressure, which is at around 1.5 km height, in terms of RMSE (in Kelvin), CPA , and the C 
index. With reference to Table 2 of Rasp et al. (2020), we consider the persistence forecast, 
the (direct) linear regression (LR) forecast, the (direct) CNN forecast, the Operational IFS 
(HRES) forecast, and successively coarser versions thereof (T63 and T42). The panels dis-
play the performance measures as functions of latitude bands, from the South Pole at 90◦ S 
to the equator at 0 ◦ and the North Pole at 90◦ N, for the WeatherBench final evaluation 
period of the years 2017 and 2018. The measures are initially computed grid cell by grid 
cell, and then averaged across the grid cells in a latitude band, which is compatible with the 
latitude based weighting that is employed in WeatherBench. Note that RMSE is negatively 
oriented (the smaller, the better), whereas the rank based measures are positively oriented 
(the closer to the ideal value of 1 the better).

With respect to RMSE (Fig. 9a) marked geographical differences are visible. In equato-
rial regions, where day-to-day temperature variations are generally low, all forecasts have 
a low RMSE and the range between the best-performing HRES forecast and the simplistic 
persistence forecast is small. The HRES forecast remains best for all latitudes, followed by 
the T63 forecast. The coarsest dynamical model forecast, T42, shows a further deteriora-
tion as expected, but with large outliers in the high latitudes of the southern hemisphere 
and in the 30s of the northern hemisphere. It is likely that the lack of model orography 
creates large errors in areas of high terrain such as the Antarctic plateau and the Himala-
yas. Among the data-driven forecasts, CNN is better than LR for all extratropical latitudes. 
Finally, persistence performs worst through all latitudes with prominent peaks near 50◦ S 
and 50◦ N. These are the midlatitude storm track regions, where day-to-day changes are 
large and impede good forecasts based on persistence.

The corresponding results in terms of CPA and the C index (Fig. 9b–c) resemble each 
other, but show remarkable differences to the RMSE based analysis. Most notable are their 
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low values in the tropics, which indicate poor performance of all forecasts, well in line with 
recent findings in meteorology (Kniffka et al. 2020). In contrast, the low RMSE suggests 
superior performance in this region. The rank based measures are independent of magni-
tude and thus provide a scale free assessment of predictability. Another striking difference 
to RMSE is the large drop in the Furious Fifties of the southern hemisphere, creating a 
large asymmetry with the northern midlatitudes. This area is almost entirely oceanic and 
characterized by mobile low-pressure systems, the dynamical behaviour of which appears 
to be difficult to learn under data-driven approaches.

In Fig.  10 we compare CPA and the C index, both for individual grid cells and for 
measures that have been averaged over latitude bands. The scatterplots illustrate the find-
ings from Sects. 4.3 and 4.4, in that the value of CPA throughout is larger than for the C 
index, in remarkably close agreement with the respective theoretical relationship under the 
assumption of bivariate Gaussianity.

We conclude that RMSE and the rank based measures bring orthogonal facets of pre-
dictive performance to researchers’ attention, and encourage the usage of of CPA or the C 
index to supplement RMSE as key performance measures in WeatherBench. While ACC 
is scale free as well, it is moment based rather than rank based, and thus is more closely 
aligned with RMSE than a rank based measure. Similar recommendations apply in many 
practical settings, where predictions of a real-valued outcome are evaluated, and a mag-
nitude dependent measure, such as RMSE, is usefully accompanied by a rank based cri-
terion of predictive performance. In the special case of probabilistic classifiers for binary 
outcomes, this corresponds to reporting both the Brier mean squared error measure and 
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AUC . See Hernández-Orallo et al. (2012) for a detailed, theoretically oriented comparison 
of these and other performance measures under binary outcomes.

6 � Discussion

We have addressed a long-standing challenge in data analytics, by introducing a set 
of tools—comprising receiver operating characteristic (ROC) movies, universal ROC 
(UROC) curves, and a coefficient of predictive ability ( CPA ) measure—for generalized 
ROC analysis, thereby freeing researchers from the need to artificially binarize real-valued 
outcomes, which often is associated with undesirable effects (Altman and Royston, 2006). 
Throughout the paper, we have assumed that predictors and features are linearly ordered, 
thereby covering binary, ordinal, and continuous outcomes simultaneously. While our 
motivating example uses data from a clinical trial, our approach does not account for cen-
sored data, as typically encountered in survival analysis. We strongly encourage extensions 
of ROC movies, UROC curves and CPA that apply to censored data, perhaps along the 
lines of Blanche et al. (2013). For generalizations of ROC analysis to multi-class problems 
with categorical outcomes that cannot be linearly ordered see Hand and Till (2001), Ferri 
et al. (2003), and Section 9 of Fawcett (2006).

ROC movies, UROC curves, and CPA reduce to the classical ROC curve and AUC 
when applied to binary data. Moreover, attractive properties of ROC curves, such as invari-
ance under strictly increasing transformations and straightforward interpretability are 
maintained by ROC movies and UROC curves. In contrast to customarily used measures 
of bivariate association and dependence (Reshef et  al. 2011; Weihs et  al. 2018), CPA is 
asymmetric, i.e., in general, its value changes if the roles of the feature and the outcome 
are transposed. However, when both the feature and the outcome are continuous, CPA 
becomes symmetric, and relates linearly to Spearman’s rank correlation coefficient. Thus, 
CPA bridges and generalizes AUC , Somers’ D and Spearman’s rank correlation coefficient, 
up to a linear relationship, just like the C index connects and generalizes AUC , Somers’ D 
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and Kendall’s rank correlation coefficient. While in typical practice the two measures yield 
qualitatively similar results, under positive dependence CPA is larger than the C index, and 
CPA tends to be less affected by discretization effects.

In view of the advent of dynamic graphics in mainstream scientific publishing, we con-
tend that ROC movies, UROC curves, and CPA are bound to supersede traditional ROC 
curves and AUC in a wealth of applications. Open source code for their implementation in 
Python (Python, 2021) and the R language and environment for statistical computing (R 
Core Team, 2021) is available on GitHub at https://​github.​com/​evwalz/​urocc and https://​
github.​com/​evwalz/​uroc.
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