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1. Introduction

In the present paper we study the spatial discretization of the elliptic problem

−∆u(x) = f(x), x ∈ Ω ,

u(x) = 0, x ∈ Γ = ∂Ω ,

on a smooth domain Ω with isoparametric finite elements. Since this is a nonconforming
method, we define a (generalized) Ritz map and prove stability and convergence esti-
mates in the W 1,∞-norm. For conforming discretizations, such estimates are well known
for many years now. In fact, the first quasi-optimal error bounds in the maximum norm
in the conforming case were already given in the seventies by Natterer [13] and Scott
[22]. Many extension and refinements have been achieved in the following years, see,
e.g., [2, 7, 10,14–17,19–21,23].

However, none of these papers provides stability and convergence estimates of the
Ritz map in the nonconforming case. More recently in the context of nonconforming
space discretization, maximum norm error bounds for linear finite elements applied to
an inhomogeneous Neumann problem were derived in [9]. For evolving surface finite
element methods, similar estimates are considered in [11].
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For the stability result, we closely follow the approach in [3, Ch. 8]. First, a regularized
δ-function is introduced in order to move from the pointwise property to a variational
setting and the stability is reduced to an estimate in W 1,1. Inserting appropriate weight
functions, this is estimated by weighted H1-norms. In order to cover the nonconformity
of the finite element space, the additional terms stemming from the boundary perturba-
tion have to be bounded carefully.

This strategy is adapted for the convergence result. Bounding certain additional
geometric errors, the estimate is again reduced to the same W 1,1-estimates which are
already established in the stability analysis.

The paper is organized as follows: In Section 2, we present the analytical framework
and the space discretization by isoparametric Lagrange finite elements. After providing
some properties of the discretized objects, we state our main results on the stability and
convergence of the Ritz map. The proof of the stability is presented in Section 3 and
the convergence rate is shown in Section 4. Some results on the elliptic regularity are
postponed to Appendix A.

Notation

In the rest of the paper we use the notation

a . b

if there is a constant C > 0 independent of the spatial parameter h such that a ≤ Cb.
Further, for φ ∈ W j,p(Ω) we denote by ∇jφ the tensor of j-th order derivatives of φ. If
it is clear from the context, we write Lp instead of Lp(Ω) or Lp(Ωh).

2. General Setting

For a convex domain Ω ⊂ RN , N ∈ {2, 3}, with boundary ∂Ω ∈ Cs,1, s ∈ N, we study
for f ∈ L2(Ω) the variational problem

(u | ψ)H1
0 (Ω) = (f | ψ)L2(Ω) , ∀ψ ∈ H1

0 (Ω), (2.1)

and denote in the following H = L2(Ω) and V = H1
0 (Ω). Due to the unique solvability

of (2.1), we define the corresponding solution operator S : H → V by S : f 7→ u. For the
analysis, we heavily rely on the following elliptic regularity result [6, Thm. 2.4.2.5].

Theorem 2.1 (Elliptic regularity). Let ∂Ω ∈ C1,1, then for all 1 < p < ∞ there is a
constant Cp > 0 such that for all ϕ ∈ Lp(Ω) it holds

‖Sϕ‖W 2,p ≤ Cp ‖ϕ‖Lp .
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Space discretization

We study the nonconforming space discretization of (2.1) based on isoparametric finite
elements. For further details on this approach, we refer to [5]. In particular, we intro-
duce a shape-regular and quasi-uniform mesh Th, consisting of isoparametric elements of
degree k ∈ N. We assume that the boundary ∂Ω is of class Ck+1,1. The computational
domain Ωh is given by

Ωh =
⋃
K∈Th

K ≈ Ω,

where the subscript h denotes the maximal diameter of all elements K ∈ Th. Based on
the transformations FK mapping the reference element K̂ to K ∈ Th, we introduce the
isoparametric finite element space of degree k

Wh = {ϕ ∈ C0(Ω) | ϕ|K = ϕ̂ ◦ (FK)−1 with ϕ̂ ∈ Pk(K̂) for all K ∈ Th} ⊂ V.

Here, Pk(K̂) consists of all polynomials on K̂ of degree at most k. The discrete approx-
imation spaces are given by

Hh =
(
Wh, (· | ·)L2(Ωh)

)
, Vh =

(
Wh, (· | ·)H1

0 (Ωh)

)
, Xh = Vh ×Hh.

Following the detailed construction in [5, Sec. 5], we introduce the lift operator
Lh : Hh → H. In particular, for p ∈ [1,∞] there are constants cp, Cp > 0 with

cp ‖ϕh‖Lp(Ωh) ≤ ‖Lhϕh‖Lp(Ω) ≤ Cp ‖ϕh‖Lp(Ωh) , ϕh ∈ Lp(Ωh), (2.2a)

cp ‖ϕh‖W 1,p(Ωh) ≤ ‖Lhϕh‖W 1,p(Ω) ≤ Cp ‖ϕh‖W 1,p(Ωh) , ϕh ∈W 1,p(Ωh), (2.2b)

cf. [5, Prop. 5.8]. Further, we denote the nodal interpolation operator by Ih : C0(Ω) →
Vh. As shown in [5, Thm. 5.9], we have for m ∈ {0, 1}, 1 ≤ p ≤ ∞, and 1 ≤ ` ≤ k the
estimates

‖(Id− LhIh)ϕ‖Wm,p(Ω) . h`+1−m ‖ϕ‖W `+1,p(Ω) , ϕ ∈W `+1,p(Ω). (2.3)

Further, ` = 0 is allowed for N < p ≤ ∞.
We define the adjoint lift operator LV ∗h : V → Vh by(

LV ∗h ϕ | ψh
)
Vh

= (ϕ | Lhψh)V , ϕ ∈ V, ψh ∈ Vh. (2.4)

From [8, Thm. 5.3] and [5, Lem. 8.24], we obtain for 0 ≤ ` ≤ k∥∥(Id− LhLV ∗h )ϕ
∥∥
Vh

. h` ‖ϕ‖H`+1(Ω) , ϕ ∈ H`+1(Ω).

We will also employ the inverse estimate, cf. [3, Thm. 4.5.11] or [12, Lem. 5.6],

‖ϕh‖L∞ ≤ Ch−N/p ‖ϕh‖Lp

for 1 ≤ p <∞ and C > 0 independent of h.
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Definition 2.2. Consider the adjoint lift LV ∗h given by (2.4). We define the generalized
Ritz map by

LhLV ∗h : V → V . (2.5)

We note that in the conforming case, this is simply the Ritz projection. However, the
generalized Ritz map does not satisfy an orthogonality condition, but only an estimate
of the form(

u− LhLV ∗h u | Lhϕh
)
V
. hk

∥∥LV ∗h u
∥∥
Vh
‖ϕh‖Vh , u ∈ V, ϕh ∈ Vh.

This fact induces several additional error terms in the maximum norm error analysis
which require a detailed inspection. We are now in the position to state our main
results.

Theorem 2.3. Let ∂Ω ∈ Ck+1,1. Then the generalized Ritz map defined in (2.5) is
stable in W 1,∞(Ω), i.e.,∥∥LhLV ∗h ϕ

∥∥
W 1,∞(Ω)

. ‖ϕ‖W 1,∞(Ω) , ϕ ∈W 1,∞(Ω).

The proof is given in Section 3. We note that by (2.2) it is sufficient to show∥∥LV ∗h ϕ
∥∥
W 1,∞(Ωh)

. ‖ϕ‖W 1,∞(Ω) , ϕ ∈W 1,∞(Ω).

Our second main result is concerned with the approximation properties.

Theorem 2.4. Let k ≥ 1 and ∂Ω ∈ Ck+1,1. Then, it holds for all ϕ ∈W k+1,∞(Ω)∥∥(Id− LhLV ∗h )ϕ
∥∥
W 1,∞(Ω)

≤ Chk ‖ϕ‖Wk+1,∞(Ω) ,

where C is independent of h.

2.1. Properties of weighted norms

The main technical tool are weighted norms. To this end, we introduce the family
{σz}z∈Ω of weight functions with

σz : Ω→ R, σz(x) =
(
|x− z|2 + γ2h2

) 1
2 . (2.6)

The parameter γ > 0 is fixed below. We first establish certain properties of the weight
functions.

Lemma 2.5. Consider the weights defined in (2.6).
(a) For λ ∈ R, there are constants C > 0 independent of x, z ∈ Ω and h such that the

following bounds hold:

max
K∈Th

(
sup
x∈K

σλz (x)/ inf
x∈K

σλz (x)
)
≤ C ,∥∥∥σλz ∥∥∥

L∞
≤ C max{1, (γh)λ} ,∣∣∣Dβ

xσ
λ
z (x)

∣∣∣ ≤ Cσλ−|β|z (x) , x ∈ Ωh .
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(b) If α > N , then σ−αz ∈ L1(Ω) and∫
Ω
σ−αz (x) dx ≤ C max{1, 1

α−N }(γh)−α+N . (2.8)

Further, we use slight extensions of the estimates in [5, Lem. 8.24] in order to treat
the errors stemming from nonconformity.

Lemma 2.6. Let ϕh, ψh ∈ Vh.
(a) The errors in the bilinear forms are estimated for any α ∈ R∣∣∣(Lhϕh | Lhψh)H − (ϕh | ψh)Hh

∣∣∣ ≤ Chk(∫
Ω
σαz |Lhϕh|

2 dx
)1/2(∫

Ω
σ−αz |Lhψh|

2 dx
)1/2

,∣∣∣(Lhϕh | Lhψh)V − (ϕh | ψh)Vh

∣∣∣ ≤ Chk(∫
Ω
σαz |∇Lhϕh|

2 dx
)1/2(∫

Ω
σ−αz |∇Lhψh|

2 dx
)1/2

,∣∣∣(Lhϕh | Lhψh)H − (ϕh | ψh)Hh

∣∣∣ ≤ Chk+1/2
(∫

Ω
σαz |Lhϕh|

2 dx
)1/2(∫

Ω
σ−αz |∇Lhψh|

2 dx
)1/2

.

with C > 0 independent of h and α.
(b) For any p ∈ [1,∞] the bilinear forms are estimated by∣∣∣(Lhϕh | Lhψh)H − (ϕh | ψh)Hh

∣∣∣ ≤ Chk ‖Lhϕh‖Lp(Ω) ‖Lhψh‖Lp′ (Ω) ,∣∣∣(Lhϕh | Lhψh)V − (ϕh | ψh)Vh

∣∣∣ ≤ Chk ‖Lh∇ϕh‖Lp(Ω) ‖Lh∇ψh‖Lp′ (Ω) .

with C > 0 independent of h.

As the final property, we state a weighted inverse inequality, which is a straightforward
generalization of [3, Thm. 4.5.11].

Lemma 2.7. Let ϕh ∈ Vh. Then, for j ≥ 1 it holds∫
Ωh

σλz |∇jϕh|2 dx . h−2j

∫
Ωh

σλz |ϕh|2 dx ,

where the derivatives are considered elements-wise.

3. Stability of the adjoint lift operator, Theorem 2.3

In this section, we prove Theorem 2.3, i.e., the stability of the adjoint lift operator
LV ∗h in W 1,∞. To this end, we extend the results of [3, Ch. 8] for conforming space
discretizations to domain approximations with isoparametric finite elements, cf. [5].
We emphasize that we follow the lines of [3] and add certain modifications due to the
nonconformity, but give a rather complete proof for the sake of readability.
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3.1. Reduction to weighted norm estimates

Let z ∈ Kz with Kz ∈ Th. There exists δz ∈ C∞0 (Kz), see [18] for a construction, with
zero extension to a function on Ωh, such that

(δz | ϕh)Hh = ϕh(z), ϕh ∈ Hh,

and

‖∂αδz‖L∞ . h−N−|α|, α ∈ NN . (3.1)

Here, we use the notation ∂α = ∂α1
1 . . . ∂αNN and |α| =

∑N
i=1 αi. We further introduce

the solutions gzh ∈ Vh and gz ∈ V of the elliptic variational problems

(gzh | ϕh)Vh = (−∂iδz | ϕh)Hh , ϕh ∈ Vh,
(gz | ϕ)V = (−∂iLhδz | ϕ)H , ϕ ∈ V.

(3.2)

Using integration by parts as well as the definition (2.4) of the adjoint lift operator,
this implies for 1 ≤ i ≤ N

∂i
(
LV ∗h u

)
(z) =

(
∂i
(
LV ∗h u

)
| δz
)
Hh

=
(
LV ∗h u | −∂iδz

)
Hh

=
(
LV ∗h u | gzh

)
Vh

= (u | Lhgzh)V
= (u | gz)V + (u | Lhgzh − gz)V
=
(
u | −∂i

(
Lhδz

))
H

+ (u | Lhgzh − gz)V
= (∂iu | Lhδz)H + (u | Lhgzh − gz)V .

(3.3)

Hence, Hölder’s inequality yields∣∣∂i(LV ∗h u
)
(z)
∣∣ . (‖Lhδz‖L1 + ‖Lhgzh − gz‖W 1,1

)
‖u‖W 1,∞ .

Due to the stability (2.2) of Lh, we have

‖Lhδz‖L1 .
∫
Kz

|δz|dx . hNh−N ≤ C. (3.4)

Since we provide a bound on ‖Lhgzh − gz‖W 1,1 in Lemma 3.1, the stability estimate
in Theorem 2.3 follows with the Poincaré inequality. Hence, it remains to prove the
following estimate.

Lemma 3.1. Let gzh ∈ Vh and gz ∈ V be defined by (3.2). Then, there is a constant
C > 0 such that

‖Lhgzh − gz‖W 1,1 ≤ C.

with C independent of h and z.
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In order to move from L1 to L2, we introduce a weight function and obtain the
following upper bound by a weighted L2-norms.

Lemma 3.2. Let

Mh := sup
z∈Ω

(∫
Ω
σN+λ
z |∇(gz − Lhgzh)|2 dx

)1/2
.

Then, for λ ∈ (0, 1) it holds

‖Lhgzh − gz‖W 1,1 ≤ CMhλ
−1/2(γh)−λ/2,

with a constant C > 0 independent of γ, λ, h.

Proof. By the Hölder inequality we have∥∥∇(Lhgzh − gz)∥∥L1 ≤Mh

(∫
Ω
σ−N−λz dx

)1/2
≤ CMhλ

−1/2(γh)−λ/2

where we used (2.8) with α = N + λ for the last inequality. The application of the
Poincaré inequality yields the assertion.

From this, we see that it is sufficient to prove the following proposition from which
Lemma 3.1 directly follows.

Proposition 3.3. There is a λ > 0 and γ > 1 such that for all 0 < h < h0 it holds

M2
h = sup

z∈Ω

∫
Ω
σN+λ
z |∇(gz − Lhgzh)|2 dx ≤ Chλ , (3.5)

with a constant C > 0 independent of h.

Before we proof Proposition 3.3, we state the following estimate on weighted norms
of δz. Later, they give the desired convergence rate hλ.

Lemma 3.4. For all µ > 0, the following bounds holds∫
Ω
σN+µ
z |∇Lhδz|2 dx ≤ Chµ−2,

∫
Ω
σN+µ
z |Lhδz|2 dx ≤ Chµ ,

with a constant C > 0 independent of h.

Proof. By the shape-regularity and the definition of the weight in (2.6), we obtain∥∥σN+µ
z

∥∥
L∞(Kz)

. hN+µ ,

and use δz ∈ C∞0 (Kz) together with (3.1) to bound∫
Ω
σN+µ
z |∇Lhδz|2 dx . hNhN+µh−2(N+1) . hµ−2,∫

Ω
σN+µ
z |Lhδz|2 dx . hNhN+µh−2N . hµ.
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3.2. Proof of Proposition 3.3

In the following, we present an extension of [3, Prop. 8.3.1]. In this step, the weightedH1-
norm in (3.5) is replaced a weighted L2-norm and some additional error terms. We point
out that in the conforming case the differences in the scalar product simply vanishes.

Proposition 3.5. Let gz ∈ V and gzh ∈ Vh be the solutions of (3.2) and define the errors
e = gz − Lhgzh and ê = (Id− LhIh)gz. Then∫

Ω
σN+λ
z |∇e|2 dx .

∫
Ω
σN+λ−2
z |e|2 dx+

∫
Ω
σN+λ−2
z |ê|2 dx+

∫
Ω
σN+λ
z |∇ê|2 dx

+
∣∣(∂iLhδz | LhIhψ)H − (∂iδ

z | Ihψ)Hh

∣∣
+
∣∣(gzh | Ihψ)Vh − (Lhgzh | LhIhψ)V

∣∣
with ψ = σN+λ

z Lh(Ihg
z − gzh).

Proof. Let ẽ = Ihg
z − gzh, then we have ψ = σN+λ

z Lhẽ. We note that it holds

Lhẽ = e− ê (3.6)

and compute∫
Ω
σN+λ
z |∇e|2 dx =

(
e | σN+λ

z e
)
V
−
∫

Ω
∇e · (∇σN+λ

z )e dx

=
(
e | σN+λ

z ê
)
V

+ (e | ψ)V −
∫

Ω
∇e · (∇σN+λ

z )e dx.

Along the lines of the proof of [3, Prop. 8.3.1], we show∫
Ω
σN+λ
z |∇e|2 dx .

∫
Ω
σN+λ−2
z |e|2 dx

+

∫
Ω
σN+λ−2
z |ê|2 dx+

∫
Ω
σN+λ
z |∇ê|2 dx+ |(e | ψ)V | .

Hence, we turn to the term

(e | ψ)V = (e | ψ − LhIhψ)V + (gz − Lhgzh | LhIhψ)V (3.7)

and note that in the conforming case the last term vanishes by orthogonality. However,
for the first term Lemma 3.6 below shows that for any a > 0 it holds

(e | ψ − LhIhψ)V ≤ a
∫

Ω
σN+λ
z |∇e|2 dx+ a−1

∫
Ω
σ−N−λz |∇(ψ − LhIhψ)|2 dx.

. a

∫
Ω
σN+λ
z |∇e|2 dx+ a−1

∫
Ω
σN+λ−2
z |e|2 dx+ a−1

∫
Ω
σN+λ−2
z |ê|2 dx

and absorption leaves the right terms. For the second term in (3.7) it remains to expand

(gz − Lhgzh | LhIhψ)V = (gz | LhIhψ)V − (Lhgzh | LhIhψ)V + (gzh | Ihψ)Vh − (gzh | Ihψ)Vh
= (−∂iLhδz | LhIhψ)H + (∂iδ

z | Ihψ)Hh
+ (gzh | Ihψ)Vh − (Lhgzh | LhIhψ)V ,

where we used (3.2) in the second inequality, and the claim follows.
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We state the next lemma which was already used above, since we need it several more
times in the following computations. It can be found as an auxiliary result in the proof
of [3, Prop. 8.3.1].

Lemma 3.6. Let ψ = σN+λ
z Lhẽ. Then, it holds the estimate∫

Ω
σ−N−λz

(
|∇(ψ − LhIhψ)|2 + |ψ − LhIhψ|2

)
dx

.
∫

Ω
σN+λ−2
z |e|2 dx+

∫
Ω
σN+λ−2
z |ê|2 dx .

The following two lemmas are devoted to control the defects stemming from the non-
conformity. For the sake of presentation, we bound the two errors in two separate
lemmas. We begin with the difference in the energy scalar product.

Lemma 3.7. For any a > 0, there is a constant Ca > 0 such that∣∣∣(gzh | Ihψ)Vh − (Lhgzh | LhIhψ)V

∣∣∣ . (a+ a−1h2)

∫
Ω
σN+λ
z |∇e|2 dx+ a−1hλ

+ a

∫
Ω
σN+λ−2
z |e|2 dx

+ a

∫
Ω
σN+λ
z |∇ê|2 dx+ a

∫
Ω
σN+λ−2
z |ê|2 dx .

Proof. From Lemma 2.6 we have with α = N + λ and Young∣∣∣(gzh | Ihψ)Vh − (Lhgzh | LhIhψ)V

∣∣∣
≤ Ch

(∫
Ω
σN+λ
z |∇Lhgzh|

2 dx
)1/2(∫

Ω
σ−N−λz |∇LhIhψ|2 dx

)1/2

≤ a−1h2

∫
Ω
σN+λ
z |∇Lhgzh|

2 dx+ a

∫
Ω
σ−N−λz |∇LhIhψ|2 dx

= ∆1 + ∆2 .

We recall Lhgzh = gz − e, and estimate

∆1 ≤ a−1h2

∫
Ω
σN+λ
z |∇e|2 dx+ a−1h2

∫
Ω
σN+λ
z |∇gz|2 dx .

Using Lemma 2.5 and the estimate [3, eq. (8.4.3)] with the subsequent calculations with
right hand side ∂iLhδz, we obtain

a−1h2

∫
Ω
σN+λ
z |∇gz|2 dx . a−1h2

∫
Ω
σN+λ−2
z |∇gz|2 dx

. a−1h2

∫
Ω
σN+λ
z |∇Lhδz|2 dx+ a−1h2(γh)−2

∫
Ω
σN+λ
z |Lhδz|2 dx

. Cah
λ ,
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where we used Lemma 3.4 in the last line. For the second term we expand

∆2 . a

∫
Ω
σ−N−λz |∇ψ|2 dx+ a

∫
Ω
σ−N−λz |∇(ψ − LhIhψ)|2 dx

. a

∫
Ω
σN+λ
z |∇Lhẽ|2 dx+ a

∫
Ω
σN+λ−2
z |Lhẽ|2 dx

+ a

∫
Ω
σ−N−λz |∇(ψ − LhIhψ)|2 dx

. a

∫
Ω
σN+λ
z |∇e|2 dx+ a

∫
Ω
σN+λ
z |∇ê|2 dx+ a

∫
Ω
σN+λ−2
z |e|2 dx

+ a

∫
Ω
σN+λ−2
z |ê|2 dx ,

(3.8)

where we used the definition of ψ = σN+λ
z Lhẽ, the representation (3.6), and Lemma 3.6.

By similar techniques, we derive the second bound.

Lemma 3.8. For any a > 0, there is a constant Ca > 0 such that∣∣∣(∂iLhδz | LhIhψ)H − (∂iδz | Ihψ)Hh

∣∣∣ . a

∫
Ω
σN+λ
z |∇e|2 dx+ Cah

λ

+ a

∫
Ω
σN+λ−2
z |e|2 dx

+ a

∫
Ω
σN+λ
z |∇ê|2 dx+ a

∫
Ω
σN+λ−2
z |ê|2 dx.

Proof. We employ Lemmas 2.6 and 3.4 to conclude∣∣∣(∂iLhδz | LhIhψ)H − (∂iδz | Ihψ)Hh

∣∣∣
≤ Cah

2

∫
Ω
σN+λ
z |∂iLhδz|2 dx+ a

∫
Ω
σ−N−λz |∇LhIhψ|2 dx

. Cah
λ + a

∫
Ω
σ−N−λz |∇LhIhψ|2 dx ,

and the claim follows as in (3.8).

If we combinde the bounds from Proposition 3.5, Lemma 3.7 and Lemma 3.8, we have
shown, for a, h sufficiently small, that it holds∫

Ω
σN+λ
z |∇e|2 dx .

∫
Ω
σN+λ−2
z |e|2 dx+ hλ

+

∫
Ω
σN+λ−2
z |ê|2 dx+

∫
Ω
σN+λ
z |∇ê|2 dx .

Hence, it remains two absorb the weighted L2-norm of e and to obtain a factor hλ for
the ê terms. This is done in the following two propositions. The first one estimates the
interpolation error, which we state from [3] for completeness.
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Proposition 3.9. For ê = (Id−LhIh)gz, there is some constant C > 0 independent of
h and λ s.t. ∫

Ω
σN+λ−2
z |ê|2 dx+

∫
Ω
σN+λ
z |∇ê|2 dx ≤ Chλ.

Proof. Using the interpolation estimate, one obtains with the Hessian ∇2∫
Ω
σN+λ−2
z |ê|2 dx+

∫
Ω
σN+λ
z |∇ê|2 dx . h2

∫
Ω
σN+λ
z |∇2g

z|2 dx .

The application of [3, Lem. 8.3.11] and Lemma 3.4 then yields the result.

The proof is closed once we have shown the following bound which extends the result
of [3, Prop. 8.3.5] again due to the lack of orthogonality.

Proposition 3.10. For any ε > 0, there is γ0 > 1 such that∫
Ω
σN+λ−2
z |e|2 dx ≤ ε

∫
Ω
σN+λ
z |∇e|2 dx+ Cεh

λ

for all γ ≥ γ0.

Proof. We define v ∈ V as the solution of

(v | φ)V =
(
σN+λ−2
z e | φ

)
H
∀φ ∈ V ,

and obtain ∫
Ω
σN+λ−2
z |e|2 dx = (e | v)V = (e | v − LhIhv)V + (e | LhIhv)V .

Note again, that in the conforming case the second term vanishes. The first term is
estimated as in the proof of [3, Prop. 8.3.5] by

(e | v − LhIhv)V ≤ ε
∫

Ω
σN+λ
z

(
|∇e|2 + |e|2

)
dx

+
C

λεγ2

∫
Ω
σN+λ
z |∇e|2 + σN+λ−2

z |e|2 dx .

(3.9)

Turning to the second term, using (3.2) we obtain

(e | LhIhv)V = (gz − Lhgzh | LhIhv)V
= (gz | LhIhv)V − (Lhgzh | LhIhv)V
= (−∂iLhδz | LhIhv)H − (gzh | Ihv)Vh + (gzh | Ihv)Vh − (Lhgzh | LhIhv)V

= (−∂iLhδz | LhIhv)H + (∂iδ
z | Ihv)Hh + (gzh | Ihv)Vh − (Lhgzh | LhIhv)V

= ∆H + ∆V .

The two terms are estimated separately in the following.

11



(1) We apply Lemma 2.6 with k = 1 to obtain

∆H ≤ Ch3/2
(∫

Ω
σN+λ
z |∇Lhδz|2 dx

)1/2(∫
Ω
σ−N−λz |∇LhIhv|2 dx

)1/2

≤ h2

∫
Ω
σN+λ
z |∇Lhδz|2 dx+ h

∫
Ω
σ−N−λz |∇LhIhv|2 dx

≤ hλ + h

∫
Ω
σ−N−λz |∇(v − LhIhv)|2 dx+ h

∫
Ω
σ−N−λz |∇v|2 dx ,

where we used Lemma 3.4 in the last step. For the second term, we derive analogous to
(3.9) ∫

Ω
σ−N−λz |∇(v − LhIhv)|2 dx ≤ C

λγ2

∫
Ω
σN+λ
z |∇e|2 + σN+λ−2

z |e|2 dx . (3.10)

Finally, we employ Lemma A.1

h

∫
Ω
σ−N−λz |∇v|2 dx . h(γh)−1

∫
Ω
σ4−N−λ
z

∣∣∣∇(σN+λ−2
z e)

∣∣∣2 dx

. γ−1

∫
Ω
σN+λ
z |∇e|2 + σN+λ−2

z |e|2 dx ,

and collect this to derive

∆H . hλ +
(
h(λγ2)−1 + γ−1

) ∫
Ω
σN+λ
z |∇e|2 + σN+λ−2

z |e|2 dx . (3.11)

(2) We employ Lemma 2.6 and obtain with k = 1

∆V ≤ Ch
(∫

Ω
σN+λ−1
z |∇Lhgzh|

2 dx
)1/2(∫

Ω
σ−N−λ+1
z |∇LhIhv|2 dx

)1/2

≤ ah
∫

Ω
σN+λ−1
z |∇Lhgzh|

2 dx+ a−1h

∫
Ω
σ−N−λ+1
z |∇LhIhv|2 dx .

For the first term we obtain as in Lemma 3.7 using h ≤ σz(x)

ah

∫
Ω
σN+λ−1
z |∇Lhgzh|

2 dx ≤ ah
∫

Ω
σN+λ−1
z |∇e|2 dx+ ah

∫
Ω
σN+λ−1
z |∇gz|2 dx

≤ a
∫

Ω
σN+λ
z |∇e|2 dx+ ah

∫
Ω
σN+λ−1
z |∇gz|2 dx .

With Lemma A.3, α = 1 and f = Lhδz we obtain

ah

∫
Ω
σN+λ−1
z |∇gz|2 dx ≤ ah

∫
Ω
σN+λ+1
z |∇Lhδz|2 dx+ ah(γh)−1

∫
Ω
σN+λ
z |Lhδz|2 dx

. hλ ,

12



where we used Lemma 3.4 in the last step. Further, we expand

1
ah

∫
Ω
σ−N−λ+1
z |∇LhIhv|2 dx ≤ 1

ah

∫
Ω
σ−N−λ+1
z |∇(v − LhIhv)|2 dx

+ 1
ah

∫
Ω
σ−N−λ+1
z |∇v|2 dx ,

and the first is treated by an interpolation estimate as in (3.10)

1
ah

∫
Ω
σ−N−λ+1
z |∇(v − LhIhv)|2 dx .

h

aλγ2

∫
Ω
σN+λ
z |∇e|2 + σN+λ−2

z |e|2 dx .

So it remains to bound by Lemma A.2

1
ah

∫
Ω
σ−N−λ+1
z |∇v|2 dx ≤ Ch(aλ)−1(γh)−1

∫
Ω
σ4−N−λ
z |∇f |2 dx

≤ C(aλγ)−1

∫
Ω
σN+λ
z |∇e|2 + σN+λ−2

z |e|2 dx ,

and collecting the above estimates gives

∆V . hλ + a

∫
Ω
σN+λ
z |∇e|2 dx (3.12)

+
( h

aλγ2
+

1

aλγ

) ∫
Ω
σN+λ
z |∇e|2 + σN+λ−2

z |e|2 dx .

We close the proof using (3.9), (3.11), and (3.12) and absorb the right-hand side for
ε and λ fixed by first choosing some a > 0 sufficiently small and then some sufficiently
large γ = γ(ε, λ, a).

4. Convergence of the adjoint lift operator, Theorem 2.4

In the following section, we give the proof of Theorem 2.4. We follow the approach of
the stability analysis and reduce the estimate to functions on the finite element space,
in order to employ the properties of δz. We first estimate by (2.3)∥∥u− LhLV ∗h u

∥∥
W 1,∞(Ω)

. ‖u− LhIhu‖W 1,∞(Ω) +
∥∥Ihu− LV ∗h u

∥∥
W 1,∞(Ωh)

. hk ‖u‖Wk+1,∞(Ω) +
∥∥Ihu− LV ∗h u

∥∥
W 1,∞(Ωh)

We employ (3.3) and derive

∂i
(
Ihu− LV ∗h u

)
(z) = (∂iIhu | δz)Hh −

(
∂iLV ∗h u | δz

)
Hh

= (∂iIhu | δz)Hh − (∂iu | Lhδz)H − (u | Lhgzh − gz)V
=
(
∂i
(
LhIhu− u

)
| Lhδz

)
Hh

+ (LhIhu− u | Lhgzh − gz)V + ∆̃1 − ∆̃2 ,

13



with defects

∆̃1 = (∂iIhu | δz)Hh − (∂iLhIhu | Lhδz)Hh
∆̃2 = (LhIhu | Lhgzh − gz)V .

We note that both terms vanish in the conforming case. Again, we apply the interpola-
tion estimate (2.3) and the Hölder inequality to derive∥∥∂i(Ihu− LV ∗h u

)∥∥
L∞(Ωh)

≤
∥∥(LhIhu− u)∥∥W 1,∞(Ω)

‖Lhδz‖L1(Ω)

+
∥∥(LhIhu− u)∥∥W 1,∞(Ω)

‖Lhgzh − gz‖W 1,1(Ω)

+ |∆̃1|+ |∆̃2|

. hk ‖u‖Wk+1,∞(Ω) + |∆̃1|+ |∆̃2| ,

where we used (3.4) and Lemma 3.1 in the last step. Thus, Theorem 2.4 follows once
we have employed the Poincaré inequality and shown that

|∆̃1|+ |∆̃2| . hk ‖u‖Wk+1,∞(Ω) .

This inequality is proved in the following series of lemmas.

Lemma 4.1. There is a constant C > 0 such that

|∆̃1| ≤ Chk ‖u‖W 1,∞(Ω) ,

with C independent of h.

Proof. We obtain by Lemma 2.6 and (3.4)

|∆̃1| ≤ hk ‖∂iLhIhu‖L∞ ‖Lhδz‖L1 . hk ‖u‖W 1,∞

where we used the stability of the lift (2.2) and the interpolation (2.3) in the last step.

In the next lemma, we decompose the remaining defect even further into two differ-
ences of bilinear forms.

Lemma 4.2. The defect ∆̃2 can be represented by

∆̃2 = ∆̃H + ∆̃V

where ∆̃H and ∆̃V are given by

∆̃H = (LhIhu | ∂iLhδz)H − (Ihu | ∂iδz)Hh ,

∆̃V = (LhIhu | Lhgzh)V − (Ihu | gzh)Vh .

14



Proof. Using the definitions of gz and gzh in (3.2), we derive

∆̃2 = (LhIhu | Lhgzh − gz)V
= (LhIhu | Lhgzh)V − (LhIhu | gz)V
= (Ihu | gzh)Vh + ∆̃V + (LhIhu | ∂iLhδz)H
= − (Ihu | ∂iδz)Hh + ∆̃V + (LhIhu | ∂iLhδz)H
= ∆̃H + ∆̃V .

The final bounds are derived in the next lemma.

Lemma 4.3. There is a constant C > 0 such that

|∆̃H |+ |∆̃V | ≤ Chk ‖u‖W 1,∞(Ω)

with C independent of h.

Proof. We consider the two terms separately.
(a) Using integration by parts, Lemma 2.6, and (3.4) we obtain

|∆̃H | = | (∂iLhIhu | Lhδz)H − (∂iIhu | δz)Hh |

. hk ‖LhIhu‖W 1,∞ ‖Lhδz‖L1

. hk ‖u‖W 1,∞

where we used the stability of the lift (2.2) and the interpolation (2.3) in the last step.
(b) For the second term, we introduce the following band around Γ defined by Uδ :=
{x ∈ Ω | dist(x,Γ) < δ} ⊂ Ω. For h sufficiently small, there is a constant cΓ > 0
such that all boundary elements are contained in the band UcΓh. As in the proof of
[5, Lem. 8.24] we obtain

|∆̃V | = | (LhIhu | Lhgzh)V − (Ihu | gzh)Vh |

. hk ‖LhIhu‖W 1,∞(Ωh) ‖Lhg
z
h‖W 1,1(UcΓh)

. hk ‖u‖W 1,∞(Ω)

(
‖Lhgzh − gz‖W 1,1(Ω) + ‖gz‖W 1,1(UcΓh)

)
. hk ‖u‖W 1,∞(Ω) ,

where we used Lemmas 3.1 and A.4 in the last inequality.
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A. Appendix

In this section, we collect the regularity results used in the above analysis. These are
taken from [3, Chap. 8] and stated here in a slightly more general version.

The first result is an extension of [3, Lem. 8.3.7], where the Hessian is replaced by the
gradient which allows to obtain a factor h−1 instead of h−2.

Lemma A.1. Let v ∈ V be the solution of

(v | φ)V = (f | φ)H , ∀φ ∈ V .

Then, we have ∫
Ω
σ−N−λz |∇v|2 dx ≤ Cλ−1(γh)−1

∫
Ω
σ4−N−λ
z |∇f |2 dx.

Proof. In the proof of [3, Lem. 8.3.7], one first estimates by Hölder’s inequality∫
Ω
σ−N−λz |∇v|2 dx . (γh)−λ−N/p ‖∇v‖2L2p .

Once, we have shown that for any p, s > 1

‖∇v‖L2p . ‖∇f‖L1 . ‖∇f‖Ls , (A.1)

we conclude with s = 2pN
N+3p

:= 2
q ∈ (1, 2)

‖∇f‖sLs =

∫
Ω
|∇f |2/q dx

=

∫
Ω
σ
−4−N−λ

q
z σ

4−N−λ
q

z |∇f |2/q dx

≤
(∫

Ω
σ
−(4−N−λ)

q′

q
z dx

)1/q′(∫
Ω
σ4−N−λ
z |∇f |2 dx

)1/q

and hence

‖∇f‖2Ls =

∫
Ω
|∇f |2/q dx ≤

(∫
Ω
σ
−(4−N−λ)

q′

q
z dx

)q/q′ ∫
Ω
σ4−N−λ
z |∇f |2 dx.

With q
q′ = q − 1 we have

(∫
Ω
σ
−(4−N−λ)

q′

q
z dx

)q/q′
=
(∫

Ω
σ−(4−N−λ)(q−1)
z dx

)q−1

≤ C(γh)−(4−N−λ)+N(q−1)

= C(γh)
−1+λ+N

p
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since

−(4−N − λ) +N(q − 1) = −4 +N + λ+N(
N + 3p

pN
− 1) = −1 + λ+

N

p
< 0

for p > N
1−λ and hence the claim follows.

It remains to prove (A.1). We employ Theorem 2.1 and [1, Thm. 4.12] to obtain

‖∇v‖L2p . ‖v‖W 2,N/2 . ‖f‖L3/2 . ‖f‖W 1,1 ≤ ‖∇f‖L1

where we use Case B (mp = N) for the first inequality, Case C (m = p = 1) for the
third, and the Poincaré inequality for the last.

The next lemma is a straight forward extension of [3, Lem 8.3.7], where the case α = 2
is derived.

Lemma A.2. Let v ∈ V be the solution of

(v | φ)V = (f | φ)H , ∀φ ∈ V .

Then for 0 < α ≤ 2, we have∫
Ω
σ−N−λ+2−α
z

(
|∇v|2 + |∇2v|2

)
dx ≤ Cλ−1(γh)−α

∫
Ω
σ4−N−λ
z |∇f |2 dx.

Proof. In order to adapt the proof, it is sufficient to guarantee the existence of a p ∈
(1,∞) such that the conditions

p >
N

2− λ
and

(−N − λ+ 2− α)p′ +N < 0 ⇐⇒ N

p
> 2− α− λ

are both satisfied. For 2 ≤ α+ λ, the latter condition is empty. In the other cases, it is
equivalent to

p <
N

2− λ− α
,

and since α > 0, such a p can be found.

The following lemma builds upon the estimates in [3, Lem. 8.3.11]. In the proof the
result is shown for α = 0.

Lemma A.3. Let v ∈ V be the solution of

(φ | v)V = (ν · ∇f | φ)H , ∀φ ∈ V .

Then for 0 ≤ α < 2− λ, we have∫
Ω
σN+λ−2+α
z |∇v|2 dx ≤ C

∫
Ω
σN+λ+α
z |∇f |2 dx+ (γh)−2+α

∫
Ω
σN+λ
z |f |2 dx.
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Proof. We compute∫
Ω
σN+λ−2+α
z |∇v|2 =

(
v | σN+λ−2+α

z v
)
V
−
∫

Ω
∇v∇(σN+λ−2+α

z )v dx

≤
∣∣∣(ν · ∇f | σN+λ−2+α

z v
)
H

∣∣∣+ a

∫
Ω
σN+λ−2+α
z |∇v|2 + 1

a

∫
Ω
σN+λ−4+α
z |v|2

.
∫

Ω
σN+λ+α
z |∇f |2 + a

∫
Ω
σN+λ−2+α
z |∇v|2 + 1

a

∫
Ω
σN+λ−4+α
z |v|2

and by absorption, it only remains to bound the last term. We claim∫
Ω
σN+λ−4+α
z |v|2 ≤ C(γh)−2+α

∫
Ω
σN+λ
z |f |2 dx

which can be adapted from the proof of [3, Lem. 8.3.11], if one can find r > 1 with

r <
2N

2N − 2 + λ+ α
,

which is possible since α+ λ < 2.

The last lemma exploits the fact, that the solution gz of the regularized δ-function
only has to be bounded on a narrow strip around the boundary of Ω.

Lemma A.4. There is a constant C > 0 such that

‖gz‖W 1,1(UcΓh) ≤ C

with C independent of h.

Proof. The key tool is the generalized version of the narrow band inequality shown in
[4, Lem. 4.10]. We recall Uδ = {x ∈ Ω | dist(x,Γ) < δ}. Then for any 1 ≤ p <∞, there
is a constant Cp > 0 such that for any ϕ ∈W 1,p(Ω) it holds

‖ϕ‖Lp(Uδ)
≤ Cp δ1/p ‖ϕ‖W 1,p(Ω) . (A.2)

We apply (A.2) with p = 1 and δ = cΓh and obtain

‖gz‖W 1,1(Lh[Jh 6=1]) . h ‖∇2g
z‖L1(Ω) .

Finally, we deduce by (2.8) and the elliptic regularity shown in [3, eq. (8.3.10)] the bound

‖∇2g
z‖2L1(Ω) . h−λ

∫
Ω

σN+λ
z |∇2g

z| dx . h−λhλ−2 . h−2

and, taking the square roots, the assertion follows.
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